Author name code: deltoro-iniesta ADS astronomy entries on 2022-09-14 author:"Del Toro Iniesta, Jose Carlos" ------------------------------------------------------------------------ Title: The on-ground data reduction and calibration pipeline for SO/PHI-HRT Authors: Sinjan, J.; Calchetti, D.; Hirzberger, J.; Orozco Suárez, D.; Albert, K.; Albelo Jorge, N.; Appourchaux, T.; Alvarez-Herrero, A.; Blanco Rodríguez, J.; Gandorfer, A.; Germerott, D.; Guerrero, L.; Gutierrez Marquez, P.; Kahil, F.; Kolleck, M.; Solanki, S. K.; del Toro Iniesta, J. C.; Volkmer, R.; Woch, J.; Fiethe, B.; Gómez Cama, J. M.; Pérez-Grande, I.; Sanchis Kilders, E.; Balaguer Jiménez, M.; Bellot Rubio, L. R.; Carmona, M.; Deutsch, W.; Fernandez-Rico, G.; Fernández-Medina, A.; García Parejo, P.; Gasent Blesa, J. L.; Gizon, L.; Grauf, B.; Heerlein, K.; Korpi-Lagg, A.; Lange, T.; López Jiménez, A.; Maue, T.; Meller, R.; Michalik, H.; Moreno Vacas, A.; Müller, R.; Nakai, E.; Schmidt, W.; Schou, J.; Schühle, U.; Staub, J.; Strecker, H.; Torralbo, I.; Valori, G. Bibcode: 2022arXiv220814904S Altcode: The ESA/NASA Solar Orbiter space mission has been successfully launched in February 2020. Onboard is the Polarimetric and Helioseismic Imager (SO/PHI), which has two telescopes, a High Resolution Telescope (HRT) and the Full Disc Telescope (FDT). The instrument is designed to infer the photospheric magnetic field and line-of-sight velocity through differential imaging of the polarised light emitted by the Sun. It calculates the full Stokes vector at 6 wavelength positions at the Fe I 617.3 nm absorption line. Due to telemetry constraints, the instrument nominally processes these Stokes profiles onboard, however when telemetry is available, the raw images are downlinked and reduced on ground. Here the architecture of the on-ground pipeline for HRT is presented, which also offers additional corrections not currently available on board the instrument. The pipeline can reduce raw images to the full Stokes vector with a polarimetric sensitivity of $10^{-3}\cdot I_{c}$ or better. Title: Unipolar versus Bipolar Internetwork Flux Appearance Authors: Gosic, Milan; Katsukawa, Yukio; Bellot Rubio, L. R.; Del Toro Iniesta, Jose Carlos; Cheung, Mark; Orozco Suárez, David Bibcode: 2022cosp...44.2513G Altcode: Small-scale internetwork (IN) magnetic fields are considered to be the main building blocks of the quiet Sun magnetism. It is therefore of paramount importance to understand how these fields are generated on the solar surface. To shed new light on this open question, we studied the appearance modes and spatio-temporal evolution of individual IN magnetic elements inside one supergranular cell. For that purpose, we employed a high-resolution, high-sensitivity, long-duration Hinode/NFI magnetogram sequence. From identification of flux patches and magnetofrictional simulations, we show that there are two distinct populations of IN flux concentrations: unipolar and bipolar features. Bipolar features tend to be bigger, live longer and carry more flux than unipolar features. About $70$% of the total instantaneous IN flux detected inside the supergranule is in the form of bipoles. Both types of flux concentrations are uniformly distributed over the solar surface. However, bipolar features appear (randomly oriented) at a faster rate than unipolar features (68 as opposed to 55~Mx~cm$^{-2}$~day$^{-1}$). Our results lend support to the idea that bipolar features may be the signature of local dynamo action, while unipolar features seem to be formed by coalescence of background flux. Title: The magnetic drivers of campfires seen by the Polarimetric and Helioseismic Imager (PHI) on Solar Orbiter Authors: Kahil, F.; Hirzberger, J.; Solanki, S. K.; Chitta, L. P.; Peter, H.; Auchère, F.; Sinjan, J.; Orozco Suárez, D.; Albert, K.; Albelo Jorge, N.; Appourchaux, T.; Alvarez-Herrero, A.; Blanco Rodríguez, J.; Gandorfer, A.; Germerott, D.; Guerrero, L.; Gutiérrez Márquez, P.; Kolleck, M.; del Toro Iniesta, J. C.; Volkmer, R.; Woch, J.; Fiethe, B.; Gómez Cama, J. M.; Pérez-Grande, I.; Sanchis Kilders, E.; Balaguer Jiménez, M.; Bellot Rubio, L. R.; Calchetti, D.; Carmona, M.; Deutsch, W.; Fernández-Rico, G.; Fernández-Medina, A.; García Parejo, P.; Gasent-Blesa, J. L.; Gizon, L.; Grauf, B.; Heerlein, K.; Lagg, A.; Lange, T.; López Jiménez, A.; Maue, T.; Meller, R.; Michalik, H.; Moreno Vacas, A.; Müller, R.; Nakai, E.; Schmidt, W.; Schou, J.; Schühle, U.; Staub, J.; Strecker, H.; Torralbo, I.; Valori, G.; Aznar Cuadrado, R.; Teriaca, L.; Berghmans, D.; Verbeeck, C.; Kraaikamp, E.; Gissot, S. Bibcode: 2022A&A...660A.143K Altcode: 2022arXiv220213859K Context. The Extreme Ultraviolet Imager (EUI) on board the Solar Orbiter (SO) spacecraft observed small extreme ultraviolet (EUV) bursts, termed campfires, that have been proposed to be brightenings near the apexes of low-lying loops in the quiet-Sun atmosphere. The underlying magnetic processes driving these campfires are not understood.
Aims: During the cruise phase of SO and at a distance of 0.523 AU from the Sun, the Polarimetric and Helioseismic Imager on Solar Orbiter (SO/PHI) observed a quiet-Sun region jointly with SO/EUI, offering the possibility to investigate the surface magnetic field dynamics underlying campfires at a spatial resolution of about 380 km.
Methods: We used co-spatial and co-temporal data of the quiet-Sun network at disc centre acquired with the High Resolution Imager of SO/EUI at 17.4 nm (HRIEUV, cadence 2 s) and the High Resolution Telescope of SO/PHI at 617.3 nm (HRT, cadence 2.5 min). Campfires that are within the SO/PHI−SO/EUI common field of view were isolated and categorised according to the underlying magnetic activity.
Results: In 71% of the 38 isolated events, campfires are confined between bipolar magnetic features, which seem to exhibit signatures of magnetic flux cancellation. The flux cancellation occurs either between the two main footpoints, or between one of the footpoints of the loop housing the campfire and a nearby opposite polarity patch. In one particularly clear-cut case, we detected the emergence of a small-scale magnetic loop in the internetwork followed soon afterwards by a campfire brightening adjacent to the location of the linear polarisation signal in the photosphere, that is to say near where the apex of the emerging loop lays. The rest of the events were observed over small scattered magnetic features, which could not be identified as magnetic footpoints of the campfire hosting loops.
Conclusions: The majority of campfires could be driven by magnetic reconnection triggered at the footpoints, similar to the physical processes occurring in the burst-like EUV events discussed in the literature. About a quarter of all analysed campfires, however, are not associated to such magnetic activity in the photosphere, which implies that other heating mechanisms are energising these small-scale EUV brightenings. Title: Nice memories from a collaboration on sunspots Authors: del Toro Iniesta, J. Bibcode: 2022fysr.confE..52D Altcode: Back in 1994, when I still was at the IAC, I had the idea of using the (by then) new SIR inversion code to a full vector spectropolarimetric map of a sunspot as obtained with the HAO's Advanced Stokes Polarimeter. The opportunity was open to study the three-dimensional structure of sunspots from a semi-empirical basis. A collaboration between HAO and IAC had already started a few years earlier with the stays in HAO of Jorge Sánchez Almeida and Valentín Martínez Pillet (today's NSO director) as postdocs. Direct contact with the champions of ASP, Andy and Bruce, Bruce and Andy, was hence granted and I readily suggested them to undertake the study with their data and our code in the frame of the PhD thesis of a new student of mine, Carlos Westendorp Plaza. A few years later (1997), the discovery that penumbral material comes back to the solar interior at the external penumbral border was published in the Nature journal. The paper was followed by a series in ApJ on an optical tomography of a sunspot. The friendly and enriching discussions with Andy and Bruce remain as one of the most rewarding experiences in my (already long) career. Title: CASPER: A mission to study the time-dependent evolution of the magnetic solar chromosphere and transition regions Authors: Orozco Suárez, D.; del Toro Iniesta, J. C.; Bailén, F. J.; López Jiménez, A.; Balaguez Jiménez, M.; Bellot Rubio, L. R.; Ishikawa, R.; Katsukawa, Y.; Kano, R.; Shimizu, T.; Trujillo Bueno, J.; Asensio Ramos, A.; del Pino Alemán, T. Bibcode: 2022ExA...tmp...26O Altcode: Our knowledge about the solar chromosphere and transition region (TR) has increased in the last decade thanks to the huge scientific return of space-borne observatories like SDO, IRIS, and Hinode, and suborbital rocket experiments like CLASP1, CLASP2, and Hi-C. However, the magnetic nature of those solar regions remain barely explored. The chromosphere and TR of the Sun harbor weak fields and are in a low ionization stage both having critical effects on their thermodynamic behavior. Relatively cold gas structures, such as spicules and prominences, are located in these two regions and display a dynamic evolution in high-resolution observations that static and instantaneous 3D-magnetohydrodynamic (MHD) models are not able to reproduce. The role of the chromosphere and TR as the necessary path to a (largely unexplained) very hot corona calls for the generation of observationally based, time-dependent models of these two layers that include essential, up to now disregarded, ingredients in the modeling such as the vector magnetic field. We believe that the community is convinced that the origin of both the heat and kinetic energy observed in the upper layers of the solar atmosphere is of magnetic origin, but reliable magnetic field measurements are missing. The access to sensitive polarimetric measurements in the ultraviolet wavelengths has been elusive until recently due to limitations in the available technology. We propose a low-risk and high-Technology Readiness Level (TRL) mission to explore the magnetism and dynamics of the solar chromosphere and TR. The mission baseline is a low-Earth, Sun-synchronous orbit at an altitude between 600 and 800 km. The proposed scientific payload consists of a 30 cm aperture telescope with a spectropolarimeter covering the hydrogen Ly-alpha and the Mg II h&k ultraviolet lines. The instrument shall record high-cadence, full spectropolarimetric observations of the solar upper atmosphere. Besides the answers to a fundamental solar problem the mission has a broader scientific return. For example, the time-dependent modeling of the chromospheres of stars harboring exoplanets is fundamental for estimating the planetary radiation environment. The mission is based on technologies that are mature enough for space and will provide scientific measurements that are not available by other means. Title: The Solar Internetwork. III. Unipolar versus Bipolar Flux Appearance Authors: Gošić, M.; Bellot Rubio, L. R.; Cheung, M. C. M.; Orozco Suárez, D.; Katsukawa, Y.; del Toro Iniesta, J. C. Bibcode: 2022ApJ...925..188G Altcode: 2021arXiv211103208G Small-scale internetwork (IN) magnetic fields are considered to be the main building blocks of quiet Sun magnetism. For this reason, it is crucial to understand how they appear on the solar surface. Here, we employ a high-resolution, high-sensitivity, long-duration Hinode/NFI magnetogram sequence to analyze the appearance modes and spatiotemporal evolution of individual IN magnetic elements inside a supergranular cell at the disk center. From identification of flux patches and magnetofrictional simulations, we show that there are two distinct populations of IN flux concentrations: unipolar and bipolar features. Bipolar features tend to be bigger and stronger than unipolar features. They also live longer and carry more flux per feature. Both types of flux concentrations appear uniformly over the solar surface. However, we argue that bipolar features truly represent the emergence of new flux on the solar surface, while unipolar features seem to be formed by the coalescence of background flux. Magnetic bipoles appear at a faster rate than unipolar features (68 as opposed to 55 Mx cm-2 day-1), and provide about 70% of the total instantaneous IN flux detected in the interior of the supergranule. Title: Probing Upflowing Regions in the Quiet Sun and Coronal Holes Authors: Schwanitz, Conrad; Harra, Louise; Raouafi, Nour E.; Sterling, Alphonse C.; Moreno Vacas, Alejandro; del Toro Iniesta, Jose Carlos; Orozco Suárez, David; Hara, Hirohisa Bibcode: 2021SoPh..296..175S Altcode: 2021arXiv211012753S Recent observations from Parker Solar Probe have revealed that the solar wind has a highly variable structure. How this complex behaviour is formed in the solar corona is not yet known, since it requires omnipresent fluctuations, which constantly emit material to feed the wind. In this article we analyse 14 upflow regions in the solar corona to find potential sources for plasma flow. The upflow regions are derived from spectroscopic data from the EUV Imaging Spectrometer (EIS) on board Hinode determining their Doppler velocity and defining regions which have blueshifts stronger than −6 kms−1. To identify the sources of these blueshift data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), on board the Solar Dynamics Observatory (SDO), and the X-ray Telescope (XRT), on board Hinode, are used. The analysis reveals that only 5 out of 14 upflows are associated with frequent transients, like obvious jets or bright points. In contrast to that, seven events are associated with small-scale features, which show a large variety of dynamics. Some resemble small bright points, while others show an eruptive nature, all of which are faint and only live for a few minutes; we cannot rule out that several of these sources may be fainter and, hence, less obvious jets. Since the complex structure of the solar wind is known, this suggests that new sources have to be considered or better methods used to analyse the known sources. This work shows that small and frequent features, which were previously neglected, can cause strong upflows in the solar corona. These results emphasise the importance of the first observations from the Extreme-Ultraviolet Imager (EUI) on board Solar Orbiter, which revealed complex small-scale coronal structures. Title: On Fabry-Pérot Etalon-based Instruments. IV. Analytical Formulation of Telecentric Etalons Authors: Bailén, F. J.; Orozco Suárez, D.; del Toro Iniesta, J. C. Bibcode: 2021ApJS..254...18B Altcode: 2022arXiv220506026B Fabry-Pérot etalons illuminated with collimated beams have been analytically characterized in detail since their invention. Meanwhile, most of the features of etalons located in telecentric planes have been studied only numerically, despite the wide use of this configuration in astrophysical instrumentation for decades. In this work we present analytical expressions for the transmitted electric field and its derivatives that are valid for etalons placed in slow telecentric beams, like the ones commonly employed in solar instruments. We use the derivatives to infer the sensitivity of the electric field to variations in the optical thickness for different reflectivities and apertures of the incident beam, and we compare them to the collimated case. This allows us to estimate the wavefront degradation produced by roughness errors on the surfaces of the Fabry-Pérot etalons and to establish the maximum allowed rms value of the cavity irregularities across the footprint of the incident beam on the etalons that ensures diffraction-limited performance. We also evaluate the wavefront degradation intrinsic to these mounts, which is produced only by the finite aperture of the beam and that must be added to the one produced by defects. Finally, we discuss the differences in performance of telecentric and collimated etalon-based instruments and we generalize our formulation to anisotropic etalons. Title: SUNRISE Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: Scan mirror mechanism Authors: Oba, Takayoshi; Shimizu, Toshifumi; Katsukawa, Yukio; Kubo, Masahito; Uraguchi, Fumihiro; Tsuzuki, Toshihiro; Tamura, Tomonori; Shinoda, Kazuya; Kodeki, Kazuhide; Fukushima, Kazuhiko; Gandorfer, Achim; del Toro Iniesta, Jose Carlos Bibcode: 2020SPIE11445E..4FO Altcode: The SUNRISE Chromospheric Infrared spectroPolarimeter (SCIP) is a balloon-borne long-slit spectrograph for SUNRISE III to precisely measure magnetic fields in the solar atmosphere. The scan mirror mechanism (SMM) is installed in the optical path to the entrance slit of the SCIP to move solar images focused on the slit for 2-dimensional mapping. The SMM is required to have (1) the tilt stability better than 0.035″ (3σ) on the sky angle for the diffraction-limited spatial resolution of 0.2″, (2) step response shorter than 32 msec for rapid scanning observations, and (3) good linearity (i.e. step uniformity) over the entire field-of-view (60″x60″). To achieve these performances, we have developed a flight-model mechanism and its electronics, in which the mirror tilt is controlled by electromagnetic actuators with a closed-loop feedback logic with tilt angles from gap-based capacitance sensors. Several optical measurements on the optical bench verified that the mechanism meets the requirements. In particular, the tilt stability achives better than 0.012″ (3σ). Thermal cycling and thermal vacuum tests have been completed to demonstrate the performance in the vacuum and the operational temperature range expected in the balloon flight. We found a small temperature dependence in the step uniformity and this dependence will be corrected to have 2-demensional maps with the sub-arcsec spatial accuracy in the data post-processing. Title: Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: polarization modulation unit Authors: Kubo, Masahito; Shimizu, Toshifumi; Katsukawa, Yukio; Kawabata, Yusuke; Anan, Tetsu; Ichimoto, Kiyoshi; Shinoda, Kazuya; Tamura, Tomonori; Nodomi, Yoshifumi; Nakayama, Satoshi; Yamada, Takuya; Tajima, Takao; Nakata, Shimpei; Nakajima, Yoshihito; Okutani, Kousei; Feller, Alex; del Toro Iniesta, Jose Carlos Bibcode: 2020SPIE11447E..A3K Altcode: Polarization measurements of the solar chromospheric lines at high precision are key to present and future solar telescopes for understanding magnetic field structures in the chromosphere. The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for Sunrise III is a spectropolarimeter with a polarimetric precision of 0.03 % (1 σ). The key to high-precision polarization measurements using SCIP is a polarization modulation unit that rotates a waveplate continuously at a constant speed. The rotating mechanism is a DC brushless motor originally developed for a future space mission, and its control logic was originally developed for the sounding rocket experiment CLASP. Because of our requirement on a speed of rotation (0.512 s/rotation) that was 10 times faster than that of CLASP, we optimized the control logic for the required faster rotation. Fast polarization modulation is essential for investigating the fine-scale magnetic field structures related to the dynamical chromospheric phenomena. We have verified that the rotation performance can achieve the polarization precision of 0.03 % (1 σ) required by SCIP and such a significant rotation performance is maintained under thermal vacuum conditions by simulating the environment of the Sunrise III balloon flight. The waveplate was designed as a pair of two birefringent plates made of quartz and sapphire to achieve a constant retardation in a wide wavelength range. We have confirmed that the retardation is almost constant in the 770 nm and 850nm wavelength bands of SCIP under the operational temperature conditions. Title: Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for SUNRISE III: opto-mechanical analysis and design Authors: Uraguchi, Fumihiro; Tsuzuki, Toshihiro; Katsukawa, Yukio; Hara, Hirohisa; Iwamura, Satoru; Kubo, Masahito; Nodomi, Yoshifumi; Suematsu, Yoshinori; Kawabata, Yusuke; Shimizu, Toshifumi; Gandorfer, Achim; del Toro Iniesta, Jose Carlos Bibcode: 2020SPIE11447E..ABU Altcode: The Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) is a near-IR spectro-polarimeter instrument newly designed for Sunrise III, a balloon-borne solar observatory with a 1-m diameter telescope. In order to achieve the strict requirements the SCIP wavefront error, it is necessary to quantify the errors due to environmen- tal effects such as gravity and temperature variation under the observation conditions. We therefore conducted an integrated opto-mechanical analysis incorporating mechanical and thermal disturbances into a finite element model of the entire SCIP structure to acquire the nodal displacements of each optical element, then fed them back to the optical analysis software in the form of rigid body motion and surface deformation fitted by polynomials. This method allowed us to determine the error factors having a significant influence on optical performance. For example, no significant wavefront degradation was associated with the structural mountings because the optical element mounts were well designed based on quasi-kinematic constraints. In contrast, we found that the main factor affecting wavefront degradation was the rigid body motions of the optical elements, which must be mini- mized within the allowable level. Based on these results, we constructed the optical bench using a sandwich panel as the optical bench consisting of an aluminum-honeycomb core and carbon fiber reinforced plastic skins with a high stiffness and low coefficient of thermal expansion. We then confirmed that the new opto-mechanical model achieved the wavefront error requirement. In this paper, we report the details of this integrated opto-mechanical analysis, including the wavefront error budgeting and the design of the opto-mechanics. Title: Power spectrum of turbulent convection in the solar photosphere Authors: Yelles Chaouche, L.; Cameron, R. H.; Solanki, S. K.; Riethmüller, T. L.; Anusha, L. S.; Witzke, V.; Shapiro, A. I.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2020A&A...644A..44Y Altcode: 2020arXiv201009037Y The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two balloon-borne SUNRISE missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations. We find that quiet-Sun observations and smeared simulations are consistent with each other and exhibit a power-law behavior in the subgranular range of their Doppler velocity power spectra with a power-law index of ≈ - 2. The unsmeared simulations exhibit a power law that extends over the full range between the integral and Taylor scales with a power-law index of ≈ - 2.25. The smearing, reminiscent of observational conditions, considerably reduces the extent of the power-law-like portion of the power spectra. This suggests that the limited spatial resolution in some observations might eventually result in larger uncertainties in the estimation of the power-law indices. The simulated vertical velocity power spectra as a function of height show a rapid change in the power-law index (at the subgranular range) from roughly the optical depth unity layer, that is, the solar surface, to 300 km above it. We propose that the cause of the steepening of the power-law index is the transition from a super- to a subadiabatic region, in which the dominant source of motions is overshooting convection. A scale-dependent transport of the vertical momentum occurs. At smaller scales, the vertical momentum is more efficiently transported sideways than at larger scales. This results in less vertical velocity power transported upward at small scales than at larger scales and produces a progressively steeper vertical velocity power law below 180 km. Above this height, the gravity work progressively gains importance at all relevant scales, making the atmosphere progressively more hydrostatic and resulting in a gradually less steep power law. Radiative heating and cooling of the plasma is shown to play a dominant role in the plasma energetics in this region, which is important in terms of nonadiabatic damping of the convective motions. Title: Sunrise Chromospheric Infrared SpectroPolarimeter (SCIP) for sunrise III: system design and capability Authors: Katsukawa, Y.; del Toro Iniesta, J. C.; Solanki, S. K.; Kubo, M.; Hara, H.; Shimizu, T.; Oba, T.; Kawabata, Y.; Tsuzuki, T.; Uraguchi, F.; Nodomi, Y.; Shinoda, K.; Tamura, T.; Suematsu, Y.; Ishikawa, R.; Kano, R.; Matsumoto, T.; Ichimoto, K.; Nagata, S.; Quintero Noda, C.; Anan, T.; Orozco Suárez, D.; Balaguer Jiménez, M.; López Jiménez, A. C.; Cobos Carrascosa, J. P.; Feller, A.; Riethmueller, T.; Gandorfer, A.; Lagg, A. Bibcode: 2020SPIE11447E..0YK Altcode: The Sunrise balloon-borne solar observatory carries a 1 m aperture optical telescope and provides us a unique platform to conduct continuous seeing-free observations at UV-visible-IR wavelengths from an altitude of higher than 35 km. For the next flight planned for 2022, the post-focus instrumentation is upgraded with new spectro- polarimeters for the near UV (SUSI) and the near-IR (SCIP), whereas the imaging spectro-polarimeter Tunable Magnetograph (TuMag) is capable of observing multiple spectral lines within the visible wavelength. A new spectro-polarimeter called the Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) is under development for observing near-IR wavelength ranges of around 770 nm and 850 nm. These wavelength ranges contain many spectral lines sensitive to solar magnetic fields and SCIP will be able to obtain magnetic and velocity structures in the solar atmosphere with a sufficient height resolution by combining spectro-polarimetric data of these lines. Polarimetric measurements are conducted using a rotating waveplate as a modulator and polarizing beam splitters in front of the cameras. The spatial and spectral resolutions are 0.2" and 2 105, respectively, and a polarimetric sensitivity of 0.03 % (1σ) is achieved within a 10 s integration time. To detect minute polarization signals with good precision, we carefully designed the opto-mechanical system, polarization optics and modulation, and onboard data processing. Title: Solar Orbiter: connecting remote sensing and in situ measurements Authors: Horbury, T. S.; Auchere, F.; Antonucci, E.; Berghmans, D.; Bruno, R.; Carlsson, M.; del Toro Iniesta, J. C.; Fludra, A.; Harra, L.; Hassler, D.; Heinzel, P.; Howard, R. A.; Krucker, S.; Livi, S. A.; Long, D.; Louarn, P.; Maksimovic, M.; Mueller, D.; Owen, C. J.; Peter, H.; Rochus, P. L.; Rodriguez-Pacheco, J.; Romoli, M.; Schühle, U.; Solanki, S. K.; Teriaca, L.; Wimmer-Schweingruber, R. F.; Zouganelis, Y.; Laker, R. Bibcode: 2020AGUFMSH038..10H Altcode: A key science goal of the Solar Orbiter mission is to make connections between phenomena on the Sun and their manifestations in interplanetary space. To that end, the spacecraft carries a carefully tailored payload of six remote sensing instruments and four making in situ measurements. During June 2020, while the spacecraft was around 0.5 AU from the Sun, the remote sensing instruments operated for several days. While this was primarily an engineering activity, the resulting observations provided outstanding measurements and represent the ideal first opportunity to investigate the potential for making connections between the remote sensing and in situ payloads on Solar Orbiter.

We present a preliminary analysis of the available remote sensing and in situ observations, showing how connections can be made, and discuss the potential for further, more precise mapping to be performed as the mission progresses. Title: Coordination within the remote sensing payload on the Solar Orbiter mission Authors: Auchère, F.; Andretta, V.; Antonucci, E.; Bach, N.; Battaglia, M.; Bemporad, A.; Berghmans, D.; Buchlin, E.; Caminade, S.; Carlsson, M.; Carlyle, J.; Cerullo, J. J.; Chamberlin, P. C.; Colaninno, R. C.; Davila, J. M.; De Groof, A.; Etesi, L.; Fahmy, S.; Fineschi, S.; Fludra, A.; Gilbert, H. R.; Giunta, A.; Grundy, T.; Haberreiter, M.; Harra, L. K.; Hassler, D. M.; Hirzberger, J.; Howard, R. A.; Hurford, G.; Kleint, L.; Kolleck, M.; Krucker, S.; Lagg, A.; Landini, F.; Long, D. M.; Lefort, J.; Lodiot, S.; Mampaey, B.; Maloney, S.; Marliani, F.; Martinez-Pillet, V.; McMullin, D. R.; Müller, D.; Nicolini, G.; Orozco Suarez, D.; Pacros, A.; Pancrazzi, M.; Parenti, S.; Peter, H.; Philippon, A.; Plunkett, S.; Rich, N.; Rochus, P.; Rouillard, A.; Romoli, M.; Sanchez, L.; Schühle, U.; Sidher, S.; Solanki, S. K.; Spadaro, D.; St Cyr, O. C.; Straus, T.; Tanco, I.; Teriaca, L.; Thompson, W. T.; del Toro Iniesta, J. C.; Verbeeck, C.; Vourlidas, A.; Watson, C.; Wiegelmann, T.; Williams, D.; Woch, J.; Zhukov, A. N.; Zouganelis, I. Bibcode: 2020A&A...642A...6A Altcode: Context. To meet the scientific objectives of the mission, the Solar Orbiter spacecraft carries a suite of in-situ (IS) and remote sensing (RS) instruments designed for joint operations with inter-instrument communication capabilities. Indeed, previous missions have shown that the Sun (imaged by the RS instruments) and the heliosphere (mainly sampled by the IS instruments) should be considered as an integrated system rather than separate entities. Many of the advances expected from Solar Orbiter rely on this synergistic approach between IS and RS measurements.
Aims: Many aspects of hardware development, integration, testing, and operations are common to two or more RS instruments. In this paper, we describe the coordination effort initiated from the early mission phases by the Remote Sensing Working Group. We review the scientific goals and challenges, and give an overview of the technical solutions devised to successfully operate these instruments together.
Methods: A major constraint for the RS instruments is the limited telemetry (TM) bandwidth of the Solar Orbiter deep-space mission compared to missions in Earth orbit. Hence, many of the strategies developed to maximise the scientific return from these instruments revolve around the optimisation of TM usage, relying for example on onboard autonomy for data processing, compression, and selection for downlink. The planning process itself has been optimised to alleviate the dynamic nature of the targets, and an inter-instrument communication scheme has been implemented which can be used to autonomously alter the observing modes. We also outline the plans for in-flight cross-calibration, which will be essential to the joint data reduction and analysis.
Results: The RS instrument package on Solar Orbiter will carry out comprehensive measurements from the solar interior to the inner heliosphere. Thanks to the close coordination between the instrument teams and the European Space Agency, several challenges specific to the RS suite were identified and addressed in a timely manner. Title: Models and data analysis tools for the Solar Orbiter mission Authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbert, H. R.; Giunta, A.; Gomez-Herrero, R.; Guest, S.; Haberreiter, M.; Hassler, D.; Henney, C. J.; Howard, R. A.; Horbury, T. S.; Janvier, M.; Jones, S. I.; Kozarev, K.; Kraaikamp, E.; Kouloumvakos, A.; Krucker, S.; Lagg, A.; Linker, J.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Maloney, S.; Mann, G.; Masson, A.; Müller, D.; Önel, H.; Osuna, P.; Orozco Suarez, D.; Owen, C. J.; Papaioannou, A.; Pérez-Suárez, D.; Rodriguez-Pacheco, J.; Parenti, S.; Pariat, E.; Peter, H.; Plunkett, S.; Pomoell, J.; Raines, J. M.; Riethmüller, T. L.; Rich, N.; Rodriguez, L.; Romoli, M.; Sanchez, L.; Solanki, S. K.; St Cyr, O. C.; Straus, T.; Susino, R.; Teriaca, L.; del Toro Iniesta, J. C.; Ventura, R.; Verbeeck, C.; Vilmer, N.; Warmuth, A.; Walsh, A. P.; Watson, C.; Williams, D.; Wu, Y.; Zhukov, A. N. Bibcode: 2020A&A...642A...2R Altcode: Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk.
Aims: The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency's Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies.
Methods: Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter.
Results: This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission.
Conclusions: The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission. Title: The Solar Orbiter Science Activity Plan. Translating solar and heliospheric physics questions into action Authors: Zouganelis, I.; De Groof, A.; Walsh, A. P.; Williams, D. R.; Müller, D.; St Cyr, O. C.; Auchère, F.; Berghmans, D.; Fludra, A.; Horbury, T. S.; Howard, R. A.; Krucker, S.; Maksimovic, M.; Owen, C. J.; Rodríguez-Pacheco, J.; Romoli, M.; Solanki, S. K.; Watson, C.; Sanchez, L.; Lefort, J.; Osuna, P.; Gilbert, H. R.; Nieves-Chinchilla, T.; Abbo, L.; Alexandrova, O.; Anastasiadis, A.; Andretta, V.; Antonucci, E.; Appourchaux, T.; Aran, A.; Arge, C. N.; Aulanier, G.; Baker, D.; Bale, S. D.; Battaglia, M.; Bellot Rubio, L.; Bemporad, A.; Berthomier, M.; Bocchialini, K.; Bonnin, X.; Brun, A. S.; Bruno, R.; Buchlin, E.; Büchner, J.; Bucik, R.; Carcaboso, F.; Carr, R.; Carrasco-Blázquez, I.; Cecconi, B.; Cernuda Cangas, I.; Chen, C. H. K.; Chitta, L. P.; Chust, T.; Dalmasse, K.; D'Amicis, R.; Da Deppo, V.; De Marco, R.; Dolei, S.; Dolla, L.; Dudok de Wit, T.; van Driel-Gesztelyi, L.; Eastwood, J. P.; Espinosa Lara, F.; Etesi, L.; Fedorov, A.; Félix-Redondo, F.; Fineschi, S.; Fleck, B.; Fontaine, D.; Fox, N. J.; Gandorfer, A.; Génot, V.; Georgoulis, M. K.; Gissot, S.; Giunta, A.; Gizon, L.; Gómez-Herrero, R.; Gontikakis, C.; Graham, G.; Green, L.; Grundy, T.; Haberreiter, M.; Harra, L. K.; Hassler, D. M.; Hirzberger, J.; Ho, G. C.; Hurford, G.; Innes, D.; Issautier, K.; James, A. W.; Janitzek, N.; Janvier, M.; Jeffrey, N.; Jenkins, J.; Khotyaintsev, Y.; Klein, K. -L.; Kontar, E. P.; Kontogiannis, I.; Krafft, C.; Krasnoselskikh, V.; Kretzschmar, M.; Labrosse, N.; Lagg, A.; Landini, F.; Lavraud, B.; Leon, I.; Lepri, S. T.; Lewis, G. R.; Liewer, P.; Linker, J.; Livi, S.; Long, D. M.; Louarn, P.; Malandraki, O.; Maloney, S.; Martinez-Pillet, V.; Martinovic, M.; Masson, A.; Matthews, S.; Matteini, L.; Meyer-Vernet, N.; Moraitis, K.; Morton, R. J.; Musset, S.; Nicolaou, G.; Nindos, A.; O'Brien, H.; Orozco Suarez, D.; Owens, M.; Pancrazzi, M.; Papaioannou, A.; Parenti, S.; Pariat, E.; Patsourakos, S.; Perrone, D.; Peter, H.; Pinto, R. F.; Plainaki, C.; Plettemeier, D.; Plunkett, S. P.; Raines, J. M.; Raouafi, N.; Reid, H.; Retino, A.; Rezeau, L.; Rochus, P.; Rodriguez, L.; Rodriguez-Garcia, L.; Roth, M.; Rouillard, A. P.; Sahraoui, F.; Sasso, C.; Schou, J.; Schühle, U.; Sorriso-Valvo, L.; Soucek, J.; Spadaro, D.; Stangalini, M.; Stansby, D.; Steller, M.; Strugarek, A.; Štverák, Š.; Susino, R.; Telloni, D.; Terasa, C.; Teriaca, L.; Toledo-Redondo, S.; del Toro Iniesta, J. C.; Tsiropoula, G.; Tsounis, A.; Tziotziou, K.; Valentini, F.; Vaivads, A.; Vecchio, A.; Velli, M.; Verbeeck, C.; Verdini, A.; Verscharen, D.; Vilmer, N.; Vourlidas, A.; Wicks, R.; Wimmer-Schweingruber, R. F.; Wiegelmann, T.; Young, P. R.; Zhukov, A. N. Bibcode: 2020A&A...642A...3Z Altcode: 2020arXiv200910772Z Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission's science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (affecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit's science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans, resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter's SAP through a series of examples and the strategy being followed. Title: Autonomous on-board data processing and instrument calibration software for the Polarimetric and Helioseismic Imager on-board the Solar Orbiter mission Authors: Albert, Kinga; Hirzberger, Johann; Kolleck, Martin; Jorge, Nestor Albelo; Busse, Dennis; Rodríguez, Julian Blanco; Carrascosa, Juan Pedro Cobos; Fiethe, Björn; Gandorfer, Achim; Germerott, Dietmar; Guan, Yejun; Guerrero, Lucas; Gutierrez-Marques, Pablo; Expósito, David Hernández; Lange, Tobias; Michalik, Harald; Suárez, David Orozco; Schou, Jesper; Solanki, Sami K.; del Toro Iniesta, José Carlos; Woch, Joachim Bibcode: 2020JATIS...6d8004A Altcode: A frequent problem arising for deep space missions is the discrepancy between the amount of data desired to be transmitted to the ground and the available telemetry bandwidth. A part of these data consists of scientific observations, being complemented by calibration data to help remove instrumental effects. We present our solution for this discrepancy, implemented for the Polarimetric and Helioseismic Imager on-board the Solar Orbiter mission, the first solar spectropolarimeter in deep space. We implemented an on-board data reduction system that processes calibration data, applies them to the raw science observables, and derives science-ready physical parameters. This process reduces the raw data for a single measurement from 24 images to five, thus reducing the amount of downlinked data, and in addition, renders the transmission of the calibration data unnecessary. Both these on-board actions are completed autonomously. Title: The Polarimetric and Helioseismic Imager on Solar Orbiter Authors: Solanki, S. K.; del Toro Iniesta, J. C.; Woch, J.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Appourchaux, T.; Martínez Pillet, V.; Pérez-Grande, I.; Sanchis Kilders, E.; Schmidt, W.; Gómez Cama, J. M.; Michalik, H.; Deutsch, W.; Fernandez-Rico, G.; Grauf, B.; Gizon, L.; Heerlein, K.; Kolleck, M.; Lagg, A.; Meller, R.; Müller, R.; Schühle, U.; Staub, J.; Albert, K.; Alvarez Copano, M.; Beckmann, U.; Bischoff, J.; Busse, D.; Enge, R.; Frahm, S.; Germerott, D.; Guerrero, L.; Löptien, B.; Meierdierks, T.; Oberdorfer, D.; Papagiannaki, I.; Ramanath, S.; Schou, J.; Werner, S.; Yang, D.; Zerr, A.; Bergmann, M.; Bochmann, J.; Heinrichs, J.; Meyer, S.; Monecke, M.; Müller, M. -F.; Sperling, M.; Álvarez García, D.; Aparicio, B.; Balaguer Jiménez, M.; Bellot Rubio, L. R.; Cobos Carracosa, J. P.; Girela, F.; Hernández Expósito, D.; Herranz, M.; Labrousse, P.; López Jiménez, A.; Orozco Suárez, D.; Ramos, J. L.; Barandiarán, J.; Bastide, L.; Campuzano, C.; Cebollero, M.; Dávila, B.; Fernández-Medina, A.; García Parejo, P.; Garranzo-García, D.; Laguna, H.; Martín, J. A.; Navarro, R.; Núñez Peral, A.; Royo, M.; Sánchez, A.; Silva-López, M.; Vera, I.; Villanueva, J.; Fourmond, J. -J.; de Galarreta, C. Ruiz; Bouzit, M.; Hervier, V.; Le Clec'h, J. C.; Szwec, N.; Chaigneau, M.; Buttice, V.; Dominguez-Tagle, C.; Philippon, A.; Boumier, P.; Le Cocguen, R.; Baranjuk, G.; Bell, A.; Berkefeld, Th.; Baumgartner, J.; Heidecke, F.; Maue, T.; Nakai, E.; Scheiffelen, T.; Sigwarth, M.; Soltau, D.; Volkmer, R.; Blanco Rodríguez, J.; Domingo, V.; Ferreres Sabater, A.; Gasent Blesa, J. L.; Rodríguez Martínez, P.; Osorno Caudel, D.; Bosch, J.; Casas, A.; Carmona, M.; Herms, A.; Roma, D.; Alonso, G.; Gómez-Sanjuan, A.; Piqueras, J.; Torralbo, I.; Fiethe, B.; Guan, Y.; Lange, T.; Michel, H.; Bonet, J. A.; Fahmy, S.; Müller, D.; Zouganelis, I. Bibcode: 2020A&A...642A..11S Altcode: 2019arXiv190311061S
Aims: This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science.
Methods: SO/PHI measures the Zeeman effect and the Doppler shift in the Fe I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line.
Results: SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit. Title: The Solar Orbiter mission. Science overview Authors: Müller, D.; St. Cyr, O. C.; Zouganelis, I.; Gilbert, H. R.; Marsden, R.; Nieves-Chinchilla, T.; Antonucci, E.; Auchère, F.; Berghmans, D.; Horbury, T. S.; Howard, R. A.; Krucker, S.; Maksimovic, M.; Owen, C. J.; Rochus, P.; Rodriguez-Pacheco, J.; Romoli, M.; Solanki, S. K.; Bruno, R.; Carlsson, M.; Fludra, A.; Harra, L.; Hassler, D. M.; Livi, S.; Louarn, P.; Peter, H.; Schühle, U.; Teriaca, L.; del Toro Iniesta, J. C.; Wimmer-Schweingruber, R. F.; Marsch, E.; Velli, M.; De Groof, A.; Walsh, A.; Williams, D. Bibcode: 2020A&A...642A...1M Altcode: 2020arXiv200900861M
Aims: Solar Orbiter, the first mission of ESA's Cosmic Vision 2015-2025 programme and a mission of international collaboration between ESA and NASA, will explore the Sun and heliosphere from close up and out of the ecliptic plane. It was launched on 10 February 2020 04:03 UTC from Cape Canaveral and aims to address key questions of solar and heliospheric physics pertaining to how the Sun creates and controls the Heliosphere, and why solar activity changes with time. To answer these, the mission carries six remote-sensing instruments to observe the Sun and the solar corona, and four in-situ instruments to measure the solar wind, energetic particles, and electromagnetic fields. In this paper, we describe the science objectives of the mission, and how these will be addressed by the joint observations of the instruments onboard.
Methods: The paper first summarises the mission-level science objectives, followed by an overview of the spacecraft and payload. We report the observables and performance figures of each instrument, as well as the trajectory design. This is followed by a summary of the science operations concept. The paper concludes with a more detailed description of the science objectives.
Results: Solar Orbiter will combine in-situ measurements in the heliosphere with high-resolution remote-sensing observations of the Sun to address fundamental questions of solar and heliospheric physics. The performance of the Solar Orbiter payload meets the requirements derived from the mission's science objectives. Its science return will be augmented further by coordinated observations with other space missions and ground-based observatories.

ARRAY(0x207ce98) Title: PMI: The Photospheric Magnetic Field Imager Authors: Staub, Jan; Fernandez-Rico, German; Gandorfer, Achim; Gizon, Laurent; Hirzberger, Johann; Kraft, Stefan; Lagg, Andreas; Schou, Jesper; Solanki, Sami K.; del Toro Iniesta, Jose Carlos; Wiegelmann, Thomas; Woch, Joachim Bibcode: 2020JSWSC..10...54S Altcode: We describe the design and the capabilities of the Photospheric Magnetic field Imager (PMI), a compact and lightweight vector magnetograph, which is being developed for ESA's Lagrange mission to the Lagrange L5 point. After listing the design requirements and give a scientific justification for them, we describe the technical implementation and the design solution capable of fulfilling these requirements. This is followed by a description of the hardware architecture as well as the operations principle. An outlook on the expected performance concludes the paper. Title: On the Magnetic Nature of an Exploding Granule as Revealed by Sunrise/IMaX Authors: Guglielmino, Salvo L.; Martínez Pillet, Valentín; Ruiz Cobo, Basilio; Bellot Rubio, Luis R.; del Toro Iniesta, José Carlos; Solanki, Sami K.; Riethmüller, Tino L.; Zuccarello, Francesca Bibcode: 2020ApJ...896...62G Altcode: 2020arXiv200503371G We study the photospheric evolution of an exploding granule observed in the quiet Sun at high spatial (∼0"3) and temporal (31.5 s) resolution by the imaging magnetograph Sunrise/IMaX in 2009 June. These observations show that the exploding granule is cospatial to a magnetic flux emergence event occurring at mesogranular scale (up to ∼12 Mm2 area). Using a modified version of the SIR code for inverting the IMaX spectropolarimetric measurements, we obtain information about the magnetic configuration of this photospheric feature. In particular, we find evidence of highly inclined emerging fields in the structure, carrying a magnetic flux content up to ∼4 × 1018 Mx. The balance between gas and magnetic pressure in the region of flux emergence, compared with a very quiet region of the Sun, indicates that the additional pressure carried by the emerging flux increases the total pressure by about 5% and appears to allow the granulation to be modified, as predicted by numerical simulations. The overall characteristics suggest that a multipolar structure emerges into the photosphere, resembling an almost horizontal flux sheet. This seems to be associated with exploding granules. Finally, we discuss the origin of such flux emergence events. Title: The SO/PHI instrument on Solar Orbiter and its data products Authors: Solanki, Sami K.; Hirzberger, Johann; Wiegelmann, Thomas; Gandorfer, Achim; Woch, Joachim; del Toro Iniesta, José Carlos Bibcode: 2020EGUGA..2217904S Altcode: A central instrument of Solar Orbiter is the Polarimetric and Helioseismic Imager, SO/PHI. It is a vector magnetograph that also provides data for helioseismology. SO/PHI is composed of two telescopes, a full-disk telescope (FDT) and a high-resolution telescope (HRT). The HRT will observe at a resolution as high as 200 km on the solar surface, while the FDT will obtain the magnetic field and velocity of the full solar disc whenever it observes. SO/PHI will be the first solar spectro-polarimeter to leave the Sun-Earth line, opening up some unique perspectives, such as the first detailed view of the solar poles. This will allow not just a more precise and exact mapping of the polar magnetic field than possible so far, but will also enable us to follow the dynamics of individual magnetic features at high latitudes and to determine solar surface and sub-surface flows right up to the poles. In addition to its standard data products (vector magnetograms, continuum images and maps of the line-of-sight velocity), SO/PHI will also provide higher-level data products. These will include synoptic charts, local magnetic field extrapolations starting from HRT data and global magnetic field extrapolations (from FDT data) with potential field source-surface (PFSS) models and possibly also non-potential models such as NLFFF (non-linear force-free fields), magnetostatics and MHD. The SO/PHI data products will usefully complement the data taken by other instruments on Solar Orbiter and on Solar Probe, as well as instruments on the ground or in Earth orbit. Combining with observations by Earth-based and near-Earth telescopes will enable new types of investigations, such as stereoscopic polarimetry and stereoscopic helioseismology. Title: On Fabry-Pérot Etalon-based Instruments. III. Instrument Applications Authors: Bailén, F. J.; Orozco Suárez, D.; del Toro Iniesta, J. C. Bibcode: 2020ApJS..246...17B Altcode: 2020arXiv200200599B The spectral, imaging, and polarimetric behavior of Fabry-Pérot etalons have an influence on imaging vector magnetograph instruments based on these devices. The impact depends on the optical configuration (collimated or telecentric), on the relative position of the etalon with respect to the polarimeter, on the type of etalon (air-gapped or crystalline), and even on the polarimetric technique to be used (single-beam or dual-beam). In this paper, we evaluate the artificial line-of-sight velocities and magnetic field strengths that arise in etalon-based instruments, attending to the factors mentioned. We differentiate between signals that are implicit to telecentric mounts due to the wavelength dependence of the point-spread function and those emerging in both collimated and telecentric setups from the polarimetric response of birefringent etalons. For the anisotropic case, we consider two possible locations of the etalon—between the modulator and the analyzer or after it—and we include the effect on different channels when dual-beam polarimetry is employed. We also evaluate the impact of the loss of symmetry produced in telecentric mounts due to imperfections in the illumination and/or to a tilt of the etalon relative to the incident beam. Title: The Polarimetric and Helioseismic Imager on Solar Orbiter Authors: Mueller, D.; Solanki, S. K.; del Toro Iniesta, J. C. Bibcode: 2019AGUFMSH21D3292M Altcode: The Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI) is the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter. It will provide valuable supporting observations for Parker Solar Probe.

The instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders (LCVRs). The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k x 2k CMOS detector. To save valuable telemetry, the raw data are reduced already on board, including being inverted under the assumption of a Milne-Eddington atmosphere. SO/PHI is composed of two telescopes, the Full Disc Telescope (FDT), covers the full solar disc at all phases of the orbit, while the High Resolution Telescope (HRT), can resolve structures as small as 200 km on the Sun at closest perihelion.

The standard data products of SO/PHI are maps of the photospheric magnetic field vector, line-of-sight velocity and continuum intensity with a highest cadence of one minute. The operational modes of SO/PHI are kept highly flexible allowing to adjust to the actual science goal chosen for a Solar Orbiter operation window. Title: Performance Analysis of the SO/PHI Software Framework for On-board Data Reduction Authors: Albert, K.; Hirzberger, J.; Busse, D.; Rodríguez, J. Blanco; Castellanos Duran, J. S.; Cobos Carrascosa, J. P.; Fiethe, B.; Gandorfer, A.; Guan, Y.; Kolleck, M.; Lagg, A.; Lange, T.; Michalik, H.; Solanki, S. K.; del Toro Iniesta, J. C. Bibcode: 2019ASPC..523..151A Altcode: 2019arXiv190508690A The Polarimetric and Helioseismic Imager (PHI) is the first deep-space solar spectropolarimeter, on-board the Solar Orbiter (SO) space mission. It faces: stringent requirements on science data accuracy, a dynamic environment, and severe limitations on telemetry volume. SO/PHI overcomes these restrictions through on-board instrument calibration and science data reduction, using dedicated firmware in FPGAs. This contribution analyses the accuracy of a data processing pipeline by comparing the results obtained with SO/PHI hardware to a reference from a ground computer. The results show that for the analyzed pipeline the error introduced by the firmware implementation is well below the requirements of SO/PHI. Title: On Fabry-Pérot Etalon-based Instruments. II. The Anisotropic (Birefringent) Case Authors: Bailén, F. J.; Orozco Suárez, D.; del Toro Iniesta, J. C. Bibcode: 2019ApJS..242...21B Altcode: 2019arXiv190610361B Crystalline etalons present several advantages with respect to other types of filtergraphs when employed in magnetographs, especially that they can be tuned by only applying electric fields. However, anisotropic crystalline etalons can also introduce undesired birefringent effects that corrupt the polarization of the incoming light. In particular, uniaxial Fabry-Pérots, such as LiNbO3 etalons, are birefringent when illuminated with an oblique beam. The farther the incidence from the normal, the larger the induced retardance between the two orthogonal polarization states. The application of high voltages, as well as fabrication defects, can also change the direction of the optical axis of the crystal, introducing birefringence even at normal illumination. Here we obtain analytical expressions for the induced retardance and for the Mueller matrix of uniaxial etalons located in both collimated and telecentric configurations. We also evaluate the polarimetric behavior of Z-cut crystalline etalons with the incident angle, with the orientation of the optical axis, and with the f-number of the incident beam for the telecentric case. We study artificial signals produced in the output Stokes vector in the two configurations. Last, we discuss the polarimetric dependence of the imaging response of the etalon for both collimated and telecentric setups. Title: On the Magnetic Nature of Solar Exploding Granules Authors: Guglielmino, S. L.; Martínez Pillet, V.; Ruiz Cobo, B.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Solanki, S. K.; Zuccarello, F. Bibcode: 2019ASPC..526..299G Altcode: We report on spectropolarimetric observations acquired by the imaging magnetograph SUNRISE/IMaX at high spatial 0.''3 and temporal (31.5 s) resolution during the first science flight of this balloon-borne solar observatory. We describe the photospheric evolution of an exploding granule observed in the quiet Sun. This granule is cospatial with a magnetic flux emergence event occurring at mesogranular scales (up to ∼12 Mm2 area). Using a modified version of the SIR code, we show that we can estimate the longitudinal field also in the presence of a residual cross-talk in these IMaX longitudinal measurements. We determine the magnetic flux content of the structure (∼3 ×1018 Mx), which appears to have a multipolar configuration, and discuss the origin of such flux emergence events. Title: On Fabry-Pérot Etalon-based Instruments. I. The Isotropic Case Authors: Bailén, F. J.; Orozco Suárez, D.; del Toro Iniesta, J. C. Bibcode: 2019ApJS..241....9B Altcode: 2019arXiv190306403B Here we assess the spectral and imaging properties of Fabry-Pérot etalons when located in solar magnetographs. We discuss the chosen configuration (collimated or telecentric) for both ideal and real cases. For the real cases, we focus on the effects caused by the polychromatic illumination of the filter by the irregularities in the optical thickness of the etalon and by deviations from the ideal illumination in both setups. We first review the general properties of Fabry-Pérots and we then address the different sources of degradation of the spectral transmission profile. We review and extend the general treatment of defects followed by different authors. We discuss the differences between the point spread functions (PSFs) of the collimated and telecentric configurations for both monochromatic and (real) quasi-monochromatic illumination of the etalon. The PSF corresponding to collimated mounts is shown to have a better performance, although it varies from point to point due to an apodization of the image inherent to this configuration. This is in contrast to the (perfect) telecentric case, where the PSF remains constant but produces artificial velocities and magnetic field signals because of its strong spectral dependence. We find that the unavoidable presence of imperfections in the telecentrism produces a decrease of flux of photons and a shift, a broadening and a loss of symmetrization of both the spectral and PSF profiles over the field of view, thus compromising their advantages over the collimated configuration. We evaluate these effects for different apertures of the incident beam. Title: SOPHISM: Software Instrument Simulator Authors: Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Martínez Pillet, V.; Bonet, J. A.; Feller, A.; Hirzberger, J.; Lagg, A.; Piqueras, J.; Gasent Blesa, J. L. Bibcode: 2018ascl.soft10017B Altcode: SOPHISM models astronomical instrumentation from the entrance of the telescope to data acquisition at the detector, along with software blocks dealing with, for example, demodulation, inversion, and compression. The code performs most analyses done with light in astronomy, such as differential photometry, spectroscopy, and polarimetry. The simulator offers flexibility and implementation of new effects and subsystems, making it user-adaptable for a wide variety of instruments. SOPHISM can be used for all stages of instrument definition, design, operation, and lifetime tracking evaluation. Title: SOPHISM: An End-to-end Software Instrument Simulator Authors: Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Martínez Pillet, V.; Bonet, J. A.; Feller, A.; Hirzberger, J.; Lagg, A.; Piqueras, J.; Gasent Blesa, J. L. Bibcode: 2018ApJS..237...35B Altcode: We present a software simulator for the modeling of astronomical instrumentation, which includes platform effects and software processing. It is an end-to-end simulator, from the entrance of the telescope to the data acquisition at the detector, along with software blocks dealing, e.g., with demodulation, inversion, and compression. Developed following the Solar Orbiter/Polarimetric and Helioseismic Imager (SO/PHI) instrument, it comprises elements such as a filtergraph, polarimetric modulator, detector, vibrations, and accumulations. Through these, the simulator performs most of the analyses that can be done with light in astronomy, such as differential photometry, spectroscopy, and polarimetry. The simulator is coded with high flexibility and ease of implementation of new effects and subsystems. Thus, it allows for the user to adapt it to a wide variety of instruments, even not exclusively solar ones, as illustrated with an example of application to a night-time observation. The simulator can provide support in the phase of instrument design and help assess tolerances and test solutions to underperformances arising during the instrument operations. All this makes SOPHISM a very valuable tool for all the stages of astronomical instrument definition, design, operation, and lifetime tracking evaluation. Title: Sunrise Chromospheric Infrared spectroPolarimeter (SCIP) for the SUNRISE balloon-borne solar observatory Authors: Suematsu, Yoshinori; Katsukawa, Yukio; Hara, Hirohisa; Ichimoto, Kiyoshi; Shimizu, Toshifumi; Kubo, Masahito; Barthol, Peter; Riethmueller, Tino; Gandorfer, Achim; Feller, Alex; Orozco Suárez, David; Del Toro Iniesta, Jose Carlos; Kano, Ryouhei; Ishikawa, Shin-nosuke; Ishikawa, Ryohko; Tsuzuki, Toshihiro; Uraguchi, Fumihiro; Quintero Noda, Carlos; Tamura, Tomonori; Oba, Takayoshi; Kawabata, Yusuke; Nagata, Shinichi; Anan, Tetsu; Cobos Carrascosa, Juan Pedro; Lopez Jimenez, Antonio Carlos; Balaguer Jimenez, Maria; Solanki, Sami Bibcode: 2018cosp...42E3285S Altcode: The SUNRISE balloon-borne solar observatory carries a 1 m aperture optical telescope, and allows us to perform seeing-free continuous observations at visible-IR wavelengths from an altitude higher than 35 km. In the past two flights, in 2009 and 2013, observations mainly focused on fine structures of photospheric magnetic fields. For the third flight planned for 2021, we are developing a new instrument for conducting spectro-polarimetry of spectral lines formed over a larger height range in the solar atmosphere from the photosphere to the chromosphere. Targets of the spectro-polarimetric observation are (1) to determine 3D magnetic structure from the photosphere to the chromosphere, (2) to trace MHD waves from the photosphere to the chromosphere, and (3) to reveal the mechanism driving chromospheric jets, by measuring height- and time-dependent velocities and magnetic fields. To achieve these goals, a spectro-polarimeter called SCIP (Sunrise Chromospheric Infrared spectroPolarimeter) is designed to observe near-infrared spectrum lines sensitive to solar magnetic fields. The spatial and spectral resolutions are 0.2 arcsec and 200,000, respectively, while 0.03% polarimetric sensitivity is achieved within a 10 sec integration time. The optical system employs an Echelle grating and off-axis aspheric mirrors to observe the two wavelength ranges centered at 850 nm and 770 nm simultaneously by two cameras. Polarimetric measurements are performed using a rotating waveplate and polarization beam-splitters in front of the cameras. For detecting minute polarization signals with good precision, we carefully assess the temperature dependence of polarization optics, and make the opto-structural design that minimizes the thermal deformation of the spectrograph optics. Another key technique is to attain good (better than 30 msec) synchronization among the rotating phase of the waveplate, read-out timing of cameras, and step timing of a slit-scanning mirror. On-board accumulation and data processing are also critical because we cannot store all the raw data read-out from the cameras. We demonstrate that we can reduce the data down to almost 10% with loss-less image compression and without sacrificing polarimetric information in the data. The SCIP instrument is developed by internal collaboration among Japanese institutes including Japan Aerospace Exploration Agency (JAXA), the Spanish Sunrise consortium, and the German Max Planck Institute for Solar System Research (MPS) with a leadership of the National Astronomical Observatory of Japan (NAOJ). Title: The quick RTE inversion on FPGA for DKIST Authors: Cobos Carrascosa, J. P.; Ramos Mas, J. L.; Aparicio del Moral, B.; Hernández Expósito, D.; Sánchez Gómez, A.; Balaguer, M.; López Jiménez, A. C.; Orozco Suárez, D.; del Toro Iniesta, J. C. Bibcode: 2018SPIE10707E..0LC Altcode: In this contribution we present a multi-core system-on-chip, embedded on FPGA, for real-time data processing, to be used in the Daniel K. Inouye Solar Telescope (DKIST). Our system will provide "quick-look" magnetic field vector and line-of-sight velocity maps to help solar physicists to react to specific solar events or features during observations or to address specific phenomena while analyzing the data off line. The stand-alone device will be installed at the National Solar Observatory (NSO) Data Center. It will be integrated in the processing data pipeline through a software interface, and is competitive in computing speed to complex computer clusters. Title: Image compression on reconfigurable FPGA for the SO/PHI space instrument Authors: Hernández Expósito, D.; Cobos Carrascosa, J. P.; Ramos Mas, J. L.; Rodríguez Valido, M.; Orozco Suárez, D.; Hirzberger, J.; Woch, J.; Solanki, S.; del Toro Iniesta, J. C. Bibcode: 2018SPIE10707E..2FH Altcode: In this paper we present a novel FPGA implementation of the Consultative Committee for Space Data Systems Image Data Compression (CCSDS-IDC 122.0-B-1) for performing image compression aboard the Polarimetric Helioseismic Imager instrument of the ESA's Solar Orbiter mission. This is a System-On-Chip solution based on a light multicore architecture combined with an efficient ad-hoc Bit Plane Encoder core. This hardware architecture performs an acceleration of 30 times with respect to a software implementation running into space-qualified processors, like LEON3. The system stands out over other FPGA implementations because of the low resource usage, which does not use any external memory, and of its configurability. Title: Getting Ready for the Third Science Flight of SUNRISE Authors: Barthol, Peter; Katsukawa, Yukio; Lagg, Andreas; Solanki, Sami K.; Kubo, Masahito; Riethmueller, Tino; Martínez Pillet, Valentin; Gandorfer, Achim; Feller, Alex; Berkefeld, . Thomas; Orozco Suárez, David; Del Toro Iniesta, Jose Carlos; Bernasconi, Pietro; Álvarez-Herrero, Alberto; Quintero Noda, Carlos Bibcode: 2018cosp...42E.215B Altcode: SUNRISE is a balloon-borne, stratospheric solar observatory dedicated to the investigation of the structure and dynamics of the Sun's magnetic field and its interaction with convective plasma flows and waves. The previous science flights of SUNRISE in 2009 and 2013 have led to many new scientific results, so far described in around 90 refereed publications. This success has shown the huge potential of the SUNRISE concept and the recovery of the largely intact payload offers the opportunity for a third flight.The scientific instrumentation of SUNRISE 3 will have extended capabilities in particular to measure magnetic fields, plasma velocities and temperatures with increased sensitivity and over a larger height range in the solar atmosphere, from the convectively dominated photosphere up to the still poorly understood chromosphere. The latter is the key interaction region between magnetic field, waves and radiation and plays a central role in transporting energy to the outer layers of the solar atmosphere including the corona.SUNRISE 3 will carry 2 new grating-based spectro-polarimeters with slit-scanning and context imaging with slitjaw cameras. The SUNRISE UV Spectro-polarimeter and Imager (SUSI) will explore the rich near-UV range between 300 nm and 430 nm which is poorly accessible from the ground. The SUNRISE Chromospheric Infrared spectro-Polarimeter (SCIP) will sample 2 spectral windows in the near-infrared, containing many spectral lines highly sensitive to magnetic fields at different formation heights. In addition to the two new instruments the Imaging Magnetograph eXperiment (IMaX), an etalon-based tunable filtergraph and spectro-polarimeter flown on both previous missions, will be upgraded to IMaX+, enhancing its cadence and giving access to 2 spectral lines in the visible spectral range. All three instruments will allow investigating both the photosphere and the chromosphere and will ideally complement each other in terms of sensitivity, height coverage and resolution.A new gondola with a sophisticated attitude control system including roll damping will provide improved pointing/tracking performance. Upgraded image stabilization with higher bandwidth will further reduce residual jitter, maximizing the quality of the science data.SUNRISE 3 is a joint project of the German Max-Planck-Institut für Sonnensystemforschung together with the Spanish SUNRISE consortium, the Johns Hopkins University Applied Physics Laboratory, USA, the German Kiepenheuer Institut für Sonnenphysik, the National Astronomical Observatory of Japan and the Japan Aerospace eXploraion Agency (JAXA). Title: Autonomous on-board data processing and instrument calibration software for the SO/PHI Authors: Albert, K.; Hirzberger, J.; Busse, D.; Lange, T.; Kolleck, M.; Fiethe, B.; Orozco Suárez, D.; Woch, J.; Schou, J.; Blanco Rodriguez, J.; Gandorfer, A.; Guan, Y.; Cobos Carrascosa, J. P.; Hernández Expósito, D.; del Toro Iniesta, J. C.; Solanki, S. K.; Michalik, H. Bibcode: 2018SPIE10707E..0OA Altcode: 2018arXiv181003493A The extension of on-board data processing capabilities is an attractive option to reduce telemetry for scientific instruments on deep space missions. The challenges that this presents, however, require a comprehensive software system, which operates on the limited resources a data processing unit in space allows. We implemented such a system for the Polarimetric and Helioseismic Imager (PHI) on-board the Solar Orbiter (SO) spacecraft. It ensures autonomous operation to handle long command-response times, easy changing of the processes after new lessons have been learned and meticulous book-keeping of all operations to ensure scientific accuracy. This contribution presents the requirements and main aspects of the software implementation, followed by an example of a task implemented in the software frame, and results from running it on SO/PHI. The presented example shows that the different parts of the software framework work well together, and that the system processes data as we expect. The flexibility of the framework makes it possible to use it as a baseline for future applications with similar needs and limitations as SO/PHI. Title: The High Resolution Telescope (HRT) of the Polarimetric and Helioseismic Imager (PHI) onboard Solar Orbiter Authors: Gandorfer, A.; Grauf, B.; Staub, J.; Bischoff, J.; Woch, J.; Hirzberger, J.; Solanki, S. K.; Álvarez-Herrero, A.; García Parejo, P.; Schmidt, W.; Volkmer, R.; Appourchaux, T.; del Toro Iniesta, J. C. Bibcode: 2018SPIE10698E..4NG Altcode: Solar Orbiter is a joint mission of ESA and NASA scheduled for launch in 2020. Solar Orbiter is a complete and unique heliophysics mission, combining remote sensing and in-situ analysis; its special elliptical orbit allows viewing the Sun from a distance of only 0.28 AU, and - leaving the ecliptic plane - to observe the solar poles from a hitherto unexplored vantage point. One of the key instruments for Solar Orbiter's science is the "Polarimetric and Helioseismic Imager" (PHI), which will provide maps of the solar surface magnetic fields and the gas flows on the visible solar surface. Two telescopes, a full disc imager, and a high resolution channel feed a common Fabry-Perot based tunable filter and thus allow sampling a single Fraunhofer line at 617.3 nm with high spectral resolution; a polarization modulation system makes the system sensitive to the full state of polarization. From the analysis of the Doppler shift and the magnetically induced Zeeman polarization in this line, the magnetic field and the line-of-sight gas motions can be detected for each point in the image. In this paper we describe the opto-mechanical system design of the high resolution telescope. It is based on a decentred Ritchey-Chrétien two-mirror telescope. The telescope includes a Barlow type magnifier lens group, which is used as in-orbit focus compensator, and a beam splitter, which sends a small fraction of the collected light onto a fast camera, which provides the error signals for the actively controlled secondary mirror compensating for spacecraft jitter and other disturbances. The elliptical orbit of the spacecraft poses high demands on the thermo-mechanical stability. The varying size of the solar disk image requires a special false-light suppression architecture, which is briefly described. In combination with a heat-rejecting entrance window, the optical energy impinging on the polarimetric and spectral analysis system is efficiently reduced. We show how the design can preserve the diffraction-limited imaging performance over the design temperature range of -20°C to +60°C. The decentred hyperbolical mirrors require special measures for the inter-alignment and their alignment with respect to the mechanical structure. A system of alignment flats and mechanical references is used for this purpose. We will describe the steps of the alignment procedure, and the dedicated optical ground support equipment, which are needed to reach the diffraction limited performance of the telescope. We will also report on the verification of the telescope performance, both - in ambient condition - and in vacuum at different temperatures. Title: The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun Authors: Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..233....5G Altcode: 2017arXiv171008361G The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite. Title: Erratum: Morphological Properties of Slender CaII H Fibrils Observed by sunrise II (ApJS 229, 1, 6) Authors: Gafeira, R.; Lagg, A.; Solanki, S. K.; Jafarzadeh, S.; van Noort, M.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W. Bibcode: 2017ApJS..230...11G Altcode: No abstract at ADS Title: Slender Ca II H Fibrils Mapping Magnetic Fields in the Low Solar Chromosphere Authors: Jafarzadeh, S.; Rutten, R. J.; Solanki, S. K.; Wiegelmann, T.; Riethmüller, T. L.; van Noort, M.; Szydlarski, M.; Blanco Rodríguez, J.; Barthol, P.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Martínez Pillet, V.; Orozco Suárez, D.; Schmidt, W. Bibcode: 2017ApJS..229...11J Altcode: 2016arXiv161003104J A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca II H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca II H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots. Title: Magneto-static Modeling from Sunrise/IMaX: Application to an Active Region Observed with Sunrise II Authors: Wiegelmann, T.; Neukirch, T.; Nickeler, D. H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...18W Altcode: 2017arXiv170101458N; 2017arXiv170101458W Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the Sunrise balloon-borne solar observatory in 2013 June as boundary conditions for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO/HMI. This work continues our magneto-static extrapolation approach, which was applied earlier to a quiet-Sun region observed with Sunrise I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet-Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110-130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid-chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower-resolution photospheric measurements in the past. The linear model does not, however, permit us to model intrinsic nonlinear structures like strongly localized electric currents. Title: The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results Authors: Solanki, S. K.; Riethmüller, T. L.; Barthol, P.; Danilovic, S.; Deutsch, W.; Doerr, H. -P.; Feller, A.; Gandorfer, A.; Germerott, D.; Gizon, L.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Lagg, A.; Meller, R.; Tomasch, G.; van Noort, M.; Blanco Rodríguez, J.; Gasent Blesa, J. L.; Balaguer Jiménez, M.; Del Toro Iniesta, J. C.; López Jiménez, A. C.; Orozco Suarez, D.; Berkefeld, T.; Halbgewachs, C.; Schmidt, W.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Pérez Grande, I.; Martínez Pillet, V.; Card, G.; Centeno, R.; Knölker, M.; Lecinski, A. Bibcode: 2017ApJS..229....2S Altcode: 2017arXiv170101555S The Sunrise balloon-borne solar observatory, consisting of a 1 m aperture telescope that provides a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in 2013 June. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg II k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000 Å after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR 11768 observed relatively close to disk center is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500 G, and while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere. Title: A Tale of Two Emergences: Sunrise II Observations of Emergence Sites in a Solar Active Region Authors: Centeno, R.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Orozco Suárez, D.; Berkefeld, T.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229....3C Altcode: 2016arXiv161003531C In 2013 June, the two scientific instruments on board the second Sunrise mission witnessed, in detail, a small-scale magnetic flux emergence event as part of the birth of an active region. The Imaging Magnetograph Experiment (IMaX) recorded two small (∼ 5\prime\prime ) emerging flux patches in the polarized filtergrams of a photospheric Fe I spectral line. Meanwhile, the Sunrise Filter Imager (SuFI) captured the highly dynamic chromospheric response to the magnetic fields pushing their way through the lower solar atmosphere. The serendipitous capture of this event offers a closer look at the inner workings of active region emergence sites. In particular, it reveals in meticulous detail how the rising magnetic fields interact with the granulation as they push through the Sun’s surface, dragging photospheric plasma in their upward travel. The plasma that is burdening the rising field slides along the field lines, creating fast downflowing channels at the footpoints. The weight of this material anchors this field to the surface at semi-regular spatial intervals, shaping it in an undulatory fashion. Finally, magnetic reconnection enables the field to release itself from its photospheric anchors, allowing it to continue its voyage up to higher layers. This process releases energy that lights up the arch-filament systems and heats the surrounding chromosphere. Title: Photospheric Response to an Ellerman Bomb-like Event—An Analogy of Sunrise/IMaX Observations and MHD Simulations Authors: Danilovic, S.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229....5D Altcode: 2016arXiv160903817D Ellerman Bombs are signatures of magnetic reconnection, which is an important physical process in the solar atmosphere. How and where they occur is a subject of debate. In this paper, we analyze Sunrise/IMaX data, along with 3D MHD simulations that aim to reproduce the exact scenario proposed for the formation of these features. Although the observed event seems to be more dynamic and violent than the simulated one, simulations clearly confirm the basic scenario for the production of EBs. The simulations also reveal the full complexity of the underlying process. The simulated observations show that the Fe I 525.02 nm line gives no information on the height where reconnection takes place. It can only give clues about the heating in the aftermath of the reconnection. However, the information on the magnetic field vector and velocity at this spatial resolution is extremely valuable because it shows what numerical models miss and how they can be improved. Title: Transverse Oscillations in Slender Ca II H Fibrils Observed with Sunrise/SuFI Authors: Jafarzadeh, S.; Solanki, S. K.; Gafeira, R.; van Noort, M.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W. Bibcode: 2017ApJS..229....9J Altcode: 2016arXiv161007449J We present observations of transverse oscillations in slender Ca II H fibrils (SCFs) in the lower solar chromosphere. We use a 1 hr long time series of high- (spatial and temporal-) resolution seeing-free observations in a 1.1 Å wide passband covering the line core of Ca II H 3969 Å from the second flight of the Sunrise balloon-borne solar observatory. The entire field of view, spanning the polarity inversion line of an active region close to the solar disk center, is covered with bright, thin, and very dynamic fine structures. Our analysis reveals the prevalence of transverse waves in SCFs with median amplitudes and periods on the order of 2.4 ± 0.8 km s-1 and 83 ± 29 s, respectively (with standard deviations given as uncertainties). We find that the transverse waves often propagate along (parts of) the SCFs with median phase speeds of 9 ± 14 km s-1. While the propagation is only in one direction along the axis in some of the SCFs, propagating waves in both directions, as well as standing waves are also observed. The transverse oscillations are likely Alfvénic and are thought to be representative of magnetohydrodynamic kink waves. The wave propagation suggests that the rapid high-frequency transverse waves, often produced in the lower photosphere, can penetrate into the chromosphere with an estimated energy flux of ≈15 kW m-2. Characteristics of these waves differ from those reported for other fibrillar structures, which, however, were observed mainly in the upper solar chromosphere. Title: Kinematics of Magnetic Bright Features in the Solar Photosphere Authors: Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Martínez Pillet, V.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W.; van Noort, M. Bibcode: 2017ApJS..229....8J Altcode: 2016arXiv161007634J Convective flows are known as the prime means of transporting magnetic fields on the solar surface. Thus, small magnetic structures are good tracers of turbulent flows. We study the migration and dispersal of magnetic bright features (MBFs) in intergranular areas observed at high spatial resolution with Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion process whose parameters are computed for various areas in the quiet-Sun and the vicinity of active regions from seeing-free data. We find that magnetic concentrations are best described as random walkers close to network areas (diffusion index, γ =1.0), travelers with constant speeds over a supergranule (γ =1.9{--}2.0), and decelerating movers in the vicinity of flux emergence and/or within active regions (γ =1.4{--}1.5). The three types of regions host MBFs with mean diffusion coefficients of 130 km2 s-1, 80-90 km2 s-1, and 25-70 km2 s-1, respectively. The MBFs in these three types of regions are found to display a distinct kinematic behavior at a confidence level in excess of 95%. Title: Spectropolarimetric Evidence for a Siphon Flow along an Emerging Magnetic Flux Tube Authors: Requerey, Iker S.; Ruiz Cobo, B.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...15R Altcode: 2016arXiv161106732R We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe I line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footpoint is weaker (1100 G) and displays an upflow, while the negative polarity footpoint is stronger (2200 G) and shows a downflow. This configuration is naturally interpreted as a siphon flow along an arched magnetic flux tube. Title: Morphological Properties of Slender Ca II H Fibrils Observed by SUNRISE II Authors: Gafeira, R.; Lagg, A.; Solanki, S. K.; Jafarzadeh, S.; van Noort, M.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W. Bibcode: 2017ApJS..229....6G Altcode: 2016arXiv161200319G We use seeing-free high spatial resolution Ca II H data obtained by the SUNRISE observatory to determine properties of slender fibrils in the lower solar chromosphere. In this work we use intensity images taken with the SuFI instrument in the Ca II H line during the second scientific flight of the SUNRISE observatory to identify and track elongated bright structures. After identification, we analyze theses structures to extract their morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with an average width of around 180 km, length between 500 and 4000 km, average lifetime of ≈400 s, and average curvature of 0.002 arcsec-1. The maximum lifetime of the SCFs within our time series of 57 minutes is ≈2000 s. We discuss similarities and differences of the SCFs with other small-scale, chromospheric structures such as spicules of type I and II, or Ca II K fibrils. Title: A New MHD-assisted Stokes Inversion Technique Authors: Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...16R Altcode: 2016arXiv161105175R We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations. Title: Oscillations on Width and Intensity of Slender Ca II H Fibrils from Sunrise/SuFI Authors: Gafeira, R.; Jafarzadeh, S.; Solanki, S. K.; Lagg, A.; van Noort, M.; Barthol, P.; Blanco Rodríguez, J.; del Toro Iniesta, J. C.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Knölker, M.; Orozco Suárez, D.; Riethmüller, T. L.; Schmidt, W. Bibcode: 2017ApJS..229....7G Altcode: 2017arXiv170102801G We report the detection of oscillations in slender Ca II H fibrils (SCFs) from high-resolution observations acquired with the Sunrise balloon-borne solar observatory. The SCFs show obvious oscillations in their intensity, but also their width. The oscillatory behaviors are investigated at several positions along the axes of the SCFs. A large majority of fibrils show signs of oscillations in intensity. Their periods and phase speeds are analyzed using a wavelet analysis. The width and intensity perturbations have overlapping distributions of the wave period. The obtained distributions have median values of the period of 32 ± 17 s and 36 ± 25 s, respectively. We find that the fluctuations of both parameters propagate in the SCFs with speeds of {11}-11+49 km s-1 and {15}-15+34 km s-1, respectively. Furthermore, the width and intensity oscillations have a strong tendency to be either in anti-phase or, to a smaller extent, in phase. This suggests that the oscillations of both parameters are caused by the same wave mode and that the waves are likely propagating. Taking all the evidence together, the most likely wave mode to explain all measurements and criteria is the fast sausage mode. Title: Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields Authors: Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229....4C Altcode: 2016arXiv161007484C How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca II H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona. Title: Moving Magnetic Features around a Pore Authors: Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.; Lagg, A.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; vanNoort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M. Bibcode: 2017ApJS..229...13K Altcode: 2016arXiv160905664K Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s-1 and 1.2 km s-1, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 1017 Mx. Title: Convectively Driven Sinks and Magnetic Fields in the Quiet-Sun Authors: Requerey, Iker S.; Del Toro Iniesta, Jose Carlos; Bellot Rubio, Luis R.; Martínez Pillet, Valentín; Solanki, Sami K.; Schmidt, Wolfgang Bibcode: 2017ApJS..229...14R Altcode: 2016arXiv161007622R We study the relation between mesogranular flows, convectively driven sinks and magnetic fields using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board Sunrise. We obtain the horizontal velocity flow fields of two quiet-Sun regions (31.2 × 31.2 Mm2) via local correlation tracking. Mesogranular lanes and the central position of sinks are identified using Lagrange tracers. We find 6.7× {10}-2 sinks per Mm2 in the two observed regions. The sinks are located at the mesogranular vertices and turn out to be associated with (1) horizontal velocity flows converging to a central point and (2) long-lived downdrafts. The spatial distribution of magnetic fields in the quiet-Sun is also examined. The strongest magnetic fields are preferentially located at sinks. We find that 40% of the pixels with longitudinal components of the magnetic field stronger than 500 G are located in the close neighborhood of sinks. In contrast, the small-scale magnetic loops detected by Martínez González et al. in the same two observed areas do not show any preferential distribution at mesogranular scales. The study of individual examples reveals that sinks can play an important role in the evolution of quiet-Sun magnetic features. Title: Far side Helioseismology with Solar Orbiter Authors: Appourchaux, T.; Birch, A.; Gizon, L. C.; Löptien, B.; Schou, J.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Woch, J. G.; Schmidt, W. Bibcode: 2016AGUFMSH43A2554A Altcode: The Solar Orbiter mission, to be launched in October 2018, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude up to 34 degrees by the end of the extended mission and thus will enable the first local helioseismology studies of the polar regions. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. In this paper we will review the helioseismic objectives achievable with PHI, and will also give a short status report of the development of the Flight Model of PHI. Title: Inversion of the radiative transfer equation for polarized light Authors: del Toro Iniesta, Jose Carlos; Ruiz Cobo, Basilio Bibcode: 2016LRSP...13....4D Altcode: 2016arXiv161010039D Since the early 1970s, inversion techniques have become the most useful tool for inferring the magnetic, dynamic, and thermodynamic properties of the solar atmosphere. Inversions have been proposed in the literature with a sequential increase in model complexity: astrophysical inferences depend not only on measurements but also on the physics assumed to prevail both on the formation of the spectral line Stokes profiles and on their detection with the instrument. Such an intrinsic model dependence makes it necessary to formulate specific means that include the physics in a properly quantitative way. The core of this physics lies in the radiative transfer equation (RTE), where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential) RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem. The foundations of inversion techniques are critically revisited with an emphasis on making explicit the many assumptions underlying each of them. Title: The RTE inversion on FPGA aboard the solar orbiter PHI instrument Authors: Cobos Carrascosa, J. P.; Aparicio del Moral, B.; Ramos Mas, J. L.; Balaguer, M.; López Jiménez, A. C.; del Toro Iniesta, J. C. Bibcode: 2016SPIE.9913E..42C Altcode: In this work we propose a multiprocessor architecture to reach high performance in floating point operations by using radiation tolerant FPGA devices, and under narrow time and power constraints. This architecture is used in the PHI instrument that carries out the scientific analysis aboard the ESA's Solar Orbiter mission. The proposed architecture, in a SIMD flavor, is aimed to be an accelerator within the Data Processing Unit (it is composed by a main Leon processor and two FPGAs) for carrying out the RTE inversion on board the spacecraft using a relatively slow FPGA device - Xilinx XQR4VSX55-. The proposed architecture squeezes the FPGA resources in order to reach the computational requirements and improves the ground-based system performance based on commercial CPUs regarding time and power consumption. In this work we demonstrate the feasibility of using this FPGA devices embedded in the SO/PHI instrument. With that goal in mind, we perform tests to evaluate the scientific results and to measure the processing time and power consumption for carrying out the RTE inversion. Title: Flux appearance and disappearance rates in the solar internetwork Authors: Gosic, Milan; Bellot Rubio, Luis; Del Toro Iniesta, Jose Carlos; Orozco Suarez, David; Katsukawa, Yukio Bibcode: 2016SPD....4740105G Altcode: The solar internetwork contains weak and highly dynamic magnetic fields that are essential to understanding the solar magnetism at small spatial and temporal scales. Therefore, it is important to determine how these fields are maintained on the solar surface. Using unique Hinode observations, we follow the evolution of individual magnetic elements in the interior of two supergranular cells at the disk center. From up to 38 hr of continuous measurements, we show that magnetic flux appears in internetwork regions at a rate of 120±3 Mx cm-2 day-1 (3.7±0.4 × 1024 Mx day-1 over the entire solar surface). Flux disappears from the internetwork at a rate of 125±6 Mx cm-2 day-1 (3.9±0.5 × 1024 Mx day-1) through fading of magnetic elements, cancellation between opposite-polarity features, and interactions with network patches, which converts internetwork elements into network features. The removal of flux from supergranules occurs mainly through fading and interactions with network, at nearly the same rate of about 50 Mx cm-2 day-1. Our results demonstrate that the sources and sinks of internetwork magnetic flux are well balanced, reflecting the steady-state nature of the quiet Sun. Using the instantaneous flux appearance and disappearance rates, we successfully reproduce, for the first time, the temporal evolution of the total unsigned flux in the interior of supergranular cells. Title: The Solar Internetwork. II. Flux Appearance and Disappearance Rates Authors: Gošić, M.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Orozco Suárez, D.; Katsukawa, Y. Bibcode: 2016ApJ...820...35G Altcode: 2016arXiv160205892G Small-scale internetwork magnetic fields are important ingredients of the quiet Sun. In this paper we analyze how they appear and disappear on the solar surface. Using high resolution Hinode magnetograms, we follow the evolution of individual magnetic elements in the interior of two supergranular cells at the disk center. From up to 38 hr of continuous measurements, we show that magnetic flux appears in internetwork regions at a rate of 120 ± 3 Mx cm-2 day-1 (3.7 ± 0.4 × 1024 Mx day-1 over the entire solar surface). Flux disappears from the internetwork at a rate of 125 ± 6 Mx cm-2 day-1 (3.9 ± 0.5 × 1024 Mx day-1) through fading of magnetic elements, cancelation between opposite-polarity features, and interactions with network patches, which converts internetwork elements into network features. Most of the flux is lost through fading and interactions with the network, at nearly the same rate of about 50 Mx cm-2 day-1. Our results demonstrate that the sources and sinks of internetwork magnetic flux are well balanced. Using the instantaneous flux appearance and disappearance rates, we successfully reproduce the time evolution of the total unsigned flux in the two supergranular cells. Title: Long-term trends of magnetic bright points. I. Number of magnetic bright points at disc centre Authors: Utz, D.; Muller, R.; Thonhofer, S.; Veronig, A.; Hanslmeier, A.; Bodnárová, M.; Bárta, M.; del Toro Iniesta, J. C. Bibcode: 2016A&A...585A..39U Altcode: 2015arXiv151107767U Context. The Sun shows an activity cycle that is caused by its varying global magnetic field. During a solar cycle, sunspots, I.e. extended regions of strong magnetic fields, occur in activity belts that are slowly migrating from middle to lower latitudes, finally arriving close to the equator during the cycle maximum phase. While this and other facts about the strong extended magnetic fields have been well known for centuries, much less is known about the solar cycle evolution of small-scale magnetic fields. Thus the question arises if similar principles exist for small-scale magnetic fields.
Aims: To address this question, we study magnetic bright points (MBPs) as proxies for such small-scale, kG solar magnetic fields. This study is based on a homogeneous data set that covers a period of eight years. The number of detected MBPs versus time is analysed to find out if there is an activity cycle for these magnetic features too and, if so, how it is related to the sunspot cycle.
Methods: An automated MBP identification algorithm was applied to the synoptic Hinode/SOT G-band data over the period November 2006 to August 2014, I.e. covering the decreasing phase of Cycle 23 and the rise, maximum, and early decrease of Cycle 24. This data set includes, at the moment of investigation, a total of 4162 images, with about 2.9 million single MBP detections.
Results: After a careful preselection and monthly median filtering of the data, the investigation revealed that the number of MBPs close to the equator is coupled to the global solar cycle but shifted in time by about 2.5 yr. Furthermore, the instantaneous number of detected MBPs depends on the hemisphere, with one hemisphere being more prominent, I.e. showing a higher number of MBPs. After the end of Cycle 23 and at the starting point of Cycle 24, the more active hemisphere changed from south to north. Clear peaks in the detected number of MBPs are found at latitudes of about ±7°, in congruence with the positions of the sunspot belts at the end of the solar cycle.
Conclusions: These findings suggest that there is indeed a coupling between the activity of MBPs close to the equator with the global magnetic field. The results also indicate that a significant fraction of the magnetic flux that is visible as MBPs close to the equator originates from the sunspot activity belts. However, even during the minimum of MBP activity, a percentage as large as 60% of the maximum number of detected MBPs has been observed, which may be related to solar surface dynamo action. Title: Future of Inversion Tools Authors: del Toro Iniesta, J. C.; Ruiz Cobo, B. Bibcode: 2015AGUFMSH21C..02D Altcode: Since the early 1970's, inversion techniques have become the most useful tool for inferring the magnetic, dynamic and thermodynamic properties of the solar atmosphere. They have evolved with model dependence as a driver: astrophysical inferences do not only depend on measurements but also on the physics assumed to prevail both on the formation of the spectral line Stokes profiles and on their detection with the instrument. Such an intrinsic model dependence makes it necessary to formulate specific means that include the physics in a proper quantitative way. The core of this physics is in the radiative transfer equation (RTE), where the properties of the atmosphere are assumed to be known while the unknowns are the four Stokes profiles. The solution of the (differential) RTE is known as the direct or forward problem. From an observational point of view, the problem is rather the opposite: the data are made up of the observed Stokes profiles and the unknowns are the solar physical quantities. Inverting the RTE is therefore mandatory. Indeed, the formal solution of this equation can be considered an integral equation. The solution of such an integral equation is called the inverse problem. Inversion techniques are automated codes aimed at solving the inverse problem. The foundations of inversion techniques are critically revisited with an emphasis on making explicit the many assumptions underlying each of them. An incremental complexity procedure is advised for the implementation in practice. Coarse details of the profiles or coarsely sampled profiles should be reproduced first with simple model atmospheres (with, for example, a few physical quantities that are constant with optical depth). If the Stokes profiles are well sampled and differences between synthetic and observed ones are larger than the noise, then the inversion should proceed by using more complex models (that is, models where physical quantities vary with depth or, eventually, with more than one component). Significant improvements are expected as well from the use of new inversion techniques that take the spatial degradation by the instruments into account. Title: The Polarimetric and Helioseismic Imager for Solar Orbiter: SO/PHI Authors: Solanki, Sami K.; del Toro Iniesta, Jose Carlos; Woch, Joachim; Gandorfer, Achim; Hirzberger, Johann; Schmidt, Wolfgang; Appourchaux, Thierry; Alvarez-Herrero, Alberto Bibcode: 2015IAUS..305..108S Altcode: 2015arXiv150203368S The Solar Orbiter is the next solar physics mission of the European Space Agency, ESA, in collaboration with NASA, with a launch planned in 2018. The spacecraft is designed to approach the Sun to within 0.28 AU at perihelion of a highly eccentric orbit. The proximity with the Sun will also allow its observation at uniformly high resolution at EUV and visible wavelengths. Such observations are central for learning more about the magnetic coupling of the solar atmosphere. At a later phase in the mission the spacecraft will leave the ecliptic and study the enigmatic poles of the Sun from a heliographic latitude of up to 33°. Title: Dynamics of Multi-cored Magnetic Structures in the Quiet Sun Authors: Requerey, Iker S.; Del Toro Iniesta, Jose Carlos; Bellot Rubio, Luis R.; Martínez Pillet, Valentín; Solanki, Sami K.; Schmidt, Wolfgang Bibcode: 2015ApJ...810...79R Altcode: 2015arXiv150806998R We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by Sunrise. We use high spatial resolution (0.″15-0.″18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca ii H filtergrams from Sunrise Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are “compressed” by surrounding granules and split when they are “squeezed” between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by Martínez González et al. correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes. Title: Magnetic bright point dynamics and evolutions observed by Sunrise/IMaX and other instruments Authors: Utz, D.; del Toro Iniesta, J. C.; Bellot Rubio, L.; Thonhofer, S.; Jurčák, J. Bibcode: 2015hsa8.conf..689U Altcode: In this proceeding we will have a closer look on recent observations and results regarding the dynamics and evolution of so-called magnetic bright points (MBPs). MBPs are manifestations of kG magnetic field strong flux concentrations seen in the solar photosphere. They belong to the class of small-scale solar magnetic features with diameters starting from low values around the current observational resolution limit - about 100 km - up to a few hundred km. They might play an important role in several key research questions like the total solar irradiance variation (TSI variation) as well as the solar atmospheric heating problem. Especially their dynamic behaviour is of interest for the heating problem as they might trigger all kinds of MHD waves which travel up to the higher solar atmospheric layers, where they can get damped leading to a heating of the plasma. Furthermore they might engage in magnetic field reconnection processes leading consequently also to a heating. Due to these reasons, and also for the sake of a better understanding of the physical processes involved on small-scales, detailed investigations on the dynamical behaviour and evolution of such magnetic field proxies like MBPs is in order. In this conference proceeding we wish to give in a first part an overview about the obtained knowledge so far. In a second part we highlight recent results regarding the dynamical evolution of plasma parameters of MBPs such as magnetic field strength, temperature, and line of sight velocity. This proceeding is completed by an outlook on what can and should be done in the near future with available data from recent telescopes. Title: Long time variations of Magnetic Bright Points observed by Hinode/SOT Authors: Utz, D.; del Toro Iniesta, J. C.; Bellot-Rubio, L.; Bodnárová, M.; Muller, R.; Bárta, M.; Thonhofer, S.; Hanslmeier, A. Bibcode: 2015CEAB...39...91U Altcode: Magnetic bright points (MBPs) are manifestations of small-scale solar magnetic flux concentrations, best observable due to their high contrast in molecular bands like the G-band. Moreover, they are among the most interesting magnetic features to be studied in high spatial and temporal resolution in the solar photosphere. Their relevance for solar physics is not only given by their contribution to fundamental solar plasma physics on small scales but in addition due to their involvement in processes like the solar atmospheric heating problem (chromosphere and corona), their influence on granulation and hence the convective energy transport, as well as their contribution to the variations in total solar irradiance caused by their higher relative intensity. In this ongoing study we focus on the long-time evolution of statistical parameters of MBPs over the solar cycle. Are parameters like the mean intensity, average size/diameter, and number of MBPs per unit surface element variable with time? If so, how do these parameters vary and is there a relationship to the solar cycle? In the actual contribution we will discuss preliminary results regarding the variation of the number of MBPs with time. We saw a decrease in the number of MBPs for the first years of observation (2006 until 2011) with two distinct local minima in the years 2009 and 2011. After 2011 the number of MBPs is increasing again along with an increase in general solar activity (as seen by the number of sunspots, flares, and CMEs). Title: The Formation and Disintegration of Magnetic Bright Points Observed by Sunrise/IMaX Authors: Utz, D.; del Toro Iniesta, J. C.; Bellot Rubio, L. R.; Jurčák, J.; Martínez Pillet, V.; Solanki, S. K.; Schmidt, W. Bibcode: 2014ApJ...796...79U Altcode: 2014arXiv1411.3240U The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First, we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next, we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km s-1 set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Also, only relatively weak downflows are found on average at this stage of the evolution. Only 16% of the features display upflows at the time that the field weakens, or the MBP disappears. This speaks either for a very fast evolving dynamic process at the end of the lifetime, which could not be temporally resolved, or against strong upflows as the cause of the weakening of the field of these magnetic elements, as has been proposed based on simulation results. It is noteworthy that in about 10% of the cases, we observe in the vicinity of the downflows small-scale strong (exceeding 2 km s-1) intergranular upflows related spatially and temporally to these downflows. The paper is complemented by a detailed discussion of aspects regarding the applied methods, the complementary literature, and in depth analysis of parameters like magnetic field strength and velocity distributions. An important difference to magnetic elements and associated bright structures in active region plage is that most of the quiet Sun bright points display significant downflows over a large fraction of their lifetime (i.e., in more than 46% of time instances/measurements they show downflows exceeding 1 km s-1). Title: The Solar Internetwork. I. Contribution to the Network Magnetic Flux Authors: Gošić, M.; Bellot Rubio, L. R.; Orozco Suárez, D.; Katsukawa, Y.; del Toro Iniesta, J. C. Bibcode: 2014ApJ...797...49G Altcode: 2014arXiv1408.2369G The magnetic network (NE) observed on the solar surface harbors a sizable fraction of the total quiet Sun flux. However, its origin and maintenance are not well known. Here we investigate the contribution of internetwork (IN) magnetic fields to the NE flux. IN fields permeate the interior of supergranular cells and show large emergence rates. We use long-duration sequences of magnetograms acquired by Hinode and an automatic feature tracking algorithm to follow the evolution of NE and IN flux elements. We find that 14% of the quiet Sun (QS) flux is in the form of IN fields with little temporal variations. IN elements interact with NE patches and modify the flux budget of the NE either by adding flux (through merging processes) or by removing it (through cancellation events). Mergings appear to be dominant, so the net flux contribution of the IN is positive. The observed rate of flux transfer to the NE is 1.5 × 1024 Mx day-1 over the entire solar surface. Thus, the IN supplies as much flux as is present in the NE in only 9-13 hr. Taking into account that not all the transferred flux is incorporated into the NE, we find that the IN would be able to replace the entire NE flux in approximately 18-24 hr. This renders the IN the most important contributor to the NE, challenging the view that ephemeral regions are the main source of flux in the QS. About 40% of the total IN flux eventually ends up in the NE. Title: The History of a Quiet-Sun Magnetic Element Revealed by IMaX/SUNRISE Authors: Requerey, Iker S.; Del Toro Iniesta, Jose Carlos; Bellot Rubio, Luis R.; Bonet, José A.; Martínez Pillet, Valentín; Solanki, Sami K.; Schmidt, Wolfgang Bibcode: 2014ApJ...789....6R Altcode: 2014arXiv1405.2837R Isolated flux tubes are considered to be fundamental magnetic building blocks of the solar photosphere. Their formation is usually attributed to the concentration of magnetic field to kG strengths by the convective collapse mechanism. However, the small size of the magnetic elements in quiet-Sun areas has prevented this scenario from being studied in fully resolved structures. Here, we report on the formation and subsequent evolution of one such photospheric magnetic flux tube, observed in the quiet Sun with unprecedented spatial resolution (0.''15-0.''18) and high temporal cadence (33 s). The observations were acquired by the Imaging Magnetograph eXperiment on board the SUNRISE balloon-borne solar observatory. The equipartition field strength magnetic element is the result of the merging of several same polarity magnetic flux patches, including a footpoint of a previously emerged loop. The magnetic structure is then further intensified to kG field strengths by convective collapse. The fine structure found within the flux concentration reveals that the scenario is more complex than can be described by a thin flux tube model with bright points and downflow plumes being established near the edges of the kG magnetic feature. We also observe a daisy-like alignment of surrounding granules and a long-lived inflow toward the magnetic feature. After a subsequent weakening process, the field is again intensified to kG strengths. The area of the magnetic feature is seen to change in anti-phase with the field strength, while the brightness of the bright points and the speed of the downflows varies in phase. We also find a relation between the brightness of the bright point and the presence of upflows within it. Title: Comparison between Mg II k and Ca II H Images Recorded by SUNRISE/SuFI Authors: Danilovic, S.; Hirzberger, J.; Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Gizon, L.; Knölker, M.; Schmidt, W.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C. Bibcode: 2014ApJ...784...20D Altcode: We present a comparison of high-resolution images of the solar surface taken in the Mg II k and Ca II H channels of the Filter Imager on the balloon-borne solar observatory SUNRISE. The Mg and Ca lines are sampled with 0.48 nm and 0.11 nm wide filters, respectively. The two channels show remarkable qualitative and quantitative similarities in the quiet Sun, in an active region plage and during a small flare. However, the Mg filtergrams display 1.4-1.7 times higher intensity contrast and appear more smeared and smoothed in the quiet Sun. In addition, the fibrils in a plage are wider. Although the exposure time is 100 times longer for Mg images, the evidence suggests that these differences cannot be explained only with instrumental effects or the evolution of the solar scene. The differences at least partially arise because of different line-formation heights, the stronger response of Mg k emission peaks to the higher temperatures, and the larger height range sampled by the broad Mg filter used here. This is evidently manifested during the flare when a surge in Mg evolves differently than in Ca. Title: Time evolution of a single, quiet-Sun magnetic structure Authors: Requerey, Iker S.; Bonet, José Antonio; Solanki, Sami K.; Bellot Rubio, L. R.; Del Toro Iniesta, Jose Carlos Bibcode: 2014cosp...40E2828R Altcode: Isolated flux tubes are considered to be fundamental magnetic building blocks of the solar photosphere. Their formation is usually attributed to the concentration of magnetic field to kG strengths by the convective instability mechanism. However, the small size of the magnetic elements in quiet-Sun areas has prevented this scenario from being studied in fully resolved structures. Here we report on the formation and subsequent evolution of a photospheric magnetic flux tube, observed in the quiet Sun with unprecedented spatial resolution (0. ('') 15 - 0. ('') 18) and high temporal cadence (33 s). The observations were acquired by the Imaging Magnetograph Experiment (IMaX) aboard the textsc{Sunrise} balloon-borne solar observatory. The equipartition field strength magnetic element is reached from the merging of several magnetic flux patches in a mesogranule-sized sink. The magnetic structure is then further intensified to kG field strengths by convective collapse and granular compression. The fine structure found within the flux concentration reveal that the scenario is more complex than a canonical flux tube model. After a subsequent weakening process, the field is further intensified to kG strengths. Seen as a whole, the evolution of the magnetic structure is compatible with oscillations in all basic physical quantities. A discussion on whether this evolution fits to the current theoretical descriptions is also presented. Title: New insights into the evolution of magnetic bright point plasma parameters Authors: Utz, Dominik; Hanslmeier, Arnold; Bellot Rubio, L. R.; Del Toro Iniesta, Jose Carlos; Jurcak, Jan Bibcode: 2014cosp...40E3448U Altcode: The dynamics within the solar atmosphere are governed by the Suńs magnetic fields. In the recent years the resolution limits were steadily driven up by better and better instruments and telescopes (like Hinode, Sunrise, NST, Gregor, ..) leading to higher resolved data. Therefore the interest in ever smaller magnetic field structures within the solar atmosphere rises. Among the smallest yet identified structures are so-called magnetic bright points (MBPs). These features are thought to be made up of single flux tubes and they have been studied exhaustively in the Fraunhofer G-band since the 70´s of the last century. They are important features not only due to their small scale (about 200 km in diameter) and hence used as proxies for the smallest solar magnetic field physics and processes, but also because they are involved in topics like the chromospheric/coronal heating problem or the total solar irradiance variation. In the current contribution we want to study the evolution of important plasma parameters of MBPs, such as temperature, magnetic field strength and line of sight velocity, to get a deeper understanding of the involved physics and occuring processes. Among the used data will be G-band filtergam data from Hinode/SOT and spectro-polarimetric data from the IMaX instrument onboard the Sunrise mission. Title: Inversions of Stokes profiles revisited Authors: Del Toro Iniesta, Jose Carlos Bibcode: 2014cosp...40E.666D Altcode: The last thirty years have witnessed the appearance of a number of techniques that have revolutionized our way to measure magnetic fields, namely, the so-called inversions of the radiative transfer equation techniques. Starting from simple models and solutions of the transfer equation and ending with sophisticated processes including full numeric solution of the equation and instrumental effects at the same time, passing through different model approaches and mathematical tools, inversion techniques have become common usage for solar observers. A revision of the ideas, hypotheses, advantages, limitations, and constraints behind inversions is presented, beginning with critical reviews of commonly accepted approximations that are becoming useless as long as new instrumentation is providing better and better observables. The advent of state-of-the-art computing tools increase our capabilities for finer analyses of these new observations. Title: New insights into the temporal evolution of MBPs Authors: Utz, D.; del Toro Iniesta, J. C.; Bellot Rubio, L. R.; Jurčak, J.; Thonhofer, S.; Bodnárová, M.; Hanslmeier, A.; Lemmerer, B.; Piantschitsch, I.; Guttenbrunner, S. Bibcode: 2014CEAB...38...73U Altcode: Magnetic bright points (MBPs) are among the most fascinating and interesting manifestations of small-scale solar magnetic fields. In the present work the temporal evolution of MBPs is followed in data sets taken by the Hinode satellite. The analysed data and obtained results confirm a recently presented study done with Sunrise/IMaX data, namely that MBPs are features undergoing fast evolution with magnetic fields starting around the equipartition field strength, then showing strong downflows (between 2 to 4 km/s) causing the magnetic field to amplify into the kG range (700 to 1500 G) before dissolving again. Furthermore the initial field inclinations depend on the initial magnetic field strengths and show an evolution with more vertical angles at some point during the evolution. Title: First High-resolution Images of the Sun in the 2796 Å Mg II k Line Authors: Riethmüller, T. L.; Solanki, S. K.; Hirzberger, J.; Danilovic, S.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Gizon, L.; Knölker, M.; Schmidt, W.; Del Toro Iniesta, J. C. Bibcode: 2013ApJ...776L..13R Altcode: 2013arXiv1309.5213R We present the first high-resolution solar images in the Mg II k 2796 Å line. The images, taken through a 4.8 Å broad interference filter, were obtained during the second science flight of Sunrise in 2013 June by the Sunrise Filter Imager (SuFI) instrument. The Mg II k images display structures that look qualitatively very similar to images taken in the core of Ca II H. The Mg II images exhibit reversed granulation (or shock waves) in the internetwork regions of the quiet Sun, at intensity contrasts that are similar to those found in Ca II H. Very prominent in Mg II are bright points, both in the quiet Sun and in plage regions, particularly near the disk center. These are much brighter than at other wavelengths sampled at similar resolution. Furthermore, Mg II k images also show fibril structures associated with plage regions. Again, the fibrils are similar to those seen in Ca II H images, but tend to be more pronounced, particularly in weak plage. Title: Is Magnetic Reconnection the Cause of Supersonic Upflows in Granular Cells? Authors: Borrero, J. M.; Martínez Pillet, V.; Schmidt, W.; Quintero Noda, C.; Bonet, J. A.; del Toro Iniesta, J. C.; Bellot Rubio, L. R. Bibcode: 2013ApJ...768...69B Altcode: 2013arXiv1303.2557B In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the SUNRISE/IMaX instrument. In the present work, we investigate the physical origin of these events employing data from the same instrument but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc.) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the best result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blueshifted and redshifted line-of-sight velocities coexist above/below each other. These features can be explained in terms of magnetic reconnection, where the energy stored in the magnetic field is released in the form of kinetic and thermal energy when magnetic field lines of opposite polarities coalesce. However, the agreement with magnetic reconnection is not perfect and, therefore, other possible physical mechanisms might also play a role. Title: A Magnetic Bright Point Case Study Authors: Utz, D.; Jurčák, J.; Bellot-Rubio, L.; del Toro Iniesta, J. C.; Thonhofer, S.; Hanslmeier, A.; Veronig, A.; Muller, R.; Lemmerer, B. Bibcode: 2013CEAB...37..459U Altcode: Due to its magnetic fields our host star - the Sun - becomes the interesting object for research as we know it. The magnetic fields themselves cover different spatial, lifetime and strength scales and reach down from enormous flux concentrations like active sunspot groups to single isolated magnetic flux tubes and even weaker, predominantly inclined intranetwork structures. Flux tubes can be seen in filtergram observations as magnetic bright points (MBPs). They are of interest for research not only due to their sheer existence but due to their important role in atmospheric heating (wave heating as well as reconnection processes), to their role in the understanding of creation and annihilation of magnetic fields as well as to their influence on the total solar irradiance variation. In this study we present a close look onto an evolutionary track of an MBP from its formation to its disintegration. Physical quantities of MBPs like their magnetic field strength and inclination, their line-of-sight velocity, and their temperature at different heights are inferred from the inversion of spectropolarimetric data. Original data are taken from the Sunrise/IMaX instrument and constitute a time series of some 60 min. The presented case resembles the convective collapse model and is in agreement with previous studies. Title: Inversions of L12-2 IMaX data of an emerging flux mantle Authors: Guglielmino, S. L.; Martínez Pillet, V.; Ruiz Cobo, B.; del Toro Iniesta, J. C.; Bellot Rubio, L. R.; Solanki, S. K.; Sunrise/IMaX Team Bibcode: 2013MmSAI..84..355G Altcode: We present the analysis of a flux emergence event observed with the IMaX magnetograph flown aboard the SUNRISE balloon. IMaX took a 15' sequence with cadence of 31 s along the Fe I line at 525.0 nm, acquiring only Stokes I and V at 12 line positions (L12-2 mode). This sequence shows the emergence of a flux mantle at mesogranular scale, cospatial with a large exploding granule. An undesired cross-talk between Stokes U and V was found in such L12-2 data. We show that the use of a modified version of the SIR inversion code is able to remove such effect in inferring the physical quantities of interest. Title: SIR: Stokes Inversion based on Response functions Authors: Ruiz Cobo, B.; del Toro Iniesta, J. C. Bibcode: 2012ascl.soft12008R Altcode: SIR is a general-purpose code capable of dealing with gradients of the physical quantities with height. It admits one and two-component model atmospheres. It allows the recovery of the stratification of the temperature, the magnetic field vector, and the line of sight velocity through the atmosphere, and the micro- and macroturbulence velocities - which are assumed to be constant with depth. It is based on the response functions, which enter a Marquardt nonlinear least-squares algorithm in a natural way. Response functions are calculated at the same time as the full radiative transfer equation for polarized light is integrated, which determines values of many free parameters in a reasonable computation time. SIR demonstrates high stability, accuracy, and uniqueness of results, even when simulated observations present signal-to-noise ratios of the order of the lowest acceptable values in real observations. Title: Resolving the Internal Magnetic Structure of the Solar Network Authors: Martínez González, M. J.; Bellot Rubio, L. R.; Solanki, S. K.; Martínez Pillet, V.; Del Toro Iniesta, J. C.; Barthol, P.; Schmidt, W. Bibcode: 2012ApJ...758L..40M Altcode: 2012arXiv1209.2584M We analyze the spectral asymmetry of Stokes V (circularly polarized) profiles of an individual network patch in the quiet Sun observed by Sunrise/IMaX. At a spatial resolution of 0farcs15-0farcs18, the network elements contain substructure which is revealed by the spatial distribution of Stokes V asymmetries. The area asymmetry between the red and blue lobes of Stokes V increases from nearly zero at the core of the structure to values close to unity at its edges (single-lobed profiles). Such a distribution of the area asymmetry is consistent with magnetic fields expanding with height, i.e., an expanding magnetic canopy (which is required to fulfill pressure balance and flux conservation in the solar atmosphere). Inversion of the Stokes I and V profiles of the patch confirms this picture, revealing a decreasing field strength and increasing height of the canopy base from the core to the periphery of the network patch. However, the non-roundish shape of the structure and the presence of negative area and amplitude asymmetries reveal that the scenario is more complex than a canonical flux tube expanding with height surrounded by downflows. Title: Assessing the Behavior of Modern Solar Magnetographs and Spectropolarimeters Authors: Del Toro Iniesta, J. C.; Martínez Pillet, V. Bibcode: 2012ApJS..201...22D Altcode: 2012arXiv1205.4845D The design and later use of modern spectropolarimeters and magnetographs require a number of tolerance specifications that allow the developers to build the instrument and then the scientists to interpret the data accuracy. Such specifications depend both on device-specific features and on the physical assumptions underlying the particular measurement technique. Here we discuss general properties of every magnetograph, such as the detectability thresholds for the vector magnetic field and the line-of-sight velocity, as well as specific properties of a given type of instrument, namely, that based on a pair of nematic liquid crystal variable retarders and a Fabry-Pérot etalon (or several) for carrying out the light polarization modulation and spectral analysis, respectively. We derive formulae that give the detection thresholds in terms of the signal-to-noise ratio of the observations and the polarimetric efficiencies of the instrument. Relationships are also established between inaccuracies in the solar physical quantities and instabilities in the instrument parameters. Such relationships allow, for example, one to translate scientific requirements for the velocity or the magnetic field into requirements for temperature or voltage stability. We also demonstrate that this type of magnetograph can theoretically reach the optimum polarimetric efficiencies of an ideal polarimeter, regardless of the optics in between the modulator and the analyzer. Such optics induce changes in the instrument parameters that are calculated. Title: The Frontier between Small-scale Bipoles and Ephemeral Regions in the Solar Photosphere: Emergence and Decay of an Intermediate-scale Bipole Observed with SUNRISE/IMaX Authors: Guglielmino, S. L.; Martínez Pillet, V.; Bonet, J. A.; del Toro Iniesta, J. Carlos; Bellot Rubio, L. R.; Solanki, S. K.; Schmidt, W.; Gandorfer, A.; Barthol, P.; Knölker, M. Bibcode: 2012ApJ...745..160G Altcode: 2011arXiv1110.1405G We report on the photospheric evolution of an intermediate-scale (≈4 Mm footpoint separation) magnetic bipole, from emergence to decay, observed in the quiet Sun at high spatial (0farcs3) and temporal (33 s) resolution. The observations were acquired by the Imaging Magnetograph Experiment imaging magnetograph during the first science flight of the SUNRISE balloon-borne solar observatory. The bipole flux content is 6 × 1017 Mx, representing a structure bridging the gap between granular scale bipoles and the smaller ephemeral regions. Footpoints separate at a speed of 3.5 km s-1 and reach a maximum distance of 4.5 Mm before the field dissolves. The evolution of the bipole is revealed to be very dynamic: we found a proper motion of the bipole axis and detected a change of the azimuth angle of 90° in 300 s, which may indicate the presence of some writhe in the emerging structure. The overall morphology and behavior are in agreement with previous analyses of bipolar structures emerging at the granular scale, but we also found several similarities with emerging flux structures at larger scales. The flux growth rate is 2.6 × 1015 Mx s-1, while the mean decay rate is one order of magnitude smaller. We describe in some detail the decay phase of the bipole footpoints that includes break up into smaller structures, and interaction with preexisting fields leading to cancellation, but it appears to be dominated by an as-yet unidentified diffusive process that removes most of the flux with an exponential flux decay curve. The diffusion constant (8 × 102 km2 s-1) associated with this decay is similar to the values used to describe the large-scale diffusion in flux transport models. Title: Magnetic field emergence in mesogranular-sized exploding granules observed with sunrise/IMaX data Authors: Palacios, J.; Blanco Rodríguez, J.; Vargas Domínguez, S.; Domingo, V.; Martínez Pillet, V.; Bonet, J. A.; Bellot Rubio, L. R.; Del Toro Iniesta, J. C.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Berkefeld, T.; Schmidt, W.; Knölker, M. Bibcode: 2012A&A...537A..21P Altcode: 2011arXiv1110.4555P We report on magnetic field emergences covering significant areas of exploding granules. The balloon-borne mission Sunrise provided high spatial and temporal resolution images of the solar photosphere. Continuum images, longitudinal and transverse magnetic field maps and Dopplergrams obtained by IMaX onboard Sunrise are analyzed by local correlation traking (LCT), divergence calculation and time slices, Stokes inversions and numerical simulations are also employed. We characterize two mesogranular-scale exploding granules where ~1018 Mx of magnetic flux emerges. The emergence of weak unipolar longitudinal fields (~100 G) start with a single visible magnetic polarity, occupying their respective granules' top and following the granular splitting. After a while, mixed polarities start appearing, concentrated in downflow lanes. The events last around 20 min. LCT analyses confirm mesogranular scale expansion, displaying a similar pattern for all the physical properties, and divergence centers match between all of them. We found a similar behaviour with the emergence events in a numerical MHD simulation. Granule expansion velocities are around 1 kms-1 while magnetic patches expand at 0.65 kms-1. One of the analyzed events evidences the emergence of a loop-like structure. Advection of the emerging magnetic flux features is dominated by convective motion resulting from the exploding granule due to the magnetic field frozen in the granular plasma. Intensification of the magnetic field occurs in the intergranular lanes, probably because of being directed by the downflowing plasma.

Movies associated to Figs. 2-4 are available in electronic form at http://www.aanda.org Title: Space-qualified liquid-crystal variable retarders for wide-field-of-view coronagraphs Authors: Uribe-Patarroyo, N.; Alvarez-Herrero, A.; García Parejo, P.; Vargas, J.; Heredero, R. L.; Restrepo, R.; Martínez Pillet, V.; del Toro Iniesta, J. C.; López, A.; Fineschi, S.; Capobianco, G.; Georges, M.; López, M.; Boer, G.; Manolis, I. Bibcode: 2011SPIE.8148E..10U Altcode: 2011SPIE.8148E..31U Liquid-crystal variable retarders (LCVRs) are an emergent technology for space-based polarimeters, following its success as polarization modulators in ground-based polarimeters and ellipsometers. Wide-field double nematic LCVRs address the high angular sensitivity of nematic LCVRs at some voltage regimes. We present a work in which wide-field LCVRs were designed and built, which are suitable for wide-field-of-view instruments such as polarimetric coronagraphs. A detailed model of their angular acceptance was made, and we validated this technology for space environmental conditions, including a campaign studying the effects of gamma, proton irradiation, vibration and shock, thermo-vacuum and ultraviolet radiation. Title: The Sun at high resolution: first results from the Sunrise mission Authors: Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Lagg, A.; Riethmüller, T. L.; Schüssler, M.; Wiegelmann, T.; Bonet, J. A.; Pillet, V. Martínez; Khomenko, E.; del Toro Iniesta, J. C.; Domingo, V.; Palacios, J.; Knölker, M.; González, N. Bello; Borrero, J. M.; Berkefeld, T.; Franz, M.; Roth, M.; Schmidt, W.; Steiner, O.; Title, A. M. Bibcode: 2011IAUS..273..226S Altcode: The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system and further infrastructure. The first science flight of Sunrise yielded high-quality data that reveal the structure, dynamics and evolution of solar convection, oscillations and magnetic fields at a resolution of around 100 km in the quiet Sun. Here we describe very briefly the mission and the first results obtained from the Sunrise data, which include a number of discoveries. Title: Diagnostics for spectropolarimetry and magnetography Authors: del Toro Iniesta, Jose Carlos; Pillet, Valentín Martínez Bibcode: 2011IAUS..273...37D Altcode: 2010arXiv1010.0504D An assessment on the capabilities of modern spectropolarimeters and magnetographs is in order since most of our astrophysical results rely upon the accuracy of the instrumentation and on the sensitivity of the observables to variations of the sought physical parameters. A contribution to such an assessment will be presented in this talk where emphasis will be made on the use of the so-called response functions to gauge the probing capabilities of spectral lines and on an analytical approach to estimate the uncertainties in the results in terms of instrumental effects. The Imaging Magnetograph eXperiment (IMaX) and the Polarimetric and Helioseismic Imager (PHI) will be used as study cases. Title: Ubiquitous quiet-Sun jets Authors: Martínez Pillet, V.; Del Toro Iniesta, J. C.; Quintero Noda, C. Bibcode: 2011A&A...530A.111M Altcode: 2011arXiv1104.5564M Context. IMaX/Sunrise has recently reported the temporal evolution of highly dynamic and strongly Doppler shifted Stokes V signals in the quiet Sun.
Aims: We attempt to identify the same quiet-Sun jets in the Hinode spectropolarimeter (SP) data set.
Methods: We generate combinations of linear polarization magnetograms with blue- and redshifted far-wing circular polarization magnetograms to allow an easy identification of the quiet-Sun jets.
Results: The jets are identified in the Hinode data where both red- and blueshifted cases are often found in pairs. They appear next to regions of transverse fields that exhibit quiet-Sun neutral lines. They also have a clear tendency to occur in the outer boundary of the granules. These regions always display highly displaced and anomalous Stokes V profiles.
Conclusions: The quiet Sun is pervaded with jets formed when new field regions emerge at granular scales loaded with horizontal field lines that interact with their surroundings. This interaction is suggestive of some form of reconnection of the involved field lines that generates the observed high speed flows. Title: Small-scale flux emergence events observed by Sunrise/IMaX Authors: Guglielmino, S. L.; Pillet, V. Martínez; del Toro Iniesta, J. C.; Rubio, L. R. Bellot; Zuccarello, F.; Solanki, S. K.; Solanki Bibcode: 2011IAUS..274..140G Altcode: Thanks to the unprecedented combination of high spatial resolution (0''.2) and high temporal cadence (33 s) spectropolarimetric measurements, the IMaX magnetograph aboard the Sunrise balloon-borne telescope is revealing new insights about the plasma dynamics of the all-pervasive small-scale flux concentrations in the quiet Sun. We present the result of a case study concerning the appearance of a bipole, with a size of about 4'' and a flux content of 5 × 1017 Mx, with strong signal of horizontal fields during the emergence. We analyze the data set using the SIR inversion code and obtain indications about the three-dimensional shape of the bipole and its evolution with time. Title: Mesogranulation and the Solar Surface Magnetic Field Distribution Authors: Yelles Chaouche, L.; Moreno-Insertis, F.; Martínez Pillet, V.; Wiegelmann, T.; Bonet, J. A.; Knölker, M.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Barthol, P.; Gandorfer, A.; Schmidt, W.; Solanki, S. K. Bibcode: 2011ApJ...727L..30Y Altcode: 2010arXiv1012.4481Y The relation of the solar surface magnetic field with mesogranular cells is studied using high spatial (≈100 km) and temporal (≈30 s) resolution data obtained with the IMaX instrument on board SUNRISE. First, mesogranular cells are identified using Lagrange tracers (corks) based on horizontal velocity fields obtained through local correlation tracking. After ≈20 minutes of integration, the tracers delineate a sharp mesogranular network with lanes of width below about 280 km. The preferential location of magnetic elements in mesogranular cells is tested quantitatively. Roughly 85% of pixels with magnetic field higher than 100 G are located in the near neighborhood of mesogranular lanes. Magnetic flux is therefore concentrated in mesogranular lanes rather than intergranular ones. Second, magnetic field extrapolations are performed to obtain field lines anchored in the observed flux elements. This analysis, therefore, is independent of the horizontal flows determined in the first part. A probability density function (PDF) is calculated for the distribution of distances between the footpoints of individual magnetic field lines. The PDF has an exponential shape at scales between 1 and 10 Mm, with a constant characteristic decay distance, indicating the absence of preferred convection scales in the mesogranular range. Our results support the view that mesogranulation is not an intrinsic convective scale (in the sense that it is not a primary energy-injection scale of solar convection), but also give quantitative confirmation that, nevertheless, the magnetic elements are preferentially found along mesogranular lanes. Title: The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory Authors: Martínez Pillet, V.; del Toro Iniesta, J. C.; Álvarez-Herrero, A.; Domingo, V.; Bonet, J. A.; González Fernández, L.; López Jiménez, A.; Pastor, C.; Gasent Blesa, J. L.; Mellado, P.; Piqueras, J.; Aparicio, B.; Balaguer, M.; Ballesteros, E.; Belenguer, T.; Bellot Rubio, L. R.; Berkefeld, T.; Collados, M.; Deutsch, W.; Feller, A.; Girela, F.; Grauf, B.; Heredero, R. L.; Herranz, M.; Jerónimo, J. M.; Laguna, H.; Meller, R.; Menéndez, M.; Morales, R.; Orozco Suárez, D.; Ramos, G.; Reina, M.; Ramos, J. L.; Rodríguez, P.; Sánchez, A.; Uribe-Patarroyo, N.; Barthol, P.; Gandorfer, A.; Knoelker, M.; Schmidt, W.; Solanki, S. K.; Vargas Domínguez, S. Bibcode: 2011SoPh..268...57M Altcode: 2010SoPh..tmp..181M; 2010arXiv1009.1095M The Imaging Magnetograph eXperiment (IMaX) is a spectropolarimeter built by four institutions in Spain that flew on board the Sunrise balloon-borne solar observatory in June 2009 for almost six days over the Arctic Circle. As a polarimeter, IMaX uses fast polarization modulation (based on the use of two liquid crystal retarders), real-time image accumulation, and dual-beam polarimetry to reach polarization sensitivities of 0.1%. As a spectrograph, the instrument uses a LiNbO3 etalon in double pass and a narrow band pre-filter to achieve a spectral resolution of 85 mÅ. IMaX uses the high-Zeeman-sensitive line of Fe I at 5250.2 Å and observes all four Stokes parameters at various points inside the spectral line. This allows vector magnetograms, Dopplergrams, and intensity frames to be produced that, after reconstruction, reach spatial resolutions in the 0.15 - 0.18 arcsec range over a 50×50 arcsec field of view. Time cadences vary between 10 and 33 s, although the shortest one only includes longitudinal polarimetry. The spectral line is sampled in various ways depending on the applied observing mode, from just two points inside the line to 11 of them. All observing modes include one extra wavelength point in the nearby continuum. Gauss equivalent sensitivities are 4 G for longitudinal fields and 80 G for transverse fields per wavelength sample. The line-of-sight velocities are estimated with statistical errors of the order of 5 - 40 m s−1. The design, calibration, and integration phases of the instrument, together with the implemented data reduction scheme, are described in some detail. Title: The Sunrise Mission Authors: Barthol, P.; Gandorfer, A.; Solanki, S. K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Riethmüller, T. L.; Tomasch, G.; Knölker, M.; Lites, B. W.; Card, G.; Elmore, D.; Fox, J.; Lecinski, A.; Nelson, P.; Summers, R.; Watt, A.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Title, A. M.; Domingo, V.; Gasent Blesa, J. L.; del Toro Iniesta, J. C.; López Jiménez, A.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Widani, C.; Haberler, P.; Härtel, K.; Kampf, D.; Levin, T.; Pérez Grande, I.; Sanz-Andrés, A.; Schmidt, E. Bibcode: 2011SoPh..268....1B Altcode: 2010arXiv1009.2689B; 2010SoPh..tmp..224B The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed. Title: SUNRISE: Instrument, Mission, Data, and First Results Authors: Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Riethmüller, T. L.; Schüssler, M.; Bonet, J. A.; Martínez Pillet, V.; del Toro Iniesta, J. C.; Domingo, V.; Palacios, J.; Knölker, M.; Bello González, N.; Berkefeld, T.; Franz, M.; Schmidt, W.; Title, A. M. Bibcode: 2010ApJ...723L.127S Altcode: 2010arXiv1008.3460S The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond. Title: Supersonic Magnetic Upflows in Granular Cells Observed with SUNRISE/IMAX Authors: Borrero, J. M.; Martínez-Pillet, V.; Schlichenmaier, R.; Solanki, S. K.; Bonet, J. A.; del Toro Iniesta, J. C.; Schmidt, W.; Barthol, P.; Gandorfer, A.; Domingo, V.; Knölker, M. Bibcode: 2010ApJ...723L.144B Altcode: 2010arXiv1009.1227B Using the IMaX instrument on board the SUNRISE stratospheric balloon telescope, we have detected extremely shifted polarization signals around the Fe I 5250.217 Å spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec2 and last for about 80 s, with larger events having longer lifetimes. These supersonic events occur at a rate of 1.3 × 10-5 occurrences per second per arcsec2. Title: Detection of Vortex Tubes in Solar Granulation from Observations with SUNRISE Authors: Steiner, O.; Franz, M.; Bello González, N.; Nutto, Ch.; Rezaei, R.; Martínez Pillet, V.; Bonet Navarro, J. A.; del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Knölker, M.; Schmidt, W.; Barthol, P.; Gandorfer, A. Bibcode: 2010ApJ...723L.180S Altcode: 2010arXiv1009.4723S We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface. Title: Where the Granular Flows Bend Authors: Khomenko, E.; Martínez Pillet, V.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Bonet, J. A.; Domingo, V.; Schmidt, W.; Barthol, P.; Knölker, M. Bibcode: 2010ApJ...723L.159K Altcode: 2010arXiv1008.0517K Based on IMaX/SUNRISE data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and intergranular lanes, the spectral line width of the Fe I 5250.2 Å line becomes extremely small. We offer an explanation of this observation with the help of magneto-convection simulations. These regions with extremely small line widths correspond to the places where the granular flows bend from upflow in granules to downflow in intergranular lanes. We show that the resolution and image stability achieved by IMaX/SUNRISE are important requisites to detect this interesting phenomenon. Title: Bright Points in the Quiet Sun as Observed in the Visible and Near-UV by the Balloon-borne Observatory SUNRISE Authors: Riethmüller, T. L.; Solanki, S. K.; Martínez Pillet, V.; Hirzberger, J.; Feller, A.; Bonet, J. A.; Bello González, N.; Franz, M.; Schüssler, M.; Barthol, P.; Berkefeld, T.; del Toro Iniesta, J. C.; Domingo, V.; Gandorfer, A.; Knölker, M.; Schmidt, W. Bibcode: 2010ApJ...723L.169R Altcode: 2010arXiv1009.1693R Bright points (BPs) are manifestations of small magnetic elements in the solar photosphere. Their brightness contrast not only gives insight into the thermal state of the photosphere (and chromosphere) in magnetic elements, but also plays an important role in modulating the solar total and spectral irradiance. Here, we report on simultaneous high-resolution imaging and spectropolarimetric observations of BPs using SUNRISE balloon-borne observatory data of the quiet Sun at the disk center. BP contrasts have been measured between 214 nm and 525 nm, including the first measurements at wavelengths below 388 nm. The histograms of the BP peak brightness show a clear trend toward broader contrast distributions and higher mean contrasts at shorter wavelengths. At 214 nm, we observe a peak brightness of up to five times the mean quiet-Sun value, the highest BP contrast so far observed. All BPs are associated with a magnetic signal, although in a number of cases it is surprisingly weak. Most of the BPs show only weak downflows, the mean value being 240 m s-1, but some display strong down- or upflows reaching a few km s-1. Title: Transverse Component of the Magnetic Field in the Solar Photosphere Observed by SUNRISE Authors: Danilovic, S.; Beeck, B.; Pietarila, A.; Schüssler, M.; Solanki, S. K.; Martínez Pillet, V.; Bonet, J. A.; del Toro Iniesta, J. C.; Domingo, V.; Barthol, P.; Berkefeld, T.; Gandorfer, A.; Knölker, M.; Schmidt, W.; Title, A. M. Bibcode: 2010ApJ...723L.149D Altcode: 2010arXiv1008.1535D We present the first observations of the transverse component of a photospheric magnetic field acquired by the imaging magnetograph SUNRISE/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. We obtain a rate of occurrence of 7 × 10-4 s-1 arcsec-2, which is 1-2 orders of magnitude larger than the values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%). Title: Detection of Large Acoustic Energy Flux in the Solar Atmosphere Authors: Bello González, N.; Franz, M.; Martínez Pillet, V.; Bonet, J. A.; Solanki, S. K.; del Toro Iniesta, J. C.; Schmidt, W.; Gandorfer, A.; Domingo, V.; Barthol, P.; Berkefeld, T.; Knölker, M. Bibcode: 2010ApJ...723L.134B Altcode: 2010arXiv1009.4795B We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of ~6400-7700 W m-2 at a height of ~250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson & Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules. Title: Magnetic Loops in the Quiet Sun Authors: Wiegelmann, T.; Solanki, S. K.; Borrero, J. M.; Martínez Pillet, V.; del Toro Iniesta, J. C.; Domingo, V.; Bonet, J. A.; Barthol, P.; Gandorfer, A.; Knölker, M.; Schmidt, W.; Title, A. M. Bibcode: 2010ApJ...723L.185W Altcode: 2010arXiv1009.4715W We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops that reach into the chromosphere or higher have one footpoint in relatively strong magnetic field regions in the photosphere. Ninety-one percent of the magnetic energy in the mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger footpoint has a strength of more than 300 G, i.e., above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker footpoint has a strength B < 300 G and is located in the internetwork (IN). Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the IN fields. Title: SUNRISE/IMaX Observations of Convectively Driven Vortex Flows in the Sun Authors: Bonet, J. A.; Márquez, I.; Sánchez Almeida, J.; Palacios, J.; Martínez Pillet, V.; Solanki, S. K.; del Toro Iniesta, J. C.; Domingo, V.; Berkefeld, T.; Schmidt, W.; Gandorfer, A.; Barthol, P.; Knölker, M. Bibcode: 2010ApJ...723L.139B Altcode: 2010arXiv1009.1992B We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams, and images obtained with the 1 m balloon-borne SUNRISE telescope. By visual inspection of time series, we find some 3.1 × 10-3 vortices Mm-2 minute-1, which is a factor of ~1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9 minutes, with a standard deviation of 3.2 minutes. In addition, we find several events appearing at the same locations along the duration of the time series (31.6 minutes). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertical vorticities are lsim6 × 10-3 s-1, which corresponds to a period of rotation of some 35 minutes. The vortices show a preferred counterclockwise sense of rotation, which we conjecture may have to do with the preferred vorticity impinged by the solar differential rotation. Title: Retrieval of solar magnetic fields from high-spatial resolution filtergraph data: the Imaging Magnetograph eXperiment (IMaX) Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; Martínez Pillet, V.; Bonet, J. A.; Vargas Domínguez, S.; Del Toro Iniesta, J. C. Bibcode: 2010A&A...522A.101O Altcode: 2010arXiv1006.5510O Context. The design of modern instruments does not only imply thorough studies of instrumental effects but also a good understanding of the scientific analysis planned for the data.
Aims: We investigate the reliability of Milne-Eddington (ME) inversions of high-resolution magnetograph measurements such as those to be obtained with the Imaging Magnetograph eXperiment (IMaX) aboard the Sunrise balloon. We also provide arguments to choose either Fe I 525.02 or 525.06 nm as the most suitable line for IMaX.
Methods: We reproduce an IMaX observation using magnetoconvection simulations of the quiet Sun and synthesizing the four Stokes profiles emerging from them. The profiles are degraded by spatial and spectral resolution, noise, and limited wavelength sampling, just as real IMaX measurements. We invert these data and estimate the uncertainties in the retrieved physical parameters caused by the ME approximation and the spectral sampling.
Results: It is possible to infer the magnetic field strength, inclination, azimuth, and line-of-sight velocity from standard IMaX measurements (4 Stokes parameters, 5 wavelength points, and a signal-to-noise ratio of 1000) applying ME inversions to any of the Fe I lines at 525 nm. We also find that telescope diffraction has important effects on the spectra coming from very high resolution observations of inhomogeneous atmospheres. Diffration reduces the amplitude of the polarization signals and changes the asymmetry of the Stokes profiles.
Conclusions: The two Fe I lines at 525 nm meet the scientific requirements of IMaX, but Fe I 525.02 nm is to be preferred because it leads to smaller uncertainties in the retrieved parameters and offers a better detectability of the weakest (linear) polarization signals prevailing in the quiet Sun. Title: Surface Waves in Solar Granulation Observed with SUNRISE Authors: Roth, M.; Franz, M.; Bello González, N.; Martínez Pillet, V.; Bonet, J. A.; Gandorfer, A.; Barthol, P.; Solanki, S. K.; Berkefeld, T.; Schmidt, W.; del Toro Iniesta, J. C.; Domingo, V.; Knölker, M. Bibcode: 2010ApJ...723L.175R Altcode: 2010arXiv1009.4790R Solar oscillations are expected to be excited by turbulent flows in the intergranular lanes near the solar surface. Time series recorded by the IMaX instrument on board the SUNRISE observatory reveal solar oscillations at high spatial resolution, which allow the study of the properties of oscillations with short wavelengths. We analyze two time series with synchronous recordings of Doppler velocity and continuum intensity images with durations of 32 minutes and 23 minutes, respectively, recorded close to the disk center of the Sun to study the propagation and excitation of solar acoustic oscillations. In the Doppler velocity data, both the standing acoustic waves and the short-lived, high-degree running waves are visible. The standing waves are visible as temporary enhancements of the amplitudes of the large-scale velocity field due to the stochastic superposition of the acoustic waves. We focus on the high-degree small-scale waves by suitable filtering in the Fourier domain. Investigating the propagation and excitation of f- and p 1-modes with wavenumbers k>1.4 Mm-1, we also find that exploding granules contribute to the excitation of solar p-modes in addition to the contribution of intergranular lanes. Title: Fully Resolved Quiet-Sun Magnetic flux Tube Observed with the SUNRISE/IMAX Instrument Authors: Lagg, A.; Solanki, S. K.; Riethmüller, T. L.; Martínez Pillet, V.; Schüssler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Schmidt, W.; del Toro Iniesta, J. C.; Bonet, J. A.; Barthol, P.; Berkefeld, T.; Domingo, V.; Gandorfer, A.; Knölker, M.; Title, A. M. Bibcode: 2010ApJ...723L.164L Altcode: 2010arXiv1009.0996L Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube. Title: Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter Authors: Beck, C.; Bellot Rubio, L. R.; Kentischer, T. J.; Tritschler, A.; Del Toro Iniesta, J. C. Bibcode: 2010A&A...520A.115B Altcode: 2010arXiv1007.1153B Context. Spectropolarimetry at high spatial and spectral resolution is a basic tool to characterize the magnetic properties of the solar atmosphere.
Aims: We introduce the KIS/IAA Visible Imaging Polarimeter (VIP), a new post-focus instrument that upgrades the TESOS spectrometer at the German Vacuum Tower Telescope (VTT) into a full vector polarimeter. VIP is a collaboration between the Kiepenheuer Institut für Sonnenphysik (KIS) and the Instituto de Astrofísica de Andalucía (IAA-CSIC).
Methods: We describe the optical setup of VIP, the data acquisition procedure, and the calibration of the spectropolarimetric measurements. We show examples of data taken between 2005 and 2008 to illustrate the potential of the instrument.
Results: VIP is capable of measuring the four Stokes profiles of spectral lines in the range from 420 to 700 nm with a spatial resolution better than 0farcs5. Lines can be sampled at 40 wavelength positions in 60 s, achieving a noise level of about 2 × 10-3 with exposure times of 300 ms and pixel sizes of 0farcs17 × 0farcs17 (2 × 2 binning). The polarization modulation is stable over periods of a few days, ensuring high polarimetric accuracy. The excellent spectral resolution of TESOS allows the use of sophisticated data analysis techniques such as Stokes inversions. One of the first scientific results of VIP presented here is that the ribbon-like magnetic structures of the network are associated with a distinct pattern of net circular polarization away from disk center.
Conclusions: VIP performs spectropolarimetric measurements of solar magnetic fields at a spatial resolution that is only slightly worse than that of the Hinode spectropolarimeter, while providing a 2D field field of view and the possibility to observe up to four spectral regions sequentially with high cadence. VIP can be used as a stand-alone instrument or in combination with other spectropolarimeters and imaging systems of the VTT for extended wavelength coverage. Title: Milne-Eddington inversion of the Fe I line pair at 630 nm Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; Del Toro Iniesta, J. C. Bibcode: 2010A&A...518A...3O Altcode: 2010arXiv1005.5013S; 2010arXiv1005.5013O Context. The iron lines at 630.15 and 630.25 nm are often used to determine the physical conditions of the solar photosphere. A common approach is to invert them simultaneously under the Milne-Eddington approximation. The same thermodynamic parameters are employed for the two lines, except for their opacities, which are assumed to have a constant ratio.
Aims: We aim at investigating the validity of this assumption, since the two lines are not exactly the same.
Methods: We use magnetohydrodynamic simulations of the quiet Sun to examine the behavior of the ME thermodynamic parameters and their influence on the retrieval of vector magnetic fields and flow velocities.
Results: Our analysis shows that the two lines can be coupled and inverted simultaneously using the same thermodynamic parameters and a constant opacity ratio. The inversion of two lines is significantly more accurate than single-line inversions because of the larger number of observables. Title: Applicability of Milne-Eddington inversions to high spatial resolution observations of the quiet Sun Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; Vögler, A.; Del Toro Iniesta, J. C. Bibcode: 2010A&A...518A...2O Altcode: 2010arXiv1005.5012O Context. The physical conditions of the solar photosphere change on very small spatial scales both horizontally and vertically. Such a complexity may pose a serious obstacle to the accurate determination of solar magnetic fields.
Aims: We examine the applicability of Milne-Eddington (ME) inversions to high spatial resolution observations of the quiet Sun. Our aim is to understand the connection between the ME inferences and the actual stratifications of the atmospheric parameters.
Methods: We use magnetoconvection simulations of the solar surface to synthesize asymmetric Stokes profiles such as those observed in the quiet Sun. We then invert the profiles with the ME approximation. We perform an empirical analysis of the heights of formation of ME measurements and analyze the uncertainties brought about by the ME approximation. We also investigate the quality of the fits and their relationship with the model stratifications.
Results: The atmospheric parameters derived from ME inversions of high-spatial resolution profiles are reasonably accurate and can be used for statistical analyses of solar magnetic fields, even if the fit is not always good. We also show that the ME inferences cannot be assigned to a specific atmospheric layer: different parameters sample different ranges of optical depths, and even the same parameter may trace different layers depending on the physical conditions of the atmosphere. Despite this variability, ME inversions tend to probe deeper layers in granules than in intergranular lanes.

Figure 10 and appendix are only available in electronic form at http://www.aanda.org Title: The IMaX polarimeter for the solar telescope SUNRISE of the NASA long duration balloon program Authors: Alvarez-Herrero, A.; Martínez-Pillet, V.; Del Toro Iniesta, J. C.; Domingo, V. Bibcode: 2010EPJWC...505002A Altcode: On June 8th 2009 the SUNRISE mission was successfully launched. This mission consisted of a 1m aperture solar telescope on board of a stratospheric balloon within the Long Duration Balloon NASA program. The flight followed the foreseen circumpolar trajectory over the Artic and the duration was 5 days and 17 hours. One of the two postfocal instruments onboard was IMaX, the Imaging Magnetograph eXperiment. This instrument is a solar magnetograph which is a diffraction limited imager capable to resolve 100 km on the solar surface, and simultaneously a high sensitivity polarimeter (<10-3) and a high resolution spectrograph (bandwidth <70mÅ). The magnetic vectorial map can be extracted thanks to the well-know Zeeman effect, which takes place in the solar atoms, allowing to relate polarization and spectral measurements to magnetic fields. The technological challenge of the IMaX development has a special relevance due to the utilization of innovative technologies in the Aeroespacial field and it is an important precedent for future space missions such as Solar Orbiter from ESA. Among these novel technologies the utilization of Liquid Crystal Variable Retarders (LCVRs) as polarization modulators and a LiNbO3 etalon as tunable spectral filter are remarkable. Currently the data obtained is being analyzed and the preliminary results show unprecedented information about the solar dynamics. Title: Size matters Authors: del Toro Iniesta, J. C.; Orozco Suárez, D. Bibcode: 2010AN....331..558D Altcode: 2010arXiv1002.3106D The new generation of ground-based, large-aperture solar telescopes promises to significantly increase our capabilities to understand the many basic phenomena taking place in the Sun at all atmospheric layers and how they relate to each other. A (non-exhaustive) summary of the main scientific arguments to pursue these impressive technological goals is presented. We illustrate how imaging, polarimetry, and spectroscopy can benefit from the new telescopes and how several wavelength bands should be observed to study the atmospheric coupling from the upper convection zone all the way to the corona. The particular science case of sunspot penumbrae is barely discussed as a specific example. Title: On Spectropolarimetric Measurements with Visible Lines Authors: del Toro Iniesta, J. C.; Orozco Suárez, D.; Bellot Rubio, L. R. Bibcode: 2010ApJ...711..312D Altcode: 2010arXiv1001.3022D The ability of new instruments for providing accurate inferences of vector magnetic fields and line-of-sight velocities of the solar plasma depends a great deal on the sensitivity to these physical quantities of the spectral lines chosen to be measured. Recently, doubts have been raised about visible Stokes profiles to provide a clear distinction between weak fields and strong ones filling a small fraction of the observed area. The goal of this paper is to give qualitative and quantitative arguments that help in settling the debate since several instruments that employ visible lines are either operating or planned for the near future. The sensitivity of the Stokes profiles is calculated through the response functions (RFs), for e.g., by Ruiz Cobo & Del Toro Iniesta. Both theoretical and empirical evidences are gathered in favor of the reliability of visible Stokes profiles. The RFs are also used for estimating the uncertainties in the physical quantities due to noise in observations. A useful formula has been derived that takes into account the measurement technique (number of polarization measurements, polarimetric efficiencies, and number of wavelength samples), the model assumptions (number of free parameters and the filling factor), and the radiative transfer (RFs). We conclude that a scenario with a weak magnetic field can reasonably be distinguished with visible lines from another with a strong field but a similar Stokes V amplitude, provided that the Milne-Eddington approximation is good enough to describe the solar atmosphere and the polarization signal is at least 3 or 4 times larger than the typical rms noise of 10-3 I c reached in the observations. Title: ASTRONET: Public Outreach Authors: Ros, R. M.; Fosbury, R.; Christensen, L. L.; Del Toro Iniesta, J. C.; Fucili, L.; Hill, R.; Lorenzen, D.; Madsen, C.; Newsam, A.; Pickwick, A.; Radeva, V. Bibcode: 2009CAPJ....5...26R Altcode: We have all seen the spectacular images that the Hubble Space Telescope and other such observatories have revealed to the world. Their haunting splendour inspires and compels us as artists. But how can we capture the elusive essence of space in our own work? Title: ASTRONET Panel E: Education, recruitment/training & public outreach Authors: Hill, Robert; Ros, Rosa Maria; Fosbury, Robert; Christensen, Lars Lindberg; Fucili, Leonarda; Lorenzen, Dirk; del Toro Iniesta, Jose Carlos; Madsen, Claus; Newsam, Andy; Pickwick, Alan; Radeva, Veselka Bibcode: 2008ca07.conf..166H Altcode: ASTRONET was created by a group of European funding agencies in order to establish a comprehensive long-term plan for the development of European astronomy. The objective of this effort is to consolidate and reinforce the world-leading position that European astronomy has attained at the beginning of this 21st century. This presentation concentrates on the work of Panel E. Title: Magnetic field emergence in quiet Sun granules Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Tsuneta, S. Bibcode: 2008A&A...481L..33O Altcode: 2007arXiv0712.2663O Aims:We describe a new form of small-scale magnetic flux emergence in the quiet Sun. This process seems to take vertical magnetic fields from subsurface layers to the photosphere, where they appear above granular convection cells.
Methods: High-cadence time series of spectropolarimetric measurements obtained by Hinode in a quiet region near disk center are analyzed. We extract line parameters from the observed Stokes profiles and study their evolution with time.
Results: The circular polarization maps derived from the observed Fe I 630 nm lines show clear magnetic signals emerging at the center of granular cells. We do not find any evidence for linear polarization signals associated with these events. The magnetic flux patches grow with time, occupying a significant fraction of the granular area. The signals then fade until they disappear completely. The typical lifetime of these events is of the order of 20 min. No significant changes in the chromosphere are seen to occur in response to the emergence, as revealed by co-spatial Ca II H filtergrams. The Stokes I and V profiles measured in the emerging flux concentrations show strong asymmetries and Doppler shifts.
Conclusions: The origin of these events is unclear at present, but we suggest that they may represent the emergence of vertical fields lines from the bottom of the photosphere, possibly dragged by the convective upflows of granules. Preliminary inversions of the Stokes spectra indicate that this scenario is compatible with the observations, although the emergence of vertical field lines is not free from conceptual problems. Title: Temporal evolution of the Evershed flow in sunspots. II. Physical properties and nature of Evershed clouds Authors: Cabrera Solana, D.; Bellot Rubio, L. R.; Borrero, J. M.; Del Toro Iniesta, J. C. Bibcode: 2008A&A...477..273C Altcode: 2007arXiv0709.1601C Context: Evershed clouds (ECs) represent the most conspicuous variation of the Evershed flow in sunspot penumbrae.
Aims: We determine the physical properties of ECs from high spatial and temporal resolution spectropolarimetric measurements. This information is used to investigate the nature of the EC phenomenon.
Methods: The Stokes profiles of four visible and three infrared spectral lines are subject to inversions based on simple one-component models as well as more sophisticated realizations of penumbral flux tubes embedded in a static ambient field (uncombed models).
Results: According to the one-component inversions, the EC phenomenon can be understood as a perturbation of the magnetic and dynamic configuration of the penumbral filaments along which the ECs move. The uncombed inversions, on the other hand, suggest that ECs are the result of enhancements in the visibility of penumbral flux tubes. We conjecture that these enhancements are caused by a perturbation of the thermodynamic properties of the tubes, rather than by changes in the vector magnetic field. This mechanism is investigated performing numerical experiments of thick penumbral tubes in mechanical equilibrium with a background field.
Conclusions: While the one-component inversions confirm many of the properties indicated by a simple line parameter analysis (Paper I of this series), we give more credit to the results of the uncombed inversions because they take into account, at least in an approximate manner, the fine structure of the penumbra.

Appendix A is only available in electronic form at http://www.aanda.org Title: Temporal evolution of the Evershed flow in sunspots. I. Observational characterization of Evershed clouds Authors: Cabrera Solana, D.; Bellot Rubio, L. R.; Beck, C.; Del Toro Iniesta, J. C. Bibcode: 2007A&A...475.1067C Altcode: 2007arXiv0707.2629C Context: The magnetic and kinematic properties of the photospheric Evershed flow are relatively well known, but not completely understood. The evolution of the flow with time, which is mainly due to the appearance of velocity packets called Evershed clouds (ECs), may provide information to further constrain its origin.
Aims: We undertake a detailed analysis of the evolution of the Evershed flow by studying the properties of ECs. In this first paper we determine the sizes, proper motions, location in the penumbra, and frequency of appearance of ECs, as well as their typical Doppler velocities, linear and circular polarization signals, Stokes V area asymmetries, and continuum intensities.
Methods: High-cadence, high-resolution, full vector spectropolarimetric measurements in visible and infrared lines are used to characterize the EC phenomenon through a simple line-parameter analysis.
Results: ECs appear in the mid penumbra and propagate outward along filaments having large linear polarization signals and enhanced Evershed flows. The frequency of appearance of ECs varies between 15 and 40 min in different filaments. ECs exhibit the largest Doppler velocities and linear-to-circular polarization ratios of the whole penumbra. In addition, lines formed deeper in the atmosphere show larger Doppler velocities, much in the same way as the “quiescent” Evershed flow. According to our observations, ECs can be classified in two groups: type I ECs, which vanish in the outer penumbra, and type II ECs, which cross the outer penumbral boundary and enter the sunspot moat. Most of the observed ECs belong to type I. On average, type II ECs can be detected as velocity structures outside of the spot for only about 14 min. Their proper motions in the moat are significantly reduced with respect to the ones they had in the penumbra.

Appendices A and B are only available in electronic form at http://www.aanda.org Title: Quiet-Sun Internetwork Magnetic Fields from the Inversion of Hinode Measurements Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Tsuneta, S.; Lites, B. W.; Ichimoto, K.; Katsukawa, Y.; Nagata, S.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M. Bibcode: 2007ApJ...670L..61O Altcode: 2007arXiv0710.1405O We analyze Fe I 630 nm observations of the quiet Sun at disk center taken with the spectropolarimeter of the Solar Optical Telescope aboard the Hinode satellite. A significant fraction of the scanned area, including granules, turns out to be covered by magnetic fields. We derive field strength and inclination probability density functions from a Milne-Eddington inversion of the observed Stokes profiles. They show that the internetwork consists of very inclined, hG fields. As expected, network areas exhibit a predominance of kG field concentrations. The high spatial resolution of Hinode's spectropolarimetric measurements brings to an agreement the results obtained from the analysis of visible and near-infrared lines. Title: Strategy for the Inversion of Hinode Spectropolarimetric Measurements in the Quiet Sun Authors: Orozco Suárez, David; Bellot Rubio, Luis R.; Del Toro Iniesta, Jose Carlos; Tsuneta, Saku; Lites, Bruce; Ichimoto, Kiyoshi; Katsukawa, Yukio; Nagata, Shin'ichi; Shimizu, Toshifumi; Shine, Richard A.; Suematsu, Yoshinori; Tarbell, Theodore D.; Title, Alan M. Bibcode: 2007PASJ...59S.837O Altcode: 2007arXiv0709.2033O In this paper we propose an inversion strategy for the analysis of spectropolarimetric measurements taken by Hinode in the quiet Sun. The Spectro-Polarimeter of the Solar Optical Telescope aboard Hinode records the Stokes spectra of the FeI line pair at 630.2nm with unprecendented angular resolution, high spectral resolution, and high sensitivity. We discuss the need to consider a local stray-light contamination to account for the effects of telescope diffraction. The strategy is applied to observations of a wide quiet Sun area at disk center. Using these data we examine the influence of noise and initial guess models in the inversion results. Our analysis yields the distributions of magnetic field strengths and stray-light factors. They show that quiet Sun internetwork regions consist mainly of hG fields with stray-light contamination of about 0.8. Title: Vector Spectropolarimetry of Dark-cored Penumbral Filaments with Hinode Authors: Bellot Rubio, L. R.; Tsuneta, S.; Ichimoto, K.; Katsukawa, Y.; Lites, B. W.; Nagata, S.; Shimizu, T.; Shine, R. A.; Suematsu, Y.; Tarbell, T. D.; Title, A. M.; del Toro Iniesta, J. C. Bibcode: 2007ApJ...668L..91B Altcode: 2007arXiv0708.2791B We present spectropolarimetric measurements of dark-cored penumbral filaments taken with Hinode at a resolution of 0.3". Our observations demonstrate that dark-cored filaments are more prominent in polarized light than in continuum intensity. Far from disk center, the Stokes profiles emerging from these structures are very asymmetric and show evidence for magnetic fields of different inclinations along the line of sight, together with strong Evershed flows of at least 6-7 km s-1. In sunspots closer to disk center, dark-cored penumbral filaments exhibit regular Stokes profiles with little asymmetries due to the vanishing line-of-sight component of the horizontal Evershed flow. An inversion of the observed spectra indicates that the magnetic field is weaker and more inclined in the dark cores as compared with the surrounding bright structures. This is compatible with the idea that dark-cored filaments are the manifestation of flux tubes carrying hot Evershed flows. Title: Quiet-Sun Magnetic Fields from Space-borne Observations: Simulating Hinode's Case Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; del Toro Iniesta, J. C. Bibcode: 2007ApJ...662L..31O Altcode: 2007arXiv0705.0096O We examine whether it is possible to derive the field strength distribution of quiet-Sun internetwork regions from very high spatial resolution polarimetric observations in the visible. In particular, we consider the case of the spectropolarimeter attached to the Solar Optical Telescope aboard Hinode. Radiative magnetoconvection simulations are used to synthesize the four Stokes profiles of the Fe I 630.2 nm lines. Once the profiles are degraded to a spatial resolution of 0.32" and added noise, we infer the atmospheric parameters by means of Milne-Eddington inversions. The comparison of the derived values with the real ones indicates that the visible lines yield correct internetwork field strengths and magnetic fluxes, with uncertainties smaller than ~150 G, when a stray-light contamination factor is included in the inversion. Contrary to the results of ground-based observations at 1", weak fields are retrieved wherever the field is weak in the simulation. Title: Introduction to Spectropolarimetry Authors: del Toro Iniesta, Jose Carlos Bibcode: 2007insp.book.....D Altcode: Preface; Acknowledgements; 1. Historical introduction; 2. A review of some basic concepts; 3. The polarization properties of quasi-monochromatic light; 4. Linear optical systems acting on polarized light; 5. Solar polarimetry; 6. Absorption and dispersion; 7. The radiative transfer equation; 8. The RTE in the presence of a magnetic field; 9. Solving the radiative transfer equation; 10. Stokes spectrum diagnostics; 11. Inversion of the RTE; Index. Title: The usefulness of analytic response functions Authors: Orozco Suárez, D.; Del Toro Iniesta, J. C. Bibcode: 2007A&A...462.1137O Altcode: 2012arXiv1211.1502O Aims:We introduce analytical response functions and their main properties as an important diagnostic tool that help understand Stokes profile formation physics and the meaning of well-known behaviors of standard inversion codes of the radiative transfer equation often used to measure solar magnetic fields.
Methods: A Milne-Eddington model atmosphere is used as an example where response functions are analytical. A sample spectral line has been chosen to show the main qualitative properties.
Results: We show that analytic response functions readily provide explanations for various well-known behaviors of spectral lines, such as the sensitivity of visible lines to weak magnetic fields or the trade-offs often detected in inversion codes between the Milne-Eddington thermodynamic parameters. We also show that response functions are helpful in selecting sample wavelengths optimized for specific parameter diagnostics.

Appendix A is only available in electronic form at http://www.aanda.org Title: S im ulation And Analysis Of VIM Measurements: Feedback On Design Parameters Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; Vargas, S.; Bonet, J. A.; Martíez Pillet, V.; del Toro Iniesta, J. C. Bibcode: 2007ESASP.641E..49O Altcode: 2006astro.ph.11443O The Visible-light Imager and Magnetograph (VIM) proposed for the ESA Solar Orbiter mission will observe a photo spheric spectral line at high spatial resolution. Here we simulate and interpret VIM measurements. Realistic MHD models are used to synthesize "observed" Stokes profiles of the photospheric Fe I 617.3 nm line. The profiles are degraded by telescope diffraction and detector pixel size to a spatial resolution of 162 km on the solar surface. We stufy the influence of spectral resolving power, noise, and limited wavelength sampling on the vector magnetic fields and line-of-sight velocities derived from Milne-Eddington inversions of the simulated measurements. VIM will provide reasonably accurate values of the atmospheric parametes even with the filter widths of 120 Å and 3 wavelength positions plus continuum, as long as the noise level is kept below 10-3 Ic. Title: First Steps Towards the Electronic Inversion of the Radiative Transfer Equation Authors: Castillo Lorenzo, J. L.; Orozco Suárez, D.; Bellot Rubio, L. R.; Jiménez, L.; Del Toro Iniesta, J. C. Bibcode: 2006ASPC..358..177C Altcode: The radiative transfer equation (RTE) gives us information about how the light streams through the medium. It must be inverted in order to obtain the properties of the medium that generated the observation. While there are a number of well discussed methods to approach the solution of the inversion, none of them is suitable for the real-time analysis of high-resolution images due to their computational requirements. This document introduces an electronic inverter for the RTE, suitable for real-time inversion and mainly intended for space missions and on-line ground-based observations. Title: Inversion of Visible and IR Stokes Profiles in Sunspots Authors: Cabrera Solana, D.; Bellot Rubio, L. R.; Beck, C.; Del Toro Iniesta, J. C. Bibcode: 2006ASPC..358...25C Altcode: We present an analysis of simultaneous observations of a sunspot in two different spectral ranges (630 nm and 1565 nm). The dataset was acquired with the POlarimetric LIttrow Spectrograph (POLIS) and the Tenerife Infrared Polarimeter (TIP) at the German Vacuum Tower Telescope (VTT) of Observatorio del Teide. Inversions of both sets of lines are carried out to retrieve physical quantities such as temperature and magnetic fields. We find that: a) the differences between the atmospheric parameters inferred from the two ranges are small, demonstrating that inversion techniques provide unique results; b) there is a cross-talk between temperature and stray light for visible lines; c) a more realistic treatment of the stray light contamination is required. Making use of both visible and infrared lines we obtain < dB/dz >=-2.3±0.6 G km-1 and < dγ/dz >=-0.019±0.015 deg km-1 in the umbra. Finally, we show how simultaneous spectro-polarimetric observations of the Sun in visible and infrared wavelengths improve the diagnostic capabilities of a single spectral range alone. Title: Milne-Eddington Response Functions and Their Applications Authors: Orozco Suárez, D.; Bellot Rubio, L. R.; Del Toro Iniesta, J. C. Bibcode: 2006ASPC..358..197O Altcode: We examine the errors in the atmospheric parameters recovered from the inversion of spectro-polarimetric data with limited wavelength sampling. We suggest that response functions evaluated in Milne-Eddington atmospheres may be useful as diagnostic tools that allow, for instance, the selection of the optimum wavelength positions to be observed by vector magnetographs. Title: Evershed Clouds as Precursors of Moving Magnetic Features around Sunspots Authors: Cabrera Solana, D.; Bellot Rubio, L. R.; Beck, C.; del Toro Iniesta, J. C. Bibcode: 2006ApJ...649L..41C Altcode: 2006astro.ph..9108C The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots. Title: VIP - 2D Vector Spectropolarimetry of the Solar Atmosphere near the Diffraction Limit Authors: Bellot Rubio, L. R.; Tritschler, A.; Kentischer, T.; Beck, C.; Del Toro Iniesta, J. C. Bibcode: 2006IAUJD...3E..58B Altcode: The KIS/IAA Vector Imaging Polarimeter (VIP) is a new instrument for two-dimensional spectropolarimetry of the solar atmosphere. It is used with TESOS, the triple etalon Fabry-Perot interferometer installed at the German Vacuum Tower Telescope of Observatorio del Teide (Tenerife, Spain). The polarimeter is based on a pair of nematic liquid crystal retarders and a Wollaston prism. VIP and TESOS are able to observe any spectral line in the range from 450 nm to 750 nm with a spectral resolving power of about 250000 and spatial resolutions better than 0.5" (thanks to the Kiepenheuer Adaptive Optics System). Typically, the four Stokes parameters of a line can be measured at 40 wavelength points in less than 60 s, with a noise level of 1-2 x 10^-3 and a pixel size of 0.18" x 0.18" (2x2 binning). The modulation matrix of VIP is derived using the polarimetric calibration unit installed at the telescope. Here we present first-light observations of VIP carried out in November 2005. We recorded the full Stokes profiles of the 630.1 and 630.2 nm Fe I lines emerging from a solar pore and its surroundings at a spatial resolution of ~0.4". Based on these data, we discuss the performance and capabilities of VIP as a powerful instrument for high spatial and temporal resolution measurements of vector magnetic fields in the solar atmosphere. Title: Detailed design of the imaging magnetograph experiment (IMaX): a visible imager magnetograph for the Sunrise mission Authors: Álvarez-Herrero, A.; Belenguer, T.; Pastor, C.; González, L.; Heredero, R. L.; Ramos, G.; Reina, M.; Sánchez, A.; Villanueva, J.; Sabau, L.; Martínez Pillet, V.; Bonet, J. A.; Collados, M.; Jochum, L.; Ballesteros, E.; Medina Trujillo, J. L.; Ruiz, Cobo B.; González, J. C.; del Toro Iniesta, J. C.; López Jiménez, A. C.; Castillo Lorenzo, J.; Herranz, M.; Jerónimo, J. M.; Mellado, P.; Morales, R.; Rodríguez, J.; Domingo, V.; Gasent, J. L.; Rodríquez, P. Bibcode: 2006SPIE.6265E..4CA Altcode: 2006SPIE.6265E.132A In this work, it is described the Imaging Magnetograph eXperiment, IMaX, one of the three postfocal instruments of the Sunrise mission. The Sunrise project consists on a stratospheric balloon with a 1 m aperture telescope, which will fly from the Antarctica within the NASA Long Duration Balloon Program. IMaX will provide vector magnetograms of the solar surface with a spatial resolution of 70 m. This data is relevant for understanding how the magnetic fields emerge in the solar surface, how they couple the photospheric base with the million degrees of temperature of the solar corona and which are the processes that are responsible of the generation of such an immense temperatures. To meet this goal IMaX should work as a high sensitivity polarimeter, high resolution spectrometer and a near diffraction limited imager. Liquid Crystal Variable Retarders will be used as polarization modulators taking advantage of the optical retardation induced by application of low electric fields and avoiding mechanical mechanisms. Therefore, the interest of these devices for aerospace applications is envisaged. The spectral resolution required will be achieved by using a LiNbO 3 Fabry-Perot etalon in double pass configuration as spectral filter before the two CCDs detectors. As well phase-diversity techniques will be implemented in order to improve the image quality. Nowadays, IMaX project is in the detailed design phase before fabrication, integration, assembly and verification. This paper briefly describes the current status of the instrument and the technical solutions developed to fulfil the scientific requirements. Title: The many scales in the universe : JENAM 2004 astrophysics reviews Authors: Del Toro Iniesta, Jose Carlos; Alfaro, Emilio J.; Gorgas, J. G.; Salvador-Sole, E.; Butcher, H. Bibcode: 2006msu..conf.....D Altcode: No abstract at ADS Title: Sensitivity of spectral lines to temperature, velocity, and magnetic field Authors: Cabrera Solana, D.; Bellot Rubio, L. R.; del Toro Iniesta, J. C. Bibcode: 2005A&A...439..687C Altcode: We present an analytical and numerical study of the sensitivity of weak solar photospheric lines to temperature, velocity, and magnetic fields. Our investigation is based on the concept of response functions (Landi degl'Innocenti & Landi degl'Innocenti 1977; Ruiz Cobo & del Toro Iniesta 1994). Lines commonly used in solar spectropolarimetry, like Fe I 630.25 nm in the visible and Fe I 1564.85 nm in the infrared, are examined in detail as emerging from reference quiet Sun and sunspot models. We develop a simple phenomenological model capable of describing the response of any given line to these atmospheric parameters. We find that: (a) the sensitivity of the lines to velocity and magnetic fields increases with the sharpness of the intensity and circular polarization profiles; (b) the sensitivity to temperature is determined mainly by the variation of the source function with temperature, which is smaller at longer wavelengths; and (c) lines quoted to be insensitive to temperature, like Fe I 1564.85 nm and Fe I 557.61 nm, exhibit larger changes in equivalent width than lines presumed to have higher sensitivities to T, such as Fe I 630.25 nm. The relations provided by our model are universal and can be used to decide which line is better suited to measuring a given atmospheric parameter. The results of this study are of practical interest for the design of new instruments and for better exploitation of existing ones. Title: The imaging magnetograph eXperiment for the SUNRISE balloon Antarctica project Authors: Martinez Pillet, Valentin; Bonet, Jose A.; Collados, Manuel V.; Jochum, Lieselotte; Mathew, S.; Medina Trujillo, J. L.; Ruiz Cobo, B.; del Toro Iniesta, Jose Carlos; Lopez Jimenez, A. C.; Castillo Lorenzo, J.; Herranz, M.; Jeronimo, J. M.; Mellado, P.; Morales, R.; Rodriguez, J.; Alvarez-Herrero, Alberto; Belenguer, Tomas; Heredero, R. L.; Menendez, M.; Ramos, G.; Reina, Manuel; Pastor, C.; Sanchez, A.; Villanueva, J.; Domingo, Vicente; Gasent, J. L.; Rodriguez, P. Bibcode: 2004SPIE.5487.1152M Altcode: The SUNRISE balloon project is a high-resolution mission to study solar magnetic fields able to resolve the critical scale of 100 km in the solar photosphere, or about one photon mean free path. The Imaging Magnetograph eXperiment (IMaX) is one of the three instruments that will fly in the balloon and will receive light from the 1m aperture telescope of the mission. IMaX should take advantage of the 15 days of uninterrupted solar observations and the exceptional resolution to help clarifying our understanding of the small-scale magnetic concentrations that pervade the solar surface. For this, IMaX should act as a diffraction limited imager able to carry out spectroscopic analysis with resolutions in the 50.000-100.000 range and capable to perform polarization measurements. The solutions adopted by the project to achieve all these three demanding goals are explained in this article. They include the use of Liquid Crystal Variable Retarders for the polarization modulation, one LiNbO3 etalon in double pass and two modern CCD detectors that allow for the application of phase diversity techniques by slightly changing the focus of one of the CCDs. Title: An orthonormal set of Stokes profiles Authors: del Toro Iniesta, J. C.; López Ariste, A. Bibcode: 2003A&A...412..875D Altcode: A family of well-known orthonormal functions, the set of Hermite functions, is proposed as a suitable basis for expanding the Stokes profiles of any spectral line. An expansion series thus provides different degrees of approximation to the Stokes spectrum, depending on the number of basis elements used (or on the number of coefficients). Hence, an usually large number of wavelength samples, may be substituted by a few such coefficients, thus reducing considerably the size of data files and the analysis of observable information. Moreover, since the set of Hermite functions is an universal basis, it promises to help in modern inversion techniques of the radiative transfer equation that infer the solar physical quantities from previously compiled look-up tables or artificial neural networks. These features appear to be particularly important in modern solar applications producing huge amounts of spectropolarimetric data and on near-future, on-line applications aboard spacecrafts. Title: Accurate atomic parameters for near-infrared spectral lines Authors: Borrero, J. M.; Bellot Rubio, L. R.; Barklem, P. S.; del Toro Iniesta, J. C. Bibcode: 2003A&A...404..749B Altcode: A realistic two-component model of the quiet solar photosphere is used to fit the intensity spectrum of the Sun in the wavelength range 0.98-1.57 mu m. Our approach differs from earlier attempts in many respects: proper account of convective inhomogeneities is made, accurate collisional broadening parameters from quantum mechanical computations are used, and the effects of possible blends in the local continuum are corrected empirically. This allows us to derive oscillator strengths and central wavelengths for virtually any unblended line of the solar spectrum. The accuracy of the inferred atomic parameters, about 0.06 dex for oscillator strengths and 5 mÅ at 1 mu m for central wavelengths, is similar to that of the best laboratory measurements. We apply our method to 83 near-infrared lines belonging to 6 different atomic species. The availability of accurate oscillator strengths and central wavelengths for lines of different species is essential for the interpretation of high resolution spectroscopic observations. The method is especially useful in the infrared, a wavelength domain where laboratory measurements are scarce. Title: Introduction to Spectropolarimetry Authors: del Toro Iniesta, José Carlos Bibcode: 2003isp..book.....D Altcode: 2003insp.book.....D Spectropolarimetry embraces the most complete and detailed measurement and analysis of light, as well as its interaction with matter. This book provides an introductory overview of the subject because it is playing an increasingly important role in modern solar observations. Chapters include a comprehensive description of the polarization state of polychromatic light and its measurement; an overview of astronomical polarimetry; and the formation of spectral lines in the presence of a magnetic field. The text is a valuable reference for graduates and researchers in astrophysics, solar physics and optics. Title: IMax: a visible magnetograph for SUNRISE Authors: Jochum, Lieselotte; Collados, Manuel; Martínez Pillet, Valentin; Bonet, Jose A.; del Toro Iniesta, Jose Carlos; Lopez, Antonio; Alvarez-Herrero, Alberto; Reina, Manuel; Fabregat, Juan; Domingo, Vicente Bibcode: 2003SPIE.4843...20J Altcode: The description of the Imaging Magnetograph eXperiment (IMaX) is presented in this contribution. This is a magnetograph which will fly by the end of 2006 on a stratospheric balloon, together with other instruments (to be described elsewhere). Especial emphasis is put on the scientific requirements to obtain diffraction-limited visible magnetograms, on the optical design and several constraining characteristics, such as the wavelength tuning or the crosstalk between the Stokes parameters. Title: Interpretation of observations by inversion Authors: del Toro Iniesta, J. C. Bibcode: 2003AN....324..383D Altcode: The most recent developments in inversion techniques of the radiative transfer equation are critically reviewed and some of their findings are summarized to illustrating their achievements. Two significantly different approaches are currently being used that deserve consideration, each characterized by whether or not the model solar atmospheres are changed iteratively by the algorithm. The comparison between the two may help in finding future inversion techniques that can solve many challenging problems of solar physics that still need to be properly settled. These problems themselves suggest strategies that look more suitable than others. Title: Accurate Atomic Parameters from the Solar Spectrum Authors: Bellot Rubio, Luis Ramon; Borrero, Juan Manuel; Barklem, Paul; del Toro Iniesta, Jose Carlos Bibcode: 2003IAUJD..20E..16B Altcode: A realistic two-component model of the quiet solar photosphere is used to fit the full shape of the intensity profiles of unblended lines in the solar spectrum. Our approach differs from previous attempts in many respects: proper account of granulation inhomogeneities is made accurate collisional broadening parameters from quantum mechanical computations are used and possible absorptions in the local continuum due to blends are corrected empirically. This allows us to derive oscillator strengths and central wavelengths for any clean line with an accuracy comparable with that of the best laboratory measurements. The availability of very precise atomic parameters for lines of different species is essential for the interpretation of high resolution spectroscopic observations. Abundance determinations and investigations of granular motions in stellar atmospheres are among the applications that would benefit from such accurate atomic data. As an example we determine the oscillator strengths and central wavelengths of 100 unblended lines in the near-infrared (0.99-1.56 microns) a wavelength domain where laboratory measurements are particularly scarce. Title: Solar Polarimetry and Magnetic Field Measurements Authors: del Toro Iniesta, J. C. Bibcode: 2001ASSL..259..183D Altcode: 2001dysu.conf..183D The magnetic nature of most solar (spatially resolved or unresolved) structures is amply recognized. Magnetic fields of the Sun play a paramount rôle in the overall thermodynamic and dynamic state of our star. The main observable manifestation of solar magnetic fields is the polarization of light either through the Zeeman effect on spectral lines or through the Hanle effect (depolarization by very weak magnetic fields of light previously polarized by scattering). Hence, one can easily understand the increasing importance that polarimetry is experimenting continuously in solar physics. Under the title of this contribution a six-hour course was given during the summer school. Clearly, the limited extension allocated for the notes in these proceedings avoids an extensive account of the several topics discussed: 1) a description of light as an electromagnetic wave and the polarization properties of monochromatic, time-harmonic, plane waves; 2) the polarization properties of polychromatic light and, in particular, of quasi-monochromatic light; 3) the transformations of (partially) polarized light by linear optical systems and a description of the ways we measure the Stokes parameters by spatially and/or temporally modulating the polarimetric signal; 4) a discussion on specific problems relevant to solar polarimetry like seeing-induced and instrumental polarization, or modulation and demodulation, along with a brief description of current solar polarimeters; 5) the vector radiative transfer equation for polarized light and its links to the scalar one for unpolarized light, together with a summary of the Zeeman effect and its consequences on line formation in a magnetized stellar atmosphere; 7) an introduction of the paramount astrophysical problem, i.e., that of finding diagnostics that enable the solar physicist to interpret the observables in terms of the solar atmospheric quantities, including a discussion on contribution and response functions; and 8) a brief outline of inversion techniques as a recommended way to infer values of the vector magnetic field and other thermodynamic and dynamic quantities. Since most of the material presented in the lectures can be found in the literature, I decided to focus these pages to those topics that, in my opinion, need a particular stress and/or do not have received much attention in previous reviews or textbooks. These notes have been written with mostly didactical purposes so that, skipping the customary usage, just a few references will be cited within the text. Instead, a classified (and necessarily incomplete) bibliography is recommended at the end. Title: Cold, Supersonic Evershed Downflows in a Sunspot Authors: del Toro Iniesta, Jose Carlos; Bellot Rubio, Luis R.; Collados, Manuel Bibcode: 2001ApJ...549L.139D Altcode: We report here on the discovery of supersonic Evershed downflows in the penumbra of a sunspot. These flows are shown to occur along spatially unresolved, very cold magnetic flux tubes whose downflowing footpoints are found from the middle penumbra outward. Evershed flows along magnetic field lines returning to the solar surface were discovered by Westendorp Plaza and coworkers, but only in the outer parts of the penumbra and beyond its visible boundary; on the other hand, no supersonic flows of any type have ever been reported in the photosphere of sunspots, except for the very different case of the delta spot analyzed by Martínez Pillet and coworkers. We present unequivocal evidence of such supersonic motions, already predicted theoretically by the siphon-flow model, from the interpretation of infrared spectropolarimetric observations of a sunspot with unprecedented spatial resolution. Title: Optical Tomography of a Sunspot. II. Vector Magnetic Field and Temperature Stratification Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martínez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 2001ApJ...547.1130W Altcode: An observational determination of the three-dimensional magnetic and thermal structure of a sunspot is presented. It has been obtained through the application of the SIR inversion technique (Stokes Inversion based on Response functions) on a low-noise, full Stokes profile two-dimensional map of the sunspot as observed with the Advanced Stokes Polarimeter. As a result of the inversion, maps of the magnetic field strength, B, zenith angle, γ, azimuth, χ, and temperature, T, over 25 layers at given optical depths (i.e., an optical tomography) are obtained, of which those between logτ5=0 and logτ5=-2.8 are considered to provide accurate information on the physical parameters. All over the penumbra γ increases with depth, while B is larger at the bottom layers of the inner penumbra (as in the umbra) but larger at the top layers of the outer penumbra (as in the canopy). The corrugation of the penumbral magnetic field already observed by other authors has been confirmed by our different inversion technique. Such a corrugation is especially evident in the zenith angle maps of the intermediate layers, featuring the presence of the so-called spines that we further characterize: spines are warmer and have a less inclined magnetic field than the spaces between them and tend to have a smaller gradient of γ with optical depth over the entire penumbra, but with a field strength which is locally stronger in the middle penumbra and locally weaker in the outer penumbra and beyond in the canopy. In the lower layers of these external parts of the sunspot, most of the field lines are seen to return to the solar surface, a result that is closely connected with the Evershed effect (e.g., Westendorp et al., the third paper in this series). The Stokes V net area asymmetry map as well as the average B, γ, and T radial distributions (and that of the line-of-sight velocities; see the third paper in this series) show a border between an inner and an outer penumbra with different three-dimensional structure. We suggest that it is in this middle zone where most of a new family of penumbral flux tubes (some of them with Evershed flow) emerge interlaced (both horizontally and vertically) among themselves and with the ``background'' magnetic field of the penumbra. The interlacing along the line of sight is witnessed by the indication of many points in the outer penumbra showing rapid transitions with height between two structures, one with very weak and inclined magnetic field at the bottom of the photosphere and the other with a stronger and less inclined magnetic field. Over the whole penumbra, and at all optical layers, a constant but weak deviation from radiality of some 5° is detected for the azimuth of the vector magnetic field, which may be in agreement with former detections but which is not significantly higher than the size of the errors for this parameter. Title: Optical Tomography of a Sunspot. III. Velocity Stratification and the Evershed Effect Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martínez Pillet, V. Bibcode: 2001ApJ...547.1148W Altcode: The stratification with optical depth of the line-of-sight (LOS) velocity of a simple, isolated, round sunspot observed with the Advanced Stokes Polarimeter (ASP; Elmore et al.) presented here completes this series of papers that investigates the stratification in optical depths of such a typical sunspot. These results have been obtained through the use of the SIR technique (Stokes Inversion based on Response functions of Ruiz Cobo & del Toro Iniesta). From these data we have confirmed that there are strong downflowing velocities at logτ5=0 that coincide spatially with the places where the magnetic field points downward (Westendorp Plaza et al.). Further confirmation is obtained by the application of the same method on a different sunspot, already analyzed with the Milne-Eddington inversion technique (Stanchfield, Thomas, & Lites). These downflows reconcile observations that have detected Evershed velocities outside sunspots together with suggestions of the possible return of the flow within the penumbra. The Evershed flow seems to be concentrated in elevated channels not thicker than 1 or 2 scale heights that are mostly located in the space between magnetic spines, i.e., in places where the magnetic field is more inclined, weaker in the inner-middle penumbra, and stronger in the outer penumbra and beyond the visible limits of the sunspot. This conclusion is based upon the tight correlation found between LOS velocities and the (reported in the second paper of this series) magnetic field strength and zenith angle. The upstreaming material is seen in the inner penumbra and the downstreaming in the outer penumbra. A strong increase with optical depth has been obtained for the LOS velocities that provides indications of the superposition of Evershed channels along the LOS. The differential opacity effect between the center-side and the limb-side penumbra, already reported in the second paper in this series, is also seen in the velocity maps and has suggested the comparison of the vertical mass flux through the upstreaming zones (mostly seen in the center side) and the downstreaming zones (mostly seen in the limb side), obtaining a fairly good balance between the two. Title: Sunspot Magnetic Fields Authors: del Toro Iniesta, J. C. Bibcode: 2001ASPC..248...35D Altcode: 2001mfah.conf...35D No abstract at ADS Title: Sunspots: Evershed Effect Authors: del Toro Iniesta, J. Bibcode: 2000eaa..bookE2031D Altcode: The Evershed Effect is an observational effect in the penumbra of SUNSPOTS consisting in displacements of the spectral line profiles towards either shorter wavelengths (that is, blueshifts) in the zones closest to the Sun's disk center or larger wavelengths (that is, redshifts) in those zones closest to the solar limb. Since the first detection in 1909, this effect was correctly interpreted by it... Title: Optimum Modulation and Demodulation Matrices for Solar Polarimetry Authors: del Toro Iniesta, Jose Carlos; Collados, Manuel Bibcode: 2000ApOpt..39.1637D Altcode: No abstract at ADS Title: Granular and Intergranular Model Atmospheres from Inversion of Solar Two-Dimensional Spectroscopic Data Authors: Rodríguez Hidalgo, I.; Ruiz Cobo, B.; Collados, M.; del Toro Iniesta, J. C. Bibcode: 1999ASPC..173..313R Altcode: 1999sstt.conf..313R No abstract at ADS Title: Optical Tomography of a Sunspot. I. Comparison between Two Inversion Techniques Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martínez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1998ApJ...494..453W Altcode: A quantitative comparison between the Milne-Eddington (ME) inversion technique implemented by Skumanich & Lites and the SIR (Stokes Inversion based on Response Functions) proposed by Ruiz Cobo & del Toro Iniesta is presented. Numerical experiments are carried out to explore the capabilities and limitations of both diagnostic techniques. Such experiments consist of inversions of Stokes profiles previously synthesized in ``realistic'' solar atmospheric models. The results show that the ME inversion provides accurate, line-of-sight (LOS) averaged values for the input stratification of the vector magnetic field. Its greater speed compared to SIR makes it useful for quick analysis of large quantities of data (such as those currently provided by modern spectropolarimeters) if one is only interested in LOS-averaged quantities. However, the higher order description of the atmosphere used by SIR (which acknowledges variation of the thermal, dynamic, and magnetic parameters through the photosphere) allows retrieval of the stratification of all these parameters to good accuracy. This is so even in the presence of discontinuities such as those foreseen in magnetic canopies of sunspots. The trade-offs between thermodynamic and magnetic parameters observed in some ME inversions are reduced considerably in the case of SIR inversions because of the more realistic treatment of the thermodynamics in this analysis. Notably, both allow one to extract quantitative inferences of fairly weak magnetic fields (below 500 G), even when they are applied to Zeeman-sensitive lines in the visible spectrum; i.e., well below the commonly accepted limit of 500 G. The thermodynamic parameters resulting from the ME inversion are understood theoretically in terms of the generalized response functions introduced by Ruiz Cobo & del Toro Iniesta and through the concept of height of formation for inferred values proposed by Sánchez Almeida, Ruiz Cobo, & del Toro Iniesta.

The present comparison and verification of the reliability of inversion methods is a natural first step toward the ongoing analysis of the three-dimensional magnetic structure of a sunspot. By using SIR (with ME results for initialization) on maps of a whole sunspot observed by the Advanced Stokes Polarimeter, we obtain maps at different optical layers (i.e., an optical tomography) of the temperature, vector magnetic field, and LOS velocity. Such a tomography will appear in subsequent papers of the present series. To illustrate fits to the observed Stokes profiles, we show here actual inversion results for three points observed within a sunspot: one within the umbra, another from the outermost parts of the penumbra, and a third from the magnetic canopy surrounding the sunspot. Title: Evidence for a downward mass flux in the penumbral region of a sunspot Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martinez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1997Natur.389...47W Altcode: No abstract at ADS Title: Space Certifiability of LCVRs Authors: del Toro Iniesta, J. C.; Martinez Pillet, V.; Gonzalez Escalera, V. Bibcode: 1997ASPC..118..356D Altcode: 1997fasp.conf..356D This contribution is a report on a test campaign carried out by the IAC, in collaboration with Construcciones Aeronauticas, S.A. (CASA) as a main contrac tor, for exploring the capabilities of liquid crystal variable retarders (LCVRs) to be u sed in future space missions as the core of the modulation package of a polarimetric device, used as a post-focus instrument of a visible solar telescope. Title: Inversion of Stokes profiles: what's next? Authors: Del Toro Iniesta, J. C.; Ruiz Cobo, B. Bibcode: 1997ftst.conf...93D Altcode: No abstract at ADS Title: 1st Advances in Solar Physics Euroconference: Advances in the Physics of Sunspots Authors: Schmieder, B.; del Toro Iniesta, J. C.; Vazquez, M. Bibcode: 1997ASPC..118.....S Altcode: 1997fasp.conf.....S No abstract at ADS Title: Inversion Techniques Applied to Sunspot Spectropolarimetric Data Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martinez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1997ASPC..118..197W Altcode: 1997fasp.conf..197W Two inversion techniques are compared: the Unno-Rachkov\-sky fitting method (UR) and the Stokes Inversion based on Response functions (SIR). Results with synthetic profiles in sunspot model atmospheres and real data show that whilst UR is well suited for recovering a constant vec B, SIR enables us to know the run with depth of vec B and the line of sight velocity together with the temperature stratification. Title: Optical Tomography of a Sunspot: Preliminary Results Authors: Westendorp Plaza, C.; del Toro Iniesta, J. C.; Ruiz Cobo, B.; Martinez Pillet, V.; Lites, B. W.; Skumanich, A. Bibcode: 1997ASPC..118..202W Altcode: 1997fasp.conf..202W Preliminary results of the inversion of spectropolarimetric maps of a sunspot observed with the Advanced Stokes Polarimeter (ASP) are presented. The method used, Stokes Inversion based on Response functions (SIR), does not assume constancy of the different parameters with depth, thus enabling us to embark on an analysis of the information at different layers in continuum optical depth (i.e. optical tomography), of a sunspot's photosphere. Maps of the vector magnetic field and other physical quantities like temperature or line-of-sight velocity at several optical depths show a new and promising view of the structure of a sunspot, casting light on long standing debates as those over penumbral `corrugated' fields (spines), superpenumbral canopies, return flux, or the nature of the Evershed effect. Title: Heights of formation for measurements of atmospheric parameters. Authors: Sanchez Almeida, J.; Ruiz Cobo, B.; del Toro Iniesta, J. C. Bibcode: 1996A&A...314..295S Altcode: We argue that heights of formation (HOFs) should not be assigned to spectral lines since a single line my sample very different layers of the atmosphere, depending on the physical parameter of interest and the technique employed to determine it. HOFs should be assigned to specific measurements. General expressions to compute these HOFs for measurements are derived. The equations are subsequently used to show, in representative solar measurements, the uncertainties produced by assigning HOFs to lines. Only weak lines can probe a single height of the atmosphere. Title: Stokes Profiles Inversion Techniques Authors: Del Toro Iniesta, J. C.; Ruiz Cobo, B. Bibcode: 1996SoPh..164..169D Altcode: Inversion techniques of the radiative transfer equation for polarized light are presented as one of the best current procedures to infer the vector magnetic field, as well as other quantities governing the physical state of the atmospheric layers that photons are coming from. Several characteristics of the various available inversion procedures are pointed out. They are mostly based on the diagnostic contents of the spectral lines as well as on the main hypotheses assumed in these procedures. In particular, the role of gradients in the atmospheric quantities is emphasized as of paramount importance in any diagnostic analysis and, hence, in any interpretation of inversion results. Title: Two-dimensional, high spatial resolution, solar spectroscopy using a Correlation Tracker. II. Maps of spectral quantities. Authors: Collados, M.; Rodriguez Hidalgo, I.; Ballesteros, E.; Ruiz Cobo, B.; Sanchez Almeida, J.; del Toro Iniesta, J. C. Bibcode: 1996A&AS..115..367C Altcode: In this paper we illustrate some of the capabilities of the Correlation Tracker prototype developed at the Instituto de Astrofisica de Canarias used for two-dimensional, high spatial resolution, solar spectroscopy. Slit spectra have been taken, using the Correlation Tracker as a stabilizer (minimizing image motion during exposures) and as an accurate positioning device (allowing to precisely locate the entrance slit of the spectrograph at adjacent positions on the solar disc). Spectral information is obtained from several solar regions of different sizes. Granules (including some exploding ones) and intergranules are clearly resolved. Several sub-arcsecond structures are undoubtedly distinguished as well. The two-dimensional variation of several spectral quantities in the solar atmosphere is shown, demonstrating the power of this technique and its future possibilities. Title: Empirical granular/intergranular average model atmospheres. Authors: Rodríguez Hidalgo, I.; Ruiz Cobo, B.; Del Toro Iniesta, J. C.; Collados, M.; Sánchez Almeida, J. Bibcode: 1996joso.proc..162R Altcode: No abstract at ADS Title: Empirical model of an average solar granule Authors: Ruiz Cobo, B.; del Toro Iniesta, J. C.; Rodriguez Hidalgo, I.; Collados, M.; Sanchez Almeida, J. Bibcode: 1996ASPC..109..155R Altcode: 1996csss....9..155R No abstract at ADS Title: On the discovery of the Zeeman effect on the sun and in the laboratory Authors: del Toro Iniesta, Jose Carlos Bibcode: 1996VA.....40..241D Altcode: The origin of the discoveries, both on the Sun and in the laboratory, of the action of a magnetic field on spectral lines—the so-called Zeeman effect—is studied. The paper embraces the period from 1866, first date of which the author is aware of observed evidences about the widening of spectral lines in sunspots (as compared to those formed in the photosphere), until 1908, year in which the magnetic filed in sunspots is definitely discovered. The interval between 1896-1897, and 1908 is mainly dealt with from an astrophysical standpoint, although there are plenty of important contributions from laboratory experiments. The reason is two-fold: on the one hand, the significant role played by the Zeeman effect on the development of quantum mechanics has suggested major historical studies that have already appeared in the literature and that are mainly concerned with laboratory—but not with astrophysical—spectroscopy; on the other hand, the understanding of the sizeable delay between Zeeman's and Hale's discoveries (12 years) seems to be of concern after accounting for the fact that the findings by the first author were soon brought to the notice of the astrophysical community. Title: LTE polarized radiative transfer through interlaced atmospheres. Authors: del Toro Iniesta, J. C.; Ruiz Cobo, B.; Bellot Rubio, L. R.; Collados, M. Bibcode: 1995A&A...294..855D Altcode: We show that the solution of the radiative transfer equation (RTE) through a line of sight that pierces several times two alternate atmospheres can be obtained in terms of the solutions of the RTE through both single atmospheres separately considered. This also applies to the response functions of the observed Stokes spectrum to perturbations of the physical quantities. The analytic solution of the RTE in case that the single atmospheres are Milne-Eddington is presented. The simplification of the solution in the case of a longitudinal or transversal (with constant azimuth) magnetic field is presented as well. Finally, as a numerical example, we synthesize the Stokes I- and V-spectrum emerging from a thin magnetic flux tube, achieving a considerable decrease in computation time with respect to conventional integrations and without loss of accuracy. Title: Observed differences between large and small sunspots. Authors: Collados, M.; Martinez Pillet, V.; Ruiz Cobo, B.; del Toro Iniesta, J. C.; Vazquez, M. Bibcode: 1994A&A...291..622C Altcode: We confirm recent results about the differences in temperature and magnetic field strength between the umbra of large and small sunspots. Five Stokes I- and V-spectra from the darkest cores of three different umbrae have been analysed with the inversion code of the radiative transfer equation by Ruiz Cobo & del Toro Iniesta (1992). The run with depth of temperature, magnetic field (strength and inclination) and velocity along the line of sight are obtained. The larger sunspots turn out to be cooler and possesing a larger magnetic field strength, practically throughout the whole atmosphere. Neither significant gradients of the line-of-sight velocity, nor of the magnetic field inclination, are detected in any of the spots analysed. Two model atmospheres are given corresponding to hot (small) and cool (large) sunspots. The models are, to a large extent, free from effects of penumbral/photospheric stray-light because it is nearly absent in the large spots and because in the small one, where it is important for the Stokes I-profile, only Stokes V is considered to obtain the model atmosphere. These are the first umbral models in the literature for which a simultaneous determination of the magnetic field and thermodynamic stratifications is presented. The implications of these stratifications for the energy transport in sunspot umbrae are discussed. Title: On the Temperature and Velocity through the Photosphere of a Sunspot Penumbra Authors: del Toro Iniesta, J. C.; Tarbell, T. D.; Ruiz Cobo, B. Bibcode: 1994ApJ...436..400D Altcode: We investigate the structure in depth of a sunspot penumbra by means of the inversion code of the radiative transfer equation proposed by Ruiz Cobo & del Toro Iniesta (1992), applied to a set of filtergrams of a sunspot, scanning the Fe I line at 5576.1 A, with a sampling interval of 30 mA, from -120 to 120 mA from line center (data previously analyzed by Title et al. 1993). The temperature structure of this penumbra is obtained for each of the 801 pixels selected (0.32 sec x 0.32 sec). On the average, the temperatures seem to decrease as we move inward, but the differences are of the order of the rms values (approximately equal 100-200 K) at a given distance to sunspot center. The outer parts of the penumbra have also a bigger curvature in the T versus log tau5 relation than the inner parts. We realize, however, that these differences might be influenced by possible stray light effects. Compared to the quiet Sun, penumbral temperatures are cooler at deep layers and hotter at high layers. A mean penumbral model atmosphere is presented. The asymmetries observed in the intensity profile (the line is magnetically insensitive) are deduced to be produced by strong gradients of the line-of-sight velocity that sharply vary spatially along slices of almost constant distance to sunspot center. These variations suggest that such gradients are not only needed to explain the broadband circular polarization observed in sunspots (see Sanchez Almeida & Lites 1992) but are a main characteristic of the fine-scale penumbra. The results are compatible with an Evershed flow present everywhere, but its gradient with depth turns out to vary so that the flow seems to be mainly concentrated in some penumbral fibrils when studied through Dopplergrams. Finally, as by-products of this study, we put constraints to the practical usefulness of the Eddington-Barbier relation, and we explain the values of the Fourier Dopplergrams to be carrying information of layers around the centroid of the generalized response function of Dopplergrams to velocity fluctuations. Title: On the sensitivity of Stokes profiles to physical quantities. Authors: Ruiz Cobo, B.; del Toro Iniesta, J. C. Bibcode: 1994A&A...283..129R Altcode: 1994A&A...283..129C A thorough analysis of the sensitivities of the four Stokes profiles to the physical quantities involved in the local thermodynamic equilibrium (LTE) line formation is presented. We point out the ambiguities on the definition of a mean depth of formation of a given spectral line and on the use of Contribution Functions for the ascription of a measure to a given depth in the atmosphere. Response Functions behave like partial derivatives of the Stokes spectrum at a given depth of the atmosphere. They provide the sensitivities of the observed spectrum to the physical quantities characterizing the state of the atmosphere. After a theoretical generalization of any measured parameter over the spectrum, we extend the concept of Response Functions for such parameters; in detail are discussed the properties and sensitivities of the equivalent width, the Stokes V peaks distance, the line-ratio method, and the centre of gravity method. Of particualr interest are the following results : (1) a constant and longitudinal magnetic field can desaturate a spectral line with a Zeeman pattern other than a pure Zeeman triplet; (2) saturation is readily understood as a consequence of an enhencement of the photon supply; and (3) methods to measure magnetic field strength are sensitive to temperature variations, mostly if a field strength gradient is present through the photosphere. Title: Vertical Stratification of a Sunspot Penumbra Authors: del Toro Iniesta, J. C.; Tarbell, T. D.; Ruiz Cobo, B. Bibcode: 1993BAAS...25Q1221D Altcode: No abstract at ADS Title: Inversion of Stokes Profiles Authors: Ruiz Cobo, B.; del Toro Iniesta, J. C. Bibcode: 1992ApJ...398..375R Altcode: An inversion code of Stokes line profiles is presented. It allows the recovery of the stratification of the temperature, the magnetic field vector, and the line of sight velocity through the atmosphere, and the micro- and macroturbulence velocities - which are assumed to be constant with depth. It is based on the response functions, which enter a Marquardt nonlinear least-squares algorithm in a natural way. Response functions are calculated at the same time as the full radiative transfer equation for polarized light is integrated. This enables us to obtain values of many free parameters in a reasonable computation time. Many numerical experiments have been performed in order to check the behavior of the code. These experiments reveal the high stability, accuracy, and uniqueness of the results, even when simulated observations present signal-to-noise ratios of the order of the lowest acceptable values in real observations. Title: From Filtergrams to Physical Atmospheric Magnitudes: A Prospective Diagnostic Authors: del Toro Iniesta, J. C.; Tarbell, T.; Ruiz Cobo, B. Bibcode: 1992AAS...181.8115D Altcode: 1992BAAS...24.1255D No abstract at ADS Title: Spectropolarimetry of active regions. Authors: Del Toro Iniesta, J. C.; Martínez Pillet, V.; Vázquez, M. Bibcode: 1991sopo.work..224D Altcode: A circular analyzer has been used at the focal plane of a telescope in days of absence of instrumental polarization to simultaneously record I±V spectrograms at two different wavelength ranges: ≡6300 Å and ≡3930 - 3970 Å. The observations have been analyzed within two, also different, frames: on the one hand, an empirical relationship between brightness temperature and the magnetic field strength has been found for sunspot umbrae, which allows a determination of the Wilson depression; on the other, estimates of the chromospheric longitudinal component of the magnetic field (magnetic flux if the filling factor is not unity) in two umbrae, in a penumbra, and in a plage have been found by using profiles of the resonance lines H and K of Ca II. A ratio of order 2 - 3 between the longitudinal components of the field at the chromospheric height of formation of the Ca II lines and the photospheric height of formation of the 6302.5 Å Fe I line is also found in umbrae. Title: Circular Polarization of the CA II H and K Lines in Solar Quiet and Active Regions Authors: Martinez Pillet, V.; Garcia Lopez, R. J.; del Toro Iniesta, J. C.; Rebolo, R.; Vazquez, M.; Beckman, J. E.; Char, S. Bibcode: 1990ApJ...361L..81M Altcode: A representative set of profiles is presented for the Ca II H resonace line in Stokes V and I, for the quiet sun, plages, sunspot umbrae, and a flare, as well as one example of the Ca II K line in a sunspot penumbra. The degree of polarization is highest in the spots and zero in the quiet sun, within error limits. The V profile asymmetries are, however, highest in the flare. The spectra of the Ca II K line are used to obtain a linear relation between V(lambda) and -dI/d(lambda) and a value for B(parallel) of 820 + or - 40 G using the weak-field approximation. Title: Numerical Test of a New V-Profile Inversion Technique Authors: Ruiz Cobo, B.; del Toro Iniesta, J. C.; Collados, M.; Sanchez Almeida, J. Bibcode: 1990Ap&SS.170..113R Altcode: The diagnostic method proposed by Landi Degl'Innocenti and Landolfi (1982), based on the observation of circular polarization, has been generalized to derive the thermodynamic properties of unresolved magnetic elements in the solar atmosphere. The final aim is to derive the height dependence of several parameters of the flux tube atmosphere (such as temperature, magnetic field and velocity distributions, macroturbulence and filling factor). We have used a perturbation method based on the concept of response functions for the Stokes profiles introduced by Landi Degl'Innocenti and Landi Degl'Innocenti (1977). We present here the preliminary results of invertingV-profiles by an iterative standard least-squares technique, which allows to find the magnetic 1-D atmosphere consistent with simulated data. Title: Facular points and small-scale magnetic elements Authors: del Toro Iniesta, J. C.; Collados, M.; Sanchez Almeida, J.; Martinez Pillet, V.; Ruiz Cobo, B. Bibcode: 1990Ap&SS.170....9D Altcode: We present spectroscopic observations, with high spatial resolution, of Ca ii K bright points very near the disc centre. Magnetic concentrations have been detected in these network (facular) points by only using intensity profiles of the well-known pair of lines Fe i5250.22 Å and 5247.06 Å. No brightening of these structures with respect to the quiet photosphere can be ascertained within an accuracy threshold of 1.2%. Title: Velocity Fields Associated with the Magnetic Component of Solar Faculae Authors: Sanchez Almeida, J.; Collados, M.; del Toro Iniesta, J. C. Bibcode: 1990Ap&SS.170...31S Altcode: The StokesV asymmetries observed in solar faculae can be interpreted by invoking the presence of magnetic and velocity fields variations along the line-of-sight. By means of a perturbative approach, we develop the theoretical dependence on magnetic and velocity fields of the StokesV profile around its zero-crossing point. We find that the empirical curves of growth for theV zero-crossing point and the slope, as well as the curve of growth for the integral (previously derived by Sánchez Almeidaet al., 1989, through the same approach), are reproduced quite well with a single atmosphere which assumes such simultaneous variations. The depth dependence of the fields that give the best fit in our model presents several striking properties which cannot be released without totally compromising the goodness of the fit. Namely, the magnetic field strength increases towards the observer while the downflowing velocity field decreases. Both variations must occur co-spatially, in the same atmospheric layers. This fact seems to contradict theoretical models for the fanning out parts of magnetic concentrations which foresee a sharp separation between a static magnetic layer and a deep zone with velocity fields. We discuss a possible solution of such contradiction in terms of a finite optical thickness of the boundary layer between zones with and without magnetic field in faculae. Title: Are small-scale magnetic concentrations spatially coincident with bright facular points? Authors: del Toro Iniesta, J. C.; Collados, M.; Sanchez Almeida, J.; Martinez Pillet, V.; Ruiz Cobo, B. Bibcode: 1990A&A...233..570D Altcode: The usually assumed identification of small-scale magnetic concentrations with bright facular or network points on the photosphere is observationally checked by using high spatial resolution spectra of Ca II K bright points very near the disk center. The detection of spatially unresolved magnetic structures is made via a new differential analysis of the well-known pair of Fe I lines 5247.06 A and 5250.22 A; these concentrations are present in the central part of a line weakening zone, which is of some 2 arcsec wide. No continuum intensity enhancement with respect to the quiet photosphere can be ascertained of these structures, within an accuracy threshold of 1.2 percent. In spite of this, magnetic concentrations brighter than the quiet photosphere are compatible with the observations, but if so, they must be narrower than 0.2 arcsec. Title: Spectropolarimetry of solar faculae - High spatial resolution results Authors: del Toro Iniesta, J. C.; Collados, M.; Sanchez Almeida, J.; Semel, M. Bibcode: 1990A&A...227..591D Altcode: A new method to measure the magnetic field strength of small-scale solar magnetic concentrations is presented. It is based on the center of gravity method (Semel, 1967), is independent of radiative transfer calculations and only observable parameters are needed. This method also provides parameters like filling factor (area fraction occupied by the tubes), continuum intensity contrast between flux tubes and their surroundings, in a two-component model scheme. The method is applied to spectropolarimetric high spatial resolution data. Local variations of the above parameters inside single faculae are found. This result suggests some indications about flux tube evolution. A comparison with low spatial resolution results is also made. Title: On the generation of the net circular polarization observed in solar faculae Authors: Sanchez Almeida, J.; Collados, M.; del Toro Iniesta, J. C. Bibcode: 1989A&A...222..311S Altcode: The net circular polarization observed in solar faculae (Stenflo et al., 1984) follows a law expected from the combination of velocity and magnetic field gradients in the photosphere. To show this, the theoretical curve of growth (net circular polarization produced by a single line versus its absorption coefficient) predicted by this mechanism is developed. An empirical curve of growth with more than 80 Fe I lines is also constructed. The agreement between theory and observation seems to point toward this mechanism as responsible for circular polarization in faculae at the disk center. Title: Les facules solaires ou comment observer l'invisible. Authors: Sanchez Almeida, J.; Collados, M.; Del Toro Iniesta, J. C. Bibcode: 1989Rech...20..810S Altcode: 1989Rech...20..810A No abstract at ADS Title: An explanation for the Stokes V asymmetry in solar faculae Authors: Sanchez Almeida, J.; Collados, M.; del Toro Iniesta, J. C. Bibcode: 1988A&A...201L..37S Altcode: The asymmetry in the Stokes V profile observed in solar faculae can be explained by assuming that the magnetic field increases with height while downflow speed decreases. The MHD compatibility of such solution is briefly discussed together with an observational test for that possibility. Title: Magnetic field strength in solar flux tubes - A model atmosphere independent determination Authors: Sanchez Almeida, J.; Collados, M.; del Toro Iniesta, J. C.; Solanki, S. K. Bibcode: 1988A&A...196..266S Altcode: The "line ratio method" (Stenflo, 1973) has been extensively used in the past to carry out measurements of the magnetic field strength in spatially unresolved magnetic flux concentrations. The authors present here a new variant of this technique, which is particularly simple as it does not depend on any radiative transfer calculations and thus the assumption of a model atmosphere is not required. General properties of the transfer equation lead to a relationship between the circular polarization generated by two lines which are identical except for their Landé factors. This can be used to directly determine the field strength from the measured line profiles. In order to test the method the authors have applied it to experimental data. A comparison with the traditional line ratio method is shown. Title: Photometry of sunspot penumbrae Authors: Collados, M.; del Toro Iniesta, J. C.; Vazquez, M. Bibcode: 1988A&A...195..315C Altcode: The authors present the results of a statistical analysis of the penumbra of sunspots. The intensity distribution, and several parameters derived from it, is analysed at different heliocentric angles and positions on the spot. It has revealed, on the one hand, that a two-component model is compatible with the observations and that both components lie at the same height, and on the other, that the penumbral asymmetry found by Collados et al. (1987) is confirmed under a photometrical point of view, the western penumbra being slightly shorter than the eastern one. Title: On the Age Dependence of the Asymmetry of Penumbrae of Sunspots Authors: Collados, M.; del Toro Iniesta, J. C.; Vazquez, M.; Woehl, H. Bibcode: 1988SoPh..117..199C Altcode: The age dependence of the recently described asymmetry of penumbrae of large stable sunspots was analyzed. Young sunspots showed shorter eastern penumbrae, which differed by a maximum of ± 10 % from their mean width. For older sunspots the western penumbrae became smaller than the mean penumbra reaching differences of 20 % for spots of two months age. Title: A Statistical Study of the Geometrical Wilson Effect Authors: Collados, M.; del Toro Iniesta, J. C.; Vazquez, M. Bibcode: 1987SoPh..112..281C Altcode: An analysis has been carried out of the centre-to-limb variation of the apparent sizes of the umbra, penumbra and whole spot. It has revealed that the umbral size decreases with height. We have interpreted this result in terms of the penumbral geometrical height scale. A value of 230 km, which is larger than that of the photosphere or the umbra, explains the observed decrease. An intrinsic asymmetry in the penumbra of old sunspots has also been found, the western penumbra being slightly shorter that the rest of the penumbra. This explains why the inverse Wilson effect is present, preferentially, in the western hemisphere, as found in previous investigations. A comparison with other works is also made. Title: Observations of the Magnetic Fine Structure of a Facula Authors: del Toro Iniesta, J. C.; Semel, M.; Collados, M. Bibcode: 1987rfsm.conf..122D Altcode: No abstract at ADS Title: Continuum intensity and magnetic flux of solar fluxtubes. Authors: Del Toro Iniesta, J. C.; Semel, M.; Collados, M.; Sánchez Almeida, J. Bibcode: 1987PAICz..66..265D Altcode: 1987eram....1..265D The continuum contrast between fluxtubes and their quiet background, and the magnetic flux carried by these magnetic elements, have been determined at different points of a solar facula, in the frame of a two-component model from spectropolarimetric observations of 1arcsec spatial resolution. Local spatial variations of these two parameters have been obtained. Title: The Wilson Effect in Sunspots Authors: Collados, M.; del Toro Iniesta, J. C.; Vázquez, M. Bibcode: 1987rfsm.conf..183C Altcode: An analysis of the center to limb variation of the geometrical properties of spots has been carried out. It has revealed that spots do not have a symmetrical behaviour with respect to the centre of solar disk. Thus, the Wilson effect is not zero at δ = 0°, but at δ ≡ 45°W. Moreover, the inverse Wilson effect is the general rule in that interval, while the normal phenomenon is maximum at a heliocentric angle of 40° - 50°E. Title: Intensity profiles in fluxtubes. Authors: Sanches Almeida, J.; Collados, M.; del Toro Iniesta, J. C.; Solanki, S. K. Bibcode: 1987PAICz..66..261S Altcode: 1987eram....1..261S Spectroscopic analysis of the light coming from an atmosphere is a powerful tool for revealing its properties. The problem when using conventional spectroscopy for solar fluxtubes is their unresolved character: magnetic and non-magnetic regions of a plage have to be observed as a whole. With the aim of obtaining the true intensity spectrum of an unresolved tube, the authors have developed a simple method which can reconstruct the intensity generated in the magnetic component. Only observed parameters are used: intensity and circular polarization in the plage and intensity in the quiet photosphere. Title: The Intensity Distribution in Sunspot Penumbras Authors: Collados, M.; del Toro Iniesta, J. C.; Vázquez, M. Bibcode: 1987rfsm.conf..214C Altcode: The intensity distribution of the penumbra at different stages of evolution has been analyzed. The results have been different for both evolved and primitive penumbras. While the former present almost symmetrical, single-peaked histograms, the same does not occur for the latter, their distributions being, preferentially, asymmetrical or double-peaked. These results are interpreted in terms of bright and dark elements. Thus, an evolutionary process has been proposed to explain the diverse characteristics found at the different stages. Title: Observations of the magnetic fine structure of a facula. Authors: Del Toro Iniesta, J. C.; Semel, M.; Collados, M. Bibcode: 1987rfsm.conf..127D Altcode: Simultaneous spectropolarimetric observations of a facula have been carried out in 10 spectral lines with a spatial resolution of 1arcsec. Local variations of the magnetic field strength and the filling factor of fluxtubes were obtained. The analysis of the velocities inside fluxtubes shows that positive and negative Doppler shifts are present, at the same time, at different points of the facula.