Author name code: jordan-stuart ADS astronomy entries on 2022-09-14 author:"Jordan, Stuart D." ------------------------------------------------------------------------ Title: Gaia Data Release 3: Summary of the content and survey properties Authors: Gaia Collaboration; Vallenari, A.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordoørcit, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere, A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Edvardsson, B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Jorissen, A.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylo, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220800211G Altcode: We present the third data release of the European Space Agency's Gaia mission, GDR3. The GDR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. The GDR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, G$_{BP}$, and G$_{RP}$ pass-bands already present in the Early Third Data Release. GDR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges $G_{rvs} < 14$ and $3100 <T_{eff} <14500 $, have new determinations of their mean radial velocities based on data collected by Gaia. We provide G$_{rvs}$ magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The GDR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BPRP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. GDR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some $800\,000$ astrometric, spectroscopic and eclipsing binaries. More than $150\,000$ Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BPRP spectral data are published for about 60\,000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey (abridged) Title: Gaia Data Release 3: Mapping the asymmetric disc of the Milky Way Authors: Gaia Collaboration; Drimmel, R.; Romero-Gomez, M.; Chemin, L.; Ramos, P.; Poggio, E.; Ripepi, V.; Andrae, R.; Blomme, R.; Cantat-Gaudin, T.; Castro-Ginard, A.; Clementini, G.; Figueras, F.; Fouesneau, M.; Fremat, Y.; Jardine, K.; Khanna, S.; Lobel, A.; Marshall, D. J.; Muraveva, T.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordoørcit, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere, A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Chaoul, L.; Charlot, P.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Edvardsson, B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Jorissen, A.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylo, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220606207G Altcode: With the most recent Gaia data release the number of sources with complete 6D phase space information (position and velocity) has increased to well over 33 million stars, while stellar astrophysical parameters are provided for more than 470 million sources, in addition to the identification of over 11 million variable stars. Using the astrophysical parameters and variability classifications provided in Gaia DR3, we select various stellar populations to explore and identify non-axisymmetric features in the disc of the Milky Way in both configuration and velocity space. Using more about 580 thousand sources identified as hot OB stars, together with 988 known open clusters younger than 100 million years, we map the spiral structure associated with star formation 4-5 kpc from the Sun. We select over 2800 Classical Cepheids younger than 200 million years, which show spiral features extending as far as 10 kpc from the Sun in the outer disc. We also identify more than 8.7 million sources on the red giant branch (RGB), of which 5.7 million have line-of-sight velocities, allowing the velocity field of the Milky Way to be mapped as far as 8 kpc from the Sun, including the inner disc. The spiral structure revealed by the young populations is consistent with recent results using Gaia EDR3 astrometry and source lists based on near infrared photometry, showing the Local (Orion) arm to be at least 8 kpc long, and an outer arm consistent with what is seen in HI surveys, which seems to be a continuation of the Perseus arm into the third quadrant. Meanwhile, the subset of RGB stars with velocities clearly reveals the large scale kinematic signature of the bar in the inner disc, as well as evidence of streaming motions in the outer disc that might be associated with spiral arms or bar resonances. (abridged) Title: Gaia Data Release 3: The extragalactic content Authors: Gaia Collaboration; Bailer-Jones, C. A. L.; Teyssier, D.; Delchambre, L.; Ducourant, C.; Garabato, D.; Hatzidimitriou, D.; Klioner, S. A.; Rimoldini, L.; Bellas-Velidis, I.; Carballo, R.; Carnerero, M. I.; Diener, C.; Fouesneau, M.; Galluccio, L.; Gavras, P.; Krone-Martins, A.; Raiteri, C. M.; Teixeira, R.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Frémat, Y.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Altmann, M.; Andrae, R.; Audard, M.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M. S.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220605681G Altcode: The Gaia Galactic survey mission is designed and optimized to obtain astrometry, photometry, and spectroscopy of nearly two billion stars in our Galaxy. Yet as an all-sky multi-epoch survey, Gaia also observes several million extragalactic objects down to a magnitude of G~21 mag. Due to the nature of the Gaia onboard selection algorithms, these are mostly point-source-like objects. Using data provided by the satellite, we have identified quasar and galaxy candidates via supervised machine learning methods, and estimate their redshifts using the low resolution BP/RP spectra. We further characterise the surface brightness profiles of host galaxies of quasars and of galaxies from pre-defined input lists. Here we give an overview of the processing of extragalactic objects, describe the data products in Gaia DR3, and analyse their properties. Two integrated tables contain the main results for a high completeness, but low purity (50-70%), set of 6.6 million candidate quasars and 4.8 million candidate galaxies. We provide queries that select purer sub-samples of these containing 1.9 million probable quasars and 2.9 million probable galaxies (both 95% purity). We also use high quality BP/RP spectra of 43 thousand high probability quasars over the redshift range 0.05-4.36 to construct a composite quasar spectrum spanning restframe wavelengths from 72-100 nm. Title: Gaia Data Release 3: Reflectance spectra of Solar System small bodies Authors: Gaia Collaboration; Galluccio, L.; Delbo, M.; De Angeli, F.; Pauwels, T.; Tanga, P.; Mignard, F.; Cellino, A.; Brown, A. G. A.; Muinonen, K.; Penttila, A.; Jordan, S.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castaneda, J.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nunez Campos, M.; Delchambre, L.; Dell Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janssen, K.; Jevardat de Fombelle, G.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Osborne, P.; Pancino, E.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núnez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núnez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hadczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kospál, A; Kostrzewa-Rutkowska, Z.; Kruszynska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocana, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Penalosa Esteller, X.; Petit, J. -M.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núnez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santovena, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220612174G Altcode: The Gaia mission of the European Space Agency (ESA) has been routinely observing Solar System objects (SSOs) since the beginning of its operations in August 2014. The Gaia data release three (DR3) includes, for the first time, the mean reflectance spectra of a selected sample of 60 518 SSOs, primarily asteroids, observed between August 5, 2014, and May 28, 2017. Each reflectance spectrum was derived from measurements obtained by means of the Blue and Red photometers (BP/RP), which were binned in 16 discrete wavelength bands. We describe the processing of the Gaia spectral data of SSOs, explaining both the criteria used to select the subset of asteroid spectra published in Gaia DR3, and the different steps of our internal validation procedures. In order to further assess the quality of Gaia SSO reflectance spectra, we carried out external validation against SSO reflectance spectra obtained from ground-based and space-borne telescopes and available in the literature. For each selected SSO, an epoch reflectance was computed by dividing the calibrated spectrum observed by the BP/RP at each transit on the focal plane by the mean spectrum of a solar analogue. The latter was obtained by averaging the Gaia spectral measurements of a selected sample of stars known to have very similar spectra to that of the Sun. Finally, a mean of the epoch reflectance spectra was calculated in 16 spectral bands for each SSO. The agreement between Gaia mean reflectance spectra and those available in the literature is good for bright SSOs, regardless of their taxonomic spectral class. We identify an increase in the spectral slope of S-type SSOs with increasing phase angle. Moreover, we show that the spectral slope increases and the depth of the 1 um absorption band decreases for increasing ages of S-type asteroid families. Title: Gaia Data Release 3: A Golden Sample of Astrophysical Parameters Authors: Gaia Collaboration; Creevey, O. L.; Sarro, L. M.; Lobel, A.; Pancino, E.; Andrae, R.; Smart, R. L.; Clementini, G.; Heiter, U.; Korn, A. J.; Fouesneau, M.; Frémat, Y.; De Angeli, F.; Vallenari, A.; Harrison, D. L.; Thévenin, F.; Reylé, C.; Sordo, R.; Garofalo, A.; Brown, A. G. A.; Eyer, L.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Ducourant, C.; Evans, D. W.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; Fabricius, C.; Galluccio, L.; Guerrier, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pauwels, T.; Recio-Blanco, A.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220605870G Altcode: Gaia Data Release 3 (DR3) provides a wealth of new data products for the astronomical community to exploit, including astrophysical parameters for a half billion stars. In this work we demonstrate the high quality of these data products and illustrate their use in different astrophysical contexts. We query the astrophysical parameter tables along with other tables in Gaia DR3 to derive the samples of the stars of interest. We validate our results by using the Gaia catalogue itself and by comparison with external data. We have produced six homogeneous samples of stars with high quality astrophysical parameters across the HR diagram for the community to exploit. We first focus on three samples that span a large parameter space: young massive disk stars (~3M), FGKM spectral type stars (~3M), and UCDs (~20K). We provide these sources along with additional information (either a flag or complementary parameters) as tables that are made available in the Gaia archive. We furthermore identify 15740 bone fide carbon stars, 5863 solar-analogues, and provide the first homogeneous set of stellar parameters of the Spectro Photometric Standard Stars. We use a subset of the OBA sample to illustrate its usefulness to analyse the Milky Way rotation curve. We then use the properties of the FGKM stars to analyse known exoplanet systems. We also analyse the ages of some unseen UCD-companions to the FGKM stars. We additionally predict the colours of the Sun in various passbands (Gaia, 2MASS, WISE) using the solar-analogue sample. Title: Gaia Data Release 3: Pulsations in main sequence OBAF-type stars Authors: Gaia Collaboration; De Ridder, J.; Ripepi, V.; Aerts, C.; Palaversa, L.; Eyer, L.; Holl, B.; Audard, M.; Rimoldini, L.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hilger, T.; Hodgkin, S. T.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220606075G Altcode: The third Gaia data release provides photometric time series covering 34 months for about 10 million stars. For many of those stars, a characterisation in Fourier space and their variability classification are also provided. This paper focuses on intermediate- to high-mass (IHM) main sequence pulsators M >= 1.3 Msun) of spectral types O, B, A, or F, known as beta Cep, slowly pulsating B (SPB), delta Sct, and gamma Dor stars. These stars are often multi-periodic and display low amplitudes, making them challenging targets to analyse with sparse time series. All datasets used in this analysis are part of the Gaia DR3 data release. The photometric time series were used to perform a Fourier analysis, while the global astrophysical parameters necessary for the empirical instability strips were taken from the Gaia DR3 gspphot tables, and the vsini data were taken from the Gaia DR3 esphs tables. We show that for nearby OBAF-type pulsators, the Gaia DR3 data are precise and accurate enough to pinpoint them in the Hertzsprung-Russell diagram. We find empirical instability strips covering broader regions than theoretically predicted. In particular, our study reveals the presence of fast rotating gravity-mode pulsators outside the strips, as well as the co-existence of rotationally modulated variables inside the strips as reported before in the literature. We derive an extensive period-luminosity relation for delta Sct stars and provide evidence that the relation features different regimes depending on the oscillation period. Finally, we demonstrate how stellar rotation attenuates the amplitude of the dominant oscillation mode of delta Sct stars. Title: Gaia Data Release 3: Stellar multiplicity, a teaser for the hidden treasure Authors: Gaia Collaboration; Arenou, F.; Babusiaux, C.; Barstow, M. A.; Faigler, S.; Jorissen, A.; Kervella, P.; Mazeh, T.; Mowlavi, N.; Panuzzo, P.; Sahlmann, J.; Shahaf, S.; Sozzetti, A.; Bauchet, N.; Damerdji, Y.; Gavras, P.; Giacobbe, P.; Gosset, E.; Halbwachs, J. -L.; Holl, B.; Lattanzi, M. G.; Leclerc, N.; Morel, T.; Pourbaix, D.; Re Fiorentin, P.; Sadowski, G.; Ségransan, D.; Siopis, C.; Teyssier, D.; Zwitter, T.; Planquart, L.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Bastian, U.; Drimmel, R.; Jansen, F.; Katz, D.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Haigron, R.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Smith, M.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Bartolomé, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Blazere, A.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gerlach, E.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sáez Núñez, A.; Sagristà Sellés, A.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M. S.; Sciacca, E.; Segol, M.; Segovia, J. C.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S. Bibcode: 2022arXiv220605595G Altcode: The Gaia DR3 Catalogue contains for the first time about eight hundred thousand solutions with either orbital elements or trend parameters for astrometric, spectroscopic and eclipsing binaries, and combinations of them. This paper aims to illustrate the huge potential of this large non-single star catalogue. Using the orbital solutions together with models of the binaries, a catalogue of tens of thousands of stellar masses, or lower limits, partly together with consistent flux ratios, has been built. Properties concerning the completeness of the binary catalogues are discussed, statistical features of the orbital elements are explained and a comparison with other catalogues is performed. Illustrative applications are proposed for binaries across the H-R diagram. The binarity is studied in the RGB/AGB and a search for genuine SB1 among long-period variables is performed. The discovery of new EL CVn systems illustrates the potential of combining variability and binarity catalogues. Potential compact object companions are presented, mainly white dwarf companions or double degenerates, but one candidate neutron star is also presented. Towards the bottom of the main sequence, the orbits of previously-suspected binary ultracool dwarfs are determined and new candidate binaries are discovered. The long awaited contribution of Gaia to the analysis of the substellar regime shows the brown dwarf desert around solar-type stars using true, rather than minimum, masses, and provides new important constraints on the occurrence rates of substellar companions to M dwarfs. Several dozen new exoplanets are proposed, including two with validated orbital solutions and one super-Jupiter orbiting a white dwarf, all being candidates requiring confirmation. Beside binarity, higher order multiple systems are also found. Title: Gaia Data Release 3: Chemical cartography of the Milky Way Authors: Gaia Collaboration; Recio-Blanco, A.; Kordopatis, G.; de Laverny, P.; Palicio, P. A.; Spagna, A.; Spina, L.; Katz, D.; Re Fiorentin, P.; Poggio, E.; McMillan, P. J.; Vallenari, A.; Lattanzi, M. G.; Seabroke, G. M.; Casamiquela, L.; Bragaglia, A.; Antoja, T.; Bailer-Jones, C. A. L.; Andrae, R.; Fouesneau, M.; Cropper, M.; Cantat-Gaudin, T.; Heiter, U.; Bijaoui, A.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Klioner, S. A.; Lammers, U. L.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bastian, U.; Drimmel, R.; Jansen, F.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Fabricius, C.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anders, F.; Anderson, R. I.; Anglada Varela, E.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bernet, M.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Edvardsson, B.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; González-Vidal, J. J.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Ramos, P.; Ramos-Lerate, M.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torra, F.; Torra, J.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220605534G Altcode: Gaia DR3 opens a new era of all-sky spectral analysis of stellar populations thanks to the nearly 5.6 million stars observed by the RVS and parametrised by the GSP-spec module. The all-sky Gaia chemical cartography allows a powerful and precise chemo-dynamical view of the Milky Way with unprecedented spatial coverage and statistical robustness. First, it reveals the strong vertical symmetry of the Galaxy and the flared structure of the disc. Second, the observed kinematic disturbances of the disc -- seen as phase space correlations -- and kinematic or orbital substructures are associated with chemical patterns that favour stars with enhanced metallicities and lower [alpha/Fe] abundance ratios compared to the median values in the radial distributions. This is detected both for young objects that trace the spiral arms and older populations. Several alpha, iron-peak elements and at least one heavy element trace the thin and thick disc properties in the solar cylinder. Third, young disc stars show a recent chemical impoverishment in several elements. Fourth, the largest chemo-dynamical sample of open clusters analysed so far shows a steepening of the radial metallicity gradient with age, which is also observed in the young field population. Finally, the Gaia chemical data have the required coverage and precision to unveil galaxy accretion debris and heated disc stars on halo orbits through their [alpha/Fe] ratio, and to allow the study of the chemo-dynamical properties of globular clusters. Gaia DR3 chemo-dynamical diagnostics open new horizons before the era of ground-based wide-field spectroscopic surveys. They unveil a complex Milky Way that is the outcome of an eventful evolution, shaping it to the present day (abridged). Title: Gaia Early Data Release 3: The celestial reference frame (Gaia-CRF3) Authors: Gaia Collaboration; Klioner, S. A.; Lindegren, L.; Mignard, F.; Hernández, J.; Ramos-Lerate, M.; Bastian, U.; Biermann, M.; Bombrun, A.; de Torres, A.; Gerlach, E.; Geyer, R.; Hilger, T.; Hobbs, D.; Lammers, U. L.; McMillan, P. J.; Steidelmüller, H.; Teyssier, D.; Raiteri, C. M.; Bartolomé, S.; Bernet, M.; Castañeda, J.; Clotet, M.; Davidson, M.; Fabricius, C.; Garralda Torres, N.; González-Vidal, J. J.; Portell, J.; Rowell, N.; Torra, F.; Torra, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Arenou, F.; Babusiaux, C.; Creevey, O. L.; Ducourant, C.; Evans, D. W.; Eyer, L.; Guerra, R.; Hutton, A.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Tanga, P.; Walton, N. A.; Bailer-Jones, C. A. L.; Drimmel, R.; Jansen, F.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; De Angeli, F.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; Guerrier, A.; Heiter, U.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Thévenin, F.; Gracia-Abril, G.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P. W.; Busonero, D.; Busso, G.; Cánovas, H.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; de Teodoro, P.; Nuñez Campos, M.; Delchambre, L.; Dell'Oro, A.; Esquej, P.; Fernández-Hernández, J.; Fraile, E.; Garabato, D.; García-Lario, P.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Reylé, C.; Riello, M.; Rimoldini, L.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Utrilla, E.; van Leeuwen, M.; Abbas, U.; Ábrahám, P.; Abreu Aramburu, A.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Aldea-Montero, F.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bassilana, J. -L.; Bauchet, N.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Binnenfeld, A.; Blanco-Cuaresma, S.; Boch, T.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiaramida, V.; Chiavassa, A.; Chornay, N.; Comoretto, G.; Contursi, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Cropper, M.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delisle, J. -B.; Demouchy, C.; Dharmawardena, T. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Enke, H.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fournier, Y.; Fouron, C.; Fragkoudi, F.; Gai, M.; Garcia-Gutierrez, A.; Garcia-Reinaldos, M.; García-Torres, M.; Garofalo, A.; Gavel, A.; Gavras, P.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; González-Núñez, J.; González-Santamaría, I.; Granvik, M.; Guillout, P.; Guiraud, J.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Helmer, A.; Helmi, A.; Sarmiento, M. H.; Hidalgo, S. L.; Hładczuk, N.; Holland, G.; Huckle, H. E.; Jardine, K.; Jasniewicz, G.; Jean-Antoine Piccolo, A.; Jiménez-Arranz, Ó.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kordopatis, G.; Korn, A. J.; Kóspál, Á; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Kun, M.; Laizeau, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E. L.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lorca, A.; Loup, C.; Madrero Pardo, P.; Magdaleno Romeo, A.; Managau, S.; Mann, R. G.; Manteiga, M.; Marchant, J. M.; Marconi, M.; Marcos, J.; Marcos Santos, M. M. S.; Marín Pina, D.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Polo, L. Martin; Martín-Fleitas, J. M.; Marton, G.; Mary, N.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Monari, G.; Monguió, M.; Montegriffo, P.; Montero, A.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morris, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Nagy, Z.; Noval, L.; Ocaña, F.; Ogden, A.; Ordenovic, C.; Osinde, J. O.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Pallas-Quintela, L.; Panahi, A.; Payne-Wardenaar, S.; Peñalosa Esteller, X.; Penttilä, A.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Rambaux, N.; Ramos, P.; Re Fiorentin, P.; Regibo, S.; Richards, P. J.; Rios Diaz, C.; Ripepi, V.; Riva, A.; Rix, H. -W.; Rixon, G.; Robichon, N.; Robin, A. C.; Robin, C.; Roelens, M.; Rogues, H. R. O.; Rohrbasser, L.; Romero-Gómez, M.; Royer, F.; Ruz Mieres, D.; Rybicki, K. A.; Sadowski, G.; Sáez Núñez, A.; Sagristà Sellés, A.; Sahlmann, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Silvelo, A.; Slezak, E.; Slezak, I.; Smart, R. L.; Snaith, O. N.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spina, L.; Spoto, F.; Steele, I. A.; Stephenson, C. A.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Taylor, M. B.; Teixeira, R.; Tolomei, L.; Tonello, N.; Torralba Elipe, G.; Trabucchi, M.; Tsounis, A. T.; Turon, C.; Ulla, A.; Unger, N.; Vaillant, M. V.; van Dillen, E.; van Reeven, W.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zwitter, T. Bibcode: 2022arXiv220412574G Altcode: Gaia-CRF3 is the celestial reference frame for positions and proper motions in the third release of data from the Gaia mission, Gaia DR3 (and for the early third release, Gaia EDR3, which contains identical astrometric results). The reference frame is defined by the positions and proper motions at epoch 2016.0 for a specific set of extragalactic sources in the (E)DR3 catalogue. We describe the construction of Gaia-CRF3, and its properties in terms of the distributions in magnitude, colour, and astrometric quality. Compact extragalactic sources in Gaia DR3 were identified by positional cross-matching with 17 external catalogues of quasars (QSO) and active galactic nuclei (AGN), followed by astrometric filtering designed to remove stellar contaminants. Selecting a clean sample was favoured over including a higher number of extragalactic sources. For the final sample, the random and systematic errors in the proper motions are analysed, as well as the radio-optical offsets in position for sources in the third realisation of the International Celestial Reference Frame (ICRF3). The Gaia-CRF3 comprises about 1.6 million QSO-like sources, of which 1.2 million have five-parameter astrometric solutions in Gaia DR3 and 0.4 million have six-parameter solutions. The sources span the magnitude range G = 13 to 21 with a peak density at 20.6 mag, at which the typical positional uncertainty is about 1 mas. The proper motions show systematic errors on the level of 12 ${\mu}$as yr${}^{-1}$ on angular scales greater than 15 deg. For the 3142 optical counterparts of ICRF3 sources in the S/X frequency bands, the median offset from the radio positions is about 0.5 mas, but exceeds 4 mas in either coordinate for 127 sources. We outline the future of the Gaia-CRF in the next Gaia data releases. Title: The Fingerprints of Volcanism: Modelling Secondary Atmospheres on Rocky Planets Authors: Liggins, P.; Jordan, S.; Rimmer, P. B.; Shorttle, O. Bibcode: 2022LPICo2678.1933L Altcode: Volcanic atmospheres of rocky planets with Venus-like surface temperatures can be classified according to their composition, and linked back to the mantle fO2. Title: A catalogue of white dwarfs in Gaia EDR3 Authors: Gentile Fusillo, N. P.; Tremblay, P. -E.; Cukanovaite, E.; Vorontseva, A.; Lallement, R.; Hollands, M.; Gänsicke, B. T.; Burdge, K. B.; McCleery, J.; Jordan, S. Bibcode: 2021MNRAS.508.3877G Altcode: 2021MNRAS.tmp.2458F; 2021arXiv210607669G We present a catalogue of white dwarf candidates selected from Gaia Early Data Release 3 (EDR3). We applied several selection criteria in absolute magnitude, colour, and Gaia quality flags to remove objects with unreliable measurements while preserving most stars compatible with the white dwarf locus in the Hertzsprung-Russell diagram. We then used a sample of over 30 000 spectroscopically confirmed white dwarfs and contaminants from the Sloan Digital Sky Survey (SDSS) to map the distribution of these objects in the Gaia absolute magnitude-colour space. Finally, we adopt the same method presented in our previous work on Gaia Data Release 2 (DR2) to calculate a probability of being a white dwarf (PWD) for ≃1.3 million sources that passed our quality selection. The PWD values can be used to select a sample of ${\simeq} 359\,000$ high-confidence white dwarf candidates. We calculated stellar parameters (effective temperature, surface gravity, and mass) for all these stars by fitting Gaia astrometry and photometry with synthetic pure-H, pure-He, and mixed H-He atmospheric models. We estimate an upper limit of 93 per cent for the overall completeness of our catalogue for white dwarfs with G ≤ 20 mag and effective temperature (Teff) > 7000 K, at high Galactic latitudes (|b| > 20°). Alongside the main catalogue we include a reduced proper motion extension containing ${\simeq} 10\,200$ white dwarf candidates with unreliable parallax measurements that could, however, be identified on the basis of their proper motion. We also performed a cross-match of our catalogues with SDSS Data Release 16 (DR16) spectroscopy and provide spectral classification based on visual inspection for all resulting matches. Title: Metabolic Signatures of an Aerial Biosphere in the Clouds of Venus: A Self-Consistent Photo-Bio-Chemical Model Authors: Jordan, S.; Rimmer, P. B.; Shorttle, O. Bibcode: 2021LPICo2629.4056J Altcode: It is useful to investigate whether a hypothetical biosphere in the clouds of Venus produces chemical changes in the atmosphere that are observable and diagnostic. We present the first self consistent coupling of metabolic pathways to a full-atmosphere (0 - 115 km) model of Venus, utilizing plausible sulfur-based metabolisms found in the literature. Title: VizieR Online Data Catalog: Catalogue of white dwarfs in Gaia EDR3 (Gentile+, 2021) Authors: Gentile Fusillo, N. P.; Tremblay, P. -E.; Cukanovaite, E.; Vorontseva, A.; Lallement, R.; Hollands, M.; Gansicke, B. T.; Burdge, K. B.; McCleery, J.; Jordan, S. Bibcode: 2021yCat..75083877G Altcode: The main catalogue provides 1280266 stars selected from Gaia EDR3 with calculated probabilities of being a white dwarf (PWD). The PWD values can used to reliably select high-confidence white dwarf candidates with a flexible compromise between completeness and level of potential contamination. As a generic guideline selecting objects with PWD>0.75 recovers ~=359000 high -confidence white dwarf candidates, 25632 of which have SDSS spectroscopy. ~=91 per cent of these spectroscopic sources are confirmed white dwarfs, ~=1 per cent are contaminant objects, ~=3 per cent are white dwarf-main sequence binaries or cataclysmic variables, and the rest have unreliable classification. We also provide a Reduced Proper Motion (RPM) extension to the main catalogue which contains Gaia white dwarf candidates with unreliable paralax measurement, but that could be selected on the basis of their proper motion. This catalogue extension also makes use of a flexible probability parameter (PHwd) and we suggest to use PHwd>0.85 to select a reliable set of high-confidence white dwarf candidates. All Gaia sources in both catalogues have also been cross matched with SDSS DR14 taking into account the difference in epoch of observation and proper motions. Whether available we include SDSS ugriz photometry. In a separate table we provide informations on all the available SDSS spectra for the Gaia sources in the main catalogue.

(3 data files). Title: Gaia Early Data Release 3. Summary of the contents and survey properties (Corrigendum) Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...650C...3G Altcode: No abstract at ADS Title: Gaia Early Data Release 3. Structure and properties of the Magellanic Clouds Authors: Gaia Collaboration; Luri, X.; Chemin, L.; Clementini, G.; Delgado, H. E.; McMillan, P. J.; Romero-Gómez, M.; Balbinot, E.; Castro-Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Cioni, M. -R. L.; Fabricius, C.; Garofalo, A.; Helmi, A.; Muraveva, T.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Gimenez, V. Sanchez; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...7G Altcode: 2020arXiv201201771G Context. This work is part of the Gaia Data Processing and Analysis Consortium papers published with the Gaia Early Data Release 3 (EDR3). It is one of the demonstration papers aiming to highlight the improvements and quality of the newly published data by applying them to a scientific case.
Aims: We use the Gaia EDR3 data to study the structure and kinematics of the Magellanic Clouds. The large distance to the Clouds is a challenge for the Gaia astrometry. The Clouds lie at the very limits of the usability of the Gaia data, which makes the Clouds an excellent case study for evaluating the quality and properties of the Gaia data.
Methods: The basis of our work are two samples selected to provide a representation as clean as possible of the stars of the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). The selection used criteria based on position, parallax, and proper motions to remove foreground contamination from the Milky Way, and allowed the separation of the stars of both Clouds. From these two samples we defined a series of subsamples based on cuts in the colour-magnitude diagram; these subsamples were used to select stars in a common evolutionary phase and can also be used as approximate proxies of a selection by age.
Results: We compared the Gaia Data Release 2 and Gaia EDR3 performances in the study of the Magellanic Clouds and show the clear improvements in precision and accuracy in the new release. We also show that the systematics still present in the data make the determination of the 3D geometry of the LMC a difficult endeavour; this is at the very limit of the usefulness of the Gaia EDR3 astrometry, but it may become feasible with the use of additional external data. We derive radial and tangential velocity maps and global profiles for the LMC for the several subsamples we defined. To our knowledge, this is the first time that the two planar components of the ordered and random motions are derived for multiple stellar evolutionary phases in a galactic disc outside the Milky Way, showing the differences between younger and older phases. We also analyse the spatial structure and motions in the central region, the bar, and the disc, providing new insightsinto features and kinematics. Finally, we show that the Gaia EDR3 data allows clearly resolving the Magellanic Bridge, and we trace the density and velocity flow of the stars from the SMC towards the LMC not only globally, but also separately for young and evolved populations. This allows us to confirm an evolved population in the Bridge that is slightly shift from the younger population. Additionally, we were able to study the outskirts of both Magellanic Clouds, in which we detected some well-known features and indications of new ones.

Velocity profiles are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A7 Title: Gaia Early Data Release 3. Summary of the contents and survey properties Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Cacciari, C.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...1G Altcode: 2020arXiv201201533G Context. We present the early installment of the third Gaia data release, Gaia EDR3, consisting of astrometry and photometry for 1.8 billion sources brighter than magnitude 21, complemented with the list of radial velocities from Gaia DR2.
Aims: A summary of the contents of Gaia EDR3 is presented, accompanied by a discussion on the differences with respect to Gaia DR2 and an overview of the main limitations which are present in the survey. Recommendations are made on the responsible use of Gaia EDR3 results.
Methods: The raw data collected with the Gaia instruments during the first 34 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium and turned into this early third data release, which represents a major advance with respect to Gaia DR2 in terms of astrometric and photometric precision, accuracy, and homogeneity.
Results: Gaia EDR3 contains celestial positions and the apparent brightness in G for approximately 1.8 billion sources. For 1.5 billion of those sources, parallaxes, proper motions, and the (GBP − GRP) colour are also available. The passbands for G, GBP, and GRP are provided as part of the release. For ease of use, the 7 million radial velocities from Gaia DR2 are included in this release, after the removal of a small number of spurious values. New radial velocities will appear as part of Gaia DR3. Finally, Gaia EDR3 represents an updated materialisation of the celestial reference frame (CRF) in the optical, the Gaia-CRF3, which is based solely on extragalactic sources. The creation of the source list for Gaia EDR3 includes enhancements that make it more robust with respect to high proper motion stars, and the disturbing effects of spurious and partially resolved sources. The source list is largely the same as that for Gaia DR2, but it does feature new sources and there are some notable changes. The source list will not change for Gaia DR3.
Conclusions: Gaia EDR3 represents a significant advance over Gaia DR2, with parallax precisions increased by 30 per cent, proper motion precisions increased by a factor of 2, and the systematic errors in the astrometry suppressed by 30-40% for the parallaxes and by a factor ~2.5 for the proper motions. The photometry also features increased precision, but above all much better homogeneity across colour, magnitude, and celestial position. A single passband for G, GBP, and GRP is valid over the entire magnitude and colour range, with no systematics above the 1% level Title: Gaia Early Data Release 3. The astrometric solution Authors: Lindegren, L.; Klioner, S. A.; Hernández, J.; Bombrun, A.; Ramos-Lerate, M.; Steidelmüller, H.; Bastian, U.; Biermann, M.; de Torres, A.; Gerlach, E.; Geyer, R.; Hilger, T.; Hobbs, D.; Lammers, U.; McMillan, P. J.; Stephenson, C. A.; Castañeda, J.; Davidson, M.; Fabricius, C.; Gracia-Abril, G.; Portell, J.; Rowell, N.; Teyssier, D.; Torra, F.; Bartolomé, S.; Clotet, M.; Garralda, N.; González-Vidal, J. J.; Torra, J.; Abbas, U.; Altmann, M.; Anglada Varela, E.; Balaguer-Núñez, L.; Balog, Z.; Barache, C.; Becciani, U.; Bernet, M.; Bertone, S.; Bianchi, L.; Bouquillon, S.; Brown, A. G. A.; Bucciarelli, B.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Cancelliere, R.; Carlucci, T.; Charlot, P.; Cioni, M. -R. L.; Crosta, M.; Crowley, C.; del Peloso, E. F.; del Pozo, E.; Drimmel, R.; Esquej, P.; Fienga, A.; Fraile, E.; Gai, M.; Garcia-Reinaldos, M.; Guerra, R.; Hambly, N. C.; Hauser, M.; Janßen, K.; Jordan, S.; Kostrzewa-Rutkowska, Z.; Lattanzi, M. G.; Liao, S.; Licata, E.; Lister, T. A.; Löffler, W.; Marchant, J. M.; Masip, A.; Mignard, F.; Mints, A.; Molina, D.; Mora, A.; Morbidelli, R.; Murphy, C. P.; Pagani, C.; Panuzzo, P.; Peñalosa Esteller, X.; Poggio, E.; Re Fiorentin, P.; Riva, A.; Sagristà Sellés, A.; Sanchez Gimenez, V.; Sarasso, M.; Sciacca, E.; Siddiqui, H. I.; Smart, R. L.; Souami, D.; Spagna, A.; Steele, I. A.; Taris, F.; Utrilla, E.; van Reeven, W.; Vecchiato, A. Bibcode: 2021A&A...649A...2L Altcode: 2020arXiv201203380L Context. Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3-21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase.
Aims: We describe the input data, the models, and the processing used for the astrometric content of Gaia EDR3, as well as the validation of these results performed within the astrometry task.
Methods: The processing broadly followed the same procedures as for Gaia DR2, but with significant improvements to the modelling of observations. For the first time in the Gaia data processing, colour-dependent calibrations of the line- and point-spread functions have been used for sources with well-determined colours from DR2. In the astrometric processing these sources obtained five-parameter solutions, whereas other sources were processed using a special calibration that allowed a pseudocolour to be estimated as the sixth astrometric parameter. Compared with DR2, the astrometric calibration models have been extended, and the spin-related distortion model includes a self-consistent determination of basic-angle variations, improving the global parallax zero point.
Results: Gaia EDR3 gives full astrometric data (positions at epoch J2016.0, parallaxes, and proper motions) for 1.468 billion sources (585 millionwith five-parameter solutions, 882 million with six parameters), and mean positions at J2016.0 for an additional 344 million.Solutions with five parameters are generally more accurate than six-parameter solutions, and are available for 93% of the sources brighter than the 17th magnitude. The median uncertainty in parallax and annual proper motion is 0.02-0.03 mas at magnitude G = 9-14, and around 0.5 mas at G = 20. Extensive characterisation of the statistical properties of the solutions is provided, including the estimated angular power spectrum of parallax bias from the quasars. Title: Gaia Early Data Release 3. The Galactic anticentre Authors: Gaia Collaboration; Antoja, T.; McMillan, P. J.; Kordopatis, G.; Ramos, P.; Helmi, A.; Balbinot, E.; Cantat-Gaudin, T.; Chemin, L.; Figueras, F.; Jordi, C.; Khanna, S.; Romero-Gómez, M.; Seabroke, G. M.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Varela, E. Anglada; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Kochoska, A.; Kontizas, M.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...8G Altcode: 2021arXiv210105811G
Aims: We aim to demonstrate the scientific potential of the Gaia Early Data Release 3 (EDR3) for the study of different aspects of the Milky Way structure and evolution and we provide, at the same time, a description of several practical aspects of the data and examples of their usage.
Methods: We used astrometric positions, proper motions, parallaxes, and photometry from EDR3 to select different populations and components and to calculate the distances and velocities in the direction of the anticentre. In this direction, the Gaia astrometric data alone enable the calculation of the vertical and azimuthal velocities; also, the extinction is relatively low compared to other directions in the Galactic plane. We then explore the disturbances of the current disc, the spatial and kinematical distributions of early accreted versus in situ stars, the structures in the outer parts of the disc, and the orbits of open clusters Berkeley 29 and Saurer 1.
Results: With the improved astrometry and photometry of EDR3, we find that: (i) the dynamics of the Galactic disc are very complex with oscillations in the median rotation and vertical velocities as a function of radius, vertical asymmetries, and new correlations, including a bimodality with disc stars with large angular momentum moving vertically upwards from below the plane, and disc stars with slightly lower angular momentum moving preferentially downwards; (ii) we resolve the kinematic substructure (diagonal ridges) in the outer parts of the disc for the first time; (iii) the red sequence that has been associated with the proto-Galactic disc that was present at the time of the merger with Gaia-Enceladus-Sausage is currently radially concentrated up to around 14 kpc, while the blue sequence that has been associated with debris of the satellite extends beyond that; (iv) there are density structures in the outer disc, both above and below the plane, most probably related to Monoceros, the Anticentre Stream, and TriAnd, for which the Gaia data allow an exhaustive selection of candidate member stars and dynamical study; and (v) the open clusters Berkeley 29 and Saurer 1, despite being located at large distances from the Galactic centre, are on nearly circular disc-like orbits.
Conclusions: Even with our simple preliminary exploration of the Gaia EDR3, we demonstrate how, once again, these data from the European Space Agency are crucial for our understanding of the different pieces of our Galaxy and their connection to its global structure and history.

Movie is available at https://www.aanda.org Title: Gaia Early Data Release 3. Acceleration of the Solar System from Gaia astrometry Authors: Gaia Collaboration; Klioner, S. A.; Mignard, F.; Lindegren, L.; Bastian, U.; McMillan, P. J.; Hernández, J.; Hobbs, D.; Ramos-Lerate, M.; Biermann, M.; Bombrun, A.; de Torres, A.; Gerlach, E.; Geyer, R.; Hilger, T.; Lammers, U.; Steidelmüller, H.; Stephenson, C. A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bossini, D.; Bouquillon, S.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hładczuk, N.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Re Fiorentin, P.; Regibo, S.; Reylé, C.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...9G Altcode: 2020arXiv201202036G Context. Gaia Early Data Release 3 (Gaia EDR3) provides accurate astrometry for about 1.6 million compact (QSO-like) extragalactic sources, 1.2 million of which have the best-quality five-parameter astrometric solutions.
Aims: The proper motions of QSO-like sources are used to reveal a systematic pattern due to the acceleration of the solar systembarycentre with respect to the rest frame of the Universe. Apart from being an important scientific result by itself, the acceleration measured in this way is a good quality indicator of the Gaia astrometric solution.
Methods: Theeffect of the acceleration was obtained as a part of the general expansion of the vector field of proper motions in vector spherical harmonics (VSH). Various versions of the VSH fit and various subsets of the sources were tried and compared to get the most consistent result and a realistic estimate of its uncertainty. Additional tests with the Gaia astrometric solution were used to get a better idea of the possible systematic errors in the estimate.
Results: Our best estimate of the acceleration based on Gaia EDR3 is (2.32 ± 0.16) × 10−10 m s−2 (or 7.33 ±0.51 km s−1 Myr−1) towards α = 269.1° ± 5.4°, δ = −31.6° ± 4.1°, corresponding to a proper motion amplitude of 5.05 ±0.35 μas yr−1. This is in good agreement with the acceleration expected from current models of the Galactic gravitational potential. We expect that future Gaia data releases will provide estimates of the acceleration with uncertainties substantially below 0.1 μas yr−1.

Movie is only available at https://www.aanda.org Title: Gaia Early Data Release 3. The Gaia Catalogue of Nearby Stars Authors: Gaia Collaboration; Smart, R. L.; Sarro, L. M.; Rybizki, J.; Reylé, C.; Robin, A. C.; Hambly, N. C.; Abbas, U.; Barstow, M. A.; de Bruijne, J. H. J.; Bucciarelli, B.; Carrasco, J. M.; Cooper, W. J.; Hodgkin, S. T.; Masana, E.; Michalik, D.; Sahlmann, J.; Sozzetti, A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castañeda, J.; De Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Frémat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernández-Hernández, J.; Galluccio, L.; García-Lario, P.; Garcia-Reinaldos, M.; González-Núñez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernández, J.; Hestroffer, D.; Holl, B.; Janßen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Löffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Roegiers, T.; Siopis, C.; Smith, M.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Álvarez, M. A.; Álvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Núñez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Bartolomé, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cánovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cioni, M. -R. L.; Comoretto, G.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; De Luise, F.; De March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; del Peloso, E. F.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Edvardsson, B.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; García-Torres, M.; Garofalo, A.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomel, R.; Gomez, A.; Gonzalez-Santamaria, I.; González-Vidal, J. J.; Granvik, M.; Gutiérrez-Sánchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Helmi, A.; Hidalgo, S. L.; Hilger, T.; Hładczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszyńska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martín-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; McMillan, P. J.; Messina, S.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Muraveva, T.; Murphy, C. P.; Musella, I.; Noval, L.; Ordénovic, C.; Orrù, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Peñalosa Esteller, X.; Penttilä, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Ripepi, V.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagristà Sellés, A.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santoveña, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Semeux, D.; Shahaf, S.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Süveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2021A&A...649A...6G Altcode: 2020arXiv201202061G
Aims: We produce a clean and well-characterised catalogue of objects within 100 pc of the Sun from the Gaia Early Data Release 3. We characterise the catalogue through comparisons to the full data release, external catalogues, and simulations. We carry out a first analysis of the science that is possible with this sample to demonstrate its potential and best practices for its use.
Methods: Theselection of objects within 100 pc from the full catalogue used selected training sets, machine-learning procedures, astrometric quantities, and solution quality indicators to determine a probability that the astrometric solution is reliable. The training set construction exploited the astrometric data, quality flags, and external photometry. For all candidates we calculated distance posterior probability densities using Bayesian procedures and mock catalogues to define priors. Any object with reliable astrometry and a non-zero probability of being within 100 pc is included in the catalogue.
Results: We have produced a catalogue of 331 312 objects that we estimate contains at least 92% of stars of stellar type M9 within 100 pc of the Sun. We estimate that 9% of the stars in this catalogue probably lie outside 100 pc, but when the distance probability function is used, a correct treatment of this contamination is possible. We produced luminosity functions with a high signal-to-noise ratio for the main-sequence stars, giants, and white dwarfs. We examined in detail the Hyades cluster, the white dwarf population, and wide-binary systems and produced candidate lists for all three samples. We detected local manifestations of several streams, superclusters, and halo objects, in which we identified 12 members of Gaia Enceladus. We present the first direct parallaxes of five objects in multiple systems within 10 pc of the Sun.
Conclusions: We provide the community with a large, well-characterised catalogue of objects in the solar neighbourhood. This is a primary benchmark for measuring and understanding fundamental parameters and descriptive functions in astronomy.

Tables are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/649/A6 Title: VizieR Online Data Catalog: Gaia white dwarfs within 40pc. I (Tremblay+, 2020) Authors: Tremblay, P. -E.; Hollands, M. A.; Gentile Fusillo, N. P.; McCleery, J.; Izquierdo, P.; Gansicke, B. T.; Cukanovaite, E.; Koester, D.; Brown, W. R.; Charpinet, S.; Cunningham, T.; Farihi, J.; Giammichele, N.; Van Grootel, V.; Hermes, J. J.; Hoskin, M. J.; Jordan, S.; Kepler, S. O.; Kleinman, S. J.; Manser, C. J.; Marsh, T. R.; de Martino, D.; Nitta, A.; Parsons, S. G.; Pelisoli, I.; Raddi, R.; Rebassa-Mansergas, A.; Ren, J. -J.; Schreiber, M. R.; Silvotti, R.; Toloza, O.; Toonen, S.; Torres, S. Bibcode: 2021yCat..74970130T Altcode: We selected white dwarf candidates from the catalogue of Gentile Fusillo et al. (2019MNRAS.482.4570G, cat. J/MNRAS/482/4570) with Plx>25mas+/-1σ as the only requirement, resulting in 1233 sources, among which 184 are low probability candidates (PWD<0.75).

We observed a total of 230 white dwarf candidates at the Observatorio del Roque de los Muchachos, both with the Intermediate-dispersion Spectrograph and Imaging System (ISIS) on the WHT and the Optical System for Imaging and low-Resolution Integrated Spectroscopy (OSIRIS) on the GTC.

(1 data file). Title: VizieR Online Data Catalog: MC structure and properties (Gaia Collaboration+, 2021) Authors: Gaia Collaboration; Luri, X.; Chemin, L.; Clementini, G.; Delgado, H. E.; McMillan, P. J.; Romero-Gomez, M.; Balbinot, E.; Castro-Ginard, A.; Mor, R.; Ripepi, V.; Sarro, L. M.; Cioni, M. -R. L.; Fabricius, C.; Garofalo, A.; Helmi, A.; Muraveva, T.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castaneda, J.; de Angeli, F.; Ducourant, C.; Fouesneau, M.; Fremat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernandez-Hernandez, J.; Galluccio, L.; Garcia-Lario, P.; Garcia-Reinaldos, M.; Gonzalez-Nunez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernandez, J.; Hestroffer, D.; Hodgkin, S. T.; Holl, B.; Janssen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Loeffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Robin, A. C.; Roegiers, T.; Rybizki, J.; Siopis, C.; Smith, M.; Sozzetti, A.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Alvarez, M. A.; Alvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Nunez, L.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Barstow, M. A.; Bartolome, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Canovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro Sampol, P.; Chaoul, L.; Charlot, P.; Chiavassa, A.; Comoretto, G.; Cooper, W. J.; Cornez, T.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Dafonte, C.; Dapergolas, A.; David, M.; David, P.; de Laverny, P.; de Luise, F.; de March, R.; De Ridder, J.; de Souza, R.; de Teodoro, P.; de Torres, A.; Del Peloso, E. F.; Del Pozo, E.; Delgado, A.; Delisle, J. -B.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Eappachen, D.; Enke, H.; Esquej, P.; Fabre, C.; Fabrizio, M.; Faigler, S.; Fedorets, G.; Fernique, P.; Fienga, A.; Figueras, F.; Fouron, C.; Fragkoudi, F.; Fraile, E.; Franke, F.; Gai, M.; Garabato, D.; Garcia-Gutierrez, A.; Garcia-Torres, M.; Gavras, P.; Gerlach, E.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomez, A.; Gonzalez-Santamaria, I.; Gonzalez-Vidal, J. J.; Granvik, M.; Gutierrez-Sanchez, R.; Guy, L. P.; Hauser, M.; Haywood, M.; Hidalgo, S. L.; Hilger, T.; Hladczuk, N.; Hobbs, D.; Holland, G.; Huckle, H. E.; Jasniewicz, G.; Jonker, P. G.; Juaristi Campillo, J.; Julbe, F.; Karbevska, L.; Kervella, P.; Khanna, S.; Kochoska, A.; Kontizas, M.; Kordopatis, G.; Korn, A. J.; Kostrzewa-Rutkowska, Z.; Kruszynska, K.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Le Campion, J. -F.; Le Fustec, Y.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Madrero Pardo, P.; Managau, S.; Mann, R. G.; Marchant, J. M.; Marconi, M.; Marcos Santos, M. M. S.; Marinoni, S.; Marocco, F.; Marshall, D. J.; Martin Polo, L.; Martin-Fleitas, J. M.; Masip, A.; Massari, D.; Mastrobuono-Battisti, A.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Mints, A.; Molina, D.; Molinaro, R.; Molnar, L.; Montegriffo, P.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Munoz, D.; Murphy, C. P.; Musella, I.; Noval, L.; Ordenovic, C.; Orru, G.; Osinde, J.; Pagani, C.; Pagano, I.; Palaversa, L.; Palicio, P. A.; Panahi, A.; Pawlak, M.; Penalosa Esteller, X.; Penttilae, A.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poretti, E.; Poujoulet, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rainer, M.; Raiteri, C. M.; Rambaux, N.; Ramos, P.; Ramos-Lerate, M.; Re Fiorentin, P.; Regibo, S.; Reyle, C.; Riva, A.; Rixon, G.; Robichon, N.; Robin, C.; Roelens, M.; Rohrbasser, L.; Rowell, N.; Royer, F.; Rybicki, K. A.; Sadowski, G.; Sagrista Selles, A.; Sahlmann, J.; Salgado, J.; Salguero, E.; Samaras, N.; Sanchez Gimenez, V.; Sanna, N.; Santovena, R.; Sarasso, M.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Semeux, D.; Siddiqui, H. I.; Siebert, A.; Siltala, L.; Slezak, E.; Smart, R. L.; Solano, E.; Solitro, F.; Souami, D.; Souchay, J.; Spagna, A.; Spoto, F.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Sueveges, M.; Szabados, L.; Szegedi-Elek, E.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Thuillot, W.; Tonello, N.; Torra, F.; Torra, J.; Turon, C.; Unger, N.; Vaillant, M.; van Dillen, E.; Vanel, O.; Vecchiato, A.; Viala, Y.; Vicente, D.; Voutsinas, S.; Weiler, M.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Yvard, P.; Zhao, H.; Zorec, J.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2020yCat..36490007G Altcode: Tables of the radial profiles of the azimuthal and radial components of the ordered and random motions of stellar evolutionary phases in the Large Magellanic Cloud, as inferred from the 3rd Gaia Data Release (Early Release of 2020/12/03).

Each sub-sample of LMC stellar evolutionary phase is defined in Sect. 2.3 of the article. The file lmcall.dat is for a sample combining every stellar phases.

(9 data files). Title: VizieR Online Data Catalog: Gaia Catalogue of Nearby Stars - GCNS (Gaia collaboration, 2021) Authors: Gaia Collaboration; Smart, R. L.; Sarro, L. M.; Rybizki, J.; Reyle, C.; Robin, A. C.; Hambly, N. C.; Abbas, U.; Barstow, M. A.; de Bruijne, J. H. J.; Bucciarelli, B.; Carrasco, J. M.; Cooper, W. J.; Hodgkin, S. T.; Masana, E.; Michalik, D.; Sahlmann, J.; Sozzetti, A.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; Babusiaux, C.; Biermann, M.; Creevey, O. L.; Evans, D. W.; Eyer, L.; Hutton, A.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bailer-Jones, C. A. L.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; van Leeuwen, F.; Bakker, J.; Castaneda, J.; de Angeli, F.; Ducourant, C.; Fabricius, C.; Fouesneau, M.; Fremat, Y.; Guerra, R.; Guerrier, A.; Guiraud, J.; Jean-Antoine Piccolo, A.; Messineo, R.; Mowlavi, N.; Nicolas, C.; Nienartowicz, K.; Pailler, F.; Panuzzo, P.; Riclet, F.; Roux, W.; Seabroke, G. M.; Sordo, R.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Portell, J.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Brugaletta, E.; Burgess, P. W.; Busso, G.; Carry, B.; Cellino, A.; Cheek, N.; Clementini, G.; Damerdji, Y.; Davidson, M.; Delchambre, L.; Dell'Oro, A.; Fernandez-Hernandez, J.; Galluccio, L.; Garcia-Lario, P.; Garcia-Reinaldos, M.; Gonzalez-Nunez, J.; Gosset, E.; Haigron, R.; Halbwachs, J. -L.; Harrison, D. L.; Hatzidimitriou, D.; Heiter, U.; Hernandez, J.; Hestroffer, D.; Holl, B.; Janssen, K.; Jevardat de Fombelle, G.; Jordan, S.; Krone-Martins, A.; Lanzafame, A. C.; Loeffler, W.; Lorca, A.; Manteiga, M.; Marchal, O.; Marrese, P. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osborne, P.; Pancino, E.; Pauwels, T.; Recio-Blanco, A.; Richards, P. J.; Riello, M.; Rimoldini, L.; Roegiers, T.; Siopis, C.; Smith, M.; Ulla, A.; Utrilla, E.; van Leeuwen, M.; van Reeven, W.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Aguado, J. J.; Ajaj, M.; Altavilla, G.; Alvarez, M. A.; Alvarez Cid-Fuentes, J.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antoja, T.; Audard, M.; Baines, D.; Baker, S. G.; Balaguer-Nunez, L.; Balbinot, E.; Balog, Z.; Barache, C.; Barbato, D.; Barros, M.; Bartolome, S.; Bassilana, J. -L.; Bauchet, N.; Baudesson-Stella, A.; Becciani, U.; Bellazzini, M.; Bernet, M.; Bertone, S.; Bianchi, L.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breedt, E.; Bressan, A.; Brouillet, N.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Canovas, H.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carnerero, M. I. Bibcode: 2020yCat..36490006G Altcode: We produce a clean and well characterised catalogue of nearby objects within 100pc of the Sun from the Gaia early third data release. We characterise the catalogue using the full data release, and comparisons to other catalogues in literature and simulations. We started with a sample of objects with a measured parallax of 8mas. For all candidates we calculate a distance probability function using Bayesian procedures and mock catalogues for the prediction of the priors. For each entry using a random forest classifier we attempt to remove sources with spurious astrometric solutions.

>From this paper we provide the following data files:

table1c.dat (Table1GCNScat): Any object with a non-zero probability of being within 100 pc and not indicated as a spurious astrometric solutions. We have also included external photometric and radial velocity data, the probability of reliable astrometry, probability to be a white dwarf, the distance 1st, 16th, 50th and 84th percentiles, the positions and velocities in a galactic reference frame. For questions please email richard.smart(at)inaf.it.

table1r.dat (Table1GCNSreject): All other entries from the 8mas sample that were rejected as having a zero probability of being inside 100pc or indicated as a spurious astrometric solution. This table has the same format and columns as GCNS_cat.dat.

progwd.dat (ProbWDlt05_ProbGFgt05): A catalogue of 45 sources with low probability of being a WD in this work (PWD<0.5), but having larger probabilities in Gentile-Fusillo et al (2019MNRAS.482.4570G, cat. J/MNRAS/482/4570) (PGF>0.5). For questions please email carrasco(at)fqa.ub.edu.

table3.dat (Table3_ResolvedStellarSystems): Resolved binary candidates in the GCNS catalogue as discussed in the section on stellar multiplicity: resolved systems. For questions please email ummi.abbas(at)inaf.it or alessandro.sozzetti(at)inaf.it.

maglim.dat (maglimhpx5percentile): The magnitude percentiles for level 5 healpixels used in the luminosity function determinations. For questions please email rybizki(at)mpia.de.

distpdf.dat (distance_PDF): The full distance probability density function calculated in section 2 and used throughout the paper. For questions please email rybizki(at)mpia.de.

missing.dat (missing_10mas): A list of 1258 objects with published parallaxes greater than 10mas that are not or have no parallax in EDR3. For questions please email celine.reyle(at)obs-besancon.fr.

hyacomb.dat (Hyades_ComaBer): A list of 920+212 probable Hyades and ComaBer members in the GCNS sample. For questions please email daniel.michalik(at)esa.int or jos.de.bruijne(at)esa.int.

(8 data files). Title: Gaia Data Release 2. The kinematics of globular clusters and dwarf galaxies around the Milky Way (Corrigendum) Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Heu, J.; Hilger, T.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2020A&A...642C...1G Altcode: No abstract at ADS Title: Gaia white dwarfs within 40 pc - I. Spectroscopic observations of new candidates Authors: Tremblay, P. -E.; Hollands, M. A.; Gentile Fusillo, N. P.; McCleery, J.; Izquierdo, P.; Gänsicke, B. T.; Cukanovaite, E.; Koester, D.; Brown, W. R.; Charpinet, S.; Cunningham, T.; Farihi, J.; Giammichele, N.; van Grootel, V.; Hermes, J. J.; Hoskin, M. J.; Jordan, S.; Kepler, S. O.; Kleinman, S. J.; Manser, C. J.; Marsh, T. R.; de Martino, D.; Nitta, A.; Parsons, S. G.; Pelisoli, I.; Raddi, R.; Rebassa-Mansergas, A.; Ren, J. -J.; Schreiber, M. R.; Silvotti, R.; Toloza, O.; Toonen, S.; Torres, S. Bibcode: 2020MNRAS.497..130T Altcode: 2020MNRAS.tmp.2021T; 2020arXiv200600965T We present a spectroscopic survey of 230 white dwarf candidates within 40 pc of the Sun from the William Herschel Telescope and Gran Telescopio Canarias. All candidates were selected from Gaia Data Release 2 (DR2) and in almost all cases, had no prior spectroscopic classifications. We find a total of 191 confirmed white dwarfs and 39 main-sequence star contaminants. The majority of stellar remnants in the sample are relatively cool (<Teff> = 6200 K), showing either hydrogen Balmer lines or a featureless spectrum, corresponding to 89 DA and 76 DC white dwarfs, respectively. We also recover two DBA white dwarfs and 9-10 magnetic remnants. We find two carbon-bearing DQ stars and 14 new metal-rich white dwarfs. This includes the possible detection of the first ultra-cool white dwarf with metal lines. We describe three DZ stars for which we find at least four different metal species, including one that is strongly Fe- and Ni-rich, indicative of the accretion of a planetesimal with core-Earth composition. We find one extremely massive (1.31 ± 0.01 M) DA white dwarf showing weak Balmer lines, possibly indicating stellar magnetism. Another white dwarf shows strong Balmer line emission but no infrared excess, suggesting a low-mass sub-stellar companion. A high spectroscopic completeness (>99 per cent) has now been reached for Gaia DR2 sources within 40-pc sample, in the Northern hemisphere (δ > 0°) and located on the white dwarf cooling track in the Hertzsprung-Russell diagram. A statistical study of the full northern sample is presented in a companion paper. Title: Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way (Corrigendum) Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Heu, J.; Hilger, T.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevems, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2020A&A...637C...3G Altcode: No abstract at ADS Title: VizieR Online Data Catalog: Gaia DR2. Variable stars in CMD (Gaia Collaboration+, 2019) Authors: Gaia Collaboration; Eyer, L.; Rimoldini, L.; Audard, M.; Anderson, R. I.; Nienartowicz, K.; Glass, F.; Marchal, O.; Grenon, M.; Mowlavi, N.; Holl, B.; Clementini, G.; Aerts, C.; Mazeh, T.; Evans, D. W.; Szabados, L.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra, R.; Masana, E.; Messineo, R.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clotet, M.; Creevey, O.; Davidson, M.; de Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernandez-Hernandez, J.; Fouesneau, M.; Fremat, Y.; Galluccio, L.; Garcia-Torres, M.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernandez, J.; Hestroer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Loeer, W.; Manteiga, M.; Marrese, P. M.; Martin-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Sueveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Altavilla, G.; Alvarez, M. A.; Alvarez, R.; Alves, J.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholome Munoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienayme, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Bruesemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypersy, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; de Luise, F.; de March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Duran, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frezouls, B.; Gai, M.; Galleti, S.; Garabato, D.; Garcia-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giurida, G.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutierrez-Sanchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janssen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhasz, A. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lopez, M.; Lorenz, D.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalko, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevic, G.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnar, L.; Montegrio, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordenovic, C.; Ordonez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reyle, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2019yCat..36230110G Altcode: Time series in the G, BP, and RP bands of the selected field-of-view transits for 224 sources that are not published in Gaia DR2, but are plotted in Fig. 11. An animated version of Fig. 11 is provided online and at https://www.cosmos.esa.int/web/gaia/gaiadr2_cu7.

(2 data files). Title: Gaia Data Release 2. Variable stars in the colour-absolute magnitude diagram Authors: Gaia Collaboration; Eyer, L.; Rimoldini, L.; Audard, M.; Anderson, R. I.; Nienartowicz, K.; Glass, F.; Marchal, O.; Grenon, M.; Mowlavi, N.; Holl, B.; Clementini, G.; Aerts, C.; Mazeh, T.; Evans, D. W.; Szabados, L.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Masana, E.; Messineo, R.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Lorenz, D.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2019A&A...623A.110G Altcode: 2018arXiv180409382G Context. The ESA Gaia mission provides a unique time-domain survey for more than 1.6 billion sources with G ≲ 21 mag.
Aims: We showcase stellar variability in the Galactic colour-absolute magnitude diagram (CaMD). We focus on pulsating, eruptive, and cataclysmic variables, as well as on stars that exhibit variability that is due to rotation and eclipses.
Methods: We describe the locations of variable star classes, variable object fractions, and typical variability amplitudes throughout the CaMD and show how variability-related changes in colour and brightness induce "motions". To do this, we use 22 months of calibrated photometric, spectro-photometric, and astrometric Gaia data of stars with a significant parallax. To ensure that a large variety of variable star classes populate the CaMD, we crossmatched Gaia sources with known variable stars. We also used the statistics and variability detection modules of the Gaia variability pipeline. Corrections for interstellar extinction are not implemented in this article.
Results: Gaia enables the first investigation of Galactic variable star populations in the CaMD on a similar, if not larger, scale as was previously done in the Magellanic Clouds. Although the observed colours are not corrected for reddening, distinct regions are visible in which variable stars occur. We determine variable star fractions to within the current detection thresholds of Gaia. Finally, we report the most complete description of variability-induced motion within the CaMD to date.
Conclusions: Gaia enables novel insights into variability phenomena for an unprecedented number of stars, which will benefit the understanding of stellar astrophysics. The CaMD of Galactic variable stars provides crucial information on physical origins of variability in a way that has previously only been accessible for Galactic star clusters or external galaxies. Future Gaia data releases will enable significant improvements over this preview by providing longer time series, more accurate astrometry, and additional data types (time series BP and RP spectra, RVS spectra, and radial velocities), all for much larger samples of stars.

A movie associated to Fig. 11 is available at https://www.aanda.org.Data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A110. Title: VizieR Online Data Catalog: Gaia DR2 white dwarf candidates (Gentile Fusillo+, 2019) Authors: Gentile Fusillo, N. P.; Tremblay, P. -E.; Gaensicke, B. T.; Manser, C. J.; Cunningham, T.; Cukanovaite, E.; Hollands, M.; Marsh, T.; Raddi, R.; Jordan, S.; Toonen, S.; Geier, S.; Barstow, M.; Cummings, J. D. Bibcode: 2019yCat..74824570G Altcode: The main catalogue provides 486,641 stars selected from Gaia DR2 with calculated probabilities of being a white dwarf (PWD). The PWD values can used to reliably select high-confidence white dwarf candidates with a flexible compromise between completeness and level of potential contamination. As a generic guideline selecting objects with PWD>0.75 recovers 96 per cent of the spectroscopically confirmed white dwarfs from SDSS and only 1 per cent of the contaminant (non white dwarfs) objects.

All Gaia sources in the catalogue have also been cross matched with SDSS DR14 taking into account the difference in epoch of observation and proper motions. Whether available we include SDSS ugriz photometry. In a separate table we provide informations on all the available SDSS spectra for the Gaia sources in the main catalogue.

(2 data files). Title: VizieR Online Data Catalog: Gaia DR1 mass-radius relation of white dwarfs (Tremblay+ 2017) Authors: Tremblay, P. -E.; Gentile-Fusillo, N.; Raddi, R.; Jordan, S.; Besson, C.; Gansicke, B. T.; Parsons, S. G.; Koester, D.; Marsh, T.; Bohlin, R.; Kalirai, J.; Deustua, S. Bibcode: 2018yCat..74652849T Altcode: The Gaia DR1 (Cat. I/337) sample of parallaxes was presented for 6 directly observed white dwarfs and 46 members of wide binaries. By combining this data set with spectroscopic atmospheric parameters, we have derived the semi-empirical MRR relation for white dwarfs.

(5 data files). Title: Gaia Data Release 2. Observations of solar system objects Authors: Gaia Collaboration; Spoto, F.; Tanga, P.; Mignard, F.; Berthier, J.; Carry, B.; Cellino, A.; Dell'Oro, A.; Hestroffer, D.; Muinonen, K.; Pauwels, T.; Petit, J. -M.; David, P.; De Angeli, F.; Delbo, M.; Frézouls, B.; Galluccio, L.; Granvik, M.; Guiraud, J.; Hernández, J.; Ordénovic, C.; Portell, J.; Poujoulet, E.; Thuillot, W.; Walmsley, G.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Riello, M.; Seabroke, G. M.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Blomme, R.; Burgess, P.; Busso, G.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Lö, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Osinde, J.; Pancino, E.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Gueguen, A.; Guerrier, A.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..13G Altcode: 2018arXiv180409379G Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations.
Aims: We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality.
Methods: To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP).
Results: The overall astrometric performance is close to the expectations, with an optimal range of brightness G 12 - 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects. Title: Gaia Data Release 2. The celestial reference frame (Gaia-CRF2) Authors: Gaia Collaboration; Mignard, F.; Klioner, S. A.; Lindegren, L.; Hernández, J.; Bastian, U.; Bombrun, A.; Hobbs, D.; Lammers, U.; Michalik, D.; Ramos-Lerate, M.; Biermann, M.; Fernández-Hernández, J.; Geyer, R.; Hilger, T.; Siddiqui, H. I.; Steidelmüller, H.; Babusiaux, C.; Barache, C.; Lambert, S.; Andrei, A. H.; Bourda, G.; Charlot, P.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Luri, X.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, A. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..14G Altcode: 2018arXiv180409377M Context. The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain. A subset of these quasars have accurate VLBI positions that allow the axes of the reference frame to be aligned with the International Celestial Reference System (ICRF) radio frame.
Aims: We describe the astrometric and photometric properties of the quasars that were selected to represent the celestial reference frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio positions for sources with accurate VLBI positions.
Methods: Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3.
Results: Gaia-CRF2 consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G ≃ 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = mag. Large-scale systematics are estimated to be in the range 20 to 30 μas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions.
Conclusions: Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. Its accuracy matches the current radio frame of the ICRF, but the density of sources in all parts of the sky is much higher, except along the Galactic equator. Title: Gaia Data Release 2. Mapping the Milky Way disc kinematics Authors: Gaia Collaboration; Katz, D.; Antoja, T.; Romero-Gómez, M.; Drimmel, R.; Reylé, C.; Seabroke, G. M.; Soubiran, C.; Babusiaux, C.; Di Matteo, P.; Figueras, F.; Poggio, E.; Robin, A. C.; Evans, D. W.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Biermann, M.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Casta n, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falc a, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..11G Altcode: 2018arXiv180409380G Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS = 12 mag. Both samples provide a full sky coverage.
Aims: To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun.
Methods: We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (σϖ/ϖ ≤ 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s-1 and 20% of the stars with uncertainties smaller than 1 km s-1 on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from 5 kpc to 13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s-1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions.
Results: Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream.
Conclusions: Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential. Title: Gaia Data Release 2. Observational Hertzsprung-Russell diagrams Authors: Gaia Collaboration; Babusiaux, C.; van Leeuwen, F.; Barstow, M. A.; Jordi, C.; Vallenari, A.; Bossini, D.; Bressan, A.; Cantat-Gaudin, T.; van Leeuwen, M.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Bartholomé Muñoz, L.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutié, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..10G Altcode: 2018arXiv180409378G Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented.
Aims: We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples.
Methods: We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects.
Results: The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics.
Conclusions: Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.

The full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A10 Title: Gaia Data Release 2. The astrometric solution Authors: Lindegren, L.; Hernández, J.; Bombrun, A.; Klioner, S.; Bastian, U.; Ramos-Lerate, M.; de Torres, A.; Steidelmüller, H.; Stephenson, C.; Hobbs, D.; Lammers, U.; Biermann, M.; Geyer, R.; Hilger, T.; Michalik, D.; Stampa, U.; McMillan, P. J.; Castañeda, J.; Clotet, M.; Comoretto, G.; Davidson, M.; Fabricius, C.; Gracia, G.; Hambly, N. C.; Hutton, A.; Mora, A.; Portell, J.; van Leeuwen, F.; Abbas, U.; Abreu, A.; Altmann, M.; Andrei, A.; Anglada, E.; Balaguer-Núñez, L.; Barache, C.; Becciani, U.; Bertone, S.; Bianchi, L.; Bouquillon, S.; Bourda, G.; Brüsemeister, T.; Bucciarelli, B.; Busonero, D.; Buzzi, R.; Cancelliere, R.; Carlucci, T.; Charlot, P.; Cheek, N.; Crosta, M.; Crowley, C.; de Bruijne, J.; de Felice, F.; Drimmel, R.; Esquej, P.; Fienga, A.; Fraile, E.; Gai, M.; Garralda, N.; González-Vidal, J. J.; Guerra, R.; Hauser, M.; Hofmann, W.; Holl, B.; Jordan, S.; Lattanzi, M. G.; Lenhardt, H.; Liao, S.; Licata, E.; Lister, T.; Löffler, W.; Marchant, J.; Martin-Fleitas, J. -M.; Messineo, R.; Mignard, F.; Morbidelli, R.; Poggio, E.; Riva, A.; Rowell, N.; Salguero, E.; Sarasso, M.; Sciacca, E.; Siddiqui, H.; Smart, R. L.; Spagna, A.; Steele, I.; Taris, F.; Torra, J.; van Elteren, A.; van Reeven, W.; Vecchiato, A. Bibcode: 2018A&A...616A...2L Altcode: 2018arXiv180409366L Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase.
Aims: We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task.
Methods: Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion.
Results: For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G < 14 mag) sources, 0.1 mas at G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr-1, respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr-1. From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr-1 in proper motion are seen on small (< 1 deg) and intermediate (20 deg) angular scales. Important statistics and information for the users of the Gaia DR2 astrometry are given in the appendices. Title: Gaia Data Release 2. Kinematics of globular clusters and dwarf galaxies around the Milky Way Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; McMillan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reylé, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevič, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevems, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A..12G Altcode: 2018arXiv180409381G Note to the Readers: Following the publication of the corrigendum, the article was corrected on 15 May 2020.

Context.
Aims: The goal of this paper is to demonstrate the outstanding quality of the second data release of the Gaia mission and its power for constraining many different aspects of the dynamics of the satellites of the Milky Way. We focus here on determining the proper motions of 75 Galactic globular clusters, nine dwarf spheroidal galaxies, one ultra-faint system, and the Large and Small Magellanic Clouds.
Methods: Using data extracted from the Gaia archive, we derived the proper motions and parallaxes for these systems, as well as their uncertainties. We demonstrate that the errors, statistical and systematic, are relatively well understood. We integrated the orbits of these objects in three different Galactic potentials, and characterised their properties. We present the derived proper motions, space velocities, and characteristic orbital parameters in various tables to facilitate their use by the astronomical community.
Results: Our limited and straightforward analyses have allowed us for example to (i) determine absolute and very precise proper motions for globular clusters; (ii) detect clear rotation signatures in the proper motions of at least five globular clusters; (iii) show that the satellites of the Milky Way are all on high-inclination orbits, but that they do not share a single plane of motion; (iv) derive a lower limit for the mass of the Milky Way of 9.1-2.6+6.2 × 1011 M based on the assumption that the Leo I dwarf spheroidal is bound; (v) derive a rotation curve for the Large Magellanic Cloud based solely on proper motions that is competitive with line-of-sight velocity curves, now using many orders of magnitude more sources; and (vi) unveil the dynamical effect of the bar on the motions of stars in the Large Magellanic Cloud.
Conclusions: All these results highlight the incredible power of the Gaia astrometric mission, and in particular of its second data release.

Full Table D.3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A12 Title: Gaia Data Release 2. Summary of the contents and survey properties Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; van Leeuwen, F.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernández-Hernández, J.; Fouesneau, M.; Frémat, Y.; Galluccio, L.; García-Torres, M.; González-Núñez, J.; González-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernández, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Löffler, W.; Manteiga, M.; Marrese, P. M.; Martín-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Süveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Álvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Barstow, M. A.; Bartholomé Muñoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienaymé, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Bressan, A.; Brouillet, N.; Brüsemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Durán, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frézouls, B.; Gai, M.; Galleti, S.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutiérrez-Sánchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janßen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhász, Á. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; López, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalkó, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnár, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordénovic, C.; Ordóñez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prša, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reylé, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Ségransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018A&A...616A...1G Altcode: 2018arXiv180409365G Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system.
Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results.
Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent.
Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy. Title: VizieR Online Data Catalog: 46 open clusters GaiaDR2 HR diagrams (Gaia Collaboration, 2018) Authors: Gaia Collaboration; Babusiaux, C.; van Leeuwen, F.; Barstow; M., A.; Jordi, C.; Vallenari, A.; Bossini, A.; Bressan, A.; Cantat-Gaudin, T.; van Leeuwen, M.; Brown, A. G. A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Arenou, F.; Bastian, U.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernandez-Hernandez, J.; Fouesneau, M.; Fremat, Y.; Galluccio, L.; Garcia-Torres, M.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernandez, J.; Hestroer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Loeer, W.; Manteiga, M.; Marrese, P. M.; Martin-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Sueveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Alvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barrado, D.; Barros, M.; Bartholome Munoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienayme, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Breddels, M. A.; Brouillet, N.; Bruesemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caau, E.; Cancelliere, R.; Cannizzaro, G.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypersy, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; de Luise, F.; de March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Duran, J.; Edvardsson, B.; Enke, H.; Eriksson, K.; Esquej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frezouls, B.; Gai, M.; Galleti, S.; Garabato, D.; Garcia-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giurida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutierrez-Sanchez, R.; Haigron, R.; Hatzidimitriou, D.; Hauser, M.; Haywood, M.; Heiter, U.; Helmi, A.; Heu, J.; Hilger, T.; Hobbs, D.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janssen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhasz, A. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Lopez, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalko, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Massari, D.; Matijevi?C, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnar, L.; Montegrio, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordenovic, C.; Ordonez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Reyle, C.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; van Hemelryck, E.; Vaschetto, M.; Vecchiato, A.; Veljanoski, J.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018yCat..36160010G Altcode: We have determined the membership of 46 open clusters. For the nine clusters within 250pc we determined optimised parallaxes based on the combined information extracted from the measured parallax and proper motion values. These clusters are : in Tables A1a & A3: alphaPer, Blanco1, ComaBer, Hyades, IC2391, IC2602, NGC2451A, Pleiades, Praesepe. The remaining 37 clusters are in Table A1b & A4: Coll140, IC4651, IC4665, IC4725, IC4756, NGC0188, NGC0752, NGC0869, NGC0884, NGC1039, NGC1901, NGC2158, NGC2168, NGC2232, NGC2323, NGC2360, NGC2422, NGC2423, NGC2437, NGC2447, NGC2516, NGC2547, NGC2548, NGC2682, NGC3228, NGC3532, NGC6025, NGC6281, NGC6405, NGC6475, NGC6633, NGC6774, NGC6793, NGC7092, Stock2, Trump02, Trump10.

(4 data files). Title: White dwarfs in the Gaia era Authors: Tremblay, P. -E.; Gentile-Fusillo, N.; Cummings, J.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S. Bibcode: 2018IAUS..330..317T Altcode: The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution. Title: VizieR Online Data Catalog: Gaia DR2 sources in GC and dSph (Gaia Collaboration+, 2018) Authors: Gaia Collaboration; Helmi, A.; van Leeuwen, F.; Mc Millan, P. J.; Massari, D.; Antoja, T.; Robin, A. C.; Lindegren, L.; Bastian, U.; Arenou, F.; Babusiaux, C.; Biermann, M.; Breddels, M. A.; Hobbs, D.; Jordi, C.; Pancino, E.; Reyle, C.; Veljanoski, J.; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Bailer-Jones, C. A. L.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Walton, N. A.; Cropper, M.; Drimmel, R.; Katz, D.; Lattanzi, M. G.; Bakker, J.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra, R.; Holl, B.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Panuzzo, P.; Portell, J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thevenin, F.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Teyssier, D.; Altmann, M.; Andrae, R.; Audard, M.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Burgess, P.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Clotet, M.; ! Creevey, O.; Davidson, M.; De Ridder, J.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fernandez-Hernandez, J.; Fouesneau, M.; Fremat, Y.; Galluccio, L.; Garcia-Torres, M.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Gosset, E.; Guy, L. P.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hernandez, J.; Hestroffer, D.; Hodgkin, S. T.; Hutton, A.; Jasniewicz, G.; Jean-Antoine-Piccolo, A.; Jordan, S.; Korn, A. J.; Krone-Martins, A.; Lanzafame, A. C.; Lebzelter, T.; Loeffler, W.; Manteiga, M.; Marrese, P. M.; Martin-Fleitas, J. M.; Moitinho, A.; Mora, A.; Muinonen, K.; Osinde, J.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Richards, P. J.; Rimoldini, L.; Sarro, L. M.; Siopis, C.; Smith, M.; Sozzetti, A.; Sueveges, M.; Torra, J.; van Reeven, W.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aerts, C.; Altavilla, G.; Alvarez, M. A.; Alvarez, R.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Arcay, B.; Astraatmadja, T. L.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Balm, P.; Barache, C.; Barata, C.; Barbato, D.; Barblan, F.; Barklem, P. S.; Barra! Do, D.; Ba Rros, M.; Barstow, M. A.; Bartholome Munoz, S.; Bassilana, J. -L.; Becciani, U.; Bellazzini, M.; Berihuete, A.; Bertone, S.; Bianchi, L.; Bienayme, O.; Blanco-Cuaresma, S.; Boch, T.; Boeche, C.; Bombrun, A.; Borrachero, R.; Bossini, D.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Bramante, L.; Bressan, A.; Brouillet, N.; Bruesemeister, T.; Brugaletta, E.; Bucciarelli, B.; Burlacu, A.; Busonero, D.; Butkevich, A. G.; Buzzi, R.; Caffau, E.; Cancelliere, R.; Cannizzaro, G.; Cantat-Gaudin, T.; Carballo, R.; Carlucci, T.; Carrasco, J. M.; Casamiquela, L.; Castellani, M.; Castro-Ginard, A.; Charlot, P.; Chemin, L.; Chiavassa, A.; Cocozza, G.; Costigan, G.; Cowell, S.; Crifo, F.; Crosta, M.; Crowley, C.; Cuypers, J.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; de Laverny, P.; de Luise, F.; de March, R.; de Martino, D.; de Souza, R.; de Torres, A.; Debosscher, J.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Diener, C.; Distefano, E.; Dolding, C.; Drazinos, P.; Duran, J.; Edvardsson, B.; Enke, H.; Eriks! Son, K.; E Squej, P.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas, M.; Federici, L.; Fedorets, G.; Fernique, P.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fraile, E.; Fraser, M.; Frezouls, B.; Gai, M.; Galleti, S.; Garabato, D.; Garcia-Sedano, F.; Garofalo, A.; Garralda, N.; Gavel, A.; Gavras, P.; Gerssen, J.; Geyer, R.; Giacobbe, P.; Gilmore, G.; Girona, S.; Giuffrida, G.; Glass, F.; Gomes, M.; Granvik, M.; Gueguen, A.; Guerrier, A.; Guiraud, J.; Gutierrez-Sanchez, R.; Hofmann, W.; Holland, G.; Huckle, H. E.; Hypki, A.; Icardi, V.; Janssen, K.; Jevardat de Fombelle, G.; Jonker, P. G.; Juhasz, A. L.; Julbe, F.; Karampelas, A.; Kewley, A.; Klar, J.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, M.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Kostrzewa-Rutkowska, Z.; Koubsky, P.; Lambert, S.; Lanza, A. F.; Lasne, Y.; Lavigne, J. -B.; Le Fustec, Y.; Le Poncin-Lafitte, C.; Lebreton, Y.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; ! Livanou, E.; Lobel, A.; Lopez, M.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marschalko, G.; Marshall, D. J.; Martino, M.; Marton, G.; Mary, N.; Matijevic, G.; Mazeh, T.; Messina, S.; Michalik, D.; Millar, N. R.; Molina, D.; Molinaro, R.; Molnar, L.; Montegriffo, P.; Mor, R.; Morbidelli, R.; Morel, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Nelemans, G.; Nicastro, L.; Noval, L.; O'Mullane, W.; Ordenovic, C.; Ordonez-Blanco, D.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Panahi, A.; Pawlak, M.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poggio, E.; Poujoulet, E.; Prsa, A.; Pulone, L.; Racero, E.; Ragaini, S.; Rambaux, N.; Ramos-Lerate, M.; Regibo, S.; Riclet, F.; Ripepi, V.; Riva, A.; Rivard, A.; Rixon, G.; Roegiers, T.; Roelens, M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sanna, N.; Santana-Ros, T.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol !, M.; Segov, Ia J. C.; Segransan, D.; Shih, I. -C.; Siltala, L.; Silva, A. F.; Smart, R. L.; Smith, K. W.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Teyssandier, P.; Thuillot, W.; Titarenko, A.; Torra Clotet, F.; Turon, C.; Ulla, A.; Utrilla, E.; Uzzi, S.; Vaillant, M.; Valentini, G.; Valette, V.; van Elteren, A.; van Hemelryck, E.; van Leeuwen, M.; Vaschetto, M.; Vecchiato, A.; Viala, Y.; Vicente, D.; Vogt, S.; von Essen, C.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Wertz, O.; Wevems, T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Ziaeepour, H.; Zorec, J.; Zschocke, S.; Zucker, S.; Zurbach, C.; Zwitter, T. Bibcode: 2018yCat..36160012G Altcode: The files contains lists of possible members of each of the objects (75 globular clusters, 9 dwarf spheroidal galaxies, the Bootes I UFD, the LMC and SMC). The stars in these lists have been selected and used to determine the astrometric parameters of the corresponding objects following either the procedures described in Sec. 2.1 (for the clusters and dwarfs) or in Sec. 2.2 (for the LMC and SMC). The first column is the "source_id" as given by Gaia, the ra and declination of the star in degrees, and its G-band magnitude (known as "photgmean_mag" in the Gaia archive).

(2 data files). Title: Can magnetic fields suppress convection in the atmosphere of cool white dwarfs? A case study on WD2105-820 Authors: Gentile Fusillo, N. P.; Tremblay, P. -E.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.; Cummings, J. Bibcode: 2018MNRAS.473.3693G Altcode: 2017arXiv171002151G; 2017arXiv171002151P Around 10 per cent of white dwarfs exhibit global magnetic structures with fields ranging from 1 kG to hundreds of MG. Recently, the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarfs showed that convection should be suppressed in their photospheres for magnetic fields with strengths B ≳ 50 kG. These predictions are in agreement with our knowledge of stellar physics (e.g. energy transfer in strong magnetic field regions of the solar photosphere), but have yet to be directly confirmed from white dwarf observations. We obtained Cosmic Origins Spectrograph (COS) far-ultraviolet (FUV) spectroscopy of the weakly magnetic, hydrogen-atmosphere, white dwarf WD2105-820 and of three additional non-magnetic, convective remnants (all in the Teff range 9000-11 000 K). We fitted both the COS and the already available optical spectra with convective and radiative atmospheric models. As expected, we find that for two of the non-magnetic comparison stars only convective model fits predicted consistent Teff values from both the optical and the FUV spectra. In contrast, for WD2105-820 only the best-fitting radiative model produced consistent results. Title: Gaia Data Release 1. The archive visualisation service Authors: Moitinho, A.; Krone-Martins, A.; Savietto, H.; Barros, M.; Barata, C.; Falcão, A. J.; Fernandes, T.; Alves, J.; Silva, A. F.; Gomes, M.; Bakker, J.; Brown, A. G. A.; González-Núñez, J.; Gracia-Abril, G.; Gutiérrez-Sánchez, R.; Hernández, J.; Jordan, S.; Luri, X.; Merin, B.; Mignard, F.; Mora, A.; Navarro, V.; O'Mullane, W.; Sagristà Sellés, T.; Salgado, J.; Segovia, J. C.; Utrilla, E.; Arenou, F.; de Bruijne, J. H. J.; Jansen, F.; McCaughrean, M.; O'Flaherty, K. S.; Taylor, M. B.; Vallenari, A. Bibcode: 2017A&A...605A..52M Altcode: 2017arXiv170800195M Context. The first Gaia data release (DR1) delivered a catalogue of astrometry and photometry for over a billion astronomical sources. Within the panoplyof methods used for data exploration, visualisation is often the starting point and even the guiding reference for scientific thought. However, this is a volume of data that cannot be efficiently explored using traditional tools, techniques, and habits.
Aims: We aim to provide a global visual exploration service for the Gaia archive, something that is not possible out of the box for most people. The service has two main goals. The first is to provide a software platform for interactive visual exploration of the archive contents, using common personal computers and mobile devices available to most users. The second aim is to produce intelligible and appealing visual representations of the enormous information content of the archive.
Methods: The interactive exploration service follows a client-server design. The server runs close to the data, at the archive, and is responsible for hiding as far as possible the complexity and volume of the Gaia data from the client. This is achieved by serving visual detail on demand. Levels of detail are pre-computed using data aggregation and subsampling techniques. For DR1, the client is a web application that provides an interactive multi-panel visualisation workspace as well as a graphical user interface.
Results: The Gaia archive Visualisation Service offers a web-based multi-panel interactive visualisation desktop in a browser tab. It currently provides highly configurable 1D histograms and 2D scatter plots of Gaia DR1 and the Tycho-Gaia Astrometric Solution (TGAS) with linked views. An innovative feature is the creation of ADQL queries from visually defined regions in plots. These visual queries are ready for use in the Gaia Archive Search/data retrieval service. In addition, regions around user-selected objects can be further examined with automatically generated SIMBAD searches. Integration of the Aladin Lite and JS9 applications add support to the visualisation of HiPS and FITS maps. The production of the all-sky source density map that became the iconic image of Gaia DR1 is described in detail.
Conclusions: On the day of DR1, over seven thousand users accessed the Gaia Archive visualisation portal. The system, running on a single machine, proved robust and did not fail while enabling thousands of users to visualise and explore the over one billion sources in DR1. There are still several limitations, most noticeably that users may only choose from a list of pre-computed visualisations. Thus, other visualisation applications that can complement the archive service are examined. Finally, development plans for Data Release 2 are presented. Title: Gaia Data Release 1. Testing parallaxes with local Cepheids and RR Lyrae stars Authors: Gaia Collaboration; Clementini, G.; Eyer, L.; Ripepi, V.; Marconi, M.; Muraveva, T.; Garofalo, A.; Sarro, L. M.; Palmer, M.; Luri, X.; Molinaro, R.; Rimoldini, L.; Szabados, L.; Musella, I.; Anderson, R. I.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2017A&A...605A..79G Altcode: 2017arXiv170500688G; 2017A&A...605A..79. Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the HIPPARCOS and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS).
Aims: In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (MV-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS.
Methods: Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σϖ/ϖ< 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σϖ/ϖ< 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σϖ/ϖ< 0.5). The new relations were computed using multi-band (V,I,J,Ks) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and MV- [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods.
Results: Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the HIPPARCOS measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive.
Conclusions: TGAS parallaxes bring a significant added value to the previous HIPPARCOS estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018.

Full Tables A.1-A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A79 Title: VizieR Online Data Catalog: SDSS magnetic white dwarf stars (Kepler+, 2013) Authors: Kepler, S. O.; Pelisoli, I.; Jordan, S.; Kleinman, S. J.; Koester, D.; Kulebi, B.; Pecanha, V.; Castanheira, B. G.; Nitta, A.; Costa, J. E. S.; Winget, D. E.; Kanaan, A.; Fraga, L. Bibcode: 2017yCat..74292934K Altcode: We classified more than 48000 spectra, selected as possible white dwarf stars from the SDSS DR7 by their colours, through visual inspection and detected Zeeman splittings in 521 DA stars. Table 1 shows the estimated values for the magnetic fields for the 521 spectra we measured.

(1 data file). Title: Gaia Data Release 1. Open cluster astrometry: performance, limitations, and future prospects Authors: Gaia Collaboration; van Leeuwen, F.; Vallenari, A.; Jordi, C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; vanLeeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2017A&A...601A..19G Altcode: 2017arXiv170301131G Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using HIPPARCOS and Tycho-2 positions in 1991.25 as prior information.
Aims: We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters.
Methods: Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed.
Results: Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier HIPPARCOS-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters.
Conclusions: The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the HIPPARCOS data, with clearly increased luminosities for older A and F dwarfs.

Tables D.1 to D.19 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A19 Title: VizieR Online Data Catalog: Gaia DR1 open cluster members (Gaia Collaboration+, 2017) Authors: Gaia Collaboration; van Leeuwen F.; Vallenari, A.; Jordi, C.; Lindegren, L.; Bastian, U.; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Klioner, S. A.; Lammers, U.; Luri, X.; Mignard, F.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Hog, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castaneda, J.; Chaoul, L.; Cheek, N.; de Angeli, F.; Fabricius, C.; Guerra, R.; Hernandez, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordonez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thevenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Fremat, Y.; Garcia-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Alvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Anton, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Nunez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado, Y. Navascues D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello Garcia, A.; Belokuro, V. V.; Ben Djoya, P.; Berihuete, A.; Bianchi, L.; Bienayme, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Bruesemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; de Luise, F.; de March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; Del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcao, A. J.; Farras Casas, M.; Federici, L.; Fedorets, G.; Fernandez-Hernandez, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; Garcia-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; Gonzalez-Marcos, A.; Gonzalez-Nunez, J.; Gonzalez-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gurpide, A.; Gutierrez-Sanchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofre, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Lecler, C. N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrom, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Loeffler, W.; Lopez, M.; Lorenz, D.; MacDonald, I.; Magalhaes Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalko, G.; Marshall, D. J.; Martin-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevic, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnar, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordenovic, C.; Ordieres-Mere, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikaeinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prsa, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reyle, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gomez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagrista Selles, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmueller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Sueveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; van Hemelryck, E.; Vanleeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, L.; Yoldas, A.; Zerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escude, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chereau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frezouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gomez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; Lebouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; O'Flaherty, K. S.; Ocvirk, P.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Peturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straizys, V.; Ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2017yCat..36010019G Altcode: We have determined and examined the astrometric data for 19 open clusters, ranging from the Hyades at just under 47pc to NGC 2422 at nearly 440pc. The clusters are : the Hyades, Coma Berenices, the Pleiades, Praesepe, alpha Per, IC 2391, IC 2602, Blanco 1, NGC 2451, NGC 6475, NGC 7092, NGC 2516, NGC 2232, IC 4665, NGC 6633, Collinder 140, NGC 2422, NGC 3532 and NGC 2547.

(2 data files). Title: White Dwarfs in Gaia Data Release 1 Authors: Jordan, S. Bibcode: 2017ASPC..509....9J Altcode: On September 14, the Gaia archives opened for access to the Gaia DR1. The catalogue with more than one billion star positions and more than two million parallaxes and proper motions will have enormous influence on many topics in astronomy. However, due to their extremely blue colour, parallaxes and proper motions of only six white dwarfs were directly measured. Tremblay et al. used these data and those for 46 white dwarfs in binaries in order to construct an empirical mass-radius relation. As it was the case for Hipparcos, the precision of the data does not allow for the characterisation of

hydrogen envelope masses. With Gaia DR2 coming in late 2017 the prospects for white dwarf research are much better. Title: Magnetic White Dwarfs with Heavy Elements Authors: Hardy, F.; Dufour, P.; Jordan, S. Bibcode: 2017ASPC..509..205H Altcode: 2016arXiv161001522H Using our newly developed model atmosphere code appropriate for magnetic white dwarfs with metal lines in the Paschen-Back regime, we study various magnetic white dwarfs and explore the effects of various parameters such as the field geometry and the convective efficiency. Title: The Gaia DR1 mass-radius relation for white dwarfs Authors: Tremblay, P. -E.; Gentile-Fusillo, N.; Raddi, R.; Jordan, S.; Besson, C.; Gänsicke, B. T.; Parsons, S. G.; Koester, D.; Marsh, T.; Bohlin, R.; Kalirai, J.; Deustua, S. Bibcode: 2017MNRAS.465.2849T Altcode: 2016arXiv161100629T The Gaia Data Release 1 (DR1) sample of white dwarf parallaxes is presented, including six directly observed degenerates and 46 white dwarfs in wide binaries. This data set is combined with spectroscopic atmospheric parameters to study the white dwarf mass-radius relationship (MRR). Gaia parallaxes and G magnitudes are used to derive model atmosphere-dependent white dwarf radii, which can then be compared to the predictions of a theoretical MRR. We find a good agreement between Gaia DR1 parallaxes, published effective temperatures (Teff) and surface gravities (log g), and theoretical MRRs. As it was the case for Hipparcos, the precision of the data does not allow for the characterization of hydrogen envelope masses. The uncertainties on the spectroscopic atmospheric parameters are found to dominate the error budget and current error estimates for well-known and bright white dwarfs may be slightly optimistic. With the much larger Gaia DR2 white dwarf sample, it will be possible to explore the MRR over a much wider range of mass, Teff, and spectral types. Title: Gaia Data Release 1. Astrometry: one billion positions, two million proper motions and parallaxes Authors: Lindegren, L.; Lammers, U.; Bastian, U.; Hernández, J.; Klioner, S.; Hobbs, D.; Bombrun, A.; Michalik, D.; Ramos-Lerate, M.; Butkevich, A.; Comoretto, G.; Joliet, E.; Holl, B.; Hutton, A.; Parsons, P.; Steidelmüller, H.; Abbas, U.; Altmann, M.; Andrei, A.; Anton, S.; Bach, N.; Barache, C.; Becciani, U.; Berthier, J.; Bianchi, L.; Biermann, M.; Bouquillon, S.; Bourda, G.; Brüsemeister, T.; Bucciarelli, B.; Busonero, D.; Carlucci, T.; Castañeda, J.; Charlot, P.; Clotet, M.; Crosta, M.; Davidson, M.; de Felice, F.; Drimmel, R.; Fabricius, C.; Fienga, A.; Figueras, F.; Fraile, E.; Gai, M.; Garralda, N.; Geyer, R.; González-Vidal, J. J.; Guerra, R.; Hambly, N. C.; Hauser, M.; Jordan, S.; Lattanzi, M. G.; Lenhardt, H.; Liao, S.; Löffler, W.; McMillan, P. J.; Mignard, F.; Mora, A.; Morbidelli, R.; Portell, J.; Riva, A.; Sarasso, M.; Serraller, I.; Siddiqui, H.; Smart, R.; Spagna, A.; Stampa, U.; Steele, I.; Taris, F.; Torra, J.; van Reeven, W.; Vecchiato, A.; Zschocke, S.; de Bruijne, J.; Gracia, G.; Raison, F.; Lister, T.; Marchant, J.; Messineo, R.; Soffel, M.; Osorio, J.; de Torres, A.; O'Mullane, W. Bibcode: 2016A&A...595A...4L Altcode: 2016arXiv160904303L Context. Gaia Data Release 1 (DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase.
Aims: We give a brief overview of the astrometric content of the data release and of the model assumptions, data processing, and validation of the results.
Methods: For stars in common with the Hipparcos and Tycho-2 catalogues, complete astrometric single-star solutions are obtained by incorporating positional information from the earlier catalogues. For other stars only their positions are obtained, essentially by neglecting their proper motions and parallaxes. The results are validated by an analysis of the residuals, through special validation runs, and by comparison with external data.
Results: For about two million of the brighter stars (down to magnitude 11.5) we obtain positions, parallaxes, and proper motions to Hipparcos-type precision or better. For these stars, systematic errors depending for example on position and colour are at a level of ± 0.3 milliarcsecond (mas). For the remaining stars we obtain positions at epoch J2015.0 accurate to 10 mas. Positions and proper motions are given in a reference frame that is aligned with the International Celestial Reference Frame (ICRF) to better than 0.1 mas at epoch J2015.0, and non-rotating with respect to ICRF to within 0.03 mas yr-1. The Hipparcos reference frame is found to rotate with respect to the Gaia DR1 frame at a rate of 0.24 mas yr-1.
Conclusions: Based on less than a quarter of the nominal mission length and on very provisional and incomplete calibrations, the quality and completeness of the astrometric data in Gaia DR1 are far from what is expected for the final mission products. The present results nevertheless represent a huge improvement in the available fundamental stellar data and practical definition of the optical reference frame. Title: Gaia Data Release 1. Pre-processing and source list creation Authors: Fabricius, C.; Bastian, U.; Portell, J.; Castañeda, J.; Davidson, M.; Hambly, N. C.; Clotet, M.; Biermann, M.; Mora, A.; Busonero, D.; Riva, A.; Brown, A. G. A.; Smart, R.; Lammers, U.; Torra, J.; Drimmel, R.; Gracia, G.; Löffler, W.; Spagna, A.; Lindegren, L.; Klioner, S.; Andrei, A.; Bach, N.; Bramante, L.; Brüsemeister, T.; Busso, G.; Carrasco, J. M.; Gai, M.; Garralda, N.; González-Vidal, J. J.; Guerra, R.; Hauser, M.; Jordan, S.; Jordi, C.; Lenhardt, H.; Mignard, F.; Messineo, R.; Mulone, A.; Serraller, I.; Stampa, U.; Tanga, P.; van Elteren, A.; van Reeven, W.; Voss, H.; Abbas, U.; Allasia, W.; Altmann, M.; Anton, S.; Barache, C.; Becciani, U.; Berthier, J.; Bianchi, L.; Bombrun, A.; Bouquillon, S.; Bourda, G.; Bucciarelli, B.; Butkevich, A.; Buzzi, R.; Cancelliere, R.; Carlucci, T.; Charlot, P.; Collins, R.; Comoretto, G.; Cross, N.; Crosta, M.; de Felice, F.; Fienga, A.; Figueras, F.; Fraile, E.; Geyer, R.; Hernandez, J.; Hobbs, D.; Hofmann, W.; Liao, S.; Licata, E.; Martino, M.; McMillan, P. J.; Michalik, D.; Morbidelli, R.; Parsons, P.; Pecoraro, M.; Ramos-Lerate, M.; Sarasso, M.; Siddiqui, H.; Steele, I.; Steidelmüller, H.; Taris, F.; Vecchiato, A.; Abreu, A.; Anglada, E.; Boudreault, S.; Cropper, M.; Holl, B.; Cheek, N.; Crowley, C.; Fleitas, J. M.; Hutton, A.; Osinde, J.; Rowell, N.; Salguero, E.; Utrilla, E.; Blagorodnova, N.; Soffel, M.; Osorio, J.; Vicente, D.; Cambras, J.; Bernstein, H. -H. Bibcode: 2016A&A...595A...3F Altcode: 2016arXiv160904273F Context. The first data release from the Gaia mission contains accurate positions and magnitudes for more than a billion sources, and proper motions and parallaxes for the majority of the 2.5 million Hipparcos and Tycho-2 stars.
Aims: We describe three essential elements of the initial data treatment leading to this catalogue: the image analysis, the construction of a source list, and the near real-time monitoring of the payload health. We also discuss some weak points that set limitations for the attainable precision at the present stage of the mission.
Methods: Image parameters for point sources are derived from one-dimensional scans, using a maximum likelihood method, under the assumption of a line spread function constant in time, and a complete modelling of bias and background. These conditions are, however, not completely fulfilled. The Gaia source list is built starting from a large ground-based catalogue, but even so a significant number of new entries have been added, and a large number have been removed. The autonomous onboard star image detection will pick up many spurious images, especially around bright sources, and such unwanted detections must be identified. Another key step of the source list creation consists in arranging the more than 1010 individual detections in spatially isolated groups that can be analysed individually.
Results: Complete software systems have been built for the Gaia initial data treatment, that manage approximately 50 million focal plane transits daily, giving transit times and fluxes for 500 million individual CCD images to the astrometric and photometric processing chains. The software also carries out a successful and detailed daily monitoring of Gaia health. Title: The Gaia mission Authors: Gaia Collaboration; Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; Mignard, F.; Milligan, D. J.; Panem, C.; Poinsignon, V.; Pourbaix, D.; Randich, S.; Sarri, G.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Drimmel, R.; Høg, E.; Katz, D.; Lattanzi, M. G.; O'Mullane, W.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Atzei, A.; Ayache, L.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Baroni, M.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bellei, G.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Budnik, F.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Charvet, P.; Chassat, F.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Collins, P.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; di Marco, F.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Durán, J.; Dzigan, Y.; Ecale, E.; Edvardsson, B.; Enke, H.; Erdmann, M.; Escolar, D.; Espina, M.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Faye, F.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Furnell, R.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garé, P.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Kowalczyk, A.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lopez-Lozano, A.; Lorenz, D.; Loureiro, T.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marie, J.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Mestre, A.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Monteiro, D.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morley, T.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Paulsen, T.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pereira, J.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Renk, F.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Rudolph, A.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schnorhk, A.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Serpell, E.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Smith, C.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Werner, D.; Wevers, T.; Whitehead, G.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2016A&A...595A...1G Altcode: 2016arXiv160904153G Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page.

http://www.cosmos.esa.int/gaia Title: Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties Authors: Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Mignard, F.; Drimmel, R.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Katz, D.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; O'Mullane, W.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Høg, E.; Lattanzi, M. G.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J. -L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J. -M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J. -B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F. -X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I. -C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H. -H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P. -M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A. -M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D. -W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A. -T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J. -M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S. Bibcode: 2016A&A...595A...2G Altcode: 2016arXiv160904172G Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7.
Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data. Title: Stellar Archaeology with Gaia: The Galactic White Dwarf Population Authors: Gänsicke, B.; Tremblay, P.; Barstow, M.; Bono, G.; Burleigh, M.; Casewell, S.; Dhillon, V.; Farihi, J.; Garcia-Berro, E.; Geier, S.; Gentile-Fusillo, N.; Hermes, J.; Hollands, M.; Istrate, A.; Jordan, S.; Knigge, C.; Manser, C.; Marsh, T.; Nelemans, G.; Pala, A.; Raddi, R.; Tauris, T.; Toloza, O.; Veras, D.; Werner, K.; Wilson, D. Bibcode: 2016ASPC..507..159G Altcode: Gaia will identify several 105 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous scientific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets. Title: VizieR Online Data Catalog: New white dwarf stars in SDSS DR10 (Kepler+, 2015) Authors: Kepler, S. O.; Pelisoli, I.; Koester, D.; Ourique, G.; Kleinman, S. J.; Romero, A. D.; Nitta, A.; Eisenstein, D. J.; Costa, J. E. S.; Kulebi, B.; Jordan, S.; Dufour, P.; Giommi, P.; Rebassa-mansergas, A. Bibcode: 2015yCat..74464078K Altcode: The targeted white dwarfs were required to be point sources with clean photometry, and to have USNO-B Catalog counterparts (Monet et al.. 2003, Cat. I/284). They were also restricted to regions inside the DR7 imaging footprint and required to have colours within the ranges g<19.2, (u-r)<0.4, -1<(u-g)<0.3, -1<(g-r)<0.5 and to have low Galactic extinction Ar<0.5mag. Additionally, targets that did not have (u-r)<-0.1 and (g-r)<-0.1 were required to have USNO proper motions larger than 2 arcsec per century. Objects satisfying the selection criteria that had not been observed previously by the SDSS were denoted by the WHITEDWARF_NEW target flag, while those with prior SDSS spectra are assigned the WHITEDWARF_SDSS flag. Some of the latter were re-observed with BOSS in order to obtain the extended wavelength coverage that the BOSS spectrograph offers.

(1 data file). Title: New White Dwarfs in the SDSS DR10 Authors: Kepler, S. O.; Pelisoli, I.; Koester, D.; Ourique, G.; Kleinman, S. J.; Romero, A. D.; Nitta, A.; Eisenstein, D. J.; Costa, J. E. S.; Külebi, B.; Jordan, S.; Dufour, P.; Giommi, P.; Rebassa-Mansergas, A. Bibcode: 2015ASPC..493..449K Altcode: We report the discovery of 8 991 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for cool carbon dominated spectra DQs. We found 2 new oxygen dominated spectra white dwarfs, 69 DQs, 42 hot DO/PG1159s, 175 white dwarf+main sequence star binaries, 206 magnetic DAHs, 325 continuum dominated DCs, 397 metal polluted white dwarfs, 450 helium dominated white dwarfs, 636 subdwarfs and 6796 new hydrogen dominated white dwarf stars. Title: Magnetic Atmosphere Models for White Dwarfs with Heavy Elements Authors: Dufour, Patrick; Jordan, S.; Blouin, S.; Tardif, F.; Groulx, J.; Kilic, M.; Gianninas, A.; Barber, S. D.; Gilligan, C. Bibcode: 2015ASPC..493...37D Altcode: We present selected results from our new code developed to produce synthetic spectra for highly magnetic white dwarfs with heavy elements. We solve the polarized radiative transfer equations and include line splitting of heavy elements (C, O, Ca, Mg and Na in particular) in the Paschen-Back (PB) regime for various magnetic field geometries. Application to magnetic Hot DQ and DZ white dwarfs are presented. Title: New white dwarf stars in the Sloan Digital Sky Survey Data Release 10 Authors: Kepler, S. O.; Pelisoli, I.; Koester, D.; Ourique, G.; Kleinman, S. J.; Romero, A. D.; Nitta, A.; Eisenstein, D. J.; Costa, J. E. S.; Külebi, B.; Jordan, S.; Dufour, P.; Giommi, Paolo; Rebassa-Mansergas, Alberto Bibcode: 2015MNRAS.446.4078K Altcode: 2014arXiv1411.4149K We report the discovery of 9088 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon-dominated spectra DQs. We found 1 central star of a planetary nebula, 2 new oxygen spectra on helium atmosphere white dwarfs, 71 DQs, 42 hot DO/PG1159s, 171 white dwarf+main-sequence star binaries, 206 magnetic DAHs, 327 continuum-dominated DCs, 397 metal-polluted white dwarfs, 450 helium-dominated white dwarfs, 647 subdwarfs and 6887 new hydrogen-dominated white dwarf stars. Title: White paper: Gaia and the end states of stellar evolution Authors: Barstow, M. A; Casewell, S. L.; Catalan, S.; Copperwheat, C.; Gaensicke, B.; Garcia-Berro, E.; Hambly, N.; Heber, U.; Holberg, J.; Isern, J.; Jeffery, S.; Jordan, S.; Lawrie, K. A.; Lynas-Gray, A. E.; Maccarone, T.; Marsh, T.; Parsons, S.; Silvotti, R.; Subasavage, J.; Torres, S.; Wheatley, P. Bibcode: 2014arXiv1407.6163B Altcode: This is the product of a Gaia GREAT workshop on "Gaia and the end states of stellar evolution" held at the University of Leicester in April 2011. Title: De Sitter universe from causal dynamical triangulations without preferred foliation Authors: Jordan, S.; Loll, R. Bibcode: 2013PhRvD..88d4055J Altcode: 2013arXiv1307.5469J We present a detailed analysis of a recently introduced version of causal dynamical triangulations that does not rely on a distinguished time slicing. Focusing on the case of 2+1 spacetime dimensions, we analyze its geometric and causal properties, present details of the numerical setup, and explain how to extract “volume profiles.” Extensive Monte Carlo measurements of the system show the emergence of a de Sitter universe on large scales from the underlying quantum ensemble, similar to what was observed previously in standard causal dynamical triangulation quantum gravity. This provides evidence that the distinguished time slicing of the latter is not an essential part of its kinematical setup. Title: Causal Dynamical Triangulations without preferred foliation Authors: Jordan, S.; Loll, R. Bibcode: 2013PhLB..724..155J Altcode: 2013arXiv1305.4582J We introduce a generalized version of the Causal Dynamical Triangulations (CDT) formulation of quantum gravity, in which the regularized, triangulated path integral histories maintain their causal properties, but do not have a preferred proper-time foliation. An extensive numerical study of the associated nonperturbative path integral in 2 + 1 dimensions shows that it can nevertheless reproduce the emergence of an extended de Sitter universe on large scales, a key feature of CDT quantum gravity. This suggests that the preferred foliation normally used in CDT is not a crucial (albeit convenient) part of its background structure. Title: The progenitors of magnetic white dwarfs in open clusters Authors: Külebi, B.; Kalirai, J.; Jordan, S.; Euchner, F. Bibcode: 2013A&A...554A..18K Altcode: 2013arXiv1304.7171K Context. White dwarfs are the final stages of stellar evolution for most stars in the galaxy and magnetic white dwarfs (MWDs) represent at least ten percent of the whole sample. According to the fossil-field hypothesis magnetic fields are remnants of the previous stages of evolution. However, population synthesis calculations are unable to reproduce the MWD sample without binary interaction or inclusion of a population of progenitor with unobservable small-scale fields.
Aims: One necessary ingredient in population synthesis is the initial-to-final-mass relation (IFMR) which describes the mass-loss processes during the stellar evolution. When white dwarfs are members of open clusters, their evolutionary histories can be assessed through the use of cluster properties. This enables an independent way of determining the mass of their progenitors. The discovery of the magnetic WD 0836+201 in the Praesepe cluster prompted the question whether magnetic fields affect the IFMR. In this work we investigate this suggestion through investigations of all three known MWDs in open clusters.
Methods: We assess the cluster membership by correlating the proper-motion of MWDs with the cluster proper-motion and by analyzing the candidates spectroscopically with our magnetic model spectra in order to estimate the effective temperature and radii. Furthermore, we use mass-radius relations and evolutionary models to constrain the histories of the probable cluster members.
Results: We identified SDSS J085523.87+164059.0 to be a proper-motion member of Praesepe. We also included the data of the formerly identified cluster members NGC 6819-8, WD 0836+201 and estimated the mass, cooling age and the progenitor masses of the three probable MWD members of open clusters. According to our analysis, the newly identified cluster member SDSS J085523.87+164059.0 is an ultra-massive MWD of mass 1.12 ± 0.11 M.
Conclusions: We increase the sample of MWDs with known progenitor masses to ten, with the rest of the data coming from the common proper motion binaries. Our investigations show that, when effects of the magnetic fields are included in the diagnostics, the estimated properties of these cluster MWDs do not show evidence for deviations from the IFMR. Furthermore we estimate the precision of the magnetic diagnostics which would be necessary to determine quantitatively whether magnetism has any effect on the mass-loss. Title: Magnetic white dwarf stars in the Sloan Digital Sky Survey Authors: Kepler, S. O.; Pelisoli, I.; Jordan, S.; Kleinman, S. J.; Koester, D.; Külebi, B.; Peçanha, V.; Castanheira, B. G.; Nitta, A.; Costa, J. E. S.; Winget, D. E.; Kanaan, A.; Fraga, L. Bibcode: 2013MNRAS.429.2934K Altcode: 2012arXiv1211.5709K; 2013MNRAS.tmp..506K To obtain better statistics on the occurrence of magnetism among white dwarfs, we searched the spectra of the hydrogen atmosphere white dwarf stars (DAs) in the Data Release 7 of the Sloan Digital Sky Survey (SDSS) for Zeeman splittings and estimated the magnetic fields. We found 521 DAs with detectable Zeeman splittings, with fields in the range from around 1 to 733 MG, which amounts to 4 per cent of all DAs observed. As the SDSS spectra have low signal-to-noise ratios, we carefully investigated by simulations with theoretical spectra how reliable our detection of magnetic field was. Title: Quantum spacetime, from a practitioner's point of view Authors: Ambjørn, J.; Jordan, S.; Jurkiewicz, J.; Loll, R. Bibcode: 2013AIPC.1514...60A Altcode: 2013arXiv1302.2181A We argue that theories of quantum gravity constructed with the help of (Causal) Dynamical Triangulations have given us the most informative, quantitative models to date of quantum spacetime. Most importantly, these are derived dynamically from nonperturbative and background-independent quantum theories of geometry. In the physically relevant case of four spacetime dimensions, the ansatz of Causal Dynamical Triangulations produces - from a fairly minimal set of quantum field-theoretic inputs - an emergent spacetime which macroscopically looks like a de Sitter universe, and on Planckian scales possesses unexpected quantum properties. Important in deriving these results are a regularized version of the theory, in which the quantum dynamics is well defined, can be studied with the help of numerical Monte Carlo methods and extrapolated to infinite lattice volumes. Title: Low Magnetic Fields in White Dwarfs and their Direct Progenitors? Authors: Jordan, S.; Bagnulo, S.; Landstreet, J.; Fossati, L.; Valyavin, G. G.; Monin, D.; Wade, G. A.; Werner, K.; O'Toole, S. J. Bibcode: 2013ASPC..469..411J Altcode: 2012arXiv1210.3987J We have carried out a re-analysis of polarimetric data of central stars of planetary nebulae, hot subdwarfs, and white dwarfs taken with FORS1 (FOcal Reducer and low dispersion Spectrograph) on the VLT (Very Large Telescope), and added a large number of new observations in order to increase the sample. A careful analysis of the observations using only one wavelength calibration for the polarimetrically analysed spectra and for all positions of the retarder plate of the spectrograph is crucial in order to avoid spurious signals. We find that the previous detections of magnetic fields in subdwarfs and central stars could not be confirmed while about 10% of the observed white dwarfs have magnetic fields at the kilogauss level. Title: The Hubble Exoplanet Classroom Authors: Stevens, Laura; Carson, J.; Ruwadi, D.; Low, K.; Jordan, S.; Schneider, G. Bibcode: 2013AAS...22124605S Altcode: We present a status report on the Hubble Exoplanet Classroom, an interactive website designed to engage 8-12th grade students in physical science concepts using the exciting field of exoplanet studies. Addressing national teaching standards, the webpage allows educators to enhance their physical science, physics, and astronomy curriculum with student-driven lessons. The webpage records students' performance on lessons and quizzes and compiles the results, which can be accessed by the instructor using a secure website. Title: White Dwarfs Escaping From the Hyades Authors: Tremblay, P. -E.; Schilbach, E.; Röser, S.; Jordan, S.; Ludwig, H. -G.; Goldman, B. Bibcode: 2013ASPC..469..105T Altcode: Ten white dwarfs are currently known to be associated with the Hyades cluster. This number of degenerate objects is too low when compared to the predictions of numerical simulations. Using the PPMXL catalog of proper motions and positions, 17 new Hyades white dwarf candidates have recently been proposed, most of them outside of the tidal radius. They could potentially explain the discrepancy between the observed and predicted number of associated objects. We review the Hyades membership of these candidates by using spectroscopic and photometric observations, as well as by simulating the contamination from field white dwarfs. We find that six objects remain candidates, and three more objects have an uncertain membership status due to their unknown or imprecise atmospheric parameters. Title: High-field magnetic white dwarfs as the progeny of early-type stars? Authors: Dobbie, P. D.; Külebi, B.; Casewell, S. L.; Burleigh, M. R.; Parker, Q. A.; Baxter, R.; Lawrie, K. A.; Jordan, S.; Koester, D. Bibcode: 2013MNRAS.428L..16D Altcode: 2012MNRAS.tmpL...4D We present an analysis of the newly resolved components of two hot, double-degenerate systems, SDSS J074853.07+302543.5 + J074852.95+302543.4 and SDSS J150813.24+394504.9 + J150813.31+394505.6 (CBS 229). We confirm that each system has widely separated components (a > 100 au) consisting of a H-rich, non-magnetic white dwarf and a H-rich, high-field magnetic white dwarf (HFMWD). The masses of the non-magnetic degenerates are found to be larger than typical of field white dwarfs. We use these components to estimate the total ages of the binaries and demonstrate that both magnetic white dwarfs are the progeny of stars with Minit > 2 M. We briefly discuss the traits of all known hot, wide, magnetic + non-magnetic double degenerates in the context of HFMWD formation theories. These are broadly consistent (chance probability, P ≈ 0.065) with HFMWDs forming primarily from early-type stars and, in the most succinct interpretation, link their magnetism to the fields of their progenitors. Our results do not, however, rule out that HFMWDs can form through close binary interactions and studies of more young, wide double degenerates are required to reach firm conclusions on these formation pathways. Title: Astrometric Determination of White Dwarf Radial Velocities with Gaia? Authors: Jordan, S.; de Bruijne, J. Bibcode: 2013ASPC..469..257J Altcode: 2012arXiv1210.3983J Usually, the determination of radial velocities of stars relies on the shift of spectral lines by the Doppler effect. Russel & Atkinson (1931) and Oort (1932) already noted that due to the large proper motion and parallax of the white dwarf (WD) van Maanen 2, a determination of the perspective acceleration of the proper motion would provide a direct astrometric determination of the radial velocity which is independent of the gravitational redshift. If spectroscopic redshift measurements of Halpha and Hbeta NLTE cores exist, a purely astrometric determination would allow disentangling the gravitational redshift from the Doppler shift. The best instrument for measuring the tiny perspective acceleration is the Gaia satellite of the European Space Agency, aiming at absolute astrometric measurements of one billion stars down to 20th magnitude with unprecedented accuracy. At 15th magnitude, the predicted angular accuracy of Gaia is about 20 micro-arcseconds. In this article, we estimate whether it is possible to measure the radial velocity of WDs astrometrically by the exchange of proper motion into radial velocity during the 5-year mission of the satellite or by combining Hipparcos data with the position measurements at the beginning of the Gaia mission (the Hundred-Thousand-Proper-Motion project HTPM). Title: Spectroscopic and photometric studies of white dwarfs in the Hyades Authors: Tremblay, P. -E.; Schilbach, E.; Röser, S.; Jordan, S.; Ludwig, H. -G.; Goldman, B. Bibcode: 2012A&A...547A..99T Altcode: 2012arXiv1209.4309T The Hyades cluster is known to harbour ten so-called classical white dwarf members. Numerous studies through the years have predicted that more than twice this amount of degenerate stars should be associated with the cluster. Using the PPMXL Catalog of proper motions and positions, a recent study proposed 17 new white dwarf candidates. We review the membership of these candidates by using published spectroscopic and photometric observations, as well as by simulating the contamination from field white dwarfs. In addition to the ten classical Hyades white dwarfs, we find six white dwarfs that may be of Hyades origin and three more objects that have an uncertain membership status due to their unknown or imprecise atmospheric parameters. Among those, two to three are expected as field stars contamination. Accurate radial velocity measurements will confirm or reject the candidates. One consequence is that the longstanding problem that no white dwarf older than ~340 Myr appears to be associated with the cluster remains unsolved. Title: On the incidence of weak magnetic fields in DA white dwarfs Authors: Landstreet, J. D.; Bagnulo, S.; Valyavin, G. G.; Fossati, L.; Jordan, S.; Monin, D.; Wade, G. A. Bibcode: 2012A&A...545A..30L Altcode: 2012arXiv1208.3650L Context. About 10% of white dwarfs have magnetic fields with strength in the range between about 105 and 5 × 108 G. It is not known whether the remaining white dwarfs are not magnetic, or if they have magnetic fields too weak to be detected with the techniques adopted in the large surveys. Information is particularly lacking for the cooler (and generally fainter) white dwarfs.
Aims: We describe the results of the first survey specifically devised to clarify the detection frequency of kG-level magnetic fields in cool DA white dwarfs.
Methods: Using the FORS1 instrument of the ESO VLT, we have obtained Balmer line circular spectropolarimetric measurements of a small sample of cool (DA6 - DA8) white dwarfs. Using FORS and UVES archive data, we have also revised numerous white dwarf field measurements previously published in the literature.
Results: We have discovered an apparently constant longitudinal magnetic field of ~9.5 kG in the DA6 white dwarf WD 2105-820. This star is the first weak-field white dwarf that has been observed sufficiently to roughly determine the characteristics of its field. The available data are consistent with a simple dipolar morphology with magnetic axis nearly parallel to the rotation axis, and a polar strength of ≃ 56 kG. Our re-evaluation of the FORS archive data for white dwarfs indicates that longitudinal magnetic fields weaker than 10 kG have previously been correctly identified in at least three white dwarfs. However, for one of these three weak-field stars (WD 2359-434), UVES archive data show a ~100 kG mean field modulus. Either at the time of the FORS observations the star's magnetic field axis was nearly perpendicular to the line of sight, or the star's magnetic field has rather complex structure.
Conclusions: We find that the probability of detecting a field of kG strength in a DA white dwarf is of the order of 10% for each of the cool and hot DA stars. If there is a lower cutoff to field strength in white dwarfs, or a field below which all white dwarfs are magnetic, the current precision of measurements is not yet sufficient to reveal it.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under observing programme 073.D-0516, and obtained from the ESO/ST-ECF Science Archive Facility.Table 3 is available in electronic form at http://www.aanda.org Title: Magnetic fields in central stars of planetary nebulae? Authors: Jordan, S.; Bagnulo, S.; Werner, K.; O'Toole, S. J. Bibcode: 2012A&A...542A..64J Altcode: 2012arXiv1204.2697J Context. Most planetary nebulae have bipolar or other non-spherically symmetric shapes. Magnetic fields in the central star may be responsible for this lack of symmetry, but observational studies published to date have reported contradictory results.
Aims: We search for correlations between a magnetic field and departures from the spherical geometry of the envelopes of planetary nebulae.
Methods: We determine the magnetic fields from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars were previously presented and discussed in the literature, while the observations of six stars, plus additional measurements of a star previously observed, are presented here for the first time.
Results: All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections using data acquired with FORS1 (FOcal Reducer and low dispersion Spectrograph) of the Unit Telescope 1 (UT1) of the Very Large Telescope (VLT) were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate.
Conclusions: There is currently no observational evidence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 072.D-0089 (PI = Jordan) and 075.D-0289 (PI = Jordan). Title: Second- and first-order phase transitions in causal dynamical triangulations Authors: Ambjørn, Jan; Jordan, S.; Jurkiewicz, J.; Loll, R. Bibcode: 2012PhRvD..85l4044A Altcode: 2012arXiv1205.1229A Causal dynamical triangulations (CDT) is a proposal for a theory of quantum gravity, which implements a path-integral quantization of gravity as the continuum limit of a sum over piecewise flat spacetime geometries. We use Monte Carlo simulations to analyze the phase transition lines bordering the physically interesting de Sitter phase of the four-dimensional CDT model. Using a range of numerical criteria, we present strong evidence that the so-called A-C transition is first order, while the B-C transition is second order. The presence of a second-order transition may be related to an ultraviolet fixed point of quantum gravity and thus provide the key to probing physics at and possibly beyond the Planck scale. Title: The magnetic fields of hot subdwarf stars Authors: Landstreet, J. D.; Bagnulo, S.; Fossati, L.; Jordan, S.; O'Toole, S. J. Bibcode: 2012A&A...541A.100L Altcode: 2012arXiv1203.6815L Context. Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. The situation concerning the occurrence and frequency of magnetic fields in hot subdwarfs is at best confused.
Aims: We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars.
Methods: We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Results have been published for only about half of the hot subdwarfs observed with FORS. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results.
Results: All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of wavelength calibration. Field detections in other surveys are found to be uncertain or doubtful, and certainly in need of confirmation.
Conclusions: There is presently no strong evidence for the occurrence of a magnetic field in any sdB or sdO star, with typical longitudinal field uncertainties of the order of 2-400 G. It appears that globally simple fields of more than about 1 or 2 kG in strength occur in at most a few percent of hot subdwarfs. Further high-precision surveys, both with high-resolution spectropolarimeters and with instruments similar to FORS1 on large telescopes, would be very valuable.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile under observing programmes 072.D-0290 and 075.D-0352, or obtained from the ESO/ST-ECF Science Archive Facility. Title: The Gaia-ESO Public Spectroscopic Survey Authors: Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; Negueruela, I.; Prusti, T.; Rix, H. -W.; Vallenari, A.; Alfaro, E.; Allende-Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; François, P.; Irwin, M.; Koposov, S.; Korn, A.; Lanzafame, A.; Pancino, E.; Paunzen, E.; Recio-Blanco, A.; Sacco, G.; Smiljanic, R.; Van Eck, S.; Walton, N.; Aden, D.; Aerts, C.; Affer, L.; Alcala, J. -M.; Altavilla, G.; Alves, J.; Antoja, T.; Arenou, F.; Argiroffi, C.; Asensio Ramos, A.; Bailer-Jones, C.; Balaguer-Nunez, L.; Bayo, A.; Barbuy, B.; Barisevicius, G.; Barrado y Navascues, D.; Battistini, C.; Bellas Velidis, I.; Bellazzini, M.; Belokurov, V.; Bergemann, M.; Bertelli, G.; Biazzo, K.; Bienayme, O.; Bland-Hawthorn, J.; Boeche, C.; Bonito, S.; Boudreault, S.; Bouvier, J.; Brandao, I.; Brown, A.; de Bruijne, J.; Burleigh, M.; Caballero, J.; Caffau, E.; Calura, F.; Capuzzo-Dolcetta, R.; Caramazza, M.; Carraro, G.; Casagrande, L.; Casewell, S.; Chapman, S.; Chiappini, C.; Chorniy, Y.; Christlieb, N.; Cignoni, M.; Cocozza, G.; Colless, M.; Collet, R.; Collins, M.; Correnti, M.; Covino, E.; Crnojevic, D.; Cropper, M.; Cunha, M.; Damiani, F.; David, M.; Delgado, A.; Duffau, S.; Edvardsson, B.; Eldridge, J.; Enke, H.; Eriksson, K.; Evans, N. W.; Eyer, L.; Famaey, B.; Fellhauer, M.; Ferreras, I.; Figueras, F.; Fiorentino, G.; Flynn, C.; Folha, D.; Franciosini, E.; Frasca, A.; Freeman, K.; Fremat, Y.; Friel, E.; Gaensicke, B.; Gameiro, J.; Garzon, F.; Geier, S.; Geisler, D.; Gerhard, O.; Gibson, B.; Gomboc, A.; Gomez, A.; Gonzalez-Fernandez, C.; Gonzalez Hernandez, J.; Gosset, E.; Grebel, E.; Greimel, R.; Groenewegen, M.; Grundahl, F.; Guarcello, M.; Gustafsson, B.; Hadrava, P.; Hatzidimitriou, D.; Hambly, N.; Hammersley, P.; Hansen, C.; Haywood, M.; Heber, U.; Heiter, U.; Held, E.; Helmi, A.; Hensler, G.; Herrero, A.; Hill, V.; Hodgkin, S.; Huelamo, N.; Huxor, A.; Ibata, R.; Jackson, R.; de Jong, R.; Jonker, P.; Jordan, S.; Jordi, C.; Jorissen, A.; Katz, D.; Kawata, D.; Keller, S.; Kharchenko, N.; Klement, R.; Klutsch, A.; Knude, J.; Koch, A.; Kochukhov, O.; Kontizas, M.; Koubsky, P.; Lallement, R.; de Laverny, P.; van Leeuwen, F.; Lemasle, B.; Lewis, G.; Lind, K.; Lindstrom, H. P. E.; Lobel, A.; Lopez Santiago, J.; Lucas, P.; Ludwig, H.; Lueftinger, T.; Magrini, L.; Maiz Apellaniz, J.; Maldonado, J.; Marconi, G.; Marino, A.; Martayan, C.; Martinez-Valpuesta, I.; Matijevic, G.; McMahon, R.; Messina, S.; Meyer, M.; Miglio, A.; Mikolaitis, S.; Minchev, I.; Minniti, D.; Moitinho, A.; Momany, Y.; Monaco, L.; Montalto, M.; Monteiro, M. J.; Monier, R.; Montes, D.; Mora, A.; Moraux, E.; Morel, T.; Mowlavi, N.; Mucciarelli, A.; Munari, U.; Napiwotzki, R.; Nardetto, N.; Naylor, T.; Naze, Y.; Nelemans, G.; Okamoto, S.; Ortolani, S.; Pace, G.; Palla, F.; Palous, J.; Parker, R.; Penarrubia, J.; Pillitteri, I.; Piotto, G.; Posbic, H.; Prisinzano, L.; Puzeras, E.; Quirrenbach, A.; Ragaini, S.; Read, J.; Read, M.; Reyle, C.; De Ridder, J.; Robichon, N.; Robin, A.; Roeser, S.; Romano, D.; Royer, F.; Ruchti, G.; Ruzicka, A.; Ryan, S.; Ryde, N.; Santos, N.; Sanz Forcada, J.; Sarro Baro, L. M.; Sbordone, L.; Schilbach, E.; Schmeja, S.; Schnurr, O.; Schoenrich, R.; Scholz, R. -D.; Seabroke, G.; Sharma, S.; De Silva, G.; Smith, M.; Solano, E.; Sordo, R.; Soubiran, C.; Sousa, S.; Spagna, A.; Steffen, M.; Steinmetz, M.; Stelzer, B.; Stempels, E.; Tabernero, H.; Tautvaisiene, G.; Thevenin, F.; Torra, J.; Tosi, M.; Tolstoy, E.; Turon, C.; Walker, M.; Wambsganss, J.; Worley, C.; Venn, K.; Vink, J.; Wyse, R.; Zaggia, S.; Zeilinger, W.; Zoccali, M.; Zorec, J.; Zucker, D.; Zwitter, T.; Gaia-ESO Survey Team Bibcode: 2012Msngr.147...25G Altcode: The Gaia-ESO Public Spectroscopic Survey has begun and will obtain high quality spectroscopy of some 100000 Milky Way stars, in the field and in open clusters, down to magnitude 19, systematically covering all the major components of the Milky Way. This survey will provide the first homogeneous overview of the distributions of kinematics and chemical element abundances in the Galaxy. The motivation, organisation and implementation of the Gaia-ESO Survey are described, emphasising the complementarity with the ESA Gaia mission. Spectra from the very first observing run of the survey are presented. Title: Two new young, wide, magnetic + non-magnetic double-degenerate binary systems Authors: Dobbie, P. D.; Baxter, R.; Külebi, B.; Parker, Q. A.; Koester, D.; Jordan, S.; Lodieu, N.; Euchner, F. Bibcode: 2012MNRAS.421..202D Altcode: 2011arXiv1111.7015D We report the discovery of two, new, rare, wide, double-degenerate binaries that each contain a magnetic and a non-magnetic star. The components of SDSS J092646.88+132134.5 + J092647.00+132138.4 and of SDSS J150746.48+521002.1 + J150746.80+520958.0 have angular separations of only 4.6 arcsec (a∼ 650 au) and 5.1 arcsec (a∼ 750 au), respectively. They also appear to share common proper motions. Follow-up optical spectroscopy has revealed each system to consist of a DA and a H-rich high-field magnetic white dwarf (HFMWD). Our measurements of the effective temperatures and the surface gravities of the DA components reveal both to have larger masses than is typical of field white dwarfs. By assuming that these degenerates have evolved essentially as single stars, owing to their wide orbital separations, we can use them to place limits on the total ages of the stellar systems. These suggest that in each case the HFMWD is probably associated with an early-type progenitor (Minit > 2 M). We find that the cooling time of SDSS J150746.80+520958.0 (DAH) is lower than might be expected had it followed the evolutionary path of a typical single star. This mild discord is in the same sense as that observed for two of the small number of other HFMWDs for which progenitor mass estimates have been made, RE J0317-853 and EG 59. The mass of the other DAH, SDSS J092646.88+132134.5, appears to be smaller than expected on the basis of single-star evolution. If this object was/is a member of a hierarchical triple system it may have experienced greater mass loss during an earlier phase of its life as a result of its having a close companion. The large uncertainties on our estimates of the parameters of the HFMWDs suggest that a larger sample of these objects is required to firmly identify any trends in their inferred cooling times and progenitor masses. This should shed further light on their formation and on the impact magnetic fields have on the late stages of stellar evolution. To serve as a starting point, we highlight two further candidate young, wide magnetic + non-magnetic double-degenerate systems within SDSS, CBS 229 and SDSS J074853.07+302543.5 + J074852.95+302543.4, which should be subjected to detailed (resolved) spectroscopic follow-up studies. Title: Second-Order Phase Transition in Causal Dynamical Triangulations Authors: Ambjørn, Jan; Jordan, S.; Jurkiewicz, J.; Loll, R. Bibcode: 2011PhRvL.107u1303A Altcode: 2011arXiv1108.3932A Causal dynamical triangulations are a concrete attempt to define a nonperturbative path integral for quantum gravity. We present strong evidence that the lattice theory has a second-order phase transition line, which can potentially be used to define a continuum limit in the conventional sense of nongravitational lattice theories. Title: Constraints on the origin of the massive, hot, and rapidly rotating magnetic white dwarf RE J 0317-853 from an HST parallax measurement Authors: Külebi, B.; Jordan, S.; Nelan, E.; Bastian, U.; Altmann, M. Bibcode: 2010A&A...524A..36K Altcode: 2010arXiv1007.4978K
Aims: We use the parallax measurements of RE J 0317-853 to determine its mass, radius, and cooling age and thereby constrain its evolutionary origins.
Methods: We observed RE J 0317-853 with the Hubble Space Telescope's Fine Guidance Sensor to measure the parallax of RE J 0317-853 and its binary companion, the non-magnetic white dwarf LB 9802. In addition, we acquired spectra of comparison stars with the Boller & Chivens spectrograph of the SMARTS telescope to correct the parallax zero point. For the corrected parallax, we determine the radius, mass, and the cooling age with the help of evolutionary models from the literature.
Results: The properties of RE J 0317-853 are constrained using the parallax information. We discuss the different cases of the core composition and the uncertain effective temperature. We confirm that RE J 0317-853 is close to the Chandrasekhar's mass limit in all cases and almost as old as its companion LB 9802.
Conclusions: The precise evolutionary history of RE J 0317-853 depends on our knowledge of its effective temperature. It is possible that it had a single star progenitor possible if we assume that the effective temperature is at the cooler end of the possible range from 30 000 to 50 000 K; if Teff is instead at the hotter end, a binary-merger scenario for RE J 0317-853 becomes more plausible.

Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The Guide Star Catalogue-II is a joint project of the Space Telescope Science Institute and the Osservatorio Astronomico di Torino. Title: Evolutionary Status of REJ 0317-853 Authors: Külebi, B.; Jordan, S.; Nelan, E.; Burleigh, M.; Bastian, U.; Altmann, M.; Euchner, F. Bibcode: 2010AIPC.1273...85K Altcode: RE J 0317-853 is an isolated magnetic white dwarf which is hot, highly magnetized and rapidly rotating compared to the rest of the magnetic white dwarf population. Due to an alleged age discrepancy estimated by its hot nature and his colder binary counterpart LB 9802, RE J 0317-853 was assumed to be a result of a binary merger. In this work we present the parallax measurements made with the Hubble Space Telescope's Fine Guidance System and the spectro-polarimetry from Anglo-Australian Observatory in order to reassess the evolutionary history of the binary system. Through the parallax measurement we determine the radius, mass and, furthermore, with the use of evolutionary models from the literature we estimate the cooling age. Additionally, we modelled the phase resolved flux and polarisation spectra of RE J 0317-853 and for the first time our magnetic models are able to account for the formerly unexplained feature with 16% of circular polarisation. We also discuss the effect of different possible core compositions and the effect of the uncertainty of the effective temperature; the value of the latter is extremely important for a correct interpretation of the evolutionary history of RE J 0317-853. A single star origin is possible if we assume that the effective temperature is at the cooler end of the possible range from 30000 K to 50000 K; if Teff is rather at the hotter end, a binary merger scenario for RE J 0317-853 becomes more plausible. Title: Complexity of the Gaia astrometric least-squares problem and the (non-)feasibility of a direct solution method Authors: Bombrun, A.; Lindegren, L.; Holl, B.; Jordan, S. Bibcode: 2010A&A...516A..77B Altcode: The Gaia space astrometry mission (to be launched in 2012) will use a continuously spinning spacecraft to construct a global system of positions, proper motions and absolute parallaxes from relative position measurements made in an astrometric focal plane. This astrometric reduction can be cast as a classical least-squares problem, and the adopted baseline method for its solution uses a simple iteration algorithm. A potential weakness of this approach, as opposed to a direct solution, is that any finite number of iterations results in truncation errors that are difficult to quantify. Thus it is of interest to investigate alternative approaches, in particular the feasibility of a direct (non-iterative) solution. A simplified version of the astrometric reduction problem is studied in which the only unknowns are the astrometric parameters for a subset of the stars and the continuous three-axis attitude, thus neglecting further calibration issues. The specific design of the Gaia spacecraft and scanning law leads to an extremely large and sparse normal equations matrix. Elimination of the star parameters leads to a much smaller but less sparse system. We try different reordering schemes and perform symbolic Cholesky decomposition of this reduced normal matrix to study the fill-in for successively longer time span of simulated observations. Extrapolating to the full mission length, we conclude that a direct solution is not feasible with today's computational capabilities. Other schemes, e.g., eliminating the attitude parameters or orthogonalizing the observation equations, lead to similar or even worse problems. This negative result appears to be a consequence of the strong spatial and temporal connectivity among the unknowns achieved by two superposed fields of view and the scanning law, features that are in fact desirable and essential for minimizing large-scale systematic errors in the Gaia reference frame. We briefly consider also an approximate decomposition method à la Hipparcos, but conclude that it is either sub-optimal or effectively leads to an iterative solution. Title: CDT meets Hořava-Lifshitz gravity Authors: Ambjørn, J.; Görlich, A.; Jordan, S.; Jurkiewicz, J.; Loll, R. Bibcode: 2010PhLB..690..413A Altcode: 2010arXiv1002.3298A The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over spacetime geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Hořava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Hořava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity. Title: PG1258+593 and its common proper motion magnetic white dwarf counterpart Authors: Girven, J.; Gänsicke, B. T.; Külebi, B.; Steeghs, D.; Jordan, S.; Marsh, T. R.; Koester, D. Bibcode: 2010MNRAS.404..159G Altcode: 2010arXiv1001.1359G; 2010MNRAS.tmp..271G We confirm SDSSJ130033.48+590407.0 as a common proper motion companion to the well-studied hydrogen-atmosphere (DA) white dwarf PG1258+593 (GD322). The system lies at a distance of 68 +/- 3pc, where the angular separation of 16.1 +/- 0.1arcsec corresponds to a minimum binary separation of 1091 +/- 7au. SDSSJ1300+5904 is a cool (Teff = 6300 +/- 300K) magnetic white dwarf (B ~= 6mG). PG1258+593 is a DA white dwarf with Teff = 14790 +/- 77K and logg = 7.87 +/- 0.02. Using the white dwarf mass-radius relation implies the masses of SDSSJ1300+5904 and PG1258+593 are 0.54 +/- 0.06 and 0.54 +/- 0.01Msolar, respectively, and therefore a cooling age difference of 1.67 +/- 0.05Gyr. Adopting main-sequence lifetimes from stellar models, we derive an upper limit of 2.2Msolar for the mass of the progenitor of PG1258+593. A plausible range of initial masses is 1.4-1.8 Msolar for PG1258+593 and 2-3 Msolar for SDSSJ1300+5904. Our analysis shows that white dwarf common proper motion binaries can potentially constrain the white dwarf initial mass-final mass relation and the formation mechanism for magnetic white dwarfs. The magnetic field of SDSSJ1300+5904 is consistent with an Ap progenitor star. A common envelope origin of the system cannot be excluded, but requires a triple system as progenitor. Title: VizieR Online Data Catalog: Magnetic fields in white dwarfs (Kuelebi+, 2009) Authors: Kuelebi, B.; Jordan, S.; Euchner, F.; Gaensicke, B. T.; Hirsch, H. Bibcode: 2010yCat..35061341K Altcode: We calculated a grid of state-of-the-art theoretical optical spectra of hydrogen-rich magnetic white dwarfs (WDs) with magnetic field strengths of between 1MG and 1200MG for different angles between the magnetic field vector and the line of sight, and for effective temperatures between 7000K and 50000K. We used a least squares minimization scheme with an evolutionary algorithm to find the best-fit magnetic field geometry of the observed data. We used centered dipoles or dipoles that had been shifted along the dipole axis to model the coadded SDSS fiber spectrum of each object.

(1 data file). Title: Study of short period variables and small amplitude periodic variables Authors: Varadi, M.; Eyer, L.; Jordan, S.; Koester, D. Bibcode: 2010EAS....45..167V Altcode: 2010arXiv1011.4885V; 2011EAS....45..167V Our goal is to assess Gaia's performance on the period recovery of short period (p < 2 hours) and small amplitude variability. To reach this goal first we collected the properties of variable stars that fit the requirements described above. Then we built a database of synthetic light-curves with short period and low amplitude variability with time sampling that follows the Gaia nominal scanning law and with noise level corresponding to the expected photometric precision of Gaia. Finally we performed period search on the synthetic light-curves to obtain period recovery statistics. This work extends our previous period recovery studies to short period variable stars which have non-stationary Fourier spectra. Title: Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey Authors: Külebi, B.; Jordan, S.; Euchner, F.; Gänsicke, B. T.; Hirsch, H. Bibcode: 2009A&A...506.1341K Altcode: 2009arXiv0907.2372K Context: A large number of magnetic white dwarfs discovered in the SDSS have so far only been analyzed by visual comparison of the observations with relatively simple models of the radiation transport in a magnetised stellar atmosphere.
Aims: We model the structure of the surface magnetic fields of the hydrogen-rich white dwarfs in the SDSS.
Methods: We calculated a grid of state-of-the-art theoretical optical spectra of hydrogen-rich magnetic white dwarfs (WDs) with magnetic field strengths of between 1 MG and 1200 MG for different angles between the magnetic field vector and the line of sight, and for effective temperatures between 7000 K and 50 000 K. We used a least squares minimization scheme with an evolutionary algorithm to find the best-fit magnetic field geometry of the observed data. We used centered dipoles or dipoles that had been shifted along the dipole axis to model the coadded SDSS fiber spectrum of each object.
Results: We analyzed the spectra of all known magnetic hydrogen-rich (DA) WDs from the SDSS (97 previously published, plus 44 newly discovered) and also investigated the statistical properties of the magnetic field geometries of this sample.
Conclusions: The total number of known magnetic white dwarfs has already been more than tripled by the SDSS and more objects are expected after more systematic searches. The magnetic fields have strengths of between ≈ 1 and 900 MG. Our results further support the claims that Ap/Bp population is insufficient in generating the numbers and field strength distributions of the observed MWDs, and that of either another source of progenitor types or binary evolution is needed. Clear indications of non-centered dipoles exist in about ~50%, of the objects which is consistent with the magnetic field distribution observed in Ap/Bp stars.

Appendix A and Table 3 are only available in electronic form at http://www.aanda.org Title: The Gaia project: Technique, performance and status Authors: Jordan, S. Bibcode: 2008AN....329..875J Altcode: 2008arXiv0811.2345J Gaia is a satellite mission of the ESA, aiming at absolute astrometric measurements of about one billion stars (all stars down to 20th magnitude, with unprecedented accuracy. Additionally, magnitudes and colors will be obtained for all these stars, while radial-velocities and spectral properties will be determined only for bright objects ({V<17.5}). At 15th magnitude Gaia aims at an angular accuracy of 20 microarcseconds (\muas). This goal can only be reached if the geometry of the telescopes, the detectors, and the pointing of Gaia at each moment (``attitude'') can be inferred from the Gaia measurements itself with \muas accuracy. Title: ELSA training the next generation of space astrometrists Authors: Lindegren, L.; Bijaoui, A.; Brown, A. G. A.; Drimmel, R.; Eyer, L.; Jordan, S.; Kontizas, M.; van Leeuwen, F.; Muinonen, K.; Pourbaix, D.; Torra, J.; Turon, C.; de Vries, J.; Zwitter, T. Bibcode: 2008IAUS..248..529L Altcode: ELSA (European Leadership in Space Astrometry) is an EU-funded research project 2006 2010, contributing to the scientific preparations for the Gaia mission while training young researchers in space astrometry and related subjects. Nine postgraduate (PhD) students and five postdocs have been recruited to the network. Their research focuses on the principles of global astrometric, photometric, and spectroscopic measurements from space, instrument modelling and calibration, and numerical analysis tools and data processing methods relevant for Gaia. Title: The Fraction of DA White Dwarfs with Kilo--Gauss Magnetic Fields Authors: Jordan, S.; Aznar Cuadrado, R.; Napiwotzki, R.; Schmid, H. M.; Solanki, S. K. Bibcode: 2007ASPC..372..169J Altcode: 2006astro.ph.10881J Current estimates for white dwarfs with fields in excess of 1 MG are about 10%; according to our first high-precision circular-polarimetric study of 12 bright white dwarfs with the VLT tep{p26_Aznar-etal:04} this number increases up to about 25%\ in the kG regime. With our new sample of ten white dwarf observations (plus one sdO star) we wanted to improve the sample statistics to determine the incident of kG magnetic fields in white dwarfs. In one of our objects (LTT 7987) we detected a statistically significant (97% confidence level) longitudinal magnetic field varying between (-1± 0.5) kG and (+1± 0.5) kG. This would be the weakest magnetic field ever found in a white dwarf, but at this level of accuracy, systematic errors cannot completely be ruled out. Together with previous investigations, the fraction of kG magnetic fields in white dwarfs amounts to about 11-15% , which is close to current estimates for highly magnetic white dwarfs (>1 MG). Title: Gaia --- A White Dwarf Discovery Machine Authors: Jordan, S. Bibcode: 2007ASPC..372..139J Altcode: 2006astro.ph.10879J Gaia is a satellite mission of the ESA, aiming at absolute astrometric measurements of about one billion stars (V<20) with unprecedented accuracy. Additionally, magnitudes and colors will be obtained for all these stars, while radial-velocities will be determined only for bright objects (V<17.5). However, the wavelength range for the radial-velocity instrument is rather unsuitable for most white dwarfs. Gaia will probably discover about 400,000 white dwarfs; up to 100 pc the detection probability for white dwarfs is almost 100 %. This survey of white dwarfs will have very clear, easy to understand selection criteria, and will therefore be very suitable for statistical investigations. The Gaia data will help to improve the construction of a luminosity function for the disk and the halo and will provide a more accurate determination of the age of our solar neighborhood. Moreover, reliable stellar dynamical investigations of the disk and halo components will be possible. For the first time it will be possible to test the mass-radius relation of white dwarfs in great detail. Moreover, more accurate masses of magnetic and cool white dwarfs can be expected. Gaia is also expected to discover many new pulsating white dwarfs. The Gaia measurements can also complement the measurements of gravitational waves from close white dwarf binaries with Lisa. Title: EUNIS Results on He II 304 Å Line Formation Authors: Jordan, S. D.; Brosius, J. W. Bibcode: 2007ASPC..368..183J Altcode: The first flight of the Goddard Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) took place from White Sands Missile Range at 18:10 UT on April 12, 2006. Observations of the He II 304 Å principal resonance line were obtained with a cadence of ∼ 2 seconds along an eleven arc-minute slit. Corresponding EIT images of this line, and additional EUNIS observations of the strong coronal line of Fe XVI at 335.4 Å, were used to assess the role of the photoionizing coronal flux in the formation of the He II line. In agreement with previous work of these authors and others, the results support formation by the collisional excitation mechanism by thermal electrons in the quiet Sun. Title: The fraction of DA white dwarfs with kilo-Gauss magnetic fields Authors: Jordan, S.; Aznar Cuadrado, R.; Napiwotzki, R.; Schmid, H. M.; Solanki, S. K. Bibcode: 2007A&A...462.1097J Altcode: 2006astro.ph.10875J Context: Weak magnetic fields have been searched for on only a small number of white dwarfs. Current estimates find that about 10% of all white dwarfs have fields in excess of 1 MG; according to previous studies this number increases up to about 25% in the kG regime.
Aims: Our aim is to improve on these statistics by a new sample of ten white dwarfs in order to determine the ratio of magnetic to field-free white dwarfs.
Methods: Mean longitudinal magnetic fields strengths were determined by means of high-precision circular polarimetry of Hβ and Hγ with the FORS1 spectrograph of the VLT "Kueyen" 8 m telescope.
Results: In one of our objects (LTT 7987), we detected a statistically significant (97% confidence level) longitudinal magnetic field varying between (-1± 0.5) kG and (+1± 0.5) kG. This would be the weakest magnetic field ever found in a white dwarf, but systematic errors cannot completely be ruled out at this level of accuracy. We also observed the sdO star EC 11481-2303 but could not detect a magnetic field.
Conclusions: . VLT observations with uncertainties typically of 1000 G or less suggest that 15-20% of WDs have kG fields. Together with previous investigations, the fraction of kG magnetic fields in white dwarfs amounts to about 11-15%, which is close to the current estimations for highly magnetic white dwarfs (>1 MG).

Based on observations made with ESO Telescopes at the La Silla or Paranal Observatories under programme ID 073.D-0356. Figures A.1 and A.2 are only available in electronic form at http://www.aanda.org Title: Zeeman tomography of magnetic white dwarfs. IV. The complex field structure of the polars EF Eridani, BL Hydri and CP Tucanae Authors: Beuermann, K.; Euchner, F.; Reinsch, K.; Jordan, S.; Gänsicke, B. T. Bibcode: 2007A&A...463..647B Altcode: 2006astro.ph.10804B Context: The magnetic fields of the accreting white dwarfs in magnetic cataclysmic variables (mCVs) determine the accretion geometries, the emission properties, and the secular evolution of these objects.
Aims: We determine the structure of the surface magnetic fields of the white dwarf primaries in magnetic CVs using Zeeman tomography.
Methods: Our study is based on orbital-phase resolved optical flux and circular polarization spectra of the polars EF Eri, BL Hyi, and CP Tuc obtained with FORS1 at the ESO VLT. An evolutionary algorithm is used to synthesize best fits to these spectra from an extensive database of pre-computed Zeeman spectra. The general approach has been described in previous papers of this series.
Results: The results achieved with simple geometries as centered or offset dipoles are not satisfactory. Significantly improved fits are obtained for multipole expansions that are truncated at degree l_max=3 or 5 and include all tesseral and sectoral components with 0≤ m≤ l. The most frequent field strengths of 13, 18, and 10 MG for EF Eri, BL Hyi, and CP Tuc, and the ranges of field strength covered are similar for the dipole and multipole models, but only the latter provide access to accreting matter at the right locations on the white dwarf. The results suggest that the field geometries of the white dwarfs in short-period mCVs are quite complex, with strong contributions from multipoles higher than the dipole in spite of a typical age of the white dwarfs in CVs in excess of 1 Gyr.
Conclusions: .It is feasible to derive the surface field structure of an accreting white dwarf from phase-resolved low-state circular spectropolarimetry of sufficiently high signal-to-noise ratio. The fact that independent information is available on the strength and direction of the field in the accretion spot from high-state observations helps in unraveling the global field structure.

Based on observations collected at the European Southern Observatory, Paranal, Chile, under programme IDs 63.P-0003(A), 64.P-0150(C), and 66.D-0128(B). Title: Zeeman tomography of magnetic white dwarfs. III. The 70-80 Megagauss magnetic field of PG 1015+014 Authors: Euchner, F.; Jordan, S.; Beuermann, K.; Reinsch, K.; Gänsicke, B. T. Bibcode: 2006A&A...451..671E Altcode: 2006astro.ph..2112E Aims. We analyse the magnetic field geometry of the magnetic DA white dwarf PG 1015+014 with our Zeeman tomography method.
Methods: . This study is based on rotation-phase resolved optical flux and circular polarization spectra of PG 1015+014 obtained with FORS1 at the ESO VLT. Our tomographic code makes use of an extensive database of pre-computed Zeeman spectra. The general approach has been described in Papers I and II of this series.
Results: . The surface field strength distributions for all rotational phases of PG 1015+014 are characterised by a strong peak at 70 MG. A separate peak at 80 MG is seen for about one third of the rotation cycle. Significant contributions to the Zeeman features arise from regions with field strengths between 50 and 90 MG. We obtain equally good simultaneous fits to the observations, collected in five phase bins, for two different field parametrizations: (i) a superposition of individually tilted and off-centred zonal multipole components; and (ii) a truncated multipole expansion up to degree l = 4 including all zonal and tesseral components. The magnetic fields generated by both parametrizations exhibit a similar global structure of the absolute surface field values, but differ considerably in the topology of the field lines. An effective photospheric temperature of T_eff = 10 000 ± 1000 K was found.
Conclusions: . Remaining discrepancies between the observations and our best-fit models suggest that additional small-scale structure of the magnetic field exists which our field models are unable to cover due to the restricted number of free parameters. Title: First Results From EUNIS 2005 Authors: Rabin, D. M.; Thomas, R. J.; Davila, J. M.; Brosius, J. W.; Swartz, M.; Jordan, S. D. Bibcode: 2005AGUFMSH41B1122R Altcode: The Extreme Ultraviolet Normal-Incidence Spectrograph (EUNIS) is a sounding rocket experiment to investigate the energetics of the solar corona and hotter transition region through high-resolution imaging spectroscopy with a rapid (2 second) cadence. Pre-flight characterization of throughput has demonstrated that EUNIS is the most sensitive solar EUV spectrograph in existence, having over 100 times the throughput of its predecessor, the Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS). We report initial results from the first flight in November 2005 from White Sands Missile Range. The main scientific goal of the first EUNIS flight is to extend the investigation of transient phenomena, such as nanoflares and blinkers, to shorter timescales than has been possible with previous EUV spectrographs. The two independent optical systems of EUNIS record spatially co-aligned spectra over two passbands (170--205 Å and 300--370 Å) simultaneously with spectral resolution of 60 mÅ or 120 mÅ, respectively. The longwave passband includes He II 304 Å and strong lines from Fe XI--XVI. The shortwave passband has a sequence of very strong Fe IX--XIII lines. Together, the EUNIS telescopes furnish a wide range of temperature and density diagnostics and enable underflight calibration of instrumental passbands on the SOHO, TRACE, Solar-B, and STEREO missions. Title: Zeeman tomography of magnetic white dwarfs. II. The quadrupole-dominated magnetic field of HE 1045-0908 Authors: Euchner, F.; Reinsch, K.; Jordan, S.; Beuermann, K.; Gänsicke, B. T. Bibcode: 2005A&A...442..651E Altcode: 2005astro.ph..7631E We report time-resolved optical flux and circular polarization spectroscopy of the magnetic DA white dwarf HE 1045-0908 obtained with FORS1 at the ESO VLT. Considering published results, we estimate a likely rotational period of P_rot ≃ 2.7 h, but cannot exclude values as high as about 9 h. Our detailed Zeeman tomographic analysis reveals a field structure which is dominated by a quadrupole and contains additional dipole and octupole contributions, and which does not depend strongly on the assumed value of the period. A good fit to the Zeeman flux and polarization spectra is obtained if all field components are centred and inclinations of their magnetic axes with respect to each other are allowed for. The fit can be slightly improved if an offset from the centre of the star is included. The prevailing surface field strength is 16 MG, but values between 10 and ~ 75 MG do occur. We derive an effective photospheric temperature of HE 1045-0908 of T_eff = 10 000 ± 1000 K. The tomographic code makes use of an extensive database of pre-computed Zeeman spectra (Paper I). Title: On the nature of the unidentified solar emission near 117 nm Authors: Wilhelm, K.; Schühle, U.; Curdt, W.; Hilchenbach, M.; Marsch, E.; Lemaire, P.; Bertaux, J. -L.; Jordan, S. D.; Feldman, U. Bibcode: 2005A&A...439..701W Altcode: Spectral observations of the Sun in the vacuum-ultraviolet wavelength range by SUMER on SOHO led to the discovery of unusual emission features - called humps here - at 116.70 nm and 117.05 nm on either side of the He i 58.43 nm line. This resonance line is seen in the second order of diffraction, whereas the humps are recorded in the first order with the SUMER spectrometer. In its spectra both orders are superimposed. Two less pronounced humps can be detected at 117.27 nm and near 117.85 nm. After rejecting various possibilities of an instrumental cause of the humps, they are studied in different solar regions. Most of the measurements, in particular those related to the limb-brightening characteristics, indicate that the humps are not part of the background continuum. An assembly of spectrally-unresolved atomic or ionic emission lines might be contributing to the hump at 117.05 nm, but no such lines are known near 116.7 nm. It is concluded that we detect genuine radiation, the generation of which is not understood. A two-photon emission process, parametric frequency down conversion, and molecular emissions are briefly considered as causes of the humps, but a final conclusion could not be reached. Title: The Structure and Origin of Magnetic Fields on Accreting White Dwarfs Authors: Reinsch, K.; Euchner, F.; Beuermann, K.; Jordan, S.; Gänsicke, B. T. Bibcode: 2005ASPC..330..177R Altcode: 2004astro.ph.10144R We have started a systematic study of the field topologies of magnetic single and accreting white dwarfs using Zeeman tomography. Here we report on our analysis of phase-resolved flux and circular polarization spectra of the magnetic cataclysmic variables BL Hyi and MR Ser obtained with FORS1 at the ESO VLT. For both systems we find that the field topologies are more complex than a dipole or an offset dipole and require at least multipole expansions up to order l = 3 to adequately describe the observed Zeeman features and their variations with rotational phase. Overall our model fits are in excellent agreement with observations. Remaining residuals indicate that the field topologies might even be more complex. It is, however, assuring that the global characteristics of our solutions are consistent with the average effective field strengths and the halo field strengths derived from intensity spectra in the past. Title: Kilo-Gauss Magnetic Fields in Three DA White Dwarfs Authors: Aznar Cuadrado, R.; Jordan, S.; Napiwotzki, R.; Schmid, H. M.; Solanki, S. K.; Mathys, G. Bibcode: 2005ASPC..334..159A Altcode: 2005astro.ph..1191A; 2005astro.ph..1191C We have detected longitudinal magnetic fields between 2 and 4 kG in three normal DA white dwarfs (WD 0446-790, WD 1105-048, WD 2359-434) out of a sample of 12 by using optical spectropolarimetry done with the VLT Antu 8 m telescope equipped with FORS1. With the exception of 40 Eri B (4 kG) these are the first positive detections of magnetic fields in white dwarfs below 30 kG. A detection rate of 25 % (3/12) may indicate now for the first time that a substantial fraction of white dwarfs have weak magnetic fields. This result, if confirmed by future observations, would form a cornerstone for our understanding of the evolution of stellar magnetic fields. Title: Discovery of Magnetic Fields in Hot Subdwarfs Authors: O'Toole, S. J.; Jordan, S.; Friedrich, S.; Heber, U. Bibcode: 2005ASPC..334..261O Altcode: 2004astro.ph.10042O We present initial results of a project to measure mean longitudinal magnetic fields in a group of sdB/OB/O stars. The project was inspired by the discovery of three super-metal-rich sdOB stars, each having metals (e.g. Ti, V) enhanced by factors of 103 to 105. Similar behaviour is observed in chemically peculiar A stars, where strong magnetic fields are responsible for the enrichment. With this in mind, we obtained circularly polarised spectra of two of the super-metal-rich sdOBs, two "normal" sdBs and two sdOs using FORS1 on the ESO/VLT. By examining circular polarisation in the hydrogen Balmer lines and in helium lines, we have detected magnetic fields with strengths of 1-2 kG in most of our targets. This suggests that such fields are relatively common in hot subdwarfs. Title: Constraining Gravitational Theories by Observing Magnetic White Dwarfs Authors: Preuss, O.; Jordan, S.; Haugan, M. P.; Solanki, S. K. Bibcode: 2005ASPC..334..265P Altcode: 2004astro.ph.11688P Under the assumption of a specific nonminimal coupling of torsion to electromagnetism, spacetime is birefringent in the presence of a gravitational field leading to depolarization of light emitted from extended astrophysical sources. We use polarimetric data of the magnetic white dwarf RE J0317-853 to set for the very first time constraints on the essential coupling constant for this effect, giving k2 ∼ (22 m)2. Title: Surface Magnetic Field Distributions of the White Dwarfs PG 1015+014 and HE 1045-0908 Authors: Euchner, F.; Jordan, S.; Reinsch, K.; Beuermann, K.; Gänsicke, B. T. Bibcode: 2005ASPC..334..269E Altcode: 2004astro.ph.10199E We have applied the method of Zeeman tomography to analyze the surface magnetic field structures of the white dwarfs PG 1015+014 and HE 1045-0908 from spin-phase resolved flux and circular polarization spectra obtained with FORS1 at the ESO VLT. We find for both objects field topologies that deviate significantly from centred dipoles. For HE 1045-0908, the frequency distribution of magnetic field strengths is sharply peaked at 16 MG for all rotational phases covered by our data but extends to field strengths at least five times this value. In the case of PG 1015+014 there are significant contributions to the frequency distribution in the range from 50 to 90 MG with the maximum near 70 MG. The detailed shape of the frequency distribution is strongly variable with respect to the rotational phase. Title: Discovery of Magnetic Fields in CPNs Authors: Jordan, S.; Werner, K.; O'Toole, S. J. Bibcode: 2005ASPC..334..257J Altcode: 2004astro.ph.10509J For the first time we have directly detected magnetic fields in central stars of planetary nebulae by means of spectro-polarimetry with FORS1 at the VLT. In all four objects of our sample we found kilogauss magnetic fields, in NGC 1360 and LSS 1362 with very high significance, while in Abell 36 and EGB 5 the existence of a magnetic field is probable but with less certainty. This discovery supports the hypothesis that the non-spherical symmetry of most planetary nebulae is caused by magnetic fields in AGB stars. Our high discovery rate demands mechanisms to prevent full conservation of magnetic flux during the transition to white dwarfs. Title: Discovery of magnetic fields in hot subdwarfs Authors: O'Toole, S. J.; Jordan, S.; Friedrich, S.; Heber, U. Bibcode: 2005A&A...437..227O Altcode: 2005astro.ph..3243O We present polarisation measurements of sdB and sdO stars using FORS1 on the VLT. The observations were made as part of a project to determine whether magnetic fields in two super-metal-rich stars can explain their extreme abundance peculiarities. Field strengths of up to ~1.5 kG range have been measured at varying levels of significance in each of our six targets, however no clear evidence was found between apparently normal subdwarfs and the metal-rich objects. The origin of the magnetic fields is unknown. We also discuss the implications of our measurements for magnetic flux conservation in late stages of stellar evolution. Title: Do Magnetic Fields Prevent Hydrogen from Accreting onto Cool Metal-line White Dwarf Stars? Authors: Friedrich, S.; Jordan, S.; Koester, D. Bibcode: 2005ASPC..334..273F Altcode: 2004astro.ph.10507F It is generally assumed that metals detected in the spectra of a few cool white dwarfs cannot be of primordial origin and must be accreted from the interstellar medium. However, the observed abundances of hydrogen, which should also be accreted from the interstellar medium, are lower than expected from metal accretion. Magnetic fields are thought to be the reason for this discrepancy. We have therefore obtained circular polarization spectra of the helium-rich white dwarfs GD 40 and L745-46A, which both show strong metal lines as well as hydrogen. Whereas L745-46A might have a magnetic field of about -6900 G, which is about two times the field strength of 3000 G necessary to repell hydrogen at the Alfén radius, only an upper limit for the field strength of GD 40 of 4000 G (with 99% confidence) can be set which is far off the minimum field strength of 144000 G to repell hydrogen. Title: Discovery of magnetic fields in central stars of planetary nebulae Authors: Jordan, S.; Werner, K.; O'Toole, S. J. Bibcode: 2005A&A...432..273J Altcode: 2005astro.ph..1040J For the first time we have directly detected magnetic fields in central stars of planetary nebulae by means of spectro-polarimetry with FORS1 at the VLT. In all four objects of our sample we found kilogauss magnetic fields, in NGC 1360 and LSS 1362 with very high significance, while in EGB 5 and Abell 36 the existence of a magnetic field is probable but with less certainty. This discovery supports the hypothesis that the non-spherical symmetry of most planetary nebulae is caused by magnetic fields in AGB stars. Our high discovery rate demands mechanisms to prevent full conservation of magnetic flux during the transition to white dwarfs.

Based on observations collected at the European Southern Observatory, Paranal, Chile, under programme ID 072.D-0089. Title: Gaia First Look Authors: Jordan, S.; Bastian, U.; Lenhardt, H.; Bernstein, H. -H.; Hirte, S.; Biermann, M. Bibcode: 2005ESASP.576..405J Altcode: 2004astro.ph.11227J; 2005tdug.conf..405J A complicated and ambitious space mission like Gaia needs a careful monitoring and evaluation of the functioning of all components of the satellite. This has to be performed on different time scales, by different methods, and on different levels of precision. On the basis of housekeeping data a Quick Look will be performed by the ground segment. A first analyses of the science data quality and consistency will be done by a Science Quick Look. However, due to the nominal scanning law a full self-consistent calibration of the satellite, and a determination of astrometric and global parameters, is not possible before about half a year has elapsed, imposing a serious danger to lose valuable observing time if something goes wrong. Therefore, it is absolutely necessary to perform a Detailed First Look on a daily basis on the µas accuracy level. We describe two different methods, a block iterative procedure and a direct solution, to monitor all satellite parameters that in principle can be evaluated within a short amount of time, particularly those that can be measured in along-scan direction. This first astrometric analysis would greatly benefit from a modified scanning law (Zero-nu-dot mode) for some time during the commissioning phase. Title: Magnetic Field Topology of Accreting White Dwarfs Authors: Reinsch, K.; Euchner, F.; Beuermann, K.; Jordan, S. Bibcode: 2004ASPC..315...71R Altcode: 2003astro.ph..2056R; 2004IAUCo.190...71R We report first results of our systematic investigation of the magnetic field structure of rotating single magnetic white dwarfs and of white dwarfs in magnetic cataclysmic variables. The global magnetic field distributions on the isolated white dwarf HE1045-0908 and the accreting white dwarfs in EF Eri and CP Tuc have been derived from phase-resolved flux and polarization spectra obtained with FORS1 at the ESO VLT using the systematic method of Zeeman tomography. Title: A 150 MG Magnetic White Dwarf in the Cataclysmic Variable RX J1554.2+2721 Authors: Gänsicke, B. T.; Jordan, S.; Beuermann, K.; de Martino, D.; Szkody, P.; Marsh, T. R.; Thorstensen, J. Bibcode: 2004ApJ...613L.141G Altcode: 2004astro.ph..8301G We report the detection of Zeeman-split Lyα absorption π and σ+ lines in the far-ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph (STIS) spectrum of the magnetic cataclysmic variable RX J1554.2+2721. Fitting the STIS data with magnetic white dwarf model spectra, we derive a field strength of B~=144 MG and an effective temperature of 17,000 K<~Teff<~23,000 K. This measurement makes RX J1554.2+2721 only the third cataclysmic variable containing a white dwarf with a field exceeding 100 MG. Similar to the other high-field polar AR UMa, RX J1554.2+2721 is often found in a state of feeble mass transfer, which suggests that a considerable number of high-field polars may still remain undiscovered.

Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Title: Discovery of kilogauss magnetic fields in three DA white dwarfs Authors: Aznar Cuadrado, R.; Jordan, S.; Napiwotzki, R.; Schmid, H. M.; Solanki, S. K.; Mathys, G. Bibcode: 2004A&A...423.1081A Altcode: 2004astro.ph..5308C; 2004astro.ph..5308A We have detected longitudinal magnetic fields between 2 and 4 kG in three (WD 0446-790, WD 1105-048, WD 2359-434) out of a sample of 12 normal DA white dwarfs by using optical spectropolarimetry done with the VLT Antu 8 m telescope equipped with FORS1. With the exception of 40 Eri B (4 kG) these are the first positive detections of magnetic fields in white dwarfs below 30 kG. Although suspected, it was not clear whether a significant fraction of white dwarfs contain magnetic fields at this level. These fields may be explained as relics from magnetic fields in the main-sequence progenitors considerably enhanced by magnetic flux conservation during the shrinkage of the core. A detection rate of 25% (3/12) may indicate now for the first time that a substantial fraction of white dwarfs have a weak magnetic field. This result, if confirmed by future observations, would form a cornerstone for our understanding of the evolution of stellar magnetic fields.

Based on observations collected at the European Southern Observatory, Paranal, Chile, under programme ID 70.D-0259. Title: Do weak magnetic fields prevent hydrogen from accreting onto metal-line white dwarf stars? Authors: Friedrich, S.; Jordan, S.; Koester, D. Bibcode: 2004A&A...424..665F Altcode: 2004astro.ph..6229F The widely accepted assumption is that metals detected in the spectra of a few cool helium-rich white dwarfs cannot be of primordial origin and therefore must be accreted from the interstellar medium. However, the observed abundances of hydrogen are much too low to be compatible with the high accretion rates inferred from metal accretion. Hydrogen accretion is therefore suppressed compared to metal accretion. The hypothesis most widely discussed as cause for this ``hydrogen screening'' is the propeller mechanism: Metals are accreted in the form of grains onto a slowly rotating, weakly magnetized white dwarf, whereas ionized hydrogen is repelled at the Alfvén radius. We have obtained circular polarization spectra of the helium-rich white dwarfs GD 40 (WD0300-013) and L745-46A (WD0738-172) - which both show strong metal lines as well as hydrogen - in order to search for signatures of a weak magnetic field. The magnetic field strengths necessary for the propeller mechanism to work in these stars are at least 144 000 G and 3000 G, respectively. Whereas L745-46A might have a magnetic field of about -6900 G no magnetic field could be found with an upper limit for the field strength of 4000 G (with 99% confidence) for GD 40.

Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programme 66.D-0541). Title: HE0241-0155 - Evidence for a large scale homogeneous field in a highly magnetic white dwarf Authors: Reimers, D.; Jordan, S.; Christlieb, N. Bibcode: 2004A&A...414.1105R Altcode: 2003astro.ph.11076R In the course of the Hamburg/ESO survey we have discovered a white dwarf whose spectrum exhibits many similarities with the prototype of magnetic white dwarfs Grw+70°8247. In particular several stationary line components indicative for magnetic fields between about 150 and 400 MG are found in both objects. However, the features between 5000 and 5500 Å in the spectrum of HE0241-0155 cannot be explained by stationary line components and demand a relatively homogeneous magnetic field with clustering around 200 MG. For this reason a pure dipole model failed to reproduce this spectral region. An offset-dipole configuration led to some improvement in the fit but a good agreement was only possible for a geometry - described by an expansion into spherical harmonics - where most of the surface is covered with magnetic field strengths strongly clustered around 200 MG. This may indicate the presence of a large magnetic spot whose presence could be tested with time resolved spectro-polarimetry.

Based on observations collected at the European Southern Observatory, La Silla, Chile. Title: Evaluating Ground-based Proxies for Solar Irradiance variation Authors: Jordan, S. D.; Garcia, M. A. Bibcode: 2003SPD....34.1911J Altcode: 2003BAAS...35..843J In order to determine what ground-based proxies are best for evaluating solar irradiance variation before the advent of space observations, it is necessary to test these proxies against space observations. We have tested sunspot number, total sunspot area, and sunspot umbral area against the Nimbus-7 measurements of total solar irradiance variation over the eleven year period 1980-1990. The umbral area yields the best correlation and the total sunspot area yields the poorest.

Reasons for expecting the umbral area to yield the best correlation are given, the statistical procedure followed to obtain the results is described, and the value of determining the best proxy is discussed. The latter is based upon the availability of an excellent database from the Greenwich Observatory obtained over the period 1876-1976, which can be used to estimate the total solar irradiance variation before sensitive space observations were available.

The ground-based observations used were obtained at the Coimbra Solar Observatory. The analysis was done at Goddard using these data and data from the Nimbus-7 satellite. Title: The EUV helium spectrum in the quiet Sun: A by-product of coronal emission? Authors: Andretta, V.; Del Zanna, G.; Jordan, S. D. Bibcode: 2003A&A...400..737A Altcode: In this paper we test one of the mechanisms proposed to explain the intensities and other observed properties of the solar helium spectrum, and in particular of its Extreme-Ultraviolet (EUV) resonance lines. The so-called Photoionisation-Recombination (P-R) mechanism involves photoionisation of helium atoms and ions by EUV coronal radiation, followed by recombination cascades. We present calibrated measurements of EUV flux obtained with the two CDS spectrometers on board SOHO, in quiescent solar regions. We were able to obtain an essentially complete estimate of the total photoionising flux in the wavelength range below 504 Å (the photoionisation threshold for He I), as well as simultaneous measurements with the same instruments of the intensities of the strongest EUV He I and He Ii lines: \specline{He}i{584}, \specline{He}i{537}, and \specline{He}{ii}{304}. We find that there are not enough EUV ionising photons to account for the observed helium line intensities. More specifically, we conclude that He Ii intensities cannot be explained by the P-R mechanism alone. Our results, however, leave open the possibility that the He I spectrum could be formed by the P-R mechanism, with the \specline{He}{ii}{304} line as a significant photoionisating source. Title: Magnetic white dwarfs in the SDSS Authors: Gänsicke, B. T.; Euchner, F.; Jordan, S. Bibcode: 2003ASIB..105..199G Altcode: 2003whsw.conf..199G; 2003whdw.conf..199G No abstract at ADS Title: Transfer of Polarized Radiation - Practical Experience with the Accelerated Lambda Iteration Method Authors: Deetjen, J. L.; Dreizler, S.; Jordan, S.; Werner, K. Bibcode: 2003ASPC..288..617D Altcode: 2003sam..conf..617D Neutron stars and some of the white dwarfs have magnetic fields. The light emitted by these stars is polarized and can be characterized by the four Stokes components I, Q, U, and V. Therefore the polarized radiation transport equation differs significantly from the non-magnetic case. It is a system of linear differential equations coupled in I, Q, U, and V with depth dependent opacities and magneto-optical parameters. The most potential method, the accelerated lambda iteration, is presented in detail and practical experiences calculating neutron star atmospheres are reported. Title: Do Magnetic Fields Prevent Hydrogen from Accreting on to Cool Metal-line White Dwarfs? Authors: Friedrich, S.; Jordan, S.; Koester, D. Bibcode: 2003ASIB..105..203F Altcode: 2003whsw.conf..203F; 2003whdw.conf..203F No abstract at ADS Title: Progress in modeling magnetic white dwarfs Authors: Jordan, S. Bibcode: 2003ASIB..105..175J Altcode: 2003whsw.conf..175J; 2003astro.ph..2058J; 2003whdw.conf..175J First satisfactory fits to the flux spectrum and circular polarization of the DAP Grw +70 8247 are presented, as well as a first model of the DBP GD 229 with consistent helium line data. Title: Four Numerical Approaches for Solving the Radiative Transfer Equation in Magnetized White-Dwarf Atmospheres Authors: Jordan, S.; Schmidt, H. Bibcode: 2003ASPC..288..625J Altcode: 2003sam..conf..625J; 2003astro.ph..2047J The observed spectrum and wavelength dependent polarization of magnetic white dwarfs can be analyzed by simulating the transport of polarized radiation through a magnetized stellar atmosphere.

The four coupled radiative transport equations for the Stokes parameters I, Q, V, and U, can be solved by different numerical approaches. In this talk the numerical results and efficiencies of four different methods are discussed: (a) the method of Wickramasinghe & Martin which assumes that the source function is linear in the optical depth and that between two successive depth points the Stokes parameters can be described by exponential functions; (b) accelerated Λ iterations (see also the talk by J. Deetjen) (c) an approximation for large Faraday rotation, and (d) the matrix exponential solutions. Title: Zeeman tomography of magnetic white dwarfs: General method and application to EF Eridani Authors: Euchner, F.; Beuermann, K.; Reinsch, K.; Jordan, S.; Hessman, F. V.; Gänsicke, B. T. Bibcode: 2003ASIB..105..195E Altcode: 2003astro.ph..3336E; 2003whdw.conf..195E; 2003whsw.conf..195E We have developed a new method to derive the magnetic field distribution on the surfaces of rotating magnetic white dwarfs from phase-resolved flux and circular polarization spectra. An optimization code based on an evolutionary strategy is used to fit synthetic Zeeman spectra for a variety of model geometries described in the framework of a truncated multipole expansion. We demonstrate that the code allows the reconstruction of relatively complex fields using noise-added synthetic input spectra. As a first application, we analyze flux and circular polarization spectra of the polar EF Eri in a low state of accretion taken with FORS1 at the ESO VLT. Title: Magnetic white dwarfs in the Early Data Release of the Sloan Digital Sky Survey Authors: Gänsicke, B. T.; Euchner, F.; Jordan, S. Bibcode: 2002A&A...394..957G Altcode: 2002astro.ph..8454G We have identified 7 new magnetic DA white dwarfs in the Early Data Release of the Sloan Digital Sky Survey. Our selection strategy has also recovered all the previously known magnetic white dwarfs contained in the SDSS EDR, KUV 03292+0035 and HE 0330-0002. Analysing the SDSS fibre spectroscopy of the magnetic DA white dwarfs with our state-of-the-art model spectra, we find dipole field strengths 1.5 MG<=Bd<= 63 MG and effective temperatures 8500 <= Teff <= 39 000 K. As a conservative estimate, we expect that the complete SDSS will increase the number of known magnetic white dwarfs by a factor 3. Title: Zeeman tomography of magnetic white dwarfs. I. Reconstruction of the field geometry from synthetic spectra Authors: Euchner, F.; Jordan, S.; Beuermann, K.; Gänsicke, B. T.; Hessman, F. V. Bibcode: 2002A&A...390..633E Altcode: 2002astro.ph..5294E We have computed optical Zeeman spectra of magnetic white dwarfs for field strengths between 10 and 200 MG and effective temperatures between 8000 and 40 000 K. They form a database containing 20 628 sets of flux and circular polarization spectra. A least-squares optimization code based on an evolutionary strategy can recover relatively complex magnetic field topologies from phase-resolved synthetic Zeeman spectra of rotating magnetic white dwarfs. We consider dipole and quadrupole components which are non-aligned and shifted off-centre. The model geometries include stars with a single high-field spot and with two spots separated by ~ 90°. The accuracy of the recovered field structure increases with the signal-to-noise ratio of the input spectra and is significantly improved if circular polarization spectra are included in addition to flux spectra. We discuss the strategies proposed so far to unravel the field geometries of magnetic white dwarfs. Title: Comparing Sunspot Area and Sunspot Number as Proxies for Long-term Solar Irradiance Variation Authors: Jordan, S. D.; Garcia, A. G. Bibcode: 2002AAS...200.5704J Altcode: 2002BAAS...34..737J Because relevant observations from space began only in 1979 with Nimbus-7, it is impossible to correlate direct measurements of small changes in solar irradiance with terrestrial temperature over a number of solar cycles. Yet there is recent evidence that some feature of solar change over a cycle may have a larger influence on climate than would result from merely introducing the additional amount of heat delivered to Earth's atmosphere at solar minimum. It would be useful to check this possiblity over several solar cycles. To do this, we would need a sufficiently reliable proxy for irrradiance change that at least survives a test against the space observations. Sunspot area is a fairly straightforward parameter to measure, and is associated with the extent of magnetic activity known to correlate strongly with solar irradiance change. We have tested the use of sunspot area as a long-term proxy for solar irradiance change, using observations made at the Coimbra Solar Observatory, from which we obtain both statistically weighted sunspot numbers and sunspot areas over the period 1980-1992. These are both correlated with solar irradiance values measured from Nimbus-7 spacecraft over the same time period, to see if sunspot area offers affords a strong positive correlation and also a distinct advantage over sunspot number as a useful proxy that can then be compared with terrestrial temperature records. Preliminary results yield a positive correlation of 0.71 for sunspot area, but further tests are being conducted and will be reported. Title: On the circularly polarized optical emission from AE Aquarii Authors: Ikhsanov, N. R.; Jordan, S.; Beskrovnaya, N. G. Bibcode: 2002A&A...385..152I Altcode: 2002astro.ph..1366I The reported nightly mean value of the circular polarization of optical emission observed from the close binary system AE Aqr is 0.06% 33Rmms m 0.01%. We discuss the possibility that the observed polarized radiation is emitted mainly by the white dwarf or its vicinity. We demonstrate that this hypothesis is rather unlikely since the contribution of the white dwarf to the optical radiation of the system is too small. This indicates that the polarimetric data on AE Aqr cannot be used for the evaluation of the surface magnetic field strength of the white dwarf in this system. Title: An evaluation of solar proxies for irradiance variation Authors: Jordan, Stuart; Garcia, Adriana Bibcode: 2002ESASP.477..225J Altcode: 2002scsw.conf..225J The problem of assessing the effects of solar irradiance variations on Earth's climate has become of increasing importance as evidence accumulates for global warming. Reliable observations of irradiance variation from space are available only for the past two solar cycles. Proxies must be used to estimate the irradiance variation before that time. We report on preliminary results of testing sunspot area as a relatively easily observed proxy against spatial observations of the irradiance variation. We discuss these early results and outline our plans for the remainder of the study. Title: Search for variations in circular-polarization spectra of the magnetic white dwarf LP 790-29 Authors: Jordan, S.; Friedrich, S. Bibcode: 2002A&A...383..519J Altcode: 2002astro.ph..1122J We present highly time resolved circular-polarization and flux spectra of the magnetic white dwarf LP 790-29 taken with the VLT UT1 in order to test the hypothesis that LP 790-29 is a fast rotator with a period of the order of seconds to minutes. Due to low time resolution of former observations this might have been overlooked - leading to the conclusion that LP 790-29 has a rotational period of over 100 years. The optical spectrum exhibits one prominent absorption feature with minima at about 4500, 4950, and 5350 Å, which are most likely C_2 Swan-bands shifted by about 180 Å in a magnetic field between 50 MG and 200 MG. At the position of the absorption structures the degree of circular polarization varies between -1% and +1%, whereas it amounts to +8 to +10% in the blue and red continuum. With this very high degree of polarization LP 790-29 is very well suited to a search for short time variations, since a variation of several percent in the polarization can be expected for a magnetic field oblique to the rotational axis. From our analysis we conclude that variations on time scales from 50 to 2500 s must have amplitudes ≈0.7% in the continuum and ≈2% in the strongest absorption feature at 4950 Å. While no short-term variations could be found a careful comparison of our polarization data of LP 790-29 with those in the literatures indicates significant variations on time scales of decades with a possible period of about 24-28 years. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Programme 65.H-0293). Title: Some Impacts of Solar Irradiance Variation on Terrestrial Climate Authors: Jordan, S. D. Bibcode: 2001AAS...199.3601J Altcode: 2001BAAS...33.1359J As chairman of the Special Session addressing the above topic, a brief overview of the problem will be offered, after which 20-minute talks will be given on the determination of solar irradiance variations from space observations (Dr. Judit Pap) and from ground-based measurements of solar magnetic fields (Dr. Harrison Jones). The chairman will then introduce four panel members representing different areas of expertise bearing on the topic. Each panel member will offer a brief 5-minute summary of his views. Panel members are Chick Keller, Los Alamos National Laboratory; Drew Shindell, Goddard Institute for Space Science, Columbia University; Michael Schlesinger, University of Illinois; Sabatino Sofia, Yale University. General Circulation Models of the terrestrial atmosphere, the possible impact on this atmosphere of large percentage changes in the solar EUV over a solar cycle, and the role of strong magnetic fields in the solar convection zone on irradiance variation will all be considered in brief summaries. The chairman will conclude the session by facilitating a discussion between the audience, the main speakers, and the panel members. Title: Stationary components of He I in strong magnetic fields - a tool to identify magnetic DB white dwarfs Authors: Jordan, S.; Schmelcher, P.; Becken, W. Bibcode: 2001A&A...376..614J Altcode: 2001astro.ph..6560J In only three of the 61 known magnetic white dwarfs helium has been identified unambiguously while about 20% of all non-magnetic stars of this class are known to contain He I or He II. One reason for this discrepancy is that the identification of peculiar objects as magnetic white dwarfs is based either on the presence of hydrogen line components in strong magnetic fields - for which atomic data exist since 1984 - or the polarization of the corresponding radiation which has not been measured for many objects. Until recently, data for He I data were available only for magnetic fields below 20 MG. This changed with the publication of extensive data by the group in Heidelberg. The corresponding calculations have now been completed for the energetically lowest five states of singlet and triplet symmetry for the subspaces with |m| <= 3; selected calculations have been performed for even higher excitations. In strongly magnetized white dwarfs only line components are visible whose wavelengths vary slowly with respect to the magnetic field, particularly stationary components which have a wavelength minimum or maximum in the range of the magnetic fields strengths on the stellar surface. In view of the many ongoing surveys finding white dwarfs we want to provide the astronomical community with a tool to identify helium in white dwarfs for fields up to 5.3 GG. To this end we present all calculated helium line components whose wavelengths in the UV, optical, and near IR vary slowly enough with respect to the field strength to produce visible absorption features. We also list all stationary line components in this spectral range. Finally, we find series of minima and maxima which occur as a result of series of extremal transitions to increasingly higher excitations. We estimated the limits for 8 series which can possibly give rise to additional absorption in white dwarf spectra; one strong absorption feature in GD229 which is yet unexplained by stationary components is very close to two estimated series limits. Title: Search for indications of fast rotation in the linear polarization of the magnetic white dwarf Grw+70o8247 Authors: Friedrich, S.; Jordan, S. Bibcode: 2001A&A...367..577F Altcode: Grw+70o8247 belongs to a small group of magnetic white dwarfs which despite repeated observations did not show any changes in their polarization over decades. The inferred rotation periods are of the order of hundred years which is not easy to understand if angular momentum is conserved during stellar evolution. An alternative possibility, which was to our knowledge never investigated, might be fast rotation with a period between some minutes and a couple of seconds. Assuming a mass of 1 M_sun and a radius of 1/100 R_sun the shortest possible period is about 10 s. In order to test this hypothesis the linear polarization of {Grw+70o8247} was measured at the 2.2 m telescope at the Calar Alto Observatory, Spain, with a time resolution of 3 s by trailing the linear polarized image of Grw+70o8247 over the CCD chip. The linear polarization was searched for periodicities in the range between 10 s and 4000 s. Investigations with synthetic polarized data using the same window function and an assumed sinusoidal variation showed that variations with amplitudes of 40% relative to the amount of average linear polarization should be detectable. However, no periodicities at this or higher levels of significance were found. This would be in accordance with a recent report on slow rotation of GD 229 and G 240-72, but fast variations with lower amplitudes could not be ruled out. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Planck-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Title: Search for Weak Magnetic Fields in DBZ and DBAZ White Dwarfs Authors: Friedrich, S.; Jordan, S.; Koester, D. Bibcode: 2001AGM....18.P114F Altcode: 2001AGAb...18Q.192F It is widely accepted that metals detected in the spectra of a few cool white dwarfs cannot be of primordial origin and therefore must be accreted from the interstellar medium. However the observed abundances of hydrogen in the atmospheres of these stars are much too low to be compatible with the high accretion rates inferred from metal accretion if solar abundances are assumed. It was therefore proposed that metals are accreted in the form of grains onto a slowly rotating, weakly magnetized white dwarf, whereas ionized hydrogen is repelled at the Alfven radius. In order to test this hypothesis we obtained circular polarization spectra of two metal line white dwarfs (GD40 and L745-46A) with the VLT-UT1 and FORS1 to search for such magnetic fields. Within the errors (±0.1% and ±0.3% for L745-46A and GD40, respectively) we could not find signatures of a magnetic field in the spectra of any of the two stars. If we exclude the possibility, that we are looking on the magnetic equator of a pure magnetic dipole, in which case the components of the magnetic field along the line of sight completely cancel and no circular polarization can be detected, we conclude, that the field strength of the magnetic field on both stars must be well below the 105 Gauss required by theory. We could confirm an Hα line in the flux spectrum of GD40, which was found by Greenstein & Liebert (ApJ 360, 662) and determine the hydrogen abundance in the stellar atmosphere which is a factor of 100 to 1000 below the value expected from accretion with solar abundances. Title: New Results on Magnetic White Dwarfs Authors: Jordan, S. Bibcode: 2001AGM....18S0917J Altcode: A small fraction (3-4%) of all white dwarfs are found to have strong magnetic fields, and 15 of these 61 objects have fields in excess of 100 MG making them comparable to the typical field strengths found in millisecond pulsars. Besides the astrophysical aspects (field strength and geometry, rotation, masses, chemical composition, origin of magnetic fields) these objects are of considerable interest for studies of atoms in strong magnetic fields. In only three magnetic white dwarfs helium has been identified unambiguously while about 20% of all non-magnetic stars of this class are known to contain He I or He II. Until recently, data for He I data were available only for magnetic fields below 20 MG. Now calculations for all relevant field strenghts have been completed for the energetically lowest five states of singlet and triplet symmetry for the subspaces with |m| <= 3 (Jordan, Schmelcher, Becken, 2001, A&A, in press). In this talk some new results particularly on helium rich magnetic white dwarfs will be presented. Title: The Kepler Mission: A Search for Terrestrial Planets Authors: Koch, D.; Borucki, W.; Webster, L.; Jenkins, J.; Dunham, E.; Jordan, S.; Kepler Team Bibcode: 2001AGM....18S0406K Altcode: The Kepler Mission is a search for terrestrial planets performed by monitoring a large ensemble of stars for the periodic transits of planets. The mission consists of a 95-cm aperture photometer with 105 square deg field of view that monitors 100,000 dwarf stars for four years. The mission is unique in its ability to detect Earth-size planets in the habitable zone of other stars in the extended solar neighborhood. An Earth-size transit of a solar-like star causes a change in brightness of about 100 ppm. Laboratory testing has demonstrated that a total system noise level of 20 ppm is readily achievable on the timescale of transits. Earth-like transits have been created and reliably measured in an end-to-end system test that has all know sources of noise including spacecraft jitter. To detect Earth-size planets, the photometer must be spaceborne; this also eliminates the day-night and seasonal cycle interruptions of ground-based observing. The photometer stares at a single field of stars for four years with an option to continue for two more years. The extension allows for detection of four transits of planets in Mars-like orbits and detection of planets even smaller than Earth especially for short period orbits, since the signal to noise improves as the square root of the number of transits observed. In addition to detection of planets, Kepler data are also useful for understanding the Title: HST Observations of the DAB White Dwarf HS 0209+0832 Authors: Wolff, B.; Jordan, S.; Koester, D. Bibcode: 2001ASPC..226..139W Altcode: 2001ewwd.work..139W No abstract at ADS Title: Magnetic White Dwarfs Authors: Jordan, S. Bibcode: 2001ASPC..226..269J Altcode: 2001ewwd.work..269J No abstract at ADS Title: Search for fast rotation in Grw + 70°8247 Authors: Friedrich, S.; Jordan, S. Bibcode: 2001ASPC..226..279F Altcode: 2001ewwd.work..279F No abstract at ADS Title: Numerical Simulation of Stellar Convection: Comparison with Mixing-length Theory Authors: Steffen, M.; Jordan, S. Bibcode: 2000eaa..bookE5198S Altcode: The energy released by nuclear fusion in the STELLAR INTERIOR is carried to the surface by two different transport mechanisms, radiation and convection. In the presence of a temperature gradient, there is always a net radiative energy flux since more photons travel from hot to cool regions than in the other direction. If the temperature gradient exceeds a certain t... Title: The nature of the DAB white dwarf HS 0209+0832 Authors: Wolff, B.; Jordan, S.; Koester, D.; Reimers, D. Bibcode: 2000A&A...361..629W Altcode: The DAB white dwarf HS 0209+0832 is one of the few white dwarfs with detected helium in the DB gap between 28 000 and 45 000 K. We have obtained ultraviolet and optical spectra with the Hubble Space Telescope (HST). The analysis results in an effective temperature of about 35 000 K and a helium abundance of about 1%. The presence of C IV at 1548 Å, which was earlier detected by the International Ultraviolet Explorer (IUE), is confirmed. Additionally, we could identify more than 140 photospheric and 12 interstellar metal lines. For the first time we have found aluminum, calcium, titanium, nickel, and zinc, which cannot be supported by radiative levitation at such a low effective temperature. With stratified model atmospheres we tested, whether HS 0209+0832 has a very thin layer of hydrogen (~ 10-16 Msun) on top of the helium envelope so that it is not thick enough to hide all the helium as is usually assumed to explain the DB gap. From the detailed shape of the He II 1640 Å line we could exclude such a model and conclude that diffusion equilibrium has not yet been reached; all observations are compatible with almost homogeneously mixed atmospheres, as would also be expected from the presence of metal lines. The most probable explanation is that HS 0209+0832 is still accreting matter from an interstellar cloud and that helium and metals would sink downwards, if no longer supplied from the surrounding medium. The finding by Heber et al. (\cite{Heber}) that the He I line at 4471 Å has been weaker by a factor of two or three for several months would fit into this scenario, if we assume that HS 0209+0832 travels through an inhomogeneous medium. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal ID 7473. Title: The Role of Velocity Redistribution in Enhancing the Intensity of the HE II 304 Å Line in the Quiet-Sun Spectrum Authors: Andretta, Vincenzo; Jordan, Stuart D.; Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Behring, William E.; Thompson, William T.; Garcia, Adriana Bibcode: 2000ApJ...535..438A Altcode: We present observational evidence of the effect of small-scale (``microturbulent'') velocities in enhancing the intensity of the He II λ304 line with respect to other transition region emission lines, a process we call ``velocity redistribution,''. We first show results from the 1991 and 1993 flights of SERTS (Solar EUV Rocket Telescope and Spectrograph). The spectral resolution of the SERTS instrument was sufficient to infer that, at the spatial resolution of 5", the line profile is nearly Gaussian both in the quiet Sun and in active regions. We were then able to determine, for the quiet Sun, a lower limit for the amplitude of nonthermal motions in the region of formation of the 304 Å line of the order of 10 km s-1. We estimated that, in the presence of the steep temperature gradients of the solar transition region (TR), velocities of this magnitude can significantly enhance the intensity of that line, thus at least helping to bridge the gap between calculated and observed values. We also estimated the functional dependence of such an enhancement on the relevant parameters (nonthermal velocities, temperature gradient, and pressure). We then present results from a coordinated campaign, using SOHO/CDS and Hα spectroheliograms from Coimbra Observatory, aimed at determining the relationship between regions of enhanced helium emission and chromospheric velocity fields and transition region emission in the quiescent atmosphere. Using these data, we examined the behavior of the He II λ304 line in the quiet-Sun supergranular network and compared it with other TR lines, in particular with O III λ600. We also examined the association of 304 Å emission with the so-called coarse dark mottle, chromospheric structures seen in Hα red-wing images and associated with spicules. We found that all these observations are consistent with the velocity redistribution picture. Title: HST Observations of the DAB White Dwarf HS 0209+0832 Authors: Wolff, B.; Jordan, S.; Koester, D. Bibcode: 2000AGM....17..P36W Altcode: 2000AGAb...17Q..67W The DAB white dwarf HS 0209+0832 is one of the few white dwarfs with detected helium in the DB gap between 28 000 and 45 000 K. We have obtained ultraviolet and optical spectra with the Hubble Space Telescope (HST). The analysis results in an effective temperature of about 35 000 K and a helium abundance of about 1%. The presence of C IV at 1548 Å, which was earlier detected by the International Ultraviolet Explorer (IUE), is confirmed. Additionally, we could identify more than 140 photospheric and 12 interstellar metal lines. For the first time we have found aluminum, calcium, titanium, nickel, and zinc, which cannot be supported by radiative levitation at such a low effective temperature. With stratified model atmospheres we tested, whether HS 0209+0832 has a very thin layer of hydrogen (≈ 10-16 Msolar) on top of the helium envelope so that it is not thick enough to hide all the helium as is usually assumed to explain the DB gap. From the detailed shape of the He II 1640 Å line we could exclude such a model and conclude that diffusion equilibrium has not yet been reached; all observations are compatible with almost homogeneously mixed atmospheres, as would also be expected from the presence of metal lines. The most probable explanation is that HS 0209+0832 is still accreting matter from an interstellar cloud and that helium and metals would sink downwards, if no longer supplied from the surrounding medium. The finding by Heber et al. that the He I line at 4471 Å has been weaker by a factor of two or three for several months would fit into this scenario, if we assume that HS 0209+0832 travels through an inhomogeneous medium. Title: Does Velocity Redistribution Really Enhance the He 304Å Line to Observed Intensities? Authors: Jordan, S.; Andretta, V.; Garcia, A.; Brosius, J.; Behring, W. Bibcode: 1999ESASP.448..303J Altcode: 1999mfsp.conf..303J; 1999ESPM....9..303J No abstract at ADS Title: A Direct Comparison Between EUV Coronal Flux And He Resonance Line Photon Flux From SOHO/CDS Data Authors: Andretta, V.; Landi, Enrico; Del Zanna, Giulio; Jordan, Stuart D. Bibcode: 1999ESASP.446..123A Altcode: 1999soho....8..123A In the wealth of EUV spectroscopic and imaging data gathered by the SOHO and TRACE missions, a prominent role is played by the helium resonance emission. For example, He I lines are among the most intense features in CDS/NIS spectra, while the EIT 304 waveband (dominated by He II emission) is routinely employed to map the structure of the solar chromosphere and transition region. However, no 'standard' model has emerged so far that is able to interpret observed He spectra/images to a satisfactory degree of self-consistency. Recent research on the problem of the formation of the solar helium spectrum tends to rule out a dominant role of coronal radiation in exciting He resonance lines. However, while evidence for this result is strong, it is based on indirect tests. Here we present a more direct assessment of this issue by directly measuring the photon photoionizing EUV flux measured with CDS/GIS-NIS1. This measure can be directly compared with the observed flux in the main He I and He II resonance lines observed with CDS/NIS2. Title: The Role of Velocity Redistribution in Enhancing the Intensity of the He II 304 A Line in the Quiet Sun Spectrum Authors: Andretta, Vincenzo; Jordan, Stuart D.; Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Behring, William E.; Thompson, William T.; Garcia, Adriana Bibcode: 1999STIN...9909151A Altcode: We present observational evidence of the effect of small scale ("microturbulent") velocities in enhancing the intensity of the He II lambda304 line with respect to other transition region emission lines, a process we call "velocity redistribution". We first show results from the 1991 and 1993 flights of SERTS (Solar EUV Rocket Telescope and Spectrograph). The spectral resolution of the SERTS instrument was sufficient to infer that, at the spatial resolution of 5", the line profile is nearly gaussian both in the quiet Sun and in active regions. We were then able to determine, for the quiet Sun, a lower limit for the amplitude of non-thermal motions in the region of formation of the 304 A line of the order of 10 km/s. We estimated that, in the presence of the steep temperature gradients of the solar Transition Region (TR), velocities of this magnitude can significantly enhance the intensity of that line, thus at least helping to bridge the gap between calculated and observed values. We also estimated the functional dependence of such an enhancement on the relevant parameters (non-thermal velocities, temperature gradient, and pressure). We then present results from a coordinated campaign, using SOHO/CDS and H-alpha spectroheliograms from Coimbra Observatory, aimed at determining the relationship between regions of enhanced helium emission and chromospheric velocity fields and transition region emission in the quiescent atmosphere. Using these data, we examined the behavior of the He II lambda304 line in the quiet Sun supergranular network and compared it with other TR lines, in particular with O III lambda600. We also examined the association of 304 A emission with the so-called "coarse dark mottle", chromospheric structures seen in H-alpha red wing images and associated with spicules. We found that all these observations are consistent with the velocity redistribution picture. Title: Velocity Redistribution as a He II 304 Intensity Enhancement Mechanism Authors: Jordan, S. D.; Andretta, V.; Brosius, J. W.; Behring, W. E.; Garcia, A. Bibcode: 1999AAS...194.9310J Altcode: 1999BAAS...31..990J Both Skylab and SOHO observations show that the total intensity in the He II 304 Angstroms line exceeds that predicted by standard NLTE models by at least a factor of 5. However, the NLTE models do not include the effect of flows. Carole Jordan showed that a 'velocity redistribution' of the He II ions in the presence of a sharp temperature gradient could provide the required enhancement. In earlier studies, we have reported evidence from the Goddard SERTS sounding rocket for small-scale nonthermal velocities large enough to enhance the emission by the required amount if the temperature gradient is large enough (as given by current transition region models). Here, we assess the correlation of regions of strong Sun-center quiet-Sun 304 emission observed with the CDS instrument on SOHO and the dark coarse mottles observed in the red wing of H-alpha observed at the Coimbra Solar Observatory. The significant positive correlation supports the picture of greater velocity mixing in the quiet-Sun regions producing the highest line intensity. Support for this research is provided by NASA grant 682-344-17-38 and the Coimbra Solar Observatory. Title: The SERTS-97 rocket experiment to study activity on the Sun: flight 36.167-GS on 1997 November 18. Authors: Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.; Plummer, Thomas B.; Thomas, Roger J.; White, Larry A.; Brosius, Jeffrey W.; Thompson, William T. Bibcode: 1999sret.book.....S Altcode: This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. Title: Quasi-molecular satellites of Lyman β observed with ORFEUS Authors: Allard, N.; Koester, D.; Sperhake, U.; Jordan, S.; Finley, D. Bibcode: 1999ASPC..169..461A Altcode: 1999ewwd.conf..461A No abstract at ADS Title: Helium in magnetic white dwarfs Authors: Jordan, S. Bibcode: 1999ASPC..169..228J Altcode: 1999ewwd.conf..228J No abstract at ADS Title: Phase-resolved Far-Ultraviolet Hubble Space Telescope Spectroscopy of the Peculiar Magnetic White Dwarf RE J0317-853 Authors: Burleigh, M. R.; Jordan, S.; Schweizer, W. Bibcode: 1999ApJ...510L..37B Altcode: 1998astro.ph.10109B We present phase-resolved, far-UV Hubble Space Telescope Faint Object Spectrograph spectra of the rapidly rotating, highly magnetic white dwarf RE J0317-853. Using these data, we construct a new model for the magnetic field morphology across the stellar surface. From an expansion into spherical harmonics, we find that the range of magnetic field strengths present is 180-800 MG. For the first time, we could identify an absorption feature present at certain phases at ~1160 Å as a ``forbidden'' 1s0-->2s0 component, because of the combined presence of an electric and magnetic field. Title: The stellar content of the Hamburg Quasar Survey Authors: Homeier, D.; Koester, D.; Jordan, S.; Hagen, H. -J.; Engels, S.; Heber, U.; Dreizler, S. Bibcode: 1999ASPC..169...37H Altcode: 1999ewwd.conf...37H No abstract at ADS Title: Does Velocity Redistribution Really Enhance the HE 304 A Line to Observed Intensities? Authors: Jordan, Stuart; Andretta, Vincenzo; Garcia, Adriana; Brosius, Jeffrey; Behring, William Bibcode: 1999STIN...9909149J Altcode: Previous work by this group has demonstrated that small-scale nonthermal velocities probably play a significant role in enhancing the intensity of the He II 304 A line above values predicted by the static atmosphere NLTE theories, and more in conformity with Skylab and SOHO observations. This presentation briefly summarizes the evidence for this conclusion, emphasizing SOHO and correlated groundbased observations, of which examples are presented. However, in contrast to the previous studies, the tact taken here is more critical, asking the question "Can velocity redistribution fully explain the observations of the 304 A line, and what counter-indications and problems remain?" The conclusion reached is that, while velocity redistribution plays a significant role in the intensity enhancement, it may not be the whole story. Some other mechanism, associated with velocity filtration, may be at work. Title: The record breaking magnetic white dwarf RE J0317-853 Authors: Jordan, S.; Burleigh, M. R. Bibcode: 1999ASPC..169..235J Altcode: 1999ewwd.conf..235J No abstract at ADS Title: An analysis of DA white dwarfs from the Hamburg Quasar Survey Authors: Homeier, D.; Koester, D.; Hagen, H. -J.; Jordan, S.; Heber, U.; Engels, D.; Reimers, D.; Dreizler, S. Bibcode: 1998A&A...338..563H Altcode: Follow-up spectroscopy of several hundred hot stars detected by the Hamburg Quasar Survey (HQS) has been carried out between 1989 and 1996. We present the analysis of 80 DA white dwarfs using model atmospheres and theoretical cooling tracks to derive the atmospheric parameters T_eff and log g, masses and absolute magnitudes. The HQS turned out to be sensitive to the detection of hydrogen-rich white dwarfs in a wide temperature range, from 10 000 K upwards. Star counts within four HQS fields for magnitudes B<= 16fm 4 exceed those from the Palomar Green survey by about 50%. The more recent observation campaigns emphasized the detection of very hot degenerates, yielding a large fraction of DA stars with T_eff > 50 000 K compared to other surveys. The mean mass of our DA sample is M=0.61{M}_{\odot}, with three massive DA stars exceeding 1{M}_{\odot} and three DA stars with masses significantly below the assummed lower mass limit for single white dwarf evolution of 0.45{M}_{\odot}. Among the cool DA stars, thirteen are potential ZZ Ceti candidates because their effective temperatures lie close to the instability strip. Based on observations collected at the German-Spanish Astronomical Center (DSAZ), Calar Alto, operated by the Max-Plank-Institut für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy; with the International Ultraviolet Explorer satellite (IUE) collected at Villafranca, Spain, and with the ROSAT X-ray telescope. Title: Four magnetic DB white dwarfs discovered by the Hamburg/ESO survey Authors: Reimers, D.; Jordan, S.; Beckmann, V.; Christlieb, N.; Wisotzki, L. Bibcode: 1998A&A...337L..13R Altcode: 1998astro.ph..7135R We report on seven peculiar faint blue stars found in the course of the Hamburg/ESO survey (HES) which appear to be magnetic white dwarfs (WDs) with non-hydrogen spectra. We show in particular that four of them (HE 0338-3853, HE 0107-0158, HE 0026-2150, and HE 0003-5701) have He I lines split by magnetic fields of roughly 20 MG, since the pi components of He I 5876 {Angstroms} and He I 4929 {Angstroms} can be identified unambiguously in their spectra, and the sigma (+) , sigma (-) components can be identified in the spectra of two of these stars (HE 0338-3853 and HE 0003-5701). Besides GD 229, these are the first magnetic DB white dwarfs discovered so far. In addition, three further WDs with broad, unidentifiable features have been found: HE 1043-0502, HE 0236-2656, and HE 0330-0002. We argue that in all three of these stars H I can not be responsible for the broad features, and He I most probably not for the features in HE 0236-2656 and HE 0330-0002, while it still remains possible that the broad features of HE 1043-0502 are due to He I. Based on observations at the European Southern Observatory, La Silla, Chile Title: Quasi-molecular satellites of Lyman beta in ORFEUS observations of DA white dwarfs Authors: Koester, D.; Sperhake, U.; Allard, N. F.; Finley, D. S.; Jordan, S. Bibcode: 1998A&A...336..276K Altcode: Quasi-molecular satellite features of Ly beta were first observed in a HUT spectrum of the DA white dwarf Wolf 1346 and interpreted by Koester et al. (1996). In this paper we study the dependence of these features on temperature and surface gravity in 4 additional DA observed with ORFEUS-SPAS II in 1996. For the interpretation we use theoretical atmosphere models which incorporate new profiles for Ly beta . These have been calculated by Allard et al. (1998a) including the variation of the transition probability with distance between emitter and perturber. The new calculations for the general line shape, satellite positions and strengths are in very good agreement with the observations. Title: Evidence for helium in the magnetic white dwarf GD 229 Authors: Jordan, S.; Schmelcher, P.; Becken, W.; Schweizer, W. Bibcode: 1998A&A...336L..33J Altcode: 1998astro.ph..6338J The nature of the strong absorption features in the white dwarf GD 229 has been a real mystery ever since it was found to be magnetic in 1974. All attempts to explain the spectrum by line components of hydrogen failed. With the first sets of newly calculated line data for He I in a strong magnetic field we could identify most of the absorption structures in the spectrum with stationary line components in a range of magnetic fields between 300 and 700 MG. This is much lower than previously speculated and is comparable to the highest fields found in hydrogen rich magnetic white dwarfs. The reason for the large number of spectral features in GD 229 is the extreme accumulation of stationary components of transitions in He I in a narrow interval of field strengths. Title: Using Strong Solar Coronal Emission Lines as Coronal Flux Proxies Authors: Falconer, David A.; Jordan, Stuart D.; Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Andreatta, Vicenzo; Hara, Hirohisa Bibcode: 1998SoPh..180..179F Altcode: We investigate the possibility that strong EUV lines observed with the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) provide good proxies for estimating the total coronal flux over shorter wavelength ranges. We use coordinated SERTS and Yohkoh observations to obtain both polynomial and power-law fits relating the broad-band soft X-ray fluxes to the intensities of Fexvi 335 Ú and 361 Ú, Fexv 284 Ú and 417 Ú, and Mgix 368 Ú measured with SERTS. We found that the power-law fits best cover the full range of solar conditions from quiet Sun through active region, though not surprisingly the `cooler' Mgix 368 Ú line proves to be a poor proxy. The quadratic polynomial fits yield fair agreement over a large range for all but the Mgix line. However, the linear fits fail conspicuously when extrapolated into the quiet-Sun regime. The implications of this work for the Heii 304 Ú line formation problem are also briefly considered. Title: HS0507+0434: a double DA degenerate with a ZZCeti component Authors: Jordan, S.; Koester, D.; Vauclair, G.; Dolez, N.; Heber, U.; Hagen, H. -J.; Reimers, D.; Chevreton, M.; Dreizler, S. Bibcode: 1998A&A...330..277J Altcode: HS0507+0434 and HS2240+1234 are two new common proper motion pairs of DA white dwarfs, discovered by the Hamburg Quasar Survey. Our model atmosphere analysis shows that HS0507+0434A has an effective temperature of 20000K and is remarkably young (tau_cool < 1Gyr) compared to the average cooling time of all known wide double degenerates (~ 3Gyr). The cooler B component of HS0507+0434 is particularly interesting; the determination of the atmospheric parameters is complicated by the strong dependence of the solution on the details of the treatment of convection. Only those parameterizations of mixing length theory are consistent with all observations (especially the magnitude difference between the components), which lead to an intermediate efficiency of the convective flux. In the standard version of the mixing length theory this corresponds to a mixing length parameter of l/H_p = 1.75 - 2.0, where H_p is the pressure scale height. This result does not depend on the model atmosphere code and is in agreement with previous studies of convection in DA white dwarfs; there are, however, slightly different formulations of the MLT in use, which achieve the same efficiency at different values of l/H. These versions are discussed and compared in the paper. The result of our analysis (T_eff=11900K, log g=8) places the B component into the ZZCeti instability strip, where DA white dwarfs are pulsating non-radially. Photometric observations have now confirmed that HS0507+0434 is variable and identified 3 or 4 fundamental g-modes in the Fourier spectrum. Based on observations collected at the German-Spanish Astronomical Center (DSAZ) at Calar Alto, Spain, at the European Southern Observatory, La Silla, Chile, with the International Ultraviolet Explorer Satellite, and at the Observatoire de Haute Provence (CNRS), France. Title: The Helium Spectrum in the Quiet Sun: The January 16/17 and May 7-13 1997 Coordinated SOHO/Ground-Based Observational Campaigns Authors: Andretta, Vincenzo; Jordan, Stuart D.; Muglach, Karin; Garcia, Adriana; Jones, Harrison P.; Penn, Matthew J.; Soltau, Dirk Bibcode: 1998ASPC..155..336A Altcode: 1998sasp.conf..336A No abstract at ADS Title: Investigating the Formation of the Helium Spectrum in the Solar Atmosphere Authors: Andretta, Vincenzo; Jordan, Stuart D.; Muglach, Karin; Garcia, Adriana; Jones, Harrison P.; Soltau, Dirk Bibcode: 1998ASPC..154..559A Altcode: 1998csss...10..559A We present the first results of coordinated observations with SOHO (Solar Heliospheric Observatory) and ground-based observatories aimed at investigating the mechanisms responsible for the formation of helium lines in the quiescent solar atmosphere. The observations described here were taken on 7-13 May 1997; the SOHO instruments involved were CDS, SUMER and EIT, while ground-based support was provided by the German Vacuum Tower Telescope on Tenerife (He 1 lambda10830 and Ca 2 lambda8498 spectra-spectroheliograms), Coimbra Solar Observatory (Hα spectroheliograms), and NASA/NSO Vacuum Tower Telescope on Kitt Peak (Ca 2 lambda8542 spectra-spectroheliograms and polarimetry). Title: The Record Breaking Magnetic White Dwarf RE J0317-853 Authors: Burleigh, M. R.; Jordan, S. Bibcode: 1998AAS...191.1511B Altcode: 1998BAAS...30..756B RE J0317-853 is a strongly magnetic white dwarf discovered as an EUV source by the ROSAT Wide Field Camera (WFC). The average optical and far-UV spectrum of this star could be matched by a dipole model, off-centred by 0.2 stellar radii in the direction of the southern magnetic pole, with a mean field strength of 340MG (Barstow, Jordan, Burleigh et al., 1995, MNRAS, 277, 971). Since RE J0317-853 has a cool DA white dwarf companion (LB 9802) just 16" away, we could use its atmospheric parameters (T=16,030+/-230K, log g=8.19+/-0.05) as an additional constraint on the parameters of RE J0317-853, assuming both stars lie at the same distance (highly likely). We found that RE J0317-853 is the hottest known magnetic white dwarf (T ~ 50,000K), and probably the most massive white dwarf ever discovered ( ~ 1.35M_sun). In addition, high speed photometry has shown that the optical brightness of RE J0317-853 varies almost sinusoidal with a period of 725 seconds. The only possible explanation is a change in surface brightness with rotation, and thus RE J0317-853 is spinning faster than any known isolated white dwarf. In order to analyse the magnetic field in detail, we have obtained time resolved far-UV spectra with HST/FOS, time resolved spectro-polarimetry with the Anglo-Australian Telescope (AAT), and additional data with the EUVE, Orfeus, and ROSAT satellites. We find that the magnetic field structure is actually extremely complex, and cannot in fact be described by the offset dipole model used previously to fit the mean spectrum. A preliminary analysis of the observations with new theoretical models shows that the data can be best represented by a magnetic field with two distinct field strengths, of ~200MG and ~500MG, on different hemispheres. We also identify one intriguing absorption feature at 1170{ Angstroms} as a dipole forbidden component of Lyman alpha (1sO-2sO), which is only possible due to the simultaneous presence of a magnetic and electric field. Title: White Dwarfs in the Hamburg Quasar Survey Authors: Homeier, D.; Koester, D.; Hagen, H. -J.; Jordan, S.; Heber, U.; Engels, D.; Reimers, D.; Dreizler, S. Bibcode: 1998AGAb...14..148H Altcode: 1998AGM....14..P98H The spatial distribution and the luminosity function of white dwarfs provide important information on stellar evolution and the structure and age of the Galactic disk. A total of about 2 200 white dwarfs is known to date. The Hamburg Quasar Survey (HQS) has the capability to substantially enlarge this number and to provide an optically selected sample of white dwarfs not relying on EUV/X-ray emission. The HQS, covering 14 000 deg^2 of the northern sky, has produced objective prism spectra of several thousand stellar UV-excess sources. We expect to be able to identify 2 000-3 000 white dwarfs down to a limiting magnitude of B=17_{\cdot}m5 from this database. The spectra also allow a rough estimate of Teff by the Balmer line strengh of DA white dwarfs. Follow-up observations of hot star candidates in selected fields of the survey and comparisons with the catalogue of known white dwarfs have shown that DAs with temperatures down to, and below, the ZZ-Ceti instability strip (~ 11 000 K) are found. The number density of DA per deg^2 found within the magnitude range of the Palomar-Green survey (B <= 16_{\cdot}m4) was higher than estimated from that survey. The 80 DA white dwarfs discovered by the follow-up spectroscopy have been analyzed using LTE model atmospheres to determine Teff and \log g, from which the mass distribution, luminosities and photometric distances can be derived. Title: Interpreting the growth and destruction of a large long-duration solar active-region complex Authors: Bumba, V.; Garcia, A.; Jordan, S. Bibcode: 1998A&A...329.1138B Altcode: In a companion paper, we show that the large limb flare and coronal mass ejection of July 9, 1982, and other energetic events that followed through September 4, 1982, represent the final phase in the evolution of a large active-region complex (Jordan et al. 1997). In this paper, we review the long-duration evolution of this complex. We begin by showing that, before its final phase, new activity in the form of renewed flux continued to appear for nearly two years, progressively complicating the field topology. Observations suggest that the source of this flux rotated almost as a rigid body. Evidence is presented that, during the final phase of large-scale eruptions, either the connection with the underlying source of flux is broken, or the source itself has changed. After the flare and CME of September 4, 1982, the magnetic field topology of the entire complex was greatly simplified, and the area of former activity was replaced by a large coronal hole. We conclude that this evolution and destruction of a large long-duration active-region complex is a characteristic feature of how the global magnetic field of the Sun changes during the solar cycle. Title: Magnetic White Dwarfs: Observations in Cosmic Laboratories Authors: Jordan, S. Bibcode: 1998amse.conf....9J Altcode: No abstract at ADS Title: Coordinated Observations with SOHO/CDS and SERTS Authors: Thompson, W. T.; Thomas, R. J.; Davila, J. M.; Jordan, S. D.; Brosius, J. W. Bibcode: 1998AAS...191.7316T Altcode: 1998BAAS...30..758T On November 18, 1997, coordinated observations were made between the Coronal Diagnostic Spectrometer (CDS) aboard the Solar and Heliospheric Observatory (SOHO), and with the Solar Extreme-ultraviolet Rocket Telescope and Spectrograph (SERTS). One of the primary goals of this sounding rocket flight was to serve as a calibration underflight for SOHO. SERTS observes resolved spectra over most of the short wavelength channel of the CDS Normal Incidence Spectrograph, as well as the He II 304 Angstroms line which is observed by CDS in second order in the long wavelength channel. Observations were also made of the full sun with the SOHO Extreme ultraviolet Imaging Telescope (EIT) in its 304 Angstroms channel, allowing coalignment between all three instruments. EIT also serves as a transfer standard of the alignment to other full-sun observations. We will report on the status of the data analysis from the SERTS-97 flight, and its comparison to CDS. Title: Comparison of NSO/KPVT 1083 NM and SOHO/CDS/SUMER Observations of a Coronal Hole. Authors: Jones, H. P.; Andretta, V.; Jordan, S. D.; Penn, M. J. Bibcode: 1997AAS...191.7304J Altcode: 1997BAAS...29.1321J As part of SOHO Joint Observing Program 16 to study the solar formation of Helium, coordinated observations of a coronal hole were obtained on 17 Jan 97. In this paper, we compare the NSO/KPVT full-disk 1083 nm spectroheliogram and a time sequence of spectra-spectroheliograms of the coronal hole near the south solar pole with approximately cospatial and cotemporal SOHO spatial-spectral data taken in He I (58.4 nm, CDS and SUMER) and He II 30.4 nm (CDS) together with several transition-region and coronal lines of CIII, OIII, OIV, MgIX, MgX, SiIX, and SiXII. We have previously reported on correlations of line intensities. Here we concentrate as well on Doppler shifts and, in particular, line asymmetry in the He I 1083 nm line which shows augmented absorption in the blue wing of the line within the coronal hole in the same sense as reported by Dupree, Penn, and Jones (1996, ApJ 467, L121). Title: Formation of the Helium II 304 Angstroms Line in the Solar Atmosphere Authors: Jordan, S. D.; Andretta, V. Bibcode: 1997AAS...19112003J Altcode: 1997BAAS...29.1402J The problem of the formation of the principle members of the resonance series of He I and He II at 584 Angstroms and 304 Angstroms remains a major unsolved problem of the solar atmosphere. Nevertheless, thanks to observations from the Goddard Solar Extreme Ultraviolet Rocket Telescope and Spectrograph (SERTS) and from the ESA/NASA SOHO mission, we now have a data base to address this problem and, hopefully, to solve it for the quiet atmosphere. This talk will briefly review alternatives for helium resonance line formation in the Sun, and will offer a few examples of observations that promise to help discriminate among them. Specifically, assuming electron collisional excitation is responsible for the 304 Angstroms line in the quiet Sun, supported by our earlier studies, evidence from SERTS and SOHO will be discussed in support of 'velocity redistribution' of the emitting ions in producing the observed profiles and fluxes. Title: Spectroscopy of hydrogen-rich white dwarfs from the Hamburg Quasar Survey. Authors: Homeier, D.; Jordan, S.; Koester, D.; Hagen, H. -J. Bibcode: 1997AGAb...13..215H Altcode: No abstract at ADS Title: RE J0317-853: a magnetic white dwarf holding many records. Authors: Jordan, S. Bibcode: 1997AGAb...13..216J Altcode: No abstract at ADS Title: Interpreting the Large Limb Eruption of July 9, 1982 Authors: Jordan, Stuart; Garcia, Adriana; Bumba, Vaclav Bibcode: 1997SoPh..173..359J Altcode: A time series of K3 spectroheliograms taken at the Coimbra Observatory exhibits an erupting loop on the east limb on July 9, 1982 in active region NOAA 3804. The Goddard SMM Hard X-Ray Burst Spectrometer (HXRBS) observations taken during this period reveal a hard X-ray flare occurring just before the loop eruption is observed, and SMS-GOES soft X-ray observations reveal a strong long-duration event (LDE) following the impulsive phase of the flare. A Solwind coronagram exhibits a powerful coronal mass ejection (CME) associated with the erupting loop. Hα flare and prominence observations as well as centimeter and decimeter radio observations of the event are also reviewed. A large, north-south-oriented quiescent prominence reported within the upper part of the CME expansion region may play a role in the eruption as well. The spatial and temporal correlations among these observations are examined in the light of two different current models for prominence eruption and CME activation: (1) The CME is triggered by the observed hard X-ray impulsive flare. (2) The CME is not triggered by a flare, and the observed soft X-ray flare is an LDE due to reconnection within the CME `bubble'. It is concluded that this event is probably of a `mixed' type that combines characteristics of models (1) and (2). The July 9 event is then compared to three other energetic CME and flare eruptions associated with the same active-region complex, all occurring in the period July 9 through September 4, 1982. It is noted that these four energetic events coincide with the final evolutionary phase of a long-lasting active-region complex, which is discussed in a companion paper (Bumba, Garcia, and Jordan, 1997). The paper concludes by addressing `the solar flare myth' controversy in the light of this work. Title: X-ray properties of symbiotic stars. II. Systems with colliding winds. Authors: Muerset, U.; Wolff, B.; Jordan, S. Bibcode: 1997A&A...319..201M Altcode: 60% of the known galactic symbiotic stars are sufficiently X-ray bright to be detected in pointed ROSAT PSPC observations. We present observations of 16 symbiotic stars. We encounter three classes of pulse height distibutions: α) supersoft emission from the atmosphere of the hot star, β) emission from an optically thin plasma with a temperature of a few 10^6^K, and γ) even harder emission, as from an accreting neutron star. In the present Paper we analyze the objects of type β in more detail. We find plasma temperatures ranging from 3x10^6^K to 15x10^6^K and luminosities from 2x10^-4^Lsun_ to 0.4Lsun_. Title: Temperature determination of the cool DO white dwarf HD 149499B from EUVE observations. Authors: Jordan, S.; Napiwotzki, R.; Koester, D.; Rauch, T. Bibcode: 1997A&A...318..461J Altcode: 1996astro.ph..5007J We present a LTE model atmosphere analysis of the EUVE medium and long wavelength spectrum of the cool DO white dwarf HD149499B. This observation in the spectral range 230-700Å supplements a previous analysis of an ORFEUS spectrum between 912 and 1170Å which yielded the atmospheric parameters T_eff_=49500+/-500K and logg=7.97+/-0.08 and a hydrogen-to-helium number ratio of 0.22+/-0.11. The EUVE data are in full agreement with the ORFEUS result and allow a more precise determination of the effective temperature (T_eff_=49500+/-200K) and the interstellar hydrogen column density (N_H_=7x10^18^cm^-2^). None of the features in the EUVE spectrum could be identified with any additional absorber besides helium. Exploratory calculations with fully metal blanketed LTE model atmospheres show that the metal abundances predicted by current diffusion theory are clearly at variance with the observed spectrum. Title: New results of magnetic white dwarf spectroscopy Authors: Jordan, S. Bibcode: 1997ASSL..214..397J Altcode: 1997whdw.work..397J No abstract at ADS Title: First Results of the SUMER Telescope and Spectrometer on SOHO - I. Spectra and Spectroradiometry Authors: Wilhelm, K.; Lemaire, P.; Curdt, W.; Schühle, U.; Marsch, E.; Poland, A. I.; Jordan, S. D.; Thomas, R. J.; Hassler, D. M.; Huber, M. C. E.; Vial, J. -C.; Kühne, M.; Siegmund, O. H. W.; Gabriel, A.; Timothy, J. G.; Grewing, M.; Feldman, U.; Hollandt, J.; Brekke, P. Bibcode: 1997SoPh..170...75W Altcode: SUMER - the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) - observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona. Title: High resolution solar ultraviolet measurements Authors: Lemaire, P.; Wilhelm, K.; Schühle, U.; Curdt, W.; Poland, A. I.; Jordan, S. D.; Thomas, R. J.; Hassler, D. M.; Vial, J. -C. Bibcode: 1997AdSpR..20.2249L Altcode: The increase of our understanding of the processes acting in the solar corona and maintaining it is strongly dependent on the quality of the data that are obtained to check theories. The fine structure of the solar atmosphere seen from the photosphere and extending to the hottest parts of the corona requires data with high resolution in all parameter space (angular, spectral and temporal). To constrain the hypotheses that are proposed to describe the solar corona, it is necessary to establish an accurate energy budget taking into account the processes which are acting from the chromosphere to the corona. Some requirements can be established and compared with the data collected so far (or about to be collected) with the present SUMER (Solar Utraviolet Measurements of Emitted Radiations) instrumentation. Title: Investigating the Formation of the Helium Spectrum with Coordinated SOHO/Kitt Peak/Sacramento Peak Observations Authors: Andretta, V.; Jordan, Stuart D.; Jones, Harrison P.; Penn, Matthew J. Bibcode: 1997ESASP.404..163A Altcode: 1997cswn.conf..163A No abstract at ADS Title: Understanding the Hell 304 Å Resonance Line in the Sun Authors: Jordan, S.; Andretta, V.; Garcia, A.; Falconer, D. Bibcode: 1997ESASP.404..439J Altcode: 1997cswn.conf..439J No abstract at ADS Title: First Results of the SUMER Telescope and Spectrometer on SOHO - II. Imagery and Data Management Authors: Lemaire, P.; Wilhelm, K.; Curdt, W.; SchÜle, U.; Marsch, E.; Poland, A. I.; Jordan, S. D.; Thomas, R. J.; Hassler, D. M.; Vial, J. C.; KÜhne, M.; Huber, M. C. E.; Siegmund, O. H. W.; Gabriel, A.; Timothy, J. G.; Grewing, M. Bibcode: 1997SoPh..170..105L Altcode: SUMER - Solar Ultraviolet Measurements of Emitted Radiation - is not only an extreme ultraviolet (EUV) spectrometer capable of obtaining detailed spectra in the range from 500 to 1610 Å, but, using the telescope mechanisms, it also provides monochromatic images over the full solar disk and beyond, into the corona, with high spatial resolution. We report on some aspects of the observation programmes that have already led us to a new view of many aspects of the Sun, including quiet Sun, chromospheric and transition region network, coronal hole, polar plume, prominence and active region studies. After an introduction, where we compare the SUMER imaging capabilities to previous experiments in our wavelength range, we describe the results of tests performed in order to characterize and optimize the telescope under operational conditions. We find the spatial resolution to be 1.2 arc sec across the slit and 2 arc sec (2 detector pixels) along the slit. Resolution and sensitivity are adequate to provide details on the structure, physical properties, and evolution of several solar features which we then present. Finally some information is given on the data availability and the data management system. Title: White dwarfs in AM Herculis systems Authors: Gänsicke, B. T.; Beuermann, K.; de Martino, D.; Jordan, S. Bibcode: 1997ASSL..214..353G Altcode: 1997whdw.work..353G No abstract at ADS Title: A new dithered EUVE spectrum of PG 1234+482 Authors: Jordan, S.; Koester, D.; Finley, D. S. Bibcode: 1997ASSL..214..281J Altcode: 1997whdw.work..281J No abstract at ADS Title: Obituary: Richard Nelson Thomas, 1921-1996 Authors: Jordan, Stuart D. Bibcode: 1996BAAS...28.1465J Altcode: No abstract at ADS Title: Extragalactic symbiotic systems. IV. The supersoft X-ray source SMC 3. Authors: Jordan, S.; Schmutz, W.; Wolff, B.; Werner, K.; Muerset, U. Bibcode: 1996A&A...312..897J Altcode: 1996astro.ph..4076J We present a consistent model for the UV and supersoft X-ray emission from the symbiotic nova SMC3 (=RX J0048.4-7332). Following the present picture of symbiotic stars, the model consists of radiation from a hot star and an emission nebula excited by that star. The observations were compared to theoretical models in which the hot star's emission is calculated with the help of hydrostatic and Wolf-Rayet-type non-LTE model atmospheres. Our analysis clearly shows evidence for mass loss rates of several 10^-6^Msun_/yr. The minimum effective temperature compatible with both the observed UV and X-ray flux is about 260000K, which is higher than in any other star analyzed with sophisticated NLTE model atmospheres. Since the hydrostatic surface is hidden by the stellar wind no upper limit for the temperature can be determined. However, we were able to determine the total luminosity of a symbiotic nova with reasonable accuracy (L_SMC3_=10^4.05+/-0.05^Lsun_). This value is well below the Eddington limit (=~50000Lsun_). In order to reproduce the observed energy distribution a carbon-to-helium ratio >2.10^-4^ -- leading to an absorption edge at 0.39keV -- is necessary. Title: Discovery of four white dwarfs with strong magnetic fields by the Hamburg/ESO Survey. Authors: Reimers, D.; Jordan, S.; Koester, D.; Bade, N.; Koehler, T.; Wisotzki, L. Bibcode: 1996A&A...311..572R Altcode: 1996astro.ph..4104R Four magnetic white dwarfs have been found in the course of the Hamburg/ESO Survey for bright QSOs. The objects have been selected as QSO candidate on the basis of its blue continuum and the apparent absence of strong hydrogen or helium lines. One star, HE1211-1707, shows a rather fast spectral variability: both the strength and the position of the shallow absorption features change on a time scale of 20minutes. We interpret this variability as being due to a magnetic field on the surface of a rotating white dwarf, having a relatively uniform magnetic field on one hemisphere and a much larger spread of field strengths visible during other phases of the rotational period. All attempts to determine the magnetic field structure in detail with the help of synthetic spectra have failed so far because the star must have a rather complicated field geometry. However, both the optical and the UV spectra indicate that a significant part of the surface is dominated by a magnetic field strength of about 80MG. The spectrum of HE0127-3110 is also rotationally modulated. This star (approximate range of magnetic fields: 85-345MG) as well as HE2201-2250 (a spectroscopic twin of HE0127-3110) and HE0000-3430 (43-118MG) could be reasonably well reproduced with the help of theoretical spectra calculated assuming magnetic dipoles which are offset by 0.1 and 0.2 stellar radii along the magnetic axis. This result is in agreement with the assumption that Ap stars, also showing significant deviations from a centered dipole, are the progenitors of magnetic white dwarfs. Title: The Large Limb Event of July 9, 1982 Authors: Jordan, S. D.; Garcia, A.; Bumba, V. Bibcode: 1996AAS...188.7009J Altcode: 1996BAAS...28..939J An erupting prominence was observed on the East solar limb on July 9, 1982 in a series of K3 spectroheliograms taken at the Solar Observatory in Coimbra. Events associated with this eruption were observed with the Hard X-ray Burst Spectrometer (HXRBS) on SMM and a number of other instruments on the ground and in space including the Solwind satellite, which observed an energetic coronal mass ejection (CME) during the same time-frame. An impulsive flare occurred about one hour before the rise-time of the soft X-ray long duration event (LDE) and the apparent rise-time of the CME. This extensive set of observations permitted a comparison of this complex flare-erupting prominence-CME-LDE with a model proposed by Hundhausen (1994, 'Coronal Mass Ejections,' in "The Many Faces of the Sun," Springer-Verlag). Both similarities and differences are noted. While the start of the CME almost certainly follows the impulsive flare, it cannot be concluded that the flare is the 'cause' of the CME. The importance of determining the relative rise- times for the CME and the LDE is underscored by this study. Two other energetic events from the same active region are also discussed. It is concluded that no one model for the phenomenon: flare-erupting prominence-CME-LDE is satisfactory, even for these three events. Title: DA white dwarfs in pointed observations from the ROSAT archive. Authors: Wolff, B.; Jordan, S.; Koester, D. Bibcode: 1996A&A...307..149W Altcode: 87 pointed PSPC (Position Sensitive Proportional Counter) observations of hot DA white dwarfs, available in the ROSAT public archive until the end of 1994, have been analyzed together with Wide Field Camera (WFC) and EXOSAT data. From the 57 objects with a significant count rate half of the objects have a temperature below 38,000K and a virtually pure hydrogen atmosphere. At higher temperatures most (75%) objects emit a lower X-ray flux than predicted by hydrogen model atmospheres and must therefore contain heavier elements as absorbers. This is probably due to radiative acceleration which prevents these elements from sinking inwards. We also confirmed our previous result that the PSPC detector is a factor of two more sensitive to photons with energies below about 0.2keV. Title: X-ray and EUV detection of metals in the atmospheres of hot DA white dwarfs. Authors: Jordan, S.; Finley, D.; Koester, D.; Wolff, B. Bibcode: 1996rftu.proc....5J Altcode: The authors have analyzed X-ray and EUV observations of 69 DA white dwarfs in the framework of model atmospheres containing pure hydrogen and under the assumption that a mixture of additional heavier absorbers is present. The result is that most stars with Teff ⪆ 38000 K are not compatible with the assumption of pure hydrogen atmospheres but must contain additional elements. Above about 53000 K this is the case for all stars in the authors' sample. As an example for high resolution spectroscopy in the EUV the authors have analyzed the EUVE spectrum of the hot white dwarf PG 1234+482 with model atmospheres containing metals, and could identify iron and possibly other heavy elements in the observations. In order to quantitatively measure the metallicity in the atmospheres of the hot white dwarfs, they have compared the X-ray and EUV observations of 50 objects to the predictions from a grid of models with different metal contents. As expected from the theory of radiative levitation the hotter stars tend to have higher metallicity. However, the observed scatter in metallicity at a given effective temperature could not be explained by different surface gravities only. Moreover, the element abundances are in general lower (up to three orders of magnitude) than predicted by theory. Title: X-Ray Properties of Symbiotic Stars: I. The Supersoft Symbiotic Novae RR Tel and SMC3 (=RX J0048.4-7332) Authors: Mürset, U.; Jordan, S.; Wolff, B. Bibcode: 1996LNP...472..251M Altcode: 1996sxrs.conf..251M; 1996LNP96.472..251M We searched the ROSAT archive for pointed PSPC observations covering positions of symbiotic stars. 16 systems are detected. We find three distinct types of energy distributions, one of which is supersoft. This class consists of seven objects, among them two symbiotic novae, RR Tel and SMC3, which are discussed in more detail in this paper. The supersoft emission is produced by photospheric emission from the hot star. For RR Tel the ROSAT and IUE observations are simultaneously reproduced with a white dwarf type atmosphere with T eff=142 000 K. SMC3 can only be fitted with a WR-type atmosphere with considerable mass loss (dot M ∼ 10^{ - 5} M_ odot /yr), and a temperature in excess of T eff ≳ 260 000 K. Title: Accretion heated magnetic white dwarfs. Authors: Gänsicke, B. T.; Beuermann, K.; de Martino, D.; Jordan, S. Bibcode: 1996AGAb...12...32G Altcode: No abstract at ADS Title: EUVE and ORFEUS Observations of the Cool DO White Dwarf HD 149499B Authors: Napiwotzki, R.; Jordan, S.; Bowyer, S.; Hurwitz, M.; Koester, D.; Rauch, T.; Weidemann, V. Bibcode: 1996aeu..conf..241N Altcode: 1996IAUCo.152..241N No abstract at ADS Title: Solar EUV spectroscopy with serts: measurements of active and quiet Sun properties. Authors: Brosius, J. W.; Davila, J. M.; Thomas, R. J.; Jordan, S. D.; Monsignori-Fossi, B. C. Bibcode: 1996uxsa.conf...83B Altcode: 1996uxsa.coll...83B The Solar EUV Rocket Telescope and Spectrograph (SERTS) was developed by the Laboratory for Astronomy and Solar Physics at NASA/Goddard Space Flight Center. It was successfully flown in 1989, 1991, 1993, and (very recently) 1995, providing spectra and images of a variety of solar features on each occasion. SERTS data have been used to address numerous problems in solar physics, of which the following are discussed below: (1) measurement of coronal temperature and density, (2) derivation of differential emission measure distribution, (3) verification of atomic physics parameters, (4) determination of relative elemental abundances, (5) formation of the He II 304 Å line, (6) mass flows, and (7) coronal magnetography. Title: Detection of Heavy Elements in the EUVE Spectrum of a Hot White Dwarf Authors: Jordan, S.; Koester, D.; Finley, D. Bibcode: 1996aeu..conf..235J Altcode: 1996IAUCo.152..235J No abstract at ADS Title: SUMER - Solar Ultraviolet Measurements of Emitted Radiation Authors: Wilhelm, K.; Curdt, W.; Marsch, E.; Schühle, U.; Lemaire, P.; Gabriel, A.; Vial, J. -C.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Poland, A. I.; Thomas, R. J.; Kühne, M.; Timothy, J. G.; Hassler, D. M.; Siegmund, O. H. W. Bibcode: 1995SoPh..162..189W Altcode: The instrument SUMER - Solar Ultraviolet Measurements of Emitted Radiation is designed to investigate structures and associated dynamical processes occurring in the solar atmosphere, from the chromosphere through the transition region to the inner corona, over a temperature range from 104 to 2 × 106K and above. These observations will permit detailed spectroscopic diagnostics of plasma densities and temperatures in many solar features, and will support penetrating studies of underlying physical processes, including plasma flows, turbulence and wave motions, diffusion transport processes, events associated with solar magnetic activity, atmospheric heating, and solar wind acceleration in the inner corona. Specifically, SUMER will measure profiles and intensities of EUV lines; determine Doppler shifts and line broadenings with high accuracy; provide stigmatic images of the Sun in the EUV with high spatial, spectral, and temporal resolution; and obtain monochromatic maps of the full Sun and the inner corona or selected areas thereof. SUMER will be flown on the Solar and Heliospheric Observatory (SOHO), scheduled for launch in November, 1995. This paper has been written to familiarize solar physicists with SUMER and to demonstrate some command procedures for achieving certain scientific observations. Title: RE J0317-853: the hottest known highly magnetic DA white dwarf Authors: Barstow, M. A.; Jordan, S.; O'Donoghue, D.; Burleigh, M. R.; Napiwotzki, R.; Harrop-Allin, M. K. Bibcode: 1995MNRAS.277..971B Altcode: We report the discovery of a new highly magnetic DA white dwarf, RE J0317-853, through its detection as an EUV source by the ROSAT Wide Field Camera. A combination of far-UV and optical spectra indicates that the star has an effective temperature ~=50000K, making it the hottest known white dwarf with a measurable magnetic field. Furthermore, the magnetic field is exceptionally intense, having a value ~=340 MG, sufficient to shift and broaden the Balmer line features almost beyond recognition. A field of this value is also among the highest known. While these parameters already make this star unique, we have also found that, alone among the magnetic DA white dwarfs, it is a large-amplitude (~=+/-0.1 mag) oscillator at optical wavelengths with a period of 725.4s. Since there is no known pulsational instability strip in this temperature range, the most plausible explanation is that the modulation of the optical flux is due to rotation of the star. If the star is at the same distance as another DA star, some 16 arcsec away, it must have an unusually small radius and, consequently, a mass approaching the Chandrasekhar limit. The two stars would also comprise one of only three known visual double degenerate systems with hot white dwarf components. ROSAT data indicate that heavy elements detected in the IUE spectrum are mainly attributable to circumstellar material, and we suggest this may arise from a wind driven by cyclotron radiation pressure from the intense magnetic field. Title: Some design and performance features of SUMER: solar ultraviolet measurements of emitted radiation Authors: Wilhelm, Klaus; Curdt, W.; Marsh, E.; Schuehle, Udo H.; Lemaire, Philippe; Gabriel, Alan H.; Vial, J. -C.; Grewing, Michael; Huber, Martin C.; Jordan, S. D.; Poland, Arthur I.; Thomas, Roger J.; Kuehne, Mikhael; Timothy, J. Gethyn; Hassler, Donald M.; Siegmund, Oswald H. Bibcode: 1995SPIE.2517....2W Altcode: The instrument SUMER (solar ultraviolet measurements of emitted radiation) is designed to investigate structures and associated dynamical processes occurring in the solar atmosphere from the chromosphere through the transition region to the inner corona, over a temperature range from 104 to 2 multiplied by 106 K and above. The observations will be performed, on board SOHO (solar and heliospheric observatory) scheduled for launch in November 1995, by a scanning, normal-incidence telescope/spectrometer system in the wavelength range from 500 to 1610 angstrom. Spatial resolution requirements compatible with the pointing stability of SOHO are less than 1000 km corresponding to about 1-arcsec angular resolution. Doppler observations of EUV line shifts and broadenings should permit solar plasma velocity measurements down to 1 km s-1. We report here on some specific features of this instrument related to its pointing as well as its spatial and spectral resolution capabilities. Title: Magnetism in the polar BL Hydri. Authors: Schwope, A. D.; Beuermann, K.; Jordan, S. Bibcode: 1995A&A...301..447S Altcode: We report on phase-resolved low-resolution spectrophotometry of the magnetic cataclysmic binary BL Hyi in low, intermediate, and high states of accretion. The cyclotron spectrum of the main accreting pole is red and displays no resolvable cyclotron lines, which is indicative of a low field strength in the accretion spot. This supposition is confirmed by the detection of halo Zeeman absorption in a field of only 12 MegaGauss (MG), one of the lowest values measured among the polars. The effective photospheric field of the white dwarf measured during a low state, B_eff_=~22MG is higher than in the accretion region which is usually assumed to lie in the vicinity of one of the magnetic poles. Thus deviations from a centered dipole field seem to be present. Numerical synthetization of white dwarf photospheric spectra shows that many of the observed features can be explained by a dipole-/quadrupole combination, with both constituents having approximately the same strength. Title: ORFEUS observations of the DO white dwarf HD 149499B. Authors: Napiwotzki, R.; Hurwitz, M.; Jordan, S.; Bowyer, S.; Koester, D.; Weidemann, V.; Lampton, M.; Edelstein, J. Bibcode: 1995A&A...300L...5N Altcode: We present an analysis of a hig-resolution FUV spectrum (912...1170Angstroems) of the cool DO white dwarf HD 149499 B. Observations were performed with the Berkeley EUV/FUV spectrometer of the ORFEUS experiment. The analysis, performed with a grid of LTE model atmospheres, yielded the basic parameters Teff = 49500+/-500K and log g = 7.97+/-0.08. The photospheric hydrogen Lyman lines in the FUV spectrum indicate the presence of hydrogen: log nH/nHe =-0.65+/-0.12.The implications of this finding for the spectral evolution of white dwarfs are discussed. A check of the LTE assumption was performed by a comparison with NLTE atmospheres calculated for appropriate parameters. The interstellar components of the hydrogen Lyman lines are used for an estimate of the hydrogen column towards the HD 149499 system: N_H_ about 1x10^19^/cm2. Title: The ROSAT spectrum of the symbiotic nova AG Pegasi: evidence for colliding winds. Authors: Muerset, U.; Jordan, S.; Walder, R. Bibcode: 1995A&A...297L..87M Altcode: Pointed ROSAT PSPC observations of the symbiotic nova AG Peg are presented and analyzed. A basic analysis shows that the X-rays are emitted by a hot - probably shock-heated - plasma with a temperature of a few MK. We suggest that we are facing the first definite observation of colliding winds in a symbiotic binary system. Using a one point model, we derive for the emitting plasma a characteristic temperature of 3.5x10^6^K, a luminosity of 0.01Lsun_^bol^, and an emission measure of 1.5x10^54^cm^-3^. A 2D hydrodynamic simulation resting on published system parameters reproduces these results. Title: Are Spicules Evidence for Small-scale Motions that Redistribute HE II Ions to Produce Enhanced 304A Line Emission? Authors: Jordan, S. D.; Davila, J. M.; Thomas, R. J.; Garcia, A. Bibcode: 1995SPD....26..508J Altcode: 1995BAAS...27..958J No abstract at ADS Title: ROSAT pointed observations of four X-ray bright DA white dwarfs. Authors: Wolff, B.; Jordan, S.; Bade, N.; Reimers, D. Bibcode: 1995A&A...294..183W Altcode: We present pointed observations of four hot DA white dwarfs with the ROSAT satellite. Measurements with the Position Sensitive Proportional Counter (PSPC) and the Wide Field Camera (WFC) were analyzed in the framework of pure hydrogen model atmospheres. The results fit well into the picture of previous studies that objects between about 20000 and 40000K have almost pure hydrogen atmospheres, while at higher temperatures additional absorbers are present in general. Of particular interest are PG0824+289, PG1657+344, and PG1658+441. The former is a close binary consisting of a DA white dwarf and a dwarf carbon star (dC). The effective temperature of 37000K, derived from the ROSAT observations, is very close to the value determined from IUE spectra, which - unlike optical spectra - are not contaminated by the "cool" dC. Therefore we conclude that the DA component of the system has a pure hydrogen atmosphere. The magnetic DA PG1658+441 has the highest mass (1.31Msun_) of all known single white dwarfs. Its X-ray flux can be explained by a pure hydrogen atmosphere. An optical spectrum of PG1657+344 reveals that this object is one of the few DA white dwarfs with T_eff_>50000K. In this case the analysis of the ROSAT data shows clear evidence for absorbing material besides hydrogen. Title: Calibration of Convective Efficiency by UV Observations of a Double Degenerate Authors: Jordan, S. Bibcode: 1995iue..prop.5042J Altcode: No abstract at ADS Title: Two-pole accretion in the high-field polar RXJ 1938.6-4612. Authors: Schwope, A. D.; Thomas, H. -C.; Beuermann, K.; Burwitz, V.; Jordan, S.; Haefner, R. Bibcode: 1995A&A...293..764S Altcode: We report the discovery of two systems of cyclotron emisson lines in phase-resolved low-resolution spectra of the recently discovered AM Herculis binary RXJ 1938.6-4612. The fieldstrengths inferred are B_1_=~47MG and B_2_=~70-80MG, which might be indicative of a non-dipolar field structure. The latter value is the highest found so far for white dwarfs in cataclysmic variables. We present a spectroscopic ephemeris of sufficient accuracy to connect our optical and ROSAT All Sky Survey X-ray observations separated by a few years. Using this, the X-ray bright accretion spot which is visible for less than 40% of the binary cycle may be identified with the low-field accretion region. The high-field spot dominates the optical lightcurve. We find slight evidence for a quadratic term in the ephemeris, ˙(P)=(-3.4+/-2.1)x10^-9^. Low-state spectra reveal M-star features, Zeeman absorption troughs from the white dwarf and cyclotron emission lines originating in the high-field region. Photospheric Zeeman models using a slightly decentered dipole along the axis, z_off_=~0.1R_wd_, B_pole_=~60MG, fit some absorption features in the blue spectral range and confirm the results of high-state cyclotron spectroscopy. The implied distance to RXJ 1938.6-4612 is ~150-190pc. Title: A Very High Magnetic Field White Dwarf Candidate Authors: Jordan, S. Bibcode: 1995iue..prop.5041J Altcode: No abstract at ADS Title: ORFEUS and EUVE observations of the cool DO HD 149499 B Authors: Napiwotzki, R.; Jordan, S.; Koester, D.; Weidemann, V.; Bowyer, S.; Hurwitz, M. Bibcode: 1995LNP...443..337N Altcode: 1995whdw.conf..337N No abstract at ADS Title: Ultraviolet Spectropolarimetry of GRW+70 8247 with the HST Faint Object Spectrograph Authors: Allen, R. G.; Jordan, S. Bibcode: 1994AAS...185.4606A Altcode: 1994BAAS...26.1383A Spectropolarimetric observations of the magnetic white dwarf GRW+70 8247 in the lambda lambda 1280--1600 range were obtained with the Faint Object Spectrograph aboard the Hubble Space Telescope. A dramatic increase in both the linear and circular polarization was found to coincide with a decline in the continuum flux below 1500 Angstroms . High levels of linear (20%) and circular (12%) polarization were observed in the lambda lambda 1300--1400 range and were not confined to the well-known absorption feature at 1347 Angstroms . This work is supported by NASA grant NAG 5-1630. Title: Analysis of ROSAT pointed observations of 15 hot DA white dwarfs. Authors: Jordan, S.; Wolff, B.; Koester, D.; Napiwotzki, R. Bibcode: 1994A&A...290..834J Altcode: We present the results of pointed observations of hot white dwarfs with the ROSAT PSPC detector, and through the P1 filter of the Wide Field Camera. Model atmospheres containing hydrogen and helium, either homogeneously mixed or chemically stratified, are used to analyze the new data together with observations of the same objects by EXOSAT and the ROSAT all-sky survey. We confirm the results of previous studies, that objects between about 20000 and 40000 K have almost pure hydrogen atmospheres while additional absorbers are present in all three objects at higher temperatures. As a by-product we found evidence that the ROSAT PSPC detector is a factor 2.0+/-0.3 more sensitive to very soft X-ray photons compared to the standard calibration. Title: A "cool" PG 1159 star discovered by the Hamburg Schmidt Survey: NLTE analysis of HS 0704+6153. Authors: Dreizler, S.; Werner, K.; Jordan, S.; Hagen, H. Bibcode: 1994A&A...286..463D Altcode: The discovery of a new PG 1159 star by follow-up spectroscopy of candidates selected from objective-prism plates of the Hamburg Schmidt Survey is presented. From a NLTE model atmosphere analysis an effective temperature of 65 000 K and a surface gravity of logg=7.0 is determined, which together with the extreme helium abundance (H/He<1 by number) place HS 0704+6153 in the region of hot DO white dwarfs. The high carbon and oxygen abundances (C/He=0.2, O/He~0.05 by number), however, are typical for PG 1159 stars. Its effective temperature is by far lower than that of any other PG 1159 star. HS 0704+6153 therefore is in the transition stage between the PG 1159 stars and the DO white dwarfs, it hence is an ideal object to study the gravitational settling of metals in helium-rich atmospheres. Title: HE 1045-0908: a new magnetic DA white dwarf with a distinctive Zeeman line splitting pattern Authors: Reimers, D.; Jordan, S.; Koehler, T.; Wisotzki, L. Bibcode: 1994A&A...285..995R Altcode: We report the discovery of a magnetic DA white dwarf within the Hamburg/ESO objective prism survey for bright quasars. The new magnetic DA HE 1045-0908 was found by automated search techniques and classified as QSO candidate. Subsequent spectroscopy with EFOSC at the ESO 3.6m telescope showed that Halpha_ is a triplet, while Hbeta_ and Hgamma_ are split in a distinctive way into several Zeeman components. A model atmosphere analysis yields T_eff_= 9200 +/-500 K, a polar field strength of 31 +/-2 MG, and a dipole inclination of 5deg+15deg-5deg, i.e. a nearly equator-on view. Title: Numerical simulations of convection at the surface of a ZZ Ceti white dwarf. Authors: Ludwig, H. -G.; Jordan, S.; Steffen, M. Bibcode: 1994A&A...284..105L Altcode: We applied two-dimensional hydrodynamics and non-grey radiative transfer calculations to the surface layers of a hydrogen-rich white dwarf (spectral type DA) with T_eff_=12600K and log(g)=8.0, corresponding to a position in the HR-diagram slightly cooler than the hot boundary of the ZZ Ceti instability strip. In our simulations the entire convection zone including the overshoot layers is embedded in the computational box so that we obtain a complete and detailed model of convection for this representative object. We address the important question to what extent models based on mixing length theory (MLT) are able to predict the physical properties of convection. We find a rapidly (timescale ~100ms) evolving flow pattern with fast concentrated downdrafts surrounded by slow broad upflows of warmer material. Convection carries up to 30% of the total flux and excites internal gravity waves by dynamical processes associated with the merging of downdrafts. The mean entropy gradient is reversed with respect to MLT predictions in the deeper layers of the convection zone. Strong overshoot occurs at its upper and lower boundary. A synthetic spectrum calculated from the mean photospheric temperature stratification can be fitted satisfactorily with a MLT model adopting α=1.5. At greater depth the temperature profile approaches a model with α=4. The total depth of the convective layers is rather small compared to values suggested by studies of the excitation mechanism for the pulsations of DAs. Title: A model for the X-ray spectrum of the symbiotic nova RR Telescopii. Authors: Jordan, S.; Murset, U.; Werner, K. Bibcode: 1994A&A...283..475J Altcode: Pointed ROSAT position sensitive proportional counter (PSPC) observations of the symbiotic nova RR Tel are presented. The PSPC pulse height distribution exhibits a rather soft energy distribution plus few, but significant counts at higher energies. We interprete this as superposition of photospheric flux from the hot component of the symbiotic binary system, and X-rays emitted by a hot plasma, probably shocked by the colliding winds from the two binary components. For modeling the stellar component we use black body emission, as well as line-blanketed non-local thermodynamic equilibrium (NLTE) model atmospheres. Additional constraints for the parameters of the hot star are provided by UV spectra obtained with IUE and VOYAGER. The parameters of the plasma are confined by published EINSTEIN count rates. A stellar atmosphere model with L = 3500 solar luminosity, Teff = 142000 K, log g = 6.5, and solar abundances, complemented with emission of several times 0.01 solar luminosity by a several 106 K hot plasma reproduces both, UV and X-ray data. For the hot star's atmosphere, any other chemical compositions can be excluded. Title: Analysis of pointed ROSAT observations of hot DA white dwarfs. Authors: Wolff, B.; Jordan, S.; Koester, D. Bibcode: 1994AGAb...10..134W Altcode: No abstract at ADS Title: 'SUMER' - Solar Ultraviolet Measurements of Emitted Radiation Authors: Wilhelm, K.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuhne, M.; Lemaire, P.; Marsch, E.; Poland, A. I.; Schuhle, U.; Thomas, R. J.; Timothy, J. G.; Vial, J. -C. Bibcode: 1994scs..conf..619W Altcode: 1994IAUCo.144..619W SUMER is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. The spatial and spectral resolution capabilities of the instrument are considered in some detail, and a new detector concept is introduced. Title: Line Formation and the Intensity Enhancement of the He II 304A Line in the Solar Atmosphere Authors: Jordan, S. D. Bibcode: 1994scs..conf..415J Altcode: 1994IAUCo.144..415J Observations of He II 304 Å line profiles from the Goddard solar EUV sounding rocket flight of May 9, 1991 are analyzed to determine lower limits on the small scale non-thermal velocities in the regions observed. In the quiet Sun, a lower limit of 30 km/s is obtained over much of the spectrograph slit. It is argued that a sufficient fraction of the He II ions will survive in their upward motions, before collisional excitation to produce a 304 Å photon, to enhance the computed line intensity up to the observed values. Title: Faint Blue Stars from the Hamburg Schmidt Survey Authors: Dreizler, Stefan; Heber, Uli; Jordan, S.; Engels, D. Bibcode: 1994hsgh.conf..228D Altcode: No abstract at ADS Title: Iron in the EUVE spectrum of PG 1234+482. Authors: Jordan, S.; Koester, D. Bibcode: 1994AGAb...10...60J Altcode: No abstract at ADS Title: The influence of the bound-free opacity on the radiation from magnetic DA white dwarfs. Authors: Jordan, S. Bibcode: 1994AGAb...10..133J Altcode: No abstract at ADS Title: Analysis of pointed ROSAT observations of hot DA white dwarfs. Authors: Wolff, B.; Jordan, S.; Koester, D. Bibcode: 1994AGAb...10...20W Altcode: No abstract at ADS Title: Analysis of the ROSAT pointed observation of the hot DA white dwarf HS1234+4811 Authors: Jordan, S. Bibcode: 1993AdSpR..13l.319J Altcode: 1993AdSpR..13..319J The ROSAT data of the hot DA white dwarf HS1234+4811 were analyzed in the framework of three different assumptions for the structure of the white dwarf's atmosphere. It could be excluded that the star has a homogeneously mixed photosphere consisting of helium and hydrogen only, but from ROSAT observations alone it is not possible to decide if the object has a stratified atmosphere with an ultrathin hydrogen layer (MH ≈ 7 · 10-14M) on top of the He envelope or if heavier elements are responsible for the absorption in the soft X-ray region. Title: Cyclotron and Zeeman spectroscopy of MR Serpentis in low and high states of accretion. Authors: Schwope, A. D.; Beuermann, K.; Jordan, S.; Thomas, H. -C. Bibcode: 1993A&A...278..487S Altcode: Phase-resolved low-resolution spectrophotometry of the polar MR Ser obtained during states of low and high accretion reveals cyclotron line emission as well as Balmer line Zeeman absorption. At both occasions the cyclotron lines move with phase. The whole system of cyclotron lines appears wavelength- and phase-shifted when the system switches from the high to the low state. These shifts indicate a migration of the emission/accretion region backwards in phase and towards the rotational pole at the state of reduced accretion rate. During the high accretion state stationary Zeeman features are seen against the bright cyclotron background. Both, cyclotron emission lines and Zeeman absorption lines yield the same field strength, B = 24 - 25 MG, indicating the coexistence of cool halo material and hot emitting plasma. The Zeeman aborption lines observed in the low state are of photospheric origin. At times one may recognize the complete set of Zeeman components of H-alpha. The effective photospheric field strength varies between 27.3 MG and 28.5 MG at spectroscopic phases 0.0 and 0.5, respectively. The photospheric Zeeman lines are much narrower than observed in other magnetic white dwarfs of comparable field strength and much narrower than expected for a centered dipolar field and a uniformly emitting photosphere. A spot model seems not be viable, hence, the field structure is clearly and not simply dipolar. Model calculations reveal a strongly decentered dipolar (doff = 0.3 Rwd) or the equivalent. Our analysis is facilitated by the spectroscopic identification of the secondary star in MR Ser. The determination of its spectral type as late M-dwarf (M5 - M6) allows the distance to be estimated, d = 139 +/- 13 pc. Radial velocity variations of photospheric absorption lines as well as quasichromospheric emission lines are used to determine the system geometry and the white dwarf mass, Mwd approx. 0.5 solar mass. Title: Analysis of the DA white dwarf HZ 43A and its companion star. Authors: Napiwotzki, R.; Barstow, M. A.; Fleming, T.; Holweger, H.; Jordan, S.; Werner, K. Bibcode: 1993A&A...278..478N Altcode: The DA white dwarf HZ 43 A (WD 1314+293) is analyzed based on a newly obtained optical spectrogram. We demonstrate that the derived parameters Teff = 49.000 K and log g = 7.7 are in agreement with the observed Ly-alpha line, the slope of the UV continuum, and the measured trigonometric parallax. The EXOSAT spectrograms of Paerels et al. (1986) are used to obtain upper limits for the atmospheric abundance of helium, carbon, nitrogen, and oxygen of HZ 43 A by applying the new parameters and up-to-date Non Local Thermodynamic Equilibrium (NLTE) model atmospheres. The result is discussed within the framework of diffusion calculations. It turns out that the resulting abundances of the CNO elements are below the predictions of theory making HZ 43 A an unique object. A red/near-infrared spectrum of the companion star HZ 43 B is used to reclassify it and to estimate temperature and metallicity. We calculate EUV fluxes from models with the derived stellar parameters and use them to check the flux calibrations of EXOSAT and ROSAT. The agreement between predicted and measured count rates is reasonable for the ROSAT-Wide Field Camera (WFC) filters. Most EXOSAT photometric filters exhibit deviations. These are marginally consistent with our error limits for the LX 3000, LX 4000, and the PPL filters. The Al/P calibration is in error. Discrepant results are obtained for the EXOSAT spectrograph and the ROSAT Position Sensitive Proportional Counter (PSPC). These inconsistencies may cause systematic errors, if for instance PSPC measurements are combined with WFC data for an analysis. Title: Chromospheric Heating by Acoustic Shock Waves Authors: Jordan, Stuart D. Bibcode: 1993ApJ...414..337J Altcode: Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay. Title: Correlation of He II lyman alpha with He I 10830 Å, and with chromospheric and EUV coronal emission Authors: Thompson, W. T.; Neupert, W. M.; Jordan, S. D.; Jones, H.; Thomas, R. J.; Schmieder, B. Bibcode: 1993SoPh..147...29T Altcode: This paper describes the results of comparing SERTS-3 images obtained in the transition region line of HeII 304 å with chromospheric HeI 10830 å absorption, with strong coronal lines of MgIX 368 å, FeXV 284 å and 417 å, and FeXVI 335 å and 31 å, with Hα, with CaII 8542 å, and with magnetograms in FeI 8688Hα. All of the images are illustrated, and the image reconstruction techniques used are described and evaluated. The high correlation of the HeII 304 å and HeI 10830 å images, originally found by Harvey and Sheeley (1977), is confirmed and is put on a quantitative basis. We find that the supergranulation network has greater contrast, and that filaments appear darker, in 10830 å than in 304 å. In active regions, the 304 å line follows more closely the behavior of Hα and CaII 8542 å than the 10830 å line. Title: HS 0209+0832 : a DAB white dawrf with a temperature fittinginto the DB gap. Authors: Jordan, S.; Heber, U.; Engels, D.; Koester, D. Bibcode: 1993A&A...273L..27J Altcode: The white dwarf H50209+0832 (B ≍13m.9), belonging to the sparse class of spectral type DAB, was discovered by follow-up spectroscopy of candidates selected from objective- prism plates of the Hamburg Schmidt sky survey. An analysis of the optical spectrum, clearly showing the He I λ4471 line besides the Balmer lines, yields a He/H ratio of 2% and an effective temperature of 36000 K, which could be confirmed by lUE observations. Among the hybrid DAB stars, key objects for an understanding of the DA/non DA sequences, H50209+0832 is particularly interesting since its temperature lies well in the "DB gap" between 28000 and 45000 K. Compared to a homogeneously mixed H+He atmosphere a stratified atmosphere with a hydrogen layer mass of about 5 × 10-16 Msun in diffusion equilibrium with the underlying helium envelope does not give an equally satisfying fit to the observed spectrum. So we conclude that diffusion equilibrium is not yet reached, possibly because meridional streams prevent gravitational separation or accretion from the interstellar medium has occurred only recently. This may also explain the occurrence of the C IV line at 1549Å. The alternative interpretation of H50209+0832 as a binary DA+DB appears less likely but cannot be ruled out completely. Title: SUMER - Solar Ultraviolet Measurements of Emitted Radiation Authors: Wilhelm, K.; Curdt, W.; Marsch, E.; Schuehle, U.; Gabriel, A. H.; Lemaire, P.; Vial, J. -C.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Poland, A. I.; Thomas, R. J.; Kuehne, M.; Timothy, J. G. Bibcode: 1993BAAS...25.1192W Altcode: No abstract at ADS Title: Coronal Radiation and Formation of the He II 304 Å Line Authors: Jordan, S. D.; Thomas, R. J.; Neupert, W. M.; Thompson, W. T. Bibcode: 1993BAAS...25Q1211J Altcode: No abstract at ADS Title: Solar Coronal Observations and Formation of the He II 304 Angstrom Line Authors: Jordan, S. D.; Thompson, W. T.; Thomas, R. J.; Neupert, W. M. Bibcode: 1993ApJ...406..346J Altcode: Although a large body of recent work supports the formation of the He II 304 A resonance line by collisional excitation in the quiet sun, the formation mechanism is less clear in strong coronal active regions and flares. The 1989 May 5 flight of the Goddard Solar Extreme Ultraviolet Rocket Telescope and Spectrograph (SERTS-3) provided a data set that is well suited to addressing this question. This paper develops a method of assessment of the line formation mechanism that is based on simple non-LTE theory and is applied to these data. The results support the conclusion of other authors that the 304 A line is formed by collisional excitation in the quiet sun, but that photoionization-recombination (p-r) may play a significant role in coronal active regions, and that p-r is important, and may even be predominant, in many flares. Title: Numerical simulations of convection at the surface of a ZZ Ceti white dwarf. Authors: Ludwig, H. -G.; Jordan, S.; Steffen, M. Bibcode: 1993AGAb....9..147L Altcode: No abstract at ADS Title: X-ray and EUV analysis of white dwarfs. Authors: Jordan, S.; Wolff, B.; Napiwotzki, R. Bibcode: 1993AGAb....9..149J Altcode: No abstract at ADS Title: Faint blue stars from the Hamburg Schmidt Survey. Authors: Dreizler, S.; Heber, U.; Jordan, S. Bibcode: 1993AGAb....9..152D Altcode: No abstract at ADS Title: Analysis of magnetic white dwarfs. Authors: Jordan, S. Bibcode: 1993AGAb....9..148J Altcode: No abstract at ADS Title: The accreting magnetic white dwarf in MR Ser Authors: Schwope, A. D.; Jordan, S.; Beuermann, K. Bibcode: 1993ASIC..403..381S Altcode: 1993wdao.conf..381S No abstract at ADS Title: PG 0824+289 : a dwarf carbon star with a visible white dwarf companion. Authors: Heber, U.; Bade, N.; Jordan, S.; Voges, W. Bibcode: 1993A&A...267L..31H Altcode: We report the identification of PG0824+289 with a unique double-lined spectroscopic binary consisting of a hot DA white dwarf and a dwarf carbon star. Balmer line emission and possible spectrum variability indicate a close system. A model atmosphere analysis of the hot DA star results in T(eff) = 40,000 K and Mv = 9.2 m. The dwarf carbon star contributes 25 percent to the (Greenstein) v magnitude of 14.22 m from which an absolute magnitude of Mv = 10.4 m results. It is only the sixth dwarf carbon star discovered so far and the first one in a double-lined spectroscopic binary. It bears some resemblance to the prototype carbon dwarf G77-61 and is the first system that allows the binary model for the origin of the dwarf carbon stars to be tested in detail. While all other known dC stars belong to population II, the small proper motion of PG0824+289 indicates that it is a population I star. Title: First numerical simulations of convection at the surface of a ZZ Ceti white dwarf Authors: Ludwig, H. -G.; Jordan, S.; Steffen, M. Bibcode: 1993ASIC..403..471L Altcode: 1993wdao.conf..471L No abstract at ADS Title: A first analysis of ROSAT pointed observations of two DA white dwarfs Authors: Jordan, S.; Napiwotzki, R.; Werner, K.; Koester, D. Bibcode: 1993ASIC..403..177J Altcode: 1993wdao.conf..177J No abstract at ADS Title: White dwarfs from the Hamburg Schmidt survey Authors: Jordan, S.; Heber, U. Bibcode: 1993ASIC..403...47J Altcode: 1993wdao.conf...47J No abstract at ADS Title: Analysis of three magnetic DA white dwarfs Authors: Jordan, S. Bibcode: 1993ASIC..403..333J Altcode: 1993wdao.conf..333J No abstract at ADS Title: Cataclysmic variables and related objects Authors: Hack, Margherita; Ladous, Constanze; Jordan, Stuart D.; Thomas, Richard N.; Goldberg, Leo; Pecker, Jean-Claude Bibcode: 1993NASSP.507.....H Altcode: 1993cvro.nasa.....H; 1993QB835.H27...... No abstract at ADS Title: Cyclotron and Zeeman Spectroscopy of MR SER in a Low State of Accretion Authors: Schwope, Axel D.; Jordan, S.; Beuermann, K. Bibcode: 1993AnIPS..10..312S Altcode: No abstract at ADS Title: SUMER: temperatures, densities, and velocities in the outer solar atmosphere. Authors: Lemaire, P.; Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kuehne, M.; Marsch, E.; Poland, A. I.; Richter, A. K.; Thomas, R. J.; Timothy, J. G.; Vial, J. C. Bibcode: 1992ESASP.348...13L Altcode: 1992cscl.work...13L The SUMER instrumentation, that will be mounted on the SOHO spacecraft, is in development under MPAE leadership. It has some capability to improve the solar angular resolution and the spectral resolution already obtained in the far UV to the extreme UV, corresponding to the temperature range between 104 and a few 106K. The authors give some insights into the SUMER spectrometer that is developed to study the dynamics and to infer temperatures and densities of the low corona and the chromosphere-corona transition zone in using the 50 - 160 nm wavelength range. First, they recall the SUMER scientific goals and the technics used. Then, after a brief description of the instrumentation the expected performances are described. The way the observations can be conducted is emphasized and it is shown how SUMER is operated in coordination with other SOHO instrumentations and in cooperation with ground-based observations. Title: Models of white dwarfs with high magnetic fields. Authors: Jordan, S. Bibcode: 1992A&A...265..570J Altcode: A novel program for calculating the theoretical spectra and wavelength dependence degrees of the linear and circular polarization for magnetic white dwarfs with hydrogen atmospheres has been developed. Using newer data for the decay times of magnetic fields in white dwarfs, the effect of the Lorentz forces on the hydrostatic structure of the atmosphere is reevaluated, demonstrating that the effect is smaller by a factor of 8 than previously calculated by Landstreet. As an application, new synthetic spectra for the high field object Grw+70 deg 8247 have been calculated, confirming the main results of Wickramasinghe and Ferrario (1988) (a polar field strength Bp = 320 MG). Title: "SUMER" - Solar Ultraviolet Measurements of Emitted Radiation. Authors: Wilhelm, K.; Axford, W. I.; Curdt, W.; Gabriel, A. H.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Kühne, M.; Lemaire, P.; Marsch, E.; Poland, A. I.; Richter, A. K.; Thomas, R. J.; Timothy, J. G.; Vial, J. C. Bibcode: 1992eocm.rept..225W Altcode: The experiment Solar Ultraviolet Measurements of Emitted Radiation (SUMER) is designed for the investigations of plasma flow characteristics, turbulence and wave motions, plasma densities and temperatures, structures and events associated with solar magnetic activity in the chromosphere, the transition zone and the corona. Specifically, SUMER will measure profiles and intensities of extreme ultraviolet (EUV) lines emitted in the solar atmosphere ranging from the upper chromosphere to the lower corona; determine line broadenings, spectral positions and Doppler shifts with high accuracy; provide stigmatic images of selected areas of the Sun in the EUV with high spatial, temporal and spectral resolution and obtain full images of the Sun and the inner corona in selectable EUV lines, corresponding to a temperature range from 104 to more than 1.8×106K. Title: The MIT high resolution X-ray spectroscopy instruments on AXAF Authors: Canizares, C. R.; Dewey, D.; Galton, E. B.; Markert, T. H.; Smith, Henry I.; Schattenburg, M. L.; Woodgate, B. E.; Jordan, S. Bibcode: 1992aiaa.confQ....C Altcode: The general design and performance characteristics of MIT's two dispersive spectrometers, the Bragg Crystal Spectrometer (BCS) and the High Energy Transmission Grating Spectrometer (HETG), now being developed for the Advanced X-ray Astrophysics Facility (AXAF), are described. Particular attention is given to the development of the critical technologies incorporated into these instruments, including BCS diffractors, imaging gas flow proportional counters, and grating elements for the HETG. The principal stages and the current status of the developments are reviewed. Title: Formation of the HE II 304 Line in the Solar Atmosphere Authors: Jordan, S. D. Bibcode: 1991BAAS...23.1387J Altcode: No abstract at ADS Title: Solar Chromospheric Heating Authors: Jordan, S. D. Bibcode: 1991BAAS...23.1037J Altcode: No abstract at ADS Title: Magneto-optical effects from free electrons in magnetic white dwarfs. Authors: Jordan, S.; O'Connell, R. F.; Koester, D. Bibcode: 1991A&A...242..206J Altcode: When calculating synthetic spectra and theoretical values for the polarization of magnetic white dwarfs, it is important to take the magnetooptical effects arising from free electrons into account. The hitherto used formalism of Pacholczyk (1976) breaks down at fields higher than 100 MG where the cyclotron resonance occurs in the optical region of the electromagnetic spectrum. In a new program for the analysis of magnetic white dwarfs a consistent approach is used that allows for damping by electron collisions. Inaccuracies originating from the discrete division of the stellar disk into a limited number of surface elements are reduced by taking into account the variation of the magnetic field over the individual elements. Title: The stellar component of the Hamburg Schmidt Survey Authors: Heber, U.; Jordan, S.; Weidemann, V. Bibcode: 1991ASIC..336..109H Altcode: 1991whdw.conf..109H No abstract at ADS Title: White dwarfs in the Hamburg Schmidt Survey Authors: Jordan, S.; Heber, U.; Weidemann, V. Bibcode: 1991ASIC..336..121J Altcode: 1991whdw.conf..121J No abstract at ADS Title: Cyclotron and Zeeman spectroscopy of the AM Herculis binary V834 Cen. Authors: Beuermann, K.; Schwope, A. D.; Thomas, H. -C.; Jordan, S. Bibcode: 1990AGAb....4...44B Altcode: No abstract at ADS Title: Cyclotron and Zeeman spectroscopy of V834 Cen. Authors: Beuermann, K.; Schwope, A. D.; Thomas, H. -C.; Jordan, S. Bibcode: 1990apcb.conf..265B Altcode: 1990cvlm.proc..265B No abstract at ADS Title: Discovery of two bright low-redshift quasars by the Hamburg quasar survey. Authors: Groote, D.; Heber, U.; Jordan, S. Bibcode: 1989A&A...223L...1G Altcode: Two bright low-redshift quasars, HS 0624+6907 (V = 14.2^m^, z = 0.370) and HS 1227+4530 (V = 16.3^m^, z = 0.194) have been discovered by follow-up spectroscopy of candidates selected from objective prism plates of the Hamburg Schmidt sky survey. Accordingly, HS 0624+6907 is the brightest quasar discovered by optical selection. Its spectrum and absolute magnitude (M = -28.0^m^) closely resemble those of 3C273 except for the presence of very narrow O III-emission lines. HS 1227+4530 is less luminous (M = -24.0^m^). We discuss the possibility that some bright low-redshift quasars have escaped detection because their objective-prism spectra are similar to those of subluminous F stars. Title: SUMER - Solar ultraviolet measurements of emitted radiation. Authors: Curdt, W.; Wilhelm, K.; Axford, W. I.; Marsch, E.; Richter, A. K.; Gabriel, A. H.; Lemaire, P.; Vial, J. -C.; Grewing, M.; Huber, M. C. E.; Jordan, S. D.; Poland, A. I.; Thomas, R. J.; Timothy, J. G. Bibcode: 1989AGAb....2...14C Altcode: 1989amt..conf...14C No abstract at ADS Title: The stellar component of the Hamburg-Schmidt survey. Authors: Heber, U.; Jordan, S.; Weidemann, V. Bibcode: 1989AGAb....3...92H Altcode: 1989AGAb....3...94H No abstract at ADS Title: FGK stars and T Tauri stars Authors: Cram, Lawrence E.; Kuhi, Leonard V.; Jordan, Stuart; Thomas, Richard; Goldberg, Leo; Pecker, Jean-Claude Bibcode: 1989NASSP.502.....C Altcode: 1989QB843.C6C73....; 1989fstt.book.....C The purpose of this book, FGK Stars and T Tauri Stars, like all other volumes of this series, is to exhibit and describe the best space data and ground based data currently available, and also to describe and critically evaluate the status of current theoretical models and physical mechanisms that have been proposed to interpret these data. The method for obtaining this book was to collect manuscripts from competent volunteer authors, and then to collate and edit these contributions to form a well structured book, which will be distributed to an international community of research astronomers by NASA and by the French CNRS. Title: Very Hot DA White Dwarfs From the Hamburg-Quasar Survey Authors: Jordan, S. Bibcode: 1989iue..prop.3564J Altcode: No abstract at ADS Title: Introduction to Helio- and Astro- Seismology Authors: Jordan, Stuart Bibcode: 1988ASSL..148..157J Altcode: 1988pmls.conf..157J No abstract at ADS Title: O stars and Wolf-Rayet stars Authors: Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart; Thomas, Richard N.; Goldberg, Leo; Pecker, Jean-Claude; Baade, D.; Divan, L.; Garmany, C. D.; Henrichs, H. F.; Kudritzki, R. P.; Pauldrach, A.; Prévot-Burnichon, M. -L.; Puls, J. Bibcode: 1988NASSP.497.....C Altcode: 1988oswr.book.....C Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

Contents: Perspective (R. N. Thomas).Part I. Introduction (L. Divan, M.-L. Prévot-Burnichon).1. Introducing the O and Wolf-Rayet stars.Part II. One perspective on O, Of, and Wolf-Rayet stars emphasizing winds and mass loss, with remarks on environment and evolution:2. Overview of O, Of, and Wolf-Rayet populations (P. S. Conti). 3. Intrinsic stellar parameters (P. S. Conti, D. Baade). 4. Stellar winds: (a) Introduction (P. S. Conti). (b) Mass loss from O stars (C. D. Garmany). (c) Mass loss in Wolf-Rayetstars (P. S. Conti). (d) Radiation-driven winds of hot luminous stars (R. P. Kudritzki, A. Pauldrach, J. Puls). (e) Intrinsic variability in ultraviolet spectra of early-type stars: the discrete absorption lines (H. Henrichs). 5. Environments and evolution (P. S. Conti).Part III. Another perspective on O, Of, and Wolf-Rayet stars, emphasizing model atmospheres and possibilities for atmospheric heating (A. B. Underhill): 6. Understanding the O and Wolf-Rayet stars. 7. Model Atmospheres and the theory of spectra for O and Wolf-Rayet stars. 8. The physics of the mantles of hot stars. 9. Summary of processes influencing the spectra of O and Wolf-Rayet stars. Title: EUV photometry of DA white dwarfs with EXOSAT. Authors: Jordan, S.; Koester, D.; Wulf-Mathies, C.; Brunner, H. Bibcode: 1987A&A...185..253J Altcode: The authors present EXOSAT EUV observations for 9 white dwarfs of spectral type DA. These are analysed together with other observational data from the literature using theoretical model atmospheres. For 8 objects He/H abundance ratios and interstellar hydrogen column densities are obtained. The data for HZ 43 seem to contradict recent results of other authors; possible explanations for the discrepancies are discussed. The results show that higher He/H ratios as well as a larger range of observed values are found in the hotter objects with Teff > 50,000K, whereas the cooler objects (Teff < 45,000K) have remarkably similar He/H ratios. Title: Model atmospheres and synthetic spectra for white dwarfs with chemically stratified atmospheres. Authors: Jordan, S.; Koester, D. Bibcode: 1986A&AS...65..367J Altcode: White dwarfs showing He and H features in their spectrum have almost exclusively been interpreted in terms of chemically homogeneous atmospheres with widely varying H/He ratios. In view of the extremely short diffusion time scales an alternative explanation might be a thin H layer on top of a He shell with a transition region as determined from diffusion equilibrium. In this paper the authors report results of model atmospheres and synthetic spectra calculations for such models. Temperature structure and emerging spectral fluxes are discussed, with emphasis on the EUV range where a number of hot white dwarfs has been observed in the past and more data are collected presently by EXOSAT. Title: The M-type stars Authors: Johnson, Hollis Ralph; Querci, Francois R.; Jordan, Stuart; Thomas, Richard; Goldberg, Leo; Pecker, Jean-Claude Bibcode: 1986NASSP.492.....J Altcode: 1986mts..book.....J; 1986QB843.M16M89... No abstract at ADS Title: Science with the Solar Optical Telescope (SOT). Authors: Jordan, S. D. Bibcode: 1984ESASP.220..165J Altcode: 1984ESPM....4..165J The Solar Optical Telescope (SOT) will provide the necessary data for attacking several fundamental problems in the energetics and dynamics of the solar atmosphere, including the origin and evolution of the Sun's magnetic field, the structure of solar subsurface convection, the heating of the outer solar atmosphere, and sources of the solar wind in the lower lying regions of the outer atmosphere. This telescope, of a Gregorian configuration, will have 1.3-meter-diameter primary mirror that will be capable of achieving close to 0.1-arc-second angular resolution on the Sun in both visible and ultraviolet wavelengths. This paper gives further details on the telescope and how it will be operated in space to achieve the scientific objectives. Title: Book-Review - the Sun as a Star Authors: Jordan, S.; Collier, A. C. Bibcode: 1984Obs...104...43J Altcode: No abstract at ADS Title: The solar optical telescope Authors: Hogan, G. D.; Jordan, S. D. Bibcode: 1984aiaa.meetQ....H Altcode: This paper describes NASA's Solar Optical Telescope (SOT), which is designed to measure the density temperature, magnetic fields, and the nonthermal velocity fields of solar features on a scale at which the basic physical processes are occurring. A series of 7- to 14-day missions carrying a 1.3-meter solar-observing telescope that has a spatial resolution only slightly larger than the photon mean-free-path of about 80 km will be flown as a Spacelab-attached payload aboard the Space Transportation System (STS) in mid-1990. The telescope (Fig. 1) will be built and integrated by the Perkin-Elmer Corporation and is managed by NASA's Goddard Space Flight Center. Coarse pointing to the sun is provided by the Spacelab instrument pointing system (IPS), whereas fine pointing is provided by the Observatory pointing and control system. The science instruments for the first mission, the photometric filtergraph and the coordinated filtergraph/spectrograph, that are integrated into a combined instrument package are also described. Title: Two cosmic-ray detectors with high charge and energy resolution in the GeV/nucleon range. Authors: Dwyer, R.; Jordan, S.; Meyer, P. Bibcode: 1984NIMPA.224..247D Altcode: No abstract at ADS Title: The Sun as a Star Authors: Jordan, S.; Rosner, R. Bibcode: 1983Natur.303...92J Altcode: No abstract at ADS Title: The Solar Optical Telescope Facility Authors: Yellin, M.; Fisher, R.; Jordan, S. Bibcode: 1983BAAS...15..709Y Altcode: No abstract at ADS Title: Book-Review - the Sun as a Star Authors: Jordan, S. Bibcode: 1983Natur.301..449J Altcode: No abstract at ADS Title: Book-Review - the Sun as a Star Authors: Jordan, S. D. Bibcode: 1982JBAA...92..290J Altcode: No abstract at ADS Title: Solar-stellar astrophysics Authors: Jordan, S. D. Bibcode: 1982ComAp...9..211J Altcode: Nonthermal physical processes in the solar atmosphere are discussed. The solar atmospheric regions are defined, and solar convection and its phenomena are explained. The relationship of the solar dynamo, magnetic field, and flares is explored. The solar atmospheric velocity fields are discussed, and the unresolved problem of the nature of atmospheric heating is detailed. The solar wind heating and acceleration are discussed and the need for global solar atmospheric models is emphasized. The application of these solar nonthermal processes to the stars in general is then taken up, employing the same categories as were applied to the solar atmosphere. Title: Book-Review - the Sun as a Star Authors: Jordan, S.; Hearn, A. G. Bibcode: 1982SSRv...32..465J Altcode: No abstract at ADS Title: Summary: The Sun Authors: Jordan, S. D. Bibcode: 1982obvf.conf..445J Altcode: No abstract at ADS Title: Book-Review - the Sun as a Star Authors: Jordan, S.; Mihalas, D. Bibcode: 1982S&T....63..262J Altcode: No abstract at ADS Title: The Solar Optical Telescope = SOT Authors: Jordan, S. D. Bibcode: 1981SSRv...29..333J Altcode: The Solar Optical Telescope (SOT), which NASA plans to operate on Spacelab, should provide resolution down to 0.1 arc sec, thus offering the capability for solving a number of fundamental problems in solar magnetism and in atmospheric heating and dynamics. Title: Book-Review - the Sun as a Star / NASA-SP-450 Authors: Jordan, S. Bibcode: 1981Sci...214.1268J Altcode: No abstract at ADS Title: The sun as a star Authors: Jordan, Stuart Bibcode: 1981NASSP.450.....J Altcode: 1981suas.nasa.....J No abstract at ADS Title: Chromospheric heating. Authors: Jordan, S. D. Bibcode: 1981NASSP.450..301J Altcode: 1981suas.nasa..301J General features of the solar chromospheric heating problem, which also apply to many stellar chromospheres, are reviewed. Current theories are discussed, including: heating by short period sound waves; the weak shock theory; and the time-dependent approach. Title: Book-Review - the Sun as a Star Authors: Jordan, S. Bibcode: 1981S&T....62..592J Altcode: No abstract at ADS Title: The solar modulation of cosmic ray electrons 1969-1977 Authors: Evenson, P.; Caldwell, J.; Jordan, S.; Meyer, P. Bibcode: 1979JGR....84.5361E Altcode: We discuss the gross morphological features of the cosmic ray electron spectrum from 200 MeV to 6 GeV as measured in eight of the nine years 1969-1977. We find no evidence that the solar magnetic field polarity change of 1970-1971 affected the relative modulation of electrons and protons. However, previously noted problems in explaining the variation of both the electron and proton modulation by one model can at least qualitatively be understood by allowing simultaneous variations in the diffusion coefficient and the boundary of the modulation region in a spherically symmetric solution of the Fokker-Planck equation. This model also predicts a change in the radial gradient of protons from 1973 to 1974. Title: The Cosmic Ray Electron Spectra in 1974 and 1975 and the Implications for Solar Modulation Authors: Caldwell, J. H.; Evenson, P.; Jordan, S.; Meyer, P. Bibcode: 1977ICRC...11..203C Altcode: 1977ICRC...15k.203C No abstract at ADS Title: The Cosmic-Ray Electron Spectra in 1974 and 1975 and the Implications for Solar Modulation (Abstract) Authors: Caldwell, J. H.; Evenson, P.; Jordan, S.; Meyer, P. Bibcode: 1977ICRC....3..205C Altcode: 1977ICRC...15c.205C No abstract at ADS Title: Physical processes determining the chromospheric temperature distribution. Authors: Jordan, S. D. Bibcode: 1977SoPh...51...51J Altcode: Calculations performed with several models of the solar chromosphere support Ulmschneider's conclusion that relatively short period acoustic waves heat the low chromosphere in the region just above the temperature minimum. However, these same short period waves (10⩽ period P⩽80 s) are not able to maintain chromospheric temperatures at heights where τ5000Å(normal) < 10-6. The calculations also show that an earlier conjecture stating that the H2 population might influence the non-LTE chromospheric H- population is probably not correct, due to lower values of the ratio ne/nH inferred from more recent observations. Finally, the calculations support Athay's contention that the Cayrel mechanism alone cannot produce the observed temperature rise, because the magnitude of the radiative cooling in the lines is too great. Title: The Cosmic Ray Electron Spectrum in 1973 and 1974 Authors: Caldwell, J.; Evenson, P.; Jordan, S.; Meyer, P. Bibcode: 1975ICRC....3.1000C Altcode: 1975ICRC...14.1000C No abstract at ADS Title: 1.0 Arc Second Structure on the Sun at 3.71 cm Wavelength Authors: Hobbs, Robert W.; Jordan, Stuart D.; Webster, William J., Jr.; Maran, Stephen P.; Caulk, Howard M. Bibcode: 1974SoPh...36..369H Altcode: No abstract at ADS Title: Can the Dissipation of High Frequency Sound Waves in the Low Chromosphere Produce the Temperature Rise? Authors: Jordan, S. D. Bibcode: 1974BAAS....6R.289J Altcode: No abstract at ADS Title: Small-Scale Structure in Solar Flaring Regions Observed at Wavelengths of 3.71 and 11.1 cm Authors: Hobbs, R. W.; Jordan, S. D.; Maran, S. P.; Caulk, H. M.; Webster, W. J., Jr. Bibcode: 1973ApL....15..193H Altcode: 1974ApL....15..193H No abstract at ADS Title: Further Aspects of Weak Shock Theory Applied to the Solar Chromosphere Authors: Jordan, Stuart D. Bibcode: 1973SoPh...30..327J Altcode: The low chromosphere now seems definitely to require mechanical heating, and dissipation of initially acoustic waves by shocking is one of the most promising possibilities. Results of recent calculations indicate that the weak shock theory may be applicable here, but discrepancies exist among various applications of this theory, and the explanations offered to date are not completely satisfactory. It is shown here that the different approximations used by different authors to evaluate the mechanical flux integral play an important role in producing these discrepancies, in addition to the already well known effects of the density scale heights and the wave periods. Arguments are presented favoring Ulmschneider's method for evaluation of this flux integral. Title: High Resolution Radio Observations of the Sun at 3.71 and 11.1 cm Authors: Hobbs, Robert W.; Jordan, Stuart D.; Webster, William J. Bibcode: 1973NPhS..243...48H Altcode: 1973Natur.243...48H ON January 14, 1972, observations of the Sun were made at 3.71 and 11.1 cm, using the NRAO three-element interferometer in the 2.7-1.8-0.9 km configuration. At 3.71 and 11.1 cm the minimum fringe spacings are 2.8 and 8.5 arc s, respectively, and the corresponding primary half-power beam widths are 6 and 18 arc min. The existing system was desensitized by turning off the r-f parametric amplifiers. This resulted in a system noise temperature of about 1,200 K. Because these preliminary results represent only six hours of observing time, it was not possible to determine the source positions precisely. Title: High resolution observations of a solar active region at 3.71 and 11.1 cm wavelength. Authors: Hobbs, R. W.; Jordan, S. D.; Maran, S. P.; Webster, W. J., Jr. Bibcode: 1973BAAS....5Q.284H Altcode: No abstract at ADS Title: "mechanical Heating in Stellar Chromospheres Using the Sun as a Test CASE," Authors: Jordan, Stuart D. Bibcode: 1973NASSP.317..181J Altcode: 1973stch.coll..181J; 1973IAUCo..19..181J No abstract at ADS Title: Stellar Chromospheres Authors: Jordan, S. D.; Avrett, Eugene H. Bibcode: 1973NASSP.317.....J Altcode: 1973IAUCo..19.....J; 1973stch.coll.....J No abstract at ADS Title: High resolution measurements of the sun at 3.71 and 11.1 cm wavelength. Authors: Hobbs, R. W.; Jordan, S. D.; Webster, W. J., Jr. Bibcode: 1972BAAS....4..322H Altcode: No abstract at ADS Title: High Resolution Measurements of the Sun at 3.71 and 11.1 cm Wavelength. Authors: Hobbs, R. W.; Jordan, S. D.; Webster, W. J., Jr. Bibcode: 1972BAAS....4R.310H Altcode: No abstract at ADS Title: Evidence for the 300-SECOND Oscillation from OSO-7 Extreme-Ultraviolet Observations Authors: Chapman, Robert D.; Jordan, Stuart D.; Neupert, Werner M.; Thomas, Roger J. Bibcode: 1972ApJ...174L..97C Altcode: Evidence is presented for a 300-second oscillation in the intensity of solar extreme-ultraviolet emission lines of He U, Mg viii, and Mg Ix as observed by OSO-7. Title: A New Slant on Discrepancies Given by Weak Shock Theory in the Solar Chromosphere. Authors: Jordan, S. D. Bibcode: 1971BAAS....3..462J Altcode: No abstract at ADS Title: Estimates of the role of mechanical heating in the low solar chromosphere. Authors: Jordan, S. D. Bibcode: 1971BAAS....3R.262J Altcode: No abstract at ADS Title: The Effect of the Density Scale Height on Shock-Wave Heating in the Low Solar Chromosphere Authors: Jordan, Stuart Bibcode: 1970ApJ...161.1189J Altcode: The heating of the low solar chromosphere by the shock dissipation of weak hydromagnetic waves was estimated by Osterbrock, who used the van de Hulst model for the low chromosphere. A feature of this model is values for the density scale heights of the order of 200 km. More recent models have scale heights with values generally less than this. When one repeats the solution of Osterbrock's equations for these new models in the case of negligible magnetic fields (of the order of 1 gauss), the resulting shock strength grows so rapidly that the range of applicability of the weak-shock theory is extremely limited. In the case of stronger magnetic fields, other complications arise and the problem cannot be treated in this simple way. The results tend to support the picture of a very rapid transition from the low chromosphere to tbe corona in regions of weak magnetic-field strength. Title: Some Comments on Shock-Wave Heating of the Low Solar Chromosphere Authors: Jordan, Stuart D. Bibcode: 1970BAAS....2..202J Altcode: No abstract at ADS Title: The Heating of the Chromosphere Authors: Jordan, Stuart Bibcode: 1970NASSP.251..111J Altcode: No abstract at ADS Title: Recent advances in solar physics. Authors: Maran, S. P.; Jordan, S. D. Bibcode: 1970EExSc...1...73M Altcode: No abstract at ADS Title: Why the Temperature Rise does not Occur in Radiative Equilibrium in Stellar Chromospheres of Dominant H^{-} Opacity Authors: Jordan, S. D. Bibcode: 1969ApJ...157..465J Altcode: It is demonstrated that the temperature inversion in the low solar chromosphere is very unlikely to result from the influence of the photospheric radiation field on the low-density gas Therefore, dissipation of mechanical energy is necessary to produce the rise. Since this effect follows directly from the dominance of the continuum opacity by the H ion, the same conclusion follows for all stellar chromospheres where H- dominates the continuum opacity Title: Why the Temperature Rise Does Not Occur in Radiative Equilibrium in Low Solar Chromosphere Authors: Jordan, Stuart D. Bibcode: 1969BAAS....1..282J Altcode: No abstract at ADS Title: The Temperature Structure and Energy Balance in the Solar Chromosphere. Authors: Jordan, Stuart Davis Bibcode: 1968PhDT.........2J Altcode: No abstract at ADS Title: Energy Balance and Temperature Structure in the Solar Chromosphere. Authors: Jordan, Stuart Bibcode: 1968AJS....73R.186J Altcode: Application of a method developed by the author for calculating the temperature structure in a shock-heated atmosphere is made to the solar chromosphere in the regions of the Mg II resonance doublet formation. The ionization of magnesium, the amount of mechanical energy required to maintain a temperature plateau, and the general applicability of weak shock theory to this problem are discussed. Comparison of results with observations is offered. The main conclusion is that complete single ionization of magnesium over a spherically symmetrical region of 500 km thickness in the low chromosphere just above the H- region seems to require more mechanical energy than either (1) the weak shock theory yields or (2) is observed as a net radiative loss in the emission cores of the Mg II doublet. Thus, to preserve reasonable physical conditions in the Mg II producing region, with a temperature in the range 6000~8000G, departures from spherical symmetry are required. This is consistent with spectroheliograms taken in Mg II.