Author name code: caffau ADS astronomy entries on 2022-09-14 author:"Caffau, Elisabetta" ------------------------------------------------------------------------ Title: Chemical Evolution of R-process Elements in Stars (CERES). I. Stellar parameters and chemical abundances from Na to Zr Authors: Lombardo, Linda; Bonifacio, Piercarlo; François, Patrick; Hansen, Camilla J.; Caffau, Elisabetta; Hanke, Michael; Skúladóttir, Ása; Arcones, Almudena; Eichler, Marius; Reichert, Moritz; Psaltis, Athanasios; Koch Hansen, Andreas J.; Sbordone, Luca Bibcode: 2022A&A...665A..10L Altcode: 2022arXiv220613836L
Aims: The Chemical Evolution of R-process Elements in Stars (CERES) project aims to provide a homogeneous analysis of a sample of metal-poor stars ([Fe/H] < -1.5). We present the stellar parameters and the chemical abundances of elements up to Zr for a sample of 52 giant stars.
Methods: We relied on a sample of high signal-to-noise UVES spectra. We determined stellar parameters from Gaia photometry and parallaxes. Chemical abundances were derived using spectrum synthesis and model atmospheres.
Results: We determined chemical abundances of 26 species of 18 elements: Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Zr. For several stars, we were able to measure both neutral and ionised species, including Si, Sc, Mn, and Zr. We have roughly doubled the number of measurements of Cu for stars at [Fe/H] ≤ −2.5. The homogeneity of the sample made it possible to highlight the presence of two Zn-rich stars ([Zn/Fe] ∼ +0.7), one r-rich and the other r-poor. We report the existence of two branches in the [Zn/Fe] versus [Ni/Fe] plane and suggest that the high [Zn/Fe] branch is the result of hypernova nucleosynthesis. We discovered two stars with peculiar light neutron-capture abundance patterns: CES1237+1922 (also known as BS 16085-0050), which is ∼1 dex underabundant in Sr, Y, and Zr with respect to the other stars in the sample, and CES2250-4057 (also known as HE 2247-4113), which shows a ∼1 dex overabundance of Sr with respect to Y and Zr.
Conclusions: The high quality of our dataset allowed us to measure hardly detectable ions. This can provide guidance in the development of line formation computations that take deviations from local thermodynamic equilibrium and hydrodynamical effects into account.

Chemical abundances (Table 3) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/665/A10

Based on observations collected at the European Southern Observatory under ESO programme 0104.D-0059 and on data obtained from the ESO Science Archive Facility. Title: The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products Authors: Gilmore, G.; Randich, S.; Worley, C. C.; Hourihane, A.; Gonneau, A.; Sacco, G. G.; Lewis, J. R.; Magrini, L.; Francois, P.; Jeffries, R. D.; Koposov, S. E.; Bragaglia, A.; Alfaro, E. J.; Allende Prieto, C.; Blomme, R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Zwitter, T.; Bensby, T.; Flaccomio, E.; Irwin, M. J.; Franciosini, E.; Morbidelli, L.; Damiani, F.; Bonito, R.; Friel, E. D.; Vink, J. S.; Prisinzano, L.; Abbas, U.; Hatzidimitriou, D.; Held, E. V.; Jordi, C.; Paunzen, E.; Spagna, A.; Jackson, R. J.; Maiz Apellaniz, J.; Asplund, M.; Bonifacio, P.; Feltzing, S.; Binney, J.; Drew, J.; Ferguson, A. M. N.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H. -W.; Vallenari, A.; Bergemann, M.; Casey, A. R.; de Laverny, P.; Frasca, A.; Hill, V.; Lind, K.; Sbordone, L.; Sousa, S. G.; Adibekyan, V.; Caffau, E.; Daflon, S.; Feuillet, D. K.; Gebran, M.; Gonzalez Hernandez, J. I.; Guiglion, G.; Herrero, A.; Lobel, A.; Merle, T.; Mikolaitis, S.; Montes, D.; Morel, T.; Ruchti, G.; Soubiran, C.; Tabernero, H. M.; Tautvaisiene, G.; Traven, G.; Valentini, M.; Van der Swaelmen, M.; Villanova, S.; Viscasillas Vazquez, C.; Bayo, A.; Biazzo, K.; Carraro, G.; Edvardsson, B.; Heiter, U.; Jofre, P.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Walton, N. A.; Zaggia, S.; Aguirre Borsen-Koch, V.; Alves, J.; Balaguer-Nunez, L.; Barklem, P. S.; Barrado, D.; Bellazzini, M.; Berlanas, S. R.; Binks, A. S.; Bressan, A.; Capuzzo-Dolcetta, R.; Casagrande, L.; Casamiquela, L.; Collins, R. S.; D'Orazi, V.; Dantas, M. L. L.; Debattista, V. P.; Delgado-Mena, E.; Di Marcantonio, P.; Drazdauskas, A.; Evans, N. W.; Famaey, B.; Franchini, M.; Fremat, Y.; Fu, X.; Geisler, D.; Gerhard, O.; Gonzalez Solares, E. A.; Grebel, E. K.; Gutierrez Albarran, M. L.; Jimenez-Esteban, F.; Jonsson, H.; Khachaturyants, T.; Kordopatis, G.; Kos, J.; Lagarde, N.; Ludwig, H. -G.; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.; Messina, S.; Miglio, A.; Minchev, I.; Moitinho, A.; Montalban, J.; Monteiro, M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.; Murphy, D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palous, J.; Pickering, J. C.; Quirrenbach, A.; Re Fiorentin, P.; Read, J. I.; Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.; Spina, L.; Steinmetz, M.; Stonkute, E.; Sutorius, E.; Thevenin, F.; Tosi, M.; Tsantaki, M.; Wright, N.; Wyse, R. F. G.; Zoccali, M.; Zorec, J.; Zucker, D. B. Bibcode: 2022arXiv220805432G Altcode: The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100,000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper (arXiv:2206.02901) introduces the survey results. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. The Gaia-ESO Survey obtained 202,000 spectra of 115,000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. Title: The Pristine survey - XVIII. C-19: tidal debris of a dark matter-dominated globular cluster? Authors: Errani, Raphaël; Navarro, Julio F.; Ibata, Rodrigo; Martin, Nicolas; Yuan, Zhen; Aguado, David S.; Bonifacio, Piercarlo; Caffau, Elisabetta; González Hernández, Jonay I.; Malhan, Khyati; Sánchez-Janssen, Rubén; Sestito, Federico; Starkenburg, Else; Thomas, Guillaume F.; Venn, Kim A. Bibcode: 2022MNRAS.514.3532E Altcode: 2022arXiv220302513E; 2022MNRAS.tmp.1475E The recently discovered C-19 stellar stream is a collection of kinematically associated metal-poor stars in the halo of the Milky Way lacking an obvious progenitor. The stream spans across an arc of ~15° in the sky, and orbit-fitting suggests an apocentric distance of ${\sim} 20\, \mathrm{kpc}$ and a pericentre of ${\sim} 10\, \mathrm{kpc}$. The narrow metallicity dispersion of stars with available spectra, together with light element abundance variations, suggests a globular cluster (GC) origin. The observed metallicity ([Fe/H] ≍ -3.4), however, is much lower than that of any known GC. In addition, the width and velocity dispersion of the stream are similar to those expected from disrupting dwarf galaxies, and substantially larger than the tidal debris of GCs able to disrupt on C-19's orbit. We propose here an unconventional model where the C-19 progenitor is a dark matter-dominated stellar system with GC-like abundance patterns. We use N-body simulations to show that the tidal disruption of a ~100 pc King-model stellar component embedded in a ~20 km s-1 cuspy cold dark matter halo yields debris consistent with C-19's observed width and velocity dispersion. The stellar component of the progenitor is fully disrupted, and is spread over two distinct streams, one corresponding to C-19 and another possibly hiding behind the Galactic plane. If such companion stream were found, it would suggest that dark matter-dominated dwarfs may also develop GC-like enrichment patterns, a finding that would inform our theoretical understanding of the formation of multiple populations in GCs and dwarf galaxies alike. Title: The Pristine survey - XVII. The C-19 stream is dynamically hot and more extended than previously thought Authors: Yuan, Zhen; Martin, Nicolas F.; Ibata, Rodrigo A.; Caffau, Elisabetta; Bonifacio, Piercarlo; Mashonkina, Lyudmila I.; Errani, Raphaël; Doliva-Dolinsky, Amandine; Starkenburg, Else; Venn, Kim A.; Arentsen, Anke; Aguado, David S.; Bellazzini, Michele; Famaey, Benoit; Fouesneau, Morgan; González Hernández, Jonay I.; Jablonka, Pascale; Lardo, Carmela; Malhan, Khyati; Navarro, Julio F.; Sánchez Janssen, Rubén; Sestito, Federico; Thomas, Guillaume F.; Viswanathan, Akshara; Vitali, Sara Bibcode: 2022MNRAS.514.1664Y Altcode: 2022arXiv220302512Y; 2022MNRAS.tmp.1369Y The C-19 stream is the most metal-poor stellar system ever discovered, with a mean metallicity [Fe/H] = -3.38 ± 0.06. Its low metallicity dispersion (σ[Fe/H] < 0.18 at the 95 per cent confidence level) and variations in sodium abundances strongly suggest a globular cluster origin. In this work, we use Very Large Telescope (VLT)/UV-Visual Echelle Spectrograph (UVES) spectra of seven C-19 stars to derive more precise velocity measurements for member stars, and to identify two new members with radial velocities and metallicities consistent with the stream's properties. One of these new member stars is located 30° away from the previously identified body of C-19, implying that the stream is significantly more extended than previously known and that more members likely await discovery. In the main part of C-19, we measure a radial velocity dispersion σv = 6.2$^{+2.0}_{-1.4}{\rm \, km\, s^{-1}}$ from nine members, and a stream width of 0.56° ± 0.08°, equivalent to ~158 pc at a heliocentric distance of 18 kpc. These confirm that C-19 is comparatively hotter, dynamically, than other known globular cluster streams and shares the properties of faint dwarf galaxy streams. On the other hand, the variations in the Na abundances of the three newly observed bright member stars, the variations in Mg and Al for two of them, and the normal Ba abundance of the one star where it can be measured provide further evidence for a globular cluster origin. The tension between the dynamical and chemical properties of C-19 suggests that its progenitor experienced a complex birth environment or disruption history. Title: VizieR Online Data Catalog: CERES I. Abundances for 52 star (Lombardo+, 2022) Authors: Lombardo, L.; Bonifacio, P.; Francois, P.; Hansen, C. J.; Caffau, E.; Hanke, M.; Skuladottir, A.; Arcones, A.; Eichler, M.; Reichert, M.; Psaltis, A.; Koch Hansen, A. J.; Sbordone, L. Bibcode: 2022yCat..36650010L Altcode: The target stars were observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) of the Very Large Telescope (VLT) at the European Southern Observatory (ESO) during two runs (November 2019 and March 2020) with differing exposures to reach a S/N of 50 to 120 per pixel at 390nm for most stars.

Our own observations were complemented with archival data of comparable quality. All the archival data used were acquired prior to 2019.

We present a homogeneous set of stellar parameters and a chemical abundance analysis of elements from Na to Zr for a sample of 52 Galactic halo giant stars with -3:58<=[Fe/H]<=-1.79.

(2 data files). Title: Gaia Data Release 3: Summary of the content and survey properties Authors: Gaia Collaboration; Vallenari, A.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordoørcit, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere, A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Edvardsson, B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Jorissen, A.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylo, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220800211G Altcode: We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G$_{BP}$, and G$_{RP}$ pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges $G_{rvs} < 14$ and $3100 <T_{eff} <14500 $, have new determinations of their mean radial velocities based on data collected by Gaia. We provide G$_{rvs}$ magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some $800\,000$ astrometric, spectroscopic and eclipsing binaries. More than $150\,000$ Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged) Title: Gaia Data Release 3: Properties of the line broadening parameter derived with the Radial Velocity Spectrometer (RVS) Authors: Frémat, Y.; Royer, F.; Marchal, O.; Blomme, R.; Sartoretti, P.; Guerrier, A.; Panuzzo, P.; Katz, D.; Seabroke, G. M.; Thévenin, F.; Cropper, M.; Benson, K.; Damerdji, Y.; Haigron, R.; Lobel, A.; Smith, M.; Baker, S. G.; Chemin, L.; David, M.; Dolding, C.; Gosset, E.; Janßen, K.; Jasniewicz, G.; Plum, G.; Samaras, N.; Snaith, O.; Soubiran, C.; Vanel, O.; Zorec, J.; Zwitter, T.; Brouillet, N.; Caffau, E.; Crifo, F.; Fabre, C.; Fragkoudi, F.; Huckle, H. E.; Lasne, Y.; Leclerc, N.; Mastrobuono-Battisti, A.; Jean-Antoine Piccolo, A.; Viala, Y. Bibcode: 2022arXiv220610986F Altcode: The third release of the Gaia catalogue contains the radial velocities for 33,812,183 stars having effective temperatures ranging from 3100 K to 14,500 K. The measurements are based on the comparison of the observed RVS spectrum (wavelength coverage: 846--870 nm, median resolving power: 11,500) to synthetic data broadened to the adequate Along-Scan Line Spread Function. The additional line-broadening, fitted as it would only be due to axial rotation, is also produced by the pipeline and is available in the catalogue (field name gaia_source:vbroad). To describe the properties of the line-broadening information extracted from the RVS and published in the catalogue, as well as to analyse the limitations imposed by the adopted method, wavelength range, and instrument. We use simulations to express the link existing between the line broadening measurement provided in Gaia Data Release 3 and Vsin(i). We then compare the observed values to the measurements published by various catalogues and surveys (GALAH, APOGEE, LAMOST, ...). While we recommend being cautious in the interpretation of the vbroad measurement, we also find a reasonable global agreement between the Gaia Data Release 3 line broadening values and those found in the other catalogues. We discuss and establish the validity domain of the published vbroad values. The estimate tends to be overestimated at the lower vsini end, and at $T_\mathrm{eff}>7500\,\mathrm{K}$ its quality and significance degrade rapidly when $G_\mathrm{RVS}>10$. Despite all the known and reported limitations, the Gaia Data Release 3 line broadening catalogue contains the measurements obtained for 3,524,677 stars with $T_\mathrm{eff}$\ ranging from 3500 to 14,500 K, and $G_\mathrm{RVS}<12$. It gathers the largest stellar sample ever considered for the purpose, and allows a first mapping of the \Gaia\ line broadening parameter across the HR diagram. Title: The Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy Authors: Randich, S.; Gilmore, G.; Magrini, L.; Sacco, G. G.; Jackson, R. J.; Jeffries, R. D.; Worley, C. C.; Hourihane, A.; Gonneau, A.; Viscasillas Vàzquez, C.; Franciosini, E.; Lewis, J. R.; Alfaro, E. J.; Allende Prieto, C.; Blomme, T. Bensby R.; Bragaglia, A.; Flaccomio, E.; François, P.; Irwin, M. J.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Zwitter, T.; Asplund, M.; Bonifacio, P.; Feltzing, S.; Binney, J.; Drew, J.; Ferguson, A. M. N.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H. -W.; Vallenari, A.; Bayo, A.; Bergemann, M.; Biazzo, K.; Carraro, G.; Casey, A. R.; Damiani, F.; Frasca, A.; Heiter, U.; Hill, V.; Jofré, P.; de Laverny, P.; Lind, K.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Zaggia, S.; Adibekyan, V.; Bonito, R.; Caffau, E.; Daflon, S.; Feuillet, D. K.; Gebran, M.; González Hernández, J. I.; Guiglion, G.; Herrero, A.; Lobel, A.; Maíz Apellániz, J.; Merle, T.; Mikolaitis, S.; Montes, D.; Morel, T.; Soubiran, C.; Spina, L.; Tabernero, H. M.; Tautvaišienė, G.; Traven, G.; Valentini, M.; Van der Swaelmen, M.; Villanova, S.; Wright, N. J.; Abbas, U.; Aguirre Børsen-Koch, V.; Alves, J.; Balaguer-Núnez, L.; Barklem, P. S.; Barrado, D.; Berlanas, S. R.; Binks, A. S.; Bressan, A.; Capuzzo--Dolcetta, R.; Casagrande, L.; Casamiquela, L.; Collins, R. S.; D'Orazi, V.; Dantas, M. L. L.; Debattista, V. P.; Delgado-Mena, E.; Di Marcantonio, P.; Drazdauskas, A.; Evans, N. W.; Famaey, B.; Franchini, M.; Frémat, Y.; Friel, E. D.; Fu, X.; Geisler, D.; Gerhard, O.; González Solares, E. A.; Grebel, E. K.; Gutiérrez Albarrán, M. L.; Hatzidimitriou, D.; Held, E. V.; Jiménez-Esteban, F.; Jönsson, H.; Jordi, C.; Khachaturyants, T.; Kordopatis, G.; Kos, J.; Lagarde, N.; Mahy, L.; Mapelli, M.; Marfil, E.; Martell, S. L.; Messina, S.; Miglio, A.; Minchev, I.; Moitinho, A.; Montalban, J.; Monteiro, M. J. P. F. G.; Morossi, C.; Mowlavi, N.; Mucciarelli, A.; Murphy, D. N. A.; Nardetto, N.; Ortolani, S.; Paletou, F.; Palouus, J.; Paunzen, E.; Pickering, J. C.; Quirrenbach, A.; Re Fiorentin, P.; Read, J. I.; Romano, D.; Ryde, N.; Sanna, N.; Santos, W.; Seabroke, G. M.; Spagna, A.; Steinmetz, M.; Stonkuté, E.; Sutorius, E.; Thévenin, F.; Tosi, M.; Tsantaki, M.; Vink, J. S.; Wright, N.; Wyse, R. F. G.; Zoccali, M.; Zorec, J.; Zucker, D. B.; Walton, N. A. Bibcode: 2022arXiv220602901R Altcode: In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey (GES), the only one performed on a 8m class telescope, was designed to target 100,000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article (Gilmore et al.) reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. The GES has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110,000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. The final catalogue has been released through the ESO archive at the end of May 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come. Title: Gaia Data Release 3: G_RVS photometry from the RVS spectra Authors: Sartoretti, P.; Marchal, O.; Babusiaux, C.; Jordi, C.; Guerrier, A.; Panuzzo, P.; Katz, D.; Seabroke, G. M.; Thévenin, F.; Cropper, M.; Benson, K.; Blomme, R.; Haigron, R.; Smith, M.; Baker, S.; Chemin, L.; David, M.; Dolding, C.; Frémat, Y.; Janssen, K.; Jasniewicz, G.; Lobel, A.; Plum, G.; Samaras, N.; Snaith, O.; Soubiran, C.; Vanel, O.; Zwitter, T.; Brouillet, N.; Caffau, E.; Crifo, F.; Fabre, C.; Frakgoudi, F.; Jean-Antoine Piccolo, A.; Huckle, H. E.; Lasne, Y.; Leclerc, N.; Mastrobuono-Battisti, A.; Royer, F.; Viala, Y.; Zorec, J. Bibcode: 2022arXiv220605725S Altcode: Gaia Data Release 3 (DR3) contains the first release of magnitudes estimated from the integration of Radial Velocity Spectrometer (RVS) spectra for a sample of about 32.2 million stars brighter than G_RVS~14 mag (or G~15 mag). In this paper, we describe the data used and the approach adopted to derive and validate the G_RVS magnitudes published in DR3. We also provide estimates of the G_RVS passband and associated G_RVS zero-point. We derived G_RVS photometry from the integration of RVS spectra over the wavelength range from 846 to 870 nm. We processed these spectra following a procedure similar to that used for DR2, but incorporating several improvements that allow a better estimation of G_RVS. These improvements pertain to the stray-light background estimation, the line spread function calibration, and the detection of spectra contaminated by nearby relatively bright sources. We calibrated the G_RVS zero-point every 30 hours based on the reference magnitudes of constant stars from the Hipparcos catalogue, and used them to transform the integrated flux of the cleaned and calibrated spectra into epoch magnitudes. The G_RVS magnitude of a star published in DR3 is the median of the epoch magnitudes for that star. We estimated the G_RVS passband by comparing the RVS spectra of 108 bright stars with their flux-calibrated spectra from external spectrophotometric libraries. The G_RVS magnitude provides information that is complementary to that obtained from the G, G_BP, and G_RP magnitudes, which is useful for constraining stellar metallicity and interstellar extinction. The median precision of G_RVS measurements ranges from about 0.006 mag for the brighter stars (i.e. with 3.5 < G_RVS < 6.5 mag) to 0.125 mag at the faint end. The derived G_RVS passband shows that the effective transmittance of the RVS is approximately 1.23 times better than the pre-launch estimate. Title: Gaia Data Release 3: Mapping the asymmetric disc of the Milky Way Authors: Gaia Collaboration; Drimmel, R.; Romero-Gomez, M.; Chemin, L.; Ramos, P.; Poggio, E.; Ripepi, V.; Andrae, R.; Blomme, R.; Cantat-Gaudin, T.; Castro-Ginard, A.; Clementini, G.; Figueras, F.; Fouesneau, M.; Fremat, Y.; Jardine, K.; Khanna, S.; Lobel, A.; Marshall, D. J.; Muraveva, T.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordoørcit, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere, A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Chaoul, L.; Charlot, P.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Edvardsson, B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Jorissen, A.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylo, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220606207G Altcode: With the most recent Gaia data release the number of sources with complete 6D phase space information (position and velocity) has increased to well over 33 million stars, while stellar astrophysical parameters are provided for more than 470 million sources, in addition to the identification of over 11 million variable stars. Using the astrophysical parameters and variability classifications provided in Gaia DR3, we select various stellar populations to explore and identify non-axisymmetric features in the disc of the Milky Way in both configuration and velocity space. Using more about 580 thousand sources identified as hot OB stars, together with 988 known open clusters younger than 100 million years, we map the spiral structure associated with star formation 4-5 kpc from the Sun. We select over 2800 Classical Cepheids younger than 200 million years, which show spiral features extending as far as 10 kpc from the Sun in the outer disc. We also identify more than 8.7 million sources on the red giant branch (RGB), of which 5.7 million have line-of-sight velocities, allowing the velocity field of the Milky Way to be mapped as far as 8 kpc from the Sun, including the inner disc. The spiral structure revealed by the young populations is consistent with recent results using Gaia EDR3 astrometry and source lists based on near infrared photometry, showing the Local (Orion) arm to be at least 8 kpc long, and an outer arm consistent with what is seen in HI surveys, which seems to be a continuation of the Perseus arm into the third quadrant. Meanwhile, the subset of RGB stars with velocities clearly reveals the large scale kinematic signature of the bar in the inner disc, as well as evidence of streaming motions in the outer disc that might be associated with spiral arms or bar resonances. (abridged) Title: Gaia Data Release 3: The extragalactic content Authors: Gaia Collaboration; Bailer-Jones, C. A. L.; Teyssier, D.; Delchambre, L.; Ducourant, C.; Garabato, D.; Hatzidimitriou, D.; Klioner, S. A.; Rimoldini, L.; Bellas-Velidis, I.; Carballo, R.; Carnerero, M. I.; Diener, C.; Fouesneau, M.; Galluccio, L.; Gavras, P.; Krone-Martins, A.; Raiteri, C. M.; Teixeira, R.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Frémat, Y.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Altmann, M.; Andrae, R.; Audard, M.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M. S.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220605681G Altcode: The Gaia Galactic survey mission is designed and optimized to obtain astrometry, photometry, and spectroscopy of nearly two billion stars in our Galaxy. Yet as an all-sky multi-epoch survey, Gaia also observes several million extragalactic objects down to a magnitude of G~21 mag. Due to the nature of the Gaia onboard selection algorithms, these are mostly point-source-like objects. Using data provided by the satellite, we have identified quasar and galaxy candidates via supervised machine learning methods, and estimate their redshifts using the low resolution BP/RP spectra. We further characterise the surface brightness profiles of host galaxies of quasars and of galaxies from pre-defined input lists. Here we give an overview of the processing of extragalactic objects, describe the data products in Gaia DR3, and analyse their properties. Two integrated tables contain the main results for a high completeness, but low purity (50-70%), set of 6.6 million candidate quasars and 4.8 million candidate galaxies. We provide queries that select purer sub-samples of these containing 1.9 million probable quasars and 2.9 million probable galaxies (both 95% purity). We also use high quality BP/RP spectra of 43 thousand high probability quasars over the redshift range 0.05-4.36 to construct a composite quasar spectrum spanning restframe wavelengths from 72-100 nm. Title: Gaia Data Release 3: Reflectance spectra of Solar System small bodies Authors: Gaia Collaboration; Galluccio, L.; Delbo, M.; De Angeli, F.; Pauwels, T.; Tanga, P.; Mignard, F.; Cellino, A.; Brown, A. G. A.; Muinonen, K.; Penttila, A.; Jordan, S.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castaneda, J.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nunez Campos, M.; Delchambre, L.; Dell Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janssen, K.; Jevardat de Fombelle, G.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Osborne, P.; Pancino, E.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núnez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núnez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hadczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kospál, A; Kostrzewa-Rutkowska, Z.; Kruszynska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocana, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Penalosa Esteller, X.; Petit, J. -M.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núnez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santovena, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220612174G Altcode: The Gaia mission of the European Space Agency (ESA) has been routinely observing Solar System objects (SSOs) since the beginning of its operations in August 2014. The Gaia data release three (DR3) includes, for the first time, the mean reflectance spectra of a selected sample of 60 518 SSOs, primarily asteroids, observed between August 5, 2014, and May 28, 2017. Each reflectance spectrum was derived from measurements obtained by means of the Blue and Red photometers (BP/RP), which were binned in 16 discrete wavelength bands. We describe the processing of the Gaia spectral data of SSOs, explaining both the criteria used to select the subset of asteroid spectra published in Gaia DR3, and the different steps of our internal validation procedures. In order to further assess the quality of Gaia SSO reflectance spectra, we carried out external validation against SSO reflectance spectra obtained from ground-based and space-borne telescopes and available in the literature. For each selected SSO, an epoch reflectance was computed by dividing the calibrated spectrum observed by the BP/RP at each transit on the focal plane by the mean spectrum of a solar analogue. The latter was obtained by averaging the Gaia spectral measurements of a selected sample of stars known to have very similar spectra to that of the Sun. Finally, a mean of the epoch reflectance spectra was calculated in 16 spectral bands for each SSO. The agreement between Gaia mean reflectance spectra and those available in the literature is good for bright SSOs, regardless of their taxonomic spectral class. We identify an increase in the spectral slope of S-type SSOs with increasing phase angle. Moreover, we show that the spectral slope increases and the depth of the 1 um absorption band decreases for increasing ages of S-type asteroid families. Title: Gaia Data Release 3: A Golden Sample of Astrophysical Parameters Authors: Gaia Collaboration; Creevey, O. L.; Sarro, L. M.; Lobel, A.; Pancino, E.; Andrae, R.; Smart, R. L.; Clementini, G.; Heiter, U.; Korn, A. J.; Fouesneau, M.; Frémat, Y.; De Angeli, F.; Vallenari, A.; Harrison, D. L.; Thévenin, F.; Reylé, C.; Sordo, R.; Garofalo, A.; Brown, A. G. A.; Eyer, L.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Ducourant, C.; Evans, D. W.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; Fabricius, C.; Galluccio, L.; Guerrier, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pauwels, T.; Recio-Blanco, A.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220605870G Altcode: Gaia Data Release 3 (DR3) provides a wealth of new data products for the astronomical community to exploit, including astrophysical parameters for a half billion stars. In this work we demonstrate the high quality of these data products and illustrate their use in different astrophysical contexts. We query the astrophysical parameter tables along with other tables in Gaia DR3 to derive the samples of the stars of interest. We validate our results by using the Gaia catalogue itself and by comparison with external data. We have produced six homogeneous samples of stars with high quality astrophysical parameters across the HR diagram for the community to exploit. We first focus on three samples that span a large parameter space: young massive disk stars (~3M), FGKM spectral type stars (~3M), and UCDs (~20K). We provide these sources along with additional information (either a flag or complementary parameters) as tables that are made available in the Gaia archive. We furthermore identify 15740 bone fide carbon stars, 5863 solar-analogues, and provide the first homogeneous set of stellar parameters of the Spectro Photometric Standard Stars. We use a subset of the OBA sample to illustrate its usefulness to analyse the Milky Way rotation curve. We then use the properties of the FGKM stars to analyse known exoplanet systems. We also analyse the ages of some unseen UCD-companions to the FGKM stars. We additionally predict the colours of the Sun in various passbands (Gaia, 2MASS, WISE) using the solar-analogue sample. Title: Gaia Data Release 3: Hot-star radial velocities Authors: Blomme, R.; Fremat, Y.; Sartoretti, P.; Guerrier, A.; Panuzzo, P.; Katz, D.; Seabroke, G. M.; Thevenin, F.; Cropper, M.; Benson, K.; Damerdji, Y.; Haigron, R.; Marchal, O.; Smith, M.; Baker, S.; Chemin, L.; David, M.; Dolding, C.; Gosset, E.; Janssen, K.; Jasniewicz, G.; Lobel, A.; Plum, G.; Samaras, N.; Snaith, O.; Soubiran, C.; Vanel, O.; Zwitter, T.; Brouillet, N.; Caffau, E.; Crifo, F.; Fabre, C.; Frakgoudi, F.; Huckle, H. E.; Jean-Antoine Piccolo, A.; Lasne, Y.; Leclerc, N.; Mastrobuono-Battisti, A.; Royer, F.; Viala, Y.; Zorec, J. Bibcode: 2022arXiv220605486B Altcode: The second Gaia data release, DR2, contained radial velocities of stars with effective temperatures up to Teff = 6900 K. The third data release, Gaia DR3, extends this up to Teff = 14,500 K. We derive the radial velocities for hot stars (i.e. in the Teff = 6900 - 14,500 K range) from data obtained with the Radial Velocity Spectrometer (RVS) on board Gaia. The radial velocities were determined by the standard technique of measuring the Doppler shift of a template spectrum that was compared to the observed spectrum. The RVS wavelength range is very limited. The proximity to and systematic blueward offset of the calcium infrared triplet to the hydrogen Paschen lines in hot stars can result in a systematic offset in radial velocity. For the hot stars, we developed a specific code to improve the selection of the template spectrum, thereby avoiding this systematic offset. With the improved code, and with the correction we propose to the DR3 archive radial velocities, we obtain values that agree with reference values to within 3 km/s (in median). Because of the required S/N for applying the improved code, the hot star radial velocities in DR3 are mostly limited to stars with a magnitude in the RVS wavelength band <= 12 mag. Title: Gaia Data Release 3 Properties and validation of the radial velocities Authors: Katz, D.; Sartoretti, P.; Guerrier, A.; Panuzzo, P.; Seabroke, G. M.; Thévenin, F.; Cropper, M.; Benson, K.; Blomme, R.; Haigron, R.; Marchal, O.; Smith, M.; Baker, S.; Chemin, L.; Damerdji, Y.; David, M.; Dolding, C.; Frémat, Y.; Gosset, E.; Janßen, K.; Jasniewicz, G.; Lobel, A.; Plum, G.; Samaras, N.; Snaith, O.; Soubiran, C.; Vanel, O.; Zwitter, T.; Antoja, T.; Arenou, F.; Babusiaux, C.; Brouillet, N.; Caffau, E.; Di Matteo, P.; Fabre, C.; Fabricius, C.; Frakgoudi, F.; Haywood, M.; Huckle, H. E.; Hottier, C.; Lasne, Y.; Leclerc, N.; Mastrobuono-Battisti, A.; Royer, F.; Teyssier, D.; Zorec, J.; Crifo, F.; Jean-Antoine Piccolo, A.; Turon, C.; Viala, Y. Bibcode: 2022arXiv220605902K Altcode: Gaia Data Release 3 (Gaia DR3) contains the second release of the combined radial velocities. It is based on the spectra collected during the first 34 months of the nominal mission. The longer time baseline and the improvements of the pipeline made it possible to push the processing limit, from Grvs = 12 in Gaia DR2, to Grvs = 14 mag. In this article, we describe the new functionalities implemented for Gaia DR3, the quality filters applied during processing and post-processing and the properties and performance of the published velocities. For Gaia DR3, several functionalities were upgraded or added. (Abridged) Gaia DR3 contains the combined radial velocities of 33 812 183 stars. With respect to Gaia DR2, the interval of temperature has been expanded from Teff \in [3600, 6750] K to Teff \in [3100, 14500] K for the bright stars ( Grvs \leq 12 mag) and [3100, 6750] K for the fainter stars. The radial velocities sample a significant part of the Milky Way: they reach a few kilo-parsecs beyond the Galactic centre in the disc and up to about 10-15 kpc vertically into the inner halo. The median formal precision of the velocities is of 1.3 km/s at Grvs = 12 and 6.4 km/s at Grvs = 14 mag. The velocity zero point exhibits a small systematic trend with magnitude starting around Grvs = 11 mag and reaching about 400 m/s at Grvs = 14 mag. A correction formula is provided, which can be applied to the published data. The Gaia DR3 velocity scale is in satisfactory agreement with APOGEE, GALAH, GES and RAVE, with systematic differences that mostly do not exceed a few hundreds m/s. The properties of the radial velocities are also illustrated with specific objects: open clusters, globular clusters as well as the Large Magellanic Cloud (LMC). For example, the precision of the data allows to map the line-of-sight rotational velocities of the globular cluster 47 Tuc and of the LMC. Title: Gaia Data Release 3: Pulsations in main sequence OBAF-type stars Authors: Gaia Collaboration; De Ridder, J.; Ripepi, V.; Aerts, C.; Palaversa, L.; Eyer, L.; Holl, B.; Audard, M.; Rimoldini, L.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hilger, T.; Hodgkin, S. T.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220606075G Altcode: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators M >= 1.3 Msun) of spectral types O, B, A, or F, known as beta Cep, slowly pulsating B (SPB), delta Sct, and gamma Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the vsini data were taken from the Gaia DR3 esphs tables. We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period-luminosity relation for delta Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. Finally, we demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of delta Sct stars. Title: Gaia Data Release 3: Stellar multiplicity, a teaser for the hidden treasure Authors: Gaia Collaboration; Arenou, F.; Babusiaux, C.; Barstow, M. A.; Faigler, S.; Jorissen, A.; Kervella, P.; Mazeh, T.; Mowlavi, N.; Panuzzo, P.; Sahlmann, J.; Shahaf, S.; Sozzetti, A.; Bauchet, N.; Damerdji, Y.; Gavras, P.; Giacobbe, P.; Gosset, E.; Halbwachs, J. -L.; Holl, B.; Lattanzi, M. G.; Leclerc, N.; Morel, T.; Pourbaix, D.; Re Fiorentin, P.; Sadowski, G.; Ségransan, D.; Siopis, C.; Teyssier, D.; Zwitter, T.; Planquart, L.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Haigron, R.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Smith, M.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Bartolomé, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere, A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gerlach, E.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sáez Núñez, A.; Sagristà Sellés, A.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M. S.; Sciacca, E.; Segol, M.; Segovia, J. C.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S. Bibcode: 2022arXiv220605595G Altcode: The Gaia DR3 Catalogue contains for the first time about eight hundred thousand solutions with either orbital elements or trend parameters for astrometric, spectroscopic and eclipsing binaries, and combinations of them. This paper aims to illustrate the huge potential of this large non-single star catalogue. Using the orbital solutions together with models of the binaries, a catalogue of tens of thousands of stellar masses, or lower limits, partly together with consistent flux ratios, has been built. Properties concerning the completeness of the binary catalogues are discussed, statistical features of the orbital elements are explained and a comparison with other catalogues is performed. Illustrative applications are proposed for binaries across the H-R diagram. The binarity is studied in the RGB/AGB and a search for genuine SB1 among long-period variables is performed. The discovery of new EL CVn systems illustrates the potential of combining variability and binarity catalogues. Potential compact object companions are presented, mainly white dwarf companions or double degenerates, but one candidate neutron star is also presented. Towards the bottom of the main sequence, the orbits of previously-suspected binary ultracool dwarfs are determined and new candidate binaries are discovered. The long awaited contribution of Gaia to the analysis of the substellar regime shows the brown dwarf desert around solar-type stars using true, rather than minimum, masses, and provides new important constraints on the occurrence rates of substellar companions to M dwarfs. Several dozen new exoplanets are proposed, including two with validated orbital solutions and one super-Jupiter orbiting a white dwarf, all being candidates requiring confirmation. Beside binarity, higher order multiple systems are also found. Title: Gaia Data Release 3: Chemical cartography of the Milky Way Authors: Gaia Collaboration; Recio-Blanco, A.; Kordopatis, G.; de Laverny, P.; Palicio, P. A.; Spagna, A.; Spina, L.; Katz, D.; Re Fiorentin, P.; Poggio, E.; McMillan, P. J.; Vallenari, A.; Lattanzi, M. G.; Seabroke, G. M.; Casamiquela, L.; Bragaglia, A.; Antoja, T.; Bailer-Jones, C. A. L.; Andrae, R.; Fouesneau, M.; Cropper, M.; Cantat-Gaudin, T.; Heiter, U.; Bijaoui, A.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bastian, U.; Drimmel, R.; Jansen, F.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Edvardsson, B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220605534G Altcode: Gaia DR3 opens a new era of all-sky spectral analysis of stellar populations thanks to the nearly 5.6 million stars observed by the RVS and parametrised by the GSP-spec module. The all-sky Gaia chemical cartography allows a powerful and precise chemo-dynamical view of the Milky Way with unprecedented spatial coverage and statistical robustness. First, it reveals the strong vertical symmetry of the Galaxy and the flared structure of the disc. Second, the observed kinematic disturbances of the disc -- seen as phase space correlations -- and kinematic or orbital substructures are associated with chemical patterns that favour stars with enhanced metallicities and lower [alpha/Fe] abundance ratios compared to the median values in the radial distributions. This is detected both for young objects that trace the spiral arms and older populations. Several alpha, iron-peak elements and at least one heavy element trace the thin and thick disc properties in the solar cylinder. Third, young disc stars show a recent chemical impoverishment in several elements. Fourth, the largest chemo-dynamical sample of open clusters analysed so far shows a steepening of the radial metallicity gradient with age, which is also observed in the young field population. Finally, the Gaia chemical data have the required coverage and precision to unveil galaxy accretion debris and heated disc stars on halo orbits through their [alpha/Fe] ratio, and to allow the study of the chemo-dynamical properties of globular clusters. Gaia DR3 chemo-dynamical diagnostics open new horizons before the era of ground-based wide-field spectroscopic surveys. They unveil a complex Milky Way that is the outcome of an eventful evolution, shaping it to the present day (abridged). Title: The Complexity of the Cetus Stream Unveiled from the Fusion of STREAMFINDER and StarGO Authors: Yuan, Zhen; Malhan, Khyati; Sestito, Federico; Ibata, Rodrigo A.; Martin, Nicolas F.; Chang, Jiang; Li, Ting S.; Caffau, Elisabetta; Bonifacio, Piercarlo; Bellazzini, Michele; Huang, Yang; Voggel, Karina; Longeard, Nicolas; Arentsen, Anke; Doliva-Dolinsky, Amandine; Navarro, Julio; Famaey, Benoit; Starkenburg, Else; Aguado, David S. Bibcode: 2022ApJ...930..103Y Altcode: 2021arXiv211205775Y We combine the power of two stream-searching tools, STREAMFINDER and StarGO applied to the Gaia EDR3 data, to detect stellar debris belonging to the Cetus stream system that forms a complex, nearly polar structure around the Milky Way. In this work, we find the southern extensions of the northern Cetus stream as the Palca stream and a new southern stream, which overlap on the sky but have different distances. These two stream wraps extend over more than ~100° on the sky (-60° < δ < +40°). The current N-body model of the system reproduces both as two wraps in the trailing arm. We also show that the Cetus system is confidently associated with the Triangulum/Pisces, Willka Yaku, and the recently discovered C-20 streams. The association with the ATLAS-Aliqa Uma stream is much weaker. All of these stellar debris are very metal-poor, comparable to the average metallicity of the southern Cetus stream with [Fe/H] = -2.17 ± 0.20. The estimated stellar mass of the Cetus progenitor is at least 105.6 M , compatible with Ursa Minor or Draco dwarf galaxies. The associated globular cluster with similar stellar mass, NGC 5824 very possibly was accreted in the same group infall. The multi-wrap Cetus stream is a perfect example of a dwarf galaxy that has undergone several periods of stripping, leaving behind debris at multiple locations in the halo. The full characterization of such systems is crucial to unravel the history of the assembly of the Milky Way, and importantly, to provide nearby fossils to study ancient low-mass dwarf galaxies. Title: Sulfur abundances in the Galactic bulge and disk Authors: Lucertini, Francesca; Monaco, Lorenzo; Caffau, Elisabetta; Bonifacio, Piercarlo; Mucciareli, Alessio Bibcode: 2022joks.confE...2L Altcode: Context. The measurement of α-element abundances provides a powerful tool for placing constraints on the chemical evolution and star formation history of galaxies. The majority of studies on the α-element sulfur (S) are focused on local stars, making S behavior in other environments an astronomical topic that is yet to be explored in detail.

Aims. The investigation of S in the Galactic bulge was recently considered for the first time. This work aims to improve our knowledge on S behavior in this component of the Milky Way.

Methods. We present the S abundances of 74 dwarf and sub-giant stars in the Galactic bulge, along with 21 and 30 F and G thick- and thin-disk stars, respectively. We performed a local thermodynamic equilibrium analysis and applied corrections for non-LTE on high resolution and high signal-to-noise UVES spectra. S abundances were derived from multiplets 1, 6, and 8 in the metallicity range of -2 < [Fe/H] < 0.6, by spectrosynthesis or line equivalent widths.

Results. We confirm that the behavior of S resembles that of an α-element within the Galactic bulge. In the [S/Fe] versus [Fe/H] diagram, S presents a plateau at low metallicity, followed by a decreasing of [S/Fe] with the increasing of [Fe/H], before reaching [S/Fe] ∼ 0 at a super-solar metallicity. We found that the Galactic bulge is S-rich with respect to both the thick- and thin-disks at -1 < [Fe/H] < 0.3, supporting a scenario of more rapid formation and chemical evolution in the Galactic bulge than in the disk. Title: Gaia Early Data Release 3: The celestial reference frame (Gaia-CRF3) Authors: Gaia Collaboration; Klioner, S. A.; Lindegren, L.; Mignard, F.; Hernández, J.; Ramos-Lerate, M.; Bastian, U.; Biermann, M.; Bombrun, A.; de Torres, A.; Gerlach, E.; Geyer, R.; Hilger, T.; Hobbs, D.; Lammers, U. L.; McMillan, P. J.; Steidelmüller, H.; Teyssier, D.; Raiteri, C. M.; Bartolomé, S.; Bernet, M.; Castañeda, J.; Clotet, M.; Davidson, M.; Fabricius, C.; Garralda Torres, N.; González-Vidal, J. J.; Portell, J.; Rowell, N.; Torra, F.; Torra, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; De Angeli, F.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Rambaux, N.; Ramos, P.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220412574G Altcode: Gaia-CRF3 is the celestial reference frame for positions and proper motions in the third release of data from the Gaia mission, Gaia DR3 (and for the early third release, Gaia EDR3, which contains identical astrometric results). The reference frame is defined by the positions and proper motions at epoch 2016.0 for a specific set of extragalactic sources in the (E)DR3 catalogue. We describe the construction of Gaia-CRF3, and its properties in terms of the distributions in magnitude, colour, and astrometric quality. Compact extragalactic sources in Gaia DR3 were identified by positional cross-matching with 17 external catalogues of quasars (QSO) and active galactic nuclei (AGN), followed by astrometric filtering designed to remove stellar contaminants. Selecting a clean sample was favoured over including a higher number of extragalactic sources. For the final sample, the random and systematic errors in the proper motions are analysed, as well as the radio-optical offsets in position for sources in the third realisation of the International Celestial Reference Frame (ICRF3). The Gaia-CRF3 comprises about 1.6 million QSO-like sources, of which 1.2 million have five-parameter astrometric solutions in Gaia DR3 and 0.4 million have six-parameter solutions. The sources span the magnitude range G = 13 to 21 with a peak density at 20.6 mag, at which the typical positional uncertainty is about 1 mas. The proper motions show systematic errors on the level of 12 ${\mu}$as yr${}^{-1}$ on angular scales greater than 15 deg. For the 3142 optical counterparts of ICRF3 sources in the S/X frequency bands, the median offset from the radio positions is about 0.5 mas, but exceeds 4 mas in either coordinate for 127 sources. We outline the future of the Gaia-CRF in the next Gaia data releases. Title: Detailed investigation of two high-speed evolved Galactic stars Authors: Matas Pinto, Aroa del Mar; Caffau, Elisabetta; François, Patrick; Spite, Monique; Bonifacio, Piercarlo; Wanajo, Shinya; Aoki, Wako; Monaco, Lorenzo; Suda, Takuma; Spite, François; Sbordone, Luca; Lombardo, Linda; Mucciarelli, Alessio Bibcode: 2022AN....34310032M Altcode: The study of metal poor stars provides clarification and knowledge about the primordial Universe. Specially, halo stars provide explanations of the nature of the first generations of stars and the nucleosynthesis in the metal-poor regime. We present a detailed chemical analysis and determination of the kinematic and orbital properties of two stars characterized by high speed with respect to the Sun. We analyzed two high-resolution Subaru spectra employing the MyGIsFOS code, which allows to derive the detailed chemical abundances for 28 elements (C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, and Eu), and abundance from two ionization states in the case of four elements (Ti, Cr, Fe, and Zr). TYC 622-742-1 and TYC 1193-1918-1 are metal-poor stars ([Fe/H] of −2.37 and −1.60), they are similar in the chemical pattern with respect to Fe, they are α enhanced and show a slight excess in Eu abundance. Both giant stars are poor in C and rich in N, as expected for evolved stars, and this fact is supported by the low 12C/13C isotopic ratio in TYC 1193-1918-1. Nevertheless, the C abundance of TYC 622-742-1 is particularly low. TYC 622-742-1 and TYC 1193-1918-1 have a similar chemical composition to the other Galactic halo stars of comparable metallicity. According to their kinematics, both stars belong to the Galactic halo, but they are not a part of the Gaia-Sausage-Enceladus structure. Title: Sulfur abundances in the Galactic bulge and disk Authors: Lucertini, F.; Monaco, L.; Caffau, E.; Bonifacio, P.; Mucciarelli, A. Bibcode: 2022A&A...657A..29L Altcode: 2021arXiv210906216L Context. The measurement of α-element abundances provides a powerful tool for placing constraints on the chemical evolution and star formation history of galaxies. The majority of studies on the α-element sulfur (S) are focused on local stars, making S behavior in other environments an astronomical topic that is yet to be explored in detail.
Aims: The investigation of S in the Galactic bulge was recently considered for the first time. This work aims to improve our knowledge on S behavior in this component of the Milky Way.
Methods: We present the S abundances of 74 dwarf and sub-giant stars in the Galactic bulge, along with 21 and 30 F and G thick- and thin-disk stars, respectively. We performed a local thermodynamic equilibrium analysis and applied corrections for non-LTE on high resolution and high signal-to-noise UVES spectra. S abundances were derived from multiplets 1, 6, and 8 in the metallicity range of − 2 < [Fe/H] < 0.6, by spectrosynthesis or line equivalent widths.
Results: We confirm that the behavior of S resembles that of an α-element within the Galactic bulge. In the [S/Fe] versus [Fe/H] diagram, S presents a plateau at low metallicity, followed by a decreasing of [S/Fe] with the increasing of [Fe/H], before reaching [S/Fe] ~ 0 at a super-solar metallicity. We found that the Galactic bulge is S-rich with respect to both the thick- and thin-disks at − 1 < [Fe/H] < 0.3, supporting a scenario of more rapid formation and chemical evolution in the Galactic bulge than in the disk.

This paper is based on data collected with the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Program ID 065.L-0507, 071.B-0529, 076.B-0055, 076.B-0133, 077.B-0507, 079.D-0567, 082.B-0453, 083.B-0265, 084.B-0837, 084.D-0965, 085.B-0399, 086.B-0757, 087.B-0600, 087.D-0724, 088.B-0349, 089.B-0047, 090.B-0204, 091.B-0289, 092.B-0626, 093.B-0700, 094.B-0282, 165.L-0263, 167.D-0173, 266.D-5655; and data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655). Title: A stellar stream remnant of a globular cluster below the metallicity floor Authors: Martin, Nicolas F.; Venn, Kim A.; Aguado, David S.; Starkenburg, Else; González Hernández, Jonay I.; Ibata, Rodrigo A.; Bonifacio, Piercarlo; Caffau, Elisabetta; Sestito, Federico; Arentsen, Anke; Allende Prieto, Carlos; Carlberg, Raymond G.; Fabbro, Sébastien; Fouesneau, Morgan; Hill, Vanessa; Jablonka, Pascale; Kordopatis, Georges; Lardo, Carmela; Malhan, Khyati; Mashonkina, Lyudmila I.; McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén; Thomas, Guillaume F.; Yuan, Zhen; Mucciarelli, Alessio Bibcode: 2022Natur.601...45M Altcode: 2022arXiv220101309M Stellar ejecta gradually enrich the gas out of which subsequent stars form, making the least chemically enriched stellar systems direct fossils of structures formed in the early Universe1. Although a few hundred stars with metal content below 1,000th of the solar iron content are known in the Galaxy2-4, none of them inhabit globular clusters, some of the oldest known stellar structures. These show metal content of at least approximately 0.2% of the solar metallicity ([Fe /H ]≳−2.7 )?. This metallicity floor appears universal5,6, and it has been proposed that protogalaxies that merged into the galaxies we observe today were simply not massive enough to form clusters that survived to the present day7. Here we report observations of a stellar stream, C-19, whose metallicity is less than 0.05% of the solar metallicity ([F e / H ]=−3.38 ±0.06 (s t a t i s t i c a l )±0.20 (s y s t e m a t i c ))?. The low metallicity dispersion and the chemical abundances of the C-19 stars show that this stream is the tidal remnant of the most metal-poor globular cluster ever discovered, and is significantly below the purported metallicity floor: clusters with significantly lower metallicities than observed today existed in the past and contributed their stars to the Milky Way halo. Title: The Pristine survey - XIV. Chemical analysis of two ultra-metal-poor stars Authors: Lardo, C.; Mashonkina, L.; Jablonka, P.; Bonifacio, P.; Caffau, E.; Aguado, D. S.; González Hernández, J. I.; Sestito, F.; Kielty, C. L.; Venn, K. A.; Hill, V.; Starkenburg, E.; Martin, N. F.; Sitnova, T.; Arentsen, A.; Carlberg, R. G.; Navarro, J. F.; Kordopatis, G. Bibcode: 2021MNRAS.508.3068L Altcode: 2021arXiv210914477L; 2021MNRAS.tmp.2603L Elemental abundances of the most metal-poor stars reflect the conditions in the early Galaxy and the properties of the first stars. We present a spectroscopic follow-up of two ultra-metal-poor stars ([Fe/H] < -4.0) identified by the survey Pristine: Pristine 221.8781+9.7844 and Pristine 237.8588+12.5660 (hereafter Pr 221 and Pr 237, respectively). Combining data with earlier observations, we find a radial velocity of -149.25 ± 0.27 and -3.18 ± 0.19 km s-1 for Pr 221 and Pr 237, respectively, with no evidence of variability between 2018 and 2020. From a one-dimensional (1D) local thermodynamic equilibrium (LTE) analysis, we measure [Fe/H]LTE = -4.79 ± 0.14 for Pr 221 and -4.22 ± 0.12 for Pr 237, in good agreement with previous studies. Abundances of Li, Na, Mg, Al, Si, Ca, Ti, Fe, and Sr were derived based on the non-LTE (NLTE) line formation calculations. When NLTE effects are included, we measure slightly higher metallicities: [Fe/H]NLTE = -4.40 ± 0.13 and -3.93 ± 0.12, for Pr 221 and Pr 237, respectively. Analysis of the G band yields [C/Fe]1D-LTE ≤ +2.3 and [C/Fe]1D-LTE ≤ +2.0 for Pr 221 and Pr 237. Both stars belong to the low-carbon band. Upper limits on nitrogen abundances are also derived. Abundances for other elements exhibit good agreement with those of stars with similar parameters. Finally, to get insight into the properties of their progenitors, we compare NLTE abundances to theoretical yields of zero-metallicity supernovae (SNe). This suggests that the SNe progenitors had masses ranging from 10.6 to 14.4 M and low-energy explosions with (0.3-1.2) × 1051 erg. Title: Young giants of intermediate mass. Evidence of rotation and mixing Authors: Lombardo, Linda; François, Patrick; Bonifacio, Piercarlo; Caffau, Elisabetta; del Mar Matas Pinto, Aroa; Charbonnel, Corinne; Meynet, Georges; Monaco, Lorenzo; Cescutti, Gabriele; Mucciarelli, Alessio Bibcode: 2021A&A...656A.155L Altcode: 2021arXiv211005229L Context. In the search of a sample of metal-poor bright giants using Strömgren photometry, we serendipitously found a sample of 26 young (ages younger than 1 Gyr) metal-rich giants, some of which have high rotational velocities.
Aims: We determined the chemical composition and rotational velocities of these stars in order to compare them with predictions from stellar evolution models. These stars where of spectral type A to B when on the main sequence, and we therefore wished to compare their abundance pattern to that of main-sequence A and B stars.
Methods: Stellar masses were derived by comparison of the position of the stars in the colour-magnitude diagram with theoretical evolutionary tracks. These masses, together with Gaia photometry and parallaxes, were used to derive the stellar parameters. We used spectrum synthesis and model atmospheres to determine chemical abundances for 16 elements (C, N, O, Mg, Al, Ca, Fe, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, and Eu) and rotational velocities.
Results: The age-metallicity degeneracy can affect photometric metallicity calibrations. We identify 15 stars as likely binary stars. All stars are in prograde motion around the Galactic centre and belong to the thin-disc population. All but one of the sample stars present low [C/Fe] and high [N/Fe] ratios together with constant [(C+N+O)/Fe], suggesting that they have undergone CNO processing and first dredge-up. The observed rotational velocities are in line with theoretical predictions of the evolution of rotating stars.

Based on observations obtained at Observatoire de Haute Provence, Canada-France-Hawaii Telescope and Telescopio Nazionale Galileo. Title: VizieR Online Data Catalog: Updated radial velocities from Gaia DR2 (Seabroke+, 2021) Authors: Seabroke, G. M.; Fabricius, C.; Teyssier, D.; Sartoretti, P.; Katz, D.; Cropper, M.; Antoja, T.; Benson, K.; Smith, M.; Dolding, C.; Gosset, E.; Panuzzo, P.; Thevenin, F.; Allende Prieto, C.; Blomme, R.; Guerrier, A.; Huckle, H.; Jean-Antoine, A.; Haigron, R.; Marchal, O.; Baker, S.; Damerdji, Y.; David, M.; Fremat, Y.; Janssen, K.; Jasniewicz, G.; Lobel, A.; Samaras, N.; Plum, G.; Soubiran, C.; Vanel, O.; Zwitter, T.; Ajaj, M.; Caffau, E.; Chemin, L.; Royer, F.; Brouillet, N.; Crifo, F.; Guy, L. P.; Hambly, N. C.; Leclerc, N.; Mastrobuono-Battisti, A.; Viala, Y. Bibcode: 2021yCat..36530160S Altcode: EDR3 status of high-velocity stars in the negative and positive tail of DR2's radial velocity distribution.

(2 data files). Title: The metal-poor end of the Spite plateau. II. Chemical and dynamical investigation Authors: Matas Pinto, A. M.; Spite, M.; Caffau, E.; Bonifacio, P.; Sbordone, L.; Sivarani, T.; Steffen, M.; Spite, F.; François, P.; Di Matteo, P. Bibcode: 2021A&A...654A.170M Altcode: 2021arXiv211000243M Context. The study of old, metal-poor stars deepens our knowledge on the early stages of the universe. In particular, the study of these stars gives us a valuable insight into the masses of the first massive stars and their emission of ionising photons.
Aims: We present a detailed chemical analysis and determination of the kinematic and orbital properties of a sample of 11 dwarf stars. These are metal-poor stars, and a few of them present a low lithium content. We inspected whether the other elements also present anomalies.
Methods: We analysed the high-resolution UVES spectra of a few metal-poor stars using the Turbospectrum code to synthesise spectral lines profiles. This allowed us to derive a detailed chemical analysis of Fe, C, Li, Na, Mg, Al, Si, CaI, CaII, ScII, TiII, Cr, Mn, Co, Ni, Sr, and Ba.
Results: We find excellent coherence with the reference metal-poor First Stars sample. The lithium-poor stars do not present any anomaly of the abundance of the elements other than lithium. Among the Li-poor stars, we show that CS 22882-027 is very probably a blue-straggler. The star CS 30302-145, which has a Li abundance compatible with the plateau, has a very low Si abundance and a high Mn abundance. In many aspects, it is similar to the α-poor star HE 1424-0241, but it is less extreme. It could have been formed in a satellite galaxy and later been accreted by our Galaxy. This hypothesis is also supported by its kinematics.

The table with equivalent widths discussed in this paper is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A170

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere (Programmes 076.A-0463 PI(Lopez), 077.D-0299 PI(Bonifacio)), 086.D-0871(A) (PI Meléndez). Title: Gaia Early Data Release 3. Updated radial velocities from Gaia DR2 Authors: Seabroke, G. M.; Fabricius, C.; Teyssier, D.; Sartoretti, P.; Katz, D.; Cropper, M.; Antoja, T.; Benson, K.; Smith, M.; Dolding, C.; Gosset, E.; Panuzzo, P.; Thévenin, F.; Allende Prieto, C.; Blomme, R.; Guerrier, A.; Huckle, H.; Jean-Antoine, A.; Haigron, R.; Marchal, O.; Baker, S.; Damerdji, Y.; David, M.; Frémat, Y.; Janßen, K.; Jasniewicz, G.; Lobel, A.; Samaras, N.; Plum, G.; Soubiran, C.; Vanel, O.; Zwitter, T.; Ajaj, M.; Caffau, E.; Chemin, L.; Royer, F.; Brouillet, N.; Crifo, F.; Guy, L. P.; Hambly, N. C.; Leclerc, N.; Mastrobuono-Battisti, A.; Viala, Y. Bibcode: 2021A&A...653A.160S Altcode: 2021arXiv210802796S Context. Gaia's Early Third Data Release (EDR3) does not contain new radial velocities because these will be published in Gaia's full third data release (DR3), expected in the first half of 2022. To maximise the usefulness of EDR3, Gaia's second data release (DR2) sources (with radial velocities) are matched to EDR3 sources to allow their DR2 radial velocities to also be included in EDR3. This presents two considerations: (i) a list of 70 365 sources with potentially contaminated DR2 radial velocities has been published; and (ii) EDR3 is based on a new astrometric solution and a new source list, which means sources in DR2 may not be in EDR3.
Aims: The two aims of this work are: (i) investigate the list in order to improve the DR2 radial velocities being included in EDR3 and to avoid false-positive hypervelocity candidates; and (ii) match the DR2 sources (with radial velocities) to EDR3 sources.
Methods: Thetwo methods of this work are: (i) unpublished, preliminary DR3 radial velocities of sources on the list, and high-velocity stars not on the list, are compared with their DR2 radial velocities to identify and remove contaminated DR2 radial velocities from EDR3; and (ii) proper motions and epoch position propagation is used to attempt to match all sources with radial velocities in DR2 to EDR3 sources. The comparison of DR2 and DR3 radial velocities is used to resolve match ambiguities.
Results: EDR3 contains 7 209 831 sources with a DR2 radial velocity, which is 99.8% of sources with a radial velocity in DR2 (7 224 631). 14 800 radial velocities from DR2 are not propagated to any EDR3 sources because (i) 3871 from the list are found to either not have a DR3 radial velocity or it differs significantly from its DR2 value, and five high-velocity stars not on the list are confirmed to have contaminated radial velocities, in one case because of contamination from the non-overlapping Radial Velocity Spectrometer windows of a nearby, bright star; and (ii) 10 924 DR2 sources could not be satisfactorily matched to any EDR3 sources, so their DR2 radial velocities are also missing from EDR3.
Conclusions: The reliability of radial velocities in EDR3 has improved compared to DR2 because the update removes a small fraction of erroneous radial velocities (0.05% of DR2 radial velocities and 5.5% of the list). Lessons learnt from EDR3 (e.g. bright star contamination) will improve the radial velocities in future Gaia data releases. The main reason for radial velocities from DR2 not propagating to EDR3 is not related to DR2 radial velocity quality. It is because the DR2 astrometry is based on one component of close binary pairs, while EDR3 astrometry is based on the other component, which prevents these sources from being unambiguously matched. Title: VizieR Online Data Catalog: Abundances of metal-poor stars (Matas Pinto+, 2021) Authors: Matas Pinto, A. M.; Spite, M.; Caffau, E.; Bonifacio, P.; Sbordone, L.; Sivarani, T.; Steffen, M.; Spite, F.; Francois, P.; Di Matteo, P. Bibcode: 2021yCat..36540170M Altcode: The observations of the stars we studied are described in detail in Paper I (Sbordone et al., 2010A&A...522A..26S, Cat. J/A+A/522/A26) (see their Table 1).

Briefly, observations were performed with the high-resolution spectrograph UVES at the ESO-VLT. The spectra have a resolving power R=~40000 and were centred at 390nm (spectral range: 330-451nm) and 580nm (spectral range: 479-680nm). For two stars (BS 17572-100 and HE 1413-1954) that were previously studied in the frame of the HERES program (Christlieb et al., 2004A&A...428.1027C; Barklem et al., 2005A&A...439..129B, Cat. J/A+A/439/129) from UVES spectra centred at 437nm (spectral range: 376-497nm), the blue spectra were centred at 346 nm (spectral range: 320-386nm). The S/N of the spectra at 400nm is only about half of the S/N measured at 670nm (see Table 1 in Paper I) and thus generally does not exceed 50. For two stars, CS 22188-033 and HE 0148-2611, new UVES spectra from the ESO archives, centred at 390 and 580nm, were also used, increasing the S/N ratio of the mean spectrum. The data were reduced using the standard UVES pipeline with the same procedures as used in Bonifacio et al. (2007A&A...462..851B).

Here we present the table with equivalent widths discussed in the paper.

(2 data files). Title: The Gaia RVS benchmark stars. I. Chemical inventory of the first sample of evolved stars and its Rb NLTE investigation Authors: Caffau, E.; Bonifacio, P.; Korotin, S. A.; François, P.; Lallement, R.; Matas Pinto, A. M.; Di Matteo, P.; Steffen, M.; Mucciarelli, A.; Katz, D.; Haywood, M.; Chemin, L.; Sartoretti, P.; Sbordone, L.; Andrievsky, S. M.; Kovtyukh, V. V.; Spite, M.; Spite, F.; Panuzzo, P.; Royer, F.; Thévenin, F.; Ludwig, H. -G.; Marchal, O.; Plum, G. Bibcode: 2021A&A...651A..20C Altcode: Context. The Radial Velocity Spectrometer (RVS) on board the Gaia satellite is not provided with a wavelength calibration lamp. It uses its observations of stars with known radial velocity to derive the dispersion relation. To derive an accurate radial velocity calibration, a precise knowledge of the line spread function (LSF) of the RVS is necessary. Good-quality ground-based observations in the wavelength range of the RVS are highly desired to determine the LSF.
Aims: Several radial velocity standard stars are available to the Gaia community. The highest possible number of calibrators will surely allow us to improve the accuracy of the radial velocity. Because the LSF may vary across the focal plane of the RVS, a large number of high-quality spectra for the LSF calibration may allow us to better sample the properties of the focal plane.
Methods: We selected a sample of stars to be observed with UVES at the Very Large Telescope, in a setting including the wavelength range of RVS, that are bright enough to allow obtaining high-quality spectra in a short time. We also selected stars that lack chemical investigation in order to increase the sample of bright, close by stars with a complete chemical inventory.
Results: We here present the chemical analysis of the first sample of 80 evolved stars. The quality of the spectra is very good, therefore we were able to derive abundances for 20 elements. The metallicity range spanned by the sample is about 1 dex, from slightly metal-poor to solar metallicity. We derived the Rb abundance for all stars and investigated departures from local thermodynamical equilibrium (NLTE) in the formation of its lines.
Conclusions: The sample of spectra is of good quality, which is useful for a Gaia radial velocity calibration. The Rb NLTE effects in this stellar parameters range are small but sometimes non-negligible, especially for spectra of this good quality.

Tables B.3 and C.1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/651/A20

Based on observations made with UVES at VLT 104.D.0325. Title: TOPoS. VI. The metal-weak tail of the metallicity distribution functions of the Milky Way and the Gaia-Sausage-Enceladus structure Authors: Bonifacio, P.; Monaco, L.; Salvadori, S.; Caffau, E.; Spite, M.; Sbordone, L.; Spite, F.; Ludwig, H. -G.; Di Matteo, P.; Haywood, M.; François, P.; Koch-Hansen, A. J.; Christlieb, N.; Zaggia, S. Bibcode: 2021A&A...651A..79B Altcode: 2021arXiv210508360B Context. The goal of the Turn-Off Primordial Stars survey (TOPoS) project is to find and analyse turn-off (TO) stars of extremely low metallicity. To select the targets for spectroscopic follow-up at high spectral resolution, we relied on low-resolution spectra from the Sloan Digital Sky Survey (SDSS).
Aims: In this paper, we use the metallicity estimates we obtained from our analysis of the SDSS spectra to construct the metallicity distribution function (MDF) of the Milky Way, with special emphasis on its metal-weak tail. The goal is to provide the underlying distribution out of which the TOPoS sample was extracted.
Methods: We made use of SDSS photometry, Gaia photometry, and distance estimates derived from the Gaia parallaxes to derive a metallicity estimate for a large sample of over 24 million TO stars. This sample was used to derive the metallicity bias of the sample for which SDSS spectra are available.
Results: We determined that the spectroscopic sample is strongly biased in favour of metal-poor stars, as intended. A comparison with the unbiased photometric sample allows us to correct for the selection bias. We selected a sub-sample of stars with reliable parallaxes for which we combined the SDSS radial velocities with Gaia proper motions and parallaxes to compute actions and orbital parameters in the Galactic potential. This allowed us to characterise the stars dynamically, and in particular to select a sub-sample that belongs to the Gaia-Sausage-Enceladus (GSE) accretion event. We are thus also able to provide the MDF of GSE.
Conclusions: The metal-weak tail derived in our study is very similar to that derived in the H3 survey and in the Hamburg/ESO Survey. This allows us to average the three MDFs and provide an error bar for each metallicity bin. Inasmuch as the GSE structure is representative of the progenitor galaxy that collided with the Milky Way, that galaxy appears to be strongly deficient in metal-poor stars compared to the Milky Way, suggesting that the metal-weak tail of the latter has been largely formed by accretion of low-mass galaxies rather than massive galaxies, such as the GSE progenitor.

Spectroscopic and photometric metallicities derived and discussed in this paper as well as orbital actions computed and discussed in this paper are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/651/A79 Title: Charting the Galactic Acceleration Field. I. A Search for Stellar Streams with Gaia DR2 and EDR3 with Follow-up from ESPaDOnS and UVES Authors: Ibata, Rodrigo; Malhan, Khyati; Martin, Nicolas; Aubert, Dominique; Famaey, Benoit; Bianchini, Paolo; Monari, Giacomo; Siebert, Arnaud; Thomas, Guillaume F.; Bellazzini, Michele; Bonifacio, Piercarlo; Caffau, Elisabetta; Renaud, Florent Bibcode: 2021ApJ...914..123I Altcode: 2020arXiv201205245I We present maps of the stellar streams detected in the Gaia Data Release 2 (DR2) and Early Data Release 3 (EDR3) catalogs using the STREAMFINDER algorithm. We also report the spectroscopic follow-up of the brighter DR2 stream members obtained with the high-resolution CFHT/ESPaDOnS and VLT/UVES spectrographs as well as with the medium-resolution NTT/EFOSC2 spectrograph. Two new stellar streams that do not have a clear progenitor are detected in DR2 (named Hríd and Gunnthrá), and seven are detected in EDR3 (named Gaia-6 to Gaia-12). Several candidate streams are also identified. The software also finds very long tidal tails associated with the 15 globular clusters: NGC 288, NGC 1261, NGC 1851, NGC 2298, NGC 2808, NGC 3201, M68, ωCen, NGC 5466, Palomar 5, M5, NGC 6101, M92, NGC 6397, and NGC 7089. These stellar streams will be used in subsequent contributions in this series to chart the properties of the Galactic acceleration field on ~100 pc to ~100 kpc scales. Title: Gaia Early Data Release 3. Summary of the contents and survey properties (Corrigendum) Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...650C...3G Altcode: No abstract at ADS Title: VizieR Online Data Catalog: TO stars metallicity estimate (Bonifacio+, 2021) Authors: Bonifacio, P.; Monaco, L.; Salvadori, S.; Caffau, E.; Spite, M.; Sbordone, L.; Spite, F.; Ludwig, H. -G.; Di Matteo, P.; Haywood, M.; Francois, P.; Koch-Hansen, A. J.; Christlieb, N. C.; Zaggia, S. Bibcode: 2021yCat..36510079B Altcode: We made use of SDSS photometry, Gaia photometry, and distance estimates derived from the Gaia parallaxes to derive a metallicity estimate for a large sample of over 24 million TO stars. This sample was used to derive the metallicity bias of the sample for which SDSS spectra are available.

(3 data files). Title: Gaia Early Data Release 3. Structure and properties of the Magellanic Clouds Authors: Gaia Collaboration; Luri, X.; Chemin, L.; Clementini, G.; Delgado, H. E.; McMillan, P. J.; Romero-Gómez, M.; Balbinot, E.; Castro-Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Cioni, M. -R. L.; Fabricius, C.; Garofalo, A.; Helmi, A.; Muraveva, T.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Gimenez, V. Sanchez; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...7G Altcode: 2020arXiv201201771G Context. This work is part of the Gaia Data Processing and Analysis Consortium papers published with the Gaia Early Data Release 3 (EDR3). It is one of the demonstration papers aiming to highlight the improvements and quality of the newly published data by applying them to a scientific case.
Aims: We use the Gaia EDR3 data to study the structure and kinematics of the Magellanic Clouds. The large distance to the Clouds is a challenge for the Gaia astrometry. The Clouds lie at the very limits of the usability of the Gaia data, which makes the Clouds an excellent case study for evaluating the quality and properties of the Gaia data.
Methods: The basis of our work are two samples selected to provide a representation as clean as possible of the stars of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). The selection used criteria based on position, parallax, and proper motions to remove foreground contamination from the Milky Way, and allowed the separation of the stars of both Clouds. From these two samples we defined a series of subsamples based on cuts in the colour-magnitude diagram; these subsamples were used to select stars in a common evolutionary phase and can also be used as approximate proxies of a selection by age.
Results: We compared the Gaia Data Release 2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insightsinto features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones.

Velocity profiles are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A7 Title: Gaia Early Data Release 3. The Galactic anticentre Authors: Gaia Collaboration; Antoja, T.; McMillan, P. J.; Kordopatis, G.; Ramos, P.; Helmi, A.; Balbinot, E.; Cantat-Gaudin, T.; Chemin, L.; Figueras, F.; Jordi, C.; Khanna, S.; Romero-Gómez, M.; Seabroke, G. M.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Varela, E. Anglada; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Kochoska, A.; Kontizas, M.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...8G Altcode: 2021arXiv210105811G
Aims: We aim to demonstrate the scientific potential of the Gaia Early Data Release 3 (EDR3) for the study of different aspects of the Milky Way structure and evolution and we provide, at the same time, a description of several practical aspects of the data and examples of their usage.
Methods: We used astrometric positions, proper motions, parallaxes, and photometry from EDR3 to select different populations and components and to calculate the distances and velocities in the direction of the anticentre. In this direction, the Gaia astrometric data alone enable the calculation of the vertical and azimuthal velocities; also, the extinction is relatively low compared to other directions in the Galactic plane. We then explore the disturbances of the current disc, the spatial and kinematical distributions of early accreted versus in situ stars, the structures in the outer parts of the disc, and the orbits of open clusters Berkeley 29 and Saurer 1.
Results: With the improved astrometry and photometry of EDR3, we find that: (i) the dynamics of the Galactic disc are very complex with oscillations in the median rotation and vertical velocities as a function of radius, vertical asymmetries, and new correlations, including a bimodality with disc stars with large angular momentum moving vertically upwards from below the plane, and disc stars with slightly lower angular momentum moving preferentially downwards; (ii) we resolve the kinematic substructure (diagonal ridges) in the outer parts of the disc for the first time; (iii) the red sequence that has been associated with the proto-Galactic disc that was present at the time of the merger with Gaia-Enceladus-Sausage is currently radially concentrated up to around 14 kpc, while the blue sequence that has been associated with debris of the satellite extends beyond that; (iv) there are density structures in the outer disc, both above and below the plane, most probably related to Monoceros, the Anticentre Stream, and TriAnd, for which the Gaia data allow an exhaustive selection of candidate member stars and dynamical study; and (v) the open clusters Berkeley 29 and Saurer 1, despite being located at large distances from the Galactic centre, are on nearly circular disc-like orbits.
Conclusions: Even with our simple preliminary exploration of the Gaia EDR3, we demonstrate how, once again, these data from the European Space Agency are crucial for our understanding of the different pieces of our Galaxy and their connection to its global structure and history.

Movie is available at https://www.aanda.org Title: Gaia Early Data Release 3. Acceleration of the Solar System from Gaia astrometry Authors: Gaia Collaboration; Klioner, S. A.; Mignard, F.; Lindegren, L.; Bastian, U.; McMillan, P. J.; Hernández, J.; Hobbs, D.; Ramos-Lerate, M.; Biermann, M.; Bombrun, A.; de Torres, A.; Gerlach, E.; Geyer, R.; Hilger, T.; Lammers, U.; Steidelmüller, H.; Stephenson, C. A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bossini, D.; Bouquillon, S.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hładczuk, N.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...9G Altcode: 2020arXiv201202036G Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate astrometry for about 1.6 million compact (QSO-like) extragalactic sources, 1.2 million of which have the best-quality five-parameter astrometric solutions.
Aims: The proper motions of QSO-like sources are used to reveal a systematic pattern due to the acceleration of the solar systembarycentre with respect to the rest frame of the Universe. Apart from being an important scientific result by itself, the acceleration measured in this way is a good quality indicator of the Gaia astrometric solution.
Methods: Theeffect of the acceleration was obtained as a part of the general expansion of the vector field of proper motions in vector spherical harmonics (VSH). Various versions of the VSH fit and various subsets of the sources were tried and compared to get the most consistent result and a realistic estimate of its uncertainty. Additional tests with the Gaia astrometric solution were used to get a better idea of the possible systematic errors in the estimate.
Results: Our best estimate of the acceleration based on Gaia EDR3 is (2.32 ± 0.16) × 10−10 m s−2 (or 7.33 ±0.51 km s−1 Myr−1) towards α = 269.1° ± 5.4°, δ = −31.6° ± 4.1°, corresponding to a proper motion amplitude of 5.05 ±0.35 μas yr−1. This is in good agreement with the acceleration expected from current models of the Galactic gravitational potential. We expect that future Gaia data releases will provide estimates of the acceleration with uncertainties substantially below 0.1 μas yr−1.

Movie is only available at https://www.aanda.org Title: VizieR Online Data Catalog: Gaia RVS benchmark stars. I. (Caffau+, 2021) Authors: Caffau, E.; Bonifacio, P.; Korotin, S. A.; Francois, P.; Lallement, R.; Matas Pinto, A. M.; Di Matteo, P.; Steffen, M.; Mucciarelli, A.; Katz, D.; Haywood, M.; Chemin, L.; Sartoretti, P.; Sbordone, L.; Andrievsky, S. M.; Kovtyukh, V. V.; Spite, M.; Spite, F.; Panuzzo, P.; Royer, F.; Thevenin, F.; Ludwig, H. -G.; Marchal, O.; Plum, G. Bibcode: 2021yCat..36510020C Altcode: For this project on the UVES spectrograph, we selected the setting 437+760. The choices on the setting were that (i) the 760 range completely covers the RVS range without any gaps, and (ii) the 437 range is the reddest setting that can be coupled with the 760 setting. For metal-rich stars (the majority of our targets), observations in blue settings provide very crowded spectra, and a higher S/N can be achieved in this selected setting than in bluer settings such as the 390 setting.

We chose the highest UVES resolution (slit 0.4" in the blue arm and 0.3" in the red arm). For all observations, the DIC2 437+760 setting was used. For the stars brighter than V magnitude 8.5, an observing block comprises ten observations of 77.5s to avoid detector saturation. For the stars fainter than 8.5, five exposures of 202 s allow avoiding detector saturation. In this program, 90 stars have been observed, 80 of which are evolved stars and are analysed here. The 10 unevolved stars will be analysed with stars of similar stellar parameters that are observed or are scheduled to be observed for the following two ESO periods (P105 and P106).

(2 data files). Title: Gaia Early Data Release 3. Summary of the contents and survey properties Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...1G Altcode: 2020arXiv201201533G Context. We present the early installment of the third Gaia data release, Gaia EDR3, consisting of astrometry and photometry for 1.8 billion sources brighter than magnitude 21, complemented with the list of radial velocities from Gaia DR2.
Aims: A summary of the contents of Gaia EDR3 is presented, accompanied by a discussion on the differences with respect to Gaia DR2 and an overview of the main limitations which are present in the survey. Recommendations are made on the responsible use of Gaia EDR3 results.
Methods: The raw data collected with the Gaia instruments during the first 34 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium and turned into this early third data release, which represents a major advance with respect to Gaia DR2 in terms of astrometric and photometric precision, accuracy, and homogeneity.
Results: Gaia EDR3 contains celestial positions and the apparent brightness in G for approximately 1.8 billion sources. For 1.5 billion of those sources, parallaxes, proper motions, and the (GBP − GRP) colour are also available. The passbands for G, GBP, and GRP are provided as part of the release. For ease of use, the 7 million radial velocities from Gaia DR2 are included in this release, after the removal of a small number of spurious values. New radial velocities will appear as part of Gaia DR3. Finally, Gaia EDR3 represents an updated materialisation of the celestial reference frame (CRF) in the optical, the Gaia-CRF3, which is based solely on extragalactic sources. The creation of the source list for Gaia EDR3 includes enhancements that make it more robust with respect to high proper motion stars, and the disturbing effects of spurious and partially resolved sources. The source list is largely the same as that for Gaia DR2, but it does feature new sources and there are some notable changes. The source list will not change for Gaia DR3.
Conclusions: Gaia EDR3 represents a significant advance over Gaia DR2, with parallax precisions increased by 30 per cent, proper motion precisions increased by a factor of 2, and the systematic errors in the astrometry suppressed by 30-40% for the parallaxes and by a factor ~2.5 for the proper motions. The photometry also features increased precision, but above all much better homogeneity across colour, magnitude, and celestial position. A single passband for G, GBP, and GRP is valid over the entire magnitude and colour range, with no systematics above the 1% level Title: Gaia Early Data Release 3. The Gaia Catalogue of Nearby Stars Authors: Gaia Collaboration; Smart, R. L.; Sarro, L. M.; Rybizki, J.; Reylé, C.; Robin, A. C.; Hambly, N. C.; Abbas, U.; Barstow, M. A.; de Bruijne, J. H. J.; Bucciarelli, B.; Carrasco, J. M.; Cooper, W. J.; Hodgkin, S. T.; Masana, E.; Michalik, D.; Sahlmann, J.; Sozzetti, A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Roegiers, T.; Siopis, C.; Smith, M.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...6G Altcode: 2020arXiv201202061G
Aims: We produce a clean and well-characterised catalogue of objects within 100 pc of the Sun from the Gaia Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a first analysis of the science that is possible with this sample to demonstrate its potential and best practices for its use.
Methods: Theselection of objects within 100 pc from the full catalogue used selected training sets, machine-learning procedures, astrometric quantities, and solution quality indicators to determine a probability that the astrometric solution is reliable. The training set construction exploited the astrometric data, quality flags, and external photometry. For all candidates we calculated distance posterior probability densities using Bayesian procedures and mock catalogues to define priors. Any object with reliable astrometry and a non-zero probability of being within 100 pc is included in the catalogue.
Results: We have produced a catalogue of 331 312 objects that we estimate contains at least 92% of stars of stellar type M9 within 100 pc of the Sun. We estimate that 9% of the stars in this catalogue probably lie outside 100 pc, but when the distance probability function is used, a correct treatment of this contamination is possible. We produced luminosity functions with a high signal-to-noise ratio for the main-sequence stars, giants, and white dwarfs. We examined in detail the Hyades cluster, the white dwarf population, and wide-binary systems and produced candidate lists for all three samples. We detected local manifestations of several streams, superclusters, and halo objects, in which we identified 12 members of Gaia Enceladus. We present the first direct parallaxes of five objects in multiple systems within 10 pc of the Sun.
Conclusions: We provide the community with a large, well-characterised catalogue of objects in the solar neighbourhood. This is a primary benchmark for measuring and understanding fundamental parameters and descriptive functions in astronomy.

Tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A6 Title: Purveyors of fine halos. III. Chemical abundance analysis of a potential ωCen associate Authors: Koch-Hansen, Andreas J.; Hansen, Camilla Juul; Lombardo, Linda; Bonifacio, Piercarlo; Hanke, Michael; Caffau, Elisabetta Bibcode: 2021A&A...645A..64K Altcode: 2020A&A...645A..64K; 2020arXiv201112303K Globular clusters (GCs) are important donors to the build-up of the Milky Way (MW) stellar halo, having contributed at the ten percent level over the Galactic history. Stars that originated from the second generation of dissolved or dissolving clusters can be readily identified via distinct light-element signatures such as enhanced N and Na and simultaneously depleted C and O abundances. In this paper we present an extensive chemical abundance analysis of the halo star J110842, which was previously kinematically associated with the massive MW GC ω Centauri (ωCen), and we discuss viable scenarios from escape to encounter. Based on a high-resolution, high signal-to-noise spectrum of this star using the UVES spectrograph, we were able to measure 33 species of 31 elements across all nucleosynthetic channels. The star's low metallicity of [Fe II/H] = -2.10 ± 0.02(stat.) ± 0.07(sys.) dex places it in the lower sixth percentile of ωCen's metallicity distribution. We find that all of the heavier-element abundances, from α- and Fe-peak elements to neutron-capture elements are closely compatible with ωCen's broad abundance distribution. However, given the major overlap of this object's abundances with the bulk of all of the MW components, this does not allow for a clear-cut distinction of the star's origin. In contrast, our measurements of an enhancement in CN and its position on the Na-strong locus of the Na-O anticorrelation render it conceivable that it originally formed as a second-generation GC star, lending support to a former association of this halo star with the massive GC ωCen.

Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/645/A64

Based on observations obtained at ESO Paranal Observatory, program 0104.D-0059. Title: Integration and early testing of WEAVE: the next-generation spectroscopy facility for the William Herschel Telescope Authors: Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Vallenari, Antonella; Bishop, Georgia; Middleton, Kevin; Benn, Chris; Dee, Kevin; Mignot, Shan; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nicholas; Rey, Juerg; Allende Prieto, Carlos; Lhomé, Emilie; Balcells, Marc; Terrett, David; Brock, Matthew; Ridings, Andy; Skvarč, Jure; Verheijen, Marc; Steele, Iain; Stuik, Remko; Kroes, Gabby; Tromp, Neils; Kragt, Jan; Lesman, Dirk; Mottram, Chris; Bates, Stuart; Gribbin, Frank; Burgal, Jose Alonso; Herreros, José Miguel; Delgado, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Peralta de Arriba, Luis; O'Mahoney, Neil; Bianco, Andrea; Moleinezhad, Alireza; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Baruffalo, Andrea; Carrasco, Esperanza; Farcas, Szigfrid; Schallig, Ellen; Hughes, Sarah; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Iovino, Angela; Pieri, Mat; Jin, Shoko; Dominguez Palmero, Lillian; Fariña, Cecilia; Martín, Adrian; Worley, Clare; Murphy, David; Guest, Steve; Morris, Huw; Elswijk, Eddy; de Haan, Menno; Hanenburg, Hiddo; Salasnich, Bernardo; Mayya, Divakara; Izazaga-Pérez, Rafael; Gafton, Emanuel; Caffau, Elisabetta; Horville, David; Paz Chinchón, Francisco; Falcon-Barosso, Jesus; Gänsicke, Boris; San Juan, Jose; Hernandez, Nauzet Bibcode: 2020SPIE11447E..14D Altcode: We present an update on the overall integration progress of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), now scheduled for first light in early-2021, with almost all components now arrived at the observatory. We also present a summary of the current planning behind the 5-year initial phase of survey operations, and some detailed end-to-end science simulations that have been implemented to evaluate the final on-sky performance after data processing. WEAVE will provide optical ground-based follow up of ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 mini integral field units, or a single large IFU for each observation. The fibres are fed to a single (dual-beam) spectrograph, with total of 16k spectral pixels, located within the WHT GHRIL enclosure on the telescope Nasmyth platform, supporting observations at R~5000 over the full 370-1000nm wavelength range in a single exposure, or a high resolution mode with limited coverage in each arm at R~20000. Title: Fiber links for the WEAVE instrument: the making of Authors: Mignot, Shan; Bonifacio, Piercarlo; Fasola, Gilles; Horville, David; Caffau, Elisabetta; Dorent, Stéphane; Croce, Sébastien; Blanc, Sébastien; Melse, Basile-Thierry; Younès, Youssef; Reix, Florent; Gaudemard, Julien; Dalton, Gavin; Schallig, Ellen; Lewis, Ian; Stuik, Remko; Middleton, Kevin; Bishop, Georgia; Abrams, Don Carlos; Trager, Scott; Aguerri, J. Alfonso; Carrasco, Esperanza; Vallenari, Antonella; Laporte, Philippe; Barroso, Patrice; Noûs, Camille Bibcode: 2020SPIE11450E..2FM Altcode: The WEAVE instrument nearing completion for the William Herschel Telescope is a fiber-fed spectrograph operating in three different modes. Two comprise deployable fibers at the prime focus for point-like objects and small integral field units (IFU), the third is a large IFU placed at the center of the field. Three distinct fiber systems support these modes and route the photons to the spectrograph located on the Nasmyth platform 33m away: the first features 960+940 fibers and is duplicated to allow configuring the fibers on one plate while observation is carried out on the other, the second has 20 hexagonal IFUs featuring 37 fibers each, the third is a large array of 609 fibers with twice the former's diameter. The large number of fibers and the diversity of their instantiation have made procurement of the parts and assembly of the custom cables a challenge. They involve project partners in France, the UK and the Netherlands and industrial partners in France, Canada, the USA and China to combine know-how and compress the schedule by parallelizing assembly of the cables. Besides the complex management that this induces, it has called for revising the fibers' handling to relax tolerances and for a rigorous assessment of the conformity of the products. This paper tells the story of the making of the fiber links, presents the overall organization of the procurement and assembly chains together with the inspection and testing allowing for assessing the conformance of the hardware delivered. Title: Mono-enriched stars and Galactic chemical evolution. Possible biases in observations and theory Authors: Hansen, C. J.; Koch, A.; Mashonkina, L.; Magg, M.; Bergemann, M.; Sitnova, T.; Gallagher, A. J.; Ilyin, I.; Caffau, E.; Zhang, H. W.; Strassmeier, K. G.; Klessen, R. S. Bibcode: 2020A&A...643A..49H Altcode: 2020arXiv200911876H A long sought after goal using chemical abundance patterns derived from metal-poor stars is to understand the chemical evolution of the Galaxy and to pin down the nature of the first stars (Pop III). Metal-poor, old, unevolved stars are excellent tracers as they preserve the abundance pattern of the gas from which they were born, and hence they are frequently targeted in chemical tagging studies. Here, we use a sample of 14 metal-poor stars observed with the high-resolution spectrograph called the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) to derive abundances of 32 elements (34 including upper limits). We present well-sampled abundance patterns for all stars obtained using local thermodynamic equilibrium (LTE) radiative transfer codes and one-dimensional (1D) hydrostatic model atmospheres. However, it is currently well-known that the assumptions of 1D and LTE may hide several issues, thereby introducing biases in our interpretation as to the nature of the first stars and the chemical evolution of the Galaxy. Hence, we use non-LTE (NLTE) and correct the abundances using three-dimensional model atmospheres to present a physically more reliable pattern. In order to infer the nature of the first stars, we compare unevolved, cool stars, which have been enriched by a single event ("mono-enriched"), with a set of yield predictions to pin down the mass and energy of the Pop III progenitor. To date, only few bona fide second generation stars that are mono-enriched are known. A simple χ2-fit may bias our inferred mass and energy just as much as the simple 1D LTE abundance pattern, and we therefore carried out our study with an improved fitting technique considering dilution and mixing. Our sample presents Carbon Enhanced Metal-Poor (CEMP) stars, some of which are promising bona fide second generation (mono-enriched) stars. The unevolved, dwarf BD+09_2190 shows a mono-enriched signature which, combined with kinematical data, indicates that it moves in the outer halo and likely has been accreted onto the Milky Way early on. The Pop III progenitor was likely of 25.5 M and 0.6 foe (0.6 1051 erg) in LTE and 19.2 M and 1.5 foe in NLTE, respectively. Finally, we explore the predominant donor and formation site of the rapid and slow neutron-capture elements. In BD-10_3742, we find an almost clean r-process trace, as is represented in the star HD20, which is a "metal-poor Sun benchmark" for the r-process, while TYC5481-00786-1 is a promising CEMP-r/-s candidate that may be enriched by an asymptotic giant branch star of an intermediate mass and metallicity.

The line list is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A49

Based on data acquired with PEPSI using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. Title: VizieR Online Data Catalog: Potential omega Cen associate EW (Koch-Hansen+, 2021) Authors: Koch-Hansen; A.; Hansen; C. J.; Lombardo; L.; Bonifacio; P.; Hanke; M.; Caffau., E. Bibcode: 2020yCat..36450064K Altcode: We performed a standard abundance analysis that employed a mixture of equivalent width (EW) measurements, carried out via Gaussian fits with the IRAF splot task, and spectrum synthesis. Here we employed the same line list as in Koch & McWilliam (2014, Cat. J/A+A/565/A23, see Table 2) with further additions in the syntheses from Biemont et al. (2000MNRAS.312..116B), Den Hartog et al. (2003ApJS..148..543D), Den Hartog et al. (2006, Cat. J/ApJS/167/292), Lawler et al. (2007, Cat. J/ApJS/169/120), Lawler et al. (2008ApJS..178...71L), Lawler et al. (2009, Cat. J/ApJS/182/51), Sneden et al. (2009, Cat. J/ApJS/182/80), and Hansen et al. (2013A&A...551A..57H).

(1 data file). Title: The solar gravitational redshift from HARPS-LFC Moon spectra⋆. A test of the general theory of relativity Authors: González Hernández, J. I.; Rebolo, R.; Pasquini, L.; Lo Curto, G.; Molaro, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Esposito, M.; Suárez Mascareño, A.; Toledo-Padrón, B.; Probst, R. A.; Hänsch, T. W.; Holzwarth, R.; Manescau, A.; Steinmetz, T.; Udem, Th.; Wilken, T. Bibcode: 2020A&A...643A.146G Altcode: 2020arXiv200910558G Context. The general theory of relativity predicts the redshift of spectral lines in the solar photosphere as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun's reflected light on Solar System bodies.
Aims: The laser frequency comb (LFC) calibration system attached to the HARPS spectrograph offers the possibility of performing an accurate measurement of the solar gravitational redshift (GRS) by observing the Moon or other Solar System bodies. Here, we analyse the line shift observed in Fe absorption lines from five high-quality HARPS-LFC spectra of the Moon.
Methods: We selected an initial sample of 326 photospheric Fe lines in the spectral range between 476-585 nm and measured their line positions and equivalent widths (EWs). Accurate line shifts were derived from the wavelength position of the core of the lines compared with the laboratory wavelengths of Fe lines. We also used a CO5BOLD 3D hydrodynamical model atmosphere of the Sun to compute 3D synthetic line profiles of a subsample of about 200 spectral Fe lines centred at their laboratory wavelengths. We fit the observed relatively weak spectral Fe lines (with EW< 180 mÅ) with the 3D synthetic profiles.
Results: Convective motions in the solar photosphere do not affect the line cores of Fe lines stronger than about ∼150 mÅ. In our sample, only 15 Fe I lines have EWs in the range 150< EW(mÅ) < 550, providing a measurement of the solar GRS at 639 ± 14 m s-1, which is consistent with the expected theoretical value on Earth of ∼633.1 m s-1. A final sample of about 97 weak Fe lines with EW < 180 mÅ allows us to derive a mean global line shift of 638 ± 6 m s-1, which is in agreement with the theoretical solar GRS.
Conclusions: These are the most accurate measurements of the solar GRS obtained thus far. Ultrastable spectrographs calibrated with the LFC over a larger spectral range, such as HARPS or ESPRESSO, together with a further improvement on the laboratory wavelengths, could provide a more robust measurement of the solar GRS and further testing of 3D hydrodynamical models.

Tables A.1 and A.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A146

Based on observations taken with the ESO 3.6 m telescope at La Silla Observatory, Chile. Title: VizieR Online Data Catalog: MC structure and properties (Gaia Collaboration+, 2021) Authors: Gaia Collaboration; Luri, X.; Chemin, L.; Clementini, G.; Delgado, H. E.; McMillan, P. J.; Romero-Gomez, M.; Balbinot, E.; Castro-Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Cioni, M. -R. L.; Fabricius, C.; Garofalo, A.; Helmi, A.; Muraveva, T.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castaneda, J.; de Angeli, F.; Ducourant, C.; Fouesneau, M.; Fremat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernandez-Hernandez, J.; Galluccio, L.; Garcia-Lario, P.; Garcia-Reinaldos, M.; Gonzalez-Nunez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernandez, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janssen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Loeffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Alvarez, M. A.; Alvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Nunez, L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolome, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Canovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; de Luise, F.; de March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; Del Peloso, E. F.; Del Pozo, E.; Delgado, A.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; Garcia-Torres, M.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; Gonzalez-Vidal, J. J.; Granvik, M.; Gutierrez-Sanchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Hidalgo, S. L.; Hilger, T.; Hladczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszynska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martin-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnar, L.; Montegriffo, P.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Murphy, C. P.; Musella, I.; Noval, L.; Ordenovic, C.; Orru, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Penalosa Esteller, X.; Penttilae, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reyle, C.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagrista Selles, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santovena, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Sueveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2020yCat..36490007G Altcode: Tables of the radial profiles of the azimuthal and radial components of the ordered and random motions of stellar evolutionary phases in the Large Magellanic Cloud, as inferred from the 3rd Gaia Data Release (Early Release of 2020/12/03).

Each sub-sample of LMC stellar evolutionary phase is defined in Sect. 2.3 of the article. The file lmcall.dat is for a sample combining every stellar phases.

(9 data files). Title: VizieR Online Data Catalog: Gaia Catalogue of Nearby Stars - GCNS (Gaia collaboration, 2021) Authors: Gaia Collaboration; Smart, R. L.; Sarro, L. M.; Rybizki, J.; Reyle, C.; Robin, A. C.; Hambly, N. C.; Abbas, U.; Barstow, M. A.; de Bruijne, J. H. J.; Bucciarelli, B.; Carrasco, J. M.; Cooper, W. J.; Hodgkin, S. T.; Masana, E.; Michalik, D.; Sahlmann, J.; Sozzetti, A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castaneda, J.; de Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Fremat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernandez-Hernandez, J.; Galluccio, L.; Garcia-Lario, P.; Garcia-Reinaldos, M.; Gonzalez-Nunez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernandez, J.; Hestroffer, D.; Holl, B.; Janssen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Loeffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Roegiers, T.; Siopis, C.; Smith, M.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Alvarez, M. A.; Alvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Nunez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Bartolome, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Canovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I. Bibcode: 2020yCat..36490006G Altcode: We produce a clean and well characterised catalogue of nearby objects within 100pc of the Sun from the Gaia early third data release. We characterise the catalogue using the full data release, and comparisons to other catalogues in literature and simulations. We started with a sample of objects with a measured parallax of 8mas. For all candidates we calculate a distance probability function using Bayesian procedures and mock catalogues for the prediction of the priors. For each entry using a random forest classifier we attempt to remove sources with spurious astrometric solutions.

>From this paper we provide the following data files:

table1c.dat (Table1GCNScat): Any object with a non-zero probability of being within 100 pc and not indicated as a spurious astrometric solutions. We have also included external photometric and radial velocity data, the probability of reliable astrometry, probability to be a white dwarf, the distance 1st, 16th, 50th and 84th percentiles, the positions and velocities in a galactic reference frame. For questions please email richard.smart(at)inaf.it.

table1r.dat (Table1GCNSreject): All other entries from the 8mas sample that were rejected as having a zero probability of being inside 100pc or indicated as a spurious astrometric solution. This table has the same format and columns as GCNS_cat.dat.

progwd.dat (ProbWDlt05_ProbGFgt05): A catalogue of 45 sources with low probability of being a WD in this work (PWD<0.5), but having larger probabilities in Gentile-Fusillo et al (2019MNRAS.482.4570G, cat. J/MNRAS/482/4570) (PGF>0.5). For questions please email carrasco(at)fqa.ub.edu.

table3.dat (Table3_ResolvedStellarSystems): Resolved binary candidates in the GCNS catalogue as discussed in the section on stellar multiplicity: resolved systems. For questions please email ummi.abbas(at)inaf.it or alessandro.sozzetti(at)inaf.it.

maglim.dat (maglimhpx5percentile): The magnitude percentiles for level 5 healpixels used in the luminosity function determinations. For questions please email rybizki(at)mpia.de.

distpdf.dat (distance_PDF): The full distance probability density function calculated in section 2 and used throughout the paper. For questions please email rybizki(at)mpia.de.

missing.dat (missing_10mas): A list of 1258 objects with published parallaxes greater than 10mas that are not or have no parallax in EDR3. For questions please email celine.reyle(at)obs-besancon.fr.

hyacomb.dat (Hyades_ComaBer): A list of 920+212 probable Hyades and ComaBer members in the GCNS sample. For questions please email daniel.michalik(at)esa.int or jos.de.bruijne(at)esa.int.

(8 data files). Title: Detailed abundances in a sample of very metal-poor stars Authors: François, P.; Wanajo, S.; Caffau, E.; Prantzos, N.; Aoki, W.; Aoki, M.; Bonifacio, P.; Spite, M.; Spite, F. Bibcode: 2020A&A...642A..25F Altcode: 2020arXiv200703994F Context. Unevolved metal-poor stars bore witness to the early evolution of the Galaxy, and the determination of their detailed chemical composition is an important tool to understand its chemical history. The study of their chemical composition can also be used to constrain the nucleosynthesis of the first generation of supernovae that enriched the interstellar medium.
Aims: We aim to observe a sample of extremely metal-poor star (EMP stars) candidates selected from the Sloan Digital Sky Survey data release 12 (SDSS DR12) and determine their chemical composition.
Methods: We obtained high-resolution spectra of a sample of five stars using HDS on Subaru telescope and used standard 1D models to compute the abundances. The stars we analysed have a metallicity [Fe/H] of between -3.50 and -4.25 dex.
Results: We confirm that the five metal-poor candidates selected from low-resolution spectra are very metal poor. We present the discovery of a new ultra metal-poor star (UMP star) with a metallicity of [Fe/H] = -4.25 dex (SDSS J1050032.34-241009.7). We measured in this star an upper limit of lithium (log(Li/H) ≤ 2.0. We found that the four most metal-poor stars of our sample have a lower lithium abundance than the Spite plateau lithium value. We obtain upper limits for carbon in the sample of stars. None of them belong to the high carbon band. We measured abundances of Mg and Ca in most of the stars and found three new α-poor stars.

Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Title: VizieR Online Data Catalog: Linelist (Hansen+, 2020) Authors: Hansen, C. J.; Koch, A.; Mashonkina, L.; Magg, M.; Bergemann, M.; Sitnova, T.; Gallagher, A. J.; Ilyin, I.; Caffau, E.; Zhang, H. W.; Strassmeier, K. G.; Klessen, R. S. Bibcode: 2020yCat..36430049H Altcode: Linelist containing wavelength, element and ionisation degree (0 = neutral, 1 = single ionised), excitation potential [eV], oscillator strength (loggf), number of stars in the study in which the line has been detected (limits indicated by <), and finally, hyperfine structure of oscillator strength indicated by HFS.

(1 data file). Title: Gaia Data Release 2. The kinematics of globular clusters and dwarf galaxies around the Milky Way (Corrigendum) Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Heu, J.; Hilger, T.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2020A&A...642C...1G Altcode: No abstract at ADS Title: VizieR Online Data Catalog: The solar gravitational redshift (Gonzalez Hernandez+, 2020) Authors: Gonzalez Hernandez, J. I.; Rebolo, R.; Pasquini, L.; Lo Curto, G.; Molaro, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Esposito, M.; Suarez Mascarenno, A.; Toledo-Padron, B.; Probst, R. A.; Hansch, T. W.; Holzwarth, R.; Manescau, A.; Steinmetz, T.; Udem, T.; Wilken, T. Bibcode: 2020yCat..36430146G Altcode: Line data and velocity shifts of the FeI and FeII lines, with laboratory wavelengths, λlab, from Nave et al. (1994ApJS...94..221N, 2013ApJS..204....1N) and excitation potentials, oscillator strengths from the VALD database (Piskunov et al. 1995A&AS..112..525P).

In Table A.1 we provide the mean line core shifts, vcoreobs, measured on the spectral lines from the observed HARPS-LFC spectra of the MOON and computed with respect to the original laboratory wavelengths (Nave et al. 1994ApJS...94..221N, 2013ApJS..204....1N).

We also give the recalibrated wavelengths, lambda_nist, computed from recalibrated wavenumber measurements and Ritz wavelengths, lambda_ritz, computed from recalibrated energy levels, with their corresponding wavelengths uncertainties, extracted from the NIST database (Kramida et al. 2019APS..DMPN09004K).

In Table A.2, we give the line core shifts measured on the observed spectral lines, vcoreobs_n, estimated using the recalibrated wavelengths, lambda_nist, as reference laboratory wavelengths, the 3D profiles, vcore,3D, and the global line shifts, vfit3Dn, from fitting the observed spectral lines using 3D profiles, and corrected using the recalibrated wavelengths lambda_nist as reference laboratory wavelengths.

Wavelengths are given in Angstroms, wavelength uncertainties in miliAngstroems, excitation potentials in eV, equivalent widths (EW) in miliAngstroems, and velocity shifts in m/s.

(2 data files). Title: A wide angle view of the Sagittarius dwarf spheroidal galaxy. II. A CEMP-r/s star in the Sagittarius dwarf spheroidal galaxy Authors: Sbordone, L.; Hansen, C. J.; Monaco, L.; Cristallo, S.; Bonifacio, P.; Caffau, E.; Villanova, S.; Amigo, P. Bibcode: 2020A&A...641A.135S Altcode: 2020arXiv200503027S We report on the discovery and chemical abundance analysis of the first CEMP-r/s star detected in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) by means of UVES high-resolution spectra. The star, found in the outskirts of Sgr dSph, along the major axis of the main body, is a moderately metal-poor giant (Teff = 4753 K, log g = 1.75, [Fe/H] = -1.55) with [C/Fe] = 1.13, placing it in the so-called "high-carbon band", and strong s-process and r-process enrichment ([Ba/Fe] = 1.4, [Eu/Fe] = 1.01). Abundances of 29 elements from C to Dy were obtained. The chemical pattern appears to be best fitted by a scenario where an r-process pollution event pre-enriched the material out of which the star was born as secondary in a binary system whose primary evolved through the AGB phase, providing C- and s-process enrichment.

Line-by-line abundance tables are are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/641/A135

Based on data collected with UVES at 8.2 m VLT-UT2 (Kueyen) telescope under ESO programme 083.B-0774. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Title: Study of the departures from LTE in the unevolved stars infrared spectra Authors: Korotin, S. A.; Andrievsky, S. M.; Caffau, E.; Bonifacio, P.; Oliva, E. Bibcode: 2020MNRAS.496.2462K Altcode: 2020MNRAS.tmp.1855K; 2020arXiv200610998K We present a study of departures from Local Thermodynamic Equilibrium (LTE) in the formation of infrared (IR) lines of Na I, Mg I, Al I, S I, K I, and Sr II in unevolved stars of spectral types F, G, K and metallicities around the solar metallicity. The purpose of this investigation is to identify lines of these species that can be safely treated with the LTE approximation in the IR spectra of these types of stars. We employ a set of 40 stars observed with the GIANO spectrograph at the 3.5 m Telescopio Nazionale Galileo and previously investigated by Caffau et al. We were able to identify many lines that can be treated in LTE for all the above-mentioned species, except for Sr II. The latter species can only be studied using three lines in the J band, but all three of them display significant departures from LTE. With our small-size, but high-quality sample, we can determine robustly the trends of the abundance ratios with metallicity, confirming the trends apparent from a sample that is larger by several orders of magnitude, but of lower quality in terms of resolution and S/N ratio. Title: VizieR Online Data Catalog: Sgr dSph CEMP-r/s star abundance analysis (Sbordone+, 2020) Authors: Sbordone, L.; Hansen, C. J.; Monaco, L.; Cristallo, S.; Bonifacio, P.; Caffau, E.; Villanova, S.; Amigo, P. Bibcode: 2020yCat..36410135S Altcode: These two tables contain the results relative to the fitting of all the individual spectral features fitted with the MyGIsFOS and FitProfile automatic codes. The "alllines.dat" table contains the feature characteristics (e.g. ion abundance fitted through the feature, starting and ending wavelength...), the fitting results (e.g. the derived abundance) and a star and feature identifiers.The second table (allsynth.dat) contain the detailed observed and fitted profiles for each feature. Each line contains the star and feature identifiers, the wavelength of that specific "pixel" and the corresponding observed and fitted normalized fluxes.

(2 data files). Title: High-speed stars: Galactic hitchhikers Authors: Caffau, E.; Monaco, L.; Bonifacio, P.; Sbordone, L.; Haywood, M.; Spite, M.; Di Matteo, P.; Spite, F.; Mucciarelli, A.; François, P.; Matas Pinto, A. M. Bibcode: 2020A&A...638A.122C Altcode: Context. The search for stars born in the very early stages of the Milky Way star formation history is of paramount importance in the study of the early Universe since their chemistry carries irreplaceable information on the conditions in which early star formation and galaxy buildup took place. The search for these objects has generally taken the form of expensive surveys for faint extremely metal-poor stars, the most obvious but not the only candidates to a very early formation.
Aims: Thanks to Gaia DR2 radial velocities and proper motions, we identified 72 bright cool stars displaying heliocentric transverse velocities in excess of 500 km s-1. These objects are most likely members of extreme outer-halo populations, either formed in the early Milky Way build-up or accreted from since-destroyed self-gravitating stellar systems.
Methods: We analysed low-resolution FORS spectra of the 72 stars in the sample and derived the abundances of a few elements. Despite the large uncertainties on the radial velocity determination, we derived reliable orbital parameters for these objects.
Results: The stars analysed are mainly slightly metal poor, with a few very metal-poor stars. Their chemical composition is much more homogeneous than expected. All the stars have very eccentric halo orbits, some extending well beyond the expected dimension of the Milky Way.
Conclusions: These stars can be the result of a disrupted small galaxy or they could have been globular cluster members. Age estimates suggest that some of them are evolved blue stragglers, now on the subgiant or asymptotic giant branches.

Chemical and kinematic data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/638/A122

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 104.D-0259. Title: MOONS: The New Multi-Object Spectrograph for the VLT Authors: Cirasuolo, M.; Fairley, A.; Rees, P.; Gonzalez, O. A.; Taylor, W.; Maiolino, R.; Afonso, J.; Evans, C.; Flores, H.; Lilly, S.; Oliva, E.; Paltani, S.; Vanzi, L.; Abreu, M.; Accardo, M.; Adams, N.; Álvarez Méndez, D.; Amans, J. -P.; Amarantidis, S.; Atek, H.; Atkinson, D.; Banerji, M.; Barrett, J.; Barrientos, F.; Bauer, F.; Beard, S.; Béchet, C.; Belfiore, A.; Bellazzini, M.; Benoist, C.; Best, P.; Biazzo, K.; Black, M.; Boettger, D.; Bonifacio, P.; Bowler, R.; Bragaglia, A.; Brierley, S.; Brinchmann, J.; Brinkmann, M.; Buat, V.; Buitrago, F.; Burgarella, D.; Burningham, B.; Buscher, D.; Cabral, A.; Caffau, E.; Cardoso, L.; Carnall, A.; Carollo, M.; Castillo, R.; Castignani, G.; Catelan, M.; Cicone, C.; Cimatti, A.; Cioni, M. -R. L.; Clementini, G.; Cochrane, W.; Coelho, J.; Colling, M.; Contini, T.; Contreras, R.; Conzelmann, R.; Cresci, G.; Cropper, M.; Cucciati, O.; Cullen, F.; Cumani, C.; Curti, M.; Da Silva, A.; Daddi, E.; Dalessandro, E.; Dalessio, F.; Dauvin, L.; Davidson, G.; de Laverny, P.; Delplancke-Ströbele, F.; De Lucia, G.; Del Vecchio, C.; Dessauges-Zavadsky, M.; Di Matteo, P.; Dole, H.; Drass, H.; Dunlop, J.; Dünner, R.; Eales, S.; Ellis, R.; Enriques, B.; Fasola, G.; Ferguson, A.; Ferruzzi, D.; Fisher, M.; Flores, M.; Fontana, A.; Forchi, V.; Francois, P.; Franzetti, P.; Gargiulo, A.; Garilli, B.; Gaudemard, J.; Gieles, M.; Gilmore, G.; Ginolfi, M.; Gomes, J. M.; Guinouard, I.; Gutierrez, P.; Haigron, R.; Hammer, F.; Hammersley, P.; Haniff, C.; Harrison, C.; Haywood, M.; Hill, V.; Hubin, N.; Humphrey, A.; Ibata, R.; Infante, L.; Ives, D.; Ivison, R.; Iwert, O.; Jablonka, P.; Jakob, G.; Jarvis, M.; King, D.; Kneib, J. -P.; Laporte, P.; Lawrence, A.; Lee, D.; Li Causi, G.; Lorenzoni, S.; Lucatello, S.; Luco, Y.; Macleod, A.; Magliocchetti, M.; Magrini, L.; Mainieri, V.; Maire, C.; Mannucci, F.; Martin, N.; Matute, I.; Maurogordato, S.; McGee, S.; Mcleod, D.; McLure, R.; McMahon, R.; Melse, B. -T.; Messias, H.; Mucciarelli, A.; Nisini, B.; Nix, J.; Norberg, P.; Oesch, P.; Oliveira, A.; Origlia, L.; Padilla, N.; Palsa, R.; Pancino, E.; Papaderos, P.; Pappalardo, C.; Parry, I.; Pasquini, L.; Peacock, J.; Pedichini, F.; Pello, R.; Peng, Y.; Pentericci, L.; Pfuhl, O.; Piazzesi, R.; Popovic, D.; Pozzetti, L.; Puech, M.; Puzia, T.; Raichoor, A.; Randich, S.; Recio-Blanco, A.; Reis, S.; Reix, F.; Renzini, A.; Rodrigues, M.; Rojas, F.; Rojas-Arriagada, Á.; Rota, S.; Royer, F.; Sacco, G.; Sanchez-Janssen, R.; Sanna, N.; Santos, P.; Sarzi, M.; Schaerer, D.; Schiavon, R.; Schnell, R.; Schultheis, M.; Scodeggio, M.; Serjeant, S.; Shen, T. -C.; Simmonds, C.; Smoker, J.; Sobral, D.; Sordet, M.; Spérone, D.; Strachan, J.; Sun, X.; Swinbank, M.; Tait, G.; Tereno, I.; Tojeiro, R.; Torres, M.; Tosi, M.; Tozzi, A.; Tresiter, E.; Valenti, E.; Valenzuela Navarro, Á.; Vanzella, E.; Vergani, S.; Verhamme, A.; Vernet, J.; Vignali, C.; Vinther, J.; Von Dran, L.; Waring, C.; Watson, S.; Wild, V.; Willesme, B.; Woodward, B.; Wuyts, S.; Yang, Y.; Zamorani, G.; Zoccali, M.; Bluck, A.; Trussler, J. Bibcode: 2020Msngr.180...10C Altcode: 2020arXiv200900628C MOONS is the new Multi-Object Optical and Near-infrared Spectrograph currently under construction for the Very Large Telescope (VLT) at ESO. This remarkable instrument combines, for the first time, the collecting power of an 8-m telescope, 1000 fibres with individual robotic positioners, and both low- and high-resolution simultaneous spectral coverage across the 0.64-1.8 μm wavelength range. This facility will provide the astronomical community with a powerful, world-leading instrument able to serve a wide range of Galactic, extragalactic and cosmological studies. Construction is now proceeding full steam ahead and this overview article presents some of the science goals and the technical description of the MOONS instrument. More detailed information on the MOONS surveys is provided in the other dedicated articles in this Messenger issue. Title: MOONS Surveys of the Milky Way and its Satellites Authors: Gonzalez, O. A.; Mucciarelli, A.; Origlia, L.; Schultheis, M.; Caffau, E.; Di Matteo, P.; Randich, S.; Recio-Blanco, A.; Zoccali, M.; Bonifacio, P.; Dalessandro, E.; Schiavon, R. P.; Pancino, E.; Taylor, W.; Valenti, E.; Rojas-Arriagada, Á.; Sacco, G.; Biazzo, K.; Bellazzini, M.; Cioni, M. -R. L.; Clementini, G.; Contreras Ramos, R.; de Laverny, P.; Evans, C.; Haywood, M.; Hill, V.; Ibata, R.; Lucatello, S.; Magrini, L.; Martin, N.; Nisini, B.; Sanna, N.; Cirasuolo, M.; Maiolino, R.; Afonso, J.; Lilly, S.; Flores, H.; Oliva, E.; Paltani, S.; Vanzi, L. Bibcode: 2020Msngr.180...18G Altcode: 2020arXiv200900635G The study of resolved stellar populations in the Milky Way and other Local Group galaxies can provide us with a fossil record of their chemo-dynamical and star-formation histories over timescales of many billions of years. In the galactic components and stellar systems of the Milky Way and its satellites, individual stars can be resolved. Therefore, they represent a unique laboratory in which to investigate the details of the processes behind the formation and evolution of the disc and dwarf/irregular galaxies. MOONS at the VLT represents a unique combination of an efficient infrared multi-object spectrograph and a large-aperture 8-m-class telescope which will sample the cool stellar populations of the dense central regions of the Milky Way and its satellites, delivering accurate radial velocities, metallicities, and other chemical abundances for several millions of stars over its lifetime (see Cirasuolo et al., p. 10). MOONS will observe up to 1000 targets across a 25-arcminute field of view in the optical and near-infrared (0.6-1.8 µm) simultaneously. A high-resolution (R ~ 19700) setting in the H band has been designed for the accurate determination of stellar abundances such as alpha, light, iron-peak and neutron-capture elements. Title: Improving spectroscopic lithium abundances. Fitting functions for 3D non-LTE corrections in FGK stars of different metallicity Authors: Mott, A.; Steffen, M.; Caffau, E.; Strassmeier, K. G. Bibcode: 2020A&A...638A..58M Altcode: 2020arXiv200410803M Context. Accurate spectroscopic lithium abundances are essential in addressing a variety of open questions, such as the origin of a uniform lithium content in the atmospheres of metal-poor stars (Spite plateau) or the existence of a correlation between the properties of extrasolar planetary systems and the lithium abundance in the atmosphere of their host stars.
Aims: We have developed a tool that allows the user to improve the accuracy of standard lithium abundance determinations based on 1D model atmospheres and the assumption of local thermodynamic equilibrium (LTE) by applying corrections that account for hydrodynamic (3D) and non-LTE (NLTE) effects in FGK stars of different metallicity.
Methods: Based on a grid of CO5BOLD 3D models and associated 1D hydrostatic atmospheres, we computed three libraries of synthetic spectra of the lithium λ 670.8 nm line for a wide range of lithium abundances, accounting for detailed line formation in 3D NLTE, 1D NLTE, and 1D LTE, respectively. The resulting curves-of-growth were then used to derive 3D NLTE and 1D NLTE lithium abundance corrections.
Results: For all metallicities, the largest corrections are found at the coolest effective temperature, Teff = 5000 K. They are mostly positive, up to + 0.2 dex, for the weakest lines (lithium abundance A(Li)1DLTE = 1.0), whereas they become more negative towards lower metallicities, where they can reach - 0.4 dex for the strongest lines (A(Li)1DLTE = 3.0) at [Fe/H] = - 2.0. We demonstrate that 3D and NLTE effects are small for metal-poor stars on the Spite plateau, leading to errors of at most ± 0.05 dex if ignored. We present analytical functions evaluating the 3D NLTE and 1D NLTE corrections as a function of Teff [5000…6500 K], log g [3.5…4.5], and LTE lithium abundance A(Li) [1.0…3.0] for a fixed grid of metallicities [Fe/H] [ - 3.0…0.0]. In addition, we also provide analytical fitting functions for directly converting a given lithium abundance into an equivalent width, or vice versa, a given equivalent width (EW) into a lithium abundance. For convenience, a Python script is made available that evaluates all fitting functions for given Teff, log g, [Fe/H], and A(Li) or EW.
Conclusions: By means of the fitting functions developed in this work, the results of complex 3D and NLTE calculations are made readily accessible and quickly applicable to large samples of stars across a wide range of metallicities. Improving the accuracy of spectroscopic lithium abundance determinations will contribute to a better understanding of the open questions related to the lithium content in metal-poor and solar-like stellar atmospheres. Title: Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way (Corrigendum) Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Heu, J.; Hilger, T.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevems, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2020A&A...637C...3G Altcode: No abstract at ADS Title: Reviving old controversies: is the early Galaxy flat or round?. Investigations into the early phases of the Milky Way's formation through stellar kinematics and chemical abundances Authors: Di Matteo, P.; Spite, M.; Haywood, M.; Bonifacio, P.; Gómez, A.; Spite, F.; Caffau, E. Bibcode: 2020A&A...636A.115D Altcode: 2019arXiv191013769D We analysed a set of very metal-poor stars, for which accurate chemical abundances have been obtained as part of the ESO Large Program "First stars" in the light of the Gaia DR2 data. The kinematics and orbital properties of the stars in the sample show they probably belong to the thick disc, partially heated to halo kinematics, and to the accreted Gaia Sausage-Enceladus satellite. The continuity of these properties with stars at both higher ([Fe/H] > -2) and lower metallicities ([Fe/H] < -4.) suggests that the Galaxy at [Fe/H] ≲ -0.5 and down to at least [Fe/H] ∼ -6 is dominated by these two populations. In particular, we show that the disc extends continuously from [Fe/H] ≤ -4 (where stars with disc-like kinematics have recently been discovered) up to [Fe/H] ≥ -2, the metallicity regime of the Galactic thick disc. An "ultra metal-poor thick disc" does indeed exist, constituting the extremely metal-poor tail of the canonical Galactic thick disc, and extending the latter from [Fe/H] ∼ -0.5 up to the most metal-poor stars discovered in the Galaxy to date. These results suggest that the disc may be the main, and possibly the only, stellar population that has formed in the Galaxy at these metallicities. This would mean that the dissipative collapse that led to the formation of the old Galactic disc must have been extremely fast. We also discuss these results in the light of recent simulation efforts made to reproduce the first stages of Milky Way-type galaxies.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 165.N-0276(A) (P.I.: R. Cayrel). Title: The Pristine survey XI: the FORS2 sample Authors: Caffau, E.; Bonifacio, P.; Sbordone, L.; Matas Pinto, A. M.; François, P.; Jablonka, P.; Lardo, C.; Martin, N. F.; Starkenburg, E.; Aguado, D.; González-Hernández, J. I.; Venn, K.; Mashonkina, L.; Sestito, F. Bibcode: 2020MNRAS.493.4677C Altcode: 2020MNRAS.tmp..556C Extremely metal-poor (EMP) stars are old objects that mostly formed very early after the big bang. They are rare and, to select them, we have to rely on low-resolution spectroscopic or photometric surveys; specifically the combination of narrow- and broad-band photometry provides a powerful and time efficient way to select MP stars. The Pristine photometric survey is using the Canada-France-Hawaii Telescope MegaCam wide-field imager to obtain narrow-band photometry by utilizing a filter centred at 395.2 nm on the Ca II-H and -K lines. Gaia DR 2 is providing us the wide-band photometry as well as parallaxes. Follow-up observations of MP candidates allowed us to improve our photometric calibrations. In this paper of the series we analyse MP stars observed with FORS2 at VLT. We demonstrate the Pristine calibration adopted in this work to be able to provide metallicities accurate to ±0.3 dex for MP giant stars with good parallaxes, while it performs poorly for dwarf and turn-off stars, whatever the accuracy on the parallaxes. We find some MP and very MP stars that are not enhanced in α elements. Such stars have already been found in several other searches, and a higher resolution follow-up of our sample would be useful to put our findings on a firmer ground. This sample of stars analysed has a low fraction of carbon-enhanced MP stars, regardless of the definition adopted. This deficiency could indicate a small sensitivity of the Pristine filter to carbon abundance, issue to be addressed in the future. Title: VizieR Online Data Catalog: High-speed stars. Galactic hitchhikers (Caffau+, 2020) Authors: Caffau, E.; Monaco, L.; Bonifacio, P.; Sbordone, L.; Haywood, M.; Spite, M.; Di Matteo, P.; Spite, F.; Mucciarelli, A.; Francois, P.; Matas Pinto, A. M. Bibcode: 2020yCat..36380122C Altcode: From the Gaia DR2 catalogue, we selected stars with transverse velocity higher than 500km/s, in the G magnitude range 14-14.5. Further constraints were put on right ascension to ensure observability in European Southern Observatory (ESO) period 104 (0h<=RA<=16h or RA>=20) and on declination (DE<=-25) to privilege a south pointing. The latter constraint was set in order to ensure that the VLT could observe our targets even in the event of fairly strong northern wind. In this way we were able to ensure observations of stars that were not too far away, and as a consequence with relatively small uncertainties on parallaxes and proper motions, and of bright objects for an 8 m class telescope, allowing good quality observations even in bad weather conditions.

All 72 stars were observed during ESO period 104.

In the kinematical and chemical investigations, we assumed that all stars are single.

(3 data files). Title: The Pristine survey - IX. CFHT ESPaDOnS spectroscopic analysis of 115 bright metal-poor candidate stars Authors: Venn, Kim A.; Kielty, Collin L.; Sestito, Federico; Starkenburg, Else; Martin, Nicolas; Aguado, David S.; Arentsen, Anke; Bonifacio, Piercarlo; Caffau, Elisabetta; Hill, Vanessa; Jablonka, Pascale; Lardo, Carmela; Mashonkina, Lyudmilla; Navarro, Julio F.; Sneden, Chris; Thomas, Guillaume; Youakim, Kris; González-Hernández, Jonay I.; Sánchez Janssen, Rubén; Carlberg, Ray; Malhan, Khyati Bibcode: 2020MNRAS.492.3241V Altcode: 2019MNRAS.tmp.3190V; 2019arXiv191006340V A chemo-dynamical analysis of 115 metal-poor candidate stars selected from the narrow-band Pristine photometric survey is presented based on CFHT high-resolution ESPaDOnS spectroscopy. We have discovered 28 new bright (V < 15) stars with [Fe/H] < -2.5 and 5 with [Fe/H] < -3.0 for success rates of 40 (28/70) and 19 per cent (5/27), respectively. A detailed model atmosphere analysis is carried out for the 28 new metal-poor stars. Stellar parameters were determined from SDSS photometric colours, Gaia DR2 parallaxes, MESA/MIST stellar isochrones, and the initial Pristine survey metallicities, following a Bayesian inference method. Chemical abundances are determined for 10 elements (Na, Mg, Ca, Sc, Ti, Cr, Fe, Ni, Y, and Ba). Most stars show chemical abundance patterns that are similar to the normal metal-poor stars in the Galactic halo; however, we also report the discoveries of a new r-process-rich star, a new CEMP-s candidate with [Y/Ba] > 0, and a metal-poor star with very low [Mg/Fe]. The kinematics and orbits for all of the highly probable metal-poor candidates are determined by combining our precision radial velocities with Gaia DR2 proper motions. Some stars show unusual kinematics for their chemistries, including planar orbits, unbound orbits, and highly elliptical orbits that plunge deeply into the Galactic bulge (Rperi < 0.5 kpc); also, eight stars have orbital energies and actions consistent with the Gaia-Enceladus accretion event. This paper contributes to our understanding of the complex chemo-dynamics of the metal-poor Galaxy, and increases the number of known bright metal-poor stars available for detailed nucleosynthetic studies. Title: Erratum: The Pristine survey - VI. The first three years of medium-resolution follow-up spectroscopy of Pristine EMP star candidates Authors: Aguado, David S.; Youakim, Kris; González Hernández, Jonay I.; Allende Prieto, Carlos; Starkenburg, Else; Martin, Nicolas; Bonifacio, Piercarlo; Arentsen, Anke; Caffau, Elisabetta; Peralta de Arriba, Luis; Sestito, Federico; Garcia-Dias, Rafael; Fantin, Nicholas; Hill, Vanessa; Jablonca, Pascale; Jahandar, Farbod; Kielty, Collin; Longeard, Nicolas; Lucchesi, Romain; Sánchez-Janssen, Rubén; Osorio, Yeisson; Palicio, Pedro A.; Tolstoy, Eline; Wilson, Thomas G.; Côté, Patrick; Kordopatis, Georges; Lardo, Carmela; Navarro, Julio F.; Thomas, Guillaume F.; Venn, Kim Bibcode: 2020MNRAS.491.5299A Altcode: No abstract at ADS Title: ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107-5240 Authors: Bonifacio, P.; Molaro, P.; Adibekyan, V.; Aguado, D.; Alibert, Y.; Allende Prieto, C.; Caffau, E.; Cristiani, S.; Cupani, G.; Di Marcantonio, P.; D'Odorico, V.; Ehrenreich, D.; Figueira, P.; Genova, R.; González Hernández, J. I.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Monaco, L.; Nunes, N. J.; Pepe, F. A.; Poretti, E.; Rebolo, R.; Santos, N. C.; Saviane, I.; Sousa, S.; Sozzetti, A.; Suarez-Mascareño, A.; Udry, S.; Zapatero-Osorio, M. R. Bibcode: 2020A&A...633A.129B Altcode: Context. The vast majority of the known stars of ultra low metallicity ([Fe/H] < -4.5) are known to be enhanced in carbon, and belong to the "low-carbon band" (A(C) = log(C/H)+12 ≤ 7.6). It is generally, although not universally, accepted that this peculiar chemical composition reflects the chemical composition of the gas cloud out of which these stars were formed. The first ultra-metal-poor star discovered, HE 0107-5240, is also enhanced in carbon and belongs to the "low-carbon band". It has recently been claimed to be a long-period binary, based on radial velocity measurements. It has also been claimed that this binarity may explain its peculiar composition as being due to mass transfer from a former AGB companion. Theoretically, low-mass ratios in binary systems are much more favoured amongst Pop III stars than they are amongst solar-metallicity stars. Any constraint on the mass ratio of a system of such low metallicity would shed light on the star formation mechanisms in this metallicity regime.
Aims: We acquired one high precision spectrum with ESPRESSO in order to check the reality of the radial velocity variations. In addition we analysed all the spectra of this star in the ESO archive obtained with UVES to have a set of homogenously measured radial velocities.
Methods: The radial velocities were measured using cross correlation against a synthetic spectrum template. Due to the weakness of metallic lines in this star, the signal comes only from the CH molecular lines of the G-band.
Results: The measurement obtained in 2018 from an ESPRESSO spectrum demonstrates unambiguously that the radial velocity of HE 0107-5240 has increased from 2001 to 2018. Closer inspection of the measurements based on UVES spectra in the interval 2001-2006 show that there is a 96% probability that the radial velocity correlates with time, hence the radial velocity variations can already be suspected from the UVES spectra alone.
Conclusions: We confirm the earlier claims of radial velocity variations in HE 0107-5240. The simplest explanation of such variations is that the star is indeed in a binary system with a long period. The nature of the companion is unconstrained and we consider it is equally probable that it is an unevolved companion or a white dwarf. Continued monitoring of the radial velocities of this star is strongly encouraged.

Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.http://u-strasbg.fr/viz-bin/cat/J/A+A/633/A129 Title: VizieR Online Data Catalog: ESPRESSO radial velocities of HE0107-5240 (Bonifacio+, 2020) Authors: Bonifacio, P.; Molaro, P.; Adibekyan, V.; Aguado, D.; Alibert, Y.; Allende Prieto, C.; Caffau, E.; Cristiani, S.; Cupani, G.; di Marcantonio, P.; D'Odorico, V.; Ehrenreich, D.; Figueira, P.; Genova, R.; Gonzalez Hernandez, J. I.; Lo Curto, G.; Lovis, C.; Martins, C. J. A. P.; Mehner, A.; Micela, G.; Monaco, L.; Nunes, N. J.; Pepe, F. A.; Poretti, E.; Rebolo, R.; Santos, N. C.; Saviane, I.; Sousa, S.; Sozzetti, A.; Suarez-Mascareno, A.; Udry, S.; Zapatero-Osorio, M. R. Bibcode: 2020yCat..36330129B Altcode: A new measurement of the radial velocity of the ultra-metal-poor star HE 0107-5240 is derived using a high resolution spectrum obtained with the Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO). In the high resolution mode there are two fibres with a core diameter of 140um that corresponds to 1.0" on the sky. HE 0107-5240 was observed on September 3, 2018. The new measurement is put into context with measurements derived using spectra taken in the last 17 years and confirms the variation in radial velocity of this star over this period.

(2 data files). Title: The Pristine survey - VI. The first three years of medium-resolution follow-up spectroscopy of Pristine EMP star candidates Authors: Aguado, David S.; Youakim, Kris; González Hernández, Jonay I.; Allende Prieto, Carlos; Starkenburg, Else; Martin, Nicolas; Bonifacio, Piercarlo; Arentsen, Anke; Caffau, Elisabetta; Peralta de Arriba, Luis; Sestito, Federico; Garcia-Dias, Rafael; Fantin, Nicholas; Hill, Vanessa; Jablonca, Pascale; Jahandar, Farbod; Kielty, Collin; Longeard, Nicolas; Lucchesi, Romain; Sánchez-Janssen, Rubén; Osorio, Yeisson; Palicio, Pedro A.; Tolstoy, Eline; Wilson, Thomas G.; Côté, Patrick; Kordopatis, Georges; Lardo, Carmela; Navarro, Julio F.; Thomas, Guillaume F.; Venn, Kim Bibcode: 2019MNRAS.490.2241A Altcode: 2019MNRAS.tmp.2271A; 2019arXiv190908138A We present the results of a 3-yr long, medium-resolution spectroscopic campaign aimed at identifying very metal-poor stars from candidates selected with the CaHK, metallicity-sensitive Pristine survey. The catalogue consists of a total of 1007 stars, and includes 146 rediscoveries of metal-poor stars already presented in previous surveys, 707 new very metal-poor stars with [Fe/H] < -2.0, and 95 new extremely metal-poor stars with [Fe/H] < -3.0. We provide a spectroscopic [Fe/H] for every star in the catalogue, and [C/Fe] measurements for a subset of the stars (10 per cent with [Fe/H] < -3 and 24 per cent with -3 < [Fe/H] < -2) for which a carbon determination is possible, contingent mainly on the carbon abundance, effective temperature and signal-to-noise ratio of the stellar spectra. We find an average carbon enhancement fraction ([C/Fe] ≥ +0.7) of 41 ± 4 per cent for stars with -3 < [Fe/H] < -2 and 58 ± 14 per cent for stars with [Fe/H] < -3, and report updated success rates for the Pristine survey of 56 per cent and 23 per cent to recover stars with [Fe/H] < -2.5 and < -3, respectively. Finally, we discuss the current status of the survey and its preparation for providing targets to upcoming multi-object spectroscopic surveys such as William Herschel Telescope Enhanced Area Velocity Explorer. Title: A wide angle chemical survey of the Sagittarius dwarf Spheroidal galaxy Authors: Sbordone, L.; Monaco, L.; Duffau, S.; Bonifacio, P.; Caffau, E. Bibcode: 2019IAUS..344...42S Altcode: We present the status of an ongoing project to map the detailed chemical abundances of stars across the main body of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph). The Sgr dSph is the closest known dwarf galaxy, and is being tidally destroyed by its interaction with the Milky Way (MW), leaving behind a massive stellar stream. Sgr dSph is a chemically outstanding object, with peculiar abundance ratios, clear center-outskirts abundance gradients, and spanning more than 3 orders of magnitude in metallicity. We present here detailed abundances from UVES@VLT spectra for more than 50 giants across 8 fields along the major and minor axes of Sgr dSph, and 5 more outside the galaxy main body, but possibly associated to its stellar stream. Title: Probing the existence of very massive first stars Authors: Salvadori, S.; Bonifacio, P.; Caffau, E.; Korotin, S.; Andreevsky, S.; Spite, M.; Skúladóttir, Á. Bibcode: 2019MNRAS.487.4261S Altcode: 2019MNRAS.tmp.1406S; 2019arXiv190600994S We present a novel approach aimed at identifying the key chemical elements to search for the (missing) descendants of very massive first stars exploding as pair instability supernovae (PISN). Our simple and general method consists in a parametric study accounting for the unknowns related to early cosmic star formation and metal-enrichment. Our approach allow us to define the most likely [Fe/H] and abundance ratios of long-lived stars born in interstellar media polluted by the nucleosynthetic products of PISN at a {> } 90{{ per cent}}, 70{{ per cent}}, and 50{{ per cent}} level. In agreement with previous works, we show that the descendants of very massive first stars can be most likely found at [Fe/H] ≈ -2. Further, we demonstrate that to search for an underabundance of [(N, Cu, Zn)/Fe] < 0 is the key to identify these rare descendants. The `killing elements' N, Zn, and Cu are not produced by PISN, so that their sub-Solar abundance with respect to iron persists in environments polluted by further generations of normal core-collapse supernovae up to a 50{{ per cent}} level. We show that the star BD+80° 245, which has [Fe/H] = -2.2, [N/Fe] = -0.79, [Cu/Fe] = -0.75, and [Zn/Fe] = -0.12 can be the smoking gun of the chemical imprint from very massive first stars. To this end we acquired new spectra for BD+80° 245 and re-analysed those available from the literature accounting for non-local thermodynamic equilibrium corrections for Cu. We discuss how to find more of these missing descendants in ongoing and future surveys to tightly constrain the mass distribution of the first stars. Title: The CEMP star SDSS J0222-0313: the first evidence of proton ingestion in very low-metallicity AGB stars? Authors: Caffau, E.; Monaco, L.; Bonifacio, P.; Korotin, S.; Andrievsky, S.; Cristallo, S.; Spite, M.; Spite, F.; Sbordone, L.; François, P.; Cescutti, G.; Salvadori, S. Bibcode: 2019A&A...628A..46C Altcode: Context. Carbon-enhanced metal-poor (CEMP) stars are common objects in the metal-poor regime. The lower the metallicity we look at, the larger the fraction of CEMP stars with respect to metal-poor stars with no enhancement in carbon. The chemical pattern of CEMP stars is diversified, strongly suggesting a different origin of the C enhancement in the different types of CEMP stars.
Aims: We selected a CEMP star, SDSS J0222-0313, with a known high carbon abundance and, from a low-resolution analysis, a strong enhancement in neutron-capture elements of the first peak (Sr and Y) and of the second peak (Ba). The peculiarity of this object is a greater overabundance (with respect to iron) of the first s-process peak than the second s-process peak.
Methods: We analysed a high-resolution spectrum obtained with the Mike spectrograph at the Clay Magellan 6.5 m telescope in order to derive the detailed chemical composition of this star.
Results: We confirmed the chemical pattern we expected; we derived abundances for a total of 18 elements and significant upper limits.
Conclusions: We conclude that this star is a carbon-enhanced metal-poor star enriched in elements produced by s-process (CEMP-s), whose enhancement in heavy elements is due to mass transfer from the more evolved companion in its asymptotic giant branch (AGB) phase. The abundances imply that the evolved companion had a low main sequence mass and it suggests that it experienced a proton ingestion episode at the beginning of its AGB phase.

Based on observations collected with Mike at the Magellan-II (Clay) telescope at the Las Campanas Observatory under programme CN2018B-5. Title: The 6Li/7Li isotopic ratio in the metal-poor binary CS22876-032 Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Monaco, L.; Cayrel, R. Bibcode: 2019A&A...628A.111G Altcode: 2019arXiv190705109G
Aims: We present high-resolution and high-quality UVES spectroscopic data of the metal-poor double-lined spectroscopic binary CS 22876-032 ([Fe/H] approximately -3.7 dex). Our goal is to derive the 6Li/7Li isotopic ratio by analysing the Li I λ 670.8 nm doublet.
Methods: We co-added all 28 useful spectra normalised and corrected for radial velocity to the rest frame of the primary star. We fitted the Li profile with a grid of the 3D non-local thermodynamic equilibrium (NLTE) synthetic spectra to take into account the line profile asymmetries induced by stellar convection, and performed Monte Carlo simulations to evaluate the uncertainty of the fit of the Li line profile.
Results: We checked that the veiling factor does not affect the derived isotopic ratio, 6 Li/7Li, and only modifies the Li abundance, A(Li), by about 0.15 dex. The best fit of the Li profile of the primary star provides A(Li) = 2.17 ± 0.01 dex and 6 Li/7Li = 8-5+2% at 68% confidence level. In addition, we improved the Li abundance of the secondary star at A(Li) = 1.55 ± 0.04 dex, which is about 0.6 dex lower than that of the primary star.
Conclusions: The analysis of the Li profile of the primary star is consistent with no detection of 6 Li and provides an upper limit to the isotopic ratio of 6 Li/7Li < 10% at this very low metallicity, about 0.5 dex lower in metallicity than previous attempts for detection of 6 Li in extremely metal poor stars. These results do not solve or worsen the cosmological 7 Li problem, nor do they support the need for non-standard 6Li production in the early Universe.

The two averaged spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A111Based on observations made with the Very Large Telescope (VLT) at ESO Paranal Observatory, Chile, Programme 080.D-0333. Title: VizieR Online Data Catalog: Li in BPS CS22876-032 spectrum (Gonzalez Hernandez+, 2019) Authors: Gonzalez Hernandez, J. I.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Monaco, L.; Cayrel, R. Bibcode: 2019yCat..36280111G Altcode: Average co-added, rebinned spectra in the region around the LiI 670.8nm resonance line of the two stellar components of the metal-poor binary CS 22876-032 A and CS 22876-032 B. For each star, wavelength, normalised flux and flux error are given.

(2 data files). Title: The Pristine survey - V. A bright star sample observed with SOPHIE Authors: Bonifacio, P.; Caffau, E.; Sestito, F.; Lardo, C.; Martin, N. F.; Starkenburg, E.; Sbordone, L.; François, P.; Jablonka, P.; Henden, A. A.; Salvadori, S.; González Hernández, J. I.; Aguado, D. S.; Hill, V.; Venn, K.; Navarro, J. F.; Arentsen, A.; Sanchez-Janssen, R.; Carlberg, R. Bibcode: 2019MNRAS.487.3797B Altcode: 2019MNRAS.tmp.1324B With the aim of probing the properties of the bright end of the Pristine survey and its effectiveness in selecting metal-poor stars, we selected a sample of bright candidate metal-poor stars combining Pristine CaHK photometry with APASS gi photometry, before the Gaia second data release became available. These stars were observed with the SOPHIE spectrograph at the 1.93 m telescope of Observatoire de Haute Provence and we used photometry and parallaxes from Gaia DR2 to derive their atmospheric parameters. Chemical abundances were determined from the spectra for 40 stars of the sample. Eight stars were confirmed to be very metal-poor ([Fe/H] < -2.0), as expected from the photometric estimate. No star was found with [Fe/H] < -3.0, although for nine stars the photometric estimate was below this value. Three multiple systems are identified from their multipeaked cross-correlation functions. Two metal-poor stars with [Fe/H] ≈ -1.0 have an age estimate of about 4 Gyr. Accretion from a satellite galaxy is a possible explanation for these `young metal-poor stars', but they could also be field blue stragglers. Galactic orbits for our sample of stars allowed us to divide them into three classes that we label `Halo', `Thick', and `Thin' and tentatively identify as halo, thick disc, and thin disc. We present a new method for deriving photometric metallicities, effective temperatures, and surface gravities by combining Gaia parallaxes, photometry, and Pristine CaHK photometry. Comparison with spectroscopic metallicities shows a very good agreement and suggests that we can further improve the efficiency of Pristine CaHK in selecting metal-poor stars. Title: Analysis of surface effect on solar-like oscillation frequencies using 3D hydrodynamical models Authors: Sonoi, T.; Samadi, R.; Belkacem, K.; Ludwig, H. -G.; Caffau, E.; Mosser, B. Bibcode: 2019EAS....82..253S Altcode: We evaluate the frequency difference between standard stellar models and models patched with 3D hydrodynamical models across the Teff-g plane. It allows us to constrain frequency corrections for surface effect. The coefficients in the correction functionals are thus provided as functions of effective temperature and surface gravity. Title: Extremely metal-poor stars: the need for UV spectra Authors: Bonifacio, Piercarlo; Caffau, Elisabetta; Spite, Monique Bibcode: 2019BAAS...51c.546B Altcode: 2019arXiv190305666B; 2019astro2020T.546B Extremely metal-poor stars are the fossil record of the gas in the pristine Universe. They offer us the opportunity to understand the mass distribution and nucleosynthetic properties of the First generation of stars. UV spectra provide access to information not available in other spectral ranges. Title: VizieR Online Data Catalog: Pristine survey II. Bright stars abundances (Caffau+, 2017) Authors: Caffau, E.; Bonifacio, P.; Starkenburg, E.; Martin, N.; Youakim, K.; Henden, A. A.; Gonzalez Hernandez, J. I.; Aguado, D. S.; Allende Prieto, C.; Venn, K.; Jablonka, P. Bibcode: 2019yCat.113380686C Altcode: Atmospheric parameters and radial velocities for 27 stars and detailed abundances for 23 stars.

(2 data files). Title: The Detailed Science Case for the Maunakea Spectroscopic Explorer, 2019 edition Authors: The MSE Science Team; Babusiaux, Carine; Bergemann, Maria; Burgasser, Adam; Ellison, Sara; Haggard, Daryl; Huber, Daniel; Kaplinghat, Manoj; Li, Ting; Marshall, Jennifer; Martell, Sarah; McConnachie, Alan; Percival, Will; Robotham, Aaron; Shen, Yue; Thirupathi, Sivarani; Tran, Kim-Vy; Yeche, Christophe; Yong, David; Adibekyan, Vardan; Silva Aguirre, Victor; Angelou, George; Asplund, Martin; Balogh, Michael; Banerjee, Projjwal; Bannister, Michele; Barría, Daniela; Battaglia, Giuseppina; Bayo, Amelia; Bechtol, Keith; Beck, Paul G.; Beers, Timothy C.; Bellinger, Earl P.; Berg, Trystyn; Bestenlehner, Joachim M.; Bilicki, Maciej; Bitsch, Bertram; Bland-Hawthorn, Joss; Bolton, Adam S.; Boselli, Alessandro; Bovy, Jo; Bragaglia, Angela; Buzasi, Derek; Caffau, Elisabetta; Cami, Jan; Carleton, Timothy; Casagrande, Luca; Cassisi, Santi; Catelan, Márcio; Chang, Chihway; Cortese, Luca; Damjanov, Ivana; Davies, Luke J. M.; de Grijs, Richard; de Rosa, Gisella; Deason, Alis; di Matteo, Paola; Drlica-Wagner, Alex; Erkal, Denis; Escorza, Ana; Ferrarese, Laura; Fleming, Scott W.; Font-Ribera, Andreu; Freeman, Ken; Gänsicke, Boris T.; Gabdeev, Maksim; Gallagher, Sarah; Gandolfi, Davide; García, Rafael A.; Gaulme, Patrick; Geha, Marla; Gennaro, Mario; Gieles, Mark; Gilbert, Karoline; Gordon, Yjan; Goswami, Aruna; Greco, Johnny P.; Grillmair, Carl; Guiglion, Guillaume; Hénault-Brunet, Vincent; Hall, Patrick; Handler, Gerald; Hansen, Terese; Hathi, Nimish; Hatzidimitriou, Despina; Haywood, Misha; Hernández Santisteban, Juan V.; Hillenbrand, Lynne; Hopkins, Andrew M.; Howlett, Cullan; Hudson, Michael J.; Ibata, Rodrigo; Ilić, Dragana; Jablonka, Pascale; Ji, Alexander; Jiang, Linhua; Juneau, Stephanie; Karakas, Amanda; Karinkuzhi, Drisya; Kim, Stacy Y.; Kong, Xu; Konstantopoulos, Iraklis; Krogager, Jens-Kristian; Lagos, Claudia; Lallement, Rosine; Laporte, Chervin; Lebreton, Yveline; Lee, Khee-Gan; Lewis, Geraint F.; Lianou, Sophia; Liu, Xin; Lodieu, Nicolas; Loveday, Jon; Mészáros, Szabolcs; Makler, Martin; Mao, Yao-Yuan; Marchesini, Danilo; Martin, Nicolas; Mateo, Mario; Melis, Carl; Merle, Thibault; Miglio, Andrea; Gohar Mohammad, Faizan; Molaverdikhani, Karan; Monier, Richard; Morel, Thierry; Mosser, Benoit; Nataf, David; Necib, Lina; Neilson, Hilding R.; Newman, Jeffrey A.; Nierenberg, A. M.; Nord, Brian; Noterdaeme, Pasquier; O'Dea, Chris; Oshagh, Mahmoudreza; Pace, Andrew B.; Palanque-Delabrouille, Nathalie; Pandey, Gajendra; Parker, Laura C.; Pawlowski, Marcel S.; Peter, Annika H. G.; Petitjean, Patrick; Petric, Andreea; Placco, Vinicius; Popović, Luka Č.; Price-Whelan, Adrian M.; Prsa, Andrej; Ravindranath, Swara; Rich, R. Michael; Ruan, John; Rybizki, Jan; Sakari, Charli; Sanderson, Robyn E.; Schiavon, Ricardo; Schimd, Carlo; Serenelli, Aldo; Siebert, Arnaud; Siudek, Malgorzata; Smiljanic, Rodolfo; Smith, Daniel; Sobeck, Jennifer; Starkenburg, Else; Stello, Dennis; Szabó, Gyula M.; Szabo, Robert; Taylor, Matthew A.; Thanjavur, Karun; Thomas, Guillaume; Tollerud, Erik; Toonen, Silvia; Tremblay, Pier-Emmanuel; Tresse, Laurence; Tsantaki, Maria; Valentini, Marica; Van Eck, Sophie; Variu, Andrei; Venn, Kim; Villaver, Eva; Walker, Matthew G.; Wang, Yiping; Wang, Yuting; Wilson, Michael J.; Wright, Nicolas; Xu, Siyi; Yildiz, Mutlu; Zhang, Huawei; Zwintz, Konstanze; Anguiano, Borja; Bedell, Megan; Chaplin, William; Collet, Remo; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Flagey, Nicolas; Hermes, JJ; Hill, Alexis; Kamath, Devika; Laychak, Mary Beth; Małek, Katarzyna; Marley, Mark; Sheinis, Andy; Simons, Doug; Sousa, Sérgio G.; Szeto, Kei; Ting, Yuan-Sen; Vegetti, Simona; Wells, Lisa; Babas, Ferdinand; Bauman, Steve; Bosselli, Alessandro; Côté, Pat; Colless, Matthew; Comparat, Johan; Courtois, Helene; Crampton, David; Croom, Scott; Davies, Luke; de Grijs, Richard; Denny, Kelly; Devost, Daniel; di Matteo, Paola; Driver, Simon; Fernandez-Lorenzo, Mirian; Guhathakurta, Raja; Han, Zhanwen; Higgs, Clare; Hill, Vanessa; Ho, Kevin; Hopkins, Andrew; Hudson, Mike; Ibata, Rodrigo; Isani, Sidik; Jarvis, Matt; Johnson, Andrew; Jullo, Eric; Kaiser, Nick; Kneib, Jean-Paul; Koda, Jun; Koshy, George; Mignot, Shan; Murowinski, Rick; Newman, Jeff; Nusser, Adi; Pancoast, Anna; Peng, Eric; Peroux, Celine; Pichon, Christophe; Poggianti, Bianca; Richard, Johan; Salmon, Derrick; Seibert, Arnaud; Shastri, Prajval; Smith, Dan; Sutaria, Firoza; Tao, Charling; Taylor, Edwar; Tully, Brent; van Waerbeke, Ludovic; Vermeulen, Tom; Walker, Matthew; Willis, Jon; Willot, Chris; Withington, Kanoa Bibcode: 2019arXiv190404907T Altcode: (Abridged) The Maunakea Spectroscopic Explorer (MSE) is an end-to-end science platform for the design, execution and scientific exploitation of spectroscopic surveys. It will unveil the composition and dynamics of the faint Universe and impact nearly every field of astrophysics across all spatial scales, from individual stars to the largest scale structures in the Universe. Major pillars in the science program for MSE include (i) the ultimate Gaia follow-up facility for understanding the chemistry and dynamics of the distant Milky Way, including the outer disk and faint stellar halo at high spectral resolution (ii) galaxy formation and evolution at cosmic noon, via the type of revolutionary surveys that have occurred in the nearby Universe, but now conducted at the peak of the star formation history of the Universe (iii) derivation of the mass of the neutrino and insights into inflationary physics through a cosmological redshift survey that probes a large volume of the Universe with a high galaxy density. MSE is positioned to become a critical hub in the emerging international network of front-line astronomical facilities, with scientific capabilities that naturally complement and extend the scientific power of Gaia, the Large Synoptic Survey Telescope, the Square Kilometer Array, Euclid, WFIRST, the 30m telescopes and many more. Title: On the Connection between Li Depletion and Blue Stragglers and Possible Implications on the Spite Plateau Meltdown Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F. Bibcode: 2019RNAAS...3...64B Altcode: 2019RNAAS...3d..64B No abstract at ADS Title: Be and O in the ultra metal-poor dwarf 2MASS J18082002-5104378: the Be-O correlation Authors: Spite, M.; Bonifacio, P.; Spite, F.; Caffau, E.; Sbordone, L.; Gallagher, A. J. Bibcode: 2019A&A...624A..44S Altcode: 2019arXiv190211048S Context. Measurable amounts of Be could have been synthesised primordially if the Universe were non-homogeneous or in the presence of late decaying relic particles.
Aims: We investigate the Be abundance in the extremely metal-poor star 2MASS J1808-5104 ([Fe/H] = -3.84) with the aim of constraining inhomogeneities or the presence of late decaying particles.
Methods: High resolution, high signal-to-noise ratio (S/N) UV spectra were acquired at ESO with the Kueyen 8.2 m telescope and the UVES spectrograph. Abundances were derived using several model atmospheres and spectral synthesis code.
Results: We measured log(Be/H) = -14.3 from a spectrum synthesis of the region of the Be line. Using a conservative approach, however we adopted an upper limit two times higher, i.e. log(Be/H) < -14.0. We measured the O abundance from UV-OH lines and find [O/H] = -3.46 after a 3D correction.
Conclusions: Our observation reinforces the existing upper limit on primordial Be. There is no observational indication for a primordial production of 9Be. This places strong constraints on the properties of putative relic particles. This result also supports the hypothesis of a homogeneous Universe, at the time of nucleosynthesis. Surprisingly, our upper limit of the Be abundance is well below the Be measurements in stars of similar [O/H]. This may be evidence that the Be-O relation breaks down in the early Galaxy, perhaps due to the escape of spallation products from the gas clouds in which stars such as 2MASS J1808-5104 have formed.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 101.A-0229(A), (PI M.Spite) and 293.D-5036 (PI J. Mélendez). This research has also made use of Keck Observatory Archive (KOA), operated by the W. M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration (PI A. Boesgaard).The 3D values of the oxygen abundance are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A44 Title: 4MOST: Project overview and information for the First Call for Proposals Authors: de Jong, R. S.; Agertz, O.; Berbel, A. A.; Aird, J.; Alexander, D. A.; Amarsi, A.; Anders, F.; Andrae, R.; Ansarinejad, B.; Ansorge, W.; Antilogus, P.; Anwand-Heerwart, H.; Arentsen, A.; Arnadottir, A.; Asplund, M.; Auger, M.; Azais, N.; Baade, D.; Baker, G.; Baker, S.; Balbinot, E.; Baldry, I. K.; Banerji, M.; Barden, S.; Barklem, P.; Barthélémy-Mazot, E.; Battistini, C.; Bauer, S.; Bell, C. P. M.; Bellido-Tirado, O.; Bellstedt, S.; Belokurov, V.; Bensby, T.; Bergemann, M.; Bestenlehner, J. M.; Bielby, R.; Bilicki, M.; Blake, C.; Bland-Hawthorn, J.; Boeche, C.; Boland, W.; Boller, T.; Bongard, S.; Bongiorno, A.; Bonifacio, P.; Boudon, D.; Brooks, D.; Brown, M. J. I.; Brown, R.; Brüggen, M.; Brynnel, J.; Brzeski, J.; Buchert, T.; Buschkamp, P.; Caffau, E.; Caillier, P.; Carrick, J.; Casagrande, L.; Case, S.; Casey, A.; Cesarini, I.; Cescutti, G.; Chapuis, D.; Chiappini, C.; Childress, M.; Christlieb, N.; Church, R.; Cioni, M. -R. L.; Cluver, M.; Colless, M.; Collett, T.; Comparat, J.; Cooper, A.; Couch, W.; Courbin, F.; Croom, S.; Croton, D.; Daguisé, E.; Dalton, G.; Davies, L. J. M.; Davis, T.; de Laverny, P.; Deason, A.; Dionies, F.; Disseau, K.; Doel, P.; Döscher, D.; Driver, S. P.; Dwelly, T.; Eckert, D.; Edge, A.; Edvardsson, B.; Youssoufi, D. E.; Elhaddad, A.; Enke, H.; Erfanianfar, G.; Farrell, T.; Fechner, T.; Feiz, C.; Feltzing, S.; Ferreras, I.; Feuerstein, D.; Feuillet, D.; Finoguenov, A.; Ford, D.; Fotopoulou, S.; Fouesneau, M.; Frenk, C.; Frey, S.; Gaessler, W.; Geier, S.; Gentile Fusillo, N.; Gerhard, O.; Giannantonio, T.; Giannone, D.; Gibson, B.; Gillingham, P.; González-Fernández, C.; Gonzalez-Solares, E.; Gottloeber, S.; Gould, A.; Grebel, E. K.; Gueguen, A.; Guiglion, G.; Haehnelt, M.; Hahn, T.; Hansen, C. J.; Hartman, H.; Hauptner, K.; Hawkins, K.; Haynes, D.; Haynes, R.; Heiter, U.; Helmi, A.; Aguayo, C. H.; Hewett, P.; Hinton, S.; Hobbs, D.; Hoenig, S.; Hofman, D.; Hook, I.; Hopgood, J.; Hopkins, A.; Hourihane, A.; Howes, L.; Howlett, C.; Huet, T.; Irwin, M.; Iwert, O.; Jablonka, P.; Jahn, T.; Jahnke, K.; Jarno, A.; Jin, S.; Jofre, P.; Johl, D.; Jones, D.; Jönsson, H.; Jordan, C.; Karovicova, I.; Khalatyan, A.; Kelz, A.; Kennicutt, R.; King, D.; Kitaura, F.; Klar, J.; Klauser, U.; Kneib, J. -P.; Koch, A.; Koposov, S.; Kordopatis, G.; Korn, A.; Kosmalski, J.; Kotak, R.; Kovalev, M.; Kreckel, K.; Kripak, Y.; Krumpe, M.; Kuijken, K.; Kunder, A.; Kushniruk, I.; Lam, M. I.; Lamer, G.; Laurent, F.; Lawrence, J.; Lehmitz, M.; Lemasle, B.; Lewis, J.; Li, B.; Lidman, C.; Lind, K.; Liske, J.; Lizon, J. -L.; Loveday, J.; Ludwig, H. -G.; McDermid, R. M.; Maguire, K.; Mainieri, V.; Mali, S.; Mandel, H.; Mandel, K.; Mannering, L.; Martell, S.; Martinez Delgado, D.; Matijevic, G.; McGregor, H.; McMahon, R.; McMillan, P.; Mena, O.; Merloni, A.; Meyer, M. J.; Michel, C.; Micheva, G.; Migniau, J. -E.; Minchev, I.; Monari, G.; Muller, R.; Murphy, D.; Muthukrishna, D.; Nandra, K.; Navarro, R.; Ness, M.; Nichani, V.; Nichol, R.; Nicklas, H.; Niederhofer, F.; Norberg, P.; Obreschkow, D.; Oliver, S.; Owers, M.; Pai, N.; Pankratow, S.; Parkinson, D.; Paschke, J.; Paterson, R.; Pecontal, A.; Parry, I.; Phillips, D.; Pillepich, A.; Pinard, L.; Pirard, J.; Piskunov, N.; Plank, V.; Plüschke, D.; Pons, E.; Popesso, P.; Power, C.; Pragt, J.; Pramskiy, A.; Pryer, D.; Quattri, M.; Queiroz, A. B. d. A.; Quirrenbach, A.; Rahurkar, S.; Raichoor, A.; Ramstedt, S.; Rau, A.; Recio-Blanco, A.; Reiss, R.; Renaud, F.; Revaz, Y.; Rhode, P.; Richard, J.; Richter, A. D.; Rix, H. -W.; Robotham, A. S. G.; Roelfsema, R.; Romaniello, M.; Rosario, D.; Rothmaier, F.; Roukema, B.; Ruchti, G.; Rupprecht, G.; Rybizki, J.; Ryde, N.; Saar, A.; Sadler, E.; Sahlén, M.; Salvato, M.; Sassolas, B.; Saunders, W.; Saviauk, A.; Sbordone, L.; Schmidt, T.; Schnurr, O.; Scholz, R. -D.; Schwope, A.; Seifert, W.; Shanks, T.; Sheinis, A.; Sivov, T.; Skúladóttir, Á.; Smartt, S.; Smedley, S.; Smith, G.; Smith, R.; Sorce, J.; Spitler, L.; Starkenburg, E.; Steinmetz, M.; Stilz, I.; Storm, J.; Sullivan, M.; Sutherland, W.; Swann, E.; Tamone, A.; Taylor, E. N.; Teillon, J.; Tempel, E.; ter Horst, R.; Thi, W. -F.; Tolstoy, E.; Trager, S.; Traven, G.; Tremblay, P. -E.; Tresse, L.; Valentini, M.; van de Weygaert, R.; van den Ancker, M.; Veljanoski, J.; Venkatesan, S.; Wagner, L.; Wagner, K.; Walcher, C. J.; Waller, L.; Walton, N.; Wang, L.; Winkler, R.; Wisotzki, L.; Worley, C. C.; Worseck, G.; Xiang, M.; Xu, W.; Yong, D.; Zhao, C.; Zheng, J.; Zscheyge, F.; Zucker, D. Bibcode: 2019Msngr.175....3D Altcode: 2019arXiv190302464D We introduce the 4-metre Multi-Object Spectroscopic Telescope (4MOST), a new high-multiplex, wide-field spectroscopic survey facility under development for the four-metre-class Visible and Infrared Survey Telescope for Astronomy (VISTA) at Paranal. Its key specifications are: a large field of view (FoV) of 4.2 square degrees and a high multiplex capability, with 1624 fibres feeding two low-resolution spectrographs (R = λ/Δλ 6500), and 812 fibres transferring light to the high-resolution spectrograph (R 20 000). After a description of the instrument and its expected performance, a short overview is given of its operational scheme and planned 4MOST Consortium science; these aspects are covered in more detail in other articles in this edition of The Messenger. Finally, the processes, schedules, and policies concerning the selection of ESO Community Surveys are presented, commencing with a singular opportunity to submit Letters of Intent for Public Surveys during the first five years of 4MOST operations. Title: 4MOST Consortium Survey 2: The Milky Way Halo High-Resolution Survey Authors: Christlieb, N.; Battistini, C.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Asplund, M.; Barklem, P.; Bergemann, M.; Church, R.; Feltzing, S.; Ford, D.; Grebel, E. K.; Hansen, C. J.; Helmi, A.; Kordopatis, G.; Kovalev, M.; Korn, A.; Lind, K.; Quirrenbach, A.; Rybizki, J.; Skúladóttir, Á.; Starkenburg, E. Bibcode: 2019Msngr.175...26C Altcode: 2019arXiv190302468C We will study the formation history of the Milky Way, and the earliest phases of its chemical enrichment, with a sample of more than 1.5 million stars at high galactic latitude. Elemental abundances of up to 20 elements with a precision of better than 0.2 dex will be derived for these stars. The sample will include members of kinematically coherent substructures, which we will associate with their possible birthplaces by means of their abundance signatures and kinematics, allowing us to test models of galaxy formation. Our target catalogue is also expected to contain 30 000 stars at a metallicity of less than one hundredth that of the Sun. This sample will therefore be almost a factor of 100 larger than currently existing samples of metal-poor stars for which precise elemental abundances are available (determined from high-resolution spectroscopy), enabling us to study the early chemical evolution of the Milky Way in unprecedented detail. Title: Gaia Data Release 2. Variable stars in the colour-absolute magnitude diagram Authors: Gaia Collaboration; Eyer, L.; Rimoldini, L.; Audard, M.; Anderson, R. I.; Nienartowicz, K.; Glass, F.; Marchal, O.; Grenon, M.; Mowlavi, N.; Holl, B.; Clementini, G.; Aerts, C.; Mazeh, T.; Evans, D. W.; Szabados, L.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Masana, E.; Messineo, R.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Lorenz, D.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2019A&A...623A.110G Altcode: 2018arXiv180409382G Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ≲ 21 mag.
Aims: We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses.
Methods: We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce "motions". To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article.
Results: Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date.
Conclusions: Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.

A movie associated to Fig. 11 is available at https://www.aanda.org.Data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A110. Title: Systematic investigation of chemical abundances derived using IR spectra obtained with GIANO Authors: Caffau, E.; Bonifacio, P.; Oliva, E.; Korotin, S.; Capitanio, L.; Andrievsky, S.; Collet, R.; Sbordone, L.; Duffau, S.; Sanna, N.; Tozzi, A.; Origlia, L.; Ryde, N.; Ludwig, H. -G. Bibcode: 2019A&A...622A..68C Altcode: 2018arXiv181205100C Context. Detailed chemical abundances of Galactic stars are needed in order to improve our knowledge of the formation and evolution of our galaxy, the Milky Way.
Aims: We took advantage of the GIANO archive spectra to select a sample of Galactic disc stars in order to derive their chemical inventory and to compare the abundances we derived from these infrared spectra to the chemical pattern derived from optical spectra.
Methods: We analysed high-quality spectra of 40 stars observed with GIANO. We derived the stellar parameters from the photometry and the Gaia data-release 2 (DR2) parallax; the chemical abundances were derived with the code MyGIsFOS. For a subsample of stars we compared the chemical pattern derived from the GIANO spectra with the abundances derived from optical spectra. We derived P abundances for all 40 stars, increasing the number of Galactic stars for which phosphorus abundance is known.
Results: We could derive abundances of 14 elements, 8 of which are also derived from optical spectra. The comparison of the abundances derived from infrared and optical spectra is very good. The chemical pattern of these stars is the one expected for Galactic disc stars and is in agreement with the results from the literature.
Conclusions: GIANO is providing the astronomical community with an extremely useful instrument, able to produce spectra with high resolution and a wide wavelength range in the infrared.

GIANO programme A31TAC. Title: VizieR Online Data Catalog: 3D-corrected oxygen abundances for halo stars (Spite+, 2019) Authors: Spite, M.; Bonifacio, P.; Spite, F.; Caffau, E.; Sbordone, L.; Gallagher, A. J. Bibcode: 2019yCat..36240044S Altcode: Oxygen abundance with 3D correction of the stars in the sample of Boesgaard et al. (2011, Cat. J/ApJ/743/140).

(1 data file). Title: VizieR Online Data Catalog: Abundances of very metal-poor stars in Sagittarius (Hansen+, 2018) Authors: Hansen, C. J.; El-Souri, M.; Monaco, L.; Villanova, S.; Bonifacio, P.; Caffau, E.; Sbordone, L. Bibcode: 2019yCat..18550083H Altcode: Observations were obtained using the high-resolution, cross-dispersed UV-Visual Echelle Spectrograph (UVES) mounted at the unit 2 telescope (UT2/Keueyen) of the ESO Very Large Telescope (VLT) in Cerro Paranal, Chile. Out of 13 stars, 12 were observed with central wavelengths of 390nm and 580nm, for the blue and red arms, respectively. We adopted a 1.4" wide slit and 2x2 on-chip binning. All the stars were observed for ~2400-13000s at an airmass between 1.0 and 1.3 in 2009 April and July. The very metal-poor star Sgr 2300225 was observed using a slightly different setup in an earlier run (in 2005 August).

(3 data files). Title: Calibration of mixing-length parameter α for MLT and FST models by matching with CO5BOLD models Authors: Sonoi, T.; Ludwig, H. -G.; Dupret, M. -A.; Montalbán, J.; Samadi, R.; Belkacem, K.; Caffau, E.; Goupil, M. -J. Bibcode: 2019A&A...621A..84S Altcode: 2018arXiv181105229S Context. Space observations by the CoRoT and Kepler missions have provided a wealth of high-quality seismic data for a large number of stars from the main sequence to the red giant phases. One main goal of these missions is to take advantage of the rich spectra of solar-like oscillations to perform precise determinations of stellar characteristic parameters. To make the best of such data, we need theoretical stellar models with a precise near-surface structure since a near-surface structure of a solar-like star has significant influence on solar-like oscillation frequencies. The mixing-length parameter is a key factor to determine the near-surface structure of stellar models. In current versions of the convection formulations used in stellar evolution codes, the mixing-length parameter is a free parameter that needs to be properly specified.
Aims: We aim at determining appropriate values of the mixing-length parameter, α, to be used consistently with the adopted convection formulation when computing stellar evolution models across the Hertzsprung-Russell diagram. This determination is based on 3D hydrodynamical simulation models.
Methods: We calibrated α values by matching entropy profiles of 1D envelope models with those of hydrodynamical 3D models of solar-like stars produced by the CO5BOLD code. For such calibration, previous works concentrated on the classical mixing-length theory (MLT). We also analyzed full spectrum turbulence (FST) models. To construct the atmosphere in the 1D models, we used the Eddington gray T(τ) relation and that with the solar-calibrated Hopf-like function.
Results: For both MLT and FST models with a mixing length l = αHp, calibrated α values increase with increasing surface gravity or decreasing effective temperature. For the FST models, we carried out an additional calibration using an α* value defined as l = rtop - r + α*Hp, top, where α* is found to increase with surface gravity and effective temperature. We provide tables of the calibrated α values across the Teff-log g plane for solar metallicity. By computing stellar evolution with varying α based on our 3D α calibration, we find that the change from solar α to varying α shifts evolutionary tracks particularly for the FST model. As for the correspondence to the 3D models, the solar Hopf-like function generally gives a photospheric-minimum entropy closer to a 3D model than the Eddington T(τ). The structure below the photosphere depends on the adopted convection model. However, we cannot obtain a definitive conclusion about which convection model gives the best correspondence to the 3D models. This is because each 1D physical quantity is related via an equation of state (EoS), but it is not the case for the averaged 3D quantities. Although the FST models with l = rtop - r + α*Hp, top are found to give the oscillation frequencies closest to the solar observed frequencies, their acoustic cavities are formed with compensatory effects between deviating density and temperature profiles near the top of the convective envelope. In future work, an appropriate treatment of the top part of the 1D convective envelope is necessary, for example, by considering turbulent pressure and overshooting. Title: TOPoS. V. Abundance ratios in a sample of very metal-poor turn-off stars Authors: François, P.; Caffau, E.; Bonifacio, P.; Spite, M.; Spite, F.; Cayrel, R.; Christlieb, N.; Gallagher, A. J.; Klessen, R.; Koch, A.; Ludwig, H. -G.; Monaco, L.; Plez, B.; Steffen, M.; Zaggia, S. Bibcode: 2018A&A...620A.187F Altcode: 2018arXiv181100035F Context. Extremely metal-poor stars are keys to understand the early evolution of our Galaxy. The ESO large programme TOPoS has been tailored to analyse a new set of metal-poor turn-off stars, whereas most of the previously known extremely metal-poor stars are giant stars.
Aims: Sixty five turn-off stars (preselected from SDSS spectra) have been observed with the X-shooter spectrograph at the ESO VLT Unit Telescope 2, to derive accurate and detailed abundances of magnesium, silicon, calcium, iron, strontium and barium.
Methods: We analysed medium-resolution spectra (R ≃ 10 000) obtained with the ESO X-shooter spectrograph and computed the abundances of several α and neutron-capture elements using standard one-dimensional local thermodynamic equilibrium (1D LTE) model atmospheres.
Results: Our results confirms the super-solar [Mg/Fe] and [Ca/Fe] ratios in metal-poor turn-off stars as observed in metal-poor giant stars. We found a significant spread of the [α/Fe] ratios with several stars showing subsolar [Ca/Fe] ratios. We could measure the abundance of strontium in 12 stars of the sample, leading to abundance ratios [Sr/Fe] around the Solar value. We detected barium in two stars of the sample. One of the stars (SDSS J114424-004658) shows both very high [Ba/Fe] and [Sr/Fe] abundance ratios (>1 dex).

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme ID 189.D-0165.

Equivalent widths of the Fe lines are only, and Tables A.1 and A.2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/620/A187 Title: The Pristine survey IV: approaching the Galactic metallicity floor with the discovery of an ultra-metal-poor star Authors: Starkenburg, Else; Aguado, David S.; Bonifacio, Piercarlo; Caffau, Elisabetta; Jablonka, Pascale; Lardo, Carmela; Martin, Nicolas; Sánchez-Janssen, Rubén; Sestito, Federico; Venn, Kim A.; Youakim, Kris; Allende Prieto, Carlos; Arentsen, Anke; Gentile, Marc; González Hernández, Jonay I.; Kielty, Collin; Koppelman, Helmer H.; Longeard, Nicolas; Tolstoy, Eline; Carlberg, Raymond G.; Côté, Patrick; Fouesneau, Morgan; Hill, Vanessa; McConnachie, Alan W.; Navarro, Julio F. Bibcode: 2018MNRAS.481.3838S Altcode: 2018arXiv180704292S; 2018MNRAS.tmp.2167S The early Universe presented a star formation environment that was almost devoid of heavy elements. The lowest metallicity stars thus provide a unique window into the earliest Galactic stages, but are exceedingly rare and difficult to find. Here, we present the discovery of an ultra-metal-poor star, Pristine_221.8781+9.7844, using narrow-band Ca H&K photometry from the Pristine survey. Follow-up medium- and high-resolution spectroscopy confirms the ultra-metal-poor nature of Pristine_221.8781+9.7844 ([Fe/H] = -4.66 ± 0.13 in 1D LTE) with an enhancement of 0.3-0.4 dex in α-elements relative to Fe, and an unusually low carbon abundance. We derive an upper limit of A(C) = 5.6, well below typical A(C) values for such ultra-metal-poor stars. This makes Pristine_221.8781+9.7844 one of the most metal-poor stars; in fact, it is very similar to the most metal-poor star known (SDSS J102915+172927). The existence of a class of ultra-metal-poor stars with low(er) carbon abundances suggest that there must have been several formation channels in the early Universe through which long-lived, low-mass stars were formed. Title: Influence of metallicity on the near-surface effect on oscillation frequencies Authors: Manchon, L.; Belkacem, K.; Samadi, R.; Sonoi, T.; Marques, J. P. C.; Ludwig, H. -G.; Caffau, E. Bibcode: 2018A&A...620A.107M Altcode: 2018arXiv180908904M Context. The CoRoT and Kepler missions have provided high-quality measurements of the frequency spectra of solar-like pulsators, enabling us to probe stellar interiors with a very high degree of accuracy by comparing the observed and modelled frequencies. However, the frequencies computed with 1D models suffer from systematic errors related to the poor modelling of the uppermost layers of stars. These biases are what is commonly named the near-surface effect. The dominant effect is thought to be related to the turbulent pressure that modifies the hydrostatic equilibrium and thus the frequencies. This has already been investigated using grids of 3D hydrodynamical simulations, which also were used to constrain the parameters of the empirical correction models. However, the effect of metallicity has not been considered so far.
Aims: We aim to study the impact of metallicity on the surface effect, investigating its influence across the Hertzsprung-Russell diagram, and providing a method for accounting for it when using the empirical correction models.
Methods: We computed a grid of patched 1D stellar models with the stellar evolution code CESTAM in which poorly modelled surface layers have been replaced by averaged stratification computed with the 3D hydrodynamical code CO5BOLD. It allowed us to investigate the dependence of both the surface effect and the empirical correction functions on the metallicity.
Results: We found that metallicity has a strong impact on the surface effect: keeping Teff and log g constant, the frequency residuals can vary by up to a factor of two (for instance from [Fe/H] = + 0.0 to [Fe/H] = + 0.5). Therefore, the influence of metallicity cannot be neglected. We found that the correct way of accounting for it is to consider the surface Rosseland mean opacity. It allowed us to give a physically grounded justification as well as a scaling relation for the frequency differences at νmax as a function of Teff, log g and κ. Finally, we provide prescriptions for the fitting parameters of the most commonly used correction functions.
Conclusions: We show that the impact of metallicity through the Rosseland mean opacity must be taken into account when studying and correcting the surface effect. Title: VizieR Online Data Catalog: Very metal-poor turn-off stars abundances (Francois+, 2018) Authors: Francois, P.; Caffau, E.; Bonifacio, P.; Spite, M.; Spite, F.; Cayrel, R.; Christlieb, N.; Gallagher, A.; Klessen, R.; Koch, A.; Ludwig, H. -G.; Monaco, L.; Plez, B.; Steffen, M.; Zaggia, S. Bibcode: 2018yCat..36200187F Altcode: Sixty five turn-off stars (preselected from SDSS spectra) have been observed with the X-Shooter spectrograph at the ESO VLT Unit Telescope 2, to derive accurate and detailed abundances of magnesium, silicon, calcium, iron, strontium and barium. We analysed medium-resolution spectra (R~10000) obtained with the ESO X-Shooter spectrograph and computed the abundances of several alpha and neutron-capture elements using standard one-dimensional local thermodynamic equilibrium (1D LTE) model atmospheres.

(3 data files). Title: A chemical study of M67 candidate blue stragglers and evolved blue stragglers observed with APOGEE DR14 Authors: Bertelli Motta, Clio; Pasquali, Anna; Caffau, Elisabetta; Grebel, Eva K. Bibcode: 2018MNRAS.480.4314B Altcode: 2018MNRAS.tmp.2080M; 2018arXiv180804601B Within the variety of objects populating stellar clusters, blue straggler stars (BSSs) are among the most puzzling ones. BSSs are commonly found in globular clusters, but they are also known to populate open clusters of the Milky Way. Two main theoretical scenarios (collisions and mass transfer) have been suggested to explain their formation, although finding observational evidence in support of either scenario represents a challenging task. Among the APOGEE observations of the old open cluster M67, we found eight BSS candidates known from the literature and two known evolved BSSs. We carried out a chemical analysis of three BSS candidates and of the two evolved BSSs out of the sample and found that the BSS candidates have surface abundances similar to those of stars on the main-sequence turn-off of M67. Especially the absence of any anomaly in their carbon abundances seems to support a collisional formation scenario for these stars. Furthermore, we note that the abundances of the evolved BSSs S1040 and S1237 are consistent with the abundances of the red clump stars of M67. In particular, they show a depletion in carbon by ∼0.25 dex, which could be either interpreted as the signature of mass transfer or as the product of stellar evolutionary processes. Finally, we summarize the properties of the individual BSSs observed by APOGEE, as derived from their APOGEE spectra and/or from information available in the literature. Title: Chemical analysis of very metal-poor turn-off stars from SDSS-DR12 Authors: François, P.; Caffau, E.; Wanajo, S.; Aguado, D.; Spite, M.; Aoki, M.; Aoki, W.; Bonifacio, P.; Gallagher, A. J.; Salvadori, S.; Spite, F. Bibcode: 2018A&A...619A..10F Altcode: 2018arXiv180809918F Context. The most metal-poor stars are the relics of the early chemical evolution of the Galaxy. Their chemical composition is an important tool to constrain the nucleosynthesis in the first generation of stars. The aim is to observe a sample of extremely metal-poor star (EMP stars) candidates selected from the Sloan Digital Sky Survey Data Release 12 (SDSS DR12) and determine their chemical composition.
Aims: We obtain medium resolution spectra of a sample of six stars using the X-shooter spectrograph at the Very Large Telescope (VLT) and we used ATLAS models to compute the abundances.
Methods: Five stars of the sample have a metallicity [Fe/H] between -2.5 dex and -3.2 dex. We confirm the recent discovery of SDSS J002314.00+030758.0 as a star with an extremely low [Fe/H] ratio. Assuming the α-enhancement [Ca/Fe] = +0.4 dex, we obtain [Fe/H] = -6.1 dex.
Results: We could also determine its magnesium abundance and found that this star exhibits a very high ratio [Mg/Fe]≤ +3.60 dex assuming [Fe/H] = -6.13 dex. We determined the carbon abundance and found A(C) = 6.4 dex. From this carbon abundance, this stars belongs to the lower band of the A(C)-[Fe/H] diagram.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme ID 099.D-0576(A). Title: 3D non-LTE corrections for Li abundance and 6Li/7Li isotopic ratio in solar-type stars. I. Application to HD 207129 and HD 95456 Authors: Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian, G.; González Hernández, J. I.; Strassmeier, K. G. Bibcode: 2018A&A...618A..16H Altcode: 2018arXiv180704089H Context. Convective motions in solar-type stellar atmospheres induce Doppler shifts that affect the strengths and shapes of spectral absorption lines and create slightly asymmetric line profiles. One-dimensional (1D) local thermodynamic equilibrium (LTE) studies of elemental abundances are not able to reproduce this phenomenon, which becomes particularly important when modeling the impact of isotopic fine structure, like the subtle depression created by the 6Li isotope on the red wing of the Li I resonance doublet line.
Aims: The purpose of this work is to provide corrections for the lithium abundance, A(Li), and the 6Li/7Li isotopic ratio that can easily be applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for three-dimensional (3D) and non-LTE (NLTE) effects.
Methods: The corrections for A(Li) and 6Li/7Li are computed using grids of 3D NLTE and 1D LTE synthetic lithium line profiles, generated from 3D hydro-dynamical CO5BOLD and 1D hydrostatic model atmospheres, respectively. For comparative purposes, all calculations are performed for three different line lists representing the Li I λ670.8 nm spectral region. The 3D NLTE corrections are then approximated by analytical expressions as a function of the stellar parameters (Teff, log ℊ, [Fe/H], ν sin i, A(Li), 6Li/7Li). These are applied to adjust the 1D LTE isotopic lithium abundances in two solar-type stars, HD 207129 and HD 95456, for which high-quality HARPS observations are available.
Results: The derived 3D NLTE corrections range between -0.01 and +0.11 dex for A(Li), and between -4.9 and -0.4% for 6Li/7Li, depending on the adopted stellar parameters. We confirm that the inferred 6Li abundance depends critically on the strength of the Si I 670.8025 nm line. Our findings show a general consistency with recent works on lithium abundance corrections. After the application of such corrections, we do not find a significant amount of 6Li in any of the two target stars.
Conclusions: In the case of 6Li/7Li, our corrections are always negative, showing that 1D LTE analysis can significantly overestimate the presence of 6Li (up to 4.9% points) in the atmospheres of solar-like dwarf stars. These results emphasize the importance of reliable 3D model atmospheres combined with NLTE line formation for deriving precise isotopic lithium abundances. Although 3D NLTE spectral synthesis implies an extensive computational effort, the results can be made accessible with parametric tools like the ones presented in this work.

The table with the 3D NLTE corrections is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/618/A16 Title: Calibration of the mixing length of the MLT and FST models using 3D hydrodynamical models Authors: Sonoi, T.; Ludwig, H. -G.; Dupret, M. -A.; Montalban, J.; Belkacem, K.; Caffau, E. Bibcode: 2018phos.confE..27S Altcode: Rich spectra of solar-like oscillations obtained with space observations are expected to enable us to perform precise determinations of stellar properties. To make the best of the spectra, we need theoretical stellar models with precise near-surface structure, since the near-surface structure has significant influence on solar-like oscillation frequencies. The mixing-length parameter, α, is a key factor to determine the near-surface structure. We aimed at determining appropriate α values based on 3D radiation-coupled hydrodynamical models produced by the CO^5BOLD code. For such calibration, previous works concentrated on the classical mixing-length theory (MLT). Here we also analyzed the full spectrum turbulence (FST) models. The trends of the calibrated α values in the Teff-g plane is found to be similar to those of previous calibrations with the other grids of RHD models. A T(τ) relation based on the so-called VAL-C solar-atmosphere model is found to give better correspondence to the photospheric-minimum entropy in the 3D model than the Eddington T(τ) relation. Although the structure below the photosphere depends on convection models, not a single convection model gives the best correspondence to the 3D model since physical quantities in the 3D models are not necessarily related via an equation of states unlike those in the 1D models. Although the FST model with a form of a mixing length (l=rtop-r+α*Hp,{top}) is found to give solar-oscillation frequencies apparently closest to the observed ones, the acoustic cavity of this model is formed with compensatory effects between deviating density and temperature profiles just below the top of the convective envelope. In future work, a more sophisticated treatment of the top part of the 1D convective envelope is necessary. Title: A physically-grounded relation between the metallicity and the surface term affecting stellar oscillation frequencies Authors: Manchon, Louis; Belkacem, Kevin; Samadi, Reza; Sonoi, Takafumi; Marques, J. P. C.; Ludwig, Hans-Gunter; Caffau, E. Bibcode: 2018phos.confE..36M Altcode: The CoRoT and Kepler missions have provided high-quality measurements of the frequency spectra of solar-like pulsators, enabling us to probe stellar interiors with a very high degree of accuracy by comparing the observed and modeled frequencies. However, the frequencies computed with 1D models suffer from systematic errors related to the poor modeling of the uppermost layers of stars. These biases are what is commonly named the near surface effect. The dominant effect is thought to be related to the turbulent pressure that modifies the hydrostatic equilibrium and thus the frequencies. This has already been investigated using grids of 3D hydrodynamical simulations, however, the effect of metallicity has not been considered so far. We aim at studying the impact of metallicity on the surface effect, investigating its influence across the Hertzsprung–Russell diagram, and providing a relation between the frequency differences and global parameters. We computed a grid of 29 patched 1D stellar models with the stellar evolution code CESTAM in which poorly modeled surface layers have been replaced by averaged stratification computed with the 3D hydrodynamical code CO 5 BOLD. It allowed us to study the dependence of the surface effect on the metallicity. We found that a correct way of accounting for it is to consider the surface Rosseland mean opacity. It allowed us to give a physically-grounded justification as well as a scaling relation for the frequency differences at ν max as a function of T eff , log g and κ. Title: Abundance of zinc in the red giants of Galactic globular cluster 47 Tucanae Authors: Černiauskas, A.; Kučinskas, A.; Klevas, J.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Steffen, M. Bibcode: 2018A&A...616A.142C Altcode: 2018arXiv180603132C
Aims: We investigate possible relations between the abundances of zinc and the light elements sodium, magnesium, and potassium in the atmospheres of red giant branch (RGB) stars of the Galactic globular cluster 47 Tuc and study connections between the chemical composition and dynamical properties of the cluster RGB stars.
Methods: The abundance of zinc was determined in 27 RGB stars of 47 Tuc using 1D local thermal equilibrium (LTE) synthetic line profile fitting to the high-resolution 2dF/HERMES spectra obtained with the Anglo-Australian Telescope (AAT). Synthetic spectra used in the fitting procedure were computed with the SYNTHE code and 1D ATLAS9 stellar model atmospheres.
Results: The average 1D LTE zinc-to-iron abundance ratio and its RMS variations due to star-to-star abundance spread determined in the sample of 27 RGB stars is <[Zn/Fe]>1D LTE = 0.11 ± 0.09. We did not detect any statistically significant relations between the abundances of zinc and those of light elements. Neither did we find any significant correlation or anticorrelation between the zinc abundance in individual stars and their projected distance from the cluster center. Finally, no statistically significant relation between the absolute radial velocities of individual stars and the abundance of zinc in their atmospheres was detected. The obtained average [Zn/Fe]1DLTE ratio agrees well with those determined in this cluster in earlier studies and nearly coincides with that of Galactic field stars at this metallicity. All these results suggest that nucleosynthesis of zinc and light elements proceeded in separate, unrelated pathways in 47 Tuc. Title: A CEMP-no star in the ultra-faint dwarf galaxy Pisces II Authors: Spite, M.; Spite, F.; François, P.; Bonifacio, P.; Caffau, E.; Salvadori, S. Bibcode: 2018A&A...617A..56S Altcode: 2018arXiv180701542S
Aims: A probable carbon enhanced metal-poor (CEMP) star, Pisces II 10694, was discovered recently in the ultra-faint (UFD) galaxy Pisces II. This galaxy is supposed to be very old, suspected to include dark matter, and likely formed the bulk of its stars before the reionisation of the Universe.
Methods: New abundances have been obtained from observations of Pisces II 10694 at the Kueyen ESO VLT telescope, using the high-efficiency spectrograph: X-shooter.
Results: We found that Pisces II 10694 is a CEMP-no star with [Fe/H] = -2.60 dex. Careful measurements of the CH and C2 bands confirm the enhancement of the C abundance ([C/Fe] = +1.23). This cool giant has very probably undergone extra mixing and thus its original C abundance could be even higher. Nitrogen, O, Na, and Mg are also strongly enhanced, but from Ca to Ni the ratios [X/Fe] are similar to those observed in classical very metal-poor stars. With its low Ba abundance ([Ba/Fe] = -1.10 dex) Pisces II 10694 is a CEMP-no star. No variation in the radial velocity could be detected between 2015 and 2017. The pattern of the elements has a shape similar to the pattern found in galactic CEMP-no stars like CS 22949-037 ([Fe/H] = -4.0) or SDSS J1349+1407 ([Fe/H] = -3.6).
Conclusions: The existence of a CEMP-no star in the UFD galaxy Pisc II suggests that this small galaxy likely hosted zero-metallicity stars. This is consistent with theoretical predictions of cosmological models supporting the idea that UFD galaxies are the living fossils of the first star-forming systems.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 099.B-0062(A). Title: Gaia Data Release 2. Observations of solar system objects Authors: Gaia Collaboration; Spoto, F.; Tanga, P.; Mignard, F.; Berthier, J.; Carry, B.; Cellino, A.; Dell'Oro, A.; Hestroffer, D.; Muinonen, K.; Pauwels, T.; Petit, J. -M.; David, P.; De Angeli, F.; Delbo, M.; Frézouls, B.; Galluccio, L.; Granvik, M.; Guiraud, J.; Hernández, J.; Ordénovic, C.; Portell, J.; Poujoulet, E.; Thuillot, W.; Walmsley, G.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Riello, M.; Seabroke, G. M.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Blomme, R.; Burgess, P.; Busso, G.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Lö, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Osinde, J.; Pancino, E.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Gueguen, A.; Guerrier, A.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..13G Altcode: 2018arXiv180409379G Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations.
Aims: We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality.
Methods: To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP).
Results: The overall astrometric performance is close to the expectations, with an optimal range of brightness G 12 - 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects. Title: Carbon-enhanced metal-poor 3D model atmospheres Authors: Steffen, M.; Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H. -G. Bibcode: 2018IAUS..334..364S Altcode: 2017arXiv170805686S We present our latest 3D model atmospheres for carbon-enhanced metal-poor (CEMP) stars computed with the CO5BOLD code. The stellar parameters are representative of hot turn-off objects (Teff ~ 6250 K, log g = 4.0, [Fe/H]=-3). The main purpose of these models is to investigate the role of 3D effects on synthetic spectra of the CH G-band (4140-4400 Å), the CN BX-band (3870-3890 Å), and several UV OH transitions (3122-3128 Å). By comparison with the synthetic spectra from standard 1D model atmospheres (assuming local thermodynamic equilibrium, LTE), we derive 3D abundance corrections for carbon and oxygen of up to -0.5 and -0.7 dex, respectively. Title: Gaia Data Release 2. The celestial reference frame (Gaia-CRF2) Authors: Gaia Collaboration; Mignard, F.; Klioner, S. A.; Lindegren, L.; Hernández, J.; Bastian, U.; Bombrun, A.; Hobbs, D.; Lammers, U.; Michalik, D.; Ramos-Lerate, M.; Biermann, M.; Fernández-Hernández, J.; Geyer, R.; Hilger, T.; Siddiqui, H. I.; Steidelmüller, H.; Babusiaux, C.; Barache, C.; Lambert, S.; Andrei, A. H.; Bourda, G.; Charlot, P.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, A. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..14G Altcode: 2018arXiv180409377M Context. The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain. A subset of these quasars have accurate VLBI positions that allow the axes of the reference frame to be aligned with the International Celestial Reference System (ICRF) radio frame.
Aims: We describe the astrometric and photometric properties of the quasars that were selected to represent the celestial reference frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio positions for sources with accurate VLBI positions.
Methods: Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3.
Results: Gaia-CRF2 consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G ≃ 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = mag. Large-scale systematics are estimated to be in the range 20 to 30 μas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions.
Conclusions: Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. Its accuracy matches the current radio frame of the ICRF, but the density of sources in all parts of the sky is much higher, except along the Galactic equator. Title: Abundances of Mg and K in the atmospheres of turn-off starsin Galactic globular cluster 47 Tucanae Authors: Černiauskas, A.; Kučinskas, A.; Klevas, J.; Dobrovolskas, V.; Korotin, S.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Steffen, M. Bibcode: 2018A&A...615A.173C Altcode: 2018arXiv180410033C
Aims: We determined abundances of Mg and K in the atmospheres of 53 (Mg) and 75 (K) turn-off (TO) stars of the Galactic globular cluster 47 Tuc. The obtained abundances, together with those of Li, O, and Na that we had earlier determined for the same sample of stars, were used to search for possible relations between the abundances of K and other light elements, Li, O, Na, and Mg, as well as the connections between the chemical composition of TO stars and their kinematical properties.
Methods: Abundances of Mg and K were determined using archival high resolution VLT FLAMES/GIRAFFE spectra, in combination with the one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spectral synthesis methodology. Spectral line profiles were computed with the MULTI code, using 1D hydrostatic ATLAS9 stellar model atmospheres. We also utilized three-dimensional (3D) hydrodynamical CO5BOLD and 1D hydrostatic LHD model atmospheres for computing 3D-1D LTE abundance corrections for the spectral lines of Mg and K, in order to assess the influence of convection on their formation in the atmospheres of TO stars.
Results: The determined average abundance-to-iron ratios and their root mean square variations due to star-to-star abundance spreads were <[Mg/Fe]>1D NLTE = 0.47 ± 0.12, and <[K/Fe]>1D NLTE = 0.39 ± 0.09. Although the data suggest the possible existence of a weak correlation in the [K/Fe]-[Na/Fe] plane, its statistical significance is low. No statistically significant relations between the abundance of K and other light elements were detected. Also, we did not find any significant correlations or anti-correlations between the [Mg/Fe] and [K/Fe] ratios and projected distance from the cluster center. Similarly, no relations between the absolute radial velocities of individual stars and abundances of Mg and K in their atmospheres were detected. The 3D-1D abundance corrections were found to be small (≤0.1 dex) for the lines of Mg and K used in this study, thus indicating that the influence of convection on their formation is small. Title: Gaia Data Release 2. Mapping the Milky Way disc kinematics Authors: Gaia Collaboration; Katz, D.; Antoja, T.; Romero-Gómez, M.; Drimmel, R.; Reylé, C.; Seabroke, G. M.; Soubiran, C.; Babusiaux, C.; Di Matteo, P.; Figueras, F.; Poggio, E.; Robin, A. C.; Evans, D. W.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Biermann, M.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Casta n, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falc a, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..11G Altcode: 2018arXiv180409380G Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS = 12 mag. Both samples provide a full sky coverage.
Aims: To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun.
Methods: We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (σϖ/ϖ ≤ 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s-1 and 20% of the stars with uncertainties smaller than 1 km s-1 on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from 5 kpc to 13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s-1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions.
Results: Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream.
Conclusions: Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential. Title: Gaia Data Release 2. Observational Hertzsprung-Russell diagrams Authors: Gaia Collaboration; Babusiaux, C.; van Leeuwen, F.; Barstow, M. A.; Jordi, C.; Vallenari, A.; Bossini, D.; Bressan, A.; Cantat-Gaudin, T.; van Leeuwen, M.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..10G Altcode: 2018arXiv180409378G Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented.
Aims: We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples.
Methods: We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects.
Results: The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics.
Conclusions: Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.

The full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A10 Title: Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevems, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..12G Altcode: 2018arXiv180409381G Note to the Readers: Following the publication of the corrigendum, the article was corrected on 15 May 2020.

Context.
Aims: The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds.
Methods: Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community.
Results: Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.1-2.6+6.2 × 1011 M based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud.
Conclusions: All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.

Full Table D.3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A12 Title: Gaia Data Release 2. Summary of the contents and survey properties Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A...1G Altcode: 2018arXiv180409365G Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system.
Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results.
Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent.
Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy. Title: VizieR Online Data Catalog: A(Li) and 6Li/7Li 3D NLTE corrections (Harutyunyan+, 2018) Authors: Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian, G.; Gonzalez Hernandez, J. I.; Strassmeier, K. G. Bibcode: 2018yCat..36180016H Altcode: A grid of 3D non-LTE (NLTE) corrections for the lithium abundance, A(Li), and the 6Li/7Li isotopic ratio are presented. These corrections can be easily applied to correct 1D LTE lithium abundances in G and F dwarf stars of approximately solar mass and metallicity for 3D and NLTE effects. The stellar parameters defining the grid are effective temperatures, Teff (5900, 6300 and 6500K), surface gravity, logg (4.0 and 4.5), metallicity, [Fe/H] (-1.0, -0.5, 0.0, +0.5), 1D LTE lithium abundance, A(Li) (1.5, 2.0, 2.5), 1D LTE 6Li/7Li isotopic ratio (0, 5 and 10%), as well as projected rotational velocity, vsini (0, 2, 4 and 6km/s). Based on this table, a web page calculator was created that allows to compute the 3D NLTE corrections of A(Li) and 6Li/7Li ratio for a given combination of stellar parameters (https://pages.aip.de/li67nlte3d/).

(1 data file). Title: Investigation of a sample of carbon-enhanced metal-poor stars observed with FORS and GMOS Authors: Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L. Bibcode: 2018A&A...614A..68C Altcode: 2018arXiv180309252C
Aims: Carbon-enhanced metal-poor (CEMP) stars represent a sizeable fraction of all known metal-poor stars in the Galaxy. Their formation and composition remains a significant topic of investigation within the stellar astrophysics community.
Methods: We analysed a sample of low-resolution spectra of 30 dwarf stars, obtained using the visual and near UV FOcal Reducer and low dispersion Spectrograph for the Very Large Telescope (FORS/VLT) of the European Southern Observatory (ESO) and the Gemini Multi-Object Spectrographs (GMOS) at the GEMINI telescope, to derive their metallicity and carbon abundance.
Results: We derived C and Ca from all spectra, and Fe and Ba from the majority of the stars.
Conclusions: We have extended the population statistics of CEMP stars and have confirmed that in general, stars with a high C abundance belonging to the high C band show a high Ba-content (CEMP-s or -r/s), while stars with a normal C abundance or that are C-rich, but belong to the low C band, are normal in Ba (CEMP-no).

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 099.D-0791.

Based on observations obtained at the Gemini Observatory (processed using the Gemini IRAF package), which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A68 Title: VizieR Online Data Catalog: Carbon-enhanced metal-poor stars sample (Caffau+, 2018) Authors: Caffau, E.; Gallagher, A. J.; Bonifacio, P.; Spite, M.; Duffau, S.; Spite, F.; Monaco, L.; Sbordone, L. Bibcode: 2018yCat..36140068C Altcode: We selected a sample of turn-off stars from the Sloan Digital Sky Survey (SDSS York et al. 2000AJ....120.1579Y; Yanny et al. 2009, Cat. J/AJ/137/4377) that were bright enough (g<17) to allow us to secure a reasonable spectrum quality in a single observing block of 1h.

The FORS spectra have been observed in service mode during the ESO Programme 099.D-0791, between 01/04/2017 and 16/08/2017.

The GMOS spectra were acquired in service mode on the nights of 21/07/2017 and 25/07/2017.

Table 1 lists the stars we examined here, along with their coordinates, g-mag, and metallicities derived from Fe abundances computed using SDSS and FORS/GMOS spectra.

(2 data files). Title: Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. II. The role of convection across the H-R diagram Authors: Kučinskas, A.; Klevas, J.; Ludwig, H. -G.; Bonifacio, P.; Steffen, M.; Caffau, E. Bibcode: 2018A&A...613A..24K Altcode: 2018arXiv180200073K
Aims: We studied the influence of convection on the spectral energy distributions (SEDs), photometric magnitudes, and colour indices of different types of stars across the H-R diagram.
Methods: The 3D hydrodynamical CO5BOLD, averaged ⟨3D⟩, and 1D hydrostatic LHD model atmospheres were used to compute SEDs of stars on the main sequence (MS), main sequence turn-off (TO), subgiant branch (SGB), and red giant branch (RGB), in each case at two different effective temperatures and two metallicities, [M/H] = 0.0 and - 2.0. Using the obtained SEDs, we calculated photometric magnitudes and colour indices in the broad-band Johnson-Cousins UBVRI and 2MASS JHKs, and the medium-band Strömgren uvby photometric systems.
Results: The 3D-1D differences in photometric magnitudes and colour indices are small in both photometric systems and typically do not exceed ± 0.03 mag. Only in the case of the coolest giants located on the upper RGB are the differences in the U and u bands able reach ≈-0.2 mag at [M/H] = 0.0 and ≈-0.1 mag at [M/H] = -2.0. Generally, the 3D-1D differences are largest in the blue-UV part of the spectrum and decrease towards longer wavelengths. They are also sensitive to the effective temperature and are significantly smaller in hotter stars. Metallicity also plays a role and leads to slightly larger 3D-1D differences at [M/H] = 0.0. All these patterns are caused by a complex interplay between the radiation field, opacities, and horizontal temperature fluctuations that occur due to convective motions in stellar atmospheres. Although small, the 3D-1D differences in the magnitudes and colour indices are nevertheless comparable to or larger than typical photometric uncertainties and may therefore cause non-negligible systematic differences in the estimated effective temperatures. Title: Gaia Confirms that SDSS J102915+172927 is a Dwarf Star Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; François, P.; Zaggia, S.; Arenou, F.; Haigron, R.; Leclerc, N.; Marchal, O.; Panuzzo, P.; Plum, G.; Sartoretti, P. Bibcode: 2018RNAAS...2...19B Altcode: 2018arXiv180410419B; 2018RNAAS...2b..19B The Gaia Data Release 2 provides a parallax of 0.734+/-0.073 mas for SDSS J102915+172927, currently the most metal-poor known object. This parallax implies that it is dwarf star, ruling out the scenario that it is a subgiant. The subgiant scenario had as a corollary that the star had been formed in a medium highly enriched in C, thus making line cooling efficient during the collapse, that was also highly enriched in Fe by Type Ia SNe. This scenario can also now be ruled out for this star, reinforcing the need of dust cooling and fragmentation to explain its formation. Title: VizieR Online Data Catalog: Gaia DR2 sources in GC and dSph (Gaia Collaboration+, 2018) Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; Mc Millan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reyle, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; ! Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernandez-Hernandez, J.; Fouesneau, M.; Fremat, Y.; Galluccio, L.; Garcia-Torres, M.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernandez, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Loeffler, W.; Manteiga, M.; Marrese, P. M.; Martin-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Sueveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Alvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barra! Do, D.; Ba Rros, M.; Barstow, M. A.; Bartholome Munoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienayme, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Bruesemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; de Luise, F.; de March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Duran, J.; Edvardsson, B.; Enke, H.; Eriks! Son, K.; E Squej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frezouls, B.; Gai, M.; Galleti, S.; Garabato, D.; Garcia-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutierrez-Sanchez, R.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janssen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhasz, A. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; ! Livanou, E.; Lobel, A.; Lopez, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalko, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevic, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnar, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordenovic, C.; Ordonez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol !, M.; Segov, Ia J. C.; Segransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevems, T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018yCat..36160012G Altcode: The files contains lists of possible members of each of the objects (75 globular clusters, 9 dwarf spheroidal galaxies, the Bootes I UFD, the LMC and SMC). The stars in these lists have been selected and used to determine the astrometric parameters of the corresponding objects following either the procedures described in Sec. 2.1 (for the clusters and dwarfs) or in Sec. 2.2 (for the LMC and SMC). The first column is the "source_id" as given by Gaia, the ra and declination of the star in degrees, and its G-band magnitude (known as "photgmean_mag" in the Gaia archive).

(2 data files). Title: TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H. -G.; Steffen, M.; Zaggia, S.; Abate, C. Bibcode: 2018A&A...612A..65B Altcode: 2018arXiv180103935B Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible.
Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition.
Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres.
Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] <-5.2). We were also able to measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios.
Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations.

Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468. Title: Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars Authors: Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P. Bibcode: 2018A&A...611A..30S Altcode: 2018arXiv180101304S
Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects.
Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak.
Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment.
Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter, first peak elements.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 165.N-0276(A), (PI R.Cayrel). Title: Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy Authors: Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca Bibcode: 2018ApJ...855...83H Altcode: 2017arXiv171102101H Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =-1 to -3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M . Sgr J190651.47-320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15-25 M ) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr.

Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127. Title: Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. I. Grids of 3D corrections in the UBVRI, 2MASS, HIPPARCOS, Gaia, and SDSS systems Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Kučinskas, A.; Prakapavičius, D.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D. Bibcode: 2018A&A...611A..68B Altcode: 2017arXiv171200024B Context. The atmospheres of cool stars are temporally and spatially inhomogeneous due to the effects of convection. The influence of this inhomogeneity, referred to as granulation, on colours has never been investigated over a large range of effective temperatures and gravities. Aim. We aim to study, in a quantitative way, the impact of granulation on colours.
Methods: We use the CIFIST (Cosmological Impact of the FIrst Stars) grid of CO5BOLD (COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions, L = 2, 3) hydrodynamical models to compute emerging fluxes. These in turn are used to compute theoretical colours in the UBV RI, 2MASS, HIPPARCOS, Gaia and SDSS systems. Every CO5BOLD model has a corresponding one dimensional (1D) plane-parallel LHD (Lagrangian HydroDynamics) model computed for the same atmospheric parameters, which we used to define a "3D correction" that can be applied to colours computed from fluxes computed from any 1D model atmosphere code. As an example, we illustrate these corrections applied to colours computed from ATLAS models.
Results: The 3D corrections on colours are generally small, of the order of a few hundredths of a magnitude, yet they are far from negligible. We find that ignoring granulation effects can lead to underestimation of Teff by up to 200 K and overestimation of gravity by up to 0.5 dex, when using colours as diagnostics. We have identified a major shortcoming in how scattering is treated in the current version of the CIFIST grid, which could lead to offsets of the order 0.01 mag, especially for colours involving blue and UV bands. We have investigated the Gaia and HIPPARCOS photometric systems and found that the (G - Hp), (BP - RP) diagram is immune to the effects of granulation. In addition, we point to the potential of the RVS photometry as a metallicity diagnostic.
Conclusions: Our investigation shows that the effects of granulation should not be neglected if one wants to use colours as diagnostics of the stellar parameters of F, G, K stars. A limitation is that scattering is treated as true absorption in our current computations, thus our 3D corrections are likely an upper limit to the true effect. We are already computing the next generation of the CIFIST grid, using an approximate treatment of scattering.

The appendix tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A68 Title: VizieR Online Data Catalog: 3D correction in 5 photometric systems (Bonifacio+, 2018) Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Kucinskas, A.; Prakapavicius, D.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D. Bibcode: 2018yCat..36110068B Altcode: We have used the CIFIST grid of CO5BOLD models to investigate the effects of granulation on fluxes and colours of stars of spectral type F, G, and K.

We publish tables with 3D corrections that can be applied to colours computed from any 1D model atmosphere. For Teff>=5000K, the corrections are smooth enough, as a function of atmospheric parameters, that it is possible to interpolate the corrections between grid points; thus the coarseness of the CIFIST grid should not be a major limitation. However at the cool end there are still far too few models to allow a reliable interpolation.

(20 data files). Title: Galactic evolution of copper in the light of NLTE computations Authors: Andrievsky, S.; Bonifacio, P.; Caffau, E.; Korotin, S.; Spite, M.; Spite, F.; Sbordone, L.; Zhukova, A. V. Bibcode: 2018MNRAS.473.3377A Altcode: 2017arXiv170908619A We have developed a model atom for Cu with which we perform statistical equilibrium computations that allow us to compute the line formation of Cu I lines in stellar atmospheres without assuming local thermodynamic equilibrium (LTE). We validate this model atom by reproducing the observed line profiles of the Sun, Procyon and 11 metal-poor stars. Our sample of stars includes both dwarfs and giants. Over a wide range of stellar parameters, we obtain excellent agreement among different Cu I lines. The 11 metal-poor stars have iron abundances in the range - 4.2 ≤ [Fe/H] ≤ -1.4, the weighted mean of the [Cu/Fe] ratios is -0.22 dex, with a scatter of -0.15 dex. This is very different from the results from LTE analysis (the difference between NLTE and LTE abundances reaches 1 dex) and in spite of the small size of our sample, it prompts for a revision of the Galactic evolution of Cu. Title: The Pristine survey - I. Mining the Galaxy for the most metal-poor stars Authors: Starkenburg, Else; Martin, Nicolas; Youakim, Kris; Aguado, David S.; Allende Prieto, Carlos; Arentsen, Anke; Bernard, Edouard J.; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond G.; Côté, Patrick; Fouesneau, Morgan; François, Patrick; Franke, Oliver; González Hernández, Jonay I.; Gwyn, Stephen D. J.; Hill, Vanessa; Ibata, Rodrigo A.; Jablonka, Pascale; Longeard, Nicolas; McConnachie, Alan W.; Navarro, Julio F.; Sánchez-Janssen, Rubén; Tolstoy, Eline; Venn, Kim A. Bibcode: 2017MNRAS.471.2587S Altcode: 2017arXiv170501113S We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg2 in the Galactic halo ranging from b ∼ 30° to ∼78° and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and I photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ∼0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE < -3.0 stars among [Fe/H]Pristine < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe. Title: The Canada-France Imaging Survey: First Results from the u-Band Component Authors: Ibata, Rodrigo A.; McConnachie, Alan; Cuillandre, Jean-Charles; Fantin, Nicholas; Haywood, Misha; Martin, Nicolas F.; Bergeron, Pierre; Beckmann, Volker; Bernard, Edouard; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond; Côté, Patrick; Cabanac, Rémi; Chapman, Scott; Duc, Pierre-Alain; Durret, Florence; Famaey, Benoît; Fabbro, Sébastien; Gwyn, Stephen; Hammer, Francois; Hill, Vanessa; Hudson, Michael J.; Lançon, Ariane; Lewis, Geraint; Malhan, Khyati; di Matteo, Paola; McCracken, Henry; Mei, Simona; Mellier, Yannick; Navarro, Julio; Pires, Sandrine; Pritchet, Chris; Reylé, Celine; Richer, Harvey; Robin, Annie C.; Sánchez-Janssen, Rubén; Sawicki, Marcin; Scott, Douglas; Scottez, Vivien; Spekkens, Kristine; Starkenburg, Else; Thomas, Guillaume; Venn, Kim Bibcode: 2017ApJ...848..128I Altcode: 2017arXiv170806356I The Canada-France Imaging Survey (CFIS) will map the northern high Galactic latitude sky in the u-band ("CFIS-u," 10,000 °2) and in the r-band ("CFIS-r," 5000 °2), enabling a host of stand-alone science investigations, and providing some of the ground-based data necessary for photometric redshift determination for the Euclid mission. In this first contribution, we present the u-band component of the survey, describe the observational strategy, and discuss some first highlight results, based on approximately one-third of the final area. We show that the Galactic anticenter structure is distributed continuously along the line of sight, out to beyond 20 kpc, and possesses a metallicity distribution that is essentially identical to that of the outer disk sampled by APOGEE. This suggests that it is probably a buckled disk of old metal-rich stars, rather than a stream or a flare. We also discuss the future potential for CFIS-u in discovering star-forming dwarf galaxies around the Local Group, the characterization of the white dwarf and blue straggler population of the Milky Way, as well as its sensitivity to low surface brightness structures in external galaxies. Title: Chemical Mapping of the Milky Way with The Canada-France Imaging Survey: A Non-parametric Metallicity-Distance Decomposition of the Galaxy Authors: Ibata, Rodrigo A.; McConnachie, Alan; Cuillandre, Jean-Charles; Fantin, Nicholas; Haywood, Misha; Martin, Nicolas F.; Bergeron, Pierre; Beckmann, Volker; Bernard, Edouard; Bonifacio, Piercarlo; Caffau, Elisabetta; Carlberg, Raymond; Côté, Patrick; Cabanac, Rémi; Chapman, Scott; Duc, Pierre-Alain; Durret, Florence; Famaey, Benoît; Fabbro, Sébastien; Gwyn, Stephen; Hammer, Francois; Hill, Vanessa; Hudson, Michael J.; Lançon, Ariane; Lewis, Geraint; Malhan, Khyati; di Matteo, Paola; McCracken, Henry; Mei, Simona; Mellier, Yannick; Navarro, Julio; Pires, Sandrine; Pritchet, Chris; Reylé, Celine; Richer, Harvey; Robin, Annie C.; Sánchez-Janssen, Rubén; Sawicki, Marcin; Scott, Douglas; Scottez, Vivien; Spekkens, Kristine; Starkenburg, Else; Thomas, Guillaume; Venn, Kim Bibcode: 2017ApJ...848..129I Altcode: 2017arXiv170806359I We present the chemical distribution of the Milky Way, based on 2900 {\deg }2 of u-band photometry taken as part of the Canada-France Imaging Survey. When complete, this survey will cover 10,000 {\deg }2 of the northern sky. By combing the CFHT u-band photometry together with Sloan Digital Sky Survey and Pan-STARRS g,r, and I, we demonstrate that we are able to reliably measure the metallicities of individual stars to ∼0.2 dex, and hence additionally obtain good photometric distance estimates. This survey thus permits the measurement of metallicities and distances of the dominant main-sequence (MS) population out to approximately 30 {kpc}, and provides a much higher number of stars at large extraplanar distances than have been available from previous surveys. We develop a non-parametric distance-metallicity decomposition algorithm and apply it to the sky at 30^\circ < | b| < 70^\circ and to the North Galactic Cap. We find that the metallicity-distance distribution is well-represented by three populations whose metallicity distributions do not vary significantly with vertical height above the disk. As traced in MS stars, the stellar halo component shows a vertical density profile that is close to exponential, with a scale height of around 3 {kpc}. This may indicate that the inner halo was formed partly from disk stars ejected in an ancient minor merger. Title: Gaia Data Release 1. Testing parallaxes with local Cepheids and RR Lyrae stars Authors: Gaia Collaboration; Clementini, G.; Eyer, L.; Ripepi, V.; Marconi, M.; Muraveva, T.; Garofalo, A.; Sarro, L. M.; Palmer, M.; Luri, X.; Molinaro, R.; Rimoldini, L.; Szabados, L.; Musella, I.; Anderson, R. I.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2017A&A...605A..79G Altcode: 2017arXiv170500688G; 2017A&A...605A..79. Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the HIPPARCOS and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS).
Aims: In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (MV-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS.
Methods: Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σϖ/ϖ< 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σϖ/ϖ< 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σϖ/ϖ< 0.5). The new relations were computed using multi-band (V,I,J,Ks) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and MV- [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods.
Results: Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the HIPPARCOS measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive.
Conclusions: TGAS parallaxes bring a significant added value to the previous HIPPARCOS estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018.

Full Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A79 Title: Lithium abundance and 6Li/7Li ratio in the active giant HD 123351. I. A comparative analysis of 3D and 1D NLTE line-profile fits Authors: Mott, A.; Steffen, M.; Caffau, E.; Spada, F.; Strassmeier, K. G. Bibcode: 2017A&A...604A..44M Altcode: 2017arXiv170406460M Context. Current three-dimensional (3D) hydrodynamical model atmospheres together with detailed spectrum synthesis, accounting for departures from local thermodynamic equilibrium (LTE), permit to derive reliable atomic and isotopic chemical abundances from high-resolution stellar spectra. Not much is known about the presence of the fragile 6Li isotope in evolved solar-metallicity red giant branch (RGB) stars, not to mention its production in magnetically active targets like HD 123351.
Aims: A detailed spectroscopic investigation of the lithium resonance doublet in HD 123351 in terms of both abundance and isotopic ratio is presented. From fits of the observed spectrum, taken at the Canada-France-Hawaii telescope, with synthetic line profiles based on 1D and 3D model atmospheres, we seek to estimate the abundance of the 6Li isotope and to place constraints on its origin.
Methods: We derive the lithium abundance A(Li) and the 6Li/7Li isotopic ratio by fitting different synthetic spectra to the Li-line region of a high-resolution CFHT spectrum (R = 120 000, S/N = 400). The synthetic spectra are computed with four different line lists, using in parallel 3D hydrodynamical CO5BOLD and 1D LHD model atmospheres and treating the line formation of the lithium components in non-LTE (NLTE). The fitting procedure is repeated with different assumptions and wavelength ranges to obtain a reasonable estimate of the involved uncertainties.
Results: We find A(Li) = 1.69 ± 0.11 dex and 6Li/7Li = 8.0 ± 4.4% in 3D-NLTE, using the line list of Meléndez et al. (2012, A&A, 543, A29), updated with new atomic data for V I, which results in the best fit of the lithium line profile of HD 123351. Two other line lists lead to similar results but with inferior fit qualities.
Conclusions: Our 2σ detection of the 6Li isotope is the result of a careful statistical analysis and the visual inspection of each achieved fit. Since the presence of a significant amount of 6Li in the atmosphere of a cool evolved star is not expected in the framework of standard stellar evolution theory, non-standard, external lithium production mechanisms, possibly related to stellar activity or a recent accretion of rocky material, need to be invoked to explain the detection of 6Li in HD 123351. Title: The Gaia-ESO Survey: Galactic evolution of sulphur and zinc Authors: Duffau, S.; Caffau, E.; Sbordone, L.; Bonifacio, P.; Andrievsky, S.; Korotin, S.; Babusiaux, C.; Salvadori, S.; Monaco, L.; François, P.; Skúladóttir, Á.; Bragaglia, A.; Donati, P.; Spina, L.; Gallagher, A. J.; Ludwig, H. -G.; Christlieb, N.; Hansen, C. J.; Mott, A.; Steffen, M.; Zaggia, S.; Blanco-Cuaresma, S.; Calura, F.; Friel, E.; Jiménez-Esteban, F. M.; Koch, A.; Magrini, L.; Pancino, E.; Tang, B.; Tautvaišienė, G.; Vallenari, A.; Hawkins, K.; Gilmore, G.; Randich, S.; Feltzing, S.; Bensby, T.; Flaccomio, E.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Morbidelli, L.; Sousa, S. G.; Worley, C. C. Bibcode: 2017A&A...604A.128D Altcode: 2017arXiv170402981D Context. Due to their volatile nature, when sulphur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics.
Aims: We wish to exploit the Gaia-ESO Survey (GES) data to study the behaviour of sulphur and zinc abundances of a large number of Galactic stars, in a homogeneous way.
Methods: By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulphur and zinc were measured.
Results: We confirm the results from the literature that sulphur behaves as an α-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius.
Conclusions: Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 188.B-3002, 193.B-0936.The full table of S abundances is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A128 Title: An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres Authors: Thygesen, Anders O.; Kirby, Evan N.; Gallagher, Andrew J.; Ludwig, Hans-G.; Caffau, Elisabetta; Bonifacio, Piercarlo; Sbordone, Luca Bibcode: 2017ApJ...843..144T Altcode: 2017arXiv170604218T Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of 1D model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5BOLD models of dwarfs (4000 K ≲ T eff ≲ 5160 K, 4.0 ≤ {log}g ≤ 4.5, -3.0≤slant [{Fe}/{{H}}]≤slant -1.0) and giants (T eff ∼ 4000 K, {log}g = 1.5, -3.0≤slant [{Fe}/{{H}}]≤slant -1.0), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex, with the largest for our 5000 K models. The corrections are correlated with T eff and are also affected by the metallicity. The shape of the strong 24MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25Mg by up to ∼5 percentage points and overestimating 24Mg by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26Mg is recovered relatively well, with the largest difference being ∼2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D. Title: Abundances of Na, Mg, and K in the atmospheres of red giant branch stars of Galactic globular cluster 47 Tucanae Authors: Černiauskas, A.; Kučinskas, A.; Klevas, J.; Prakapavičius, D.; Korotin, S.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Steffen, M. Bibcode: 2017A&A...604A..35C Altcode: 2017arXiv170402751C
Aims: We study the abundances of Na, Mg, and K in the atmospheres of 32 red giant branch (RGB) stars in the Galactic globular cluster (GGC) 47 Tuc, with the goal to investigate the possible existence of Na-K and Mg-K correlations/anti-correlations, similar to those that were recently discovered in two other GGCs, NGC 2419 and 2808.
Methods: The abundances of K, Na, and Mg were determined using high-resolution 2dF/HERMES spectra obtained with the Anglo-Australian Telescope (AAT). The one-dimensional (1D) NLTE abundance estimates were obtained using 1D hydrostatic ATLAS9 model atmospheres and spectral line profiles synthesized with the MULTI package. We also used three-dimensional (3D) hydrodynamical CO5BOLD and 1D hydrostatic LHD model atmospheres to compute 3D-1D LTE abundance corrections, Δ3D - 1D LTE, for the spectral lines of Na, Mg, and K used in our study. These abundance corrections were used to understand the role of convection in the formation of spectral lines, as well as to estimate the differences in the abundances obtained with the 3D hydrodynamical and 1D hydrostatic model atmospheres.
Results: The average element-to-iron abundance ratios and their RMS variations due to star-to-star abundance spreads determined in our sample of RGB stars were ⟨ [ Na / Fe ] ⟩ 1D NLTE = 0.42 ± 0.13, ⟨ [ Mg / Fe ] ⟩ 1D NLTE = 0.41 ± 0.11, and ⟨ [ K / Fe ] ⟩ 1D NLTE = 0.05 ± 0.14. We found no statistically significant relations between the abundances of the three elements studied here. Also, there were no abundance trends with the distance from the cluster center, nor any statistically significant relations between the abundance/abundance ratios and absolute radial velocities of individual stars. All these facts suggest the similarity of K abundance in stars that belong to different generations in 47 Tuc which, in turn, may hint that evolution of K in this particular cluster was unrelated to the nucleosynthesis of Na and/or Mg. Title: New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy Authors: Aguado, D. S.; Allende Prieto, C.; González Hernández, J. I.; Rebolo, R.; Caffau, E. Bibcode: 2017A&A...604A...9A Altcode: 2017arXiv170604179A Context. The first generation of stars formed in the Galaxy left behind the chemical signatures of their nucleosynthesis in the interstellar medium, visible today in the atmospheres of low-mass stars that formed afterwards. Sampling the chemistry of those low-mass provides insight into the first stars.
Aims: We aim to increase the samples of stars with extremely low metal abundances, identifying ultra metal-poor stars from spectra with modest spectral resolution and signal-to-noise ratio (S/N). Achieving this goal involves deriving reliable metallicities and carbon abundances from such spectra.
Methods: We carry out follow-up observations of faint, V > 19, metal-poor candidates selected from SDSS spectroscopy and observed with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) at GTC. The SDSS and follow-up OSIRIS spectra were analyzed using the FERRE code to derive effective temperatures, surface gravities, metallicities and carbon abundances. In addition, a well-known extremely metal-poor star has been included in our sample to calibrate the analysis methodology.
Results: We observed and analyzed five metal-poor candidates from modest-quality SDSS spectra. All stars in our sample have been confirmed as extremely metal-poor stars, in the [Fe/H] < -3.3 regime. We report the recognition of J173403+644632, a carbon-enhanced ultra metal-poor dwarf star with [Fe/H] = -4.3 and [C/Fe] = + 3.1.

Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. Programme ID GTC2E-16A and ID GTC65-16B. Title: The Pristine survey II: A sample of bright stars observed with FEROS Authors: Caffau, E.; Bonifacio, P.; Starkenburg, E.; Martin, N.; Youakim, K.; Henden, A. A.; González Hernández, J. I.; Aguado, D. S.; Allende Prieto, C.; Venn, K.; Jablonka, P. Bibcode: 2017AN....338..686C Altcode: 2017arXiv170510280C Extremely metal-poor (EMP) stars are old objects formed in the first Gyr of the Universe. They are rare and, to select them the most successful strategy has been to build on large and low-resolution spectroscopic surveys. The combination of narrow- and broad-band photometry provides a powerful and cheaper alternative to select metal-poor stars. The ongoing Pristine Survey is adopting this strategy, conducting photometry with the Canada France Hawaii Telescope MegaCam wide-field imager and a narrow-band filter centered at 395.2 nm on the Ca II-H and -K lines. In this paper, we present the results of the spectroscopic follow-up conducted on a sample of 26 stars at the bright end of the magnitude range of the Survey (g⩽15), using FEROS at the MPG/ESO 2.2-m telescope (manufactured by Zeiss, Oberkochen, Germany). From our chemical investigation on the sample, we conclude that this magnitude range is too bright to use the Sloan Digital Sky Survey (SDSS) gri bands, which are typically saturated. Instead, the Pristine photometry can be usefully combined with the AAVSO Photometric All Sky Survey (APASS) griphotometry to provide reliable metallicity estimates. Data from FEROS.Funding Information Robert Martin Ayers Sciences Fund, PICS, Emmy Noether program, NSF, AST-1412587. Spanish Ministry of Economy and Competitiveness (MINECO);, MINECO RYC-2013-14875, MINECO AYA2014-56359-P. Title: VizieR Online Data Catalog: S abundances for 1301 stars from GES (Duffau+, 2017) Authors: Duffau, S.; Caffau, E.; Sbordone, L.; Bonifacio, P.; Andrievsky, S.; Korotin, S.; Babusiaux, C.; Salvadori, S.; Monaco, L.; Francois, P.; Skuladottir, A.; Bragaglia, A.; Donati, P.; Spina, L.; Gallagher, A. J.; Ludwig, H. -G.; Christlieb, N.; Hansen, C. J.; Mott, A.; Steffen, M.; Zaggia, S.; Blanco-Cuaresma, S.; Calura, F.; Friel, E.; Jimenez-Esteban, F. M.; Koch, A.; Magrini, L.; Pancino, E.; Tang, B.; Tautvaisiene, G.; Vallenari, A.; Hawkins, K.; Gilmore, G.; Randich, S.; Feltzing, S.; Bensby, T.; Flaccomio, E.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Franciosini, E.; Hourihane, A.; Jofre, P.; Lardo, C.; Lewis, J.; Morbidelli, L.; Sousa, S. G.; Worley, C. C. Bibcode: 2017yCat..36040128D Altcode: GES internal star identifier (CNAME), Sulphur abundances and NLTE corrections to the Sulphur abundances for 1301 stars. Sulphur abundances are expressed in the customary logarithmic form: A(S)=log_10(N(S)/N(H))+12. The abundances delivered are the LTE ones. NLTEabundances can be determined by directly summing the NLTE correction delivered: A(S)NLTE = A(S) + NLTEC. So that a negative NLTE correction indicates that the NLTE abundance is lower than the LTE one.

(1 data file). Title: A Grid of NLTE Corrections for Sulphur Lines in Atmospheres of Cool Stars for the Gaia-ESO Survey Authors: Korotin, S.; Andrievsky, S.; Caffau, E.; Bonifacio, P. Bibcode: 2017ASPC..510..141K Altcode: To derive sulfur abundance in a large amount of the stars from Gaia-ESO survey we calculated grid of theoretical line equivalent widths of 8th multiplet. We show that NLTE effects increase equivalent widths of the sulfur lines. NLTE corrections for this multiplet are not too large (about 0.15 dex) in contrast with corrections for other sulfur multiplets. Title: Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects Authors: Gaia Collaboration; van Leeuwen, F.; Vallenari, A.; Jordi, C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; vanLeeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2017A&A...601A..19G Altcode: 2017arXiv170301131G Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using HIPPARCOS and Tycho-2 positions in 1991.25 as prior information.
Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters.
Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed.
Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier HIPPARCOS-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters.
Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the HIPPARCOS data, with clearly increased luminosities for older A and F dwarfs.

Tables D.1 to D.19 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19 Title: Computation of eigenfrequencies for equilibrium models including turbulent pressure Authors: Sonoi, T.; Belkacem, K.; Dupret, M. -A.; Samadi, R.; Ludwig, H. -G.; Caffau, E.; Mosser, B. Bibcode: 2017A&A...600A..31S Altcode: 2017arXiv170107244S Context. The space-borne missions CoRoT and Kepler have provided a wealth of highly accurate data. However, our inability to properly model the upper-most region of solar-like stars prevents us from making the best of these observations. This problem is called "surface effect" and a key ingredient to solve it is turbulent pressure for the computation of both the equilibrium models and the oscillations. While 3D hydrodynamic simulations help to include properly the turbulent pressure in the equilibrium models, the way this surface effect is included in the computation of stellar oscillations is still subject to uncertainties.
Aims: We aim at determining how to properly include the effect of turbulent pressure and its Lagrangian perturbation in the adiabatic computation of the oscillations. We also discuss the validity of the gas-gamma model and reduced gamma model approximations, which have been used to compute adiabatic oscillations of equilibrium models including turbulent pressure.
Methods: We use a patched model of the Sun with an inner part constructed by a 1D stellar evolution code (CESTAM) and an outer part by the 3D hydrodynamical code (CO5BOLD). Then, the adiabatic oscillations are computed using the ADIPLS code for the gas-gamma and reduced gamma model approximations and with the MAD code imposing the adiabatic condition on an existing time-dependent convection formalism. Finally, all those results are compared to the observed solar frequencies.
Results: We show that the computation of the oscillations using the time-dependent convection formalism in the adiabatic limit improves significantly the agreement with the observed frequencies compared to the gas-gamma and reduced gamma model approximations. Of the components of the perturbation of the turbulent pressure, the perturbation of the density and advection term is found to contribute most to the frequency shift.
Conclusions: The turbulent pressure is certainly the dominant factor responsible for the surface effects. Its inclusion into the equilibrium models is thus necessary but not sufficient. Indeed, the perturbation of the turbulent pressure must be properly taken into account for computing adiabatic oscillation frequencies. We propose a formalism to evaluate the frequency shift due to the inclusion of the term with the turbulent pressure perturbation in the variational principle in order to extrapolate our result to other stars at various evolutionary stages. Although this work is limited to adiabatic oscillations and the inclusion of the turbulent pressure, future works will have to account for the nonadiabatic effect and convective backwarming. Title: VizieR Online Data Catalog: Gaia DR1 open cluster members (Gaia Collaboration+, 2017) Authors: Gaia Collaboration; van Leeuwen F.; Vallenari, A.; Jordi, C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Hog, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra, R.; Hernandez, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordonez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thevenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fremat, Y.; Garcia-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Alvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Anton, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado, Y. Navascues D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello Garcia, A.; Belokuro, V. V.; Ben Djoya, P.; Berihuete, A.; Bianchi, L.; Bienayme, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Bruesemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; de Luise, F.; de March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas, M.; Federici, L.; Fedorets, G.; Fernandez-Hernandez, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; Garcia-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; Gonzalez-Marcos, A.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gurpide, A.; Gutierrez-Sanchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofre, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Lecler, C. N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Loeffler, W.; Lopez, M.; Lorenz, D.; MacDonald, I.; Magalhaes Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalko, G.; Marshall, D. J.; Martin-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevic, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnar, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordenovic, C.; Ordieres-Mere, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikaeinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prsa, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reyle, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Sueveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; van Hemelryck, E.; Vanleeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escude, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chereau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frezouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gomez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; Lebouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Peturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straizys, V.; Ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2017yCat..36010019G Altcode: We have determined and examined the astrometric data for 19 open clusters, ranging from the Hyades at just under 47pc to NGC 2422 at nearly 440pc. The clusters are : the Hyades, Coma Berenices, the Pleiades, Praesepe, alpha Per, IC 2391, IC 2602, Blanco 1, NGC 2451, NGC 6475, NGC 7092, NGC 2516, NGC 2232, IC 4665, NGC 6633, Collinder 140, NGC 2422, NGC 3532 and NGC 2547.

(2 data files). Title: VizieR Online Data Catalog: NGC104 RGB Na, Mg, and K abundances (Cerniauskas+, 2017) Authors: Cerniauskas, A.; Kucinskas, A.; Klevas, J.; Prakapavicius, D.; Korotin, S.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Steffen, M. Bibcode: 2017yCat..36040035C Altcode: We used 2dF/HERMES spectra obtained in two wavelength regions, 564.9-587.3nm (GREEN) and 758.5-788.7nm (IR), using the spectral resolution of R~28000 and exposure time of 1200s. The observations were carried out during the period of Oct 22 - Dec 20, 2013

(1 data file). Title: An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. II. Carbon-enhanced metal-poor 3D model atmospheres Authors: Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H. -G.; Steffen, M.; Homeier, D.; Plez, B. Bibcode: 2017A&A...598L..10G Altcode: 2017arXiv170109102G Context. Tighter constraints on metal-poor stars we observe are needed to better understand the chemical processes of the early Universe. Computing a stellar spectrum in 3D allows one to model complex stellar behaviours, which cannot be replicated in 1D.
Aims: We examine the effect that the intrinsic CNO abundances have on a 3D model structure and the resulting 3D spectrum synthesis.
Methods: Model atmospheres were computed in 3D for three distinct CNO chemical compositions using the CO5BOLD model atmosphere code, and their internal structures were examined. Synthetic spectra were computed from these models using Linfor3D and they were compared. New 3D abundance corrections for the G-band and a selection of UV OH lines were also computed.
Results: The varying CNO abundances change the metal content of the 3D models. This had an effect on the model structure and the resulting synthesis. However, it was found that the C/O ratio had a larger effect than the overall metal content of a model.
Conclusions: Our results suggest that varying the C/O ratio has a substantial impact on the internal structure of the 3D model, even in the hot turn-off star models explored here. This suggests that bespoke 3D models, for specific CNO abundances should be sought. Such effects are not seen in 1D at these temperature regimes. Title: 3D non-LTE corrections for the 6Li/7Li isotopic ratio in solar-type stars Authors: Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian, G.; González Hernández, J. I.; Strassmeier, K. G. Bibcode: 2017MmSAI..88...61H Altcode: Doppler shifts induced by convective motions in stellar atmospheres affect the shape of spectral absorption lines and create slightly asymmetric line profiles. It is important to take this effect into account in modeling the subtle depression created by the 6Li isotope which lies on the red wing of the Li I 670.8 nm resonance doublet line, since convective motions in stellar atmospheres can mimic a presence of 6Li when intrinsically symmetric theoretical line profiles are presumed for the analysis of the 7Li doublet \citep{cayrel2007}. Based on CO5BOLD hydrodynamical model atmospheres, we compute 3D non-local thermodynamic equilibrium (NLTE) corrections for the 6Li/7Li isotopic ratio by using a grid of 3D NLTE and 1D LTE synthetic spectra. These corrections must be added to the results of the 1D LTE analysis to correct them for the combined 3D non-LTE effects. As one would expect, the resulting corrections are always negative and they range between 0 and -5 %, depending on effective temperature, surface gravity, and metallicity. For each metallicity we derive an analytic expression approximating the 3D NLTE corrections as a function of effective temperature, surface gravity and projected rotational velocity. Title: Using CO5BOLD models to predict the effects of granulation on colours . Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Prakapavičius, D.; Kučinskas, A.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D. Bibcode: 2017MmSAI..88...90B Altcode: In order to investigate the effects of granulation on fluxes and colours, we computed the emerging fluxes from the models in the CO5BOLD grid with metallicities [M/H]=0.0,-1.0,-2.0 and -3.0. These fluxes have been used to compute colours in different photometric systems. We explain here how our computations have been performed and provide some results. Title: Enhanced methods for computing spectra from CO5BOLD models using Linfor3D. Molecular bands in metal-poor stars Authors: Gallagher, A. J.; Steffen, M.; Caffau, E.; Bonifacio, P.; Ludwig, H. -G.; Freytag, B. Bibcode: 2017MmSAI..88...82G Altcode: 2016arXiv161004427G Molecular features such as the G-band, CN-band and NH-band are important diagnostics for measuring a star's carbon and nitrogen abundances, especially in metal-poor stars where atomic lines are no longer visible in stellar spectra. Unlike atomic transitions, molecular features tend to form in bands, which cover large wavelength regions in a spectrum. While it is a trivial matter to compute carbon and nitrogen molecular bands under the assumption of 1D, it is extremely time consuming in 3D. In this contribution to the 2016 COBOLD workshop we review the improvements made to the 3D spectral synthesis code Linfor3D, and discuss the new challenges found when computing molecular features in 3D. Title: Lithium in the active sub-giant HD123351. A quantitative analysis with 3D and 1D model atmospheres using different observed spectra Authors: Mott, A.; Steffen, M.; Caffau, E.; Strassmeier, K. G. Bibcode: 2017MmSAI..88...68M Altcode: Current 3D hydrodynamical model atmosphere simulations together with non-LTE spectrum synthesis calculations permit to determine reliable atomic and in particular isotopic chemical abundances. Although this approach is computationally time demanding, it became feasible in studying lithium in stellar spectra. In the literature not much is known about the presence of the more fragile {6Li} isotope in evolved metal-rich objects. In this case the analysis is complicated by the lack of a suitable list of atomic and molecular lines in the spectral region of the lithium resonance line at 670.8 nm.

Here we present a spectroscopic comparative analysis of the Li doublet region of HD 123351, an active sub-giant star of solar metallicity. We fit the Li profile in three observed spectra characterized by different qualities: two very-high resolution spectra (Gecko@CFHT, R=120 000, SNR=400 and PEPSI@LBT, R=150 000, SNR=663) and a high-resolution SOPHIE@OHP spectrum (R=40 000, SNR=300). We adopt a set of model atmospheres, both 3D and 1D, having different stellar parameters (T_{eff} and log g). The 3D models are taken from the CIFIST grid of COBOLD model atmospheres and departures from LTE are considered for the lithium components. For the blends other than the lithium in this wavelength region we adopt the linelist of \citet{melendez12}. We find consistent results for all three observations and an overall good fit with the selected list of atomic and molecular lines, indicating a high {6Li} content.

The presence of {6Li} is not expected in cool stellar atmospheres. Its detection is of crucial importance for understanding mixing processes in stars and external lithium production mechanisms, possibly related to stellar activity or planetray accretion of {6Li}-rich material. Title: Investigation of the solar centre-to-limb variation of oxygen and lithium spectral features Authors: Caffau, E.; Malherbe, J. -M.; Steffen, M.; Ludwig, H. -G.; Mott, A. Bibcode: 2017MmSAI..88...45C Altcode: We compare intensity spectra of the Sun observed at different limb angles in the wavelength range covering the forbidden oxygen lines and the lithium resonance feature with line formation computations performed on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. Among the prime oxygen abundance indicators, the forbidden line at 630 nm is contaminated with a significant Ni I blend. The availability of observations at different positions on the solar disc allows us to disentangle the contributions of oxygen and nickel and to derive their individual abundances. We derived in the past, from the [OI] line, A(O)=8.73± 0.05 with a nickel abundance of A(Ni)=6.1± 0.04. From the observations here presented, we obtain A(O)=8.71 and A(Ni)=6.09, in excellent agreement with the previous result. For lithium, we investigated the Li doublet at 670.7 nm and compared synthetic spectra of the Li spectra range based on different line-lists available in the literature to the observed data. With these observations, we are still unable to conclude on which is the best line-list to be used for the blending lines. Title: The Gaia mission Authors: Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2016A&A...595A...1G Altcode: 2016arXiv160904153G Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

http://www.cosmos.esa.int/gaia Title: Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Mignard, F.; Drimmel, R.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Katz, D.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; O'Mullane, W.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Høg, E.; Lattanzi, M. G.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2016A&A...595A...2G Altcode: 2016arXiv160904172G Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7.
Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. Title: Abundances in a sample of turnoff and subgiant stars in NGC 6121 (M 4) Authors: Spite, M.; Spite, F.; Gallagher, A. J.; Monaco, L.; Bonifacio, P.; Caffau, E.; Villanova, S. Bibcode: 2016A&A...594A..79S Altcode: 2016arXiv160803541S Context. The stellar abundances observed in globular clusters show complex structures, currently not yet understood.
Aims: The aim of this work is to investigate the relations between the abundances of different elements in the globular cluster M 4, selected for its uniform deficiency of iron, to explore the best models explaining the pattern of these observed abundances. Moreover, in turnoff stars, the abundances of the elements are not suspected to be affected by internal mixing.
Methods: In M 4, using low and moderate resolution spectra obtained for 91 turnoff (and subgiant) stars with the ESO FLAMES-Giraffe spectrograph, we have extended previous measurements of abundances (of Li, C and Na) to other elements (C, Si, Ca, Sr and Ba), using model atmosphere analysis. We have also studied the influence of the choice of the microturbulent velocity.
Results: Firstly, the peculiar turnoff star found to be very Li-rich in a previous paper does not show any other abundance anomalies relative to the other turnoff stars in M 4. Secondly, an anti-correlation between C and Na has been detected, the slope being significative at more than 3σ. This relation between C and Na is in perfect agreement with the relation found in giant stars selected below the RGB bump. Thirdly, the strong enrichment of Si and of the neutron-capture elements Sr and Ba, already observed in the giants in M 4, is confirmed. Finally, the relations between Li, C, Na, Sr and Ba constrain the enrichment processes of the observed stars.
Conclusions: The abundances of the elements in the turnoff stars appear to be compatible with production processes by massive AGBs, but are also compatible with the production of second generation elements (like Na) and low Li produced by, for example, fast rotating massive stars.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 085.D-0537(A).Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A79 Title: TOPoS. III. An ultra iron-poor multiple CEMP system Authors: Caffau, E.; Bonifacio, P.; Spite, M.; Spite, F.; Monaco, L.; Sbordone, L.; François, P.; Gallagher, A. J.; Plez, B.; Zaggia, S.; Ludwig, H. -G.; Cayrel, R.; Koch, A.; Steffen, M.; Salvadori, S.; Klessen, R.; Glover, S.; Christlieb, N. Bibcode: 2016A&A...595L...6C Altcode: 2016arXiv161004106C
Aims: One of the primary objectives of the TOPoS survey is to search for the most metal-poor stars. Our search has led to the discovery of one of the most iron-poor objects known, SDSS J092912.32+023817.0. This object is a multiple system, in which two components are clearly detected in the spectrum.
Methods: We have analysed 16 high-resolution spectra obtained using the UVES spectrograph at the ESO 8.2 m VLT telescope to measure radial velocities and determine the chemical composition of the system.
Results: Cross correlation of the spectra with a synthetic template yields a double-peaked cross-correlation function (CCF) for eight spectra, and in one case there is evidence for the presence of a third peak. Chemical analysis of the spectrum obtained by averaging all the spectra for which the CCF showed a single peak found that the iron abundance is [Fe/H] = -4.97. The system is also carbon enhanced with [C/Fe] = +3.91 (A(C) = 7.44). From the permitted oxygen triplet we determined an upper limit for oxygen of [O/Fe] < +3.52 such that C/O > 1.3. We are also able to provide more stringent upper limits on the Sr and Ba abundances ([Sr/Fe] < +0.70, and [Ba/Fe] < +1.46, respectively).

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 094.D-0488 and 096.D-0616. Title: A new algorithm for optimizing the wavelength coverage for spectroscopic studies: Spectral Wavelength Optimization Code (SWOC) Authors: Ruchti, G. R.; Feltzing, S.; Lind, K.; Caffau, E.; Korn, A. J.; Schnurr, O.; Hansen, C. J.; Koch, A.; Sbordone, L.; de Jong, R. S. Bibcode: 2016MNRAS.461.2174R Altcode: 2016MNRAS.tmp.1006R; 2016arXiv160600833R The past decade and a half has seen the design and execution of several ground-based spectroscopic surveys, both Galactic and Extragalactic. Additionally, new surveys are being designed that extend the boundaries of current surveys. In this context, many important considerations must be done when designing a spectrograph for the future. Among these is the determination of the optimum wavelength coverage. In this work, we present a new code for determining the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a given survey. In its first mode, it utilizes a user-defined list of spectral features to compute a figure-of-merit for different spectral configurations. The second mode utilizes a set of flux-calibrated spectra, determining the spectral regions that show the largest differences among the spectra. Our algorithm is easily adaptable for any set of science requirements and any spectrograph design. We apply the algorithm to several examples, including 4MOST, showing the method yields important design constraints to the wavelength regions. Title: An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. I. Formation of the G-band in metal-poor dwarf stars Authors: Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H. -G.; Steffen, M.; Spite, M. Bibcode: 2016A&A...593A..48G Altcode: 2016arXiv160507215G Context. Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time.
Aims: A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 ≲ Teff [ K ] ≲ 6550, 4.0 ≤ log g ≤ 4.5, - 3.0 ≤ [Fe/H] ≤-1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band.
Methods: Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction.
Results: Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature.
Conclusions: The 3D corrections suggest that A(C) in carbon-enhanced metal-poor (CEMP) stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D. Title: VizieR Online Data Catalog: NGC 6121 turnoff and subgiant stars abundances (Spite+, 2016) Authors: Spite, M.; Spite, F.; Gallagher, A. J.; Monaco, L.; Bonifacio, P.; Caffau, E.; Villanova, S. Bibcode: 2016yCat..35940079S Altcode: Observations were conducted at the Very Large Telescope (VLT) (Paranal, Chile) between April and July 2010 using the LR2 setting from 400 to 456nm with a resolving power R=6000, the HR12 setting from 583 to 614nm, and the HR15N setting from 666 to 679nm, both with a resolving power of about R=20000. The frames were processed using the FLAMES-GIRAFFE reduction pipeline. More information can be found in Monaco et al. (2012A&A...539A.157M, Cat. J/A+A/539/A157). The spectroscopic data are available through the Giraffe archive at Paris Observatory (http://giraffe-archive.obspm.fr/).

(2 data files). Title: Investigation of the lithium 670.7 nm wavelength range in the solar spectrum Authors: Caffau, Elisabetta; Mott, Alessandro; Harutyunyan, Gohar; Malherbe, Jean-Marie; Steffen, Matthias Bibcode: 2016cosp...41E.281C Altcode: Lithium is a key chemical element, with a chemical evolution that is different from that of most other elements. It is also very fragile, as it is destroyed by nuclear reactions with protons at temperatures higher than about 2.5 million K. According to standard Big Bang nucleosynthesis, only the isotope 7Li is produced in significant amounts, while the primordial abundance of the lighter isotope 6Li is negligible. Lithium is not produced by nucleosynthesis in normal stars, except in peculiar phases of stellar evolution (e.g. in AGB stars and Novae). Lithium may also be formed as a result of flares in the atmospheres of young, active stars. To investigate the history of Li production and depletion in the Galaxy, it is necessary to analyse stars of all ages, including those at solar metallicity. In this case, the spectroscopic determination of the Li abundance is complicated by the presence of other spectral lines overlapping with the Li doublet at 670.7 nm. The correct identification and knowledge of the atomic parameters of these blend lines is critical, especially if the 6LI/7Li isotopic ratio is to be derived. In this investigation, we consider several line lists of the blending components available in the literature and use them to compute synthetic spectra, performing the line formation computations both for the classical 1D Holweger-Mueller model and a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The synthetic spectra are then compared to the solar spectrum observed at different limb angles. This allows us to check the quality of existing line lists, to find potentially misidentified blend lines, and to construct an optimized line list for solar-type stars. Title: A concise overview of the Maunakea Spectroscopic Explorer Authors: McConnachie, Alan W.; Babusiaux, Carine; Balogh, Michael; Caffau, Elisabetta; Côté, Pat; Driver, Simon; Robotham, Aaron; Starkenburg, Else; Venn, Kim; Walker, Matthew; Bauman, Steven E.; Flagey, Nicolas; Ho, Kevin; Isani, Sidik; Laychak, Mary Beth; Mignot, Shan; Murowinski, Rick; Salmon, Derrick; Simons, Doug; Szeto, Kei; Vermeulen, Tom; Withington, Kanoa Bibcode: 2016arXiv160600060M Altcode: This short document is intended as a companion and introduction to the Detailed Science Case (DSC) for the Maunakea Spectroscopic Explorer. It provides a concise summary of the essential characteristics of MSE from the perspective of the international astronomical community. MSE is a wide field telescope (1.5 square degree field of view) with an aperture of 11.25m. It is dedicated to multi-object spectroscopy at several different spectral resolutions in the range R ~ 2500 - 40000 over a broad wavelength range (0.36 - 1.8{\mu}m). MSE will enable transformational science in areas as diverse as exoplanetary host characterization; stellar monitoring campaigns; tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of the distant Galaxy; connecting galaxies to the large scale structure of the Universe; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars. MSE is the largest ground based optical and near infrared telescope in its class, and it will occupy a unique and critical role in the emerging network of astronomical facilities active in the 2020s. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for E-ELT, TMT and GMT. Title: The Detailed Science Case for the Maunakea Spectroscopic Explorer: the Composition and Dynamics of the Faint Universe Authors: McConnachie, Alan; Babusiaux, Carine; Balogh, Michael; Driver, Simon; Côté, Pat; Courtois, Helene; Davies, Luke; Ferrarese, Laura; Gallagher, Sarah; Ibata, Rodrigo; Martin, Nicolas; Robotham, Aaron; Venn, Kim; Villaver, Eva; Bovy, Jo; Boselli, Alessandro; Colless, Matthew; Comparat, Johan; Denny, Kelly; Duc, Pierre-Alain; Ellison, Sara; de Grijs, Richard; Fernandez-Lorenzo, Mirian; Freeman, Ken; Guhathakurta, Raja; Hall, Patrick; Hopkins, Andrew; Hudson, Mike; Johnson, Andrew; Kaiser, Nick; Koda, Jun; Konstantopoulos, Iraklis; Koshy, George; Lee, Khee-Gan; Nusser, Adi; Pancoast, Anna; Peng, Eric; Peroux, Celine; Petitjean, Patrick; Pichon, Christophe; Poggianti, Bianca; Schmid, Carlo; Shastri, Prajval; Shen, Yue; Willot, Chris; Croom, Scott; Lallement, Rosine; Schimd, Carlo; Smith, Dan; Walker, Matthew; Willis, Jon; Colless, Alessandro Bosselli Matthew; Goswami, Aruna; Jarvis, Matt; Jullo, Eric; Kneib, Jean-Paul; Konstantopoloulous, Iraklis; Newman, Jeff; Richard, Johan; Sutaria, Firoza; Taylor, Edwar; van Waerbeke, Ludovic; Battaglia, Giuseppina; Hall, Pat; Haywood, Misha; Sakari, Charli; Schmid, Carlo; Seibert, Arnaud; Thirupathi, Sivarani; Wang, Yuting; Wang, Yiping; Babas, Ferdinand; Bauman, Steve; Caffau, Elisabetta; Laychak, Mary Beth; Crampton, David; Devost, Daniel; Flagey, Nicolas; Han, Zhanwen; Higgs, Clare; Hill, Vanessa; Ho, Kevin; Isani, Sidik; Mignot, Shan; Murowinski, Rick; Pandey, Gajendra; Salmon, Derrick; Siebert, Arnaud; Simons, Doug; Starkenburg, Else; Szeto, Kei; Tully, Brent; Vermeulen, Tom; Withington, Kanoa; Arimoto, Nobuo; Asplund, Martin; Aussel, Herve; Bannister, Michele; Bhatt, Harish; Bhargavi, SS; Blakeslee, John; Bland-Hawthorn, Joss; Bullock, James; Burgarella, Denis; Chang, Tzu-Ching; Cole, Andrew; Cooke, Jeff; Cooper, Andrew; Di Matteo, Paola; Favole, Ginevra; Flores, Hector; Gaensler, Bryan; Garnavich, Peter; Gilbert, Karoline; Gonzalez-Delgado, Rosa; Guhathakurta, Puragra; Hasinger, Guenther; Herwig, Falk; Hwang, Narae; Jablonka, Pascale; Jarvis, Matthew; Kamath, Umanath; Kewley, Lisa; Le Borgne, Damien; Lewis, Geraint; Lupton, Robert; Martell, Sarah; Mateo, Mario; Mena, Olga; Nataf, David; Newman, Jeffrey; Pérez, Enrique; Prada, Francisco; Puech, Mathieu; Recio-Blanco, Alejandra; Robin, Annie; Saunders, Will; Smith, Daniel; Stalin, C. S.; Tao, Charling; Thanjuvur, Karun; Tresse, Laurence; van Waerbeke, Ludo; Wang, Jian-Min; Yong, David; Zhao, Gongbo; Boisse, Patrick; Bolton, James; Bonifacio, Piercarlo; Bouchy, Francois; Cowie, Len; Cunha, Katia; Deleuil, Magali; de Mooij, Ernst; Dufour, Patrick; Foucaud, Sebastien; Glazebrook, Karl; Hutchings, John; Kobayashi, Chiaki; Kudritzki, Rolf-Peter; Li, Yang-Shyang; Lin, Lihwai; Lin, Yen-Ting; Makler, Martin; Narita, Norio; Park, Changbom; Ransom, Ryan; Ravindranath, Swara; Eswar Reddy, Bacham; Sawicki, Marcin; Simard, Luc; Srianand, Raghunathan; Storchi-Bergmann, Thaisa; Umetsu, Keiichi; Wang, Ting-Gui; Woo, Jong-Hak; Wu, Xue-Bing Bibcode: 2016arXiv160600043M Altcode: MSE is an 11.25m aperture observatory with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. More than 3200 fibres will feed spectrographs operating at low (R ~ 2000 - 3500) and moderate (R ~ 6000) spectral resolution, and approximately 1000 fibers will feed spectrographs operating at high (R ~ 40000) resolution. MSE is designed to enable transformational science in areas as diverse as tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of thick disk and halo stars; connecting galaxies to their large scale structure; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars; next generation cosmological surveys using redshift space distortions and peculiar velocities. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, WFIRST, PLATO, and the SKA, and is designed to complement and go beyond the science goals of other planned and current spectroscopic capabilities like VISTA/4MOST, WHT/WEAVE, AAT/HERMES and Subaru/PFS. It is an ideal feeder facility for E-ELT, TMT and GMT, and provides the missing link between wide field imaging and small field precision astronomy. MSE is optimized for high throughput, high signal-to-noise observations of the faintest sources in the Universe with high quality calibration and stability being ensured through the dedicated operational mode of the observatory. (abridged) Title: Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects Authors: Klevas, J.; Kučinskas, A.; Steffen, M.; Caffau, E.; Ludwig, H. -G. Bibcode: 2016A&A...586A.156K Altcode: 2015arXiv151208999K
Aims: Because of the complexities involved in treating spectral line formation in full 3D and non-local thermodynamic equilibrium (NLTE), different simplified approaches are sometimes used to account for the NLTE effects with 3D hydrodynamical model atmospheres. In certain cases, chemical abundances are derived in 1D NLTE and then corrected for the 3D effects by adding 3D-1D LTE (Local Thermodynamic Equilibrium, LTE) abundance corrections (3D+NLTE approach). Alternatively, average ⟨3D⟩ model atmospheres are sometimes used to substitute for the full 3D hydrodynamical models.
Methods: In this work we tested whether the results obtained using these simplified schemes (3D+NLTE, ⟨3D⟩ NLTE) may reproduce those derived using the full 3D NLTE computations. The tests were made using 3D hydrodynamical CO5BOLD model atmospheres of the main sequence (MS), main sequence turn-off (TO), subgiant (SGB), and red giant branch (RGB) stars, all at two metallicities, [ M / H ] = 0.0 and -2.0. Our goal was to investigate the role of 3D and NLTE effects on the formation of the 670.8 nm lithium resonance line. This was done by assessing differences in the strengths of synthetic 670.8 nm line profiles, which were computed using 3D/1D NLTE/LTE approaches.
Results: Our results show that Li 670.8 nm line strengths obtained using different methodologies differ only slightly in most of the models at solar metallicity studied here. However, the line strengths predicted with the 3D NLTE and 3D+NLTE approaches become significantly different at subsolar metallicities. At [ M / H ] = -2.0, this may lead to (3D NLTE) - (3D+NLTE) differences in the predicted lithium abundance of ~0.46 and ~0.31 dex in the TO and RGB stars respectively. On the other hand, NLTE line strengths computed with the average ⟨3D⟩ and 1D model atmospheres are similar to those obtained with the full 3D NLTE approach for MS, TO, SGB, and RGB stars, at all metallicities; 3D - ⟨3D⟩ and 3D - 1D differences in the predicted abundances are always less than ~0.04 dex and ~0.08 dex, respectively. However, neither of the simplified approaches can reliably substitute 3D NLTE spectral synthesis when precision is required. Title: GIANO Y-band spectroscopy of dwarf stars: Phosphorus, sulphur, and strontium abundances Authors: Caffau, E.; Andrievsky, S.; Korotin, S.; Origlia, L.; Oliva, E.; Sanna, N.; Ludwig, H. -G.; Bonifacio, P. Bibcode: 2016A&A...585A..16C Altcode: 2015arXiv151006396C Context. In recent years a number of poorly studied chemical elements, such as phosphorus, sulphur, and strontium, have received special attention as important tracers of the Galactic chemical evolution.
Aims: By exploiting the capabilities of the infrared echelle spectrograph GIANO mounted at the Telescopio Nazionale Galileo, we acquired high resolution spectra of four Galactic dwarf stars spanning the metallicity range between about one-third and twice the solar value. We performed a detailed feasibility study about the effectiveness of the P, S, and Sr line diagnostics in the Y band between 1.03 and 1.10 μm.
Methods: Accurate chemical abundances have been derived using one-dimensional model atmospheres computed in local thermodynamic equilibrium (LTE). We computed the line formation assuming LTE for P, while we performed non-LTE analysis to derive S and Sr abundances.
Results: We were able to derive phosphorus abundance for three stars and an upper limit for one star, while we obtained the abundance of sulphur and strontium for all of the stars. We find [P/Fe] and [S/Fe] abundance ratios consistent with solar-scaled or slightly depleted values, while the [Sr/Fe] abundance ratios are more scattered (by ±0.2 dex) around the solar-scaled value. This is fully consistent with previous studies using both optical and infrared spectroscopy.
Conclusions: We verified that high-resolution, Y-band spectroscopy as provided by GIANO is a powerful tool to study the chemical evolution of P, S, and Sr in dwarf stars.

Based on observations obtained with GIANO. Title: HST/STIS abundances in the uranium rich metal poor star CS 31082-001: Constraints on the r-Process Authors: Siqueira-Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen, J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François, P.; Molaro, P. Bibcode: 2016JPhCS.665a2056S Altcode: As a brief revision, the origin of heavy elements and the role of abundances in extremely metal-poor (EMP) stars are presented. Heavy element abundances in the EMP uranium-rich star CS 31082-001 based mainly on near-UV spectra from STIS/HST are presented. These results should be useful for a better characterisation of the neutron exposure(s) that produced the r-process elements in this star, as well as a guide for improving nuclear data and astrophysical site modelling, given that the new element abundances not available in previous works (Ge, Mo, Lu, Ta, W, Re, Pt, Au, and Bi) make CS 31082-001 the most completely well studied r-II object, with a total of 37 detections of n-capture elements. Title: Chemical composition of a sample of bright solar-metallicity stars Authors: Caffau, E.; Mott, A.; Steffen, M.; Bonifacio, P.; Strassmeier, K. G.; Gallagher, A.; Faraggiana, R.; Sbordone, L. Bibcode: 2015AN....336..968C Altcode: 2015arXiv151004269C We present a detailed analysis of seven young stars observed with the spectrograph SOPHIE at the Observatoire de Haute-Provence for which the chemical composition was incomplete or absent in the literature. For five stars, we derived the stellar parameters and chemical compositions using our automatic pipeline optimized for F, G, and K stars, while for the other two stars with high rotational velocity, we derived the stellar parameters by using other information (parallax), and performed a line-by-line analysis. Chromospheric emission-line fluxes from Ca II are obtained for all targets. The stellar parameters we derive are generally in good agreement with what is available in the literature. We provide a chemical analysis of two of the stars for the first time. The star HIP 80124 shows a strong Li feature at 670.8 nm implying a high lithium abundance. Its chemical pattern is not consistent with it being a solar sibling, as has been suggested.

Data obtained at Observatoire de Haute Provence, with the SOPHIE spectrograph. Title: The photospheric solar oxygen project. IV. 3D-NLTE investigation of the 777 nm triplet lines Authors: Steffen, M.; Prakapavičius, D.; Caffau, E.; Ludwig, H. -G.; Bonifacio, P.; Cayrel, R.; Kučinskas, A.; Livingston, W. C. Bibcode: 2015A&A...583A..57S Altcode: 2015arXiv150803487S Context. The solar photospheric oxygen abundance is still widely debated. Adopting the solar chemical composition based on the "low" oxygen abundance, as determined with the use of three-dimensional (3D) hydrodynamical model atmospheres, results in a well-known mismatch between theoretical solar models and helioseismic measurements that is so far unresolved.
Aims: We carry out an independent redetermination of the solar oxygen abundance by investigating the center-to-limb variation of the O i IR triplet lines at 777 nm in different sets of spectra.
Methods: The high-resolution and high signal-to-noise solar center-to-limb spectra are analyzed with the help of detailed synthetic line profiles based on 3D hydrodynamical CO5BOLD model atmospheres and 3D non-LTE line formation calculations with NLTE3D. The idea is to exploit the information contained in the observations at different limb angles to simultaneously derive the oxygen abundance, A(O), and the scaling factor SH that describes the cross-sections for inelastic collisions with neutral hydrogen relative to the classical Drawin formula. Using the same codes and methods, we compare our 3D results with those obtained from the semi-empirical Holweger-Müller model atmosphere as well as from different one-dimensional (1D) reference models.
Results: With the CO5BOLD 3D solar model, the best fit of the center-to-limb variation of the triplet lines is obtained when the collisions by neutral hydrogen atoms are assumed to be efficient, i.e., when the scaling factor SH is between 1.2 and 1.8, depending on the choice of the observed spectrum and the triplet component used in the analysis. The line profile fits achieved with standard 1D model atmospheres (with fixed microturbulence, independent of disk position μ) are clearly of inferior quality compared to the 3D case, and give the best match to the observations when ignoring collisions with neutral hydrogen (SH = 0). The results derived with the Holweger-Müller model are intermediate between 3D and standard 1D.
Conclusions: The analysis of various observations of the triplet lines with different methods yields oxygen abundance values (on a logarithmic scale where A(H) = 12) that fall in the range 8.74 <A(O) < 8.78, and our best estimate of the 3D non-LTE solar oxygen abundance is A(O) = 8.76 ± 0.02. All 1D non-LTE models give much lower oxygen abundances, by up to -0.15 dex. This is mainly a consequence of the assumption of a μ-independent microturbulence. An independent determination of the relevant collisional cross-sections is essential to substantially improve the accuracy of the oxygen abundance derived from the O i IR triplet.

Appendices E and F are available in electronic form at http://www.aanda.org Title: Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations. I. Adiabatic oscillations Authors: Sonoi, T.; Samadi, R.; Belkacem, K.; Ludwig, H. -G.; Caffau, E.; Mosser, B. Bibcode: 2015A&A...583A.112S Altcode: 2015arXiv151000300S Context. The CoRoT and Kepler space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections.
Aims: Our aim is to constrain the surface-effect corrections across the Hertzsprung-Russell (HR) diagram using a set of 3D hydrodynamical simulations.
Methods: We used a grid of these simulations computed with the CO5BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation.
Results: We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above νmax. Finally, we show that, owing to turbulent pressure, the elevation of the uppermost layers modifies the location of the hydrogen ionization zone and consequently introduces glitches in the surface effects for models with high (low) effective temperature (surface gravity).
Conclusions: Surface-effect corrections vary significantly across the HR diagram. Therefore, empirical relations like those by Kjeldsen et al. must not be calibrated on the Sun but should instead be constrained using realistic physical modeling as provided by 3D hydrodynamical simulations. Title: Lithium abundance in a turnoff halo star on an extreme orbit Authors: Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P. Bibcode: 2015A&A...582A..74S Altcode: 2015arXiv150907809S Context. The lithium abundance in turnoff stars of the old population of our Galaxy is remarkably constant in the metallicity interval -2.8 < [Fe/H] < -2.0, defining a plateau. The Li abundance of these turnoff stars is clearly lower than the abundance predicted by the primordial nucleosynthesis in the frame of the standard Big Bang nucleosynthesis. Different scenarios have been proposed for explaining this discrepancy, along with the very low scatter of the lithium abundance around the plateau.
Aims: The recently identified very high velocity star, WISE J0725-2351 appears to belong to the old Galactic population, and appears to be an extreme halo star on a bound, retrograde Galactic orbit. In this paper, we study the abundance ratios and, in particular the lithium abundance, in this star.
Methods: The available spectra (ESO-Very Large Telescope) are analyzed and the abundances of Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Sr and Ba are determined.
Results: The abundance ratios in WISE J0725-2351 are those typical of old turnoff stars. The lithium abundance in this star is in close agreement with the lithium abundance found in the metal-poor turnoff stars located at moderate distance from the Sun. This high velocity star confirms, in an extreme case, that the very small scatter of the lithium plateau persists independent of the dynamic and kinematic properties of the stars.

Based on observations obtained at the ESO Paranal Observatory, Chile Programmes 093.D-0127, PI: S. Geier and 189.B-0925, PI: S. Trager.Table 2 (line by line abundances of the elements) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A74 Title: Grid of theoretical NLTE equivalent widths of four Ba ii lines and barium abundance in cool stars Authors: Korotin, S. A.; Andrievsky, S. M.; Hansen, C. J.; Caffau, E.; Bonifacio, P.; Spite, M.; Spite, F.; François, P. Bibcode: 2015A&A...581A..70K Altcode: 2015arXiv150707472K Context. We present a grid of computed non-local thermodynamic equilibrium (NLTE) equivalent widths (EW) and NLTE abundance corrections for four Ba ii lines: 4554, 5853, 6141, and 6496 Å.
Aims: The grid can be useful in deriving the NLTE barium abundance in stars having parameters in the following ranges: effective temperature from 4000 K to 6500 K, surface gravity log g from 0 to 5, microturbulent velocity 0 km s-1 to 3 km s-1, metallicity [Fe/H] from -2 to +0.5, and [Ba/Fe] from -0.4 to +0.6. The NLTE abundance can be either derived by EW interpolation (using the observed Ba ii line EW) or by using the NLTE correction applied to a previously determined LTE abundance.
Methods: Ba ii line equivalent widths and the NLTE corrections were calculated using the updated MULTI code and the Ba ii atomic model that was previously applied to determine the NLTE barium abundance in different types of stars.
Results: The grid is available on-line through the web, and we find that the grid Ba NLTE corrections are almost as accurate as direct NLTE profile fitting (to within 0.05-0.08 dex). For the weakest Ba ii line (5853 Å) the LTE abundances almost agree with the NLTE abundances, whereas the other three Ba ii lines, 4554, 6141, and 6496 Å, need NLTE corrections even at the highest metallicities tested here. The 4554 Å line is extremely strong and should not be used for abundance analysis above [Fe/H] = -1. Furthermore, we tested the impact of different model atmospheres and spectrum synthesis codes and found average differences of 0.06 dex and 0.09 dex, respectively, for all four lines. At these metallicities we find an average ΔNLTE of ± 0.1 dex for the three useful Ba lines for subsolar cool dwarfs.

Tables 4 and 5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A70Appendix A is available in electronic form at http://www.aanda.org Title: Stellar science from a blue wavelength range. A possible design for the blue arm of 4MOST Authors: Hansen, C. J.; Ludwig, H. -G.; Seifert, W.; Koch, A.; Xu, W.; Caffau, E.; Christlieb, N.; Korn, A. J.; Lind, K.; Sbordone, L.; Ruchti, G.; Feltzing, S.; de Jong, R. S.; Barden, S. Bibcode: 2015AN....336..665H Altcode: 2015arXiv150802714H From stellar spectra, a variety of physical properties of stars can be derived. In particular, the chemical composition of stellar atmospheres can be inferred from absorption line analyses. These provide key information on large scales, such as the formation of our Galaxy, down to the small-scale nucleosynthesis processes that take place in stars and supernovae. By extending the observed wavelength range toward bluer wavelengths, we optimize such studies to also include critical absorption lines in metal-poor stars, and allow for studies of heavy elements (Z\ensuremath{g}e 38) whose formation processes remain poorly constrained. In this context, spectrographs optimized for observing blue wavelength ranges are essential, since many absorption lines at redder wavelengths are too weak to be detected in metal-poor stars. This means that some elements cannot be studied in the visual-redder regions, and important scientific tracers and science cases are lost. The present era of large public surveys will target millions of stars. It is therefore important that the next generation of spectrographs are designed such that they cover a wide wavelength range and can observe a large number of stars simultaneously. Only then, we can gain the full information from stellar spectra, from both metal-poor to metal-rich ones, that will allow us to understand the aforementioned formation scenarios in greater detail. Here we describe the requirements driving the design of the forthcoming survey instrument 4MOST, a multi-object spectrograph commissioned for the ESO VISTA 4 m-telescope. While 4MOST is also intended for studies of active galactic nuclei, baryonic acoustic oscillations, weak lensing, cosmological constants, supernovae and other transients, we focus here on high-density, wide-area survey of stars and the science that can be achieved with high-resolution stellar spectroscopy. Scientific and technical requirements that governed the design are described along with a thorough line blending analysis. For the high-resolution spectrograph, we find that a sampling of {\ensuremath{g}e 2.5} (pixels per resolving element), spectral resolution of 18 000 or higher, and a wavelength range covering 393-436 nm, is the most well-balanced solution for the instrument. A spectrograph with these characteristics will enable accurate abundance analysis (± 0.1 dex) in the blue and allow us to confront the outlined scientific questions. Title: VizieR Online Data Catalog: WISE J072543.88-235119.7 line abundances (Spite+, 2015) Authors: Spite, M.; Spite, F.; Caffau, E.; Bonifacio, P. Bibcode: 2015yCat..35820074S Altcode: Main parameters of the lines and logarithm of the corresponding abundances for logA(H)=12.

(1 data file). Title: VizieR Online Data Catalog: Grid of NLTE EW and NLTE corrections BaII lines (Korotin+, 2015) Authors: Korotin, S. A.; Andrievsky, S. M.; Hansen, C. J.; Caffau, E.; Bonifacio, P.; Spite, M.; Spite, F.; Francois, P. Bibcode: 2015yCat..35810070K Altcode: The following stellar parameter ranges are covered by our grid, which focuses on more metal-rich stars (compared to the very metal-poor and extremely metal-poor stas) that are typically targeted in current and future surveys:

- effective temperature: 4000-6500K, step = 250K; - surface gravity: 0-5, step = 0.5 - microturbulent velocity: 0-3km/s, step = 1km/s; - metallicity: [Fe/H] = +0.5, 0.0, -0.5, -1.0, -1.5 and -2.0; - relative barium abundance: [Ba/Fe] = -0.40, -0.20, 0.00, +0.20, +0.40, +0.60.

For the models with [Fe/H] below -1.00 we calculated NLTE equivalent widths with an increased atmosphere abundance of alpha-elements ([alpha/Fe]=+0.4), while for a metallicity of -0.5 both cases (solar alpha-element abundance and an increased one) were considered.

The NLTE equivalent widths of the four barium lines were calculated: 4554, 5853, 6141, and 6496Å.

Tables 4 and 5 contain the NLTE equivalent widths and NLTE corrections, respectively. For each barium line we selected six values of [Ba/Fe] (-0.4, -0.2, 0.0, +0.2, +0.4 and +0.6) for the NLTE EW grid, and three values of [Ba/Fe] (-0.2, 0.1, and +0.4) for the NLTE correction grid. For each of these values we list in the corresponding table the EWs or corrections calculated for the full set of effective temperature, surface gravity, microturbulent velocity, and metallicity.

(2 data files). Title: The photospheric solar oxygen project. III. Investigation of the centre-to-limb variation of the 630 nm [O I]-Ni I blend Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M.; Livingston, W.; Bonifacio, P.; Malherbe, J. -M.; Doerr, H. -P.; Schmidt, W. Bibcode: 2015A&A...579A..88C Altcode: 2015arXiv150600931C Context. The solar photospheric abundance of oxygen is still a matter of debate. For about ten years some determinations have favoured a low oxygen abundance which is at variance with the value inferred by helioseismology. Among the oxygen abundance indicators, the forbidden line at 630 nm has often been considered the most reliable even though it is blended with a Ni i line. In Papers I and II of this series we reported a discrepancy in the oxygen abundance derived from the 630 nm and the subordinate [O I] line at 636 nm in dwarf stars, including the Sun.
Aims: Here we analyse several, in part new, solar observations of the centre-to-limb variation of the spectral region including the blend at 630 nm in order to separate the individual contributions of oxygen and nickel.
Methods: We analyse intensity spectra observed at different limb angles in comparison with line formation computations performed on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere.
Results: The oxygen abundances obtained from the forbidden line at different limb angles are inconsistent if the commonly adopted nickel abundance of 6.25 is assumed in our local thermodynamic equilibrium computations. With a slightly lower nickel abundance, A(Ni) ≈ 6.1, we obtain consistent fits indicating an oxygen abundance of A(O) = 8.73 ± 0.05. At this value the discrepancy with the subordinate oxygen line remains.
Conclusions: The derived value of the oxygen abundance supports the notion of a rather low oxygen abundance in the solar photosphere. However, it is disconcerting that the forbidden oxygen lines at 630 and 636 nm give noticeably different results, and that the nickel abundance derived here from the 630 nm blend is lower than expected from other nickel lines. Title: TOPoS . II. On the bimodality of carbon abundance in CEMP stars Implications on the early chemical evolution of galaxies Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Limongi, M.; Chieffi, A.; Klessen, R. S.; François, P.; Molaro, P.; Ludwig, H. -G.; Zaggia, S.; Spite, F.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark, P. C.; Glover, S. C. O.; Hammer, F.; Koch, A.; Monaco, L.; Sbordone, L.; Steffen, M. Bibcode: 2015A&A...579A..28B Altcode: 2015arXiv150405963B Context. In the course of the Turn Off Primordial Stars (TOPoS) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. These stars are very common among the stars of extremely low metallicity and provide important clues to the star formation processes. We here present our analysis of six CEMP stars.
Aims: We want to provide the most complete chemical inventory for these six stars in order to constrain the nucleosynthesis processes responsible for the abundance patterns.
Methods: We analyse both X-Shooter and UVES spectra acquired at the VLT. We used a traditional abundance analysis based on OSMARCS 1D local thermodynamic equilibrium (LTE) model atmospheres and the turbospectrum line formation code.
Results: Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0 ≤ [Ca/H] <-2.1 and 7.12 ≤ A(C) ≤ 8.65. For star SDSS J1742+2531 we were able to detect three Fe i lines from which we deduced [Fe/H] = -4.80, from four Ca ii lines we derived [Ca/H] = -4.56, and from synthesis of the G-band we derived A(C) = 7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3σ) upper limit of [Fe/H] < -5.0 and measure the Ca abundance, with [Ca/H] = -5.0, and carbon, A(C) = 6.90, suggesting that this star could be even more metal-poor than SDSS J1742+2531. This makes these two stars the seventh and eighth stars known so far with [Fe/H] < -4.5, usually termed ultra-iron-poor (UIP) stars. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li) < 1.8 for both stars.
Conclusions: Our measured carbon abundances confirm the bimodal distribution of carbon in CEMP stars, identifying a high-carbon band and a low-carbon band. We propose an interpretation of this bimodality according to which the stars on the high-carbon band are the result of mass transfer from an AGB companion, while the stars on the low-carbon band are genuine fossil records of a gas cloud that has also been enriched by a faint supernova (SN) providing carbon and the lighter elements. The abundance pattern of the UIP stars shows a large star-to-star scatter in the [X/Ca] ratios for all elements up to aluminium (up to 1 dex), but this scatter drops for heavier elements and is at most of the order of a factor of two. We propose that this can be explained if these stars are formed from gas that has been chemically enriched by several SNe, that produce the roughly constant [X/Ca] ratios for the heavier elements, and in some cases the gas has also been polluted by the ejecta of a faint SN that contributes the lighter elements in variable amounts. The absence of lithium in four of the five known unevolved UIP stars can be explained by a dominant role of fragmentation in the formation of these stars. This would result either in a destruction of lithium in the pre-main-sequence phase, through rotational mixing or to a lack of late accretion from a reservoir of fresh gas. The phenomenon should have varying degrees of efficiency.

Based on observations obtained at ESO Paranal Observatory, programme 091.D-0288, 091.D-0305, 189.D-0165.Appendix A is available in electronic form at http://www.aanda.orgTables 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A28 Title: Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy? Authors: Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S. Bibcode: 2015A&A...579A.104S Altcode: 2015arXiv150501487S Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated.
Aims: NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634.
Methods: We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population.
Results: We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends.
Conclusions: The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system.

Appendix A is available in electronic form at http://www.aanda.orgAtomic data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/vol/A104 Title: Chemical abundances of giant stars in the Crater stellar system Authors: Bonifacio, P.; Caffau, E.; Zaggia, S.; François, P.; Sbordone, L.; Andrievsky, S. M.; Korotin, S. A. Bibcode: 2015A&A...579L...6B Altcode: 2015arXiv150603615B
Aims: We obtained spectra for two giants of Crater (Crater J113613-105227 and Crater J113615-105244) using X-Shooter at the VLT, with the purpose of determining their radial velocities and metallicities.
Methods: Radial velocities were determined by cross-correlating the spectra with that of a standard star. The spectra were analysed with the MyGIsFOS code using a grid of synthetic spectra computed from one-dimensional, local thermodynamic equilibrium (LTE) model atmospheres. Effective temperature and surface gravity were derived from photometry measured from images obtained by the Dark Energy Survey.
Results: The radial velocities are 144.3 ± 4.0 km s-1 for Crater J113613-105227 and and 134.1 ± 4.0km s-1 for Crater J113615-105244. The metallicities are [Fe/H] = -1.73 and [Fe/H] = -1.67, respectively. In addition to the iron abundance, we were able to determine abundances for nine elements: Na, Mg, Ca, Ti, V, Cr, Mn, Ni, and Ba. For Na and Ba we took into account deviations from LTE because the corrections are significant. The abundance ratios are similar in the two stars and resemble those of Galactic stars of the same metallicity. In the deep photometric images we detected several stars that lie to the blue of the turn-off.
Conclusions: The radial velocities imply that both stars are members of the Crater stellar system. The difference in velocity between the two taken at face value implies a velocity dispersion >3.7 km s-1 at a 95% confidence level. Our spectroscopic metallicities agree excellently well with those determined by previous investigations using photometry. Our deep photometry and the spectroscopic metallicity imply an age of 7 Gyr for the main population of the system. The stars to the blue of the turn-off can be interpreted as a younger population that is of the same metallicity and an age of 2.2 Gyr. Finally, spatial and kinematical parameters support the idea that this system is associated with the galaxies Leo IV and Leo V. All the observations favour the interpretation of Crater as a dwarf galaxy.

Based on observations taken at ESO Paranal with the Kueyen telescope, programme 094.D-0547.Tables 3-4, Figs. 4-5, and Appendices are available in electronic form at http://www.aanda.org Title: VizieR Online Data Catalog: Abundances of 3 CEMP stars (Bonifacio+, 2015) Authors: Bonifacio, P.; Caffau, E.; Spite, M.; Limongi, M.; Chieffi, A.; Klessen, R. S.; Francois, P.; Molaro, P.; Ludwig, H. -G.; Zaggia, S.; Spite, F.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark, P. C.; Glover, S. C. O.; Hammer, F.; Koch, A.; Monaco, L.; Sbordone, L.; Steffen, M. Bibcode: 2015yCat..35790028B Altcode: We analyse both X-Shooter and UVES spectra acquired at the VLT. We used a traditional abundance analysis based on OSMARCS 1D Local Thermodynamic Equilibrium (LTE) model atmospheres and the TURBOSPECTRUM line formation code.

(2 data files). Title: Galactic evolution of sulphur as traced by globular clusters Authors: Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L. Bibcode: 2015A&A...577A..18K Altcode: 2015arXiv150302691K Context. Sulphur is an important volatile α element, but its role in the Galactic chemical evolution is still uncertain, and more observations constraining the sulphur abundance in stellar photospheres are required.
Aims: We derive the sulphur abundances in red giant branch (RGB) stars in three Galactic halo globular clusters (GC) that cover a wide metallicity range (-2.3 < [Fe/H] < -1.2): M 4 (NGC 6121), M 22 (NGC 6656), and M 30 (NGC 7099). The halo field stars show a large scatter in the [S/Fe] ratio in this metallicity span, which is inconsistent with canonical chemical evolution models. To date, very few measurements of [S/Fe] exist for stars in GCs, which are good tracers of the chemical enrichment of their environment. However, some light and α elements show star-to-star variations within individual GCs, and it is as yet unclear whether the α element sulphur also varies between GC stars.
Methods: We used the infrared spectrograph CRIRES to obtain high-resolution (R ~ 50 000), high signal-to-noise (S/N ~ 200 per px) spectra in the region of the S I multiplet 3 at 1045 nm for 15 GC stars selected from the literature (six stars in M 4,six stars in M 22, and three stars in M 30). Multiplet 3 is better suited for S abundance derivation than the more commonly used lines of multiplet 1 at 920 nm, since its lines are not blended by telluric absorption or other stellar features at low metallicity.
Results: We used spectral synthesis to derive the [S/Fe] ratio of the stars assuming local thermodynamic equilibrium (LTE). We find mean [S/Fe]LTE = 0.58 ± 0.01 ± 0.20 dex (statistical and systematic error) for M 4, [S/Fe]LTE = 0.57 ± 0.01 ± 0.19 dex for M 22, and [S/Fe]LTE = 0.55 ± 0.02 ± 0.16 dex for M 30. The negative NLTE corrections are estimated to be in the order of the systematic uncertainties. We do not detect star-to-star variations of the S abundance in any of the observed GCs, with the possible exception of two individual stars, one in M 22 and one in M 30, which appear to be highly enriched in S.
Conclusions: With the tentative exception of two stars with measured high S abundances, we conclude that sulphur behaves like a typical α element in the studied Galactic GCs, showing enhanced abundances with respect to the solar value at metallicities below [Fe/H]-1.0 dex without a considerable spread.

Based on observations made with ESO telescopes at the La Silla Paranal Observatory under programmes ID 091.B-0171(A).The reduced spectra and the best fit synthetic models are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A18 Title: VizieR Online Data Catalog: Abundances in NGC 5053 and NGC 5634 (Sbordone+, 2015) Authors: Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S. Bibcode: 2015yCat..35790104S Altcode: These two tables contain the results relative to the fitting of all the individual spectral features employed in the analysis. The "alllines.dat" table contains the feature characteristics (e.g. ion abundance fitted through the feature, starting and ending wavelength...), the fitting results (e.g. the derived abundance) and a star and feature identifiers. The second table (allsynth.txt) contain the detailed observed and fitted profiles for each feature. Each line contains the star and feature identifiers, the wavelength of that specific "pixel" and the corresponding observed and fitted normalized fluxes.

(3 data files). Title: Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. IV. Oxygen diagnostics in extremely metal-poor red giants with infrared OH lines Authors: Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Spite, M. Bibcode: 2015A&A...576A.128D Altcode: 2015arXiv150206587D Context. Although oxygen is an important tracer of Galactic chemical evolution, measurements of its abundance in the atmospheres of the oldest Galactic stars are still scarce and rather imprecise. This is mainly because only a few spectral lines are available for the abundance diagnostics. At the lowest end of the metallicity scale, oxygen can only be measured in giant stars and in most of cases such measurements rely on a single forbidden [O i] 630 nm line that is very weak and frequently blended with telluric lines. Although molecular OH lines located in the ultraviolet and infrared could also be used for the diagnostics, oxygen abundances obtained from the OH lines and the [O i] 630 nm line are usually discrepant to a level of ~ 0.3-0.4 dex.
Aims: We study the influence of convection on the formation of the infrared (IR) OH lines and the forbidden [O i] 630 nm line in the atmospheres of extremely metal-poor (EMP) red giant stars. Our ultimate goal is to clarify whether a realistic treatment of convection with state-of-the-art 3D hydrodynamical model atmospheres may help to bring the oxygen abundances obtained using the two indicators into closer agreement.
Methods: We used high-resolution (R = 50 000) and high signal-to-noise ratio (S/N ≈ 200-600) spectra of four EMP red giant stars obtained with the VLT CRIRES spectrograph. For each EMP star, 4-14 IR OH vibrational-rotational lines located in the spectral range of 1514-1548 and 1595-1632 nm were used to determine oxygen abundances by employing standard 1D local thermodynamic equilibrium (LTE) abundance analysis methodology. We then corrected the 1D LTE abundances obtained from each individual OH line for the 3D hydrodynamical effects, which was done by applying 3D-1D LTE abundance corrections that were determined using 3D hydrodynamical CO5BOLD and 1D hydrostatic LHD model atmospheres.
Results: We find that the influence of convection on the formation of [O i] 630 nm line in the atmospheres of EMP giants studied here is minor, which leads to very small 3D-1D abundance corrections (Δ3D-1D ≤ -0.01 dex). On the contrary, IR OH lines are strongly affected by convection and thus the abundance corrections for these lines are significant, Δ3D-1D ≈ -0.2···-0.3 dex. These abundance corrections do indeed bring the 1D LTE oxygen abundances of EMP red giants obtained using IR OH lines into better agreement with those determined from the [O i] 630 nm line. Since in the EMP red giants IR OH lines are typically at least a factor of two stronger than the [O i] line, OH lines may be useful indicators of oxygen abundances in the EMP stars, provided that the analysis is based on 3D hydrodynamical model atmospheres.

Based on observations obtained at the European Southern Observatory (ESO) Very Large Telescope (VLT) at Paranal Observatory, Chile (observing programme 089.D-0079).Appendices are available in electronic form at http://www.aanda.org Title: VizieR Online Data Catalog: Reduced CRIRES spectra around S multiplet 3 (Kacharov+, 2015) Authors: Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L. Bibcode: 2015yCat..35770018K Altcode: 2015yCat..35779018K We provide the reduced CRIRES spectra in the region of the S multiplet 3 for all 15 analysed stars together with the best fit synthetic spectra. We have interpolated the Kurucz AODFNEW alpha-enhanced models to produce the synthetic spectra with scaled solar input abundances except the alpha elements, where [alpha/Fe]=0.4dex. The parameters for the synthesis are provided in Table 1 of the article.

(2 data files). Title: Oxygen in the Early Galaxy: OH Lines as Tracers of Oxygen Abundance in Extremely Metal-Poor Giant Stars Authors: Kucinskas, A.; Dobrovolskas, V.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Spite, M. Bibcode: 2015csss...18..327K Altcode: 2014arXiv1409.3153K Oxygen is a powerful tracer element of Galactic chemical evolution. Unfortunately, only a few oxygen lines are available in the ultraviolet-infrared stellar spectra for the reliable determination of its abundance. Moreover, oxygen abundances obtained using different spectral lines often disagree significantly. In this contribution we therefore investigate whether the inadequate treatment of convection in 1D hydrostatic model atmospheres used in the abundance determinations may be responsible for this disagreement. For this purpose, we used VLT CRIRES spectra of three EMP giants, as well as 3D hydrodynamical COBOLD and 1D hydrostatic LHD model atmospheres, to investigate the role of convection in the formation of infrared (IR) OH lines. Our results show that the presence of convection leads to significantly stronger IR OH lines. As a result, the difference in the oxygen abundance determined from IR OH lines with 3D hydrodynamical and classical 1D hydrostatic model atmospheres may reach -0.2 dots -0.3 dex. In case of the three EMP giants studied here, we obtain a good agrement between the 3D LTE oxygen abundances determined by us using vibrational-rotational IR OH lines in the spectral range of 1514-1626 nm, and oxygen abundances determined from forbidden [O I] 630 nm line in previous studies. Title: The Gaia-ESO Survey: Extracting diffuse interstellar bands from cool star spectra. DIB-based interstellar medium line-of-sight structures at the kpc scale Authors: Puspitarini, L.; Lallement, R.; Babusiaux, C.; Chen, H. -C.; Bonifacio, P.; Sbordone, L.; Caffau, E.; Duffau, S.; Hill, V.; Monreal-Ibero, A.; Royer, F.; Arenou, F.; Peralta, R.; Drew, J. E.; Bonito, R.; Lopez-Santiago, J.; Alfaro, E. J.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Costado, M. T.; Lardo, C.; de Laverny, P.; Zwitter, T. Bibcode: 2015A&A...573A..35P Altcode: 2014arXiv1410.0842P
Aims: We study how diffuse interstellar bands (DIBs) measured toward distance-distributed target stars can be used to locate dense interstellar (IS) clouds in the Galaxy and probe a line-of-sight (LOS) kinematical structure, a potentially useful tool when gaseous absorption lines are saturated or not available in the spectral range. Cool target stars are numerous enough for this purpose.
Methods: We devised automated DIB-fitting methods appropriate for cool star spectra and multiple IS components. The data were fitted with a combination of a synthetic stellar spectrum, a synthetic telluric transmission, and empirical DIB profiles. The initial number of DIB components and their radial velocity were guided by HI 21 cm emission spectra, or, when available in the spectral range, IS neutral sodium absorption lines. For NaI, radial velocities of NaI lines and DIBs were maintained linked during a global simultaneous fit. In parallel, stellar distances and extinctions were estimated self-consistently by means of a 2D Bayesian method from spectroscopically-derived stellar parameters and photometric data.
Results: We have analyzed Gaia-ESO Survey (GES) spectra of 225 stars that probe between ~2 and 10 kpc long LOS in five different regions of the Milky Way. The targets are the two CoRoT fields, two open clusters (NGC 4815 and γ Vel), and the Galactic bulge. Two OGLE fields toward the bulge observed before the GES are also included (205 target stars). Depending on the observed spectral intervals, we extracted one or more of the following DIBs: λλ 6283.8, 6613.6, and 8620.4. For each field, we compared the DIB strengths with the Bayesian distances and extinctions, and the DIB Doppler velocities with the HI emission spectra.
Conclusions: For all fields, the DIB strength and the target extinction are well correlated. For targets that are widely distributed in distance, marked steps in DIBs and extinction radial distance profiles match each other and broadly correspond to the expected locations of spiral arms. For all fields, the DIB velocity structure agrees with HI emission spectra, and all detected DIBs correspond to strong NaI lines. This illustrates how DIBs can be used to locate the Galactic interstellar gas and to study its kinematics at the kpc scale, as illustrated by Local and Perseus Arm DIBs that differ by ≳30 km s-1, in agreement with HI emission spectra. On the other hand, if most targets are located beyond the main absorber, DIBs can trace the differential reddening within the field.

Based on observations made with the ESO/VLT at Paranal Observatory, under programs 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey) and 079.B-0662.Tables with the basic data and observed parameters for the 429 stars are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A35 Title: The Science Case for Multi-Object Spectroscopy on the European ELT Authors: Evans, Chris; Puech, Mathieu; Afonso, Jose; Almaini, Omar; Amram, Philippe; Aussel, Hervé; Barbuy, Beatriz; Basden, Alistair; Bastian, Nate; Battaglia, Giuseppina; Biller, Beth; Bonifacio, Piercarlo; Bouché, Nicholas; Bunker, Andy; Caffau, Elisabetta; Charlot, Stephane; Cirasuolo, Michele; Clenet, Yann; Combes, Francoise; Conselice, Chris; Contini, Thierry; Cuby, Jean-Gabriel; Dalton, Gavin; Davies, Ben; de Koter, Alex; Disseau, Karen; Dunlop, Jim; Epinat, Benoît; Fiore, Fabrizio; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fusco, Thierry; Gadotti, Dimitri; Gallazzi, Anna; Gallego, Jesus; Giallongo, Emanuele; Gonçalves, Thiago; Gratadour, Damien; Guenther, Eike; Hammer, Francois; Hill, Vanessa; Huertas-Company, Marc; Ibata, Roridgo; Kaper, Lex; Korn, Andreas; Larsen, Søren; Le Fèvre, Olivier; Lemasle, Bertrand; Maraston, Claudia; Mei, Simona; Mellier, Yannick; Morris, Simon; Östlin, Göran; Paumard, Thibaut; Pello, Roser; Pentericci, Laura; Peroux, Celine; Petitjean, Patrick; Rodrigues, Myriam; Rodríguez-Muñoz, Lucía; Rouan, Daniel; Sana, Hugues; Schaerer, Daniel; Telles, Eduardo; Trager, Scott; Tresse, Laurence; Welikala, Niraj; Zibetti, Stefano; Ziegler, Bodo Bibcode: 2015arXiv150104726E Altcode: This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest 'first-light' structures in the partially-reionised Universe. The material presented here results from thorough discussions within the community over the past four years, building on the past competitive studies to agree a common strategy toward realising a MOS capability on the E-ELT. The cases have been distilled to a set of common requirements which will be used to define the MOSAIC instrument, entailing two observational modes ('high multiplex' and 'high definition'). When combined with the unprecedented sensitivity of the E-ELT, MOSAIC will be the world's leading MOS facility. In analysing the requirements we also identify a high-multiplex MOS for the longer-term plans for the E-ELT, with an even greater multiplex (>1000 targets) to enable studies of large-scale structures in the high-redshift Universe. Following the green light for the construction of the E-ELT the MOS community, structured through the MOSAIC consortium, is eager to realise a MOS on the E-ELT as soon as possible. We argue that several of the most compelling cases for ELT science, in highly competitive areas of modern astronomy, demand such a capability. For example, MOS observations in the early stages of E-ELT operations will be essential for follow-up of sources identified by the James Webb Space Telescope (JWST). In particular, multi-object adaptive optics and accurate sky subtraction with fibres have both recently been demonstrated on sky, making fast-track development of MOSAIC feasible. Title: The low Sr/Ba ratio on some extremely metal-poor stars Authors: Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; François, P.; Sbordone, L. Bibcode: 2014A&A...571A..40S Altcode: 2014arXiv1410.0847S Context. It has been noted that, in classical extremely metal-poor (EMP) stars, the abundance ratio of two well-observed neutron-capture elements, Sr and Ba, is always higher than [Sr/Ba] = -0.5, which is the value of the solar r-only process; however, a handful of EMP stars have recently been found with a very low Sr/Ba ratio.
Aims: We try to understand the origin of this anomaly by comparing the abundance pattern of the elements in these stars and in the classical EMP stars.
Methods: For a rigorous comparison with previous data, four stars with very low Sr/Ba ratios were observed and analyzed in the same way as in the First Stars program: analysis within LTE approximation through 1D (hydrostatic) model atmosphere, providing homogeneous abundances of nine neutron-capture elements.
Results: In CS 22950-173, the only turnoff star of the sample, the Sr/Ba ratio is, in fact, found to be higher than the r-only solar ratio, so the star is discarded. The remaining stars (CS 29493-090, CS 30322-023, HE 305-4520) are cool evolved giants. They do not present a clear carbon enrichment, but in evolved giants C is partly burned into N, and owing to their high N abundance, they could still have initially been carbon-rich EMP stars (CEMP). The abundances of Na to Mg present similar anomalies to those in CEMP stars. The abundance patterns of the neutron-capture elements in the three stars are strikingly similar to a theoretical s-process pattern. This pattern could at first be attributed to pollution by a nearby AGB, but none of the stars presents a clear variation in the radial velocity indicating the presence of a companion. The stellar parameters seem to exclude any internal pollution in a TP-AGB phase for at least two of these stars. The possibility that the stars are early-AGB stars polluted during the core He flash does not seem compatible with the theory.

Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 077.D-0299(A) PI Bonifacio, and ID 078.B-0238(A) PI Spite), and on archive data ID 076.D-0451(A) PI Johnson.The line list and the abundances line by line are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/571/A40 Title: Chemical abundances of the metal-poor horizontal-branch stars CS 22186-005 and CS 30344-033 Authors: Çalışkan, Ş.; Caffau, E.; Bonifacio, P.; Christlieb, N.; Monaco, L.; Beers, T. C.; Albayrak, B.; Sbordone, L. Bibcode: 2014A&A...571A..62C Altcode: 2014arXiv1410.2189C We report on a chemical-abundance analysis of two very metal-poor horizontal-branch stars in the Milky Way halo: CS 22186-005 ([ Fe/H ] = -2.70) and CS 30344-033 ([ Fe/H ] = -2.90). The analysis is based on high-resolution spectra obtained at ESO, with the spectrographs HARPS at the 3.6 m telescope, and UVES at the VLT. We adopted one-dimensional, plane-parallel model atmospheres assuming local thermodynamic equilibrium. We derived elemental abundances for 13 elements for CS 22186-005 and 14 elements for CS 30344-033. This study is the first abundance analysis of CS 30344-033. CS 22186-005 has been analyzed previously, but we report here the first measurement of nickel (Ni; Z = 28) for this star, based on twenty-two Ni i lines ([ Ni/Fe ] = -0.21 ± 0.02); the measurement is significantly below the mean found for most metal-poor stars. Differences of up to 0.5 dex in [ Ni/Fe ] ratios were determined by different authors for the same type of stars in the literature, which means that it is not yet possible to conclude that there is a real intrinsic scatter in the [ Ni/Fe ] ratios. For the other elements for which we obtained estimates, the abundance patterns in these two stars match the Galactic trends defined by giant and turnoff stars well. This confirms the value of horizontal-branch stars as tracers of the chemical properties of stellar populations in the Galaxy. Our radial velocities measurements for CS 22186-005 differ from previously published measurements by more than the expected statistical errors. More measurements of the radial velocity of this star are encouraged to confirm or refute its radial velocity variability.

Based on observations collected at the European Southern Observatory, Chile, Program IDs 077.D-0299 and 076.D-0546(A). Title: VizieR Online Data Catalog: Abundances in 2 extremely metal-poor stars (Spite+, 2014) Authors: Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; Francois, P.; Sbordone, L. Bibcode: 2014yCat..35710040S Altcode: 2014yCat..35719040S For the two low-Sr/Ba stars CS29493-090 and HE305-4520 we give, line by line, the main line parameters and the logarithm of the abundances for logA(H)=12.

(1 data file). Title: The Gaia-ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars Authors: Smiljanic, R.; Korn, A. J.; Bergemann, M.; Frasca, A.; Magrini, L.; Masseron, T.; Pancino, E.; Ruchti, G.; San Roman, I.; Sbordone, L.; Sousa, S. G.; Tabernero, H.; Tautvaišienė, G.; Valentini, M.; Weber, M.; Worley, C. C.; Adibekyan, V. Zh.; Allende Prieto, C.; Barisevičius, G.; Biazzo, K.; Blanco-Cuaresma, S.; Bonifacio, P.; Bragaglia, A.; Caffau, E.; Cantat-Gaudin, T.; Chorniy, Y.; de Laverny, P.; Delgado-Mena, E.; Donati, P.; Duffau, S.; Franciosini, E.; Friel, E.; Geisler, D.; González Hernández, J. I.; Gruyters, P.; Guiglion, G.; Hansen, C. J.; Heiter, U.; Hill, V.; Jacobson, H. R.; Jofre, P.; Jönsson, H.; Lanzafame, A. C.; Lardo, C.; Ludwig, H. -G.; Maiorca, E.; Mikolaitis, Š.; Montes, D.; Morel, T.; Mucciarelli, A.; Muñoz, C.; Nordlander, T.; Pasquini, L.; Puzeras, E.; Recio-Blanco, A.; Ryde, N.; Sacco, G.; Santos, N. C.; Serenelli, A. M.; Sordo, R.; Soubiran, C.; Spina, L.; Steffen, M.; Vallenari, A.; Van Eck, S.; Villanova, S.; Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H. -W.; Alfaro, E.; Babusiaux, C.; Bensby, T.; Blomme, R.; Flaccomio, E.; François, P.; Irwin, M.; Koposov, S.; Walton, N.; Bayo, A.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Hourihane, A.; Jackson, R.; Lewis, J.; Lind, K.; Marconi, G.; Martayan, C.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Zaggia, S. Bibcode: 2014A&A...570A.122S Altcode: 2014arXiv1409.0568S Context. The ongoing Gaia-ESO Public Spectroscopic Survey is using FLAMES at the VLT to obtain high-quality medium-resolution Giraffe spectra for about 105 stars and high-resolution UVES spectra for about 5000 stars. With UVES, the Survey has already observed 1447 FGK-type stars.
Aims: These UVES spectra are analyzed in parallel by several state-of-the-art methodologies. Our aim is to present how these analyses were implemented, to discuss their results, and to describe how a final recommended parameter scale is defined. We also discuss the precision (method-to-method dispersion) and accuracy (biases with respect to the reference values) of the final parameters. These results are part of the Gaia-ESO second internal release and will be part of its first public release of advanced data products.
Methods: The final parameter scale is tied to the scale defined by the Gaia benchmark stars, a set of stars with fundamental atmospheric parameters. In addition, a set of open and globular clusters is used to evaluate the physical soundness of the results. Each of the implemented methodologies is judged against the benchmark stars to define weights in three different regions of the parameter space. The final recommended results are the weighted medians of those from the individual methods.
Results: The recommended results successfully reproduce the atmospheric parameters of the benchmark stars and the expected Teff-log g relation of the calibrating clusters. Atmospheric parameters and abundances have been determined for 1301 FGK-type stars observed with UVES. The median of the method-to-method dispersion of the atmospheric parameters is 55 K for Teff, 0.13 dex for log g and 0.07 dex for [Fe/H]. Systematic biases are estimated to be between 50-100 K for Teff, 0.10-0.25 dex for log g and 0.05-0.10 dex for [Fe/H]. Abundances for 24 elements were derived: C, N, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, Nd, and Eu. The typical method-to-method dispersion of the abundances varies between 0.10 and 0.20 dex.
Conclusions: The Gaia-ESO sample of high-resolution spectra of FGK-type stars will be among the largest of its kind analyzed in a homogeneous way. The extensive list of elemental abundances derived in these stars will enable significant advances in the areas of stellar evolution and Milky Way formation and evolution.

Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey, PIs Gilmore and Randich). Appendices are available in electronic form at http://www.aanda.org Title: Clues on the Galactic evolution of sulphur from star clusters Authors: Caffau, E.; Monaco, L.; Spite, M.; Bonifacio, P.; Carraro, G.; Ludwig, H. -G.; Villanova, S.; Beletsky, Y.; Sbordone, L. Bibcode: 2014A&A...568A..29C Altcode: 2014arXiv1407.0485C Context. The abundances of α-elements are a powerful diagnostic of the star formation history and chemical evolution of a galaxy. Sulphur, being moderately volatile, can be reliably measured in the interstellar medium (ISM) of damped Ly-α galaxies and extragalactic H ii regions. Measurements in stars of different metallicity in our Galaxy can then be readily compared to the abundances in external galaxies. Such a comparison is not possible for Si or Ca that suffer depletion onto dust in the ISM. Furthermore, studying sulphur is interesting because it probes nucleosynthetic conditions that are very different from those of O or Mg. In this context measurements in star clusters are a reliable tracers of the Galactic evolution of sulphur.
Aims: The aim of this paper is to determine sulphur abundances in several Galactic clusters that span a metallicity range -1.5 < [Fe/H] < 0.0.
Methods: We use a standard abundance analysis, based on 1D model atmospheres in local thermodynamical equilibrium (LTE) and literature corrections for non-LTE (NLTE), as well as 3D corrections based on hydrodynamical model atmospheres, to derive sulphur abundances in a sample of stars in the globular cluster M 4, and the open clusters Trumpler 5, NGC 2477, and NGC 5822.
Results: We find ⟨ A(S) ⟩ NLTE = 6.11 ± 0.04 for M 4, ⟨ A(S) ⟩ NLTE = 7.17 ± 0.02 for NGC 2477, and ⟨ A(S) ⟩ NLTE = 7.13 ± 0.06 for NGC 5822. For the only star studied in Trumpler 5 we find A(S)NLTE = 6.43 ± 0.03 and A(S)LTE = 6.94 ± 0.05.
Conclusions: Our measurements show that, by and large, the S abundances in Galactic clusters trace reliably those in field stars. The only possible exception is Trumpler 5, for which the NLTE sulphur abundance implies an [S/Fe] ratio lower by roughly 0.4 dex than observed in field stars of comparable metallicity, even though its LTE sulphur abundance is in line with abundances of field stars. Moreover the LTE sulphur abundance is consistent only with the abundance of another α-element, Mg, in the same star, while the low NLTE value is consistent with Si and Ca. We believe that further investigation of departures from LTE is necessary, as well as observation of other S i lines in this star and in other stars of the same cluster, before one can conclude that the sulphur abundance in Trumpler 5 is indeed 0.4 dex lower than in field stars of comparable metallicity. The S abundances in our sample of stars in clusters imply that the clusters are chemically homogeneous for S within 0.05 dex.

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0537(A), 088.D-0045(A), 089.D-0062(B). Title: 4MOST: 4-metre Multi-Object Spectroscopic Telescope Authors: de Jong, Roelof S.; Barden, Sam; Bellido-Tirado, Olga; Brynnel, Joar; Chiappini, Cristina; Depagne, Éric; Haynes, Roger; Johl, Diana; Phillips, Daniel P.; Schnurr, Olivier; Schwope, Axel D.; Walcher, Jakob; Bauer, Svend M.; Cescutti, Gabriele; Cioni, Maria-Rosa L.; Dionies, Frank; Enke, Harry; Haynes, Dionne M.; Kelz, Andreas; Kitaura, Francisco S.; Lamer, Georg; Minchev, Ivan; Müller, Volker; Nuza, Sebastián. E.; Olaya, Jean-Christophe; Piffl, Tilmann; Popow, Emil; Saviauk, Allar; Steinmetz, Matthias; Ural, Uǧur; Valentini, Monica; Winkler, Roland; Wisotzki, Lutz; Ansorge, Wolfgang R.; Banerji, Manda; Gonzalez Solares, Eduardo; Irwin, Mike; Kennicutt, Robert C.; King, David M. P.; McMahon, Richard; Koposov, Sergey; Parry, Ian R.; Sun, Xiaowei; Walton, Nicholas A.; Finger, Gert; Iwert, Olaf; Krumpe, Mirko; Lizon, Jean-Louis; Mainieri, Vincenzo; Amans, Jean-Philippe; Bonifacio, Piercarlo; Cohen, Matthieu; François, Patrick; Jagourel, Pascal; Mignot, Shan B.; Royer, Frédéric; Sartoretti, Paola; Bender, Ralf; Hess, Hans-Joachim; Lang-Bardl, Florian; Muschielok, Bernard; Schlichter, Jörg; Böhringer, Hans; Boller, Thomas; Bongiorno, Angela; Brusa, Marcella; Dwelly, Tom; Merloni, Andrea; Nandra, Kirpal; Salvato, Mara; Pragt, Johannes H.; Navarro, Ramón; Gerlofsma, Gerrit; Roelfsema, Ronald; Dalton, Gavin B.; Middleton, Kevin F.; Tosh, Ian A.; Boeche, Corrado; Caffau, Elisabetta; Christlieb, Norbert; Grebel, Eva K.; Hansen, Camilla J.; Koch, Andreas; Ludwig, Hans-G.; Mandel, Holger; Quirrenbach, Andreas; Sbordone, Luca; Seifert, Walter; Thimm, Guido; Helmi, Amina; trager, Scott C.; Bensby, Thomas; Feltzing, Sofia; Ruchti, Gregory; Edvardsson, Bengt; Korn, Andreas; Lind, Karin; Boland, Wilfried; Colless, Matthew; Frost, Gabriella; Gilbert, James; Gillingham, Peter; Lawrence, Jon; Legg, Neville; Saunders, Will; Sheinis, Andrew; Driver, Simon; Robotham, Aaron; Bacon, Roland; Caillier, Patrick; Kosmalski, Johan; Laurent, Florence; Richard, Johan Bibcode: 2014SPIE.9147E..0MD Altcode: 4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with ~2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; ~1600 fibres go to two spectrographs with resolution R<5000 (λ~390-930 nm) and ~800 fibres to a spectrograph with R>18,000 (λ~392-437 nm and 515-572 nm and 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7]. Title: VizieR Online Data Catalog: Abundances of 47 Tuc turn-off stars (Dobrovolskas+, 2014) Authors: Dobrovolskas, V.; Kucinskas, A.; Bonifacio, P.; Korotin, S. A.; Steffen, M.; Sbordone, L.; Caffau, E.; Ludwig, H. -G.; Royer, F.; Prakapavicius, D. Bibcode: 2014yCat..35650121D Altcode: 2014yCat..35659121D Spectra of the TO stars in 47 Tuc investigated in this work were obtained with the GIRAFFE spectrograph in August-September, 2008, under the programme 081.D-0287(A) (PI: Shen). The same data set was independently analysed by D'Orazi et al. (2010ApJ...713L...1D, Cat. J/ApJ/713/L1).

(1 data file). Title: Science case and requirements for the MOSAIC concept for a multi-object spectrograph for the European Extremely Large Telescope Authors: Evans, C. J.; Puech, M.; Barbuy, B.; Bonifacio, P.; Cuby, J. -G.; Guenther, E.; Hammer, F.; Jagourel, P.; Kaper, L.; Morris, S. L.; Afonso, J.; Amram, P.; Aussel, H.; Basden, A.; Bastian, N.; Battaglia, G.; Biller, B.; Bouché, N.; Caffau, E.; Charlot, S.; Clénet, Y.; Combes, F.; Conselice, C.; Contini, T.; Dalton, G.; Davies, B.; Disseau, K.; Dunlop, J.; Fiore, F.; Flores, H.; Fusco, T.; Gadotti, D.; Gallazzi, A.; Giallongo, E.; Gonçalves, T.; Gratadour, D.; Hill, V.; Huertas-Company, M.; Ibata, R.; Larsen, S.; Le Fèvre, O.; Lemasle, B.; Maraston, C.; Mei, S.; Mellier, Y.; Östlin, G.; Paumard, T.; Pello, R.; Pentericci, L.; Petitjean, P.; Roth, M.; Rouan, D.; Schaerer, D.; Telles, E.; Trager, S.; Welikala, N.; Zibetti, S.; Ziegler, B. Bibcode: 2014SPIE.9147E..96E Altcode: 2014arXiv1406.6369E Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-section of astronomers across the ESO partner countries. In this contribution we summarise the key cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for two observational modes to best exploit the large (>=40 arcmin2) patrol field of the E-ELT. The first mode (`high multiplex') requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of >100 objects simultaneously. The second (`high definition'), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of >10 objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the toplevel requirements from each case and introduce the next steps in the design process. Title: High-resolution abundance analysis of very metal-poor r-I stars Authors: Siqueira Mello, C.; Hill, V.; Barbuy, B.; Spite, M.; Spite, F.; Beers, T. C.; Caffau, E.; Bonifacio, P.; Cayrel, R.; François, P.; Schatz, H.; Wanajo, S. Bibcode: 2014A&A...565A..93S Altcode: 2014arXiv1404.0234S Context. Moderately r-process-enriched stars (r-I; +0.3 ≤ [Eu/Fe] ≤ +1.0) are at least four times as common as those that are greatly enriched in r-process elements (r-II; [Eu/Fe] > +1.0), and the abundances in their atmospheres are important tools for obtaining a better understanding of the nucleosynthesis processes responsible for the origin of the elements beyond the iron peak.
Aims: The main aim of this work is to derive abundances for a sample of seven metal-poor stars with -3.4 ≤ [Fe/H] ≤ -2.4 classified as r-I stars, to understand the role of these stars for constraining the astrophysical nucleosynthesis event(s) that is (are) responsible for the production of the r-process, and to investigate whether they differ, in any significant way, from the r-II stars.
Methods: We carried out a detailed abundance analysis based on high-resolution spectra obtained with the VLT/UVES spectrograph, using spectra in the wavelength ranges 3400-4500 Å, 6800-8200 Å, and 8700-10 000 Å, with resolving power R ~ 40 000 (blue arm) and R ~ 55 000 (red arm). The OSMARCS LTE 1D model atmosphere grid was employed, along with the spectrum synthesis code Turbospectrum.
Results: We have derived abundances of the light elements Li, C, and N, the α-elements Mg, Si, S, Ca, and Ti, the odd-Z elements Al, K, and Sc, the iron-peak elements V, Cr, Mn, Fe, Co, and Ni, and the trans-iron elements from the first peak (Sr, Y, Zr, Mo, Ru, and Pd), the second peak (Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb), the third peak (Os and Ir, as upper limits), and the actinides (Th) regions. The results are compared with values for these elements for r-II and "normal" very and extremely metal-poor stars reported in the literature, ages based on radioactive chronometry are explored using different models, and a number of conclusions about the r-process and the r-I stars are presented. Hydrodynamical models were used for some elements, and general behaviors for the 3D corrections were presented. Although the abundance ratios of the second r-process peak elements (usually associated with the main r-process) are nearly identical for r-I and r-II stars, the first r-process peak abundance ratios (probably associated with the weak r-process) are more enhanced in r-I stars than in r-II stars, suggesting that differing nucleosynthesis pathways were followed by stars belonging to these two different classifications.

Observations obtained with the VLT, at the European Southern Observatory, Paranal, Chile, under proposal 080.D-0194(A) (PI:V. Hill).Appendix A is available in electronic form at http://www.aanda.org Title: Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae Authors: Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Korotin, S. A.; Steffen, M.; Sbordone, L.; Caffau, E.; Ludwig, H. -G.; Royer, F.; Prakapavičius, D. Bibcode: 2014A&A...565A.121D Altcode: 2013arXiv1311.1072D Context. The cluster 47 Tuc is among the most metal-rich Galactic globular clusters and its metallicity is similar to that of metal-poor disc stars and open clusters. Like other globular clusters, it displays variations in the abundances of elements lighter than Si, which is generally interpreted as evidence of the presence of multiple stellar populations.
Aims: We aim to determine abundances of Li, O, and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars.
Methods: We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2 m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO5BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances.
Results: Our results confirm the existence of Na-O abundance anti-correlation and hint towards a possible Li-O anti-correlation in the TO stars of 47 Tuc. At the same time, we find no convincing evidence supporting the existence of Li-Na correlation. The obtained 3D NLTE mean lithium abundance in a sample of 94 TO stars where Li lines were detected reliably, ⟨A(Li)3D NLTE⟩ = 1.78 ± 0.18 dex, appears to be significantly lower than what is observed in other globular clusters. At the same time, star-to-star spread in Li abundance is also larger than seen in other clusters. The highest Li abundance observed in 47 Tuc is about 0.1 dex lower than the lowest Li abundance observed among the un-depleted stars of the metal-poor open cluster NGC 2243.
Conclusions: The correlations/anti-correlations among light element abundances confirm that chemical enrichment history of 47 Tuc was similar to that of other globular clusters, despite the higher metallicity of 47 Tuc. The lithium abundances in 47 Tuc, when put into context with observations in other clusters and field stars, suggest that stars that are more metal-rich than [Fe/H] ~ -1.0 experience significant lithium depletion during their lifetime on the main sequence, while the more metal-poor stars do not. Rather strikingly, our results suggest that initial lithium abundance with which the star was created may only depend on its age (the younger the star, the higher its Li content) and not on its metallicity.

Appendices are available in electronic form at http://www.aanda.org Title: A super lithium-rich red-clump star in the open cluster Trumpler 5 Authors: Monaco, L.; Boffin, H. M. J.; Bonifacio, P.; Villanova, S.; Carraro, G.; Caffau, E.; Steffen, M.; Ahumada, J. A.; Beletsky, Y.; Beccari, G. Bibcode: 2014A&A...564L...6M Altcode: 2014arXiv1403.6461M Context. The existence of lithium-rich low-mass red giant stars still represents a challenge for stellar evolution models. Stellar clusters are privileged environments for this kind of investigation.
Aims: To investigate the chemical abundance pattern of the old open cluster Trumpler 5, we observed a sample of four red-clump stars with high-resolution optical spectrographs. One of them (#3416) reveals extremely strong lithium lines in its spectrum.
Methods: One-dimensional, local thermodynamic equilibrium analysis was performed on the spectra of the observed stars. A 3D-NLTE analysis was performed to derive the lithium abundance of star #3416.
Results: Star #3416 is super Li-rich with A(Li) = 3.75 dex. The lack of 6Li enrichment (6Li/7Li < 2%), the low carbon isotopic ratio (12C/13C = 14 ± 3), and the lack of evidence for radial velocity variation or enhanced rotational velocity (vsini = 2.8 km s-1) all suggest that lithium production has occurred in this star through the Cameron & Fowler mechanism.
Conclusions: We identified a super Li-rich core helium-burning, red-clump star in an open cluster. Internal production is the most likely cause of the observed enrichment. Given the expected short duration of a star's Li-rich phase, enrichment is likely to have occurred at the red clump or in the immediately preceding phases, namely during the He-flash at the tip of the red giant branch (RGB) or while ascending the brightest portion of the RGB.

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 088.D-0045(A).Appendix A is available in electronic form at http://www.aanda.org Title: MyGIsFOS: an automated code for parameter determination and detailed abundance analysis in cool stars Authors: Sbordone, L.; Caffau, E.; Bonifacio, P.; Duffau, S. Bibcode: 2014A&A...564A.109S Altcode: 2013arXiv1311.5566S Context. The current and planned high-resolution, high-multiplexity stellar spectroscopic surveys, as well as the swelling amount of underutilized data present in public archives, have led to an increasing number of efforts to automate the crucial but slow process of retrieving stellar parameters and chemical abundances from spectra.
Aims: We present MyGIsFOS1, a code designed to derive atmospheric parameters and detailed stellar abundances from medium- to high-resolution spectra of cool (FGK) stars. We describe the general structure and workings of the code, present analyses of a number of well-studied stars representative of the parameter space MyGIsFOS is designed to cover, and give examples of the exploitation of MyGIsFOS very fast analysis to assess uncertainties through Monte Carlo tests.
Methods: MyGIsFOS aims to reproduce a "traditional" manual analysis by fitting spectral features for different elements against a precomputed grid of synthetic spectra. The lines of Fe i and Fe ii can be employed to determine temperature, gravity, microturbulence, and metallicity by iteratively minimizing the dependence of Fe i abundance from line lower energy and equivalent width, and imposing Fe i-Fe ii ionization equilibrium. Once parameters are retrieved, detailed chemical abundances are measured from lines of other elements.
Results: MyGIsFOS replicates closely the results obtained in similar analyses on a set of well-known stars. It is also quite fast, performing a full parameter determination and detailed abundance analysis in about two minutes per star on a mainstream desktop computer. Currently, its preferred field of application are high-resolution and/or large spectral coverage data (e.g., UVES, X-shooter, HARPS, Sophie).

My God It's Full Of Stars, http://mygisfos.obspm.fr Title: r-Process abundances in metal-poor Galactic halo stars Authors: Siqueira-Mello, C.; Barbuy, B.; Spite, M.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; François, P.; Bonifacio, P.; Cayrel, R. Bibcode: 2014MmSAI..85..232S Altcode: The site of the r-process is not completely defined, and several models try to explain the origin of the trans-Fe elements. Observed abundances are the best clues to bring some light to this multiplicity of possible mechanisms, and the extremely metal-poor (EMP) Galactic halo stars have a special role in this problem. In this contribution we present the solution of a long-standing problem about the origin of the heavy elements in the metal-poor halo subgiant star HD 140283, and its correlation with the Truran's theory. Next, we describe the results obtained with the EMP r-II star CS 31082-001 in the frame of the ESO Large Program ``First Stars''. Using STIS/HST observations we provide abundances for elements never presented before in this stars, making CS 31082-001 the most complete r-II object studied, with a total of 37 detections of neutron-capture elements. Finally, we present the results obtained from a sample of seven r-I stars, showing how those objects can help us solving the heavy elements problem. Conclusions are also described. Title: 3D modeling of stellar atmospheres and the impact on the understanding of the reliability of elemental abundances in stars as tracers of galactic chemical evolution Authors: Ludwig, H. -G.; Steffen, M.; Bonifacio, P.; Caffau, E.; Kučinskas, A.; Freytag, B. Bibcode: 2014IAUS..298..343L Altcode: We present a critical review of the construction of 3D model atmospheres with emphasis on modeling challenges. We discuss the basic physical processes which give rise to the effects which set 3D models apart from 1D standard models. We consider elemental abundances derived from molecular features, and the determination of the microturbulence with 3D models. The examples serve as illustration of the limitations inherent to 1D, however, also to 3D modeling. We find that 3D models can provide constraints on the microturbulence parameter, and predict substantial corrections for abundances derived from molecular species. Title: Abundance analysis of three metal poor stars: CS 22166-0030, CS 22186-0005, and CS 30344-0033 Authors: Çalışkan, Şeyma; Caffau, Elisabetta; Bonifacio, Piercarlo; Sbordone, Luca; Albayrak, Berahitdin Bibcode: 2014IAUS..298..381C Altcode: We present the abundance analysis of three very metal poor stars, CS 22166-0030 ([Fe/H]=-2.96), CS 22186-0005 ([Fe/H]=-2.70), and CS 30344-0033 ([Fe/H]=-2.90). Our study is based on high resolution spectra which were obtained from SARG (on TNG), HARPS (on 3.6m), and UVES (on VLT) spectrographs and one-dimensional ATLAS9 model atmospheres. We derived the abundances for 2, 9, and 16 atomic species in the spectrum of CS 22166-0030, CS 22186-0005, and CS 30344-0033, respectively. The Na and Mg abundances of CS 22166-0030 are highly under-abundant with respect to the solar values. The abundance patterns of CS 22186-0005 and CS 30344-0033 are consistent with the other halo stars within abundance uncertainties. Title: Strontium in the era of Gaia and LAMOST Authors: Hansen, Camilla J.; Caffau, Elisabetta; Bergemann, Maria Bibcode: 2014IAUS..298..409H Altcode: The formation and evolution of the heavy neutron-capture elements (Z > 37) are to date not well understood. Therefore, abundance and galactic chemical evolution (GCE) studies of these heavy elements may carry key information to this open question. Strontium (Sr) is one of the two heavy elements (Sr and Ba) that show intrinsically very strong absorption lines even in extremely metal-poor stars (and remains detectable at low spectral resolution). Hence, the 4077 Å Sr II line provides a unique insight into the behaviour of heavy neutron-capture elements at all metallicities and resolutions. Here the focus is on strontium, its 3D and NLTE (non-local thermodynamic equilibrium) corrections, as well as chemical evolution. Title: The first generations of stars Authors: Caffau, E.; Gallagher, A.; Bonifacio, P.; Cayrel, R.; Christlieb, N.; Clark, P. C.; Francois, P.; Glover, S.; Klessen, R. S.; Koch, A.; Ludwig, H. G.; Monaco, L.; Plez, B.; Sbordone, L.; Spite, M.; Spite, F.; Steffen, M.; Zaggia, S. Bibcode: 2014nic..confE..53C Altcode: 2014PoS...204E..53C No abstract at ADS Title: TOPoS: chemical study of extremely metal-poor stars. Authors: Caffau, E.; Sbordone, L.; Bonifacio, P.; Cayrel, R.; Christlieb, N.; Clark, P.; François, P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H. -G.; Monaco, L.; Plez, B.; Spite, F.; Spite, M.; Steffen, M.; Zaggia, S. Bibcode: 2014MmSAI..85..222C Altcode: The extremely metal-poor (EMP) stars hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out, large amounts of data have to be processed. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. In the latest years, we observed a sample of these candidates with X-Shooter and UVES, and we have an ongoing ESO large programme to use these spectrographs to observe EMP stars. I will report here the results on metallicity and Strontium abundance.

Based on observations obtained at ESO Paranal Observatory, programme 189.D-0165(A) Title: 6Li/7Li isotopic ratio in the most metal-poor binary CS22876-032 Authors: Gonzalez-Hernandez, J.; Caffau, E.; Ludwig, H. G.; Bonifacio, P.; Steffen, M.; Monaco, L.; Cayrel, R. Bibcode: 2014nic..confE..23G Altcode: 2014PoS...204E..23G No abstract at ADS Title: High-Resolution Abundance Analysis of Very Metal-Poor R-I Stars Authors: Siqueira Mello, C.; Hill, V.; Barbuy, B.; Spite, M.; Spite, F.; Beers, T.; Caffau, E.; Bonifacio, P.; Cayrel, R.; Francois, P.; Schatz, H.; Wanajo, S. Bibcode: 2014nic..confE.157S Altcode: 2014PoS...204E.157S No abstract at ADS Title: Isotope spectroscopy Authors: Caffau, E.; Steffen, M.; Bonifacio, P.; Ludwig, H. -G.; Monaco, L.; Lo Curto, G.; Kamp, I. Bibcode: 2014AN....335...59C Altcode: 2013arXiv1310.6058C The measurement of isotopic ratios provides a privileged insight both into nucleosynthesis and into the mechanisms operating in stellar envelopes, such as gravitational settling. In this article, we give a few examples of how isotopic ratios can be determined from high-resolution, high-quality stellar spectra. We consider examples of the lightest elements, H and He, for which the isotopic shifts are very large and easily measurable, and examples of heavier elements for which the determination of isotopic ratios is more difficult. The presence of 6Li in the stellar atmospheres causes a subtle extra depression in the red wing of the 7Li 670.7 nm doublet which can only be detected in spectra of the highest quality. But even with the best spectra, the derived 6Li abundance can only be as good as the synthetic spectra used for their interpretation. It is now known that 3D non-LTE modelling of the lithium spectral line profiles is necessary to account properly for the intrinsic line asymmetry, which is produced by convective flows in the atmospheres of cool stars, and can mimic the presence of 6Li. We also discuss briefly the case of the carbon isotopic ratio in metal-poor stars, and provide a new determination of the nickel isotopic ratios in the solar atmosphere. Title: X-shooter GTO: evidence for a population of extremely metal-poor, alpha-poor stars Authors: Caffau, E.; Bonifacio, P.; François, P.; Sbordone, L.; Spite, M.; Monaco, L.; Plez, B.; Spite, F.; Zaggia, S.; Ludwig, H. -G.; Cayrel, R.; Molaro, P.; Randich, S.; Hammer, F.; Hill, V. Bibcode: 2013A&A...560A..15C Altcode: 2013arXiv1309.4913C Context. The extremely metal-poor stars are the direct descendants of the first generation stars. They carry the chemical signature of the pristine Universe at the time they formed, shortly after the Big Bang.
Aims: We aim to derive information about extremely metal-poor stars from their observed spectra.
Methods: Four extremely metal-poor stars were selected from the Sloan Digital Sky Survey (SDSS) and observed during the guaranteed observing time of X-shooter. The X-shooter spectra were analysed using an automatic code, MyGIsFOS, which is based on a traditional analysis method. It makes use of a synthetic grid computed from one-dimensional, plane-parallel, hydrostatic model atmospheres.
Results: The low metallicity derived from the SDSS spectra is confirmed here. Two kinds of stars are found. Two stars are confirmed to be extremely metal-poor, with no evidence of any enhancement in carbon. The two other stars are strongly enhanced in carbon. We could not derive iron abundance for one of them, while [Ca/H] is below -4.5. Two of the stars are members of the rare population of extremely metal-poor stars low in alpha elements.

Based on observations obtained at ESO Paranal Observatory, GTO programme 089.D-0039. Title: TOPoS. I. Survey design and analysis of the first sample Authors: Caffau, E.; Bonifacio, P.; Sbordone, L.; François, P.; Monaco, L.; Spite, M.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark, P.; Glover, S.; Klessen, R.; Koch, A.; Ludwig, H. -G.; Spite, F.; Steffen, M.; Zaggia, S. Bibcode: 2013A&A...560A..71C Altcode: 2013arXiv1310.6963C Context. The metal-weak tail of the metallicity distribution function (MDF) of the Galactic Halo stars contains crucial information on the formation mode of the first generation of stars. To determine this observationally, it is necessary to observe large numbers of extremely metal-poor stars.
Aims: We present here the Turn-Off Primordial Stars survey (TOPoS) that is conducted as an ESO Large Programme at the VLT. This project has four main goals: (i) to understand the formation of low-mass stars in a low-metallicity gas: determine the metal-weak tail of the halo MDF below [M/H] = -3.5; in particular, we aim at determining the critical metallicity, that is the lowest metallicity sufficient for the formation of low-mass stars; (ii) to determine in extremely metal-poor stars the relative abundances of the elements that are the signature of the massive first stars; (iii) to determine the trend of the lithium abundance at the time when the Galaxy formed; and (iv) to derive the fraction of C-enhanced extremely metal-poor stars with respect to normal extremely metal-poor stars. The large number of stars observed in the SDSS provides a good sample of candidate stars at extremely low metallicity.
Methods: Candidates with turn-off colours down to magnitude g = 20 were selected from the low-resolution spectra of SDSS by means of an automated procedure. X-Shooter has the potential of performing the necessary follow-up spectroscopy, providing accurate metallicities and abundance ratios for several key elements for these stars.
Results: We present here the stellar parameters of the first set of stars. The nineteen stars range in iron abundance between -4.1 and -2.9 dex relative to the Sun. Two stars have a high radial velocity and, according to our estimate of their kinematics, appear to be marginally bound to the Galaxy and are possibly accreted from another galaxy.

Based on observations obtained at ESO Paranal Observatory, GTO programme 189.D-0165(A). Title: Stellar granulation as seen in disk-integrated intensity. II. Theoretical scaling relations compared with observations Authors: Samadi, R.; Belkacem, K.; Ludwig, H. -G.; Caffau, E.; Campante, T. L.; Davies, G. R.; Kallinger, T.; Lund, M. N.; Mosser, B.; Baglin, A.; Mathur, S.; Garcia, R. A. Bibcode: 2013A&A...559A..40S Altcode: 2013arXiv1309.1488S Context. A large set of stars observed by CoRoT and Kepler shows clear evidence for the presence of a stellar background, which is interpreted to arise from surface convection, i.e., granulation. These observations show that the characteristic time-scale (τeff) and the root-mean-square (rms) brightness fluctuations (σ) associated with the granulation scale as a function of the peak frequency (νmax) of the solar-like oscillations.
Aims: We aim at providing a theoretical background to the observed scaling relations based on a model developed in Paper I.
Methods: We computed for each 3D model the theoretical power density spectrum (PDS) associated with the granulation as seen in disk-integrated intensity on the basis of the theoretical model published in Paper I. For each PDS we derived the associated characteristic time (τeff) and the rms brightness fluctuations (σ) and compared these theoretical values with the theoretical scaling relations derived from the theoretical model and the measurements made on a large set of Kepler targets.
Results: We derive theoretical scaling relations for τeff and σ, which show the same dependence on νmax as the observed scaling relations. In addition, we show that these quantities also scale as a function of the turbulent Mach number (ℳa) estimated at the photosphere. The theoretical scaling relations for τeff and σ match the observations well on a global scale. Quantitatively, the remaining discrepancies with the observations are found to be much smaller than previous theoretical calculations made for red giants.
Conclusions: Our modelling provides additional theoretical support for the observed variations of σ and τeff with νmax. It also highlights the important role of ℳa in controlling the properties of the stellar granulation. However, the observations made with Kepler on a wide variety of stars cannot confirm the dependence of our scaling relations on ℳa. Measurements of the granulation background and detections of solar-like oscillations in a statistically sufficient number of cool dwarf stars will be required for confirming the dependence of the theoretical scaling relations with ℳa.

Appendices are available in electronic form at http://www.aanda.org Title: Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. III. Line formation in the atmospheres of giants located close to the base of the red giant branch Authors: Dobrovolskas, V.; Kučinskas, A.; Steffen, M.; Ludwig, H. -G.; Prakapavičius, D.; Klevas, J.; Caffau, E.; Bonifacio, P. Bibcode: 2013A&A...559A.102D Altcode: 2013arXiv1310.7791D
Aims: We utilize state-of-the-art three-dimensional (3D) hydrodynamical and classical 1D stellar model atmospheres to study the influence of convection on the formation properties of various atomic and molecular spectral lines in the atmospheres of four red giant stars, located close to the base of the red giant branch, RGB (Teff ≈ 5000 K, log g = 2.5), and characterized by four different metallicities, [M/H] = 0.0, -1.0, -2.0, -3.0.
Methods: The role of convection in the spectral line formation is assessed with the aid of abundance corrections, i.e., the differences in abundances predicted for a given equivalent width of a particular spectral line with the 3D and 1D model atmospheres. The 3D hydrodynamical and classical 1D model atmospheres used in this study were calculated with the CO5BOLD and 1D LHD codes, respectively. Identical atmospheric parameters, chemical composition, equation of state, and opacities were used with both codes, therefore allowing a strictly differential analysis of the line formation properties in the 3D and 1D models.
Results: We find that for lines of certain neutral atoms, such as Mg i, Ti i, Fe i, and Ni i, the abundance corrections strongly depend both on the metallicity of a given model atmosphere and the line excitation potential, χ. While abundance corrections for all lines of both neutral and ionized elements tend to be small at solar metallicity (≤±0.1 dex), for lines of neutral elements with low ionization potential and low-to-intermediate χ they quickly increase with decreasing metallicity, reaching in their extremes -0.6 to -0.8 dex. In all such cases the large abundance corrections are due to horizontal temperature fluctuations in the 3D hydrodynamical models. Lines of neutral elements with higher ionization potentials (Eion ≳ 10 eV) generally behave very similarly to lines of ionized elements characterized by low ionization potentials (Eion ≲ 6 eV). In the latter case, the abundance corrections are small (generally, ≤±0.1 dex) and are caused by approximately equal contributions from the horizontal temperature fluctuations and differences between the temperature profiles in the 3D and 1D model atmospheres. Abundance corrections of molecular lines are very sensitive to the metallicity of the underlying model atmosphere and may be larger (in absolute value) than ~-0.5 dex at [M/H] = -3.0 (~-1.5 dex in the case of CO). At fixed metallicity and excitation potential, the abundance corrections show little variation within the wavelength range studied here, 400-1600 nm. We also find that an approximate treatment of scattering in the 3D model calculations (i.e., ignoring the scattering opacity in the outer, optically thin, atmosphere) leads to abundance corrections that are altered by less than ~0.1 dex, both for atomic and molecular (CO) lines, with respect to the model where scattering is treated as true absorption throughout the entire atmosphere, with the largest differences for the resonance and low-excitation lines.

Appendices and Figs. 3, 5, 6, 8, 9, 11 are available in electronic form at http://www.aanda.org Title: Granulation properties of giants, dwarfs, and white dwarfs from the CIFIST 3D model atmosphere grid Authors: Tremblay, P. -E.; Ludwig, H. -G.; Freytag, B.; Steffen, M.; Caffau, E. Bibcode: 2013A&A...557A...7T Altcode: 2013arXiv1307.2810T Three-dimensional model atmospheres for giants, dwarfs, and white dwarfs, computed with the CO5BOLD code and part of the CIFIST grid, have been used for spectroscopic and asteroseismic studies. Unlike existing plane-parallel 1D structures, these simulations predict the spatially and temporally resolved emergent intensity so that granulation can be analysed, which provides insights on how convective energy transfer operates in stars. The wide range of atmospheric parameters of the CIFIST 3D simulations (3600 < Teff (K) < 13 000 and 1 < log g < 9) allows the comparison of convective processes in significantly different environments. We show that the relative intensity contrast is correlated with both the Mach and Péclet numbers in the photosphere. The horizontal size of granules varies between 3 and 10 times the local pressure scale height, with a tight correlation between the factor and the Mach number of the flow. Given that convective giants, dwarfs, and white dwarfs cover the same range of Mach and Péclet numbers, we conclude that photospheric convection operates in a very similar way in those objects.

Table 1 and Appendix A are available in electronic form at http://www.aanda.org Title: Reanalysis of the FEROS observations of HIP 11952 Authors: Müller, A.; Roccatagliata, V.; Henning, Th.; Fedele, D.; Pasquali, A.; Caffau, E.; Rodríguez-Ledesma, M. V.; Mohler-Fischer, M.; Seemann, U.; Klement, R. J. Bibcode: 2013A&A...556A...3M Altcode: 2013arXiv1307.5072M
Aims: We reanalyze FEROS observations of the star HIP 11952 to reassess the existence of the proposed planetary system.
Methods: The radial velocity of the spectra were measured by cross-correlating the observed spectrum with a synthetic template. We also analyzed a large dataset of FEROS and HARPS archival data of the calibrator HD 10700 spanning over more than five years. We compared the barycentric velocities computed by the FEROS and HARPS pipelines.
Results: The barycentric correction of the FEROS-DRS pipeline was found to be inaccurate and to introduce an artificial one-year period with a semi-amplitude of 62 m s-1. Thus the reanalysis of the FEROS data does not support the existence of planets around HIP 11952.

Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 60.A-9036, 072.C-0488, 072.C-0513, 073.C-0784, 074.C-0012, 074.D-0380, 075.C-0234, 075.D-0760, 076.C-0073, 076.C-0878, 077.A-9009, 077.C-0138, 077.C-0192, 077.C-0530, 078.A-9048, 078.C-0378, 078.C-0833, 079.A-9006, 079.A-9017, 079.C-0170, 079.C-0681, 080.A-9005, 080.A-9021, 080.C-0032, 082.A-9011, 082.C-0315, 083.A-9011, 084.A-9003, 084.A-9003, 084.A-9004, 084.A-9004, 084.A-9011, 085.A-9027, 085.A-9027, 085.C-0557, 086.A-9006, 086.A-9006, 086.A-9014, 086.A-9014, 086.D-0460, 087.A-9014, 087.C-0476, 088.A-9007, 088.A-9007.Appendices are available in electronic form at http://www.aanda.org Title: The photospheric solar oxygen project. II. Non-concordance of the oxygen abundance derived from two forbidden lines Authors: Caffau, E.; Ludwig, H. -G.; Malherbe, J. -M.; Bonifacio, P.; Steffen, M.; Monaco, L. Bibcode: 2013A&A...554A.126C Altcode: 2013arXiv1305.1763C Context. In the Sun, the two forbidden [O i] lines at 630 and 636 nm were previously found to provide discrepant oxygen abundances.
Aims: We investigate whether this discrepancy is peculiar to the Sun or whether it is also observed in other stars.
Methods: We make use of high-resolution, high signal-to-noise ratio spectra of four dwarf to turn-off stars, five giant stars, and one sub-giant star observed with THEMIS, HARPS, and UVES to investigate the coherence of the two lines.
Results: The two lines provide oxygen abundances that are consistent, within observational errors, in all the giant stars examined by us. On the other hand, for the two dwarf stars for which a measurement was possible, for Procyon, and for the sub-giant star Capella, the 636 nm line provides systematically higher oxygen abundances, as already seen for the Sun.
Conclusions: The only two possible reasons for the discrepancy are a serious error in the oscillator strength of the Ni i line blending the 630 nm line or the presence of an unknown blend in the 636 nm line, which makes the feature stronger. The CN lines blending the 636 nm line cannot be responsible for the discrepancy. The Ca i autoionisation line, on the red wing of which the 636 nm line is formed, is not well modelled by our synthetic spectra. However, a better reproduction of this line would result in even higher abundances from the 636 nm, thus increasing the discrepancy.

Based on observations collected at ESO Paranal Observatory, Programme 182.D-5053(A). Title: Carbon-enhanced metal-poor stars: the most pristine objects? Authors: Spite, M.; Caffau, E.; Bonifacio, P.; Spite, F.; Ludwig, H. -G.; Plez, B.; Christlieb, N. Bibcode: 2013A&A...552A.107S Altcode: 2013arXiv1303.1791S Context. Carbon-enhanced metal-poor stars (CEMP) form a significant proportion of the metal-poor stars, their origin is not well understood, and this carbon-enhancement appears in stars that exhibit different abundance patterns.
Aims: Three very metal-poor C-rich turnoff stars were selected from the SDSS survey, observed with the ESO VLT (UVES) to precisely determine the element abundances. In turnoff stars (unlike giants) the carbon abundance has not been affected by mixing with deep layers and is therefore easier to interpret.
Methods: The analysis was performed with one dimensional (1D) local thermodynamical equilibrium (LTE) static model atmospheres. When available, non-LTE corrections were applied to the classical LTE abundances. The 3D effects on the CH and CN molecular bands were computed using hydrodynamical simulations of the stellar atmosphere (CO5BOLD) and are found to be very important.
Results: To facilitate a comparison with previous results, only 1D abundances are used in the discussion. The abundances (or upper limits) of the elements enable us to place these stars in different CEMP classes. The carbon abundances confirm the existence of a plateau at A(C)= 8.25 for [Fe/H] ≥ -3.4. The most metal-poor stars ([Fe/H] < -3.4) have significantly lower carbon abundances, suggesting a lower plateau at A(C) ≈ 6.5. Detailed analyses of a larger sample of very low metallicity carbon-rich stars are required to confirm (or refute) this possible second plateau and specify the behavior of the CEMP stars at very low metallicity.

Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 087.D-0123(A).Table 5 is available in electronic form at http://www.aanda.org Title: Fluorine Abundances of Galactic Low-metallicity Giants Authors: Li, H. N.; Ludwig, H. -G.; Caffau, E.; Christlieb, N.; Zhao, G. Bibcode: 2013ApJ...765...51L Altcode: 2013arXiv1302.3928L With abundances and 2σ upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 Å using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) ν-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II ν-process with a neutrino energy of E ν = 3 × 1053 erg. Our sample contains HD 110281, a retrograde orbiting low-α halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo. Title: Is the Sun Lighter than the Earth? Isotopic CO in the Photosphere, Viewed through the Lens of Three-dimensional Spectrum Synthesis Authors: Ayres, Thomas R.; Lyons, J. R.; Ludwig, H. -G.; Caffau, E.; Wedemeyer-Böhm, S. Bibcode: 2013ApJ...765...46A Altcode: 2013arXiv1301.5281A We consider the formation of solar infrared (2-6 μm) rovibrational bands of carbon monoxide (CO) in CO5BOLD 3D convection models, with the aim of refining abundances of the heavy isotopes of carbon (13C) and oxygen (18O, 17O), to compare with direct capture measurements of solar wind light ions by the Genesis Discovery Mission. We find that previous, mainly 1D, analyses were systematically biased toward lower isotopic ratios (e.g., R 2312C/13C), suggesting an isotopically "heavy" Sun contrary to accepted fractionation processes that were thought to have operated in the primitive solar nebula. The new 3D ratios for 13C and 18O are R 23 = 91.4 ± 1.3 (R = 89.2) and R 68 = 511 ± 10 (R = 499), where the uncertainties are 1σ and "optimistic." We also obtained R 67 = 2738 ± 118 (R = 2632), but we caution that the observed 12C17O features are extremely weak. The new solar ratios for the oxygen isotopes fall between the terrestrial values and those reported by Genesis (R 68 = 530, R 67 = 2798), although including both within 2σ error flags, and go in the direction favoring recent theories for the oxygen isotope composition of Ca-Al inclusions in primitive meteorites. While not a major focus of this work, we derive an oxygen abundance, epsilonO ~ 603 ± 9 ppm (relative to hydrogen; log epsilon ~ 8.78 on the H = 12 scale). The fact that the Sun is likely lighter than the Earth, isotopically speaking, removes the necessity of invoking exotic fractionation processes during the early construction of the inner solar system. Title: Velocity and abundance precisions for future high-resolution spectroscopic surveys: A study for 4MOST Authors: Caffau, E.; Koch, A.; Sbordone, L.; Sartoretti, P.; Hansen, C. J.; Royer, F.; Leclerc, N.; Bonifacio, P.; Christlieb, N.; Ludwig, H. -G.; Grebel, E. K.; de Jong, R. S.; Chiappini, C.; Walcher, J.; Mignot, S.; Feltzing, S.; Cohen, M.; Minchev, I.; Helmi, A.; Piffl, T.; Depagne, E.; Schnurr, O. Bibcode: 2013AN....334..197C Altcode: 2012arXiv1211.1406C In preparation for future, large-scale, multi-object, high-resolution spectroscopic surveys of the Galaxy, we present a series of tests of the precision in radial velocity and chemical abundances that any such project can achieve at a 4 m class telescope. We briefly discuss a number of science cases that aim at studying the chemo-dynamical history of the major Galactic components (bulge, thin and thick disks, and halo) - either as a follow-up to the Gaia mission or on their own merits. Based on a large grid of synthetic spectra that cover the full range in stellar parameters of typical survey targets, we devise an optimal wavelength range and argue for a moderately high-resolution spectrograph. As a result, the kinematic precision is not limited by any of these factors, but will practically only suffer from systematic effects, easily reaching uncertainties <1 km s-1. Under realistic survey conditions (namely, considering stars brighter than r=16 mag with reasonable exposure times) we prefer an ideal resolving power of R∼20 000 on average, for an overall wavelength range (with a common two-arm spectrograph design) of [395;456.5] nm and [587;673] nm. We show for the first time on a general basis that it is possible to measure chemical abundance ratios to better than 0.1 dex for many species (Fe, Mg, Si, Ca, Ti, Na, Al, V, Cr, Mn, Co, Ni, Y, Ba, Nd, Eu) and to an accuracy of about 0.2 dex for other species such as Zr, La, and Sr. While our feasibility study was explicitly carried out for the 4MOST facility, the results can be readily applied to and used for any other conceptual design study for high-resolution spectrographs. Title: Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation Authors: Samadi, R.; Belkacem, K.; Dupret, M. -A.; Goupil, M. J.; Ludwig, H. -G.; Barban, C.; Baudin, F.; Caffau, E. Bibcode: 2013EPJWC..4303008S Altcode: CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star. Title: Isotopic CO in the Solar Photosphere, Viewed Through the Lens of 3D Spectrum Synthesis Authors: Ayres, T. R.; Lyons, J. R.; Ludwig, H. -G.; Caffau, E.; Wedemeyer-Bohm, S. Bibcode: 2013LPI....44.3038A Altcode: 2013LPICo1719.3038A New analyses of CO isotopologue abundances in the solar photosphere are now consistent with Genesis solar wind results, although ^17O error bars are still large. Title: ELT-MOS White Paper: Science Overview & Requirements Authors: Evans, Chris; Puech, Mathieu; Barbuy, Beatriz; Bastian, Nate; Bonifacio, Piercarlo; Caffau, Elisabetta; Cuby, Jean-Gabriel; Dalton, Gavin; Davies, Ben; Dunlop, Jim; Flores, Hector; Hammer, Francois; Kaper, Lex; Lemasle, Bertrand; Morris, Simon; Pentericci, Laura; Petitjean, Patrick; Schaerer, Daniel; Telles, Eduardo; Welikala, Niraj; Ziegler, Bodo Bibcode: 2013arXiv1303.0029E Altcode: The workhorse instruments of the 8-10m class observatories have become their multi-object spectrographs (MOS), providing comprehensive follow-up to both ground-based and space-borne imaging. With the advent of deeper imaging surveys from, e.g., the HST and VISTA, there are a plethora of spectroscopic targets which are already beyond the sensitivity limits of current facilities. This wealth of targets will grow even more rapidly in the coming years, e.g., after the completion of ALMA, the launch of the JWST and Euclid, and the advent of the LSST. Thus, one of the key requirements underlying plans for the next generation of ground-based telescopes, the Extremely Large Telescopes (ELTs), is for even greater sensitivity for optical and infrared spectroscopy. Here we revisit the scientific motivation for a MOS capability on the European ELT, combining updated elements of science cases advanced from the Phase A instrument studies with new science cases which draw on the latest results and discoveries. These science cases address key questions related to galaxy evolution over cosmic time, from studies of resolved stellar populations in nearby galaxies out to observations of the most distant galaxies, and are used to identify the top-level requirements on an 'E-ELT/MOS'. We argue that several of the most compelling ELT science cases demand MOS observations, in highly competitive areas of modern astronomy. Recent technical studies have demonstrated that important issues related to e.g. sky subtraction and multi-object AO can be solved, making fast- track development of a MOS instrument feasible. To ensure that ESO retains world leadership in exploring the most distant objects in the Universe, galaxy evolution and stellar populations, we are convinced that a MOS should have high priority in the instrumentation plan for the E-ELT. Title: Convective line shifts for the Gaia RVS from the CIFIST 3D model atmosphere grid Authors: Allende Prieto, C.; Koesterke, L.; Ludwig, H. -G.; Freytag, B.; Caffau, E. Bibcode: 2013A&A...550A.103A Altcode: 2013arXiv1301.3703A Context. To derive space velocities of stars along the line of sight from wavelength shifts in stellar spectra requires accounting for a number of second-order effects. For most stars, gravitational redshifts, convective blueshifts, and transverse stellar motion are the dominant contributors.
Aims: We provide theoretical corrections for the net velocity shifts due to convection expected for the measurements from the Gaia Radial Velocity Spectrometer (RVS).
Methods: We used a set of three-dimensional time-dependent simulations of stellar surface convection computed with CO5BOLD to calculate spectra of late-type stars in the Gaia RVS range and to infer the net velocity offset that convective motions will induce in radial velocities derived by cross-correlation.
Results: The net velocity shifts derived by cross-correlation depend both on the wavelength range and spectral resolution of the observations. Convective shifts for Gaia RVS observations are less than 0.1 km s-1 for late-K-type stars, and they increase with stellar mass, reaching about 0.3 km s-1 or more for early F-type dwarfs. This tendency is the result of an increase with effective temperature in both temperature and velocity fluctuations in the line-forming region. Our simulations also indicate that the net RVS convective shifts can be positive (i.e. redshifts) in some cases. Overall, the blueshifts weaken slightly with increasing surface gravity, and are enhanced at low metallicity. Gravitational redshifts amount to 0.7 km s-1 and dominate convective blueshifts for dwarfs, but become much weaker for giants.

Appendix A is available in electronic form at http://www.aanda.orgModel spectra from the 1D and 3D calculations are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr130.79.128.5 or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A103 Title: First stars. XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001 Authors: Siqueira Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen, J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François, P.; Molaro, P. Bibcode: 2013A&A...550A.122S Altcode: 2012arXiv1212.0211S Context. The origin and site(s) of the r-process nucleosynthesis is(are) still not known with certainty, but complete, detailed r-element abundances offer our best clues. The few extremely metal-poor (EMP) stars with large r-element excesses allow us to study the r-process signatures in great detail, with minimal interference from later stages of Galactic evolution. CS 31082-001 is an outstanding example of the information that can be gathered from these exceptional stars.
Aims: Here we aim to complement our previous abundance determinations for third-peak r-process elements with new and improved results for elements of the first and second r-process peaks from near-UV HST/STIS and optical UVES spectra. These results should provide new insight into the nucleosynthesis of the elements beyond iron.
Methods: The spectra were analyzed by a consistent approach based on an OSMARCS LTE model atmosphere and the Turbospectrum spectrum synthesis code to derive abundances of heavy elements in CS 31082-001, and using updated oscillator strengths from the recent literature. Synthetic spectra were computed for all lines of the elements of interest to check for proper line intensities and possible blends in these crowded spectra. Our new abundances were combined with the best previous results to provide reliable mean abundances for the first and second-peak r-process elements.
Results: We present new abundances for 23 neutron-capture elements, 6 of which - Ge, Mo, Lu, Ta, W, and Re - have not been reported before. This makes CS 31082-001 the most completely studied r-II star, with abundances for a total of 37 neutron-capture elements. We also present the first NLTE+3D abundance of lead in this star, further constraining the nature of the r-process.

Based on observations made with the NASA/ESA Hubble Space Telescope (HST) through the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555; and with the ESO Very Large Telescope at Paranal Observatory, Chile; Progr. ID 165.N-0276.Appendix A is available in electronic form at http://www.aanda.org Title: Three-dimensional hydrodynamical CO5BOLD model atmospheres of red giant stars. II. Spectral line formation in the atmosphere of a giant located near the RGB tip Authors: Kučinskas, A.; Steffen, M.; Ludwig, H. -G.; Dobrovolskas, V.; Ivanauskas, A.; Klevas, J.; Prakapavičius, D.; Caffau, E.; Bonifacio, P. Bibcode: 2013A&A...549A..14K Altcode: 2012arXiv1211.7313K
Aims: We investigate the role of convection in the formation of atomic and molecular lines in the atmosphere of a red giant star. For this purpose we study the formation properties of spectral lines that belong to a number of astrophysically important tracer elements, including neutral and singly ionized atoms (Li I, N I, O I, Na I, Mg I, Al I, Si I, Si II, S I, K I, Ca I, Ca II, Ti I, Ti II, Cr I, Cr II, Mn I, Fe I, Fe II, Co I, Ni I, Zn I, Sr II, Ba II, and Eu II), and molecules (CH, CO, C2, NH, CN, and OH).
Methods: We focus our investigation on a prototypical red giant located close to the red giant branch (RGB) tip (Teff = 3660 K, log g = 1.0, [M/H] = 0.0). We used two types of model atmospheres, 3D hydrodynamical and classical 1D, calculated with the CO5BOLD and LHD stellar atmosphere codes, respectively. Both codes share the same atmospheric parameters, chemical composition, equation of state, and opacities, which allowed us to make a strictly differential comparison between the line formation properties predicted in 3D and 1D. The influence of convection on the spectral line formation was assessed with the aid of 3D-1D abundance corrections, which measure the difference between the abundances of chemical species derived with the 3D hydrodynamical and 1D classical model atmospheres.
Results: We find that convection plays a significant role in the spectral line formation in this particular red giant. The derived 3D-1D abundance corrections rarely exceed ± 0.1 dex when lines of neutral atoms and molecules are considered, which is in line with the previous findings for solar-metallicity red giants located on the lower RGB. The situation is different with lines that belong to ionized atoms, or to neutral atoms with high ionization potential. In both cases, the corrections for high-excitation lines (χ > 8 eV) may amount to Δ3D-1D ~ -0.4 dex. The 3D-1D abundance corrections generally show a significant wavelength dependence; in most cases they are smaller in the near-infrared, at 1600-2500 nm.

Appendices are available in electronic form at http://www.aanda.org Title: Micro- and macroturbulence predictions from CO5BOLD 3D stellar atmospheres . Authors: Steffen, M.; Caffau, E.; Ludwig, H. -G. Bibcode: 2013MSAIS..24...37S Altcode: 2013arXiv1306.4307S We present an overview of the current status of our efforts to derive the microturbulence and macroturbulence parameters (xi_mic and xi_mac) from the CIFIST grid of CO5BOLD 3D model atmospheres as a function of the basic stellar parameters T_{eff}, log g, and [M/H]. The latest results for the Sun and Procyon show that the derived microturbulence parameter depends significantly on the numerical resolution of the underlying 3D simulation, confirming that `low-resolution' models tend to underestimate the true value of xi_mic . Extending the investigation to 12 further simulations with different T_{eff}, log g, and [M/H], we obtain a first impression of the predicted trend of xi_mic over the Hertzsprung-Russell diagram: in agreement with empirical evidence, microturbulence increases towards higher effective temperature and lower gravity. The metallicity dependence of xi_mic must be interpreted with care, since it also reflects the deviation between the 1D and 3D photospheric temperature stratifications that increases systematically towards lower [M/H]. Title: CO5BOLD workshop 2012 Authors: Caffau, E.; Sbordone, L. Bibcode: 2013MSAIS..24....3C Altcode: No abstract at ADS Title: The influence of convection on the atmospheric structures and observable properties of red giant stars. Authors: Kučinskas, A.; Ludwig, H. -G.; Steffen, M.; Dobrovolskas, V.; Klevas, J.; Prakapavičius, D.; Caffau, E.; Bonifacio, P. Bibcode: 2013MSAIS..24...68K Altcode: 2013arXiv1305.3441K During the recent years significant progress has been made in the modeling of red giant atmospheres with the aid of 3D hydrodynamical model atmosphere codes. In this contribution we provide an overview of selected results obtained in this context by utilizing 3D hydrodynamical CO5BOLD stellar model atmospheres. Hydrodynamical simulations show that convective motions lead to significant differences in the atmospheric structures of red giants with respect to those predicted by the classical 1D model atmospheres. Results of these simulations also show that in certain cases 1D models fail to reproduce even the average properties of the 3D hydrodynamical models, such as P-T profiles. Large horizontal temperature fluctuations in the 3D model atmospheres, as well as differences between the temperature profiles of the average xtmean {3D} and 1D models, lead to large discrepancies in the strengths of spectral lines predicted by the 3D and 1D model atmospheres. This is especially important in models at lowest metallicities ([M/H]<-2.0) where the 3D-1D abundance differences may reach (or even exceed) -0.6 dex for lines of neutral atoms and molecules. We also discuss several simplifications and numerical aspects involved in the present 3D hydrodynamical modeling of red giant atmospheres, and briefly address several issues where urgent progress may be needed. Title: Molecular bands in extremely metal-poor stars: Granulation effects Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Spite, M.; Plez, B.; Steffen, M.; Spite, F. Bibcode: 2013MSAIS..24..138B Altcode: 2013arXiv1305.2065B The bands of diatomic molecules are important abundance indicators, especially in metal-poor stars, where they are still measurable in metallicity regimes where the atomic lines of their constituting metallic elements have become vanishingly small. In order to use them for abundance determinations it is imperative to understand the formation of these bands. In this contribution we report on our results obtained using CO^5{BOLD} hydrodynamical simulations. Some effects that are qualitatively different from what found in 1D computations are highlighted. Due to the large number of lines that form the bands, their spectrum synthesis is computationally challenging. We discuss some of the computational strategies we employed to parallelise the computation and possible future developments. Title: Signs of atmospheric inhomogeneities in cool stars from 1D-NLTE analysis of iron lines Authors: Mashonkina, L.; Ludwig, H. -G.; Korn, A.; Sitnova, T.; Caffau, E. Bibcode: 2013MSAIS..24..120M Altcode: 2013arXiv1303.0357M For the well studied halo star HD 122563 and the four stars in the globular cluster NGC 6397, we determine NLTE abundances of iron using classical plane-parallel model atmospheres. Each star reveals a discrepancy in abundances between the Fe I lines arising from the ground state and the other Fe I lines, in qualitative agreement with the 3D-LTE line formation predictions, however, the magnitude of the observed effect is a factor of 2 smaller compared with the predicted one. When ignoring the Fe I low-excitation lines, the NLTE abundances from the two ionization stages, Fe I and Fe II are consistent in each investigated star. For the subgiants in NGC 6397, this is only true when using the cooler effective temperature scale of \citet{Alonso1999}. We also present full 3D-LTE line formation calculations for some selected iron lines in the solar and metal-poor 4480/2/-3 models and NLTE calculations with the corresponding spatial and temporal average <{3D}> models. The use of the <{3D}> models is justified only for particular Fe I lines in particular physical conditions. Our NLTE calculations reproduce well the centre-to-limb variation of the solar Fe I 7780 Å line, but they are unsuccessful for Fe I 6151 Å. The metal-poor <{3D}> model was found to be adequite for the strong Fe I 5166 Å (E_exc = 0) line, but inadequite in all other investigated cases. Title: Solar carbon monoxide: poster child for 3D effects . Authors: Ayres, T. R.; Lyons, J. R.; Ludwig, H. -G.; Caffau, E.; Wedemeyer-Böhm, S. Bibcode: 2013MSAIS..24...85A Altcode: Photospheric infrared (2-6 mu m) rovibrational bands of carbon monoxide (CO) provide a tough test for 3D convection models such as those calculated using CO5BOLD. The molecular formation is highly temperature-sensitive, and thus responds in an exaggerated way to thermal fluctuations in the dynamic atmosphere. CO, itself, is an important tracer of the oxygen abundance, a still controversial issue in solar physics; as well as the heavy isotopes of carbon (13C) and oxygen (18O, 17O), which, relative to terrestrial values, are fingerprints of fractionation processes that operated in the primitive solar nebula. We show how 3D models impact the CO line formation, and add in a second constraint involving the near-UV Ca RIPTSIZE II line wings, which also are highly temperature sensitive, but in the opposite sense to the molecules. We find that our reference CO5BOLD snapshots appear to be slightly too cool on average in the outer layers of the photosphere where the CO absorptions and Ca RIPTSIZE II wing emissions arise. We show, further, that previous 1D modeling was systematically biased toward higher oxygen abundances and lower isotopic ratios (e.g., R23equiv 12C/13C), suggesting an isotopically ``heavy'' Sun contrary to direct capture measurements of solar wind light ions by the Genesis Discovery Mission. New 3D ratios for the oxygen isotopes are much closer to those reported by Genesis, and the associated oxygen abundance from CO now is consistent with the recent Caffau et al. study of atomic oxygen. Some lingering discrepancies perhaps can be explained by magnetic bright points. Solar CO demonstrates graphically the wide gulf that can occur between a 3D analysis and 1D. Title: Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres. Authors: Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H. -G.; Freytag, B.; Caffau, E.; Cayrel, R. Bibcode: 2013MSAIS..24..111P Altcode: 2013arXiv1303.2016P In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations. Title: r-process abundances in the EMP star CS 31082-001 using STIS/HST Authors: Siqueira-Mello, C., Jr.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen, J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François, P.; Molaro, P. Bibcode: 2012sf2a.conf..129S Altcode: We present a brief revision of the origin of heavy elements and the role of abundances in extremely metal-poor (EMP) stars, in providing improved constraints on the nature of the early nucleosynthesis mechanisms. Heavy element abundances in the EMP uranium-rich star CS 31082-001 based mainly on near-UV spectra from STIS/HST are presented. With new abundances for 9 n-elements not available in previous works (Ge, Mo, Lu, Ta, W, Re, Pt, Au, and Bi) this work makes CS 31082-001 the most completely well studied r-II object, with a total of 37 detections of n-capture elements. These results should be useful for a better characterisation of the neutron exposure(s) that produced the r-process elements in this star, as well as a guide for improving nuclear data and astrophysical site modelling. Title: Constraining the Milky Way thick disk formation: Chemical characterization of the thick disk outside of the solar neighbourhood Authors: Posbic, H.; Katz, D.; Haywood, M.; Bonifacio, P.; Caffau, E.; Gomez, A.; Sbordone, L.; Arenou, F.; Royer, F. Bibcode: 2012sf2a.conf..103P Altcode: The formation of the Milky Way disk is still an open question. Many scenarios are proposed. Different formation scenarios predict different disk chemical trends. This work aims to chemically characterize the Milky Way disk inside and outside the solar neighbourhood, to better constrain its formation scenario. This is possible thanks to high resolution spectra of 200 disk stars observed using the Giraffe spectrograph on the Very Large Telescope (VLT). They were selected to have galactic altitudes |Z| that cover both the thin and thick disk (|Z| up to 2 kpc). The new automatic spectra analysis software SPADES (Stellar PArameters DEtermination Software, Posbic et al. 2012) was used to determine the stellar parameters, and most importantly, the elemental abundances of these stars. The distances of these stars were also determined. The metallicity distribution function of the disk using this sample was calculated. It showed a large contribution of the thick disk stars and a smooth transition at the metallicity of the thick disk/halo interface. The vertical behaviour of the metallicity distribution function was also studied. A vertical metallicity gradient in the disk of partial [Fe/H] / partial |Z| = -0.19 ± 0.14 dex/kpc was marginally detected at the 1.4 sigma level. The [Ti/Fe] and [Ca/Fe] vs [Fe/H] trends for the stars are determined. The main result of the analysis is that the trends of [Ca/Fe] vs [Fe/H] and [Ti/Fe] vs [Fe/H] show no significant difference close (i.e. |Z| leq 1 kpc) and farther away (1 < |Z| < 2.5 kpc) from the Galactic plane. This suggests that thick disk gas and stars have been enriched by the same proportion of type II and type I super-novae from the galactic plane up to at least 2.5 kpc. These results support thick disk formation scenarios like collapse or gas-rich accretion and disfavour a thick disk formed of stars captured during a merger event. Title: VizieR Online Data Catalog: Model 1D (LHD) and 3D (CO5BOLD) spectra (Allende Prieto+, 2013) Authors: Allende Prieto, C.; Koesterke, L. Ludwig H. -G.; Freytag, B.; Caffau, E. Bibcode: 2012yCat..35500103A Altcode: 2012yCat..35509103A Model spectral fluxes for late-type stars computed from 3D hydrodynamical simulations of surface convection performed with the CO5BOLD code. Their 1D hydrostatic counterparts are included, based on the LHD code, sharing the same microphysics as the CO5BOLD models. The fluxes for both the 3D and 1D models are calculated with the same opacities and radiative transfer code (ASSET).

(6 data files). Title: 4MOST: 4-metre multi-object spectroscopic telescope Authors: de Jong, Roelof S.; Bellido-Tirado, Olga; Chiappini, Cristina; Depagne, Éric; Haynes, Roger; Johl, Diana; Schnurr, Olivier; Schwope, Axel; Walcher, Jakob; Dionies, Frank; Haynes, Dionne; Kelz, Andreas; Kitaura, Francisco S.; Lamer, Georg; Minchev, Ivan; Müller, Volker; Nuza, Sebastián. E.; Olaya, Jean-Christophe; Piffl, Tilmann; Popow, Emil; Steinmetz, Matthias; Ural, Ugur; Williams, Mary; Winkler, Roland; Wisotzki, Lutz; Ansorge, Wolfgang R.; Banerji, Manda; Gonzalez Solares, Eduardo; Irwin, Mike; Kennicutt, Robert C.; King, Dave; McMahon, Richard G.; Koposov, Sergey; Parry, Ian R.; Sun, David; Walton, Nicholas A.; Finger, Gert; Iwert, Olaf; Krumpe, Mirko; Lizon, Jean-Louis; Vincenzo, Mainieri; Amans, Jean-Philippe; Bonifacio, Piercarlo; Cohen, Mathieu; Francois, Patrick; Jagourel, Pascal; Mignot, Shan B.; Royer, Frédéric; Sartoretti, Paola; Bender, Ralf; Grupp, Frank; Hess, Hans-Joachim; Lang-Bardl, Florian; Muschielok, Bernard; Böhringer, Hans; Boller, Thomas; Bongiorno, Angela; Brusa, Marcella; Dwelly, Tom; Merloni, Andrea; Nandra, Kirpal; Salvato, Mara; Pragt, Johannes H.; Navarro, Ramón; Gerlofsma, Gerrit; Roelfsema, Ronald; Dalton, Gavin B.; Middleton, Kevin F.; Tosh, Ian A.; Boeche, Corrado; Caffau, Elisabetta; Christlieb, Norbert; Grebel, Eva K.; Hansen, Camilla; Koch, Andreas; Ludwig, Hans-G.; Quirrenbach, Andreas; Sbordone, Luca; Seifert, Walter; Thimm, Guido; Trifonov, Trifon; Helmi, Amina; Trager, Scott C.; Feltzing, Sofia; Korn, Andreas; Boland, Wilfried Bibcode: 2012SPIE.8446E..0TD Altcode: 2012arXiv1206.6885D The 4MOST consortium is currently halfway through a Conceptual Design study for ESO with the aim to develop a wide-field ( < 3 square degree, goal < 5 square degree), high-multiplex ( < 1500 fibres, goal 3000 fibres) spectroscopic survey facility for an ESO 4m-class telescope (VISTA). 4MOST will run permanently on the telescope to perform a 5 year public survey yielding more than 20 million spectra at resolution R∼5000 (λ=390-1000 nm) and more than 2 million spectra at R~20,000 (395-456.5 nm and 587-673 nm). The 4MOST design is especially intended to complement three key all-sky, space-based observatories of prime European interest: Gaia, eROSITA and Euclid. Initial design and performance estimates for the wide-field corrector concepts are presented. Two fibre positioner concepts are being considered for 4MOST. The first one is a Phi-Theta system similar to ones used on existing and planned facilities. The second one is a new R-Theta concept with large patrol area. Both positioner concepts effectively address the issues of fibre focus and pupil pointing. The 4MOST spectrographs are fixed configuration two-arm spectrographs, with dedicated spectrographs for the high- and low-resolution fibres. A full facility simulator is being developed to guide trade-off decisions regarding the optimal field-of-view, number of fibres needed, and the relative fraction of high-to-low resolution fibres. The simulator takes mock catalogues with template spectra from Design Reference Surveys as starting point, calculates the output spectra based on a throughput simulator, assigns targets to fibres based on the capabilities of the fibre positioner designs, and calculates the required survey time by tiling the fields on the sky. The 4MOST consortium aims to deliver the full 4MOST facility by the end of 2018 and start delivering high-level data products for both consortium and ESO community targets a year later with yearly increments. Title: 4MOST spectral data simulation Authors: Sartoretti, Paola; Leclerc, Nicolas; Walcher, Jakob; Caffau, Elisabetta; Sbordone, Luca; Laporte, Philippe Bibcode: 2012SPIE.8446E..5PS Altcode: 4MOST is a phase A study of a very high-multiplex, wide-field fibre-fed spectrograph system for the VISTA or NTT telescope. The main stellar goal of the instrument is to complement and complete the informations on the Milky Way, that Gaia will provide both on radial velocity and chemical analysis. Two resolution modes (about 5000 and 20000) are foreseen to operate at the same time. We have developed a simulator of spectral data for the 4MOST spectrograph. This simulator produces mock scientic spectra to be analyzed by the science team in order to constrain the feasibility of their requirements and help refine the high-level specications of the instrument. We present here the spectra simulator and how some of the simulation results are used to define the performances of 4MOST. Title: Detailed abundances in EMP dwarfs from SDSS Authors: Sbordone, Luca; Caffau, Elisabetta; Bonifacio, Piercarlo Bibcode: 2012AIPC.1480..160S Altcode: We report on the current status of an ongoing survey to select extremely metal poor (EMP) turn-off (TO) stars from Sloan Digital Sky Survey (SDSS) spectra, and determine their detailed chemical composition through high resolution follow-up. So far, 26 stars have been observed with UVESatVLT and X-SHOOTERatVLT, all but two showing an iron content below [Fe/H]=-3. Among them we detected the current record holder for the lowest total metallicity (SDSS J102915+172927, Z=10-5 Zsolar), four carbon-enhanced extremely metal poor objects (CEMP), as well as subsets with enhanced Ni and Mn. Lithium abundances or upper limits were derived, confirming the previously detected ``meltdown'' of the Spite plateau for metallicities below about [Fe/H]=-2.8. SDSS J102915+172927 in particular shows no detectable Li I 670.8 doublet, leading to an upper limit of A(Li)<1.1, hinting to an even deeper Li depletion in TO stars below [Fe/H]=-4. Spectroscopic follow-up is currently being prosecuted by the recently started ESO large program TOPoS, aiming to observe about 80 more EMP candidates. Title: SPADES: Stellar Parameters Determination Software Authors: Posbic, Helene; Katz, David; Caffau, Elisabetta; Bonifacio, Piercarlo; Gomez, Ana; Sbordone, Luca; Arenou, Frederic Bibcode: 2012arXiv1209.0407P Altcode: Context. As increasingly more spectroscopic data are being delivered by medium- and high-resolving power multi-object spectrographs, more automatic stellar parameter determination softwares are being developed. The quality of the spectra collected also allows the determination of elemental abundances. Aims. SPADES is an automated software for determining: the radial velocity (Vr), the effective temperature (Teff), the surface gravity (log g), the metallicity ([Fe/H]), and most importantly, the individual abundances. In this first version it is targeted on the analysis of mid-F-G dwarfs, but is meant to evolve to analyze any type of single stars. Methods. SPADES relies on a line-by-line modeling to determine the stellar parameters. Results. The internal systematic and random errors of SPADES were assessed by Monte Carlo method simulations with synthetic spectra and the external systematic errors by analysing real ground-based observed spectra. For example, by simulating the Giraffe setups HR13 and HR14B with synthetic spectra for a dwarf with Teff = 5800 K, log g = 4.5, [Fe/H] = 0.0 dex and with a signal-tonoise ratio (S/N) of 100, the stellar parameters are recovered with no significant bias and with 1-{\sigma} precisions of 8 K for Teff, 0.05 for log g, 0.009 for [Fe/H], 0.003 for [Ti/Fe] and 0.01 for [Ni/Fe]. Title: An upper limit on the sulphur abundance in HE 1327-2326 Authors: Bonifacio, P.; Caffau, E.; Venn, K. A.; Lambert, D. L. Bibcode: 2012A&A...544A.102B Altcode: 2012arXiv1207.1806B Context. Star HE 1327-2326 is a unique object, with the lowest measured iron abundance ([Fe/H] ~ -6) and a peculiar chemical composition that includes large overabundances of C, N, and O with respect to iron. One important question is whether the chemical abundances in this star reflect the chemical composition of the gas cloud from which it was formed or if they have been severely affected by other processes, such as dust-gas winnowing.
Aims: We measure or provide an upper limit to the abundance of the volatile element sulphur, which can help to discriminate between the two scenarios.
Methods: We observed HE 1327-2326 with the high resolution infra-red spectrograph CRIRES at the VLT to observe the S i lines of Multiplet 3 at 1045 nm.
Results: We do not detect the S i line. A 3σ upper limit on the equivalent width (EW) of any line in our spectrum is EW < 0.66 pm. Using either one-dimensional static or three-dimensional hydrodynamical model-atmospheres, this translates into a robust upper limit of [S/H] < -2.6.
Conclusions: This upper limit does not provide conclusive evidence for or against dust-gas winnowing, and the evidence coming from other elements (e.g., Na and Ti) is also inconclusive or contradictory. The formation of dust in the atmosphere versus an origin of the metals in a metal-poor supernova with extensive "fall-back" are not mutually exclusive. It is possible that dust formation distorts the peculiar abundance pattern created by a supernova with fall-back, thus the abundance ratios in HE 1327-2326 may be used to constrain the properties of the supernova(e) that produced its metals, but with some caution.

Based on spectra obtained with CRIRES at the 8.2 m Antu ESO telescope, programme 386.D-0095. Title: SPADES: a stellar parameters determination software Authors: Posbic, H.; Katz, D.; Caffau, E.; Bonifacio, P.; Gómez, A.; Sbordone, L.; Arenou, F. Bibcode: 2012A&A...544A.154P Altcode: 2011arXiv1111.0474P Context. As increasingly more spectroscopic data are being delivered by medium- and high-resolving power multi-object spectrographs, more automatic stellar parameter determination softwares are being developed. The quality of the spectra collected also allows the determination of elemental abundances.
Aims: SPADES is an automated software for determining: the radial velocity (Vr), the effective temperature (Teff), the surface gravity (log g), the metallicity ( [Fe/H] ), and most importantly, the individual abundances. In this first version it is targeted on the analysis of mid-F-G dwarfs, but is meant to evolve to analyze any type of single stars.
Methods: SPADES relies on a line-by-line modeling to determine the stellar parameters.
Results: The internal systematic and random errors of SPADES were assessed by Monte Carlo method simulations with synthetic spectra and the external systematic errors by analysing real ground-based observed spectra. For example, by simulating the Giraffe setups HR13 and HR14B with synthetic spectra for a dwarf with K, , dex and with a signal-to-noise ratio (S/N) of 100, the stellar parameters are recovered with no significant bias and with 1-σ precisions of 8 K for Teff, 0.05 for log g, 0.009 for [Fe/H] , 0.003 for [Ti/Fe] and 0.01 for [Ni/Fe] . Title: Detailed Abundances in Extremely Metal Poor Dwarf Stars Extracted from SDSS Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G. Bibcode: 2012ASPC..458...69S Altcode: 2012arXiv1201.1044S We report on the result of an ongoing campaign to determine chemical abundances in extremely metal poor (EMP) turn-off (TO) stars selected from the Sloan Digital Sky Survey (SDSS) low resolution spectra. This contribution focuses principally on the largest part of the sample (18 stars out of 29), observed with UVES@VLT and analyzed by means of the automatic abundance analysis code MyGIsFOS to derive atmosphere parameters and detailed compositions. The most significant findings include i) the detection of a C-rich, strongly Mg-enhanced star ([Mg/Fe]=1.45); ii) a group of Mn-rich stars ([Mn/Fe]>-0.4); iii) a group of Ni-rich stars ([Ni/Fe]>0.2). Li is measured in twelve stars, while for three upper limits are derived. Title: Amplitudes of solar-like oscillations in red giant stars. Evidence for non-adiabatic effects using CoRoT observations Authors: Samadi, R.; Belkacem, K.; Dupret, M. -A.; Ludwig, H. -G.; Baudin, F.; Caffau, E.; Goupil, M. -J.; Barban, C. Bibcode: 2012A&A...543A.120S Altcode: 2012arXiv1205.4846S Context. A growing number of solar-like oscillations has been detected in red giant stars thanks to the CoRoT and Kepler space-crafts. In the same way as for main-sequence stars, mode driving is attributed to turbulent convection in the uppermost convective layers of those stars.
Aims: The seismic data gathered by CoRoT on red giant stars allow us to test the mode driving theory in physical conditions different from main-sequence stars.
Methods: Using a set of 3D hydrodynamical models representative of the upper layers of sub- and red giant stars, we computed the acoustic mode energy supply rate ({p_max}). Assuming adiabatic pulsations and using global stellar models that assume that the surface stratification comes from the 3D hydrodynamical models, we computed the mode amplitude in terms of surface velocity. This was converted into intensity fluctuations using either a simplified adiabatic scaling relation or a non-adiabatic one.
Results: From L and M (the luminosity and mass), the energy supply rate {p_max} is found to scale as (L/M)2.6 for both main-sequence and red giant stars, extending previous results. The theoretical amplitudes in velocity under-estimate the Doppler velocity measurements obtained so far from the ground for red giant stars by about 30%. In terms of intensity, the theoretical scaling law based on the adiabatic intensity-velocity scaling relation results in an under-estimation by a factor of about 2.5 with respect to the CoRoT seismic measurements. On the other hand, using the non-adiabatic intensity-velocity relation significantly reduces the discrepancy with the CoRoT data. The theoretical amplitudes remain 40% below, however, the CoRoT measurements.
Conclusions: Our results show that scaling relations of mode amplitudes cannot be simply extended from main-sequence to red giant stars in terms of intensity on the basis of adiabatic relations because non-adiabatic effects for red giant stars are important and cannot be neglected. We discuss possible reasons for the remaining differences. Title: Chemical abundances of distant extremely metal-poor unevolved stars Authors: Bonifacio, P.; Sbordone, L.; Caffau, E.; Ludwig, H. -G.; Spite, M.; González Hernández, J. I.; Behara, N. T. Bibcode: 2012A&A...542A..87B Altcode: 2012arXiv1204.1641B Context. The old Galactic halo stars hold the fossil record of the interstellar medium chemical composition at the time of their formation. Most of the stars studied so far are relatively near to the Sun, this prompts the study of more distant stars, both to increase the size of the sample and to search for possible variations of abundance patterns at greater distances.
Aims: The purpose of our study is to determine the chemical composition of a sample of 16 candidate extremely metal-poor (EMP) dwarf stars, extracted from the Sloan Digital Sky Survey (SDSS). There are two main purposes: in the first place to verify the reliability of the metallicity estimates derived from the SDSS spectra; in the second place to see if the abundance trends found for the brighter nearer stars studied previously also hold for this sample of fainter, more distant stars.
Methods: We used the UVES at the VLT to obtain high-resolution spectra of the programme stars. The abundances were determined by an automatic analysis with the MyGIsFOS code, with the exception of lithium, for which the abundances were determined from the measured equivalent widths of the Li i resonance doublet.
Results: All candidates are confirmed to be EMP stars, with [Fe/H] ≤ -3.0. The chemical composition of the sample of stars is similar to that of brighter and nearer samples. We measured the lithium abundance for 12 stars and provide stringent upper limits for three other stars, for a fourth star the upper limit is not significant, owing to the low signal-to noise ratio of the spectrum. The "meltdown" of the Spite plateau is confirmed, but some of the lowest metallicity stars of the sample lie on the plateau.
Conclusions: The concordance of the metallicities derived from high-resolution spectra and those estimated from the SDSS spectra suggests that the latter may be used to study the metallicity distribution of the halo. The abundance pattern suggests that the halo was well mixed for all probed metallicities and distances. The fact that at the lowest metallicities we find stars on the Spite plateau suggests that the meltdown depends on at least another parameter, besides metallicity.

Based on spectra obtained with UVES at the 8.2 m Kueyen ESO telescope, programmes 078.D-0217 and 081.D.0373.Table 1 is available in electronic form at http://www.aanda.org Title: A primordial star in the heart of the Lion Authors: Caffau, E.; Bonifacio, P.; François, P.; Spite, M.; Spite, F.; Zaggia, S.; Ludwig, H. -G.; Steffen, M.; Mashonkina, L.; Monaco, L.; Sbordone, L.; Molaro, P.; Cayrel, R.; Plez, B.; Hill, V.; Hammer, F.; Randich, S. Bibcode: 2012A&A...542A..51C Altcode: 2012arXiv1203.2607C Context. The discovery and chemical analysis of extremely metal-poor stars permit a better understanding of the star formation of the first generation of stars and of the Universe emerging from the Big Bang.
Aims: We report the study of a primordial star situated in the centre of the constellation Leo (SDSS J102915+172927).
Methods: The star, selected from the low-resolution spectrum of the Sloan Digital Sky Survey, was observed at intermediate (with X-Shooter at VLT) and at high spectral resolution (with UVES at VLT). The stellar parameters were derived from the photometry. The standard spectroscopic analysis based on 1D ATLAS models was completed by applying 3D and non-LTE corrections.
Results: An iron abundance of [Fe/H ] = -4.89 makes SDSS J102915+172927 one of the lowest [Fe/H] stars known. However, the absence of measurable C and N enhancements indicates that it has the lowest metallicity, Z ≤ 7.40 × 10-7 (metal-mass fraction), ever detected. No oxygen measurement was possible.
Conclusions: The discovery of SDSS J102915+172927 highlights that low-mass star formation occurred at metallicities lower than previously assumed. Even lower metallicity stars may yet be discovered, with a chemical composition closer to the composition of the primordial gas and of the first supernovae.

Based on observations obtained at ESO Paranal Observatory, GTO programme 086.D-0094 and programme 286.D-5045. Title: NLTE determination of the calcium abundance and 3D corrections in extremely metal-poor stars Authors: Spite, M.; Andrievsky, S. M.; Spite, F.; Caffau, E.; Korotin, S. A.; Bonifacio, P.; Ludwig, H. -G.; François, P.; Cayrel, R. Bibcode: 2012A&A...541A.143S Altcode: 2012arXiv1204.1139S Context. Calcium is a key element for constraining the models of chemical enrichment of the Galaxy.
Aims: Extremely metal-poor stars contain the fossil records of the chemical composition of the early Galaxy and it is important to compare Ca abundance with abundances of other light elements, that are supposed to be synthesized in the same stellar evolution phases.
Methods: The NLTE profiles of the calcium lines were computed in a sample of 53 extremely metal-poor stars with a modified version of the program MULTI, which allows a very good description of the radiation field.
Results: With our new model atom we are able to reconcile the abundance of Ca deduced from the Ca I and Ca II lines in Procyon. This abundance is found to be solar. We find that [Ca/Fe] = 0.50±0.09 in the early Galaxy, a value slightly higher than the previous LTE estimations. The scatter of the ratios [X/Ca] is generally smaller than the scatter of the ratio [X/Mg] where X is a "light metal" (O, Na, Mg, Al, S, and K) with the exception of Al. These scatters cannot be explained by error of measurements, except for oxygen. Surprisingly, the scatter of [X/Fe] is always equal to, or even smaller than, the scatter around the mean value of [X/Ca]. We note that at low metallicity, the wavelength of the Ca I resonance line is shifted relative to the (weaker) subordinate lines, a signature of the effect of convection. The Ca abundance deduced from the Ca I resonance line (422.7 nm) is found to be systematically smaller at very low metallicity than the abundance deduced from the subordinate lines. Our computations of the effects of convection (3D effects) are not able to explain this difference. A fully consistent 3D NLTE model atmosphere and line formation scheme would be necessary to fully capture the physics of the stellar atmosphere.

Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (Large Programme "First Stars", ID 165.N-0276(A); P.I.: R. Cayrel).The NLTE corrections of the Ca lines are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/541/A143 Title: VizieR Online Data Catalog: Li and Na in globular cluster M4 (Monaco+, 2012) Authors: Monaco, L.; Villanova, S.; Bonifacio, P.; Caffau, E.; Geisler, D.; Marconi, G.; Momany, Y.; Ludwig, H. -G. Bibcode: 2012yCat..35390157M Altcode: 2012yCat..35399157M We observed stars along the M4 MS and SGB using the FLAMES/GIRAFFE spectrograph at ESO Paranal. Observations were conducted in service mode between April and July 2010 using the HR12 and HR15N settings.

(1 data file). Title: Barium abundance in red giants of NGC 6752. Non-local thermodynamic equilibrium and three-dimensional effects Authors: Dobrovolskas, V.; Kučinskas, A.; Andrievsky, S. M.; Korotin, S. A.; Mishenina, T. V.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E. Bibcode: 2012A&A...540A.128D Altcode: 2012arXiv1203.3124D
Aims: We study the effects related to departures from non-local thermodynamic equilibrium (NLTE) and homogeneity in the atmospheres of red giant stars, to assess their influence on the formation of Ba II lines. We estimate the impact of these effects on the barium abundance determinations for 20 red giants in Galactic globular cluster NGC 6752.
Methods: One-dimensional (1D) local thermodynamic equilibrium (LTE) and 1D NLTE barium abundances were derived using classical 1D ATLAS9 stellar model atmospheres. The three-dimensional (3D) LTE abundances were obtained for 8 red giants on the lower RGB, by adjusting their 1D LTE abundances using 3D-1D abundance corrections, i.e., the differences between the abundances obtained from the same spectral line using the 3D hydrodynamical and classical 1D stellar model atmospheres. The 3D-1D abundance corrections were obtained in a strictly differential way using the 3D hydrodynamical and classical 1D codes CO5BOLD and LHD. Both codes utilized identical stellar atmospheric parameters, opacities, and equation of state.
Results: The mean 1D barium-to-iron abundance ratios derived for 20 giants are ⟨[Ba/Fe]⟩1D LTE = 0.24 ± 0.05(stat.) ± 0.08(sys.) and ⟨[Ba/Fe]⟩1D NLTE = 0.05 ± 0.06(stat.) ± 0.08(sys.). The 3D-1D abundance correction obtained for 8 giants is small (~+0.05 dex), thus leads to only minor adjustment when applied to the mean 1D NLTE barium-to-iron abundance ratio for the 20 giants, ⟨[Ba/Fe]⟩3D + NLTE = 0.10 ± 0.06(stat.) ± 0.10(sys.). The intrinsic abundance spread between the individual cluster stars is small and can be explained in terms of uncertainties in the abundance determinations.
Conclusions: Deviations from LTE play an important role in the formation of barium lines in the atmospheres of red giants studied here. The role of 3D hydrodynamical effects should not be dismissed either, even if the obtained 3D-1D abundance corrections are small. This result is a consequence of subtle fine-tuning of individual contributions from horizontal temperature fluctuations and differences between the average temperature profiles in the 3D and 1D model atmospheres: owing to the comparable size and opposite sign, their contributions nearly cancel each other. This fine-tuning is characteristic of the particular set of atmospheric parameters and the element investigated, hence should not necessarily be a general property of spectral line formation in the atmospheres of red giant stars. Title: Chemical evolution of the Milky Way: the origin of phosphorus Authors: Cescutti, G.; Matteucci, F.; Caffau, E.; François, P. Bibcode: 2012A&A...540A..33C Altcode: 2011arXiv1112.3824C Context. Recently, the abundance of P was measured for the first time in disk stars. This provides the opportunity of comparing the observed abundances with predictions from theoretical models.
Aims: We aim at predicting the chemical evolution of P in the Milky Way and compare our results with the observed P abundances in disk stars to derive constraints on the P nucleosynthesis.
Methods: We adopted the two-infall model of galactic chemical evolution, which is a good model for the Milky Way, and computed the evolution of the abundances of P and Fe. We adopted stellar yields for these elements from different sources. The element P is expected to form mainly in type-II supernovae, whereas Fe is mainly produced by type-Ia supernovae.
Results: Our results confirm that to reproduce the observed trend of [P/Fe] vs. [Fe/H] in disk stars, P must be formed mainly in massive stars. However, none of the available yields for P can reproduce the solar abundance of this element. In other words, to reproduce the data one needs to assume that massive stars produce three times more P than predicted.
Conclusions: We conclude that the entire available yields of P from massive stars are largely underestimated and that nucleosynthesis calculations should be revised. We also predict the [P/Fe] expected in halo stars. Title: LTE Model Atmospheres: MARCS, ATLAS and CO5BOLD Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Steffen, M. Bibcode: 2012IAUS..282..213B Altcode: In this talk, we review the basic assumptions and physics covered by classical 1D LTE model atmospheres. We will focus on ATLAS and MARCS models of F-G-K stars and describe what resources are available through the web, both in terms of codes and model-atmosphere grids. We describe the advances made in hydrodynamical simulations of convective stellar atmospheres with the CO5BOLD code and what grids and resources are available, with a prospect of what will be available in the near future. Title: Planetary companions around the metal-poor star HIP 11952 Authors: Setiawan, J.; Roccatagliata, V.; Fedele, D.; Henning, Th.; Pasquali, A.; Rodríguez-Ledesma, M. V.; Caffau, E.; Seemann, U.; Klement, R. J. Bibcode: 2012A&A...540A.141S Altcode: 2012arXiv1208.4000S
Aims: We carried out a radial-velocity survey to search for planets around metal-poor stars. In this paper we report the discovery of two planets around HIP 11952, a metal-poor star with [Fe/H] = -1.9 that belongs to our target sample.
Methods: Radial velocity variations of HIP 11952 were monitored systematically with FEROS at the 2.2 m telescope located at the ESO La Silla observatory from August 2009 until January 2011. We used a cross-correlation technique to measure the stellar radial velocities (RV).
Results: We detected a long-period RV variation of 290 d and a short-period one of 6.95 d. The spectroscopic analysis of the stellar activity reveals a stellar rotation period of 4.8 d. The Hipparcos photometry data shows intra-day variabilities, which give evidence for stellar pulsations. Based on our analysis, the observed RV variations are most likely caused by the presence of unseen planetary companions. Assuming a primary mass of 0.83 M, we computed minimum planetary masses of 0.78 MJup for the inner and 2.93 MJup for the outer planet. The semi-major axes are a1 = 0.07 AU and a2 = 0.81 AU, respectively.
Conclusions: HIP 11952 is one of very few stars with [Fe/H] < -1.0 which have planetary companions. This discovery is important to understand planet formation around metal-poor stars. Title: VizieR Online Data Catalog: NLTE Corrections of the Ca lines (Spite+, 2012) Authors: Spite, M.; Andrievsky, S. M.; Spite, F.; Caffau, E.; Korotin, S. A.; Bonifacio, P.; Ludwig, H. -G.; Francois, P.; Cayrel, R. Bibcode: 2012yCat..35410143S Altcode: 2012yCat..35419143S The NLTE corrections were computed for 51 CaI lines and 16 CaII lines for a grid of models with different metallicities from [Fe/H]=0.0 to [Fe/H]=-3. These corrections must be added to the LTE value of [Ca/H], they were computed only if the equivalent width of the Ca line was stronger than 3mÅ. In the tables the model is given in the form (Teff, logg, [Fe/H], [Ca/Fe]) where Teff is the effective temperature, and logg the logarithm of the surface gravity)

(5 data files). Title: The Gaia-ESO Public Spectroscopic Survey Authors: Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H. -W.; Vallenari, A.; Alfaro, E.; Allende-Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; François, P.; Irwin, M.; Koposov, S.; Korn, A.; Lanzafame, A.; Pancino, E.; Paunzen, E.; Recio-Blanco, A.; Sacco, G.; Smiljanic, R.; Van Eck, S.; Walton, N.; Aden, D.; Aerts, C.; Affer, L.; Alcala, J. -M.; Altavilla, G.; Alves, J.; Antoja, T.; Arenou, F.; Argiroffi, C.; Asensio Ramos, A.; Bailer-Jones, C.; Balaguer-Nunez, L.; Bayo, A.; Barbuy, B.; Barisevicius, G.; Barrado y Navascues, D.; Battistini, C.; Bellas Velidis, I.; Bellazzini, M.; Belokurov, V.; Bergemann, M.; Bertelli, G.; Biazzo, K.; Bienayme, O.; Bland-Hawthorn, J.; Boeche, C.; Bonito, S.; Boudreault, S.; Bouvier, J.; Brandao, I.; Brown, A.; de Bruijne, J.; Burleigh, M.; Caballero, J.; Caffau, E.; Calura, F.; Capuzzo-Dolcetta, R.; Caramazza, M.; Carraro, G.; Casagrande, L.; Casewell, S.; Chapman, S.; Chiappini, C.; Chorniy, Y.; Christlieb, N.; Cignoni, M.; Cocozza, G.; Colless, M.; Collet, R.; Collins, M.; Correnti, M.; Covino, E.; Crnojevic, D.; Cropper, M.; Cunha, M.; Damiani, F.; David, M.; Delgado, A.; Duffau, S.; Edvardsson, B.; Eldridge, J.; Enke, H.; Eriksson, K.; Evans, N. W.; Eyer, L.; Famaey, B.; Fellhauer, M.; Ferreras, I.; Figueras, F.; Fiorentino, G.; Flynn, C.; Folha, D.; Franciosini, E.; Frasca, A.; Freeman, K.; Fremat, Y.; Friel, E.; Gaensicke, B.; Gameiro, J.; Garzon, F.; Geier, S.; Geisler, D.; Gerhard, O.; Gibson, B.; Gomboc, A.; Gomez, A.; Gonzalez-Fernandez, C.; Gonzalez Hernandez, J.; Gosset, E.; Grebel, E.; Greimel, R.; Groenewegen, M.; Grundahl, F.; Guarcello, M.; Gustafsson, B.; Hadrava, P.; Hatzidimitriou, D.; Hambly, N.; Hammersley, P.; Hansen, C.; Haywood, M.; Heber, U.; Heiter, U.; Held, E.; Helmi, A.; Hensler, G.; Herrero, A.; Hill, V.; Hodgkin, S.; Huelamo, N.; Huxor, A.; Ibata, R.; Jackson, R.; de Jong, R.; Jonker, P.; Jordan, S.; Jordi, C.; Jorissen, A.; Katz, D.; Kawata, D.; Keller, S.; Kharchenko, N.; Klement, R.; Klutsch, A.; Knude, J.; Koch, A.; Kochukhov, O.; Kontizas, M.; Koubsky, P.; Lallement, R.; de Laverny, P.; van Leeuwen, F.; Lemasle, B.; Lewis, G.; Lind, K.; Lindstrom, H. P. E.; Lobel, A.; Lopez Santiago, J.; Lucas, P.; Ludwig, H.; Lueftinger, T.; Magrini, L.; Maiz Apellaniz, J.; Maldonado, J.; Marconi, G.; Marino, A.; Martayan, C.; Martinez-Valpuesta, I.; Matijevic, G.; McMahon, R.; Messina, S.; Meyer, M.; Miglio, A.; Mikolaitis, S.; Minchev, I.; Minniti, D.; Moitinho, A.; Momany, Y.; Monaco, L.; Montalto, M.; Monteiro, M. J.; Monier, R.; Montes, D.; Mora, A.; Moraux, E.; Morel, T.; Mowlavi, N.; Mucciarelli, A.; Munari, U.; Napiwotzki, R.; Nardetto, N.; Naylor, T.; Naze, Y.; Nelemans, G.; Okamoto, S.; Ortolani, S.; Pace, G.; Palla, F.; Palous, J.; Parker, R.; Penarrubia, J.; Pillitteri, I.; Piotto, G.; Posbic, H.; Prisinzano, L.; Puzeras, E.; Quirrenbach, A.; Ragaini, S.; Read, J.; Read, M.; Reyle, C.; De Ridder, J.; Robichon, N.; Robin, A.; Roeser, S.; Romano, D.; Royer, F.; Ruchti, G.; Ruzicka, A.; Ryan, S.; Ryde, N.; Santos, N.; Sanz Forcada, J.; Sarro Baro, L. M.; Sbordone, L.; Schilbach, E.; Schmeja, S.; Schnurr, O.; Schoenrich, R.; Scholz, R. -D.; Seabroke, G.; Sharma, S.; De Silva, G.; Smith, M.; Solano, E.; Sordo, R.; Soubiran, C.; Sousa, S.; Spagna, A.; Steffen, M.; Steinmetz, M.; Stelzer, B.; Stempels, E.; Tabernero, H.; Tautvaisiene, G.; Thevenin, F.; Torra, J.; Tosi, M.; Tolstoy, E.; Turon, C.; Walker, M.; Wambsganss, J.; Worley, C.; Venn, K.; Vink, J.; Wyse, R.; Zaggia, S.; Zeilinger, W.; Zoccali, M.; Zorec, J.; Zucker, D.; Zwitter, T.; Gaia-ESO Survey Team Bibcode: 2012Msngr.147...25G Altcode: The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented. Title: Lithium and sodium in the globular cluster M 4. Detection of a Li-rich dwarf star: preservation or pollution? Authors: Monaco, L.; Villanova, S.; Bonifacio, P.; Caffau, E.; Geisler, D.; Marconi, G.; Momany, Y.; Ludwig, H. -G. Bibcode: 2012A&A...539A.157M Altcode: 2011arXiv1108.0138M Context. The abundance inhomogeneities of light elements observed in globular clusters (GCs), and notably the ubiquitous Na-O anti-correlation, are generally interpreted as evidence that GCs comprise several generations of stars. There is an on-going debate as to the nature of the stars, which produce the inhomogeneous elements, and investigating the behavior of several elements is a way to shed new light on this problem.
Aims: We aim at investigating the Li and Na content of the GC M 4, that is known to have a well defined Na-O anti-correlation.
Methods: We obtained moderate resolution (R = 17 000-18 700) spectra for 91 main sequence (MS)/sub-giant branch stars of M 4 with the Giraffe spectrograph at the FLAMES/VLT ESO facility. Using model atmospheres analysis we measured lithium and sodium abundances.
Results: We detect a weak Li-Na anti-correlation among un-evolved MS stars. One star in the sample, # 37934, shows the remarkably high lithium abundance A(Li) = 2.87, compatible with current estimates of the primordial lithium abundance.
Conclusions: The shallow slope found for the Li-Na anti-correlation suggests that lithium is produced in parallel to sodium. This evidence, coupled with its sodium-rich nature, suggests that the high lithium abundance of star # 37934 may originate by pollution from a previous generations of stars. The recent detection of a Li-rich dwarf of pollution origin in the globular cluster NGC 6397 may also point in this direction. Still, no clear cut evidence is available against a possible preservation of the primordial lithium abundance for star # 37934.

Based on observations taken at ESO VLT Kueyen telescope (Cerro Paranal, Chile, program: 085.D-0537A).Table A.1 is available in electronic form at http://www.aanda.org Title: 6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem? Authors: Steffen, M.; Cayrel, R.; Caffau, E.; Bonifacio, P.; Ludwig, H. -G.; Spite, M. Bibcode: 2012MSAIS..22..152S Altcode: 2012arXiv1206.2239S The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, as pointed out recently by \cite{Cayrel2007}, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the iLi 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0.020. When this purely theoretical correction is taken into account for the \cite{A2006} sample of stars, the number of significant 6Li detections decreases from 9 to 5 (2sigma criterion), or from 5 to 2 (3sigma criterion).

We also present preliminary results of a re-analysis of high-resolution, high S/N spectra of individual metal-poor turn-off stars, to see whether the second Lithium problem actually disappears when accounting properly for convection and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD 84937 seems to be the only significant (2sigma ) detection of 6Li. In view of our results, the existence of a 6Li plateau appears questionable. Title: Lithium abundances in extremely metal-poor turn-off stars Authors: Sbordone, L.; Bonifacio, P.; Caffau, E. Bibcode: 2012MSAIS..22...29S Altcode: 2012arXiv1206.7008S We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progressive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]∼-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The ``meltdown'' of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios. Title: Observing metal-poor stars with X-Shooter Authors: Caffau, E.; Bonifacio, P.; Sbordone, L.; Monaco, L.; François; , P. Bibcode: 2012MmSAI..83.1161C Altcode: The extremely metal-poor stars (EMP) hold in their atmospheres the fossil record of the chemical composition of the early phases of the Galactic evolution. The chemical analysis of such objects provides important constraints on these early phases. EMP stars are very rare objects; to dig them out large amounts of data have to be considered. With an automatic procedure, we analysed objects with colours of Turn-Off stars from the Sloan Digital Sky Survey to select a sample of good candidate EMP stars. During the French-Italian GTO of the spectrograph X-Shooter, we observed a sample of these candidates. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star. Title: Preliminary determination of the Non-LTE Calcium abundance in a sample of extremely metal-poor stars* Authors: Spite, M.; Spite, F.; Bonifacio, P.; Caffau, E.; Andrievsky, S.; Korotin, S.; Cayrel, R.; François, P. Bibcode: 2011sf2a.conf..353S Altcode: The abundance ratios of the elements found in the extremely metal-poor stars (EMP) are a test of the yields predicted by the models of supernovae. For precise comparisons, it is of course preferable to avoid the approximation of LTE. The difference of LTE and NLTE profiles is displayed for three strong lines. The NLTE abundances of Ca are derived from the profiles of about 15 Ca I lines in the EMP giants and about 10 lines in the turnoff stars. The improved abundance trends are consistent with a [Ca/Fe] ratio constant vs. [Fe/H], and with a [Ca/Mg] ratio slightly declining when [Mg/H] increases. Also [Ca/Mg] presents a scatter larger than [Ca/Fe]. As far as the comparison with sulfur (another alpha elment) is concerned we find that [S/Ca] presents a scatter smaller than [S/Mg]. Title: SPADES: a Stellar PArameters DEtermination Software Authors: Posbic, H.; Katz, D.; Caffau, E.; Bonifacio, P.; Sbordone, L.; Gomez, A.; Arenou, F. Bibcode: 2011sf2a.conf..333P Altcode: With the large amounts of spectroscopic data available today and the very large surveys to come (e.g. Gaia), the need for automatic data analysis software is unquestionable. We thus developed an automatic spectra analysis program for the determination of stellar parameters: radial velocity, effective temperature, surface gravity, micro-turbulence, metallicity and the elemental abundances of the elements present in the spectral range. Target stars for this software should include all types of stars. The analysis method relies on a line by line comparison of the spectrum of a target star to a library of synthetic spectra. The idea is built on the experience acquired in developing the TGMET (Katz et al. 1998, Soubiran et al. 2003), ETOILE (Katz 2001) and Abbo (Bonifacio & Caffau 2003) software.The method is presented and the performances are illustrated with GIRAFFE-like simulated spectra with high resolution (R = 25000), with high and low signal to noise ratios (down to SNR = 30). These spectra should be close to what could be targeted by the Gaia-ESO Survey (GCDS). Title: X-shooter Finds an Extremely Primitive Star Authors: Caffau, E.; Bonifacio, P.; François, P.; Sbordone, L.; Monaco, L.; Spite, M.; Spite, F.; Ludwig, H. -G.; Cayrel, R.; Zaggia, S.; Hammer, F.; Randich, S.; Molaro, P.; Hill, V. Bibcode: 2011Msngr.146...28C Altcode: Low-mass extremely metal-poor (EMP) stars hold the fossil record of the chemical composition of the early phases of the Universe in their atmospheres. Chemical analysis of such objects provides important constraints on these early phases. EMP stars are rather rare objects: to dig them out, large amounts of data have to be considered. We have analysed stars from the Sloan Digital Sky Survey using an automatic procedure and selected a sample of good candidate EMP stars, which we observed with the spectrographs X-shooter and UVES. We could confirm the low metallicity of our sample of stars, and we succeeded in finding a record metal-poor star. Title: Sulphur in the metal poor globular cluster NGC 6397 Authors: Koch, A.; Caffau, E. Bibcode: 2011A&A...534A..52K Altcode: 2011arXiv1108.6054K Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments.

This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Title: X-Shooter GTO: chemical analysis of a sample of EMP candidates Authors: Caffau, E.; Bonifacio, P.; François, P.; Spite, M.; Spite, F.; Zaggia, S.; Ludwig, H. -G.; Monaco, L.; Sbordone, L.; Cayrel, R.; Hammer, F.; Randich, S.; Hill, V.; Molaro, P. Bibcode: 2011A&A...534A...4C Altcode: 2011arXiv1109.0992C Context. Extremely metal-poor stars (EMP) are very rare objects that hold in their atmospheres the fossil record of the chemical composition of the early phases of Galactic evolution. Finding these objects and determining their chemical composition provides important constraints on these early phases.
Aims: Using a carefully designed selection method, we chose a sample of candidate EMP stars from the low resolution spectra of the Sloan Digital Sky Survey and observed them with X-Shooter at the VLT to confirm their metallicities and determine abundances for as many elements as possible.
Methods: The X-Shooter spectra are analysed by means of one-dimensional, plane-parallel, hydrostatic model atmospheres. Corrections for the granulation effects are computed using CO5BOLD hydrodynamical simulations.
Results: All the candidates are confirmed to be EMP stars, proving the efficiency of our selection method within about 0.5 dex. The chemical composition of this sample is compatible with those of brighter samples, suggesting that the stars in the Galactic halo are well mixed.
Conclusions: These observations show that it is feasible to observe, in a limited amount of time, a large sample of about one hundred stars among EMP candidates selected from the SDSS. Such a size of sample will allow us, in particular, to confirm or refute the existence of a vertical drop in the Galactic halo metallicity distribution function around [Fe/H] ~ -3.5.

Based on observations obtained at ESO Paranal Observatory, GTO programme 086.D-0094. Title: An extremely primitive star in the Galactic halo Authors: Caffau, Elisabetta; Bonifacio, Piercarlo; François, Patrick; Sbordone, Luca; Monaco, Lorenzo; Spite, Monique; Spite, François; Ludwig, Hans-G.; Cayrel, Roger; Zaggia, Simone; Hammer, François; Randich, Sofia; Molaro, Paolo; Hill, Vanessa Bibcode: 2011Natur.477...67C Altcode: 2012arXiv1203.2612C The early Universe had a chemical composition consisting of hydrogen, helium and traces of lithium; almost all other elements were subsequently created in stars and supernovae. The mass fraction of elements more massive than helium, Z, is known as `metallicity'. A number of very metal-poor stars has been found, some of which have a low iron abundance but are rich in carbon, nitrogen and oxygen. For theoretical reasons and because of an observed absence of stars with Z<1.5×10-5, it has been suggested that low-mass stars cannot form from the primitive interstellar medium until it has been enriched above a critical value of Z, estimated to lie in the range 1.5×10-8 to 1.5×10-6 (ref. 8), although competing theories claiming the contrary do exist. (We use `low-mass' here to mean a stellar mass of less than 0.8 solar masses, the stars that survive to the present day.) Here we report the chemical composition of a star in the Galactic halo with a very low Z (<=6.9×10-7, which is 4.5×10-5 times that of the Sun) and a chemical pattern typical of classical extremely metal-poor stars--that is, without enrichment of carbon, nitrogen and oxygen. This shows that low-mass stars can be formed at very low metallicity, that is, below the critical value of Z. Lithium is not detected, suggesting a low-metallicity extension of the previously observed trend in lithium depletion. Such lithium depletion implies that the stellar material must have experienced temperatures above two million kelvin in its history, given that this is necessary to destroy lithium. Title: LTE model atmopsheres MARCS, ATLAS and CO5BOLD Authors: Bonifacio, Piercarlo; Caffau, Elisabetta; Ludwig, Hans-Guenter; Steffen, Matthias Bibcode: 2011arXiv1109.0717B Altcode: In this talk we review the basic assumptions and physics covered by classical 1D LTE model atmospheres. We will focus on ATLAS and MARCS models of F-G-K stars and describe what resources are available through the web, both in terms of codes and model-atmosphere grids. We describe the advances made in hydrodynamical simulations of convective stellar atmospheres with the CO5BOLD code and what grids and resources are available, with a prospect of what will be available in the near future. Title: The Galactic evolution of phosphorus Authors: Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M. Bibcode: 2011A&A...532A..98C Altcode: 2011arXiv1107.2657C Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra.
Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk.
Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE.
Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10.
Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet.

Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau. Title: NGC 1866: a milestone for understanding the chemical evolution of stellar populations in the Large Magellanic Cloud Authors: Mucciarelli, A.; Cristallo, S.; Brocato, E.; Pasquini, L.; Straniero, O.; Caffau, E.; Raimondo, G.; Kaufer, A.; Musella, I.; Ripepi, V.; Romaniello, M.; Walker, A. R. Bibcode: 2011MNRAS.413..837M Altcode: 2010arXiv1012.1476M We present new FLAMES@VLT spectroscopic observations of 30 stars in the field of the Large Magellanic Cloud (LMC) stellar cluster NGC 1866. NGC 1866 is one of the few young and massive globular clusters that is close enough so that its stars can be individually studied in detail. Radial velocities have been used to separate stars belonging to the cluster and to the LMC field, and the same spectra have been used to derive chemical abundances for a variety of elements, from [Fe/H] to the light (i.e. Na, O, Mg, etc.) to the heavy ones. The average iron abundance of NGC 1866 turns out to be [Fe/H]=-0.43 ± 0.01 dex (with a dispersion σ= 0.04 dex), from the analysis of 14 cluster member stars. Within our uncertainties, the cluster stars are homogeneous, as far as chemical composition is concerned, independent of the evolutionary status. The observed cluster stars do not show any sign of the light elements' ‘anticorrelation’ present in all the Galactic globular clusters so far studied and are also found in the old LMC stellar clusters. A similar lack of anticorrelations has been detected in the massive intermediate-age LMC clusters, indicating a different formation/evolution scenario for the LMC massive clusters younger than ∼3 Gyr with respect to the old ones.

Also opposite to the Galactic globulars, the chemical composition of the older red giant branch field stars and of the young post-main-sequence cluster stars show robust homogeneity suggesting a quite similar process of chemical evolution. The field and cluster abundances are in agreement with recent chemical analysis of LMC stars, which show a distinctive chemical pattern for this galaxy with respect to the Milky Way. We discuss these findings in light of the theoretical scenario of chemical evolution of the LMC. Title: First stars. XIV. Sulfur abundances in extremely metal-poor stars Authors: Spite, M.; Caffau, E.; Andrievsky, S. M.; Korotin, S. A.; Depagne, E.; Spite, F.; Bonifacio, P.; Ludwig, H. -G.; Cayrel, R.; François, P.; Hill, V.; Plez, B.; Andersen, J.; Barbuy, B.; Beers, T. C.; Molaro, P.; Nordström, B.; Primas, F. Bibcode: 2011A&A...528A...9S Altcode: 2010arXiv1012.4358S Context. Precise S abundances are important in the study of the early chemical evolution of the Galaxy. In particular the site of the formation remains uncertain because, at low metallicity, the trend of this α-element versus [Fe/H] remains unclear. Moreover, although sulfur is not bound significantly in dust grains in the ISM, it seems to behave differently in DLAs and old metal-poor stars.
Aims: We attempt a precise measurement of the S abundance in a sample of extremely metal-poor stars observed with the ESO VLT equipped with UVES, taking into account NLTE and 3D effects.
Methods: The NLTE profiles of the lines of multiplet 1 of S I were computed with a version of the program MULTI, including opacity sources from ATLAS9 and based on a new model atom for S. These profiles were fitted to the observed spectra.
Results: We find that sulfur in EMP stars behaves like the other α-elements, with [S/Fe] remaining approximately constant below [Fe/H] = -3. However, [S/Mg] seems to decrease slightly with increasing [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are most closely matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as also found in DLAs. We derive an upper limit to the sulfur abundance [S/Fe] < +0.5 for the ultra metal-poor star CS 22949-037. This, along with a previously reported measurement of zinc, argues against the conjecture that the light-element abundance pattern of this star (and by analogy, the hyper iron-poor stars HE 0107-5240 and HE 1327-2326) would be due to dust depletion.

Based on observations obtained with the ESO Very Large Telescope at Paranal (Large Programme "First Stars", ID 165, N-0276, P.I.: Cayrel. Title: Extremely metal-poor stars in SDSS fields Authors: Bonifacio, P.; Caffau, E.; François, P.; Sbordone, L.; Ludwig, H. -G.; Spite, M.; Molaro, P.; Spite, F.; Cayrel, R.; Hammer, F.; Hill, V.; Nonino, M.; Randich, S.; Stelzer, B.; Zaggia, S. Bibcode: 2011AN....332..251B Altcode: 2011arXiv1101.3139B Some insight on the first generation of stars can be obtained from the chemical composition of their direct descendants, extremely metal-poor stars (EMP), with metallicity less than or equal to 1/1000 of the solar metallicity. Such stars are exceedingly rare, the most successful surveys, for this purpose, have so far provided only about 100 stars with 1/1 000 the solar metallicity and 4 stars with about 1/10 000 of the solar metallicity. The Sloan Digital Sky Survey has the potential to provide a large number of candidates of extremely low metallicity. X-shooter has the unique capability of performing the necessary follow-up spectroscopy providing accurate metallicities and abundance ratios for several elements (Mg, Al, Ca, Ti, Cr, Sr, ...) for EMP candidates. We here report on the results for the first two stars observed in the course of our Franco-Italian X-shooter GTO. The two stars were targeted to be of metallicity around -3.0, the analysis of the X-shooter spectra showed them to be of metallicity around -2.0, but with a low α to iron ratio, which explains the underestimate of the metallicity from the SDSS spectra. The efficiency of X-shooter allows an in situ study of the outer halo, for the two stars studied here we estimate distances of 3.9 and 9.1 kpc, these are likely the most distant dwarf stars studied in detail to date.

Based on spectra obtained with X-shooter at the 8.2-m Kueyen ESO telescope, GTO programmes 085.D-0194 and 086.D.0094. Title: The solar photospheric abundance of zirconium Authors: Caffau, E.; Faraggiana, R.; Ludwig, H. -G.; Bonifacio, P.; Steffen, M. Bibcode: 2011AN....332..128C Altcode: 2010arXiv1012.1038C Zirconium (Zr), together with strontium and yttrium, is an important element in the understanding of the Galactic nucleosynthesis. In fact, the triad Sr-Y-Zr constitutes the first peak of s-process elements. Despite its general relevance not many studies of the solar abundance of Zr were conducted. We derive the zirconium abundance in the solar photosphere with the same CO5BOLD hydrodynamical model of the solar atmosphere that we previously used to investigate the abundances of C-N-O. We review the zirconium lines available in the observed solar spectra and select a sample of lines to determine the zirconium abundance, considering lines of neutral and singly ionised zirconium. We apply different line profile fitting strategies for a reliable analysis of Zr lines that are blended by lines of other elements. The abundance obtained from lines of neutral zirconium is very uncertain because these lines are commonly blended and weak in the solar spectrum. However, we believe that some lines of ionised zirconium are reliable abundance indicators. Restricting the set to Zr II lines, from the CO5BOLD 3D model atmosphere we derive A(Zr) {=2.62± 0.06}, where the quoted error is the RMS line-to-line scatter. Title: Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M.; Freytag, B.; Bonifacio, P. Bibcode: 2011SoPh..268..255C Altcode: 2010SoPh..tmp...66C; 2010arXiv1003.1190C In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This "decrease" with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO5BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations depend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not responsible for the systematic lowering of the solar abundances in recent years. The solar metallicity resulting from this analysis is Z=0.0153, Z/X=0.0209. Title: Cu I resonance lines in turn-off stars of NGC 6752 and NGC 6397. Effects of granulation from CO5BOLD models Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G. Bibcode: 2010A&A...524A..96B Altcode: 2010arXiv1009.1848B Context. Copper is an element whose interesting evolution with metallicity is not fully understood. Observations of copper abundances rely on a very limited number of lines, the strongest are the Cu I lines of Mult. 1 at 324.7 nm and 327.3 nm which can be measured even at extremely low metallicities.
Aims: We investigate the quality of these lines as abundance indicators.
Methods: We measure these lines in two turn-off (TO) stars in the Globular Cluster NGC 6752 and two TO stars in the Globular Cluster NGC 6397 and derive abundances with 3D hydrodynamical model atmospheres computed with the CO5BOLD code. These abundances are compared to the Cu abundances measured in giant stars of the same clusters, using the lines of Mult. 2 at 510.5 nm and 578.2 nm.
Results: The abundances derived from the lines of Mult. 1 in TO stars differ from the abundances of giants of the same clusters. This is true both using CO5BOLD models and using traditional 1D model atmospheres. The LTE 3D corrections for TO stars are large, while they are small for giant stars.
Conclusions: The Cu I resonance lines of Mult. 1 are not reliable abundance indicators. It is likely that departures from LTE should be taken into account to properly describe these lines, although it is not clear if these alone can account for the observations. An investigation of these departures is indeed encouraged for both dwarfs and giants. Our recommendation to those interested in the study of the evolution of copper abundances is to rely on the measurements in giants, based on the lines of Mult. 2. We caution, however, that NLTE studies may imply a revision in all the Cu abundances, both in dwarfs and giants.

Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 71.D-0155, 75.D-0807, 76.B-0133). Title: The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Behara, N. T.; González Hernández, J. I.; Steffen, M.; Cayrel, R.; Freytag, B.; van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite, M.; Spite, F.; Beers, T. C.; Christlieb, N.; François, P.; Hill, V. Bibcode: 2010A&A...522A..26S Altcode: 2010arXiv1003.4510S Context. The primordial nature of the Spite plateau is at odds with the WMAP satellite measurements, implying a primordial Li production at least three times higher than observed. It has also been suggested that A(Li) might exhibit a positive correlation with metallicity below [Fe/H] ~ -2.5. Previous samples studied comprised few stars below [Fe/H] = -3.
Aims: We present VLT-UVES Li abundances of 28 halo dwarf stars between [Fe/H] = -2.5 and -3.5, ten of which have [Fe/H] <-3.
Methods: We determined stellar parameters and abundances using four different Teff scales. The direct infrared flux method was applied to infrared photometry. Hα wings were fitted with two synthetic grids computed by means of 1D LTE atmosphere models, assuming two different self-broadening theories. A grid of Hα profiles was finally computed by means of 3D hydrodynamical atmosphere models. The Li i doublet at 670.8 nm has been used to measure A(Li) by means of 3D hydrodynamical NLTE spectral syntheses. An analytical fit of A(Li)3D, NLTE as a function of equivalent width, Teff, log g, and [Fe/H] has been derived and is made available.
Results: We confirm previous claims that A(Li) does not exhibit a plateau below [Fe/H] = -3. We detect a strong positive correlation with [Fe/H] that is insensitive to the choice of Teff estimator. From a linear fit, we infer a steep slope of about 0.30 dex in A(Li) per dex in [Fe/H], which has a significance of 2-3σ. The slopes derived using the four Teff estimators are consistent to within 1σ. A significant slope is also detected in the A(Li)-Teff plane, driven mainly by the coolest stars in the sample (Teff < 6250), which appear to be Li-poor. However, when we remove these stars the slope detected in the A(Li)-[Fe/H] plane is not altered significantly. When the full sample is considered, the scatter in A(Li) increases by a factor of 2 towards lower metallicities, while the plateau appears very thin above [Fe/H] = -2.8. At this metallicity, the plateau lies at <A(Li)3D, NLTE> = 2.199±0.086.
Conclusions: The meltdown of the Spite plateau below [Fe/H] ~ -3 is established, but its cause is unclear. If the primordial A(Li) were that derived from standard BBN, it appears difficult to envision a single depletion phenomenon producing a thin, metallicity independent plateau above [Fe/H] = -2.8, and a highly scattered, metallicity dependent distribution below. That no star below [Fe/H] = -3 lies above the plateau suggests that they formed at plateau level and experienced subsequent depletion.

Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 076.A-0463 and 077.D-0299).Full Table 3 is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A26IDL code (appendix) is only available in electronic form at http://www.aanda.org Title: Galactic evolution of oxygen. OH lines in 3D hydrodynamical model atmospheres Authors: González Hernández, J. I.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Behara, N. T.; Freytag, B. Bibcode: 2010A&A...519A..46G Altcode: 2010arXiv1005.3754G Context. Oxygen is the third most common element in the Universe. The measurement of oxygen lines in metal-poor unevolved stars, in particular near-UV OH lines, can provide invaluable information about the properties of the Early Galaxy.
Aims: Near-UV OH lines constitute an important tool to derive oxygen abundances in metal-poor dwarf stars. Therefore, it is important to correctly model the line formation of OH lines, especially in metal-poor stars, where 3D hydrodynamical models commonly predict cooler temperatures than plane-parallel hydrostatic models in the upper photosphere.
Methods: We have made use of a grid of 52 3D hydrodynamical model atmospheres for dwarf stars computed with the code CO5BOLD, extracted from the more extended CIFIST grid. The 52 models cover the effective temperature range 5000-6500 K, the surface gravity range 3.5-4.5 and the metallicity range -3 < [Fe/H] < 0.
Results: We determine 3D-LTE abundance corrections in all 52 3D models for several OH lines and ion{Fe}{i} lines of different excitation potentials. These 3D-LTE corrections are generally negative and reach values of roughly -1 dex (for the OH 3167 with excitation potential of approximately 1 eV) for the higher temperatures and surface gravities.
Conclusions: We apply these 3D-LTE corrections to the individual O abundances derived from OH lines of a sample the metal-poor dwarf stars reported in Israelian et al. (1998, ApJ, 507, 805), Israelian et al. (2001, ApJ, 551, 833) and Boesgaard et al. (1999, AJ, 117, 492) by interpolating the stellar parameters of the dwarfs in the grid of 3D-LTE corrections. The new 3D-LTE [O/Fe] ratio still keeps a similar trend as the 1D-LTE, i.e., increasing towards lower [Fe/H] values. We applied 1D-NLTE corrections to 3D ion{Fe}{i} abundances and still see an increasing [O/Fe] ratio towards lower metallicites. However, the Galactic [O/Fe] ratio must be revisited once 3D-NLTE corrections become available for OH and Fe lines for a grid of 3D hydrodynamical model atmospheres. Title: VizieR Online Data Catalog: Fe Abundances in metal-poor stars (Sbordone+ 2010) Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Behara, N. T.; Gonzalez Hernandez, J. I.; Steffen, M.; Cayrel, R.; Freytag, B.; van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite, M.; Spite, F.; Beers, T. C.; Christlieb, N.; Francois, P.; Hill, V. Bibcode: 2010yCat..35220026S Altcode: 2010yCat..35229026S Line-by-line abundances for FeI and FeII lines used to estimate metallicity and gravity for the program stars. The first column lists the star name, then the ion (FeI or FeII) The the wavelength in nm, the loggf, the measured EW (pm) and the derived abundance assuming the four stellar parameter sets used in the article, respectively 3D, BA, ALI and IRFM.

(3 data files). Title: Sulphur abundances in halo stars from multiplet 3 at 1045 nm Authors: Caffau, E.; Sbordone, L.; Ludwig, H. -G.; Bonifacio, P.; Spite, M. Bibcode: 2010AN....331..725C Altcode: 2010arXiv1003.4914C Sulphur is a volatile α-element which is not locked into dust grains in the interstellar medium (ISM). Hence, its abundance does not need to be corrected for dust depletion when comparing the ISM to the stellar atmospheres. The abundance of sulphur in the photosphere of metal-poor stars is a matter of debate: according to some authors, [S/Fe] versus [Fe/H] forms a plateau at low metallicity, while, according to other studies, there is a large scatter or perhaps a bimodal distribution. In metal-poor stars sulphur is detectable by its lines of multiplet 1 at 920 nm, but this range is heavily contaminated by telluric absorptions, and one line of the multiplet is blended by the hydrogen Paschen ζ line. We study the possibility of using multiplet 3 (at 1045 nm) for deriving the sulphur abundance because this range, now observable at the VLT with the infra-red spectrograph CRIRES, is little contaminated by telluric absorption and not affected by blends at least in metal-poor stars. We compare the abundances derived from multiplets 1 and 3, taking into account NLTE corrections and 3D effects. Here we present the results for a sample of four stars, although the scatter is less pronounced than in previous analysis, we cannot find a plateau in [S/Fe], and confirm the scatter of the sulphur abundance at low metallicity.

Using data from CRIRES at the ESO-VLT, Programme 079.D-0434. Title: Science with GYES: a multifibre high-resolution spectrograph for the prime focus of the Canada-France-Hawaii Telescope Authors: Bonifacio, P.; Arenou, F.; Babusiaux, C.; Balkowski, C.; Bienaymé, O.; Briot, D.; Caffau, E.; Carlberg, R.; Famaey, B.; François, P.; Frémat, Y.; Gomez, A.; Haywood, M.; Hill, V.; Katz, D.; Kudritzki, R.; Lallement, R.; de Laverny, P.; Lemasle, B.; Martayan, C.; Monier, R.; Mourard, D.; Nardetto, N.; Recio Blanco, A.; Robichon, N.; Robin, A. C.; Rodrigues, M.; Royer, Fr.; Soubiran, C.; Turon, C.; Venn, K.; Viala, Y. Bibcode: 2010SPIE.7735E..0EB Altcode: 2010SPIE.7735E..13B We present the scientific motivations for GYES: a high multiplex (of the order of several hundred), high resolution (about 20 000), spectrograph to be placed at the prime focus of the CFHT. The main purpose of such an instrument is to conduct a spectroscopic survey complementary to the Gaia mission. The final Gaia catalogue (expected around 2020) will provide accurate distances, proper motions and spectrophotometry for all the stars down to a magnitude of 20. The spectroscopic instrument on board the Gaia satellite will provide intermediate resolution (R=11 500) spectra for stars down to the 17th magnitude. For the fainter stars there will be no radial velocity information. For all the stars the chemical information will be limited to a few species. A multifibre spectrograph at the prime focus of the CFHT will be able to provide the high resolution spectra for stars fainter than 13th magnitude, needed to obtain both accurate radial velocities and detailed chemical abundances. The possible use of GYES will not be limited to Gaia complementary surveys and we here describe the potentialities of such an instrument. We describe here how the scientific drivers are translated into technical requirements. The results of our on-going feasibility study are described in an accompanying poster. Title: The solar photospheric abundance of carbon. Analysis of atomic carbon lines with the CO5BOLD solar model Authors: Caffau, E.; Ludwig, H. -G.; Bonifacio, P.; Faraggiana, R.; Steffen, M.; Freytag, B.; Kamp, I.; Ayres, T. R. Bibcode: 2010A&A...514A..92C Altcode: 2010arXiv1002.2628C Context. The analysis of the solar spectra using hydrodynamical simulations, with a specific selection of lines, atomic data, and method for computing deviations from local thermodynamical equilibrium, has led to a downward revision of the solar metallicity, Z. We are using the latest simulations computed with the CO5BOLD code to reassess the solar chemical composition. Our previous analyses of the key elements, oxygen and nitrogen, have not confirmed any extreme downward revision of Z, as derived in other works based on hydrodynamical models.
Aims: We determine the solar photospheric carbon abundance with a radiation-hydrodynamical CO5BOLD model and compute the departures from local thermodynamical equilibrium by using the Kiel code.
Methods: We measured equivalent widths of atomic C I lines on high-resolution, high signal-to-noise ratio solar atlases of disc-centre intensity and integrated disc flux. These equivalent widths were analysed with our latest solar 3D hydrodynamical simulation computed with CO5BOLD. Deviations from local thermodynamic equilibrium we computed in 1D with the Kiel code, using the average temperature structure of the hydrodynamical simulation as a background model.
Results: Our recommended value for the solar carbon abundance relies on 98 independent measurements of observed lines and is A(C)=8.50 ± 0.06. The quoted error is the sum of statistical and systematic errors. Combined with our recent results for the solar oxygen and nitrogen abundances, this implies a solar metallicity of Z = 0.0154 and Z/X = 0.0211.
Conclusions: Our analysis implies a solar carbon abundance that is about 0.1 dex higher than what was found in previous analyses based on different 3D hydrodynamical computations. The difference is partly driven by our equivalent width measurements (we measure, on average, larger equivalent widths than the other work based on a 3D model), in part because of the different properties of the hydrodynamical simulations and the spectrum synthesis code. The solar metallicity we obtain from the CO5BOLD analyses is in slightly better agreement with the constraints of helioseismology than the previous 3D abundance results. Title: A 3D-NLTE study of the 670 nm solar lithium feature Authors: Caffau, Elisabetta; Ludwig, Hans-Günter; Steffen, Matthias; Bonifacio, Piercarlo Bibcode: 2010IAUS..268..329C Altcode: We derive the 3D-NLTE lithium abundance in the solar photosphere from the Lii line at 670 nm as measured in several solar atlases. The Li abundance is obtained from line profile fitting with 1D/3D-LTE/3D-NLTE synthetic spectra, considering several possibilities for the atomic parameters of the lines blending the Li feature. The 670 nm spectral region shows considerable differences in the two available disc-centre solar atlases, while the two integrated disc spectra are very similar. We obtain A(Li)3D-NLTE = 1.03. The 1D-LTE abundance is 0.07 dex smaller. The line-lists giving the best fit for the Sun may fail for other stars, while some line-lists fail to reproduce the solar profile satisfactorily. We need a better knowledge of the atomic parameters of the lines blending the Li feature in order to be able to reproduce both the solar spectrum and the spectra of other stars. An improved line-list is also required to derive reliable estimates of the isotopic Li ratio in solar-metallicity stars. Title: Three carbon-enhanced metal-poor dwarf stars from the SDSS. Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres Authors: Behara, N. T.; Bonifacio, P.; Ludwig, H. -G.; Sbordone, L.; González Hernández, J. I.; Caffau, E. Bibcode: 2010A&A...513A..72B Altcode: 2010arXiv1002.1670B Context. The origin of carbon-enhanced metal-poor stars enriched with both s and r elements is highly debated. Detailed abundances of these types of stars are crucial to understand the nature of their progenitors.
Aims: The aim of this investigation is to study in detail the abundances of SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212, three dwarf CEMP stars, selected from the Sloan Digital Sky Survey.
Methods: Using high resolution VLT/UVES spectra (R ~ 30 000) we determine abundances for Li, C, N, O, Na, Mg, Al, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni and 21 neutron-capture elements. We made use of CO5BOLD 3D hydrodynamical model atmospheres in the analysis of the carbon, nitrogen and oxygen abundances. NLTE corrections for Ci and Oi lines were computed using the Kiel code.
Results: We classify SDSS J1349-0229 and SDSS J0912+0216 as CEMP-r+s stars. SDSS J1036+1212 belongs to the class CEMP-no/s, with enhanced Ba, but deficient Sr, of which it is the third member discovered to date. Radial-velocity variations have been observed in SDSS J1349-0229, providing evidence that it is a member of a binary system.
Conclusions: The chemical composition of the three stars is generally compatible with mass transfer from an AGB companion. However, many details remain difficult to explain. Most notably of those are the abundance of Li at the level of the Spite plateau in SDSS J1036+1212 and the large over-abundance of the pure r-process element Eu in all three stars.

Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (programmes 078.D-0217 and 383.D-0927). Title: Convection and 6Li in the atmospheres of metal-poor halo stars Authors: Steffen, Matthias; Cayrel, R.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E. Bibcode: 2010IAUS..268..215S Altcode: 2010arXiv1001.3274S Based on 3D hydrodynamical model atmospheres computed with the CO5BOLD code and 3D non-LTE (NLTE) line formation calculations, we study the effect of the convection-induced line asymmetry on the derived 6Li abundance for a range in effective temperature, gravity, and metallicity covering the stars of the Asplund et al. (2006) sample. When the asymmetry effect is taken into account for this sample of stars, the resulting 6Li/7Li ratios are reduced by about 1.5% on average with respect to the isotopic ratios determined by Asplund et al. (2006). This purely theoretical correction diminishes the number of significant 6Li detections from 9 to 4 (2σ criterion), or from 5 to 2 (3σ criterion). In view of this result the existence of a 6Li plateau appears questionable. A careful reanalysis of individual objects by fitting the observed lithium 6707 Å doublet both with 3D NLTE and 1D LTE synthetic line profiles confirms that the inferred 6Li abundance is systematically lower when using 3D NLTE instead of 1D LTE line fitting. Nevertheless, halo stars with unquestionable 6Li detection do exist even if analyzed in 3D-NLTE, the most prominent example being HD 84937. Title: The metal-poor end of the Spite plateau: gravity sensitivity of the Hα wings fitting. Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Behara, N.; Gonzalez-Hernandez, J. I.; Steffen, M.; Cayrel, R.; Freytag, B.; Van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite, M.; Spite, F.; Beers, T. C.; Christlieb, N.; François, P.; Hill, V. Bibcode: 2010IAUS..268..355S Altcode: We recently presented (Sbordone et al., 2009a) the largest sample to date of lithium abundances in extremely metal-poor (EMP) Halo dwarf and Turn-Off (TO) stars. One of the most crucial aspects in estimating Li abundances is the Teff determination, since the Li I 670.8 nm doublet is highly temperature sensitive. In this short contribution we concentrate on the Teff determination based on Hα wings fitting, and on its sensitivity to the chosen stellar gravity. Title: Main-sequence and sub-giant stars in the globular cluster NGC 6397: The complex evolution of the lithium abundance Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.; Steffen, M.; Ludwig, H. -G.; Behara, N.; Sbordone, L.; Cayrel, R.; Zaggia, S. Bibcode: 2010IAUS..268..257G Altcode: 2009arXiv0912.4105G Thanks to the high multiplex and efficiency of Giraffe at the VLT we have been able for the first time to observe the Li I doublet in the Main Sequence stars of a globular cluster. At the same time we observed Li in a sample of Sub-Giant stars of the same B-V colour.

Our final sample is composed of 84 SG stars and 79 MS stars. In spite of the fact that SG and MS span the same temperature range we find that the equivalent widths of the Li I doublet in SG stars are systematically larger than those in MS stars, suggesting a higher Li content among SG stars. This is confirmed by our quantitative analysis carried out making use of 1D hydrostatic plane-parallel models and 3D hydrodynamical simulations of the stellar atmospheres.

We derived the effective temperatures of stars in our the sample from Hα fitting. Theoretical profiles were computed using 3D hydrodynamical simulations and 1D ATLAS models. Therefore, we are able to determined 1D and 3D-based effective temperatures. We then infer Li abundances taking into account non-local thermodynamical equilibrium effects when using both 1D and 3D models.

We find that SG stars have a mean Li abundance higher by 0.1 dex than MS stars. This result is obtained using both 1D and 3D models. We also detect a positive slope of Li abundance with effective temperature, the higher the temperature the higher the Li abundance, both for SG and MS stars, although the slope is slightly steeper for MS stars. These results provide an unambiguous evidence that the Li abundance changes with evolutionary status.

The physical mechanisms responsible for this behaviour are not yet clear, and none of the existing models seems to describe accurately these observations. Based on these conclusions, we believe that the cosmological lithium problem still remains an open question. Title: 6Li in metal-poor halo stars: real or spurious? Authors: Steffen, M.; Cayrel, R.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E. Bibcode: 2010IAUS..265...23S Altcode: 2009arXiv0910.5917S The presence of convective motions in the atmospheres of metal-poor halo stars leads to systematic asymmetries of the emergent spectral line profiles. Since such line asymmetries are very small, they can be safely ignored for standard spectroscopic abundance analysis. However, when it comes to the determination of the 6Li/7Li isotopic ratio, q(Li)=n(6Li)/n(7Li), the intrinsic asymmetry of the 7Li line must be taken into account, because its signature is essentially indistinguishable from the presence of a weak 6Li blend in the red wing of the 7Li line. In this contribution we quantity the error of the inferred 6Li/7Li isotopic ratio that arises if the convective line asymmetry is ignored in the fitting of the λ6707 Å lithium blend. Our conclusion is that 6Li/7Li ratios derived by Asplund et al. (2006), using symmetric line profiles, must be reduced by typically Δq(Li) ≈ 0.015. This diminishes the number of certain 6Li detections from 9 to 4 stars or less, casting some doubt on the existence of a 6Li plateau. Title: Can we trust elemental abundances derived in late-type giants with the classical 1D stellar atmosphere models? Authors: Kučinskas, A.; Dobrovolskas, V.; Ivanauskas, A.; Ludwig, H. -G.; Caffau, E.; Blaževičius, K.; Klevas, J.; Prakapavičius, D. Bibcode: 2010IAUS..265..209K Altcode: 2009arXiv0910.3397K We compare the abundances of various chemical species as derived with 3D hydrodynamical and classical 1D stellar atmosphere codes in a late-type giant characterized by Teff =3640 K, log g = 1.0, [M/H]= 0.0. For this particular set of atmospheric parameters the 3D-1D abundance differences are generally small for neutral atoms and molecules but they may reach up to 0.3-0.4 dex in case of ions. The 3D-1D differences generally become increasingly more negative at higher excitation potentials and are typically largest in the optical wavelength range. Their sign can be both positive and negative, and depends on the excitation potential and wavelength of a given spectral line. While our results obtained with this particular late-type giant model suggest that 1D stellar atmosphere models may be safe to use with neutral atoms and molecules, care should be taken if they are exploited with ions. Title: Detailed analyses of three neutron-capture-rich carbon-enhanced metal-poor stars Authors: Behara, N. T.; Bonifacio, P.; Ludwig, H. -G.; Sbordone, L.; González Hernández, J. I.; Caffau, E. Bibcode: 2010IAUS..265..122B Altcode: 2009arXiv0909.0180B Approximately 20% of very metal-poor stars ([Fe/H] < -2.0) are strongly enhanced in carbon ([C/Fe] > +1.0). Such stars are referred to as carbon-enhanced metal-poor (CEMP) stars. We present a chemical abundance analysis based on high resolution spectra acquired with UVES at the VLT of three dwarf CEMP stars: SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212. These very metal-poor stars, with [Fe/H] < -2.5, were selected from our ongoing survey of extremely metal-poor dwarf candidates from the SDSS.

Among these CEMPs, SDSS J1349-0229 has been identified as a carbon star ([C/O] > +1.0). First and second peak s-process elements, as well as second peak r-process elements have been detected in all stars. In addition, elements from the third r-process peak were detected in one of the stars, SDSS J1036+1212. We present the abundance results of these stars in the context of neutron-capture nucleosynthesis theories. Title: Solar abundances and 3D model atmospheres Authors: Ludwig, Hans-Günter; Caffau, Elisabetta; Steffen, Matthias; Bonifacio, Piercarlo; Freytag, Bernd; Cayrel, Roger Bibcode: 2010IAUS..265..201L Altcode: 2009arXiv0911.4248L We present solar photospheric abundances for 12 elements from optical and near-infrared spectroscopy. The abundance analysis was conducted employing 3D hydrodynamical (CO5BOLD) as well as standard 1D hydrostatic model atmospheres. We compare our results to others with emphasis on discrepancies and still lingering problems, in particular exemplified by the pivotal abundance of oxygen. We argue that the thermal structure of the lower solar photosphere is very well represented by our 3D model. We obtain an excellent match of the observed center-to-limb variation of the line-blanketed continuum intensity, also at wavelengths shortward of the Balmer jump. Title: The metal-poor end of the Spite plateau Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. -G.; Behara, N.; Gonzalez-Hernandez, J. I.; Steffen, M.; Cayrel, R.; Freytag, B.; Van't Veer, C.; Molaro, P.; Plez, B.; Sivarani, T.; Spite, M.; Spite, F.; Beers, T. C.; Christlieb, N.; François, P.; Hill, V. Bibcode: 2010IAUS..265...75S Altcode: We present the largest sample available to date of lithium abundances in extremely metal poor (EMP) Halo dwarfs. Four Teff estimators are used, including IRFM and Hα wings fitting against 3D hydrodynamical synthetic profiles. Lithium abundances are computed by means of 1D and 3D-hydrodynamical NLTE computations. Below [Fe/H]~-3, a strong positive correlation of A(Li) with [Fe/H] appears, not influenced by the choice of the Teff estimator. A linear fit finds a slope of about 0.30 dex in A(Li) per dex in [Fe/H], significant to 2-3 σ, and consistent within 1 σ among all the Teff estimators. The scatter in A(Li) increases significantly below [Fe/H]~-3. Above, the plateau lies at <A(Li)3D, NLTE> = 2.199 ± 0.086. If the primordial A(Li) is the one derived from standard Big Bang Nucleosynthesis (BBN), it appears difficult to envision a single depletion phenomenon producing a thin, metallicity independent plateau above [Fe/H] = -2.8, and a highly scattered, metallicity dependent distribution below. Title: Accuracy of spectroscopy-based radioactive dating of stars Authors: Ludwig, H. -G.; Caffau, E.; Steffen, M.; Bonifacio, P.; Sbordone, L. Bibcode: 2010A&A...509A..84L Altcode: 2009arXiv0911.4251L Context. Combined spectroscopic abundance analyses of stable and radioactive elements can be applied for deriving stellar ages. The achievable precision depends on factors related to spectroscopy, nucleosynthesis, and chemical evolution.
Aims: We quantify the uncertainties arising from the spectroscopic analysis, and compare these to the other error sources.
Methods: We derive formulae for the age uncertainties arising from the spectroscopic abundance analysis, and apply them to spectroscopic and nucleosynthetic data compiled from the literature for the Sun and metal-poor stars.
Results: We obtained ready-to-use analytic formulae of the age uncertainty for the cases of stable+unstable and unstable+unstable chronometer pairs, and discuss the optimal relation between to-be-measured age and mean lifetime of a radioactive species. Application to the literature data indicates that, for a single star, the achievable spectroscopic accuracy is limited to about ±20% for the foreseeable future. At present, theoretical uncertainties in nucleosynthesis and chemical evolution models form the precision bottleneck. For stellar clusters, isochrone fitting provides a higher accuracy than radioactive dating, but radioactive dating becomes competitive when applied to many cluster members simultaneously, reducing the statistical errors by a factor √{N}.
Conclusions: Spectroscopy-based radioactive stellar dating would benefit from improvements in the theoretical understanding of nucleosynthesis and chemical evolution. Its application to clusters can provide strong constraints for nucleosynthetic models. Title: GYES, A Multifibre Spectrograph for the CFHT Authors: Bonifacio, P.; Mignot, S.; Dournaux, J. -L.; François, P.; Caffau, E.; Royer, F.; Babusiaux, C.; Arenou, F.; Balkowski, C.; Bienaymé, O.; Briot, D.; Carlberg, R.; Cohen, M.; Dalton, G. B.; Famaey, B.; Fasola, G.; Frémat, Y.; Gómez, A.; Guinouard, I.; Haywood, M.; Hill, V.; Huet, J. -M.; Katz, D.; Horville, D.; Kudritzki, R.; Lallement, R.; Laporte, Ph.; de Laverny, P.; Lemasle, B.; Lewis, I. J.; Martayan, C.; Monier, R.; Mourard, D.; Nardetto, N.; Recio Blanco, A.; Robichon, N.; Robin, A. C.; Rodrigues, M.; Soubiran, C.; Turon, C.; Venn, K.; Viala, Y. Bibcode: 2010EAS....45..219B Altcode: 2011EAS....45..219B; 2010arXiv1009.3644B We have chosen the name of GYES, one of the mythological giants with one hundred arms, offspring of Gaia and Uranus, for our instrument study of a multifibre spectrograph for the prime focus of the Canada-France-Hawaii Telescope. Such an instrument could provide an excellent ground-based complement for the Gaia mission and a northern complement to the HERMES project on the AAT. The CFHT is well known for providing a stable prime focus environment, with a large field of view, which has hosted several imaging instruments, but has never hosted a multifibre spectrograph. Building upon the experience gained at GÉPI with FLAMES-Giraffe and X-Shooter, we are investigating the feasibility of a high multiplex spectrograph (about 500 fibres) over a field of view one degree in diameter. We are investigating an instrument with resolution in the range 15 000 to 30 000, which should provide accurate chemical abundances for stars down to 16th magnitude and radial velocities, accurate to 1 km s-1 for fainter stars. The study is led by GÉPI-Observatoire de Paris with a contribution from Oxford for the study of the positioner. The financing for the study comes from INSU CSAA and Observatoire de Paris. The conceptual study will be delivered to CFHT for review by October 1st 2010. Title: Chemical abundances in metal-poor giants: limitations imposed by the use of classical 1D stellar atmosphere models Authors: Dobrovolskas, V.; Kucinskas, A.; Ludwig, H. G.; Caffau, E.; Klevas, J.; Prakapavicius, D. Bibcode: 2010nuco.confE.288D Altcode: 2010arXiv1010.2507D; 2010PoS...100E.288D In this work we have used 3D hydrodynamical (CO5BOLD) and 1D hydrostatic (LHD) stellar atmosphere models to study the importance of convection and horizontal temperature inhomogeneities in stellar abundance work related to late-type giants. We have found that for a number of key elements, such as Na, Mg, Si, Ca, Ti, Fe, Ni, Zn, Ba, Eu, differences in abundances predicted by 3D and 1D models are typically minor (< 0.1 dex) at solar metallicity. However, at [M/H] = -3 they become larger and reach to -0.5...-0.8 dex. In case of neutral atoms and fixed metallicity, the largest abundance differences were obtained for the spectral lines with lowest excitation potential, while for ionized species the largest 3D-1D abundance differences were found for lines of highest excitation potential. The large abundance differences at low metallicity are caused by large horizontal temperature fluctuations and lower mean temperature in the outer layers of the 3D hydrodynamical model compared with its 1D counterpart. Title: Lithium abundances of main-sequence and subgiant stars in the globular cluster NGC 6397 Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.; Steffen, M.; Ludwig, H. -G.; Behara, N.; Sbordone, L.; Cayrel, R.; Zaggia, S. Bibcode: 2010IAUS..266..407G Altcode: 2009arXiv0910.2305G We present FLAMES/GIRAFFE spectroscopy obtained with the Very Large Telescope (VLT). Using these observations, we have been able (for the first time) to observe the Lii doublet in the main-sequence (MS) stars of a globular cluster. We also observed Li in a sample of subgiant (SG) stars of the same B - V colour. Our final sample is composed of 84 SG and 79 MS stars. In spite of the fact that SG and MS stars span the same temperature range, we find that the equivalent widths of the Lii doublet in SG stars are systematically greater than in MS stars, suggesting a higher Li content among SG stars. This is confirmed by our quantitative analysis, which makes use of both 1D and 3D model atmospheres. We find that SG stars show, on average, a higher Li abundance, by 0.1 dex, than MS stars. We also detect a positive slope of Li abundance with effective temperature: the higher the temperature the higher the Li abundance, both for SG and MS stars, although the slope is slightly steeper for MS stars. These results provide unambiguous evidence that the Li abundance changes with evolutionary state. The physical mechanisms that contribute to this are not yet clear, since none of the proposed models seem to describe accurately the observations. Whether such a mechanism can explain the cosmological lithium problem is still an open question. Title: Sulfur in the globular clusters 47 Tuc and NGC 6752 Authors: Sbordone, L.; Chieffi, A.; Limongi, M.; Caffau, E.; Ludwig, H. -G.; Bonifacio, P. Bibcode: 2010IAUS..266..537S Altcode: The light elements Li, O, Na, Al, and Mg are known to show star-to-star variations in the globular clusters 47 Tuc and NGC 6752. We have investigated the behavior of the α element sulfur, for which no previous measurements exist in any Galactic globular cluster. We used high-resolution UVES spectra of Si multiplet 1 around 923 nm, and determined S abundances by means of ATLAS static plano-parallel models. NLTE corrections were applied and 3D corrections were also computed from co5bold 3D hydrodynamical models. Sulfur has been measured in four subgiant stars in NGC 6752, leading to an average value of [S/Fe] = +0.49 ± 0.15 dex, consistent with what is observed in field stars of similar metallicity. In 47 Tuc, we measured S in four turnoff (TO) and five subgiant (SG) stars, for an average value of [S/Fe] = 0.18 ± 0.14 dex. While the measurement errors are consistent with a constant value among all cluster stars analyzed, we detected a highly significant correlation with sodium abundance, as well as a tentative one with silicon. The sulfur-sodium correlation is difficult to explain in terms of nucleosynthesis. Given its high statistical significance, it is also difficult to dismiss it as fortuitous. Until better data for more stars are available, the question as to its origin remains open. Title: Local stars formed at z>10: a sample extracted from the SDSS Authors: Sbordone, L.; Bonifacio, P.; Caffau, E.; Ludwig, H. G. Bibcode: 2010nuco.confE.294S Altcode: 2010arXiv1009.5210S; 2010PoS...100E.294S As the Universe emerged from its initial hot and dense phase, its chemical composition was extremely simple, being limited to stable H and He isotopes, and traces of Li. The first stars that formed had such initial composition. However, they quickly began to produce a whole array of heavier nuclei, polluting the interstellar medium. While none among these first stars has been detected to date, an increasing sample exists of their direct descendant, stars with heavy elements content of the order of 1/1000 of the solar value, or less. In most cases, such stars should have formed at redshift of about 10 or beyond, and their chemical composition can provide crucial constraints to the nature of the very first stars. Extremely metal poor (EMP) stars are exceedingly rare. We used the low resolution spectra obtained by the Sloan Digital Sky Survey (SDSS) to search for EMP candidates: results of VLT-UVES high resolution follow-up for 16 of them is presented here. A newly developed automatic abundance analysis and parameter determination code, MyGIsFOS, has been employed to analyze the detailed chemical abundances of such stars. Title: 3D hydrodynamical CO5BOLD model atmospheres of late-type giants: stellar abundances from molecular lines Authors: Ivanauskas, A.; Kucinskas, A.; Ludwig, H. G.; Caffau, E. Bibcode: 2010nuco.confE.290I Altcode: 2010PoS...100E.290I; 2010arXiv1010.1722I We investigate the influence of convection on the formation of molecular spectral lines in the atmospheres of late-type giants. For this purpose we use the 3D hydrodynamical CO5BOLD and classical 1D LHD stellar atmosphere codes and synthesize a number of fictitious lines belonging to a number of astrophysically relevant molecules, C2, CH, CN, CO, NH, OH. We find that differences between the abundances obtained from molecular lines using the 3D and 1D model atmospheres are generally small at [M/H]=0.0, but they quickly increase at sub-solar metallicities where for certain molecules they may reach -2.0 dex. The 3D-1D abundance differences show a significant dependence on the spectral line parameters, such as wavelength and excitation potential. Our comparison, therefore, reveals a complex interplay between the spectral line formation and convection that can not be properly accounted for with the classical 1D model atmospheres. Title: Theoretical amplitudes and lifetimes of non-radial solar-like oscillations in red giants Authors: Dupret, M. -A.; Belkacem, K.; Samadi, R.; Montalban, J.; Moreira, O.; Miglio, A.; Godart, M.; Ventura, P.; Ludwig, H. -G.; Grigahcène, A.; Goupil, M. -J.; Noels, A.; Caffau, E. Bibcode: 2009A&A...506...57D Altcode: 2009arXiv0906.3951D Context: Solar-like oscillations have been observed in numerous red giants from ground and from space. An important question arises: could we expect to detect non-radial modes probing the internal structure of these stars?
Aims: We investigate under what physical circumstances non-radial modes could be observable in red giants; what would be their amplitudes, lifetimes and heights in the power spectrum (PS)?
Methods: Using a non-radial non-adiabatic pulsation code including a non-local time-dependent treatment of convection, we compute the theoretical lifetimes of radial and non-radial modes in several red giant models. Next, using a stochastic excitation model, we compute the amplitudes of these modes and their heights in the PS.
Results: Distinct cases appear. Case A corresponds to subgiants and stars at the bottom of the ascending giant branch. Our results show that the lifetimes of the modes are mainly proportional to the inertia I, which is modulated by the mode trapping. The predicted amplitudes are lower for non-radial modes. But the height of the peaks in the PS are of the same order for radial and non-radial modes as long as they can be resolved. The resulting frequency spectrum is complex. Case B corresponds to intermediate models in the red giant branch. In these models, the radiative damping becomes high enough to destroy the non-radial modes trapped in the core. Hence, only modes trapped in the envelope have significant heights in the PS and could be observed. The resulting frequency spectrum of detectable modes is regular for ℓ=0 and 2, but a little more complex for ℓ=1 modes because of less efficient trapping. Case C corresponds to models of even higher luminosity. In these models the radiative damping of non-radial modes is even larger than in the previous case and only radial and non-radial modes completely trapped in the envelope could be observed. The frequency pattern is very regular for these stars. The comparison between the predictions for radial and non-radial modes is very different if we consider the heights in the PS instead of the amplitudes. This is important as the heights (not the amplitudes) are used as detection criterion.

CIFIST Marie Curie Excellence Team. Title: Lithium in the globular cluster NGC 6397. Evidence for dependence on evolutionary status Authors: González Hernández, J. I.; Bonifacio, P.; Caffau, E.; Steffen, M.; Ludwig, H. -G.; Behara, N. T.; Sbordone, L.; Cayrel, R.; Zaggia, S. Bibcode: 2009A&A...505L..13G Altcode: 2009arXiv0909.0983G Context: Most globular clusters are believed to host a single stellar population. They can thus be considered a good place to study the Spite plateau and to search for possible evolutionary modifications of the Li content.
Aims: We want to determine the Li content of subgiant (SG) and main sequence (MS) stars of the old, metal-poor globular cluster NGC 6397. This work was aimed not only at studying possible Li abundance variations but also to investigate the cosmological Li discrepancy.
Methods: Here, we present FLAMES/GIRAFFE observations of a sample of 84 SG and 79 MS stars in NGC 6397 selected in a narrow range of B-V colour and, therefore, effective temperatures. We determine both effective temperatures and Li abundances using three-dimensional hydrodynamical model atmospheres for all the MS and SG stars of the sample.
Results: We find a significant difference in the Li abundance between SG stars and MS stars, the SG stars having an abundance higher by almost 0.1 dex on average. We also find a decrease in the lithium abundance with decreasing effective temperature, both in MS and SG stars, albeit with a significantly different slope for the two classes of stars. This suggests that the lithium abundance in these stars is, indeed, altered by some process, which is temperature-dependent.
Conclusions: The lithium abundance pattern observed in NGC 6397 is different from what is found among field stars, casting some doubt on the use of globular cluster stars as representative of Population II with respect to the lithium abundance. None of the available theories of Li depletion appears to satisfactorily describe our observations.

Based on observations obtained with FLAMES/GIRAFFE at VLT Kueyen 8.2 m telescope in programme 079.D-0399(A). Table and Figs. 3-10 are only available in electronic form at http://www.aanda.org Table 2 is available in electronic form at http://www.aanda.org and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/L13 Title: The Solar Photospheric Nitrogen Abundance: Determination with 3D and 1D Model Atmospheres Authors: Maiorca, E.; Caffau, E.; Bonifacio, P.; Busso, M.; Faraggiana, R.; Steffen, M.; Ludwig, H. -G.; Kamp, I. Bibcode: 2009PASA...26..345M Altcode: 2009arXiv0912.0375M We present a new determination of the solar nitrogen abundance making use of 3D hydrodynamical modelling of the solar photosphere, which is more physically motivated than traditional static 1D models. We selected suitable atomic spectral lines, relying on equivalent width measurements already existing in the literature. For atmospheric modelling we used the co 5 bold 3D radiation hydrodynamics code. We investigated the influence of both deviations from local thermodynamic equilibrium (non-LTE effects) and photospheric inhomogeneities (granulation effects) on the resulting abundance. We also compared several atlases of solar flux and centre-disc intensity presently available. As a result of our analysis, the photospheric solar nitrogen abundance is A(N) = 7.86 +/- 0.12. Title: VizieR Online Data Catalog: Lithium in NGC 6397 (Gonzalez Hernandez+, 2009) Authors: Gonzalez Hernandez, J. I.; Bonifacio, P.; Caffau, E.; Steffen, M.; Ludwig, H. -G.; Behara, N. T.; Sbordone, L.; Cayrel, R.; Zaggia, S. Bibcode: 2009yCat..35059013G Altcode: Photometric data of the dwarf and subgiant stars of the globular cluster NGC 6397. We also provide the signal-to-noise of the spectra, the 3D and 1D Halpha-based effective temperatures, 3D Li abundances, and the equivalent widths and errors: dEWa: Error of the equivalent width measurements estimated from a fitting routine that uses as free parameters the velocity shift, the continuum location, and the equivalent width of the Li line. dEWb: Error of the equivalent width associated to the signal-to-noise ratio and the wavelength dispersion of the spectra, derived using Cayrel's formula (Cayrel, 1988, IAU Symp. 132: The Impact of Very High S/N Spectroscopy on Stellar Physics, 132, 345).

(1 data file). Title: Sulfur in the globular clusters 47 Tucanae and NGC 6752 Authors: Sbordone, L.; Limongi, M.; Chieffi, A.; Caffau, E.; Ludwig, H. -G.; Bonifacio, P. Bibcode: 2009A&A...503..121S Altcode: 2009arXiv0904.1417S Context: The light elements Li, O, Na, Al, and Mg are known to show star-to-star variations in the globular clusters 47 Tuc and NGC 6752. Such variations are interpreted as coming from processing in a previous generation of stars.
Aims: In this paper we investigate the abundances of the α-element sulfur, for which no previous measurements exist. In fact this element has not been investigated in any Galactic globular cluster so far. The only globular cluster for which such measurements are available is Terzan 7, which belongs to the Sgr dSph.
Methods: We use high-resolution spectra of the S i Mult. 1, acquired with the UVES spectrograph at the 8.2 m VLT-Kueyen telescope, for turn-off and giant stars in the two globular clusters. The spectra were analysed making use of ATLAS static plane parallel model atmospheres and SYNTHE spectrum synthesis. We also compute 3D corrections from CO^5BOLD hydrodynamic models and apply corrections due to NLTE effects taken from the literature.
Results: In the cluster NGC 6752 sulfur has been measured only in four subgiant stars. We find no significant star-to-star scatter and a mean <[S/Fe]> = +0.49 ± 0.15, consistent with what is observed in field stars of the same metallicity. In the cluster 47 Tuc we measured S in 4 turn-off and 5 subgiant stars with a mean <[S/Fe]> = +0.18 ± 0.14. While this result is compatible with no star-to-star scatter we notice a statistically significant correlation of the sulfur abundance with the sodium abundance and a tentative correlation with the silicon abundance.
Conclusions: The sulfur-sodium correlation is not easily explained in terms of nucleosynthesis. An origin due to atomic diffusion can be easily dismissed. The correlation cannot be easily dismissed either, in view of its statistical significance, until better data for more stars is available.

Based on observations made with the ESO VLT-Kueyen telescope at the Paranal Observatory, Chile, in the course of the ESO-Large Programme 165.L-0263. Title: VizieR Online Data Catalog: Extremely metal-poor turnoff stars abundances (Bonifacio+, 2009) Authors: Bonifacio, P.; Spite, M.; Cayrel, R.; Hill, V.; Spite, F.; Francois, P.; Plez, B.; Ludwig, H. -G.; Caffau, E.; Molaro, P.; Depagne, E.; Andersen, J.; Barbuy, B.; Beers, T. C.; Nordstroem, B.; Primas, F. Bibcode: 2009yCat..35010519B Altcode: The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later. We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turnoff stars. VLT/UVES spectra at ~45000 and S/N ~130 per pixel (330-1000nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba. For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are ~0.2dex larger than in giants of similar metallicity. Mg and Si abundances are ~0.2dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again ~0.4dex higher than in giants of similar [Fe/H] (6 stars only). For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.

(3 data files). Title: First stars XII. Abundances in extremely metal-poor turnoff stars, and comparison with the giants Authors: Bonifacio, P.; Spite, M.; Cayrel, R.; Hill, V.; Spite, F.; François, P.; Plez, B.; Ludwig, H. -G.; Caffau, E.; Molaro, P.; Depagne, E.; Andersen, J.; Barbuy, B.; Beers, T. C.; Nordström, B.; Primas, F. Bibcode: 2009A&A...501..519B Altcode: 2009arXiv0903.4174B Context: The detailed chemical abundances of extremely metal-poor (EMP) stars are key guides to understanding the early chemical evolution of the Galaxy. Most existing data, however, treat giant stars that may have experienced internal mixing later.
Aims: We aim to compare the results for giants with new, accurate abundances for all observable elements in 18 EMP turnoff stars.
Methods: VLT/UVES spectra at R ~ 45 000 and S/N ~ 130 per pixel (λλ 330-1000 nm) are analysed with OSMARCS model atmospheres and the TURBOSPECTRUM code to derive abundances for C, Mg, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, and Ba.
Results: For Ca, Ni, Sr, and Ba, we find excellent consistency with our earlier sample of EMP giants, at all metallicities. However, our abundances of C, Sc, Ti, Cr, Mn and Co are ~0.2 dex larger than in giants of similar metallicity. Mg and Si abundances are ~0.2 dex lower (the giant [Mg/Fe] values are slightly revised), while Zn is again ~0.4 dex higher than in giants of similar [Fe/H] (6 stars only).
Conclusions: For C, the dwarf/giant discrepancy could possibly have an astrophysical cause, but for the other elements it must arise from shortcomings in the analysis. Approximate computations of granulation (3D) effects yield smaller corrections for giants than for dwarfs, but suggest that this is an unlikely explanation, except perhaps for C, Cr, and Mn. NLTE computations for Na and Al provide consistent abundances between dwarfs and giants, unlike the LTE results, and would be highly desirable for the other discrepant elements as well. Meanwhile, we recommend using the giant abundances as reference data for Galactic chemical evolution models.

Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (Large Programme “First Stars”, ID 165.N-0276; P.I.: R. Cayrel, and Programme 078.B-0238; P.I.: M. Spite). Appendices A-C are only available in electronic form at http://www.aanda.org Table 7 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/519 Title: The solar photospheric nitrogen abundance. Analysis of atomic transitions with 3D and 1D model atmospheres Authors: Caffau, E.; Maiorca, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.; Ludwig, H. -G.; Kamp, I.; Busso, M. Bibcode: 2009A&A...498..877C Altcode: 2009arXiv0903.3406C Context: In recent years, the solar chemical abundances have been studied in considerable detail because of discrepant values of solar metallicity inferred from different indicators, i.e., on the one hand, the “sub-solar” photospheric abundances resulting from spectroscopic chemical composition analyses with the aid of 3D hydrodynamical models of the solar atmosphere, and, on the other hand, the high metallicity inferred by helioseismology.
Aims: After investigating the solar oxygen abundance using a CO^5BOLD 3D hydrodynamical solar model in previous work, we undertake a similar approach studying the solar abundance of nitrogen, since this element accounts for a significant fraction of the overall solar metallicity, Z.
Methods: We used a selection of atomic spectral lines to determine the solar nitrogen abundance, relying mainly on equivalent width measurements in the literature. We investigate the influence on the abundance analysis, of both deviations from local thermodynamic equilibrium (“NLTE effects”) and photospheric inhomogeneities (“granulation effects”).
Results: We recommend use of a solar nitrogen abundance of A(N) = 7.86 ± 0.12, whose error bar reflects the line-to-line scatter.
Conclusions: The solar metallicity implied by the CO^5BOLD-based nitrogen and oxygen abundances is in the range 0.0145≤ Z ≤ 0.0167. This result is a step towards reconciling photospheric abundances with helioseismic constraints on Z. Our most suitable estimates are Z=0.0156 and Z/X=0.0213. Title: Observable properties of late-type giants predicted by 3D hydrodynamical and 1D stellar atmosphere models Authors: Kucinskas, A.; Ludwig, H. -G.; Ivanauskas, A.; Caffau, E. Bibcode: 2009IAUS..254P..37K Altcode: No abstract at ADS Title: Halo chemistry and first stars. The chemical composition of the matter in the early Galaxy, from C to Mg† Authors: Spite, M.; Bonifacio, P.; Cayrel, R.; Spite, F.; Francois, P.; Ludwig, H. G.; Caffau, E.; Andrievsky, S.; Barbuy, B.; Plez, B.; Molaro, P.; Andersen, J.; Beers, T.; Depagne, E.; Nordström, B.; Primas, F. Bibcode: 2009IAUS..254..349S Altcode: From NLTE computations of the magnesium abundance in a sample of extremely metal-poor giants we derive [Mg/Fe]=+0.7, leading to [Al/Mg]=-0.80 and [Na/Mg]=-0.85 in the early Galaxy. The ratio [O/Mg] should be near to the solar value. Measurements of nitrogen abundances derived from the analysis of the NH band in eight more stars confirm the large scatter of the ratios [N/Fe] and [N/O] in the early Galaxy. Title: Micro- and macroturbulence derived from 3D hydrodynamical stellar atmospheres . Authors: Steffen, M.; Ludwig, H. -G.; Caffau, E. Bibcode: 2009MmSAI..80..731S Altcode: 2009arXiv0909.2831S The theoretical prediction of micro- and macroturbulence (xi_mic and xi_mac ) as a function of stellar parameters can be useful for spectroscopic work based on 1D model atmospheres in cases where an empirical determination of xi_mic is impossible due to a lack of suitable lines and/or macroturbulence and rotational line broadening are difficult to separate. In an effort to exploit the CIFIST 3D model atmosphere grid for deriving the theoretical dependence of xi_mic and xi_mac on effective temperature, gravity, and metallicity, we discuss different methods to derive xi_mic from the numerical simulations, and report first results for the Sun and Procyon. In both cases the preliminary analysis indicates that the microturbulence found in the simulations is significantly lower than in the real stellar atmospheres. Title: The ESO Large Programme ``First Stars'' Authors: Bonifacio, P.; Andersen, J.; Andrievsky, S. M.; Barbuy, B.; Beers, T. C.; Caffau, E.; Cayrel, R.; Depagne, E.; François, P.; González Hernández, J. I.; Hansen, C. J.; Herwig, F.; Hill, V.; Korotin, S. A.; Ludwig, H. -G.; Molaro, P.; Nordström, B.; Plez, B.; Primas, F.; Sivarani, T.; Spite, F.; Spite, M. Bibcode: 2009ASSP....9...31B Altcode: 2008arXiv0801.1293B; 2009svlt.conf...31B In ESO period 65 (April-September 2000) the large programme 165.N-0276, led by Roger Cayrel, began making use of UVES at the Kueyen VLT telescope. Known within the Team and outside as "First Stars", it was aimed at obtaining high resolution, high signal-to-noise ratio spectra in the range 320 nm-1000 nm for a large sample of extremely metal-poor (EMP) stars identified from the HK objective prism survey [T.C. Beers, G.W. Preston, S.A. Shectman in Astron. J. 90, 2089 (1985); T.C. Beers, G.W. Preston, S.A. Shectman in Astron. J. 103, 1987 (1992)]. The goal was to use these spectra to determine accurate atmospheric parameters and chemical composition of these stars which are among the oldest objects amenable to our detailed study. Although these stars are not the first generation of stars they must be very close descendants of the first generation. One may hope to gain insight on the nature of the progenitors from detailed information on the descendants. Title: The CIFIST 3D model atmosphere grid. Authors: Ludwig, H. -G.; Caffau, E.; Steffen, M.; Freytag, B.; Bonifacio, P.; Kučinskas, A. Bibcode: 2009MmSAI..80..711L Altcode: 2009arXiv0908.4496L Grids of stellar atmosphere models and associated synthetic spectra are numerical products which have a large impact in astronomy due to their ubiquitous application in the interpretation of radiation from individual stars and stellar populations. 3D model atmospheres are now on the verge of becoming generally available for a wide range of stellar atmospheric parameters. We report on efforts to develop a grid of 3D model atmospheres for late-type stars within the CIFIST Team at Paris Observatory. The substantial demands in computational and human labor for the model production and post-processing render this apparently mundane task a challenging logistic exercise. At the moment the CIFIST grid comprises 77 3D model atmospheres with emphasis on dwarfs of solar and sub-solar metallicities. While the model production is still ongoing, first applications are already worked upon by the CIFIST Team and collaborators. Title: Effects of granulation on neutral copper resonance lines in metal-poor stars Authors: Bonifacio, P.; Caffau, E.; Ludwig, H. -G. Bibcode: 2009MmSAI..80..739B Altcode: 2009arXiv0910.4730B We make use of three dimensional hydrodynamical simulations to investigate the effects of granulation on the Cu I lines of Mult. 1 in the near UV, at 324.7 nm and 327.3 nm. These lines remain strong even at very low metallicity and provide the opportunity to study the chemical evolution of Cu in the metal-poor populations. We find very strong granulation effects on these lines. In terms of abundances the neglect of such effects can lead to an overestimate of the A(Cu) by as much as 0.8 dex in dwarf stars. Comparison of our computations with stars in the metal-poor Globular Clusters NGC 6752 and NGC 6397, show that there is a systematic discrepancy between the copper abundances derived from Mult. 2 in TO stars and those derived in giant stars of the same cluster from the lines of Mult. 2 at at 510.5 nm and 587.2 nm. We conclude that the Cu I resonance lines are not reliable indicators of Cu abundance and we believe that an investigations of departures from LTE is mandatory to make use of these lines. Title: Solar abundances and granulation effects Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M. Bibcode: 2009MmSAI..80..643C Altcode: 2009arXiv0910.4733C The solar abundances have undergone a major downward revision in the last decade, reputedly as a result of employing 3D hydrodynamical simulations to model the inhomogeneous structure of the solar photosphere. The very low oxygen abundance advocated by \citet{asplund04}, A(O)=8.66, together with the downward revision of the carbon and nitrogen abundances, has created serious problems for solar models to explain the helioseismic measurements.

In an effort to contribute to the dispute we have re-derived photospheric abundances of several elements independently of previous analysis. We applied a state-of-the art 3D (CO5BOLD) hydrodynamical simulation of the solar granulation as well as different 1D model atmospheres for the line by line spectroscopic abundance determinations. The analysis is based on both standard disc-centre and disc-integrated spectral atlases; for oxygen we acquired in addition spectra at different heliocentric angles. The derived abundances are the result of equivalent width and/or line profile fitting of the available atomic lines. We discuss the different granulation effects on solar abundances and compare our results with previous investigations. According to our investigations hydrodynamical models are important in the solar abundance determination, but are not responsible for the recent downward revision in the literature of the solar metallicity. Title: NLTE Abundances of Sodium, Magnesium and Barium in the Globular Clusters M10 and M71 Authors: Mishenina, T. V.; Kučinskas, A.; Andrievsky, S. M.; Korotin, S. A.; Dobrovolskas, V.; Ivanauskas, A.; Caffau, E.; Ludwig, H. -G.; Steffen, M.; Sperauskas, J.; Klochkova, V. G.; Panchuk, V. E. Bibcode: 2009BaltA..18..193M Altcode: 2009OAst...18..193M We derive NLTE abundances of Na, Mg and Ba in four late-type giants belonging to globular clusters M10 and M71. The obtained relative [Na/Fe] ratios, which were measured only in M10, are positive, with the average value [Na/Fe] = +0.3. The ratios [Mg/Fe] in both clusters are supersolar, +0.15 to +0.28, while [Ba/Fe] scatter between --0.14 and +0.09. Differences between the NLTE abundances derived in this work and those obtained in LTE by Mishenina et al. (2003) are small, typically within ±0.1 dex. We also perform numerical simulations with the CO5BOLD 3D hydrodynamical stellar atmosphere code to investigate the influence of convection on the formation of spectral lines used in our NLTE study. For this purpose we use a model of late-type giant with T eff = 4020 K, log g = 1.0, [M/H] = --1.0 and find that for Na, Mg and Ba the 3D--1D abundance corrections are below ∼ 0.02 dex. However, their size strongly depends on the value of microturbulent velocity used with the 1D model. Title: 3D hydrodynamical simulations of stellar photospheres with the CO5BOLD code. Photometric colors of a late-type giant Authors: Kučinskas, A.; Ludwig, H. -G.; Caffau, E.; Steffen, M. Bibcode: 2009MmSAI..80..723K Altcode: 2009arXiv0910.3412K We present synthetic broad-band photometric colors of a late-type giant located close to the RGB tip (T_eff≈3640 K, log g=1.0 and [M/H]=0.0). Johnson-Cousins-Glass BVRIJHK colors were obtained from the spectral energy distributions calculated using 3D hydrodynamical and 1D classical stellar atmosphere models. The differences between photometric magnitudes and colors predicted by the two types of models are significant, especially at optical wavelengths where they may reach, e.g., Delta V≈0.16, Delta R≈0.13 and Delta (V-I)≈0.14, Delta (V-K)≈0.20. Differences in the near-infrared are smaller but still non-negligible (e.g., Delta K≈ 0.04). Such discrepancies may lead to noticeably different photometric parameters when these are inferred from photometry (e.g., effective temperature will change by Delta T_eff≈60 K due to difference of Delta (V-K)≈0.20). Title: 3D molecular line formation in dwarf carbon-enhanced metal-poor stars. Authors: Behara, N. T.; Ludwig, H. -G.; Bonifacio, P.; Sbordone, L.; González Hernández, J. I.; Caffau, E. Bibcode: 2009MmSAI..80..735B Altcode: 2009arXiv0909.1010B We present a detailed analysis of the carbon and nitrogen abundances of two dwarf carbon-enhanced metal-poor (CEMP) stars: SDSS J1349-0229 and SDSS J0912+0216. We also report the oxygen abundance of SDSS J1349-0229. These stars are metal-poor, with [Fe/H] < -2.5, and were selected from our ongoing survey of extremely metal-poor dwarf candidates from the Sloan Digital Sky Survey (SDSS). The carbon, nitrogen and oxygen abundances rely on molecular lines which form in the outer layers of the stellar atmosphere. It is known that convection in metal-poor stars induces very low temperatures which are not predicted by `classical' 1D stellar atmospheres. To obtain the correct temperature structure, one needs full 3D hydrodynamical models. Using CO5BOLD 3D hydrodynamical model atmospheres and the Linfor3D line formation code, molecular lines of CH, NH, OH and C_2 were computed, and 3D carbon, nitrogen and oxygen abundances were determined. The resulting carbon abundances were compared to abundances derived using atomic C I lines in 1D LTE and NLTE. For one star, SDSS J1349-0229, we were able to compare the 3D oxygen abundance from OH lines to O I lines in 1D LTE and NLTE. There is not a good agreement between the carbon abundances determined from C_2 bands and from the CH band, and molecular lines do not agree with the atomic C I lines. Although this may be partly due to uncertainties in the transition probabilities of the molecular bands it certainly has to do with the temperature structure of the outer layers of the adopted model atmosphere. In fact the discrepancy between C_2 and CH is in opposite directions when using 3D and 1D models. Confronted with this inconsistency, we explore the influence of the 3D model properties on the molecular abundance determination. In particular, the choice of the number of opacity bins used in the model calculations and its subsequent effects on the temperature structure and molecular line formation is discussed. Title: Extremely metal-poor stars from the SDSS Authors: Ludwig, H. -G.; Bonifacio, P.; Caffau, E.; Behara, N. T.; González Hernández, J. I.; Sbordone, L. Bibcode: 2008PhST..133a4037L Altcode: 2008arXiv0809.2948L We give a progress report on the activities within the CIFIST Team related to the search for extremely metal-poor (EMP) stars in the Sloan Digital Sky Survey's (SDSS) spectroscopic catalogue. So far, the search has provided 25 candidates with metallicities around or smaller than -3. For 15 candidates, high-resolution spectroscopy with UVES at the VLT has confirmed their EMP status. Work is under way to extend the search to the SDSS's photometric catalogue by augmenting the SDSS photometry and by gauging the capabilities of X-shooter when going to significantly fainter targets. Title: Radiation-hydrodynamics simulations of surface convection in low-mass stars: connections to stellar structure and asteroseismology Authors: Ludwig, Hans-G.; Caffau, Elisabetta; Kučinskas, A. Bibcode: 2008IAUS..252...75L Altcode: 2008arXiv0809.2939L Radiation-hydrodynamical simulations of surface convection in low-mass stars can be exploited to derive estimates of i) the efficiency of the convective energy transport in the stellar surface layers; ii) the convection-related photometric micro-variability. We comment on the universality of the mixing-length parameter, and point out potential pitfalls in the process of its calibration which may be in part responsible for the contradictory findings about its variability across the Hertzsprung-Russell digramme. We further comment on the modelling of the photometric micro-variability in HD 49933 one of the first main COROT targets. Title: 3D model atmospheres and the solar photospheric oxygen abundance Authors: Caffau, E.; Ludwig, H. -G. Bibcode: 2008IAUS..252...35C Altcode: In recent years the photospheric solar oxygen abundance experienced a significant downward revision. However, a low photospheric abundance is incompatible with the value in the solar interior inferred from helioseismology. For contributing to the dispute whether the solar oxygen abundance is “high” or “low”, we re-derived its photospheric abundance independently of previous analyses. We applied 3D (CO5BOLD) as well as 1D model atmospheres. We considered standard disc-centre and disc-integrated spectral atlases, as well as newly acquired solar intensity spectra at different heliocentric angles. We determined the oxygen abundances from equivalent width and/or line profile fitting of a number of atomic lines. As preliminary result, we find an oxygen abundance in the range 8.73 8.79, encompassing the value obtained by Holweger (2001), and somewhat higher than the value obtained by Asplund et al. (2005). Title: The Solar Photospheric Oxygen Abundance and the Role of 3D Model Atmospheres Authors: Caffau, E.; Steffen, M.; Ludwig, H. -G. Bibcode: 2008ESPM...12..3.7C Altcode: The solar oxygen abundance has undergone a major downward revision in the last decade, reputedly as a result of employing 3D hydrodynamical simulations to model the inhomogeneous structure of the solar photosphere.

The very low oxygen abundance advocated by Asplund et al. 2004, A(O)=8.66, together with the downward revision of the abundances of other key elements, has created serious problems for solar models to explain the helioseismic measurements.

In an effort to contribute to the dispute of whether the Sun has "solar" or "sub-solar" abundances, we have re-derived its photospheric abundance of oxygen, nitrogen, and other elements, independently of previous analyses.

We applied a state-of-the art 3D (CO5BOLD) hydrodynamical simulation of the solar granulation as well as different 1D model atmospheres for the line by line spectroscopic abundance determinations. The analysis is based on both standard disk-center and full-disk spectral atlases; for oxygen we acquired in addition spectra at different heliocentric angles. The derived abundances are the result of equivalent width and/or line profile fitting of the available atomic lines. Our recommended oxygen abundance is A(O)=8.76+- 0.07, 0.1 dex higher than the value of Asplund et al. (2004). Our current estimate of the overall solar metallicity is 0.014< Z<0.016.

Questions we discuss include: (i) Is the general downward revision of the solar abundances a 3D effect? (ii) How large are the abundance corrections due to horizontal inhomogeneities? (iii) What is the main reason for the differences between the abundances obtained in our study and those derived by Apslund and coworkers? (iv) How large are the uncertainties in the observed solar spectra? (v) What is the reason why the two forbidden oxygen lines, [OI] lambda 630 nm and [OI] lambda 636.3 nm, give significantly different answers for the solar oxygen abundance? Title: The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmospheric models Authors: Caffau, E.; Ludwig, H. -G.; Steffen, M.; Ayres, T. R.; Bonifacio, P.; Cayrel, R.; Freytag, B.; Plez, B. Bibcode: 2008A&A...488.1031C Altcode: 2008arXiv0805.4398C Context: The solar oxygen abundance has undergone a major downward revision in the past decade, the most noticeable one being the update including 3D hydrodynamical simulations to model the solar photosphere. Up to now, such an analysis has only been carried out by one group using one radiation-hydrodynamics code.
Aims: We investigate the photospheric oxygen abundance considering lines from atomic transitions. We also consider the relationship between the solar model used and the resulting solar oxygen abundance, to understand whether the downward abundance revision is specifically related to 3D hydrodynamical effects.
Methods: We performed a new determination of the solar photospheric oxygen abundance by analysing different high-resolution high signal-to-noise ratio atlases of the solar flux and disc-centre intensity, making use of the latest generation of CO5BOLD 3D solar model atmospheres.
Results: We find 8.73 ≤ log (N_O/N_H) +12 ≤ 8.79. The lower and upper values represent extreme assumptions on the role of collisional excitation and ionisation by neutral hydrogen for the NLTE level populations of neutral oxygen. The error of our analysis is ± (0.04± 0.03) dex, the last being related to NLTE corrections, the first error to any other effect. The 3D “granulation effects” do not play a decisive role in lowering the oxygen abundance.
Conclusions: Our recommended value is log (N_O/N_H) = 8.76 ± 0.07, considering our present ignorance of the role of collisions with hydrogen atoms on the NLTE level populations of oxygen. The reasons for lower O abundances in the past are identified as (1) the lower equivalent widths adopted and (2) the choice of neglecting collisions with hydrogen atoms in the statistical equilibrium calculations for oxygen.

This paper is dedicated to the memory of Hartmut Holweger. Title: The solar photospheric abundance of europium. Results from CO5BOLD 3D hydrodynamical model atmospheres Authors: Mucciarelli, A.; Caffau, E.; Freytag, B.; Ludwig, H. -G.; Bonifacio, P. Bibcode: 2008A&A...484..841M Altcode: 2008arXiv0803.0863M Context: Europium is an almost pure r-process element, which may be useful as a reference in nucleocosmochronology.
Aims: Determine the photospheric solar abundance using CO5BOLD 3D hydrodynamical model atmospheres.
Methods: Disc-centre and integrated-flux observed solar spectra are used. The europium abundance is derived using equivalent-width measurements. As a reference, one-dimensional model atmospheres are in addition used.
Results: The europium photospheric solar abundance (0.52 ± 0.02) agrees with previous determinations. We determine the photospheric isotopic fraction of 151Eu to be 49% ± 2.3% using the intensity spectra, and 50% ± 2.3% using the flux spectra. This compares well to the meteoritic isotopic fraction 47.8%. We explore 3D corrections for dwarfs and sub-giants in the temperature range ~5000 K to ~6500 K and solar and 1/10-solar metallicities and find them to be negligible for all models investigated.
Conclusions: Our photospheric Eu abundance agrees well with previous determinations based on 1D models. This is in line with our conclusion that 3D effects for this element are negligible in the case of the Sun. Title: The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres Authors: Caffau, E.; Sbordone, L.; Ludwig, H. -G.; Bonifacio, P.; Steffen, M.; Behara, N. T. Bibcode: 2008A&A...483..591C Altcode: 2008arXiv0803.3585C Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy.
Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a CO5BOLD 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs.
Methods: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models.
Results: For Hf we find a photospheric abundance A(Hf) = 0.87 ± 0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th II 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of a Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th) = 0.08 ± 0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations.
Conclusions: Only for the second time, to our knowledge, has a non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used. Title: Hydrodynamical Model Atmospheres of Metal-Poor Stars Authors: Ludwig, Hans-Günter; González Hernández, Jonay I.; Behara, Natalie; Caffau, Elisabetta; Steffen, Matthias Bibcode: 2008AIPC..990..268L Altcode: Standard one-dimensional (1D) model atmospheres rely on the assumption of radiative equilibrium in the non-convective part of the stellar photosphere. However, gas-dynamical effects can lead to dramatic deviations from radiative equilibrium conditions, especially in metal-poor stellar atmospheres. These can be taken into account in 3D stellar atmosphere models representing the detailed interplay of hydrodynamics and radiation. During the last two years efforts have been invested to compute such 3D models for metal-poor atmospheres with the CO5 BOLD code within the CIFIST (Cosmological Impact of the FIrst STars) Team, an European Union funded research group dedicated to the study of metal-poor stars. Based on the available models we will give an account of the radiation-hydrodynamical processes at work, and discuss consequences for the temperature scale and abundance analysis of metal-poor stars. Title: First stars XI. Chemical composition of the extremely metal-poor dwarfs in the binary CS 22876-032 Authors: González Hernández, J. I.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Spite, M.; Spite, F.; Cayrel, R.; Molaro, P.; Hill, V.; François, P.; Plez, B.; Beers, T. C.; Sivarani, T.; Andersen, J.; Barbuy, B.; Depagne, E.; Nordström, B.; Primas, F. Bibcode: 2008A&A...480..233G Altcode: 2007arXiv0712.2949G Context: Unevolved metal-poor stars constitute a fossil record of the early Galaxy, and can provide invaluable information on the properties of the first generations of stars. Binary systems also provide direct information on the stellar masses of their member stars.
Aims: The purpose of this investigation is a detailed abundance study of the double-lined spectroscopic binary CS 22876-032, which comprises the two most metal-poor dwarfs known.
Methods: We used high-resolution, high-S/N ratio spectra from the UVES spectrograph at the ESO VLT telescope. Long-term radial-velocity measurements and broad-band photometry allowed us to determine improved orbital elements and stellar parameters for both components. We used OSMARCS 1D models and the turbospectrum spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also used the CO^5BOLD model atmosphere code to compute the 3D abundance corrections, notably for Li and O.
Results: We find a metallicity of [Fe/H] ~ -3.6 for both stars, using 1D models with 3D corrections of ~-0.1 dex from averaged 3D models. We determine the oxygen abundance from the near-UV OH bands; the 3D corrections are large, -1 and -1.5 dex for the secondary and primary respectively, and yield [O/Fe] ~ 0.8, close to the high-quality results obtained from the [OI] 630 nm line in metal-poor giants. Other [ α/Fe] ratios are consistent with those measured in other dwarfs and giants with similar [Fe/H], although Ca and Si are somewhat low ([X/Fe] ⪉ 0). Other element ratios follow those of other halo stars. The Li abundance of the primary star is consistent with the Spite plateau, but the secondary shows a lower abundance; 3D corrections are small.
Conclusions: The Li abundance in the primary star supports the extension of the Spite Plateau value at the lowest metallicities, without any decrease. The low abundance in the secondary star could be explained by endogenic Li depletion, due to its cooler temperature. If this is not the case, another, yet unknown mechanism may be causing increased scatter in A(Li) at the lowest metallicities. Title: CS 22876-032: The Most Metal-Poor Dwarfs. Abundances and 3D Effects Authors: González Hernández, J. I.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E.; Spite, M.; Spite, F.; Cayrel, R.; Molaro, P.; Hill, V.; François, P.; Plez, B.; Beers, T. C.; Sivarani, T.; Andersen, J.; Barbuy, B.; Depagne, E.; Nordström, B.; Primas, F. Bibcode: 2008AIPC..990..175G Altcode: 2008AIPC..990..175H Unevolved extremely metal-poor stars offer us a unique tool to infer knowledge of the first generation of stars. We have analysed UVES high-resolution spectra of the double-lined spectroscopic binary CS 22876-032 which comprises the two most metal-poor dwarfs currently known. In particular, we determine the oxygen (from OH lines in the near-UV) and lithium abundances taking into account 3D effects.

The long-time baseline radial velocity measurements and photometric data available allowed us to determine the orbital elements as well as stellar parameters of both components. We use OSMARCS 1D models and the TURBOSPECTRUM spectral synthesis code to determine the abundances of Li, O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co and Ni. We also use the CO5 BOLD 3D model atmosphere code to predict the 3D abundance corrections, mainly for Li, O and Fe.

We find a metallicity of [Fe/H]~-3.6 for both stars using 1D models with 3D corrections of ~-0.1 dex from horizontal and temporal averaged 3D models. The [α/Fe] ratios are consistent with those found for metal-poor giants with similar [Fe/H], although Ca and Si are rather low, [X/Fe]~=0. The 1D O abundance, [O/Fe]~2 for both stars, is very large, but 3D models predict abundance corrections of roughly -1.0 dex and -1.5 dex for the secondary and primary stars, respectively. These 3D corrections bring the O abundances derived from near-UV OH bands in these two dwarfs closer to other high-quality measurements from the forbidden [OI] 630 nm line in metal-poor giants. The Li abundance is consistent with the Spite plateau, although the secondary star shows a lower abundance. Title: Spectral analyses of three carbon-enhanced metal-poor stars Authors: Behara, N.; Bonifacio, P.; Ludwig, H. G.; Sbordone, L.; Gonzales Hernandez, J. I.; Caffau, E. Bibcode: 2008nuco.confE..68B Altcode: 2008arXiv0809.4204B; 2008PoS....53E..68B We are conducting a high-resolution follow-up of candidate EMP stars extracted from the Sloan Digital Sky Survey (SDSS; York et al. 2000) using UVES at the VLT. Three of the programme stars, SDSS J0912+0216, SDSS J1036+1212 and SDSS J1349-0229, where deliberately targetted as CEMP stars since a strong $G$ band was evident from the SDSS spectra and the weakness of the Ca {\sc ii} K line testified their very low metallicity. The UVES high resolution follow-up confirmed the original findings ([Fe/H] $<-2.50$) and allowed a more detailed investigation of their chemical composition. We determined the carbon abundance from molecular lines which form in the outer layers of the stellar atmosphere. It is known that convection in metal-poor stars induces very low temperatures which are not predicted by classical 1D stellar atmospheres. To obtain the correct temperature structure, one needs full 3D hydrodynamical models. 3D carbon abundances were determined for all three stars, using CO$^5$BOLD 3D hydrodynamical model atmospheres. 3D effects on the carbon abundance are found to be quite significant for these stars, with 3D corrections of up to --0.7 dex. Two of the stars, SDSS J0912+0216 and SDSS J1349-0229 exhibit an overabundance of neutron capture elements which classifies them as CEMP-s. Star SDSS J1036+1212, instead belongs to the elusive class of CEMP-no/s stars, with enhanced Ba, but deficient Sr, of which it is the third member discovered to date. Title: Overview of the Li problem in metal-poor stars and new results on 6Li Authors: Cayrel, R.; Steffen, M.; Bonifacio, P.; Ludwig, H. -G.; Caffau, E. Bibcode: 2008nuco.confE...2C Altcode: 2008arXiv0810.4290C; 2008PoS....53E...2C Two problems are discussed here. The first one is the 0.4 dex discrepancy between the 7Li abundance derived from the spectra of metal-poor halo stars on the one hand, and from Big Bang nucleosynthesis, based on the cosmological parameters constrained by the WMAP measurements, on the other hand. Lithium, indeed, can be depleted in the convection zone of unevolved stars. The understanding of the hydrodynamics of the crucial zone near the bottom of the convective envelope in dwarfs or turn-off stars of solar metallicity has recently made enormous progress with the inclusion of internal gravity waves. However, similar work for metal-poor stars is still lacking. Therefore it is not yet clear whether the depletion occurring in the metal-poor stars themselves is adequate to produce a 7Li plateau. The second problem pertains to the large amount of 6Li recently found in metal-poor halo stars. The convection-related asymmetry of the 7Li line could mimic the signal attributed so far to the weak blend of 6Li in the red wing of the 7Li line. Theoretical computations show that the signal generated by the asymmetry of 7Li is 2.0, 2.1, and 3.7 per cent for [Fe/H]= -3.0, -2.0, -1.0, respectively (Teff =6250 K and log g=4.0 [cgs]). In addition we re-investigate the statistical properties of the 6Li plateau and show that previous analyses were biased. Our conclusion is that the 6Li plateau can be reinterpreted in terms of intrinsic line asymmetry, without the need to invoke a contribution of 6Li. (abridged) Title: The solar photospheric abundance of phosphorus: results from CO^5BOLD 3D model atmospheres Authors: Caffau, E.; Steffen, M.; Sbordone, L.; Ludwig, H. -G.; Bonifacio, P. Bibcode: 2007A&A...473L...9C Altcode: 2007arXiv0708.1607C Aims:We determine the solar abundance of phosphorus using CO^5BOLD 3D hydrodynamic model atmospheres.
Methods: High-resolution, high signal-to-noise solar spectra of the P i lines of Multiplet 1 at 1051-1068 nm are compared to line-formation computations performed on a CO^5BOLD solar model atmosphere.
Results: We find A(P) = 5.46 ± 0.04, in good agreement with previous analyses based on 1D model atmospheres, due to the P i lines of Mult. 1 not being affected much by 3D effects. We cannot confirm an earlier claim by other authors of a downward revision of the solar P abundance by 0.1 dex when employing a 3D model atmosphere. Concerning other stars, we find modest (<0.1 dex) 3D abundance corrections for P among four F-dwarf model atmospheres of different metallicities, and these corrections are largest at lowest metallicity.
Conclusions: We conclude that 3D abundance corrections are generally rather small for the P i lines studied in this work. They are marginally relevant for metal-poor stars, but may be neglected in the Sun.

Tables 2-4 are only available in electronic form at http://www.aanda.org Title: Line shift, line asymmetry, and the ^6Li/^7Li isotopic ratio determination Authors: Cayrel, R.; Steffen, M.; Chand, H.; Bonifacio, P.; Spite, M.; Spite, F.; Petitjean, P.; Ludwig, H. -G.; Caffau, E. Bibcode: 2007A&A...473L..37C Altcode: 2007arXiv0708.3819C Context: Line asymmetries are generated by convective Doppler shifts in stellar atmospheres, especially in metal-poor stars, where convective motions penetrate to higher atmospheric levels. Such asymmetries are usually neglected in abundance analyses. The determination of the ^6Li/^7Li isotopic ratio is prone to suffering from such asymmetries, as the contribution of ^6Li is a slight blending reinforcement of the red wing of each component of the corresponding ^7Li line, with respect to its blue wing.
Aims: The present paper studies the halo star HD 74000 and estimates the impact of convection-related asymmetries on the Li isotopic ratio determination.
Methods: Two methods are used to meet this aim. The first, which is purely empirical, consists in deriving a template profile from another element that can be assumed to originate in the same stellar atmospheric layers as Li I, producing absorption lines of approximately the same equivalent width as individual components of the ^7Li I resonance line. The second method consists in conducting the abundance analysis based on NLTE line formation in a 3D hydrodynamical model atmosphere, taking into account the effects of photospheric convection.
Results: The results of the first method show that the convective asymmetry generates an excess absorption in the red wing of the ^7Li absorption feature that mimics the presence of ^6Li at a level comparable to the hitherto published values. This opens the possibility that only an upper limit on ^6Li/^7Li has thus far been derived. The second method confirms these findings.
Conclusions: From this work, it appears that a systematic reappraisal of former determinations of ^6Li abundances in halo stars is warranted.

Based on observations carried out at the European Southern Observatory (ESO), under prog. ID 75.D-0600. Tables 1-3, and additional references are only available in electronic form at http://www.aanda.org Title: UV flux distributions of γ Doradus stars Authors: Gerbaldi, M.; Faraggiana, R.; Caffau, E. Bibcode: 2007A&A...472..241G Altcode: Context: It seems that the recently identified class of pulsating stars, the γ Dor type-variables, includes objects with different metal abundances and a large percentage of binaries.
Aims: We looked for indicators of metal abundance peculiarities and stellar binarity in a sample of 40 confirmed γ Dor stars.
Methods: Absolute magnitudes from Hipparcos parallaxes and UV magnitudes, from the S2/S68 experiment on board the TD1 satellite, are retrieved from databases and compared with predicted values. A set of non variable normal stars is used to check the consistency of this analysis and also serve as reference stars.
Results: Twenty-nine stars of the γ Dor star sample, which is 73% of it, are discovered having abnormal UV fluxes constantly showing UV flux excesses compared to those computed with the atmospheric parameters (Teff , log g, and metallicity) determined from calibration of the uvbyβ indices. The reason for this UV excess of flux at 196.5 nm and at 236.5 nm, which was previously known only for HD 209295, cannot be ascribed to binarity alone. An extra source of UV flux or less UV absorption - yet unknown - must be present.

Tables 1-3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/472/241 Title: Sulphur abundances from the S i near-infrared triplet at 1045 nm Authors: Caffau, E.; Faraggiana, R.; Bonifacio, P.; Ludwig, H. -G.; Steffen, M. Bibcode: 2007A&A...470..699C Altcode: 2007arXiv0704.2335C Context: Unlike silicon and calcium, sulphur is an α-element that does not form dust. Some of the available observations of the evolution of sulphur with metallicity indicate an increased scatter of sulphur-to-iron ratios at low metallicities or even a bimodal distribution, with some stars showing constant S/Fe at all metallicities and others showing an increasing S/Fe ratio with decreasing metallicity. In metal-poor stars S i lines of Multiplet 1 at 920 nm are not yet too weak to permit the measurement of the sulphur abundance A(S); however, in ground-based observations they are severely affected by telluric lines.
Aims: We investigate the possibility of measuring sulphur abundances from S iMult. 3 at 1045 nm lines. These lie in the near infrared and are slightly weaker than those of Mult. 1, but lie in a range not affected by telluric lines.
Methods: We investigated the lines of Mult. 3 in the Sun (G2V), Procyon (F5V), HD 33256 (F5V), HD 25069 (G9V), and ɛ Eri (HD 22049, K2V). For the Sun and Procyon the analysis was performed with CO^5BOLD 3D hydrodynamical model atmospheres, while the three other stars, for which hydrodynamical simulations are not available, were analysed using 1D model atmospheres.
Results: For our sample of stars we find a global agreement between A(S) from lines of different multiplets.
Conclusions: Our results suggest that the infrared lines of Mult. 3 are a viable indicator of the sulphur abundance that, because of the intrinsic strength of this multiplet, should be suitable for studying the trend of [S/Fe] at low metallicities.

Based on data from the UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655). Appendix is only available in electronic form at http://www.aanda.org Title: VizieR Online Data Catalog: UV Flux distributions of gamma Dor stars (Gerbaldi+, 2007) Authors: Gerbaldi, M.; Faraggiana, R.; Caffau, E. Bibcode: 2007yCat..34720241G Altcode: Reddening and atmospheric parameters (Teff, logg, metallicity, and visual absolute magnitude) for the gamma Dor stars and a set of reference stars.

(4 data files). Title: The forbidden 1082 nm line of sulphur:. the photospheric abundance of sulphur in the Sun and 3D effects Authors: Caffau, E.; Ludwig, H. -G. Bibcode: 2007A&A...467L..11C Altcode: 2007astro.ph..3423C Context: Sulphur is an element which is formed in the α-process and is easily measured in the gaseous phase in external galaxies. Since it does not form dust, it is the preferred indicator for α-elements, rather than Si or Mg, for which dust corrections are necessary. The measurement of the sulphur abundance in stars is not an easy task, relying mainly on high excitation lines with non-negligible deviations from LTE. The 1082 nm sulphur forbidden transition is less sensitive to departures from LTE and is less dependent on temperature uncertainties than other sulphur lines usually employed as abundance indicators. Therefore it should provide a more robust abundance diagnostics.
Aims: To derive the solar photospheric abundance of sulphur from the 1082 nm [SI] line and to investigate 3D effects present in G- and F-type atmospheres at solar and lower metallicity.
Methods: High-resolution, high signal-to-noise solar intensity and flux spectra were used to measure the sulphur abundance from the [SI] 1082 nm line. CO^5BOLD hydrodynamical model atmospheres were applied to predict 3D abundance corrections for the [SI] line.
Results: The solar sulphur abundance is derived to be 7.15± (0.01)_stat ± (0.05)_sys, where the statistical uncertainty represents the scatter in the determination using four different solar spectra and the systematic uncertainty is due to the modelling of the blending lines. Sulphur abundances obtained from this line are insensitive to the micro-turbulence. 3D abundance corrections, found from strictly differential comparisons between 1D and 3D models, are negligible in the Sun, but become sizable for more metal-poor dwarfs. Title: Abundances in Sagittarius Stars Authors: Bonifacio, P.; Zaggia, S.; Sbordone, L.; Santin, P.; Monaco, L.; Monai, S.; Molaro, P.; Marconi, G.; Girardi, L.; Ferraro, F.; di Marcantonio, P.; Caffau, E.; Bellazzini, M. Bibcode: 2006cams.book..232B Altcode: The Sagittarius dwarf spheroidal is a very complex galaxy, which has undergone prolonged star formation. From the very first high resolution chemical analysis of Sgr stars, conducted using spectra obtained during the commissioning of UVES at VLT, it was clear that the star had undergone a high level of chemical processing, at variance with most of the other Local Group dwarf spheroidals. Thanks to FLAMES at VLT we now have accurate metallicities and abundances of alpha-chain elements for about 150 stars, which provide the first reliable metallicity distribution for this galaxy. Besides the already known high metallicity tail the existence of a metal-poor population has also been highlighted, although an assessment of the fraction of Sgr stars which belong to this population requires a larger sample. From our data it is also obvious that Sagittarius is a nucleated galaxy and that the centre of the nucleus coincides with M54, as already shown by Monaco et al. Title: Sulphur abundance in Galactic stars Authors: Caffau, E.; Bonifacio, P.; Faraggiana, R.; François, P.; Gratton, R. G.; Barbieri, M. Bibcode: 2005A&A...441..533C Altcode: 2005astro.ph..7030C We investigate sulphur abundance in 74 Galactic stars by using high resolution spectra obtained at ESO VLT and NTT telescopes. For the first time the abundances are derived, where possible, from three optical multiplets: Mult. 1, 6, and 8. By combining our own measurements with data in the literature we assemble a sample of 253 stars in the metallicity range -3.2 ⪉ [Fe/H] ⪉ +0.5. Two important features, which could hardly be detected in smaller samples, are obvious from this large sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]∼ -1; 2) at low metallicities we observe stars with [S/Fe]∼ 0.4, as well as stars with higher [S/Fe] ratios. The latter do not seem to be kinematically different from the former ones. Whether the latter finding stems from a distinct population of metal-poor stars or simply from an increased scatter in sulphur abundances remains an open question. Title: Sulphur abundances in Terzan 7 Authors: Caffau, E.; Bonifacio, P.; Faraggiana, R.; Sbordone, L. Bibcode: 2005A&A...436L...9C Altcode: 2005astro.ph..4463C We present here the first measurements of sulphur abundances in extragalactic stars. We make use of high resolution spectra, obtained with UVES at the ESO 8.2 m Kueyen telescope, of three giants of the Globular Cluster Terzan 7, which belongs to the Sagittarius dwarf galaxy. We measure the sulphur abundances using the lines of S I multiplet 1. The S/Fe ratios for all three stars are nearly solar, thus considerably lower than what is found in Galactic stars of comparable iron content ([Fe/H] ∼ -0.50). This finding is in keeping with the abundances of other α-chain elements in this cluster and in Sagittarius and other dSphs in general. These low α-chain elements to iron ratios suggest that Sagittarius and its Globular Clusters have experienced a low or bursting star-formation rate. Our sulphur abundances imply < log (S/O)> = -1.61 which is comparable to what is found in many H II regions of similar oxygen content, and is slightly lower than the solar value (log (S/O) = -1.51). These are also the first measurements of sulphur abundances in a Globular Cluster, thus a direct comparison of Terzan 7 and Galactic Globular Clusters is not possible yet. However our analysis suggests that the lines of S I multiplet 1 should be measurable for other Globular Clusters at least down to a metallicity ~-1.5. Title: The Sagittarius dwarf mass-to-light ratio Authors: Zaggia, S.; Bonifacio, P.; Bellazzini, M.; Caffau, E.; Ferraro, F.; Marconi, G.; Monaco, L.; Monai, S.; Sbordone, L. Bibcode: 2005nfcd.conf..101Z Altcode: 2005IAUCo.198..101Z We report on the use of high-resolution spectra to obtain a detailed description of the Sagittarius dwarf spheroidal internal dynamics, its Mass and Mass to Light ratio (M/L). Our direct measure of the central velocity dispersion of SGR give σSGR=8.1±0.4 km/s which translates in a total mass estimate of MSGR =1.6×108 M and corresponding (M/L)SGR=9.1 (M/L). We also report on a possible detection of rotation in the core of SGR. Title: λ Bootis stars with composite spectra Authors: Faraggiana, R.; Bonifacio, P.; Caffau, E.; Gerbaldi, M.; Nonino, M. Bibcode: 2004A&A...425..615F Altcode: 2004astro.ph..6265F We examine the large sample of λ Boo candidates collected in Table 1 of Gerbaldi et al. (\cite{Gerbaldi2003}) to see how many of them show composite spectra. Of the 132 λ Boo candidates we identify 22 which definitely show composite spectra and 15 more for which there are good reasons to suspect a composite spectrum. The percentage of λ Boo candidates with composite spectra is therefore >17% and possibly considerably higher. For such stars the λ Boo classification should be reconsidered taking into account the fact that their spectra are composite. We argue that some of the underabundances reported in the literature may simply be the result of the failure to consider the composite nature of the spectra. This leads to the legitimate suspicion that some, if not all, the λ Boo candidates are not chemically peculiar at all. A thorough analysis of even a single one of the λ Boo candidates with composite spectra, in which the composite nature of the spectrum is duly considered, which would demonstrate that the chemical peculiarities persist, would clear the doubt we presently have that the stars with composite spectra may not be λ Boo stars at all.

Based on observations collected at ESO (Echelec spectrograph) and at TBL (Telescope Bernard Lyot) of the Pic du Midi Observatory (France). Title: The Sagittarius dwarf galaxy as seen by the VLT/FLAMES facility Authors: Zaggia, S.; Bonifacio, P.; Bellazzini, M.; Caffau, E.; Di Marcantonio, P.; Ferraro, F.; Marconi, G.; Monaco, L.; Monai, S.; Santin, P.; Sbordone, L. Bibcode: 2004MSAIS...5..291Z Altcode: This is the first report of the use of the VLT FLAMES facility on the local group dwarf galaxy Sagittarius (SGR). The observing program aimed at collecting a large sample of high-resolution spectra with two main goals: (1) to obtain a detailed description of SGR metallicity distribution, and (2) to study the internal dynamics of SGR, its Mass and Mass to Light ratio (M/L). With the present work, we confirm the existence of a metal-rich population, extending above solar metallicity. The main component of SGR stars is peaked at [Fe/H]∼ -0.5, while we found evidence, for the first time, of a metal-weak tail in the SGR populations, considerably more metal-weak than M54 ([Fe/H]∼ -1.5). Our direct measure of the central velocity dispersion of SGR give sigma =8.2±0.3 km s-1 which translates in an M/L=12.5 using current values of the SGR structural parameters. This new value is in good agreement with the accretion self-consistent ``model II'' of \cite{HW01}.

Based on Observations collected at the VLT Title: Automatic abundance analysis of high resolution spectra Authors: Bonifacio, P.; Caffau, E. Bibcode: 2003A&A...399.1183B Altcode: 2002astro.ph.12424B We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8 m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional abundance analysis, but as an aid to extract rapidly a good deal of the information contained in the spectra. Title: An astrophysical oscillator strength for the S ii 94.7-nm resonance line and S abundances in DLAs Authors: Bonifacio, Piercarlo; Caffau, Elisabetta; Centurión, Miriam; Molaro, Paolo; Vladilo, Giovanni Bibcode: 2001MNRAS.325..767B Altcode: 2001astro.ph..3234B By using UV spectra for the O star HD 93521 taken with the ORFEUS II echelle spectrograph, we determine an `astrophysical' f value for the Siiλ94.7-nm line: f=0.00498-0.00138+0.00172, error at 1σ level. This is almost a factor of 30 smaller than the guessed value found in the Kurucz data base (f=0.1472), which was until now the only one available for this transition. We use our `astrophysical' f to investigate the S abundance in two damped Lyα absorption systems (DLAs) observed with the UV-Visual Echelle Spectrograph (UVES)Q3 at the European Southern Observatory's 8.2-m Kueyen telescope. In the case of the absorber at zabs=3.02486 towards QSO 0347-3819, we find a sulphur column density which is consistent, within errors, with that determined by Centurión et al. by means of the λ125.9-nm line, thus providing an external check on the accuracy of our f value. For the damped absorber at zabs=4.4680 towards BR J0307-4945, we determine a high value of the S abundance, which, however, is probably the result of blending with Lyα forest lines. Title: Intrinsic colour calibration for F, G, K stars Authors: Bonifacio, P.; Caffau, E.; Molaro, P. Bibcode: 2000A&AS..145..473B Altcode: 2000astro.ph..6433B We derive an intrinsic colour calibration for F-K stars using broad band Johnson colours and line indices KP and HP2. Through this calibration we can determine E(B-V) of an individual star within 0.03 mag. The E(B-V) values thus derived are in excellent agreement with those derived from Strömgren photometry through the Schuster & Nissen (\cite{sch89}) calibration. The agreement is also good with the reddening maps of Burstein & Heiles (\cite{bur82}) and Schlegel et al. (\cite{sch98}), although in this case there exists a small offset of about 0.01 mag. This calibration may be applied to the large body of data of the HK survey extension which will be published in the near future. Title: Photometry of Nova V 1493 Aql Authors: Bonifacio, P.; Selvelli, P. L.; Caffau, E. Bibcode: 2000A&A...356L..53B Altcode: 2000astro.ph..3156B We report on photometric observations of V 1493 Aql during the early decline and highlight some uncommon aspects of the light curve. V 1493 Aql was hotter at maximum light than in the following phases, and was characterized by the presence of a long lasting secondary maximum, that, unlike in other novae, was quite red in color. The mean of three distance estimates yields d ~ 18.8+/- 3.6 Kpc. Such a large distance would place V 1493 Aql at the extreme outskirts of our Galaxy or even in an external Local Group galaxy. Based on data collected at the Osservatorio Astrofisico di Catania, stazione M. G. Fracastoro, Serra la Nave (Etna), Italia Title: Determination of neutrino incoming direction in the CHOOZ experiment and its application to supernova explosion location by scintillator detectors Authors: Apollonio, M.; Baldini, A.; Bemporad, C.; Caffau, E.; Cei, F.; Déclais, Y.; de Kerret, H.; Dieterle, B.; Etenko, A.; Foresti, L.; George, J.; Giannini, G.; Grassi, M.; Kozlov, Y.; Kropp, W.; Kryn, D.; Laiman, M.; Lane, C. E.; Lefièvre, B.; Machulin, I.; Martemyanov, A.; Martemyanov, V.; Mikaelyan, L.; Nicolò, D.; Obolensky, M.; Pazzi, R.; Pieri, G.; Price, L.; Riley, S.; Reeder, R.; Sabelnikov, A.; Santin, G.; Skorokhvatov, M.; Sobel, H.; Steele, J.; Steinberg, R.; Sukhotin, S.; Tomshaw, S.; Veron, D.; Vyrodov, V. Bibcode: 1999PhRvD..61a2001A Altcode: 2000PhRvD..61a2001A; 1999hep.ex....6011A The CHOOZ experiment has measured the antineutrino flux at about 1 km from two nuclear reactors to search for possible ν¯e-->ν¯x oscillations with mass-squared differences as low as 10-3 eV2 for full mixing. We show that the analysis of the ~2700 ν¯e events, collected by our liquid scintillation detector, locates the antineutrino source within a cone of half-aperture ~18° at the 68 % C.L. We discuss the implications of this result for locating a supernova explosion.