file: idl-simple-manual.txt = introduction to IDL basics
last: Apr 6 2022 Rob Rutten Deil

SIMPLE IDL INSTRUCTION FOR ASTRONOMY STUDENTS
Robert J. Rutten

Lingezicht Astrophysics Deil
Institutt for Teoretisk Astrofysikk Oslo

This compact IDL tutorial is a beginner’s introduction to IDL, showing
how to do simple calculations, make plots, write IDL programs.

It consists of a didactic sequence of IDL commands that you should try
out on the IDL command line. It starts after an extensive
introduction with general information and weblinks.

There are parallel txt, pdf, and html versions of this manual at
https://robrutten.nl/Manuals.html

The html and pdf versions have active weblinks.

This manual was written in the early 1990s for second-year astronomy
students at Utrecht University doing the "Stellar Spectra" exercises at
https://robrutten.nl/Exercises.html

I irregularly add more IDL fads and fallacies that I stumble upon.

INTRODUCTION TO THIS INSTRUCION

Why use IDL?

IDL is an interactive programming language with the following advantages:
- programming language, not a package: make up your own stuff, experiment
- interactive "interpreter": test statements and tricks on the command line
- array notation: ¢ = a + b handles multi-dimensional arrays (images, movies)
- journaling: keep a log of all trials, then pick out what worked best
- save/restore: store a complete session to share with others

Although IDL licenses are excessively expensive, it long was the
mainstay in astronomical image processing - but public Python is
taking over. IDL was indispensable in solar physics through the
exthugpvE/wawalnedl . tohyavYazboft

https://robrutten.nl/Manuals.html
https://robrutten.nl/Exercises.html
http://www.lmsal.com/solarsoft

but
SunPy is on its way to replace all of it. I haven’t tried the public
IDL-replacing Fawlty Language.

My habits
I run ancient IDL 6.4 (2007) under Ubuntu linux in the emacs IDLWAVE shell.
I often use SolarSoft routines from

https://www.lmsal.com/solarsoft

I sometimes use Coyote Graphics "cg" routines from
http://www.idlcoyote.com/documents/programs.php

I habitually swear at IDL because:
- it has far to many counter-intuitive idiosyncracies
- its figure layout differs hardware-dependently between screen and ps
- its figure annotation remains a hassle even with textoidl
- it has confusing plot parameter choices between graph area and plot area
- it counts my fingers O to 9
- its array notation [column,row] describes images, not matrices
- its CNTRL d is not next-character-delete as in Emacs but kills the session
- its CNTRL c does not stop program execution but may kill the session
- it does not have command-line tab completion (except in IDLWAVE)
- it does not have a comprehensive !! system parameter reset
- it started prefering square brackets for array indices far too late
- its error messages are primitive and often bewildering
- my "life-long license" is nearly impossible to re-activate

Other IDL manuals

The online help (type 7 in an IDL session) is reasonably complete but
most examples are too simplistic. The IDL 6.4 help GUI is primitively
browser-like.

IDLWAVE accesses the IDL help files by keystrokes on procedure names.
Extensive manual (but assuming nontrivial knowledge of emacs) at

http://www.gnu.org/software/emacs/manual/html_mono/idlwave.html

A searcher that can also search IDL Google groups resides at
http://www.physics.emory.edu/~weeks/lab/searchidl.html

Explanatory comment blocks:
Many user-supplied routines (functions, procedures, full programs), as
those in the SolarSoft, Astronomy, and Coyote IDL libraries, start
with explanatory comment blocks between ;+ and ;- lines.
You can read these by typing
doc_library, ’routinename’
at the IDL prompt, but it may be more convenient to produce a html help
tree that you can inspect with your prefered html browser with, for example:

https://www.lmsal.com/solarsoft
http://www.idlcoyote.com/documents/programs.php
http://www.gnu.org/software/emacs/manual/html_mono/idlwave.html
http://www.physics.emory.edu/~weeks/lab/searchidl.html

mk_html_help,’~/idl/coyote’,’~/idl/help/coyote.html’
(the Coyote library contains this as file: program.documentation.html).
IDLWAVE opens such ;+...;- comment blocks with keystrokes.

I prefer to use my misclib sp.pro ("show program") to open them in a
separate editor window.

Weblinks:
Numerous url’s for astronomical IDL are collected at
http://idlastro.gsfc.nasa.gov/other_url.html

Books:
David Fanning: "Traditional IDL graphics" (2011)
David Fanning: "IDL Programming Techniques, 2nd Edition" (2000)
Lilian Gumley: "Practical Idl Programming"
Ken Bowman: "An Introduction to Programming with IDL"

IDL routine libraries

David Fanning’s coyote library, including 2011 cg routines used below:
http://www.idlcoyote.com/documents/programs.php

textoidl.pro: get the version under pro/plotting in the Sloan library at
http://code.google.com/p/sdssidl/downloads/list

Astronomy IDL library (not used here; it has been converted to cg):
http://idlastro.gsfc.nasa.gov/homepage.html

SolarSoft = "ssw" = solar physics IDL library:
https://www.lmsal.com/solarsoft

IDL startup

IDLWAVE for Emacs
Recommended modus of IDL operation, offering many keystroke shortcuts
and debugging options:
http://www.gnu.org/software/emacs/manual/html_mono/idlwave.html

The IDLWAVE settings in my own .emacs file are shown at
https://robrutten.nl/Recipes_linux_unix.html

My setup defines hyperkey+mouse-middle-click to call my misclib sv.pro
("show variable’) to diagnose the variable content as print or plot or
movie.

Solarsoft startup
In my Ubuntu linux I use a shell script "idl" to always run ssw:

http://idlastro.gsfc.nasa.gov/other_url.html
http://www.idlcoyote.com/documents/programs.php
http://code.google.com/p/sdssidl/downloads/list
http://idlastro.gsfc.nasa.gov/homepage.html
https://www.lmsal.com/solarsoft
http://www.gnu.org/software/emacs/manual/html_mono/idlwave.html
https://robrutten.nl/Recipes_linux_unix.html

#!/bin/csh

setenv SSW /usr/local/ssw # if ssw stuff sits here
setenv SSW_INSTR "sot aia hmi trace ontology" # select instruments
source $SSW/gen/setup/setup.ssw

sswidl

IDL startup code to resolve library clashes
SolarSoft took Coyote routines long ago and changed them without
name change. The worst clasher is "linkedlist__define.pro". The remedy
is to make IDL search the coyote library before the ssw libraries.
SolarSoft puts its ssw libraries before any others, so this cannot be done
in a .login file or a shell resource (.bashrc, .cshrc) file,
but needs the following use of Coyote’s "addtopath.pro" in your
"idlstartup.pro":

cd, ’/home/usr/idl/coyote’,current=thisdir ; adapt to your coyote path

addtopath

cd,thisdir

cd,current=workdir ; repeat for your actual working dir

addtopath,workdir ; routines in your workdir now override any others
NB: in "idlstartup.pro" I also have, following page 47 in Fanning 2011:

device,retain=2,decomposed=0 ; indexed colors (255 only)

window,xsize=10,ysize=10,/pixmap,/free ; initializing window

wdelete, !d.window ; to avoid empty white window

Format of this instruction
IDL executes on the command line when you hit return ("interpreter").
This makes it easy to try new statements and statement sequences.
The up cursor arrow brings back earlier commands.

The main body of this instruction consists of a didactic sequence of
command-line entries. Simply enter the IDL statements consecutively
on the IDL> command line (type or copy-paste). Predict their action
before you enter them! Many are goodies but some will surprise you
negatively.

The end of the instruction describes program structure, parameter
passing, session saving, etc.

Enjoy!

START OF THE ACTUAL INSTRUCTION

IDL MATH BASICS

help

? [search term]

number games
print,3*5
a=3%5
a=3%5
help,a
help,A

whatever_name_you_like$like_this_perhaps = a ;

3

3

3

IDL’s help: inspect some IDL routines and concepts

semicolon = comment, IDL skips the rest of the line
no variable declaration needed

add spaces as you like

show nature and value of this variable

IDL is case-insensitive, shows variables in caps
and $ are permitted

print,whatever_name_you_like$like_this_perhaps ; no spaces, +, —, *

spectrum_AR10910=1

print,100°2
print,20072
d=32767
print,d+1
print,d+1.
print,2715
print,2.715

? integer
print,32767001
print,3276700ul

print,3276700ull

print,3/5
print,3/5.
print,2715.
a=[1,2,3,4,5,6]
a=[0,a,7]
print,a,1E6*a
print,a,1D6*a
print,a,1/a
print,a,l./a
print,a,a”2

print,a,alogl0(10"a)

3
3
3

3

; variable names must start with alphabetic character

did you expect that?

did you expect that?

"short" integers run from -32768 to + 32767
did you expect that?

IDLWAVE: SHIFT mouse2 = print variable under cursor
once more

why is the integer word length not 16 bits?
check the other number formats

long integer, sign+31 bits

unsigned long integer, 32 bits

unsigned long long integer, 64 bits

operation with one float makes the result a float

IDL variables can be 1-8 dimension arrays
lengthen this 1D "vector" by adding value(s)
single precision: 6 significant digits, < 10738
double precision: 16 significant digits

divide by O gives error message without stop

; NaN = Not a Number

print,a,alogl0(10"float(a))

a=1.x*a

print,a,alogl0(10"a)
print,a,alog(exp(a))
print,a,acos(cos(a))

; convert into float

; a in radians

print,a,acos(cos(!pi/a))*180./!pi ; !something is a system variable

print, !dpi
print, !dtor

; double precision value of pi
; so what is this?

print,a,acos(cos(!pi/a))*!radeg ; another one

print,a,a mod 2
print,fix(!pi)

print,long(!pi*1E8)

3

I

fix = entier to short integer
long = entier to long integer

b=sqrt(a) ; type of b is defined through its assignment
a=3

if (a=1) then print, ’yes, a=’,a else print,’no, a=’,a ; IDL quirk
a=3 ; try again

if a eq 1 then print, ’yes, a=’,a else print,’no, a=’,a ; better

if (a eq 1) then print, ’yes, a=’,a else print,’no, a=’,a ; nicer

if “(a eq 1) then print, ’yes, a=’,a else print,’no, a=’,a ; 7 ~ operator
help ; help without variable shows all variables

string manipulation
print,’b=’,b ; ’something’ is a string
pathfile=’rootdir/homedir/ownerdir/workdir/todaydir/thisfile.txt’
print,strmid(pathfile,strpos(pathfile,’/’,/reverse_search)+1) ; IDL...

print,file_test(’path/file’) ; check file exists
fileonly=file_basename(file)

print,str_match(file,’substring’) ; does filename contain substring?
newstring=str_replace(string,’-’,’.’) ; replace all - by .

print,’b = ’,string(b,format=’(£5.2)’) ; ancient Fortran
print,’b = ’,strmid(string(b,format="(£5.2)’),1) ; IDL...

print,’b = ’,strmid(string(b+1e3,format=’(£7.2)’),1,6) ; with zero padding
print,’b = ’,ntostr(b) ; that’s easy! Google ntostr.pro
print,’b = ’,ntostr(b,format=’(£5.2)’) ; better spaces removal

print,’b = ’,trim(b) ; SSW alternative

print,’b =’,trimd(b,3) ; my own number printer, 3 decimals
c=!pi~50 ; make a large number
print,c,c,c,c,c,c,c,c,C ; wide printout
print,ntostr([c,c,c,c,c,c,c,c,c],format="(20E10.3)’) ; compact printout

print,ntostr([c,c,c,c,c,c,c,c,c],format="(G15.5)’) ; chooses float or exp

one-dimensional arrays

a=bytarr (100) ; define a as byte array al0O],..,al[99]=0
a=intarr(100) ; define a as integer array al[0],..,a[99]=0
a=fltarr(100) ; define a as floating number array al0],..,a[99]=0.0
a=dblarr (100) ; double-precision float array = 0.0000000

a=a+l ; now they are all 1.0000000

for i=0,19 do alil=i ; remember that IDL starts counting at O

a=indgen (20) ; same thing: a=[0,1,....,19] without a[] declaration
print,al0],a[19] ; always mind the virtual startoff finger
print,al[10:19]

print,a[x*] ; same as print,a and as print,a[0:19]

print,moment (a) ; mean, variance, skewness, kurtosis (set /double?)
b=sqrt(a) ; check that b is a float array - why?

print,a+b

c=b ; define float array the same size as a and b

for i=0,19 do if (b[i] gt 3) then c[i] = al[i] + b[i] else c[i] = a[il
print,c

print,a+b*(b gt 3)
print,a+b>3
print,a+(b>3)
print,a+(b gt 3)
print,a+b gt 3
print,a+b[where(b gt 3)]
print,max(1,2,3)
print,max([1,2,3])

two-dimensional arrays
ar = [[1,2,3],[4,5,6]]
print,ar

print,ar[0],ar[0,0]
print,ar[0,*]
print,n_elements(ar)
print,total(ar)
print,shift(ar,-1)
print,transpose(ar)
print,reverse(ar)
print,invert(ar)
ar=ar+1
ar=temporary(ar)+1
vecl=[1,2]
vec2=[3,4]
ar=[[vecl], [vec2]]
print,ar
print,arx*vecl
print,ar#vecl
print,ar##vecl
print,ar#reverse(ar)
print,ar##reverse(ar)
print,invert(ar)#ar

)

b

b

)

b

the same, processes faster, needs no declaration
beware: gives 3 or a+b where (a+b)>3
gives a+3 where b<=3, a+b where b>3
gives a, adding 1 where b>3
gives 0 for (a+b)<3, 1 for (a+b)>3
gives b[10:19] added to a[0:9]

; did you predict the answer?

integer [3,2] array

1st index = column number, "runs fastest"
2nd index = row number

mind the virtual finger

* = all values of this index

predict all these

for large arrays set /double

; needs square array

add 1 to each array element
idem but in place requiring less memory

; simple 2x2

; fxg = fli,jl*gli,j]

; f#g = columns x rows (IDL habit)

; f##g = rows x columns = transpose(f#g)

; predict or check manually
; predict or check manualy
; unit diagomnal, OK

ar=[[1,2,3],[4,5,6],[7,8,9]] ; now 3x3 without virtual finger

ar=indgen(3,3)+1
print,invert(ar)#ar

; the same
; should be unit diagonal but isn’t

arinv=invert (ar,status,/double) ; try again

print,arinv#ar
print,status

three-dimensional arrays
ar=indgen(3,4,5)+1
print,ar
ar3=ar (*,*,2)
print,total(ar)
print,total(ar,1)

; as bad in double precision
; status=1: singular, so invalid

; let’s say 3x4 px frames in a 5-frame movie
; successive indices run slower

; third movie frame

; sum all elements

; (4,5) row sums = sum over other dimensions

print,total(ar,2)
print,total(ar,3)
sizear=size(ar)

print,sizear ; nr dims,
mean=total (ar,3)/sizear(3)

xslice=ar[*,0,x*]
help,xslice
xslice=reform(xslice)
help,xslice

br=[[[lar]], [[ar]], [[ar]]]

help,br

I

3

(3,5) column sums
(3,4) frame sums

diml, dim2, dim3, type (integer), nr elements
temporal mean of this movie

distill (x,t) timeslice at y=0

oops, still 3D array

reform removes degenerate dimensions

2D array now

what is this?

; more of the same / soortgelijks / und so weiter / ibid

ar=indgen(6,5,4,3,2)+1
print,ar
print,size(ar)

free array to regain memory space

undefine,arra,arrb,arrc,..

delvar,arra
ar=0

GRAPH PLOTTING

basic plot
x=findgen(100)
plot,sin(x/10)
y=sin(x/5.)/exp(x/50.)
plot,y
plot,aloglO(x),y
oplot,aloglO(x),y "2
plot,aloglO(x),y"2+10

plot_io,x,abs(y)+0.1)
erase
wdelete

I
3
3
3
3
3

3

; regain memory anywhere (cg program)
; regain memory but only in main part
; doesn’t regain memory but leaves a hole

; float array x=0., 1.,, 99.

10 doesn’t have to be 10. since x is float

; but T like float specification for safety

plot,x,y uses array index for x if not given

; X and y may differ in array size
; over-plots in existing graph

too much emptiness in this graph
plot,aloglO(x),y"2+10,/ynozero ; /ynozero is alternative for ynozero=1
plot,abs(fft(y,1)"2),/ylog
; log-linear plotter, not in the IDL help?

; wipe current plot window

; kill current plot window

while !d.window ne -1 do wdelete,!d.window ; kill all IDL windows ("easy")

Coyote cg window alternative

; power spectrum on logarithmic scale

cgplot,x,y,/window ; resizable window, "save-as-postscript" clicker

plot beautification

plot,x,y,psym=1 ; defined for psym=1-7,10; try them out
; something=something: optional "keyword" parameter
; check PLOT (7 plot); check GRAPHICS KEYWORDS

plot,x,y,psym=-4 ; plot both curve and diamonds at sample values
plot,x,y,linestyle=1 ; defined for linestyle=0,...,5, try them all
oplot,x,y*2,linestyle=2 ; overplot another graph in the same frame
plots,20,70,psym=2,symsize=1.5 ; mark location with asterisk

plots, [20,70],[-0.5,+0.5] ; overplot line segment [x1,x2],[y1,y2]

plots, [50,50], [-1E10,1E10] ,noclip=0 ; overplot line cut at edges (NOT /clip)
plot,x,y,xtitle=’x axis’,ytitle=’y axis’,thick=2,xthick=2,ythick=2,$
charthick=2,charsize=2 ; $ extends to next line

ytitle=textoidl("sin(x/\alpha) e~{-x/\betal}")
print,ytitle ; 'U=up, !D=down, !N=normal, !7=Greek, !X=entry font
angstrom=textoidl ("\AA")
angstrom=string(197B) ; alternative = "byte constant" character code

; find symbol codes such as this by Googling <table isolatinl>

; but they may not be valid in the PostScript font you choose

; why the &$#0$%, doesn’t IDL accept full latex strings for all fonts?
set_plot,’ps’
angstrom=cgsymbol ("angstrom") ; Coyote cg, probably most robust
set_plot,’x’
xtitle=’x [’+angstrom+’]’
print,xtitle
plot,x,y,xtitle=xtitle,ytitle=ytitle,charsize=2
alpha=5 ; let’s add annotation
alphaspec=textoidl("\alpha = ")+strtrim(string(alpha),2) ; not so simple...
alphaspec=cgsymbol("alpha",/ps)+’ = ’+ strtrim(string(alpha),2) ; cg for ps

alphaname=strlowcase(scope_varname(alpha)) ; get variable name as string
alphaspec=greek(alphaname)+’ = ’+ strtrim(string(alpha),2)
xyouts,80,0.7,alphaspec,charsize=2 ; X,y in data units
xyouts,0.7,0.8,/norm,alphaspec,charsize=2 ; X,y in window size units
plot,x,y,xrange=[-10,+110] ,yrange=[-1.5,1.5] ; your choice axis lengths

plot,x,y,xrange=[-10,+110] ,yrange=[-1.5,1.5] ,xstyle=1,ystyle=1
; now the axes obey your ranges exactly

plot beautification in a Coyote cg window
cgplot,x,y,xtitle=xtitle,ytitle=ytitle,charsize=2,$; similar to above
/window,$; resizable window
aspect=2./3,$; fixed aspect ratio
psym=-15,% ; many more choices; see doc_library,’symcat’
/_extra,thick=2,xthick=2,ythick=2,charthick=2 ; any plot keywords
cgplot,x,y*2,/overplot,/add,color="darksalmon’,thick=5,linestyle=2
; overplot is now an option of cgplot (add /add), not a separate routine
s cgplot can also easily color curves, symbols, etc
; select cgcolor name from palette: color = cgcolor(/selectcolor)
; but oops: sticky, makes colors add up spoiling your next display

; see also doc_library,’cgcolor’ or browse program.documentation.html
cgtext,80,0.7,alphaspec,charsize=2,/addcmd ; replaces xyouts

PostScript figure with traditional IDL

set_plot,’ps’ ; change plot output to postscript format

device,filename=’demol.ps’ ; the plot commands now write to this file

plot,x,y,xtitle=xtitle,ytitle=ytitle,thick=2, xthick=2,ythick=2,$
charthick=2,charsize=2 ; redo all the above

xyouts,80,0.7,alphaspec,charsize=2 ; idem

device,/close ; done, write postscript file

set_plot,’x’ ; back to output on Unix/linux/Mac0S Xwindows screen

; set_plot,’win’ ; back to output on a Micro$oft Windows screen

; help,/device ; /device is the same as device=1 (enable)

$gv demol.ps ; starting $ on command line escapes to shell

filename=’demol.ps’ ; make it a variable for

spawn,’gv ’+filename ; generic shell escape, also in a program

00PS! ..|.. IDL! The ps plot differs much from what you had on

your screen. The thickness parameters in plot do NOT apply to ps
output. Also the charsize multiplier in plot does NOT work. The
vertical annotation spacing differs (even hardware-dependently,
depending on the character pixel matrix). So, this demo exhibits
severe IDL shortcomings. First, there is no clicker or single
command to obtain ps output that reproduces exactly what you have on
your screen - you cannot develop a nice on-screen display and then
hit or command "save as ps". Instead, you have to repeat the whole
sequence of plot commands that made your nice on-screen display once
again for the ps "device", as shown above. Second, there are
inconsistencies between such plotting on the screen and in ps, and
some of these are hardware-dependent. The awkward upshot is that
there is not much point in beautifying the on-screen product.
Instead, you should beautify the ps output, independent of what you
get on the screen. Because the plot thickness keywords do not work
for ps, one then has to muck around with the various !p.thick system
parameter settings. These are sticky, so changes must subsequently
be undone not to get problems later (for example in the next
on-screen plot). Similary, the IDL font codes for Greek characters
differ between the screen and some ps fonts. Argh...

However, David Fanning’s cg routines with their /window option can
serve to develop IDL figures on your screen and obtain ps output
like these (and raster pixmaps) without explicit sequence repeat but
indeed per clicker or a single command. The sequence repeat still
occurs but is hidden within cg routines that call the coyote-library
"ps_start" and "ps_end" routines internally. Fanning added
"evalkeyword" and "evalparams" options to provide run-time
evaluation for things that differ between devices, such as thickness

10

keywords and Greek characters. See below. They work nicely for
simple figures, but for elaborate ones you may prefer to go back to
the traditional repeat-sequence approach (I usually do).

Below I first demonstrate the traditional way of making postscript
graphs through repeating the entire plot sequence, then coyote cg
usage to avoid such repetition.

Postscript figure following Alfred de Wijn

http://www.iluvatar.org/~dwijn/idlfigures

set_plot,’ps’ ; postscript format

Ip.font=1 ; true-type fonts

Ip.thick=2 & !x.thick=2 & !y.thick=2 ; & = multiple commands/line
Ip.charthick=2 ; reset system default
xsize=8.8 ; cm; this is A&A column width
ysize=xsize*2/(1+sqrt(5)) ; aspect golden ratio 1.61803
filename=’demo2.eps’

device,filename=filename,xsize=xsize,ysize=ysize,/encapsulated,/portrait,$

/tt_font,set_font=’Times’,font_size=11 ; fit size to publication font
ytitle=textoidl("sin(x/\alpha) e~{-x/\betal}") ; repeat for ps font
alphaspec=textoidl("\alpha = ")+strtrim(string(alpha),2) ; idem
plot,x,y,$

position=[0.2,0.2,0.95,0.95],/normal,$; set margins around plot

xticklen=0.03,yticklen=0.03*ysize/xsize,$; same-length ticks
xtitle=xtitle,ytitle=ytitle

xyouts,80,0.7,alphaspec ; X,y in data units
device,/close
set_plot,’x’ ; back to output on Unix/linux/Mac0S Xwindows screen
Ip.font=-1 ; back to default (Hershey) fonts for screen display
I'p.thick=0 & !x.thick=0 & !y.thick=0 & !p.charthick=0 ; reset defaults
spawn,’cat ’+filename+$; replace irritating

’| sed "s|Graphics produced by IDL|’+filename+$; IDL plot banner

>|" > idltemp.ps; mv idltemp.ps ’+filename ; with the file name
spawn,’gv ’+filename ; set gv to "watch file" for rewrites

; NB: textoidl doesn’t give true-type font but at least it works in ps;
for Greek it has to be run again, now in the ps device environment
; NB: I minimize the bounding box later with epstopdf, pdfcrop, pdf2ps

PostScript figure with Coyote ps_start and ps_end
xsize=8.8 & ysize=xsizex*2/(1+sqrt(5))
ps_start,filename=’ctdemo2.eps’,font=1,tt_font="Times’,$
/nomatch,xsize=xsize,ysize=ysize,/metric,/encapsulated,charsize=0.9
; default ps thicknesses are temporarily reset to 2
I'p.thick=3 & !x.thick=3 & !y.thick=3 & !p.charthick=3 ; if you prefer 3
ytitle=textoidl("sin(x/\alpha) e~{-x/\betal}") ; textoidl repeat for ps
alphaspec=textoidl("\alpha = ")+strtrim(string(alpha),2) ; idem

11

http://www.iluvatar.org/~dwijn/idlfigures

plot,x,y,$
position=[0.2,0.2,0.95,0.95],/normal,$
xticklen=0.03,yticklen=0.03*ysize/xsize,$
xtitle=xtitle,ytitle=ytitle

xyouts,80,0.7,alphaspec

ps_end ; back to screen windows, Hershey fonts, original ! values

spawn, ’gv ctdemo2.eps’

PostScript figure from a Coyote cg screen window
cgplot,x,y,/window,$
charsize=2,xtitle=xtitle,position=[0.25, 0.25, 0.9, 0.9],$
evalkeywords=[’thick’, ’xthick’,’ythick’,’charthick’,’ytitle’],$

thick=’(!d.name eq "PS")75:1’,% ; 5 for ps, 1 for screen
xthick=’(!d.name eq "PS")75:2’,% ; ps thick because size is large
ythick=’(!d.name eq "PS")75:2°,$; PS must be in capitals

charthick=’(!d.name eq "PS")75:1°,$
ytitle=’textoidl("sin(x/\alpha) e~{-x/\beta}")’ ; Greek, redo for ps
cgtext,0.7,0.8,/norm,$

’greek(alpha)+" = "’ ,evalparams=[0,0,1],$; Greek, redo for ps
charsize=2,/addcmd

cgtext,0.77,0.8,/norm, $; 0.77 results from manual fitting on ps
strtrim(string(alpha),2),$; normal parameter

charsize=2,/addcmd
; click on file > save as postscript > ps output; or instead enter:
cgcontrol,create_ps=’cgdemo2.eps’,/ps_encapsulated,/ps_metric
spawn, ’gv cgdemo2.eps’

add second axis
example of adding a top x—-axis with nonlinear scaling with respect
to the bottom x-axis (in this case mu = cos(theta) over the solar disk
versus r/R_sun = sin(theta) with theta the viewing angle)
plot,rvalues,averzones,psym=-4,$

position=[0.2,0.2,0.8,0.8],$; wide margins to accommodate extra axes
xrange=[0,1] ,yrange=yrange, $
xstyle=9,ystyle=1,$; no axis along top

xtitle=textoidl("r/R_{sun} = sin \theta"),$

ytitle=’whatever averzones was about’
mutickpos=[1.0,0.9,0.8,0.7,0.6,0.5,0.4,0.0]
muticknames=[’1.0’,0.9’,0.8,°0.7’,°0.6°,0.57,70.47,°0.07]
nmuticks=n_elements (mutickpos)-1
rmuticks=sqrt(l.-mutickpos~2)
axis,xaxis=1,xticks=nmuticks,xtickv=rmuticks,xtickname=muticknames,$

xminor=1,xtitle=textoidl("\mu = cos \theta")

add zero to a second axis

12

IDL’s AXIS routine to generate extra axes has the annoying failure
that it may not plot the label zero when an axis starts at zero.
Below an example how to correct this, plotting functions "tau(height)"
and "temp(height)", the tau axis at left, the temp axis at right:
heightrange=[0,2300]
taurange=[-3,7]

plotaspect=1.62 ; golden ratio
plot,height,aloglO(tau),$
position=[0.2,0.2,0.8,0.95],/normal,$; set margins around plot
xticklen=0.03,yticklen=0.03/plotaspect,$; same-length ticks

xtitle=’height [km]’,ytitle=’log (optical depth)’,$

xrange=heightrange,yrange=taurange,xstyle=1,ystyle=9,linestyle=1
temprange=[0,30000]
tempscaled=taurange [0] +(temp-temprange [0]) /(temprange [1] -temprange [0]) *$

(taurange[1] -taurange[0]) ; rescale temp to log(tau)
oplot,height,tempscaled,thick=3 ; overplot temp(height)
axis,yaxis=1,yrange=temprange,ystyle=1,$; dummy axis to get ticks

ytickinterval=1000,ytitle=’"’,ytickname=replicate(’ ’,60),$

ytick_get=tempaxticks
tempticknames=string(tempaxticks,format=’(i5)’)
axis,yaxis=1,yrange=temprange,ystyle=1,$; plot temp axis at right

ytickinterval=1000,ytitle=’temperature [K]’,ytickname=tempticknames

multi-panel figures

IDL offers !p.multi for stacking multiple plots into one display.
Quite cumbersome and non-versatile. Alfred de Wijn has a better
recipe at:

http://www.iluvatar.org/~dwijn/idlfigures

I myself never make multi-panel displays with IDL. Instead, I make
fully-annotated separate graphs and stack them up in LaTeX, using

LaTeX macros to remove superfluous annotation between panels. This

way I choose the figure layout only when writing the paper, which

makes collaboration in the analysis phase much easier. See:
https://robrutten.nl/rrweb/rjr-edu/manuals/student-report/cutmultipanel.tex

ARRAY/IMAGE PLOTTING

two-dimensional array plotting

k=indgen (100) ; let’s make a nice 100x100 array
f=sin(k/5.)/exp(k/50.) ; the same f(x) as y(x) above
g=cos(k/5.)*exp(k/50.) ; similar function g(y) for the other coordinate
s=f#g ; make an array

13

http://www.iluvatar.org/~dwijn/idlfigures
https://robrutten.nl/rrweb/rjr-edu/manuals/student-report/cutmultipanel.tex

help,s ; a 2-dim (100,100) float array

print,s[0:4,0:9] ; better use square brackets for array elements
plot,s[7,*] ; plot 8th column (mind the virtual zero finger)
oplot,s[*,95],1linestyle=5 ; overplot 96th row, dashed
tvscl,s ; View as byte-scaled image

; Compare the image (in the bottom-left plot corner), graph, and printout.
; The first index is the column number, the second index the row number.

; IDL’s [column,row] is opposite to matrix algebra. See 7 array majority.
; IDL’s [column,row] fits the notion of an image f(x,y), that’s why.

; The printout has s[0,0] at the top-left corner, but

; the image display has s[0,0] at its lower-left corner ("origin").

print,minmax(s) ; show extrema

print,array_indices(s,where(s eq max(s))) ; the two plots sample max(s)
print,s[5:9,94:96] ; check

surface,s ; I dislike such plots, hard to read off values
shade_surf,s ; idem

show3,s ; yet worse

xsurface,s ; primitive tool to change viewing point etc
isurface,s ; not for me

cgsurface,s ; Coyote alternative, much better

; grab and change viewpoint with left mouse
; zoom in and out with right/middle mouse
; various clicker options
cgsurface,s,/shaded ; idem
contour,s
contour,s,nlevels=50
contour,s,nlevels=20,/downhill
cgcontour,s,nlevels=20,/window ; Coyote alternative in resizable window
cghistoplot,s,nbins=50,/window ; histogram = occurrence distribution
hist=histogram(s,nbins=50,omin=omin,omax=omax) ; the same clumsily a la IDL
binsize=(omax-omin)/49.
normhist=hist/float (max(hist))
xhist=omin+indgen(50)*binsize
plot,xhist,normhist,psym=10

image display

ssize=SIZE(s) ; get array type and size
nx=5*ssize[1] ; ssize[0] = number dimensions
ny=6xssize[2] ; etcetera for more dimensions
sb=rebin(s,nx,ny) ; resample s for larger display

tvscl,congrid(s,188,188,/interp) ; arbitrary resizing (slow)
wdelete

window,xsize=nx,ysize=ny ; window equal to image size

tv,sb ; oops, tv expects value range 0-255
print,min(s5) ,max(s5) ; show extrema

tv,sb<0 ; same selection, tv wraps negative values
tv, (sb-min(s5))/(max(s5)-min(s5))*255 ; rescale to range (0-255)

14

tvscl,sb

sbb=bytscl(s5)

tv,sbb

sbpos=fltarr (nx,ny)

s5pos=0.*sb

indpos=where(s5 gt 0)
sbpos [indpos]=s5 [indpos]

tvscl,sbpos
tvscl,s5>0
tvscl,sb gt

0

tvscl,sb<(-1)
tvscl,sb>(-1)<1

tv,bytscl(s5,min=-1,max=1)

b
b

b

indcut=where(s5 gt -1 and sb5
sbcut=fltarr (nx,ny)
sbcut [indcut]=s5[indcut]

tvscl,sbcut

profiles,sbcut

loadct
tv,sbb
xXpalette
xloadct

tvscl,sbb>127

erase

tvscl,s5[0:nx/2-1,0:ny/2-1]

wdelete

tvbox,size,x,y,color

b

)

same
make bytscale image (8 bits = shades 0 - 255)
same as tvscl,sb
declare same-size array set to zero
the same if you don’t have nx, ny
1D index vector counting along rows
equate to sb5 for only these indices
shows s5 where s5>0, 0 elsewhere
the same but quicker
I hope you expected that. Honestly?
parentheses needed
clip cutoffs at -1 and +1
idem
1t 1) ; try the same this way

; where gives 1D vector, need array

; sbcut equals s5 where > -1 and < 1

; why different from tvscl,sb>(-1)<17
slice image, left mouse toggles rows, columns
stop with right mouse (with cursor on image)
set colour table; choose e.g. 4
hideous; real scientists prefer monochrome
tool to adjust color table
idem (I like this one better)
display brighter half (not the same as s5>0)

; bottom-left quarter bytescaled on its own
kill window (I use my wdelall.pro)

; SSW box overplot (color=0 black, 255 white)

; color pixels with byte value 111 cyan
; (for my 8-bit colors: device,retain=2,decomposed=0; 23-bit came in IDL 7.1)
bytim=bytscl(image)
wherecolor=where(bytim eq 111)
if (wherecolor[0] ne -1) then begin
cc=cgcolor(’cyan’)
bytim[where(bytim eq cc)]=cc-1 ; muck original cc-valued pixels
bytim[wherecolor]=cc

endif

PostScript image following Alfred de Wijn

nx=5
ny=5

; define s again but let’s now have large pixels

; square image

xaxisarr=indgen(nx)*float(nx)/(nx-1) ; add 1 for pixelated image
yaxisarr=indgen(ny)*float(ny)/(ny-1) ; add 1 for pixelated image
xaxisarr=(indgen(nx)*float (nx)/(nx-1)-CRPIX1)*CDELT1+XCEN ; solar X axis
xaxisarr=(indgen(nx)*float (nx)/(nx-1)-(nx+1)/2.) *CDELT1+XCEN ; solar X axis
axrat=yaxisarr[ny-1]/xaxisarr[nx-1]

15

k=indgen(nx) & f=sin(k/5.)/exp(k/50.) & g=cos(k/5.)*exp(k/50.) & s=f#g
set_plot,’ps’ ; postscript output
Ip.font=1 tv ; true type fonts
Ip.thick=2 & !x.thick=2 & !y.thick=2 & !p.charthick=2 ; I like thick
filename=’demo3.eps’
device,filename=filename,xsize=10,ysize=10*axrat,bits_per_pixel=8,$

/encapsulated,/tt_font,set_font=’Times’,font_size=12,/portrait
tv,bytscl(s),0.15,0.15,xsize=0.8,ysize=0.8, /normal ; bytescaled data
contour,s,xaxisarr,yaxisarr,/nodata,/noerase,/xstyle,/ystyle,$; add axes

position=[0.15,0.15,0.95,0.95] ,xticklen=-0.02,yticklen=-0.02*axrat,$

xtitle="x [px]’,ytitle=’y [px]’

; The tv and contour position and size values must correspond

; (here square image as 8 cm square with borders 1.5 and 0.5 cm);

; the wider bottom and left margins (1.5 cm) serve for axis labels.

; Bware: position x and y ranges must be equal for square pixels

; The negative tick lengths produce outward ticks.

; Redefine the indgen arrays for axis scaling

device,/close ; write ps file
set_plot,’x’ ; back to output on Unix/linux/Mac0S Xwindow screen
; set_plot,’win’ ; back to output on Micro$oft Windows screen
Ip.font=-1 ; back to default IDL (Hershey) fonts
Ip.thick=0 & !'x.thick=0 & !y.thick=0 & !p.charthick=0 ; reset
spawn,’cat ’+filename+$; replace irritating

’| sed "s|Graphics produced by IDL|’+filename+$; IDL plot banner

>|" > idltemp.ps; mv idltemp.ps ’+filename ; with the file name
spawn,’gv ’+filename ; set gv to "watch file" for rewrites

; NB: Mac users see smoothed pixels in Preview; first use epstopdf

PostScript image with Coyote ps_start and ps_end
xsize=8.8 & ysize=xsizex*2/(1+sqrt(5))
ps_start,filename=’ctdemo3.eps’,font=1,tt_font="Times’,$
/nomatch,xsize=xsize,ysize=ysize,/metric,/encapsulated,charsize=0.5
I'p.thick=3 & !x.thick=3 & !y.thick=3 & !p.charthick=3 ; cg default=2
cgimage,bytscl(s),/keep_aspect,position=[0.15,0.15,0.95,0.95],$%
/axes,axkeywords={font:1,ticklen:-0.02,xtitle:’x [px]’,ytitle:’y [px]’}
ps_end ; this also resets the ! thicknesses back to what they were
spawn, ’gv ctdemo3.eps’
; Other axis scales: define axkeywords xrange and yrange

PostScript image from a Coyote cg screen window
cgimage,bytscl(s),/interpolate, /keep_aspect,charsize=2,$
/window,position=[0.15,0.15,0.95,0.95],%
/axes,axkeywords={font:1,ticklen:-0.02,xtitle:’x [px]’,ytitle:’y [px]’}
; get ps by clicking on ’save window > as ps file’ under ’file’, or use
cgcontrol,create_ps=’cgdemo3.eps’,/ps_encapsulated,/ps_metric
spawn,’gv cgdemo3.eps’

16

; NB: the cgimage screen image is smoothed by /interpolate,

s whereas the ps output remains pixelated. Use rebin (as above for
; s5) to smooth the latter too. I might do that for a math

; function but I wouldn’t for actual data.

; NB: similarly, the addition of an endpoint to the axes befits

; a pixelated image but not a math function.

INPUT/QUPUT

openw,1l,’myfile.ext’ ; open file myfile.ext on "logical unit" 1 for writing
printf,1,s ; write free—-format file

close,1 ; free "lun" 1

openr,l,’myfile.ext’ ; now open that file for reading as unit 1
ss=fltarr(100,100) ; define variable type and size

readf,1,ss ; read free-format file from unit 1 into array ss
help,/files ; show which files are open as "unit"

close,/all ; free all units, closing the files

read/write binary files
writeu,readu ; unformatted binary read/write, faster
openr,1,/xdr,’myfile.ext’ ; portable binary format, hardware independent

random access into a file through assoc
; to sample files that exceed the available memory
; very useful for terabyte-challenged laptop owners!

get_lun, unit ; the official way to open a file
openr,unit,’big-3D-data_cube’ ; file is intarr(nx,ny,nt)

p = assoc(unit, intarr(nx,ny)) ; define image addressing
image=p[1000] ; this gets imagel[*,*,1000]
free_lun,unit ; closes the file too

FITS files (much used in astronomy; run ssw)

writefits,’filename.fits’,array [,header] ; adds header if you don’t
array=readfits(’filename.fits’ [,header]) ; no lun specification needed
mreadfits,file(list),index,data,[....] ; ssw, fits with extensions
mwritefits,index,data, [outfile=outfile,..] ; ssw, fits with extensions
mwrfits,something,filename,/create ; multi-purpose fits write
something=mrdfits(filename) ; multi-purpose fits read
header=headfits(’filename.fits’) ; read header only

nx=fxpar (header, *naxisl’) ; when header = string array
sxaddpar,outheader, 'naxisl’,nx_new, ’new NX’ ; (re)set string parameter

17

nx=header.’naxisl’ ; when header = structure
openr,1,’filename.fits’,/swap_if_little_endian ; fits files are big_endian

p = assoc(l,intarr(nx,ny),2880) ; N x 2880 = skip fits header
data_swap=swap_endian(data) ; swap endian of variable, array, structure
mkhdr ,header_out,outtype, [nx,ny,nt] ; make simple file header
modfits,file,data,header ; replace data or header
filelist=file_search(path+filenamepart) ; string with * wild
fileonly=file_basename(file) ; remove path in file string
filename=repstr(fileonly,’.fits’,’’) ; filename without extension

saving IDL command sequences

journal,’filename’ ; copies all typed commands to a journal file
save,filename=’name.sav’ ; saves a full session (not in Student Edition)
save,filename=’name.sav’,varl,var2,... ; save only selected variables
restore, ’name.sav’ ; restart that session (you or your colleague)

read ASCII tables
using as example file falc.dat (solar atmosphere model) at:
https://robrutten.nl/rrweb/rjr-edu/exercises/ssb/falc.dat

with readcol.pro (Google for it; in SSW/idlastro astrolib library)
readcol,’falc.dat’,h,taub,colm,temp,vturb,nhyd,nprot,nel,ptot,$
pgas_ptot,dens,skipline=4
NB: add eg: ,format="I,I,A,F’ for initial integer + string columns

primitive, as above:
openr,1,’falc.dat’

falc=fltarr(11,80) ; 11 columns, 80 lines, no string entries
dummy=""

for iskip=1,4 do readf,1,dummy ; skip 4-line header
readf,1,falc

h=reform(falc[0,*])
taub=reform(falc[1,*])
etcetera

as a structure, with read_struct.pro (Google for it; in sdssidl library):
falcfile=’falc.dat’
falcstruct={height:0.0,tau5:0.0,mass:0.0,temp:0.0,v_mic:0.0,$

n_h:0.0,n_p:0.0,n_e:0.0,p_tot:0.0,p_ratio:0.0,dens:0.0}

read_struct,falcfile,falcstruct,falc,nlines=84,skiplines=4
help,/structure,falc
plot,falc.height,falc.temp<10000,/ynozero
print,falc[0] .height ; print the first value (top of FALC)
h=falc.height ; select variable
NB: read_struct.pro does not work for columns with irregular strings

18

https://robrutten.nl/rrweb/rjr-edu/exercises/ssb/falc.dat

as a structure with IDL’s own read_ascii.pro and ascii_template.pro:

falctemplate=ascii_template(’falc.dat’) ; opens GUI, work through
save,falctemplate,filename="falctemplate.sav’ ; save for next time
restore,’falctemplate.sav’ ; use next time
table=read_ascii(’falc.dat’,data_start=1,num_records=80,$

missing value=0,template=falctemplate) ; read into structure
help,table,/struct
h=table.field01[*] ; get first column

write ASCII tables

writecol,’filename.dat’,vectl,vect2,vect3,fmt=’>(3f15.3)"°
; in my misc.lib or google for the pro; up to 14 (19) vectors
; alternative: SSW forprint.pro

PROGRAM STRUCTURE

Start a new file filename.pro; edit it (Windows: IDL desktop; Unix:
external editor or idlde. Emacs with IDLWAVE gives great pro layout
and offers many shortcuts (Google idlwave) .

In linux the file name must be lowercase. Its structure:

pro procedurename,paraml,param?2,...,keywordl=keywordl,....
+

I

standard header with information

3

3

IDL statements

IDL statements ; all local parameters are only known within this pro
end
function functionname,paraml,param?2,...,keywordl=keywordl,....

+

3

standard header with information

I

3

IDL statements
IDL statements

something=. .. ; value to the function
return,something ; output of the function
end

;3 pro routinename,paraml,param2,..,keywordli=keywordl,.. ; in when perfect
IDL statement
IDL statement

19

procedurename,a,b,keyword=c
x=functionname(a,b,keyword=c)

stop ; for intermediate command-line inspections, continue with .con

IDL statement
IDL statement
end

The last "main-level part" is a sequence of IDL statements after the
last procedure or function that does not start with PRO or FUNCTION.
It must end with END. You compile this program with ".com filename"
and run it with ".r filename" or ".rnew filename" which cleans out
earlier variables and recompiles too. The latter recompiles the
subroutines within the file also.

After the program completion all main-level variables remain
available for inspection and tests on the command line. Use this
main level for trying out and adding new things. Insert temporary
stops to check on local variables or diagnose an error. When your
development is done, then convert the program into a procedure or
function by inserting its name as "pro routinename" or "function
routinename" above the start of the statements, as illustrated above.
This new routine may go to a separate routinename.pro file or may
remain in the present filename.pro file. You can add a main part
calling it underneath for modification testing. If you do this
rightaway then on-the-fly testing while developing a subroutine

is very easy when using emacs IDLWAVE.

It is confusing that IDL procedures/functions have extension .pro

but that IDL main programs have these also. And perhaps your IDL
batchfiles too. I use .idl for the latter and instruct

emacs to give these IDLWAVE appearance with .emacs entry: (setq
auto-mode-alist (cons ’("\\.id1\\’" . idlwave-mode) auto-mode-alist))

It is confusing that somename() is not always interpreted by IDL as
a function but sometimes as a variable, because in older days
(before edition 5.0) IDL used parentheses instead of square brackets
for array indices. You can ascertain function interpretation and
recompile with: forward_function somename (proname without quotes).

Using procedures and functions

IDL> .run programname ; compilation (only main program is run)
IDL> .r programname ; idem; IDL accepts unique abbreviations
IDL> .rnew programname ; first discard all existing variables
IDL> .r -t programnname ; show content in manpage format

20

IDL> .com procedurename.pro ; compile a procedure or function

IDL> procedurename,paraml,... ; run a compiled procedure
IDL> a=functionname(paraml,...) ; evaluate a compiled function
IDL> reset_session ; wipe everything, also commons, & restart

IDLWAVE: remain in the emacs window with your program and use its tons
of fast keybindings including (with C = CONTROL):

C-c C-d C-c ; compile and run program (set auto separate shell opening)
C-c C-d C-p ; print value of variable under cursor in 2nd window
SHIFT-mouse2 ; idem

C-c 7 ; show help for procedure or keyword under cursor

C ALT q ; re-indent the routine the cursor is in

C-c C-d C-x ; jummp to next syntax error

function example (in a separate file addup.pro):
function addup,arr
+

; sums 1D array ARR (but IDL’s total is faster and more general)

arraysize=SIZE(arr)

if (arraysize[0] ne 1) then print,’addup input is not a 1D array’
sumarr=0

for i=0,arraysize[1]-1 do sumarr=sumarr+arr[i]

return,sumarr

end

IDL> .com addup ; recompile after every program change
IDL> try=findgen(100) ; try = floats O.,...... ,99.

IDL> print,addup(try)

IDL> print,total(try) ; check with IDL array summation

"Disappearing variables": after an error in a procedure or function
your session stops within that procedure/function. HELP displays
the local variables valid there. That serves to check out these,
e.g. by printing or plotting or manipulating them. RETURN gets you
back one level higher. RETALL gets you back to the top level where
the variables of your main program or session reside. Recompiling a
routine (.com procedurename) also returns to the top. IDLWAVE offers
slick checkpoint jumping.

If you restart after a stop in a subordinate routine you are likely
to get error messages as:
"Attempt to subscript XXX with <YYY (ZZZ)> is out of range"
"Variable is undefined: XXXX
which means that you forgot to type return or retall and are still stuck
within the subroutine.

STOP in a procedure/function/main stops it right there to let you
inspect the local variables at that place in the statement sequence.

21

Continue with .continue (or .con).

.skip N on he command line: skip N lines and continue. Default N=1.
.out on the command line: completes the subroutine but stops after
exiting back to the higher level.

Keyword inheritance: if your program uses e.g. plot, you don’t have
to supply all the plot keywords as parameters. Add a keyword
_extra=plotkeywords to your routine definition and use the same in
its call of plot. Now you can add any plot keyword to the call of
your program. See 7 inheritance. Unfortunately, you can specify
only one such inheritance per routine call, but you may have layered
inheritances (one routine calling another, each with its own
_extra=whatever) .

conditional statements

if (i gt 16) then begin ; such sequences can also be run interactively
IDL statement ; on the command line by first typing
IDL statement ; IDL> .run

endif else begin ; then enter the sequence, and conclude with
IDL statement ; IDL> end
IDL statement

endelse

if (y eq 3) then x=2 else x=1 ; relational operators: EQ NE LE LT GE GT
for j=0,9 do number[jl=sin(region[j]*!pi) ; ! gets system variable
for j=0,20,2 do begin ; third number = step 2

number [j]=sin(region[j]l*!pi)
region[j]=0

endfor

while (a and (cnt ne 0)) do begin ; logical operators: AND OR XOR
print,’Still going at count: ’,cnt
cnt=cnt-1

endwhile

if (n eq 0) goto, JUMP
IDL statement
IDL statement
JUMP:
IDL statement
; but since good programmers never use goto, a better solution is:

if (n neq 0) then begin

IDL statement

IDL statement

22

endif
; or the use of break
for itrans=0,ntrans-1 do begin
IDL statements
if (transition[itrans].i eq i and transition[itrans].j eq j) then break
endfor

if (keyword_set(fontsize) eq 0) then fontsize=9 ; set keyword default
; but keyword_set=0 when supplied keyword=0, giving non-zero default
; therefore better use: if (n_elements(fontsize) eq 0) then fontsize=9

loop speedup
- use implicit loops instead of explicit loops wherever possible,
so not:
for i=0,100 do intensity[i]=planck(wavelength,temp[i])
but:
intensity=planck(wavelength,temp)
by making sure that your function (planck.pro here) can handle
arrays (temperature here, idem for wavelength, but you cannot call both
as unsubscripted arrays). With my laptop the second version is
typically 20x faster.

- replace an asterisk as first array index on the left-hand side of an
assignment statement by zero, so not:
for i=0,n-1 do array[*,il=shift(array[*,i],deltali])
but instead:
for i=0,n-1 do array[0,il=shift(array[*,i],deltali])
which looks like an IDL mistake but actually speeds it up, in my
case typically 3x. See
http://www.idlcoyote.com/code_tips/asterisk.html

passing parameters
- main programs
when running a sequence of programs, each with
.r programname
on the command line, the subsequently called programs know the
variables of the earlier called programs. The most primitive way
to pass parameters.

- @batchfile. A file with a sequence of single-line IDL
commands can be run as @batchfilename on the command line or
from a program (only spaces are then allowed before the @
symbol, on a new line). The file may not contain begin-end
blocks unless concatenated by $ signs. If an @file is run on
the command line it may contain ".r programname" lines. This
way you can make an @script concatenating multiple main progams.

23

http://www.idlcoyote.com/code_tips/asterisk.html

(I give these files extension .idl instead of .pro, and instruct
IDLWAVE via .emacs to treat these as IDL pro files.)

- procedure/function parameters
The parameter names in the call may of course differ from the
corresponding parameter names in the procedure/function body.
However, if the procedure/function changes the parameters, the
changed versions are passed back to the calling program at the
procedure/function completion. If values are entered in the
call they do not change. See IDL help 7 passing parameters.

- commons
The traditional FORTRAN manner of passing blocks of parameters.
Example: common fourier,nx,ny,nt,cad
Put it in all pro’s that need the parameters, and in the main
part if need be. Initiate the parameter values in the main
part, or in the first pro that is called. The traditional
problem is that the same parameter name may already be used in
another program (by another programmer). Also, common blocks
cannot be shared between multiple IDL instances.

- structures
The newer way. Much used in SolarSoft data reduction software.
They collect big parameters sets under a single name or anonymously
to be passed as parameter. Google "IDL structures".

Example:
a=1.5
b=’Never a dull moment with Kees D’
c=1
d=[4.,5.,7.]
s={a:a,b:b,c:c,d:d} ; definition without name: anonymous structure

print, s.a
print, s.b+’ from whom I took this example’

- pointers
serve for variables that persist outside a routine, for
example pointing at a given location (address) within a
structure. See:

http://www.idlcoyote.com/misc_tips/pointers.html

http://www.idlcoyote.com/misc_tips/precedence.html
c32=(*hatom.Cij_ptr) [*,2,1] ; select a vector using a pointer

widgets

Interactive gui’s to use mouse actions. Not treated here but nice examples
(from Oslo) are shown in my movex.pro.

24

http://www.idlcoyote.com/misc_tips/pointers.html
http://www.idlcoyote.com/misc_tips/precedence.html

programming hints
- never ever forget that IDL array indices start at O ("fingers 0-9")
- do not forget that you may need to type "retall" at some error
- try, experiment, check on the command line, than insert into program
- split programs in separate procedures and functions, test separately
- use parameters instead of numbers to get dynamical adaptivity
- use size(array) to get unknown array dimensions in procedures
- choose clear variable names (in English please)
- add lots of explanatory comments (in English please)
- add detailed explanation at procedure/subroutine start between
;+ and ;- lines for doc_library (as astronlib and SolarSoft do;
Emacs IDLWAVE inserts a template at C-c C-h)
- answer a procedure call without parameters or a function() call with:

if (n_params() 1t N) then begin ; N = nr required parameters
print,’procedurename, yyy, zzz’
print,’ yyy = ...°0
return ; return,-1 for a function called as x=function()
endif
- indent begin ... end structures (two spaces is my habit)

- journal,’filename’ records all your command-line entries, useful for
subsequent conversion of the successful trials into programs
- use "save" to copy your work to a colleague

25

