Author name code: moore-charlotte ADS astronomy entries on 2022-09-14 author:"Moore, Charlotte E." ------------------------------------------------------------------------ Title: Results on photon-mediated dark-matter-nucleus interactions from the PICO-60 C3F8 bubble chamber Authors: Ali, B.; Arnquist, I. J.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Chen, C. J.; Clark, K.; Collar, J. I.; Cooper, P. S.; Cripe, C.; Crisler, M.; Dahl, C. E.; Das, M.; Durnford, D.; Fallows, S.; Farine, J.; Filgas, R.; García-Viltres, A.; Giroux, G.; Harris, O.; Hillier, T.; Hoppe, E. W.; Jackson, C. M.; Jin, M.; Krauss, C. B.; Kumar, V.; Laurin, M.; Lawson, I.; Leblanc, A.; Leng, H.; Levine, I.; Licciardi, C.; Linden, S.; Mitra, P.; Monette, V.; Moore, C.; Neilson, R.; Noble, A. J.; Nozard, H.; Pal, S.; Piro, M. -C.; Plante, A.; Priya, S.; Rethmeier, C.; Robinson, A. E.; Savoie, J.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Tiwari, D.; Vázquez-Jáuregui, E.; Wichoski, U.; Zacek, V.; Zhang, J.; PICO Collaboration Bibcode: 2022PhRvD.106d2004A Altcode: 2022arXiv220410340A Many compelling models predict dark matter coupling to the electromagnetic current through higher multipole interactions, while remaining electrically neutral. Different multipole couplings have been studied, among them anapole moment, electric and magnetic dipole moments, and millicharge. This study sets limits on the couplings for these photon-mediated interactions using nonrelativistic contact operators in an effective field theory framework. Using data from the PICO-60 bubble chamber leading limits for dark matter masses between 2.7 and 24 GeV /c2 and above 265 GeV /c2 (anapole moment), 2.7 and 11.7 GeV /c2 (electric moment), 3 and 9.5 GeV /c2 (magnetic moment), and 2.7 and 12 GeV /c2 (millicharged) are reported for the coupling of these photon-mediated dark matter-nucleus interactions. The detector was filled with 52 kg of C3F8 operating at thermodynamic thresholds of 2.45 keV and 3.29 keV, reaching exposures of 1404 kg -day and 1167 kg -day , respectively. Title: Determining the bubble nucleation efficiency of low-energy nuclear recoils in superheated C$_3$F$_8$ dark matter detectors Authors: Ali, B.; Arnquist, I. J.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Clark, K.; Collar, J. I.; Cooper, P. S.; Cripe, C.; Crisler, M.; Dahl, C. E.; Das, M.; Durnford, D.; Fallows, S.; Farine, J.; Filgas, R.; García-Viltres, A.; Girard, F.; Giroux, G.; Harris, O.; Hoppe, E. W.; Jackson, C. M.; Jin, M.; Krauss, C. B.; Kumar, V.; Lafreniere, M.; Laurin, M.; Lawson, I.; Leblanc, A.; Leng, H.; Levine, I.; Licciardi, C.; Linden, S.; Mitra, P.; Monette, V.; Moore, C.; Neilson, R.; Noble, A. J.; Nozard, H.; Pal, S.; Piro, M. -C.; Plante, A.; Priya, S.; Rethmeier, C.; Robinson, A. E.; Savoie, J.; Scallon, O.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Tiwari, D.; Tardif, F.; Vázquez-Jáuregui, E.; Wichoski, U.; Zacek, V.; Zhang, J. Bibcode: 2022arXiv220505771A Altcode: The bubble nucleation efficiency of low-energy nuclear recoils in superheated liquids plays a crucial role in interpreting results from direct searches for weakly interacting massive particle (WIMP) dark matter. The PICO Collaboration presents the results of the efficiencies for bubble nucleation from carbon and fluorine recoils in superheated C$_3$F$_8$ from calibration data taken with 5 distinct neutron spectra at various thermodynamic thresholds ranging from 2.1 keV to 3.9 keV. Instead of assuming any particular functional forms for the nuclear recoil efficiency, a generalized piecewise linear model is proposed with systematic errors included as nuisance parameters to minimize model-introduced uncertainties. A Markov-Chain Monte-Carlo (MCMC) routine is applied to sample the nuclear recoil efficiency for fluorine and carbon at 2.45 keV and 3.29 keV thermodynamic thresholds simultaneously. The nucleation efficiency for fluorine was found to be $\geq 50\, \%$ for nuclear recoils of 3.3 keV (3.7 keV) at a thermodynamic Seitz threshold of 2.45 keV (3.29 keV), and for carbon the efficiency was found to be $\geq 50\, \%$ for recoils of 10.6 keV (11.1 keV) at a threshold of 2.45 keV (3.29 keV). Simulated data sets are used to calculate a p-value for the fit, confirming that the model used is compatible with the data. The fit paradigm is also assessed for potential systematic biases, which although small, are corrected for. Additional steps are performed to calculate the expected interaction rates of WIMPs in the PICO-60 detector, a requirement for calculating WIMP exclusion limits. Title: H.E.S.S. ToO program on nearby core-collapse Supernovae : search for very-high energy gamma-ray emission towards the SN candidate AT2019krl in M74 Authors: Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N.; Ryder, S. Bibcode: 2022icrc.confE.809H Altcode: 2021arXiv210803839K; 2022PoS...395E.809H While the youngest known supernova remnants, such as Cassiopeia A, have been proven to be able to accelerate cosmic rays only up to $\sim$10$^{14}\,\mathrm{eV}$ at their present evolutionary stages, recent studies have shown that particle energies larger than a few PeV ($10^{15}\,\mathrm{eV}$) could be reached during the early stages of a core-collapse Supernova, when the high-velocity forward shock expands into the dense circumstellar medium shaped by the stellar progenitor wind. Such environments, in particular the type IIn SNe whose progenitors may exhibit mass-loss rates as high as $10^{-2}M_\odot\,\mathrm{yr}^{-1}$ \cite{smith14}, could thus lead to $\gamma$-ray emission from $\pi^0$ decay in hadronic interactions, potentially detectable with current Cherenkov telescopes at very-high energies. Such a detection would provide direct evidence for efficient acceleration of CR protons/nuclei in supernovae, and hence new insights on the long-standing issue of the origin of Galactic Cosmic Rays. In that context, the High Energy Stereoscopic System (\hess) has been carrying out a Target of Opportunity program since 2016 to search for such an early very-high-energy $\gamma$-ray emission towards nearby core-collapse supernovae and supernova candidates (up to $\sim 10~\mathrm{Mpc}$), within a few weeks after discovery. After giving an overview of this \hess\ Target of Opportunity program, we present the results obtained from the July 2019 observations towards the transient \at, originally classified as a type IIn supernova, which occurred in the galaxy M74 at $\sim 9.8\,\mathrm{Mpc}$. Although its nature still remains unclear, the derived \hess\ constraints on this transient are placed in the general context of the expected VHE $\gamma$-ray emission from core-collapse supernovae. Title: Astronomy outreach in Namibia: H.E.S.S. and beyond Authors: Dalgleish, H.; Prokoph, H.; Zhu, S.; Backes, M.; Cotter, G.; Catalano, J.; Ruiz Velasco, E.; Kasai, E.; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Curlo, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE1397D Altcode: 2021arXiv210801379D; 2022PoS...395E1397D Astronomy plays a major role in the scientific landscape of Namibia. Because of its excellent sky conditions, Namibia is home to ground-based observatories like the High Energy Spectroscopic System (H.E.S.S.), in operation since 2002. Located near the Gamsberg mountain, H.E.S.S. performs groundbreaking science by detecting very-high-energy gamma rays from astronomical objects. The fascinating stories behind many of them are featured regularly in the ``Source of the Month'', a blog-like format intended for the general public with more than 170 features to date. In addition to other online communication via social media, H.E.S.S. outreach activities have been covered locally, e.g. through `open days' and guided tours on the H.E.S.S. site itself. An overview of the H.E.S.S. outreach activities are presented in this contribution, along with discussions relating to the current landscape of astronomy outreach and education in Namibia. There has also been significant activity in the country in recent months, whereby astronomy is being used to further sustainable development via human capacity-building. Finally, as we take into account the future prospects of radio astronomy in the country, momentum for a wider range of astrophysics research is clearly building -- this presents a great opportunity for the astronomy community to come together to capitalise on this movement and support astronomy outreach, with the overarching aim to advance sustainable development in Namibia. Title: Combined dark matter searches towards dwarf spheroidal galaxies with Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS Authors: Armand, C.; Moulin, E.; Poireau, V.; Harding, J. P.; Tollefson, K.; Giuri, C.; Pueschel, E.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N.; Hawc; Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez Romero, J. d. D.; Camacho, J. R. Angeles; Arteaga Velazquez, J. C.; Kollamparambil, A. B.; Avila Rojas, D. O.; Ayala Solares, H. A.; Babu, R.; Baghmanyan, V.; Barber, A. S.; Becerra González, J.; Belmont-Moreno, E.; BenZvi, S.; Berley, D.; Brisbois, C.; Caballero Mora, K. S.; Capistrán Rojas, T.; Carramiñana, A.; Casanova, S.; Chaparro-Amaro, O.; Cotti, U.; Cotzomi, J.; Coutiño de Leon, S.; de la Fuente, E.; de León, C. L.; Diaz, L.; Diaz Hernandez, R.; Díaz Vélez, J. C.; Dingus, B.; Durocher, M.; DuVernois, M.; Ellsworth, R.; Engel, K.; Espinoza Hernández, M. C.; Fan, J.; Fang, K.; Fernandez Alonso, M.; Fick, B.; Fleischhack, H.; Flores, J. L.; Fraija, N. I.; Garcia Aguilar, D.; Garcia-Gonzalez, J. A.; García-Luna, J. L.; García-Torales, G.; Garfias, F.; Giacinti, G.; Goksu, H.; González, M. M.; Goodman, J. A.; Hernández Cadena, S.; Herzog, I.; Hinton, J.; Huang, D.; Hueyotl-Zahuantitla, F.; Hui, M.; Humensky, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Jhee, H.; Joshi, V.; Kunde, G. J.; Kunwar, S.; Lara, A.; Lee, J.; Lee, W. H.; Lennarz, D.; Vargas, H. Leon; Linnemann, J.; Longinotti, A. L.; López-Coto, R.; Luis-Raya, G.; Lundeen, J.; Malone, K.; Marandon, V.; Martinez, O.; Martinez Castellanos, I.; Martínez Huerta, H.; Martínez-Castro, J.; Matthews, J.; McEnery, J.; Miranda-Romagnoli, P.; Morales Soto, J. A.; Moreno Barbosa, E.; Mostafa, M.; Nayerhoda, A.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Olivera-Nieto, L.; Omodei, N.; Peisker, A.; Pérez Araujo, Y.; Pérez Pérez, E. G.; Rho, C. D.; Rivière, C.; Rosa-Gonzalez, D.; Ruiz-Velasco, E.; Salazar, H. I.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Serna-Franco, J.; Sinnis, G.; Smith, A. J.; Springer, W. R.; Surajbali, P.; Taboada, I.; Tanner, M.; Torres, I.; Torres Escobedo, R.; Turner, R.; Ureña-Mena, F.; Villaseñor, L.; Wang, X.; Watson, I. J.; Weisgarber, T.; Werner, F.; Willox, E.; Wood, J.; Yodh, G.; Zepeda, A.; Zhou, H.; Veritas; Capasso, M.; Ong, R.; Sadeh, I.; Kaaret, P.; Jin, W.; Benbow, W.; Mukherjee, R.; Prado, R.; Lundy, M.; Patel, S.; Moriarty, P.; Maier, G.; Furniss, A.; Ragan, K.; Williams, D.; Buckley, J.; Fortson, L.; Quinn, J.; Holder, J.; Nieto, D.; Adams, C.; O'Brien, S.; Ribeiro, D.; Pfrang, K.; Gueta, O.; Foote, G.; Weinstein, A.; Kumar, S.; Williamson, T.; Tak, D.; McGrath, C.; Kleiner, T.; Pohl, M.; Reynolds, P.; Hona, B.; Hanna, D.; Santander, M.; Sembroski, G.; Patel, S. R.; Errando, M.; Kertzman, M.; Hervet, O.; Nievas-Rosillo, M.; Lang, M.; Roache, E.; Humensky, T. B.; Shang, R. Y.; Vassiliev, V.; Chromey, A.; Falcone, A.; Christiansen, J.; Otte, A.; Gent, A. E.; Brill, A.; Ryan, J.; Farrell, K.; Gillanders, G.; Feng, Q.; Archer, A.; Kieda, D. Bibcode: 2022icrc.confE.528A Altcode: 2021arXiv210813646A; 2022PoS...395E.528A Cosmological and astrophysical observations suggest that 85\% of the total matter of the Universe is made of Dark Matter (DM). However, its nature remains one of the most challenging and fundamental open questions of particle physics. Assuming particle DM, this exotic form of matter cannot consist of Standard Model (SM) particles. Many models have been developed to attempt unraveling the nature of DM such as Weakly Interacting Massive Particles (WIMPs), the most favored particle candidates. WIMP annihilations and decay could produce SM particles which in turn hadronize and decay to give SM secondaries such as high energy $\gamma$ rays. In the framework of indirect DM search, observations of promising targets are used to search for signatures of DM annihilation. Among these, the dwarf spheroidal galaxies (dSphs) are commonly favored owing to their expected high DM content and negligible astrophysical background. In this work, we present the very first combination of 20 dSph observations, performed by the Fermi-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS collaborations in order to maximize the sensitivity of DM searches and improve the current results. We use a joint maximum likelihood approach combining each experiment's individual analysis to derive more constraining upper limits on the WIMP DM self-annihilation cross-section as a function of DM particle mass. We present new DM constraints over the widest mass range ever reported, extending from 5 GeV to 100 TeV thanks to the combination of these five different $\gamma$-ray instruments. Title: The young massive stellar cluster Westerlund 1 in gamma rays as seen with H.E.S.S. Authors: Mohrmann, L.; Ohm, S.; Rauth, R.; Specovius, A.; van Eldik, C.; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.789M Altcode: 2021arXiv210803003M; 2022PoS...395E.789M Massive stellar clusters have recently been hypothesised as candidates for the acceleration of hadronic cosmic rays up to PeV energies. Previously, the H.E.S.S. Collaboration has reported about very extended $\gamma$-ray emission around Westerlund 1, a massive young stellar cluster in the Milky Way. In this contribution we present an updated analysis that employs a new analysis technique and is based on a much larger data set, allowing us to constrain better the morphology and the energy spectrum of the emission. The analysis technique used is a three-dimensional likelihood analysis, which is especially well suited for largely extended sources. The origin of the $\gamma$-ray emission will be discussed in light of multi-wavelength observations. Title: Search for dark matter annihilation signals from unidentified Fermi-LAT objects with H.E.S.S. Authors: Montanari, A.; Moulin, E.; Glawion, D.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Moore, C.; Morris, P.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.538M Altcode: 2021arXiv210901498M; 2022PoS...395E.538M Cosmological N-body simulations show that Milky-Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma rays and be eventually detected in gamma-ray surveys as unidentified sources. We search for very-high-energy (VHE, $E\geq 100$ GeV) gamma-ray emission using H.E.S.S. observations carried out from a thorough selection of unidentified Fermi-LAT Objects (UFOs) as dark matter subhalo candidates. Provided that the dark matter mass is higher than a few hundred GeV, the emission of the UFOs can be well described by dark matter annihilation models. No significant VHE gamma-ray emission is detected in any UFO dataset nor in their combination. We, therefore, derive constraints on the product of the velocity-weighted annihilation cross-section $\langle \sigma v\rangle$ by the $J$-factor on dark matter models describing the UFO emissions. Upper limits at 95% confidence level are derived on $\langle \sigma v\rangle J$ in $W^+W^-$ and $\tau^+\tau^-$ annihilation channels for the TeV dark matter particles. Focusing on thermal WIMPs, strong constraints on the $J$-factors are obtained from H.E.S.S. observations. Adopting model-dependent predictions from cosmological N-body simulations on the $J$-factor distribution function for Milky Way (MW)-sized galaxies, only $\lesssim 0.3$ TeV mass dark matter models marginally allow to explain observed UFO emission. Title: Detection of new Extreme BL Lac objects with H.E.S.S. and Swift XRT Authors: Bony (de), M.; Bylund, T.; Meyer, M.; Noel, A. P.; Sanchez, D.; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.823B Altcode: 2022PoS...395E.823B; 2021arXiv210802232D Extreme high synchrotron peaked blazars (EHBLs) are amongst the most powerful accelerators found in nature. Usually the synchrotron peak frequency of an EHBL is above $10^{17}\,$Hz, i.e., lies in the range of medium to hard X-rays making them ideal sources to study particle acceleration and radiative processes. EHBL objects are commonly observed at energies beyond several TeV, making them also powerful probes of gamma-ray absorption in the intergalactic medium. During the last decade, several attempts have been made to increase the number of EHBL detected at TeV energies and probe their spectral characteristics. Here we report new detections of EHBLs in the TeV energy regime, each at a redshift of less than 0.2, by the High Energy Stereoscopic System (H.E.S.S.). Also, we report on X-ray observations of these EHBLs candidates with Swift XRT. In conjunction with the very high energy observations, this allows us to probe the radiation mechanisms and the underlying particle acceleration processes. Title: Detection of extended TeV emission around the Geminga pulsar with H.E.S.S. Authors: Mitchell, A.; Caroff, S.; Hinton, J.; Mohrmann, L.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Moderski, R.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.780M Altcode: 2022PoS...395E.780M; 2021arXiv210802556M Highly extended gamma-ray emission around the Geminga pulsar was discovered by Milagro and verified by HAWC. Despite many observations with Imaging Atmospheric Cherenkov Telescopes (IACTs), detection of gamma-ray emission on angular scales exceeding the IACT field-of-view has proven challenging. Recent developments in analysis techniques have enabled the detection of significant emission around Geminga in archival data with H.E.S.S.. In 2019, further data on the Geminga region were obtained with an adapted observation strategy. Following the announcement of the detection of significant TeV emission around Geminga in archival data, in this contribution we present the detection in an independent dataset. New analysis results will be presented, and emphasis given to the technical challenges involved in observations of highly extended gamma-ray emission with IACTs. Title: Search for enhanced TeV gamma ray emission from Giant Molecular Clouds using H.E.S.S. Authors: Sinha, A.; Baghmanyan, V.; Peron, G.; Gallant, Y.; Casanova, S.; Holler, M.; Mitchell, A.; Żywucka, N.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S. Bibcode: 2022icrc.confE.790S Altcode: 2021arXiv210801738S; 2022PoS...395E.790S Cosmic Ray (CR) interactions with the dense gas inside Giant Molecular Clouds (GMCs) produce neutral pions, which in turn decay into gamma rays. Thus, the gamma ray emission from GMCs is a direct tracer of the cosmic ray density and the matter density inside the clouds. Detection of enhanced TeV emission from GMCs, i.e., an emission significantly larger than what is expected from the average Galactic cosmic rays illuminating the cloud, can imply a variation in the local cosmic ray density, due to, for example, the presence of a recent accelerator in proximity to the cloud. Such gamma-ray observations can be crucial in probing the cosmic ray distribution across our Galaxy, but are complicated to perform with present generation Imaging Atmospheric Cherenkov Telescopes (IACTs). These studies require differentiating between the strong cosmic-ray induced background, the large scale diffuse emission, and the emission from the clouds, which is difficult to the small field of view of present generation IACTs. In this contribution, we use H.E.S.S. data collected over 16 years to search for TeV emission from GMCs in the inner molecular galacto-centric ring of our Galaxy. We implement a 3D FoV likelihood technique, and simultaneously model the hadronic background, the galactic diffuse emission and the emission expected from known VHE sources to probe for excess TeV gamma ray emission from GMCs. Title: Searching for VHE gamma-ray emission associated with IceCube neutrino alerts using FACT, H.E.S.S., MAGIC, and VERITAS Authors: The Fact Collaboration; The H. E. S. S. Collaboration; The Icecube Collaboration; The MAGIC Collaboration; The VERITAS Collaboration; Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babic, A.; Baquero, A.; Barres de Almeida, U.; Barrio, J. A.; Batković, I.; Becerra Gonzalez, J.; Bednarek, W.; Bellizzi, L.; Bernardini, E.; Bernardos, M. I.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bökenkamp, H.; Bonnoli, G.; Bosnjak, Z.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colak, S. M.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; Delfino, M.; Delgado, J.; Delgado Mendez, C.; Depaoli, D.; di Pierro, F.; di Venere, L.; Do Souto Espiñeira, E.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Fallah Ramazani, V.; Fattorini, A.; Fonseca, M. V.; Font, L.; Fruck, C.; Fukami, S.; Fukazawa, Y.; García López, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinovic, N.; Green, D.; Green, J. G.; Hadasch, D.; Hahn, A.; Heckmann, L.; Herrera, J.; Hoang, J.; Hrupec, D.; Hütten, M.; Inada, T.; Ishio, K.; Iwamura, Y.; Jiménez Martínez, I.; Jormanainen, J.; Jouvin, L.; Karjalainen, M.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Linhoff, L.; Lombardi, S.; Longo, F.; Lopez-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Machado de Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martinez, M.; Mazin, D.; Menchiari, S.; Mender, S.; Mićanović, S.; Miceli, D.; Miener, T.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Nakamori, T.; Nava, L.; Neustroev, V.; Nigro, C.; Nilsson, K.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletić, L.; Peñil, P.; Persic, M.; Pihet, M.; Prada Moroni, P. G.; Prandini, E.; Priyadarshi, C.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Saturni, F. G.; Schleicher, B.; Schmidt, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczyńska, D.; Spolon, A.; Stamerra, A.; Strišković, J.; Strom, D.; Strzys, M.; Suda, Y.; Surić, T.; Takahashi, M.; Takeishi, R.; Tavecchio, F.; Temnikov, P.; Terzic, T.; Teshima, M.; Tosti, L.; Truzzi, S.; Tutone, A.; Ubach, S.; van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Wunderlich, C.; Yamamoto, T.; Zarić, D.; Balbo, M.; Bretz, T.; Buss, J.; Eisenberger, L.; Hildebrand, D.; Iotov, R.; Kalenski, A.; Neise, D.; Noethe, M.; Paravac, A.; Sliusar, V.; Walter, R.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal v., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; Benzvi, S.; Berley, D.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; de Clercq, C.; Delaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; de With, M.; Deyoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; Duvernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; in, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. I.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de Los Heros, C.; Peters, L.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.; Jin, W.; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bony, M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Emery, G.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Ghafourizade, S.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'I-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.960T Altcode: 2022PoS...395E.960T; 2021arXiv210904350S The realtime follow-up of neutrino events is a promising approach to search for astrophysical neutrino sources. It has so far provided compelling evidence for a neutrino point source: the flaring gamma-ray blazar TXS 0506+056 observed in coincidence with the high-energy neutrino IceCube-170922A detected by IceCube. The detection of very-high-energy gamma rays (VHE, $\mathrm{E} > 100\,\mathrm{GeV}$) from this source helped establish the coincidence and constrained the modeling of the blazar emission at the time of the IceCube event. The four major imaging atmospheric Cherenkov telescope arrays (IACTs) - FACT, H.E.S.S., MAGIC, and VERITAS - operate an active follow-up program of target-of-opportunity observations of neutrino alerts sent by IceCube. This program has two main components. One are the observations of known gamma-ray sources around which a cluster of candidate neutrino events has been identified by IceCube (Gamma-ray Follow-Up, GFU). Second one is the follow-up of single high-energy neutrino candidate events of potential astrophysical origin such as IceCube-170922A. GFU has been recently upgraded by IceCube in collaboration with the IACT groups. We present here recent results from the IACT follow-up programs of IceCube neutrino alerts and a description of the upgraded IceCube GFU system. Title: Deep observations of Kepler's SNR with H.E.S.S. Authors: Prokhorov, D.; Vink, J.; Simoni, R.; Komin, N.; Funk, S.; Malyshev, D.; Mohrmann, L.; Ohm, S.; Puehlhofer, G.; Völk, H. J.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokoph, H.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.805P Altcode: 2021arXiv210711582P; 2022PoS...395E.805P Kepler's supernova remnant (SNR) which is produced by the most recent naked-eye supernova in our Galaxy is one of the best studied SNRs, but its gamma-ray detection has eluded us so far. Observations with modern imaging atmospheric Cherenkov telescopes (IACT) have enlarged the knowledge about nearby SNRs with ages younger than 500 years by establishing Cassiopeia A and Tycho's SNRs as very high energy (VHE) gamma-ray sources and setting a lower limit on the distance to Kepler's SNR. This SNR is significantly more distant than the other two and expected to be one of the faintest gamma-ray sources within reach of the IACT arrays of this generation. We report strong evidence for a VHE signal from Kepler's SNR based on deep observations of the High Energy Stereoscopic System (H.E.S.S.) with an exposure of 152 hours, including 122 hours accumulated in 2017-2020. We further discuss implications of this result for cosmic-ray acceleration in young SNRs. Title: Revisiting the PeVatron candidate MGRO J1908+06 with an updated H.E.S.S. analysis Authors: Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.779H Altcode: 2021arXiv210803401K; 2022PoS...395E.779H Detecting and studying galactic gamma-ray sources emitting very-high energy photons sheds light on the acceleration and propagation of cosmic rays presumably created in these sources. Currently, there are few sources emitting photons with energies exceeding 100 TeV. In this work we revisit the unidentified source MGRO J1908+06, initially detected by Milagro, using an updated H.E.S.S. dataset and analysis pipeline. The vicinity of the source contains a supernova remnant and pulsars as well as molecular clouds. This makes the identification of the primary source(s) of galactic cosmic rays as well as the nature of the gamma-ray emission challenging, especially in light of the recent HAWC and LHAASO detection of the high energy tail of its spectrum. Exploiting the better angular resolution as compared to particle detectors, we investigate the morphology of the source as well as its spectral properties. Title: Observation of burst activity from SGR1935+2154 associated to first galactic FRB with H.E.S.S. Authors: Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.777H Altcode: 2022PoS...395E.777H No abstract at ADS Title: Search for TeV emission from the Fermi Bubbles at low Galactic latitudes with H.E.S.S. inner Galaxy survey Authors: Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N.; Montanari, A.; Malyshev, D.; Malyshev, D. Bibcode: 2022icrc.confE.791H Altcode: 2022PoS...395E.791H No abstract at ADS Title: Limits on primordial black hole evaporation from H.E.S.S. observations. Authors: Tavernier, T.; Glicenstein, J. F.; Brun, F.; Marandon, V.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.518T Altcode: 2022PoS...395E.518T No abstract at ADS Title: CTA – the World's largest ground-based gamma-ray observatory Authors: Zanin, R.; Abdalla, H.; Abe, H.; Abe, S.; Abusleme, A.; Acero, F.; Acharyya, A.; Acin Portella, V.; Ackley, K.; Adam, R.; Adams, C.; Adhikari, S. S.; Aguado Ruesga, I.; Agudo, I.; Aguilera, R.; Aguirre Santaella, A.; Aharonian, F.; Alberdi, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amans, J. P.; Amati, L.; Amato, E.; Ambrogi, L.; Ambrosi, G.; Ambrosio, M.; Ammendola, R.; Anderson, J.; Anduze, M.; Anguner, E. O.; Antonelli, L. A.; Antonuccio, V.; Antoranz, P.; Anutarawiramkul, R.; Aragunde Gutierrez, J.; Aramo, C.; Araudo, A.; Araya, M.; Arbet Engels, A.; Arcaro, C.; Arendt, V.; Armand, C.; Armstrong, T.; Arqueros, F.; Arrabito, L.; Arsioli, B.; Artero, M.; Asano, K.; Ascasibar, Y.; Aschersleben, J.; Ashley, M.; Attina, P.; Aubert, P.; Singh, C. B.; Baack, D.; Babic, A.; Backes, M.; Baena, V.; Bajtlik, S.; Baktash, A.; Balazs, C.; Balbo, M.; Ballester, O.; Ballet, J.; Balmaverde, B.; Bamba, A.; Bandiera, R.; Baquero Larriva, A.; Barai, P.; Barbier, C.; Barbosa Martins, V.; Barcelo, M.; Barkov, M.; Barnard, M.; Baroncelli, L.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Batista, P. I.; Batkovic, I.; Bauer, C.; Bautista González, R.; Baxter, J.; Becciani, U.; Becerra González, J.; Becherini, Y.; Beck, G.; Becker Tjus, J.; Bednarek, W.; Belfiore, A.; Bellizzi, L.; Belmont, R.; Benbow, W.; Berge, D.; Bernardini, E.; Bernardos, M. I.; Bernlöhr, K.; Berti, A.; Berton, M.; Bertucci, B.; Beshley, V.; Bhatt, N.; Bhattacharyya, S.; Bhattacharyya, W.; Bhattacharyya, S.; Bi, B. Y.; Bicknell, G.; Biederbeck, N.; Bigongiari, C.; Biland, A.; Bird, R.; Bissaldi, E.; Biteau, J.; Bitossi, M.; Blanch, O.; Blank, M.; Blazek, J.; Bobin, J.; Boccato, C.; Bocchino, F.; Boehm, C.; Bohacova, M.; Boisson, C.; Boix, J.; Bolle, J. P.; Bolmont, J.; Bonanno, G.; Bonavolontà, C.; Bonneau Arbeletche, L.; Bonnoli, G.; Bordas, P.; Borkowski, J.; Bose, R.; Bose, D.; Bosnjak, Z.; Bottacini, E.; Böttcher, M.; Botticella, M. T.; Boutonnet, C.; Bouyjou, F.; Bozhilov, V.; Bozzo, E.; Brahimi, L.; Braiding, C.; Brau Nogue, S.; Breen, S.; Bregeon, J.; Breuhaus, M.; Brill, A.; Brisken, W.; Brocato, E.; Brown, A. M.; Brügge, K.; Brun, P.; Brun, F.; Brunetti, L.; Brunetti, G.; Bruno, P.; Bruno, A.; Bruzzese, A.; Bucciantini, N.; Buckley, J. H.; Bühler, R.; Bulgarelli, A.; Bulik, T.; Bünning, M.; Bunse, M.; Burton, M.; Burtovoi, A.; Buscemi, M.; Buschjager, S.; Busetto, G.; Buss, J.; Byrum, K.; Caccianiga, A.; Cadoux, F.; Calanducci, A.; Calderon, C.; Calvo Tovar, J.; Cameron, R. A.; Campana, P.; Canestrari, R.; Cangemi, F.; Cantlay, B.; Capalbi, M.; Capasso, M.; Cappi, M.; Caproni, A.; Capuzzo Dolcetta, R.; Caraveo, P.; Cárdenas, V.; Cardiel, L.; Cardillo, M.; Carlile, C.; Caroff, S.; Carosi, R.; Carosi, A.; Carquin, E.; Carrere, M.; Casandjian, J. M.; Casanova, S.; Cassol, F.; Catalani, F.; Catalano, O.; Cauz, D.; Ceccanti, A.; Celestino Silva, C.; Cerny, K.; Cerruti, M.; Chabanne, E.; Chadwick, P.; Chai, Y.; Chambery, P.; Champion, C.; Chaty, S.; Chen, A.; Cheng, K.; Chernyakova, M.; Chiaro, G.; Chiavassa, A.; Chikawa, M.; Chitnis, V. R.; Chudoba, J.; Chytka, L.; Cikota, S.; Circiello, A.; Clark, P.; Colak, M.; Colombo, E.; Colonges, S.; Comastri, A.; Compagnino, A.; Conforti, V.; Congiu, E.; Coniglione, R.; Conrad, J.; Conte, F.; Contreras, J. L.; Coppi, P.; Cornat, R.; Coronado Blazquez, J.; Cortina, J.; Costa, A.; Costantini, H.; Cotter, G.; Courty, B.; Covino, S.; Crestan, S.; Cristofari, P.; Crocker, R.; Croston, J.; Cubuk, K.; Cuevas, O.; Cui, X.; Cusumano, G.; Cutini, S.; D'Amico, G.; D'Ammando, F.; D'Avanzo, P.; Da Vela, P.; Dadina, M.; Dai, S.; Dalchenko, M.; Dall'Ora, M.; Daniel, M. K.; Dauguet, J.; Davids, I.; Davies, J.; Dawson, B.; De Angelis, A.; de Araujo Carvalho, A. E.; de Bony de Lavergne, M.; De Cesare, G.; de Frondat, F.; de la Calle, I.; de Gouveia Dal Pino, E.; De Lotto, B.; De Luca, A.; De Martino, D.; de Naurois, M.; de Ona Wilhelmi, E.; De Palma Persio, F.; De Simone, N.; de Souza Valle, V.; Delagnes, E.; Deleglise Reznicek, G.; Delgado, C.; Delgado Giler, A. G.; Delgado Mengual Valle, J.; della Volpe, D.; Depaoli, D.; Devin, J.; Di Girolamo, T.; Di Giulio Pierro, C.; Di Venere, L.; Díaz, C.; Dib, C.; Diebold, S.; Digel, S.; Djannati Atai, A.; Djuvsland, J.; Dmytriiev, A.; Docher, K.; Domínguez, A.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; dos Anjos, R. d. C.; Dournaux, J. L.; Downes, T.; Drake, G.; Drass, H.; Dravins, D.; Duangchan, C.; Duara, A.; Dubus, G.; Ducci, L.; Duffy, C.; Dumora, D.; Dundas Mora, K.; Durkalec, A.; Dwarkadas, V. V.; Ebr, J.; Eckner, C.; Eder, J.; Edy, E.; Egberts, K.; Einecke, S.; Eleftheriadis, C.; Elsässer, D.; Emery, G.; Emmanoulopoulos, D.; Ernenwein, J. P.; Errando, M.; Escarate, P.; Escudero, J.; Espinoza, C.; Ettori, S.; Eungwanichayapant, A.; Evans, P.; Evoli, C.; Fairbairn, M.; Falceta Goncalves, D.; Falcone, A.; Fallah Ramazanı, V.; Falomo, R.; Farakos, K.; Fasola, G.; Fattorini, A.; Favre, Y.; Fedora, R.; Fedorova, E.; Feijen, K.; Feng, Q.; Ferrand, G.; Ferrara, G.; Ferreira, O.; Fesquet, M.; Fiandrini, E.; Fiasson, A.; Filipovic, M.; Fink, D.; Finley, J. P.; Fioretti, V.; Fiorillo, D. F. G.; Fiorini, M.; Flis, S.; Flores, H.; Foffano, L.; Fohr, C.; Fonseca, M. V.; Font, L.; Fontaine, G.; Fornieri, O.; Fortin, P.; Fortson, L.; Fouque, N.; Fraga, B.; Franceschini, A.; Franco, F. J.; Freixas Coromina, L.; Fresnillo, L.; Fugazza, D.; Fujita, Y.; Fukami, S.; Fukazawa, Y.; Fulla, D.; Funk, S.; Furniss, A.; Gabici, S.; Gaggero, D.; Galanti, G.; Galdemard, P.; Gallant, Y. A.; Galloway, D.; Gallozzi, S.; Gammaldi, V.; Garcia, R.; Garcia, E.; Garcia Lopez, E.; Gargano, F.; Gargano, C.; Garozzo, S.; Gascon, D.; Gasparetto, T.; Gasparrini, D.; Gasparyan, H.; Gaug, M.; Geffroy, N.; Gent, A.; Germani, S.; Ghalumyan, A.; Ghedina, A.; Ghirlanda, G.; Gianotti, F.; Giarrusso, S.; Giarrusso, M.; Giavitto, G.; Giebels, B.; Giglietto, N.; Gika, V.; Gillardo, F.; Gimenes, R.; Giordano, F.; Giro, E.; Giroletti, M.; Giuliani, A.; Gjaja, M.; Glicenstein, J. F.; Gliwny, P.; Goksu, H.; Goldoni, P.; Gomez, J. L.; Gonzalez, M. M.; Gonzalez, J. M.; Gothe, K. S.; Gotz Coelho, D.; Grabarczyk, T.; Graciani, R.; Grandi, P.; Grasseau, G.; Grasso, D.; Green, D.; Green, J.; Greenshaw, T.; Grespan, P.; Grillo, A.; Grondin, M. H.; Grube, J.; Guarino, V.; Guest, B.; Gueta, O.; Günduz, M.; Gunji, S.; Gyuk, G.; Hackfeld, J.; Hadasch, D.; Hagge, L.; Hahn, A.; Hajlaoui, J. E.; Halim, A.; Hamal, P.; Hanlon, W.; Harada, Y.; Hardcastle, M. J.; Collado, M. Harvey; Haubold, T.; Haupt, A.; Havelka, M.; Hayashi, K.; Hayashi, K.; Hayashida, M.; He, H.; Heckmann, L.; Heller, M.; Henault, F.; Henri, G.; Hermann, G.; Hernández Cadena, S.; Herrera Llorente, J.; Hervet, O.; Hinton, J.; Hiramatsu, A.; Hirotani, K.; Hnatyk, B.; Hnatyk, R.; Hoang, J. K.; Hoffmann, D. H. H.; Hoischen, C.; Holder, J.; Holler, M.; Hona, B.; Horan, D.; Horns, D.; Horvath, P.; Houles, J.; Hrabovsky, M.; Hrupec, D.; Huang, Y.; Huet, J. M.; Hughes, G.; Hull, G.; Humensky, T. B.; Hütten, M.; Iarlori, M.; Illa, J. M.; Imazawa, R.; Inada, T.; Incardona, F.; Ingallinera, A.; Inoue, S.; Inoue, T.; Inoue, Y.; Iocco, F.; Ioka, K.; Ionica, M.; Iovenitti, S.; Iriarte, A.; Ishio, K.; Ishizaki, W.; Iwamura, Y.; Jacquemier, J.; Jacquemont, M.; Jamrozy, M.; Janecek, P.; Jankowsky, F.; JardinBlicq, A.; Jarnot, C.; Martínez, P. Jean; Jocou, L.; Jordana, N.; Josselin, M.; JungRichardt, I.; Junqueira, F. J. P. A.; Juramy Gilles, C.; Kaaret, P.; Kadowaki, L. H. S.; Kagaya, M.; Kankanyan, R.; Kantzas, D.; Karas, V.; Karastergiou, A.; Karkar, S.; Kasperek, J.; Katagiri, H.; Kataoka, J.; Katarzynski, K.; Katsuda, S.; Kawanaka, N.; Kazanas, D.; Kerszberg, D.; Khélifi, B.; Kherlakian, M. C.; Kian, T. P.; Kieda, D. B.; Kihm, T.; Kim, S.; Kisaka, S.; Kissmann, R.; Kleijwegt, R.; Kluge, G.; Kluźniak, W.; Knapp, J.; Kobakhidze, A.; Kobayashi, Y.; Koch, B.; Kocot, J.; Kohri, K.; Komin, N.; Kong, A.; Kosack, K.; Krack, F.; Krause, M.; Krennrich, F.; Kubo, H.; Kudryavtsev, V. N.; Kunwar, S.; Kushida, J.; Kushwaha, P.; Parola, B.; La Rosa, G.; Lahmann, R.; Lamastra, A.; Landoni, M.; Landriu, D.; Lang, R. G.; Lapington, J.; Laporte, P.; Lason, P.; Lasuik, J.; Lazendic Galloway, J.; Le Flour, T.; Le Sidaner, P.; Leach, S.; Lee, S. H.; Lee, W. H.; Oliveira, S. Lee; Lemiere, A.; Lemoine Goumard, M.; Lenain, J. P.; Leone, F.; Leray, V.; Leto, G.; Leuschner, F.; Lindemann, R.; Lindfors, E.; Linhoff, L.; Liodakis, I.; Lipniacka, A.; Lobo, M.; Lohse, T.; Lombardi, S.; Lopez, A.; Lopez, M.; Lopez Coto, R.; Louis, F.; Louys, M.; Lucarelli, F.; Boudi, H. Ludwig; Luque Escamilla, P. L.; Maccarone, M. C.; Mach, E.; Maciejewski, A. J.; Mackey, J.; Maeght, P.; Maggio, C.; Maier, G.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Malta Nunes de Almeida, R.; Malyshev, D.; Malyshev, D.; Mandat, D.; Maneva, G.; Manganaro, M.; Manigot, P.; Mannheim, K.; Maragos, N.; Marano, D.; Marconi, M.; Marcowith, A.; Marculewicz, M.; Marcun, B.; Marin, J.; Marinello, N.; Marinos, P.; Markoff, S.; Marquez, P.; Marsella, G.; Martin, J. M.; Martin, P. G.; Martinez, M.; Martinez, G.; Martinez, O.; Martinez Huerta, H.; Marty, C.; Marx, R.; Masetti, N.; Massimino, P.; Matsumoto, H.; Matthews, N.; Maurin, G.; Moerbeck, W. Max; Maxted, N.; Mazziotta, M. N.; Mazzola, S. M.; Mbarubucyeye, J. D.; Mc Comb, L.; McHardy, I.; McKeague, S.; McMuldroch, S.; Medina, E.; Medina Miranda, D.; Melandri, A.; Melioli, C.; Melkumyan, D.; Menchiari, S.; Mereghetti, S.; Merino Arevalo, G.; Mestre, E.; Meunier, J. L.; Meures, T.; Micanovic, S.; Miceli, M.; Michailidis, M.; Michalowski, J.; Miener, T.; Mievre, I.; Miller, J. D.; Mineo, T.; Minev, M.; Miranda, J. M.; Mitchell, A.; Mizuno, T.; Mode, B. A.; Moderski, R.; Mohrmann, L.; Molinari, E.; Montaruli, T.; Monteiro, I.; Moore, C.; Moralejo, A.; Morcuende Parrilla, D.; Moretti, E.; Mori, K.; Moriarty, P.; Morik, K.; Morris, P.; Morselli, A.; Mosshammer, K.; Mukherjee, R.; Muller, J.; Mundell, C.; Mundet, J.; Murach, T.; Muraczewski, A.; Muraishi, H.; Musella, I.; Musumarra, A.; Nagai, A.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakashima, K.; Nakayama, K.; Nakhjiri, N.; Naletto, G.; Naumann, D.; Nava, L.; Nawaz, M. A.; Ndiyavala, H.; Neise, D.; Nellen, L.; Nemmen, R.; Neyroud, N.; Ngernphat, K.; Nguyen Trung, T.; Nicastro, L.; Nickel, L.; Niemiec, J.; Nieto, D.; Nigro, C.; Nikołajuk, M.; Ninci, D.; Noda, K.; Nogami, Y.; Nolan, S.; Norris, R. P.; Nosek, D.; Nöthe, M.; Novotny, V.; Nozaki, S.; Nunio, F.; O'Brien, P.; Obara, K.; Ohira, Y.; Ohishi, M.; Ohm, S.; Oka, T.; Okazaki, N.; Okumura, A.; Oliver, C.; Olivera, G.; Olmi, B.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, E.; Osborne, J. P.; Ostrowski, M.; Otte, N.; Ovcharov, E.; Owen, E.; Oya, I.; Ozieblo, A.; Padovani, M.; Pagliaro, A.; Paizis, A.; Palatiello, M.; Palatka, M.; Palazzi, E.; Panazol, J. L.; Paneque, D.; Panny, S.; Pantaleo, F. R.; Panter, M.; Paolillo, M.; Papitto, A.; Paravac, A.; Paredes, J. M.; Pareschi, G.; Parmiggiani, N.; Parsons, R. D.; Paśko, P.; Patel, S. R.; Patricelli, B.; Pavletic, L.; Pavy, S.; Peer, A.; Pecimotika, M.; Pellegriti, M. G.; Peñil Del Campo, P.; Pepato, A.; Perard, S.; Perennes, C.; Peresano, M.; Perez Aguilera, A.; Perez Romero, J.; Perez Torres, M. A.; Persic, M.; Petrucci, P. O.; Petruk, O.; Peyaud, B.; Pfrang, K.; Pian, E.; Piatteli, P.; Pietropaolo, E.; Pillera, R.; Pimentel, D.; Pintore, F.; Garcia, C. Pio; Pirola, G.; Piron, F.; Pita, S.; Pohl, M.; Poireau, V.; Pollo, A.; Polo, M.; Pongkitivanichkul, C.; Porthault, J.; Powell, J.; Pozo, D.; Prado, R. R.; Prandini, E.; Prast, J.; Pressard, K.; Principe, G.; Produit, N.; Prokhorov, D.; Prokoph, H.; Przybilski, H.; Pueschel, E.; Pühlhofer, G.; Puljak, I.; Pumo, M. L.; Punch, M.; Queiroz, F.; Quinn, J.; Quirrenbach, A.; Rajda, P. J.; Rando, R.; Razzaque, S.; Recchia, S.; Reichherzer, P.; Reimer, O.; Reisenegger, A.; Remy, Q.; Renaud, M.; Reposeur, T.; Reville, B.; Reymond, J. M.; Reynolds, J.; Ribeiro, D.; Ribo, M.; Richards, G.; Rico, J.; Rieger, F.; Riitano, L.; Riquelme, M.; Riquelme, D.; Rivoire, S.; Rizi, V.; Roache, E.; Roche, M.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodriguez Ramirez, J. C.; Rodriguez Vazquez, J. J.; Rojas, G.; Romano, P.; Romeo Lobato, G.; Romoli, C.; Roncadelli, M.; Rosado, J.; Rosales de Leon, A.; Rowell, G.; Rugliancich, A.; Ruiz del Mazo, J. E.; Rulten, C.; Russell, C.; Russo Hatlen, F.; Safi Harb, S.; Saha, L.; Sahakian, V.; Sailer, S.; Saito, T.; Sakaki, N.; Sakurai, S.; Salina, G.; Salzmann, H.; Sanchez, D.; Sandaker, H.; Sandoval, A.; Sangiorgi, P.; Sanguillon, M.; Sano, H.; Santander, M.; Santangelo, A.; Santos Lima, R.; Sanuy, A.; Sapozhnikov, L.; Saric, T.; Sarkar, S.; Sasaki, H.; Sasaki, N.; Sato, Y.; Saturni, F. G.; Sawada, M.; Schaefer, J.; Scherer, A.; Scherpenberg, J.; Schipani, P.; Schleicher, B.; Schmoll, J.; Schneider, M.; Schoorlemmer, H.; Schovanek, P.; Schussler, F.; Schwab, B.; Schwanke, U.; Schwarz, J.; Sciacca, E.; Scuderi, S.; Seglar Arroyo, M.; Seitenzahl, I.; Semikoz, D.; Sergijenko, O.; Serna Franco, J. E.; Seweryn, K.; Sguera, V.; Shalchi, A.; Shang, R. Y.; Sharma, P.; Sidoli, L.; Sieiro, J.; Siejkowski, H.; Sillanpaa, A.; Singh, B. B.; Singh, K. K.; Sinha, A.; Siqueira, C.; Sitarek, J.; Sizun, P.; Sliusar, V.; Sobczynska, D.; Sobrinho, R. W.; Sol, H.; Sottile, G.; Spackman, H.; Spencer, S.; Spengler, G.; Spiga, D.; Springer, W.; Stamerra, A.; Stanic, S.; Starling, R.; Stawarz, Ł.; Stefanik, S.; Stegmann, C.; Steiner, A.; Steinmassl, S.; Stella, C.; Sternberger, R.; Sterzel, M.; Stevens, C.; Stevenson, B.; Stolarczyk, T.; Stratta, G.; Straumann, U.; Striskovic, J.; Strzys, M.; Stuik, R.; Suchenek, M.; Sunada, Y.; Suomijarvi, T.; Suric, T.; Suzuki, H.; Swierk, P.; Szepieniec, T.; Tachihara, K.; Tagliaferri, G.; Tajima, H.; Tajima, N.; Tak, D.; Takahashi, H.; Takahashi, M.; Takata, J.; Takeishi, R.; Tam, T.; Tanaka, M.; Tanaka, T.; Tanaka, S.; Tavani, M.; Tavecchio, F.; Tavernier, T.; Taylor, A. R.; Tejedor, L. A.; Temnikov, P.; Terauchi, K.; Terrazas, J. C.; Terrier, R.; Terzic, T.; Teshima, M.; Thibaut, D.; Thocquenne, F.; Tian, W.; Tibaldo, L.; Tiengo, A.; Tluczykont, M.; Todero Peixoto, C. J.; Toma, K.; Tomankova, L.; Tomastik, J.; Tornikoski, M.; Torres, D. F.; Torresi, E.; Tosti, G.; Tosti, L.; Tothill, N.; Toussenel, F.; Tovmassian, G.; Trichard, C.; Trifoglio, M.; Trois, A.; Truzzi, S.; Tsiahina, A.; Turk, B.; Tutone, A.; Uchiyama, Y.; Utayarat, P.; Vaclavek, L.; Vacula, M.; Vagelli, V.; Vagnetti, F.; Valdivia, J. A.; Valentino, M.; Valio, A.; Vallage, B.; Vallania Quispe, P.; van den Berg, A. M.; van Driel, W.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vandenbroucke, J.; Vasileiadis, G.; Vassiliev, V.; Vazquez Acosta, M.; Vecchi, M.; Vega, A.; Veh, J.; Veitch, P.; Venter, C.; Ventura, S.; Vercellone, S.; Verguilov, V.; Verna, G.; Vernetto, S.; Verzi, V.; Vettolani, G. P.; Veyssiere, C.; Viale, I.; Viana, A.; Viaux, N.; Vignatti, J.; Vigorito, C. F.; Villanueva, J.; Vitale, V.; Vittorini, V.; Vodeb, V.; Vogel, N.; Voisin, V.; Vorobiov, S.; Vrastil, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wakazono, K.; Wakely, S. P.; Ward, M.; Warren, D.; Watson, J.; Wechakama, M.; Wegner, P.; Weinstein, A.; Weniger, C.; Werner, F.; Wetteskind, H.; White, M. L.; Wierzcholska, A.; Wiesand, S.; Wijers, R.; Wilkinson, M.; Will, M.; Williams, J.; Williamson, T. J.; Wolter, A.; Wong, Y. W.; Wood, M.; Yamamoto, T.; Yamamoto, H.; Yamane, Y.; Yamazaki, R.; Yanagita, S.; Yang, L.; Yoo, S.; Yoshida, T.; Yoshikoshi, T.; Yu, P.; Yusafzai, A.; Zacharias, M.; Zaldivar, B.; Zampieri, L.; Zanin, R.; Zanmar Sanchez, R.; Zaric, D.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A.; Zech, A.; Zechlin, H.; Zenin, A.; Zerwekh, A.; Ziętara, K.; Zink, A.; Ziolkowski, J.; Zivec, M.; Zmija, A. Bibcode: 2022icrc.confE...5Z Altcode: 2022PoS...395E...5Z No abstract at ADS Title: Science verification of the new FlashCam-based camera in the 28m telescope of H.E.S.S. Authors: Puehlhofer, G.; Bernlöhr, K.; Bi, B.; Hermann, G.; Hinton, J.; Jung-Richardt, I.; Leuschner, F.; Marandon, V.; Mitchell, A.; Mohrmann, L.; Parsons, D.; Sailer, S.; Salzmann, H.; Steinmassl, S.; Werner, F.; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hörbe, M.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Moderski, R.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schüssler, F.; Schutte, H.; Schwanke, U.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.764P Altcode: 2022PoS...395E.764P; 2021arXiv210802596P In October 2019 the central 28m telescope of the H.E.S.S. experiment has been upgraded with a new camera. The camera is based on the FlashCam design which has been developed in view of a possible future implementation in the medium-sized telescopes of the Cherenkov Telescope Array (CTA). We report here on the results of the science verification program that has been performed after commissioning of the new camera, to show that the camera and software pipelines are working up to expectations. Title: Search for dark matter annihilation towards the inner Milky Way halo with the H.E.S.S. Inner Galaxy Survey Authors: Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.511H Altcode: 2022PoS...395E.511H No abstract at ADS Title: Evidence of 100 TeV γ-ray emission from HESS J1702-420: A new PeVatron candidate Authors: Giunti, L.; Khelifi, B.; Kosack, K.; Terrier, R.; H. E. S. S. Collaboration; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.793G Altcode: 2022PoS...395E.793G; 2021arXiv210802989G The identification of active PeVatrons, hadronic particle accelerators reaching the knee of the cosmic-ray spectrum (at the energy of few PeV), is crucial to understand the origin of cosmic rays in the Galaxy. In this context, we report on new H.E.S.S. observations of the PeVatron candidate HESS J1702-420, which reveal the presence of gamma-rays up to 100 TeV. This is the first time in the history of H.E.S.S. that photons with such high energy are clearly detected. Remarkably, the new deep observations allowed the discovery of a new gamma-ray source component, called HESS J1702-420A, that was previously hidden under the bulk emission traditionally associated with HESSJ1702-420. This new object has a power-law spectral slope < 2 and a gamma-ray spectrum that, extending with no sign of curvature up to 100 TeV, makes it an excellent candidate site for the presence of PeV-energy cosmic rays. This discovery brings new information to the ongoing debate on the nature of the unidentified source HESSJ1702-420, one of the most compelling PeVatron candidates in the gamma-ray sky, and on the origin of Galactic cosmic rays. Title: Is PKS 0625-354 another variable TeV active galactic nucleus? Authors: H. E. S. S. Collaboration; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zhu, S.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2022icrc.confE.814H Altcode: 2022PoS...395E.814H No abstract at ADS Title: H.E.S.S. follow-up of BBH merger events Authors: Seglar Arroyo, M.; Hess; Abdalla, H.; Aharonian, F.; Ait-Benkhali, F.; Anguener, O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernloehr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bony (de), M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T. B.; Chen, A.; Cotter, G.; Curlo, M.; Dalgleish, H.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Frans, L.; Fuessling, M.; Funk, S.; Gabici, S.; Gallant, Y.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J.; Hofmann, W.; Hoischen, C.; Holch, T.; Holler, M.; Horns, D.; Huang, Z.; Huber, D.; Hörbe, M.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung, I.; Kasai, E.; Katarzynski, K.; Katz, U.; Khangulyan, D.; Khelifi, B.; Klepser, S.; Kluzniak, W.; Komin, N.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Marti'i-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Naurois (de), M.; Nayerhoda, A.; Davids, H.; Niemiec, J.; Noel, A.; O'Brien, P.; Oberholzer, L. L.; Ohm, S.; Olivera-Nieto, L.; Ona-Wilhelmi (de), E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D.; Santangelo, A.; Sasaki, M.; Schaefer, J.; Schutte, H.; Schwanke, U.; Schüssler, F.; Senniappan, M.; Seyffert, A.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S. T.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A.; Terrier, R.; Thiersen, H.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S.; Watson, J. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Y. W.; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A.; Zech, A.; Zmija, A.; Zouari, S.; Żywucka, N.; Zhu, S. Bibcode: 2022icrc.confE.943S Altcode: 2022PoS...395E.943S No abstract at ADS Title: LMC N132D: A mature supernova remnant with a power-law gamma-ray spectrum extending beyond 8 TeV Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Batzofin, R.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bony de Lavergne, M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Catalano, J.; Chambery, P.; Chand, T.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Ernenwein, J. -P.; Fegan, S.; Feijen, K.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Lott, F.; Füßling, M.; Funk, S.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. -H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huang, Zhiqiu; Huber, D.; Jamrozy, M.; Jankowsky, F.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; de Naurois, M.; Nayerhoda, A.; Ndiyavala, H.; Niemiec, J.; Priyana Noel, A.; O'Brien, P.; Oberholzer, L.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, R. D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schäfer, J.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Senniappan, M.; Seyffert, A. S.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Sun, L.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Thiersen, J. H. E.; Thorpe-Morgan, C.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zmija, A.; Zouari, S.; Żywucka, N. Bibcode: 2021A&A...655A...7H Altcode: 2021arXiv210802015H Context. Supernova remnants (SNRs) are commonly thought to be the dominant sources of Galactic cosmic rays up to the knee of the cosmic-ray spectrum at a few PeV. Imaging Atmospheric Cherenkov Telescopes have revealed young SNRs as very-high-energy (VHE, >100 GeV) gamma-ray sources, but for only a few SNRs the hadronic cosmic-ray origin of their gamma-ray emission is indisputably established. In all these cases, the gamma-ray spectra exhibit a spectral cutoff at energies much below 100 TeV and thus do not reach the PeVatron regime.
Aims: The aim of this work was to achieve a firm detection for the oxygen-rich SNR LMC N132D in the VHE gamma-ray domain with an extended set of data, and to clarify the spectral characteristics and the localization of the gamma-ray emission from this exceptionally powerful gamma-ray-emitting SNR.
Methods: We analyzed 252 h of High Energy Stereoscopic System (H.E.S.S.) observations towards SNR N132D that were accumulated between December 2004 and March 2016 during a deep survey of the Large Magellanic Cloud, adding 104 h of observations to the previously published data set to ensure a > 5σ detection. To broaden the gamma-ray spectral coverage required for modeling the spectral energy distribution, an analysis of Fermi-LAT Pass 8 data was also included.
Results: We unambiguously detect N132D at VHE with a significance of 5.7σ. We report the results of a detailed analysis of its spectrum and localization based on the extended H.E.S.S. data set. The joint analysis of the extended H.E.S.S and Fermi-LAT data results in a spectral energy distribution in the energy range from 1.7 GeV to 14.8 TeV, which suggests a high luminosity of N132D at GeV and TeV energies. We set a lower limit on a gamma-ray cutoff energy of 8 TeV with a confidence level of 95%. The new gamma-ray spectrum as well as multiwavelength observations of N132D when compared to physical models suggests a hadronic origin of the VHE gamma-ray emission.
Conclusions: SNR N132D is a VHE gamma-ray source that shows a spectrum extending to the VHE domain without a spectral cutoff at a few TeV, unlike the younger oxygen-rich SNR Cassiopeia A. The gamma-ray emission is best explained by a dominant hadronic component formed by diffusive shock acceleration. The gamma-ray properties of N132D may be affected by an interaction with a nearby molecular cloud that partially lies inside the 95% confidence region of the source position. Title: Searching for TeV Gamma-Ray Emission from SGR 1935+2154 during Its 2020 X-Ray and Radio Bursting Phase Authors: Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bony de Lavergne, M.; Breuhaus, M.; Brose, R.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Carosi, A.; Casanova, S.; Chambery, P.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Duffy, C.; Du Plessis, L.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Ghafourizade, S.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hattingh, S.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huang, Z.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Le Stum, S.; Leuschner, F.; Levy, C.; Lohse, T.; Luashvili, A.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Reville, B.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schäfer, J.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Spackman, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Thiersen, J. H. E.; Thorpe-Morgan, C.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; deWilt, P.; Wong, Yu Wun; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zorn, J.; Zouari, S.; Żywucka, N.; H. E. S. S. Collaboration Bibcode: 2021ApJ...919..106A Altcode: 2021arXiv211000636H Magnetar hyperflares are the most plausible explanation for fast radio bursts (FRBs)-enigmatic powerful radio pulses with durations of several milliseconds and high brightness temperatures. The first observational evidence for this scenario was obtained in 2020 April when an FRB was detected from the direction of the Galactic magnetar and soft gamma-ray repeater SGR 1935+2154. The FRB was preceded by two gamma-ray outburst alerts by the BAT instrument aboard the Swift satellite, which triggered follow-up observations by the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observed SGR 1935+2154 for 2 hr on 2020 April 28. The observations are coincident with X-ray bursts from the magnetar detected by INTEGRAL and Fermi-GBM, thus providing the first very high energy gamma-ray observations of a magnetar in a flaring state. High-quality data acquired during these follow-up observations allow us to perform a search for short-time transients. No significant signal at energies E > 0.6 TeV is found, and upper limits on the persistent and transient emission are derived. We here present the analysis of these observations and discuss the obtained results and prospects of the H.E.S.S. follow-up program for soft gamma-ray repeaters. Title: Search for Dark Matter Annihilation Signals from Unidentified Fermi-LAT Objects with H.E.S.S. Authors: Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa-Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bony de Lavergne, M.; Breuhaus, M.; Brose, R.; Brun, F.; Bulik, T.; Bylund, T.; Cangemi, F.; Caroff, S.; Casanova, S.; Chambery, P.; Catalano, J.; Chand, T.; Chen, A.; Cotter, G.; Curyło, M.; Dalgleish, H.; Mbarubucyeye, J. Damascene; Davids, I. D.; Davies, J.; Devin, J.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; du Plessis, L.; Duffy, C.; Egberts, K.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; de Clairfontaine, G. Fichet; Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Ghafourizade, S.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. -H.; Hattingh, S.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huang, Z.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Kukec Mezek, G.; Kundu, A.; Lamanna, G.; Le Stum, S.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leuschner, F.; Levy, C.; Luashvili, A.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niemiec, J.; Noel, A.; Oberholzer, L.; O'Brien, P.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Panny, S.; Parsons, R. D.; Peron, G.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rueda Ricarte, H.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schäfer, J.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Senniappan, M.; Seyffert, A. S.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Spackman, H.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tanaka, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Thorpe-Morgan, C.; Thiersen, J. H. E.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tsuji, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Viana, A.; Vink, J.; Völk, H. J.; Wagner, S. J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yassin, H.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zmija, A.; Zorn, J.; Zouari, S.; Żywucka, N.; H. E. S. S. Collaboration Bibcode: 2021ApJ...918...17A Altcode: 2021arXiv210600551H Cosmological N-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter (DM) subhalos. These subhalos could shine in gamma-rays and eventually be detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-Large Area Telescope Objects (UFOs) to identify them as possible tera-electron-volt-scale DM subhalo candidates. We search for very-high-energy (E ≳ 100 GeV) gamma-ray emissions using H.E.S.S. observations toward four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any data set of the four observed UFOs or in the combined UFO data set, strong constraints are derived on the product of the velocity-weighted annihilation cross section ⟨σv⟩ by the J factor for the DM models. The 95% confidence level observed upper limits derived from combined H.E.S.S. observations reach ⟨σv⟩J values of 3.7 × 10-5 and 8.1 × 10-6 GeV2 cm-2 s-1 in the W+W- and τ+τ- channels, respectively, for a 1 TeV DM mass. Focusing on thermal weakly interacting massive particles, the H.E.S.S. constraints restrict the J factors to lie in the range 6.1 × 1019-2.0 × 1021 GeV2 cm-5 and the masses to lie between 0.2 and 6 TeV in the W+W- channel. For the τ+τ- channel, the J factors lie in the range 7.0 × 1019-7.1 × 1020 GeV2 cm-5 and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the J-factor distribution for Milky Way-sized galaxies, the DM models with masses >0.3 TeV for the UFO emissions can be ruled out at high confidence level. Title: Evidence of 100 TeV γ-ray emission from HESS J1702-420: A new PeVatron candidate Authors: Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bony de Lavergne, M.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Duffy, C.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leuschner, F.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schäfer, J.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Thiersen, J. H. E.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wun Wong, Yu; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zorn, J.; Zouari, S.; Żywucka, N. Bibcode: 2021A&A...653A.152A Altcode: 2021arXiv210606405G; 2021arXiv210606405A
Aims: The identification of PeVatrons, hadronic particle accelerators reaching the knee of the cosmic ray spectrum (few × 1015 eV), is crucial to understand the origin of cosmic rays in the Galaxy. We provide an update on the unidentified source HESS J1702-420, a promising PeVatron candidate.
Methods: We present new observations of HESS J1702-420 made with the High Energy Stereoscopic System (H.E.S.S.), and processed using improved analysis techniques. The analysis configuration was optimized to enhance the collection area at the highest energies. We applied a three-dimensional likelihood analysis to model the source region and adjust non thermal radiative spectral models to the γ-ray data. We also analyzed archival Fermi Large Area Telescope data to constrain the source spectrum at γ-ray energies > 10 GeV.
Results: We report the detection of γ-rays up to 100 TeV from a specific region of HESS J1702-420, which is well described by a new source component called HESS J1702-420A that was separated from the bulk of TeV emission at a 5.4σ confidence level. The power law γ-ray spectrum of HESS J1702-420A extends with an index of Γ = 1.53 ± 0.19stat ± 0.20sys and without curvature up to the energy band 64−113 TeV, in which it was detected by H.E.S.S. at a 4.0σ confidence level. This makes HESS J1702-420A a compelling candidate site for the presence of extremely high energy cosmic rays. With a flux above 2 TeV of (2.08 ± 0.49stat ± 0.62sys) × 10−13 cm−2 s−1 and a radius of (0.06 ± 0.02stat ± 0.03sys)°, HESS J1702-420A is outshone - below a few tens of TeV - by the companion HESS J1702-420B. The latter has a steep spectral index of Γ = 2.62 ± 0.10stat ± 0.20sys and an elongated shape, and it accounts for most of the low-energy HESS J1702-420 flux. Simple hadronic and leptonic emission models can be well adjusted to the spectra of both components. Remarkably, in a hadronic scenario, the cut-off energy of the particle distribution powering HESS J1702-420A is found to be higher than 0.5 PeV at a 95% confidence level.
Conclusions: For the first time, H.E.S.S. resolved two components with significantly different morphologies and spectral indices, both detected at > 5σ confidence level, whose combined emissions result in the source HESS J1702-420. We detected HESS J1702-420A at a 4.0σ confidence level in the energy band 64−113 TeV, which brings evidence for the source emission up to 100 TeV. In a hadronic emission scenario, the hard γ-ray spectrum of HESS J1702-420A implies that the source likely harbors PeV protons, thus becoming one of the most solid PeVatron candidates detected so far in H.E.S.S. data. However, a leptonic origin of the observed TeV emission cannot be ruled out either. Title: TeV Emission of Galactic Plane Sources with HAWC and H.E.S.S. Authors: Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bonyde Lavergne, M.; Breuhaus, M.; Brose, R.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Duffy, C.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leuschner, F.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Panny, S.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schäfer, J.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Thiersen, J. H. E.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zmija, A.; Zorn, J.; Zouari, S.; Żywucka, N.; Albert, A.; Alfaro, R.; Alvarez, C.; Arteaga-Velézquez, J. C.; Arunbabu, K. P.; Avila Rojas, D.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De la Fuente, E.; de León, C.; Diaz Hernandez, R.; Díaz-Vélez, J. C.; Dingus, B. L.; DuVernois, M. A.; Durocher, M.; Ellsworth, R. W.; Engel, K.; Espinoza, C.; Fan, K. L.; Fernández Alonso, M.; Fraija, N.; Galván-Gámez, A.; Garcia, D.; García-González, J. A.; Garfias, F.; Giacinti, G.; González, M. M.; Goodman, J. A.; Harding, J. P.; Hernandez, S.; Hona, B.; Huang, D.; Hueyotl-Zahuantitla, F.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kieda, D.; Lee, W. H.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis-Raya, G.; López-Coto, R.; Malone, K.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Matthews, J. A.; Miranda-Romagnoli, P.; Morales-Soto, J. A.; Moreno, E.; Mostafá, M.; Nayerhoda, A.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Omodei, N.; Peisker, A.; Pérez Araujo, Y.; Pérez-Pérez, E. G.; Rho, C. D.; Rosa-González, D.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Serna-Franco, J.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Tollefson, K.; Torres, I.; Torres-Escobedo, R.; Turner, R.; Ureña-Mena, F.; Villaseñor, L.; Weisgarber, T.; Willox, E.; Zhou, H.; HAWC Collaboration Bibcode: 2021ApJ...917....6A Altcode: 2021arXiv210701425A The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy γ-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the γ-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall γ-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the γ-ray sky between WCD and IACT techniques. Title: Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Bissaldi, E.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bony de Lavergne, M.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dreyer, L.; Duffy, C.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leuschner, F.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panny, S.; Panter, M.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Salzmann, H.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schäfer, J.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shapopi, J. N. S.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tam, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Thiersen, J. H. E.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zorn, J.; Zouari, S.; Żywucka, N.; Evans, P.; Page, K. Bibcode: 2021Sci...372.1081H Altcode: 2021arXiv210602510H Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic sources followed by fading afterglow emission, are associated with stellar core collapse events. We report the detection of very-high-energy (VHE) gamma rays from the afterglow of GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal and external absorption, allowing determination of its intrinsic energy spectrum. Between energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with photon index of 2.07 ± 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma-ray light curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray bands challenge GRB afterglow emission scenarios. Title: Search for dark matter annihilation in the Wolf-Lundmark-Melotte dwarf irregular galaxy with H.E.S.S. Authors: Abdallah, H.; Adam, R.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Martins, V. Barbosa; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Lavergne, M. de Bony; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Mbarubucyeye, J. Damascene; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Duffy, C.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; de Clairfontaine, G. Fichet; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martı-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; Wilhelmi, E. de Ona; Ostrowski, M.; Panter, M.; Panny, S.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Noel, A. Priyana; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S.; Zorn, J.; Zouari, S.; Zaywucka, N.; H. E. S. S. Collaboration Bibcode: 2021PhRvD.103j2002A Altcode: 2021arXiv210504325H We search for an indirect signal of dark matter through very high-energy γ rays from the Wolf-Lundmark-Melotte (WLM) dwarf irregular galaxy. The pair annihilation of dark matter particles would produce Standard Model particles in the final state such as γ rays, which might be detected by ground-based Cherenkov telescopes. Dwarf irregular galaxies represent promising targets as they are dark matter dominated objects with well-measured kinematics and small uncertainties on their dark matter distribution profiles. In 2018, the five-telescopes of the high energy stereoscopic system observed the dwarf irregular galaxy WLM for 18 hours. We present the first analysis based on data obtained from an imaging atmospheric Cherenkov telescope for this subclass of dwarf galaxy. As we do not observe any significant excess in the direction of WLM, we interpret the result in terms of constraints on the velocity-weighted cross section for dark matter pair annihilation ⟨σ v ⟩ as a function of the dark matter particle mass for various continuum channels, as well as the prompt γ γ emission. For the τ+τ- channel, the limits reach a ⟨σ v ⟩ value of about 4 ×10-22 cm3 s-1 for a dark matter particle mass of 1 TeV. For the prompt γ γ channel, the upper limit reaches a ⟨σ v ⟩ value of about 5 ×10-24 cm3 s-1 for a mass of 370 GeV. These limits represent an improvement of up to a factor 200, with respect to previous results for the dwarf irregular galaxies for TeV dark matter search. Title: Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign Authors: EHT MWL Science Working Group; Algaba, J. C.; Anczarski, J.; Asada, K.; Baloković, M.; Chandra, S.; Cui, Y. -Z.; Falcone, A. D.; Giroletti, M.; Goddi, C.; Hada, K.; Haggard, D.; Jorstad, S.; Kaur, A.; Kawashima, T.; Keating, G.; Kim, J. -Y.; Kino, M.; Komossa, S.; Kravchenko, E. V.; Krichbaum, T. P.; Lee, S. -S.; Lu, R. -S.; Lucchini, M.; Markoff, S.; Neilsen, J.; Nowak, M. A.; Park, J.; Principe, G.; Ramakrishnan, V.; Reynolds, M. T.; Sasada, M.; Savchenko, S. S.; Williamson, K. E.; Event Horizon Telescope Collaboration; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Anantua, Richard; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Barrett, John; Bintley, Dan; Benson, Bradford A.; Blackburn, Lindy; Blundell, Raymond; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Boyce, Hope; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broderick, Avery E.; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-Kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Chesler, Paul M.; Cho, Ilje; Christian, Pierre; Conway, John E.; Cordes, James M.; Crawford, Thomas M.; Crew, Geoffrey B.; Cruz-Osorio, Alejandro; Davelaar, Jordy; de Laurentis, Mariafelicia; Deane, Roger; Dempsey, Jessica; Desvignes, Gregory; Dexter, Jason; Doeleman, Sheperd S.; Eatough, Ralph P.; Falcke, Heino; Farah, Joseph; Fish, Vincent L.; Fomalont, Ed; Ford, H. Alyson; Fraga-Encinas, Raquel; Friberg, Per; Fromm, Christian M.; Fuentes, Antonio; Galison, Peter; Gammie, Charles F.; García, Roberto; Gentaz, Olivier; Georgiev, Boris; Gold, Roman; Gómez, José L.; Gómez-Ruiz, Arturo I.; Gu, Minfeng; Gurwell, Mark; Hecht, Michael H.; Hesper, Ronald; Ho, Luis C.; Ho, Paul; Honma, Mareki; Huang, Chih-Wei L.; Huang, Lei; Hughes, David H.; Ikeda, Shiro; Inoue, Makoto; Issaoun, Sara; James, David J.; Jannuzi, Buell T.; Janssen, Michael; Jeter, Britton; Jiang, Wu; Jiménez-Rosales, Alejandra; Johnson, Michael D.; Jung, Taehyun; Karami, Mansour; Karuppusamy, Ramesh; Kettenis, Mark; Kim, Dong-Jin; Kim, Jongsoo; Kim, Junhan; Koay, Jun Yi; Kofuji, Yutaro; Koch, Patrick M.; Koyama, Shoko; Kramer, Michael; Kramer, Carsten; Kuo, Cheng-Yu; Lauer, Tod R.; Levis, Aviad; Li, Yan-Rong; Li, Zhiyuan; Lindqvist, Michael; Lico, Rocco; Lindahl, Greg; Liu, Jun; Liu, Kuo; Liuzzo, Elisabetta; Lo, Wen-Ping; Lobanov, Andrei P.; Loinard, Laurent; Lonsdale, Colin; MacDonald, Nicholas R.; Mao, Jirong; Marchili, Nicola; Marrone, Daniel P.; Marscher, Alan P.; Martí-Vidal, Iván; Matsushita, Satoki; Matthews, Lynn D.; Medeiros, Lia; Menten, Karl M.; Mizuno, Izumi; Mizuno, Yosuke; Moran, James M.; Moriyama, Kotaro; Moscibrodzka, Monika; Müller, Cornelia; Musoke, Gibwa; Mejías, Alejandro Mus; Nagai, Hiroshi; Nagar, Neil M.; Nakamura, Masanori; Narayan, Ramesh; Narayanan, Gopal; Natarajan, Iniyan; Nathanail, Antonios; Neri, Roberto; Ni, Chunchong; Noutsos, Aristeidis; Okino, Hiroki; Olivares, Héctor; Ortiz-León, Gisela N.; Oyama, Tomoaki; Özel, Feryal; Palumbo, Daniel C. M.; Patel, Nimesh; Pen, Ue-Li; Pesce, Dominic W.; Piétu, Vincent; Plambeck, Richard; Popstefanija, Aleksandar; Porth, Oliver; Pötzl, Felix M.; Prather, Ben; Preciado-López, Jorge A.; Psaltis, Dimitrios; Pu, Hung-Yi; Rao, Ramprasad; Rawlings, Mark G.; Raymond, Alexander W.; Rezzolla, Luciano; Ricarte, Angelo; Ripperda, Bart; Roelofs, Freek; Rogers, Alan; Ros, Eduardo; Rose, Mel; Roshanineshat, Arash; Rottmann, Helge; Roy, Alan L.; Ruszczyk, Chet; Rygl, Kazi L. J.; Sánchez, Salvador; Sánchez-Arguelles, David; Savolainen, Tuomas; Schloerb, F. Peter; Schuster, Karl-Friedrich; Shao, Lijing; Shen, Zhiqiang; Small, Des; Sohn, Bong Won; Soohoo, Jason; Sun, He; Tazaki, Fumie; Tetarenko, Alexandra J.; Tiede, Paul; Tilanus, Remo P. J.; Titus, Michael; Toma, Kenji; Torne, Pablo; Trent, Tyler; Traianou, Efthalia; Trippe, Sascha; van Bemmel, Ilse; van Langevelde, Huib Jan; van Rossum, Daniel R.; Wagner, Jan; Ward-Thompson, Derek; Wardle, John; Weintroub, Jonathan; Wex, Norbert; Wharton, Robert; Wielgus, Maciek; Wong, George N.; Wu, Qingwen; Yoon, Doosoo; Young, André; Young, Ken; Younsi, Ziri; Yuan, Feng; Yuan, Ye-Fei; Zensus, J. Anton; Zhao, Guang-Yao; Zhao, Shan-Shan; Fermi Large Area Telescope Collaboration; Principe, G.; Giroletti, M.; D'Ammando, F.; Orienti, M.; H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Benkhali, F. Ait; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Lavergne, M. De Bony; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Duffy, C.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; de Clairfontaine, G. Fichet; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Panny, S.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Noel, A. Priyana; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zorn, J.; Zouari, S.; Żywucka, N.; MAGIC Collaboration; Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Engels, A. Arbet; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; de Almeida, U. Barres; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bellizzi, L.; Bernardini, E.; Bernardos, M.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bonnoli, G.; Bošnjak, Ž.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colak, S. M.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; Delfino, M.; Delgado, J.; Delgado Mendez, C.; Depaoli, D.; di Pierro, F.; di Venere, L.; Do Souto Espiñeira, E.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Ramazani, V. Fallah; Fattorini, A.; Ferrara, G.; Fonseca, M. V.; Font, L.; Fruck, C.; Fukami, S.; García López, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinović, N.; Green, J. G.; Green, D.; Hadasch, D.; Hahn, A.; Heckmann, L.; Herrera, J.; Hoang, J.; Hrupec, D.; Hütten, M.; Inada, T.; Inoue, S.; Ishio, K.; Iwamura, Y.; Jiménez, I.; Jormanainen, J.; Jouvin, L.; Kajiwara, Y.; Karjalainen, M.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Lombardi, S.; Longo, F.; López-Coto, R.; López-Moya, M.; López-Oramas, A.; Loporchio, S.; Machado de Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menchiari, S.; Mender, S.; Mićanović, S.; Miceli, D.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Neustroev, V.; Nigro, C.; Nilsson, K.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletić, L.; Peñil, P.; Perennes, C.; Persic, M.; Moroni, P. G. Prada; Prandini, E.; Priyadarshi, C.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saha, L.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Saturni, F. G.; Schleicher, B.; Schmidt, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strom, D.; Strzys, M.; Suda, Y.; Surić, T.; Takahashi, M.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Tosti, L.; Truzzi, S.; Tutone, A.; Ubach, S.; van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Wunderlich, C.; Zarić, D.; VERITAS Collaboration; Adams, C. B.; Benbow, W.; Brill, A.; Capasso, M.; Christiansen, J. L.; Chromey, A. J.; Daniel, M. K.; Errando, M.; Farrell, K. A.; Feng, Q.; Finley, J. P.; Fortson, L.; Furniss, A.; Gent, A.; Giuri, C.; Hassan, T.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Jin, W.; Kaaret, P.; Kertzman, M.; Kieda, D.; Kumar, S.; Lang, M. J.; Lundy, M.; Maier, G.; Moriarty, P.; Mukherjee, R.; Nieto, D.; Nievas-Rosillo, M.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Patel, S.; Pfrang, K.; Pohl, M.; Prado, R. R.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Ribeiro, D.; Richards, G. T.; Roache, E.; Rulten, C.; Ryan, J. L.; Santander, M.; Sembroski, G. H.; Shang, R.; Weinstein, A.; Williams, D. A.; Williamson, T. J.; Eavn Collaboration; Hirota, Tomoya; Cui, Lang; Niinuma, Kotaro; Ro, Hyunwook; Sakai, Nobuyuki; Sawada-Satoh, Satoko; Wajima, Kiyoaki; Wang, Na; Liu, Xiang; Yonekura, Yoshinori Bibcode: 2021ApJ...911L..11E Altcode: 2021arXiv210406855A In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109M. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded. Title: H.E.S.S. and MAGIC observations of a sudden cessation of a very-high-energy γ-ray flare in PKS 1510−089 in May 2016 Authors: H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; de Bony de Lavergne, M.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; Fichet de Clairfontaine, G.; Filipovic, M.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Panny, S.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu. W.; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zorn, J.; Zouari, S.; Żywucka, N.; MAGIC Collaboration; Acciari, V. A.; Ansoldi, S.; Antonelli, L. A.; Arbet Engels, A.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bellizzi, L.; Bernardini, E.; Berti, A.; Besenrieder, J.; Bhattacharyya, W.; Bigongiari, C.; Biland, A.; Blanch, O.; Bonnoli, G.; Bošnjak, Ž.; Busetto, G.; Carosi, R.; Ceribella, G.; Cerruti, M.; Chai, Y.; Chilingarian, A.; Cikota, S.; Colak, S. M.; Colin, U.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; D'Amico, G.; D'Elia, V.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; Delfino, M.; Delgado, J.; Depaoli, D.; di Pierro, F.; di Venere, L.; Do Souto Espiñeira, E.; Dominis Prester, D.; Donini, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Fallah Ramazani, V.; Fattorini, A.; Ferrara, G.; Foffano, L.; Fonseca, M. V.; Font, L.; Fruck, C.; Fukami, S.; García López, R. J.; Garczarczyk, M.; Gasparyan, S.; Gaug, M.; Giglietto, N.; Giordano, F.; Gliwny, P.; Godinović, N.; Green, D.; Hadasch, D.; Hahn, A.; Heckmann, L.; Herrera, J.; Hoang, J.; Hrupec, D.; Hütten, M.; Inada, T.; Inoue, S.; Ishio, K.; Iwamura, Y.; Jouvin, L.; Kajiwara, Y.; Karjalainen, M.; Kerszberg, D.; Kobayashi, Y.; Kubo, H.; Kushida, J.; Lamastra, A.; Lelas, D.; Leone, F.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Loporchio, S.; Machado de Oliveira Fraga, B.; Maggio, C.; Majumdar, P.; Makariev, M.; Mallamaci, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Mender, S.; Mićanović, S.; Miceli, D.; Miener, T.; Minev, M.; Miranda, J. M.; Mirzoyan, R.; Molina, E.; Moralejo, A.; Morcuende, D.; Moreno, V.; Moretti, E.; Munar-Adrover, P.; Neustroev, V.; Nigro, C.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nozaki, S.; Ohtani, Y.; Oka, T.; Otero-Santos, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Pavletić, L.; Peñil, P.; Perennes, C.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Priyadarshi, C.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Rugliancich, A.; Saha, L.; Sahakyan, N.; Saito, T.; Sakurai, S.; Satalecka, K.; Schleicher, B.; Schmidt, K.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Spolon, A.; Stamerra, A.; Strom, D.; Strzys, M.; Suda, Y.; Surić, T.; Takahashi, M.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Teshima, M.; Torres-Albà, N.; Tosti, L.; Truzzi, S.; van Scherpenberg, J.; Vanzo, G.; Vazquez Acosta, M.; Ventura, S.; Verguilov, V.; Vigorito, C. F.; Vitale, V.; Vovk, I.; Will, M.; Zarić, D.; Jorstad, S. G.; Marscher, A. P.; Boccardi, B.; Casadio, C.; Hodgson, J.; Kim, J. -Y.; Krichbaum, T. P.; Lähteenmäki, A.; Tornikoski, M.; Traianou, E.; Weaver, Z. R. Bibcode: 2021A&A...648A..23H Altcode: 2020arXiv201210254H The flat spectrum radio quasar (FSRQ) PKS 1510−089 is known for its complex multiwavelength behaviour and it is one of only a few FSRQs detected in very-high-energy (VHE, E > 100 GeV) γ rays. The VHE γ-ray observations with H.E.S.S. and MAGIC in late May and early June 2016 resulted in the detection of an unprecedented flare, which revealed, for the first time, VHE γ-ray intranight variability for this source. While a common variability timescale of 1.5 h has been found, there is a significant deviation near the end of the flare, with a timescale of ∼20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, a curvature was detected in the VHE γ-ray spectrum of PKS 1510-089, which can be fully explained by the absorption on the part of the extragalactic background light. Optical R-band observations with ATOM revealed a counterpart of the γ-ray flare, even though the detailed flux evolution differs from the VHE γ-ray light curve. Interestingly, a steep flux decrease was observed at the same time as the cessation of the VHE γ-ray flare. In the high-energy (HE, E > 100 MeV) γ-ray band, only a moderate flux increase was observed with Fermi-LAT, while the HE γ-ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the γ-ray spectrum indicates that the emission region is located outside of the BLR. Radio very-long-baseline interferometry observations reveal a fast-moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this is indeed a true correlation, the VHE γ rays must have been produced far down in the jet, where turbulent plasma crosses a standing shock. Title: A SmallSat to Study the Structure and Evolution of ExoJupiter Atmospheres (SEEJ) Authors: Wolk, S.; Moore, C.; Hong, J.; Romaine, S.; Moorhead, A.; Kaltenegger, L.; Wargelin, B.; Kashyap, V. Bibcode: 2021BAAS...53c1214W Altcode: The most important effects on an exoplanet atmosphere are driven by high-energy photons and particles from the host star, which heat and ionize the planetary atmosphere, potentially leading to its loss. The rarest, largest flares are disproportionately important. SEEJ will study the Structure and Evolution of ExoJupiter atmospheres with long observations, with cumulative exposures well beyond those conducted by any other mission. SEEJ will measure how often high energy flares of a given size occur, and establish, for the first time the statistics of these crucial events on exoplanet hosts. Observing transits SEEJ will measure the thermospheric scale height, and so the inflation or damage to the exoJupiter atmosphere. SEEJ will provide the data for theory to tie the rare flares and their effects together via improved models of exoplanet thermospheres.The X-rays emitted by an exoplanet host star is critical to the atmosphere of the planet. Specifically, X-rays can induce both life-enabling and life-threatening photochemistry in planetary atmospheres. Similarly, observed X-ray flares may be harbingers of coronal mass ejections which can aid the development of life by removing primary, hydrogen-dominated atmospheres or threaten its existence by depleting secondary atmospheres and specific critical species such as ozone. An understanding of the behavior of stellar coronae at all phases of stellar/planetary evolution is fundamental to our ability to gauge the cumulative impact of stellar X-rays on planetary atmospheres.

The First Objective of SEEJ is to characterize the X-ray emission for a diversity of planet hosting stars through long term monitoring, and use this as input to exo-planet atmospheric models to determine effect on planetary atmospheres, and possible feedback between the planet and star.

The Second Objective of SEEJ is to detect and measure planetary exospheric structure through the shape and extent of the upper atmosphere for a variety of exoplanets.

SEEJ will provide detailed X-ray transit light curve profiles of suitable targets accumulating them by observing multiple exoplanet transits. SEEJ will monitor roughly 40 transits of as many as 7 X-ray bright exoplanet hosts in a single year. Title: A Search for Blue Lurkers in the Open Cluster NGC 6791 Applying an Image-Subtraction Reduction Pipeline to the Kepler Superstamp Authors: McClure, R. L.; Soares, M.; Mathieu, R.; Moore, C. Bibcode: 2021AAS...23714006M Altcode: The original Kepler mission observations included a super-stamp of the open cluster NGC 6791, a cluster of particular interest as one of the oldest and most metal rich open clusters in the Milky Way. We present initial results of a forthcoming catalog of 100 ppm or better photometric-precision light-curves of stars in the NGC 6791 super-stamp, along with the surrounding field Kepler Objects of Interest postage stamps. We apply an image subtraction reduction pipeline useful for crowded fields of the core of open clusters, as used for K2 super-stamps by Soares-Furtado et al. 2017. This work will provide light curves and analyses of all identified variable stars in the cluster. In particular, we intend to use these data to search for only the second population of blue lurkers. We also anticipate unforeseen discoveries in this benchmark open cluster due to the precision of the light curves and quantity of resolved objects. We have underway a WIYN Open Cluster Study radial-velocity survey of the cluster to support analyses of these discovered objects to V = 18. We intend to apply this pipeline for similar analyses on the other three open cluster super-stamps in the Kepler field. The authors acknowledge funding support from NSF AST-1714506, the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison, the J.D. Fluno Family Distinguished Graduate Fellowship, and the Wisconsin Alumni Research Foundation. Title: An extreme particle accelerator in the Galactic plane: HESS J1826-130 Authors: H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bi, B.; Böttcher, M.; Boisson, C.; Bolmont, J.; de Bony de Lavergne, M.; Bordas, P.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Damascene Mbarubucyeye, J.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Duffy, C.; Dyks, J.; Egberts, K.; Eichhorn, F.; Einecke, S.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; Fichet de Clairfontaine, G.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kasai, E.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, ¶.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Meyer, M.; Mitchell, A.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Montanari, A.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nayerhoda, A.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Olivera-Nieto, L.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Panny, S.; Parsons, R. D.; Peron, G.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reichherzer, P.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Sun, L.; Steenkamp, R.; Stegmann, C.; Steinmassl, S.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Wong, Yu Wun; Yusafzai, A.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Ziegler, A.; Zorn, J.; Zouari, S.; Żywucka, N. Bibcode: 2020A&A...644A.112H Altcode: 2020arXiv201013101H The unidentified very-high-energy (VHE; E > 0.1 TeV) γ-ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady γ-ray flux from HESS J1826-130, which appears extended with a half-width of 0.21° ± 0.02stat° ± 0.05sys°. The source spectrum is best fit with either a power-law function with a spectral index Γ = 1.78 ± 0.10stat ± 0.20sys and an exponential cut-off at 15.2-3.2+5.5 TeV, or a broken power-law with Γ1 = 1.96 ± 0.06stat ± 0.20sys, Γ2 = 3.59 ± 0.69stat ± 0.20sys for energies below and above Ebr = 11.2 ± 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to ≳200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies. Title: Velocity independent constraints on spin-dependent DM-nucleon interactions from IceCube and PICO Authors: Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Backes, P.; Bagherpour, H.; Bai, X.; Balagopal V., A.; Barbano, A.; Barwick, S. W.; Bastian, B.; Baum, V.; Baur, S.; Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker Tjus, J.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Böser, S.; Botner, O.; Böttcher, J.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Buscher, J.; Busse, R. S.; Carver, T.; Chen, C.; Cheung, E.; Chirkin, D.; Choi, S.; Classen, L.; Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Diaz, A.; Díaz-Vélez, J. C.; Dujmovic, H.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eller, P.; Engel, R.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garrappa, S.; Gerhardt, L.; Ghorbani, K.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Griswold, S.; Günder, M.; Gündüz, M.; Haack, C.; Hallgren, A.; Halve, L.; Halzen, F.; Hanson, K.; Haungs, A.; Hebecker, D.; Heereman, D.; Heix, P.; Helbing, K.; Hellauer, R.; Henningsen, F.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jonske, F.; Joppe, R.; Kang, D.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Krückl, G.; Kulacz, N.; Kurahashi, N.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lazar, J. P.; Leonard, K.; Leszczynska, A.; Leuermann, M.; Liu, Q. R.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Lünemann, J.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Makino, Y.; Mallik, P.; Mallot, K.; Mancina, S.; Mariş, I. C.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Medina, A.; Meier, M.; Meighen-Berger, S.; Menne, T.; Merino, G.; Meures, T.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Muth, P.; Nagai, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Oehler, M.; Olivas, A.; O'Murchadha, A.; O'Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Park, N.; Peiffer, P.; Pérez de los Heros, C.; Philippen, S.; Pieloth, D.; Pinat, E.; Pizzuto, A.; Plum, M.; Porcelli, A.; Price, P. B.; Przybylski, G. T.; Raab, C.; Raissi, A.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Renschler, M.; Renzi, G.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schaufel, M.; Schieler, H.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Shefali, S.; Silva, M.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Steinmüller, P.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.; Stürwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.; Turley, C. F.; Ty, B.; Unger, E.; Unland Elorrieta, M. A.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Watson, T. B.; Weaver, C.; Weindl, A.; Weiss, M. J.; Weldert, J.; Wendt, C.; Werthebach, J.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woschnagg, K.; Wrede, G.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zöcklein, M.; IceCube Collaboration; Amole, C.; Ardid, M.; Arnquist, I. J.; Asner, D. M.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Cao, G.; Chen, C. J.; Chowdhury, U.; Clark, K.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Crowder, G.; Cruz-Venegas, N. A.; Dahl, C. E.; Das, M.; Fallows, S.; Farine, J.; Felis, I.; Filgas, R.; Girard, F.; Giroux, G.; Hall, J.; Hardy, C.; Harris, O.; Hoppe, E. W.; Jin, M.; Klopfenstein, L.; Krauss, C. B.; Laurin, M.; Lawson, I.; Leblanc, A.; Levine, I.; Lippincott, W. H.; Mamedov, F.; Maurya, D.; Mitra, P.; Moore, C.; Nania, T.; Neilson, R.; Noble, A. J.; Oedekerk, P.; Ortega, A.; Piro, M. -C.; Plante, A.; Podviyanuk, R.; Priya, S.; Robinson, A. E.; Sahoo, S.; Scallon, O.; Seth, S.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Sullivan, T.; Tardif, F.; Vázquez-Jáuregui, E.; Walkowski, N.; Wichoski, U.; Yan, Y.; Zacek, V.; Zhang, J.; PICO Collaboration Bibcode: 2020EPJC...80..819A Altcode: 2019arXiv190712509I Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 C3F8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain σSD≲3 ×10-39cm2 (6 ×10-38cm2 ) at ≳90 % C.L. for a DM particle of mass 1 TeV annihilating into τ+τ- (b b ¯ ) with a local density of ρDM=0.3 GeV/cm 3 . The constraints scale inversely with ρDM and are independent of the DM velocity distribution. Title: Search for dark matter signals towards a selection of recently detected DES dwarf galaxy satellites of the Milky Way with H.E.S.S. Authors: Abdallah, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Breuhaus, M.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Eichhorn, F.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martı-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, K.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Parsons, R. D.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schüssler, F.; Schutter, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S.; Zorn, J.; Żywucka, N.; H. E. S. S. Collaboration Bibcode: 2020PhRvD.102f2001A Altcode: 2020arXiv200800688H Dwarf spheroidal galaxy satellites of the Milky Way are prime targets for indirect detection of dark matter with gamma rays due to their proximity, high dark matter content, and absence of nonthermal emission processes. Recently, the Dark Energy Survey (DES) revealed the existence of new ultrafaint dwarf spheroidal galaxies in the southern-hemisphere sky, therefore ideally located for ground-based observations with the imaging atmospheric Cherenkov telescope array H.E.S.S. We present a search for very-high-energy (E ≳100 GeV ) gamma-ray emission using H.E.S.S. observations carried out recently towards Reticulum II, Tucana II, Tucana III, Tucana IV, and Grus II satellites. No significant very-high-energy gamma-ray excess is found from the observations on any individual object nor in the combined analysis of all the datasets. Using the most recent modeling of the dark matter distribution in the dwarf galaxy halo, we compute for the first time on DES satellites individual and combined constraints from Cherenkov telescope observations on the annihilation cross section of dark matter particles in the form of Weakly Interacting Massive Particles. The combined 95% C.L. observed upper limits reach ⟨σ v ⟩≃1 ×10-23 cm3 s-1 in the W+W- channel and 4 ×10-26 cm3 s-1 in the γ γ channels for a dark matter mass of 1.5 TeV. The H.E.S.S. constraints well complement the results from Fermi-LAT, HAWC, MAGIC, and VERITAS and are currently the most stringent in the γ γ channels in the multi-GeV/multi-TeV mass range. Title: Simultaneous observations of the blazar PKS 2155-304 from ultra-violet to TeV energies Authors: Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chen, A.; Colafrancesco, S.; Curyło, M.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mares, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zorn, J.; Żywucka, N.; Madejski, G. M.; Nalewajko, K.; Madsen, K. K.; Chiang, J.; Baloković, M.; Paneque, D.; Furniss, A. K.; Hayashida, M.; Urry, C. M.; Ajello, M.; Harrison, F. A.; Giebels, B.; Stern, D.; Forster, K.; Giommi, P.; Perri, M.; Puccetti, S.; Zoglauer, A.; Tagliaferri, G. Bibcode: 2020A&A...639A..42A Altcode: 2019arXiv191207273H Here we report the results of the first ever contemporaneous multi-wavelength observation campaign on the BL Lac object PKS 2155-304 involving Swift, NuSTAR, Fermi-LAT, and H.E.S.S. The use of these instruments allows us to cover a broad energy range, which is important for disentangling the different radiative mechanisms. The source, observed from June 2013 to October 2013, was found in a low flux state with respect to previous observations but exhibited highly significant flux variability in the X-rays. The high-energy end of the synchrotron spectrum can be traced up to 40 keV without significant contamination by high-energy emission. A one-zone synchrotron self-Compton model was used to reproduce the broadband flux of the source for all the observations presented here but failed for previous observations made in April 2013. A lepto-hadronic solution was then explored to explain these earlier observational results. Title: Very high energy γ-ray emission from two blazars of unknown redshift and upper limits on their distance Authors: Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Eichhorn, F.; Emery, G.; Ernenwein, J. -P.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; Nakashima, K.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Ostrowski, M.; Panter, M.; Parsons, R. D.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Noel, A. P.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schüssler, F.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zargaryan, D.; Zdziarski, A. A.; Zech, A.; Zhu, S. J.; Zorn, J.; Żywucka, N.; Cerruti, M. Bibcode: 2020MNRAS.494.5590A Altcode: 2020arXiv200403306H; 2020MNRAS.tmp.1233H We report on the detection of very high energy (VHE; E > 100 GeV) γ-ray emission from the BL Lac objects KUV 00311-1938 and PKS 1440-389 with the High Energy Stereoscopic System (H.E.S.S.). H.E.S.S. observations were accompanied or preceded by multiwavelength observations with Fermi/LAT, XRT and UVOT onboard the Swift satellite, and ATOM. Based on an extrapolation of the Fermi/LAT spectrum towards the VHE γ-ray regime, we deduce a 95 per cent confidence level upper limit on the unknown redshift of KUV 00311-1938 of $z$ < 0.98 and of PKS 1440-389 of $z$ < 0.53. When combined with previous spectroscopy results, the redshift of KUV 00311-1938 is constrained to 0.51 ≤ $z$ < 0.98 and of PKS 1440-389 to 0.14 ⪅ $z$ < 0.53. Title: Resolving acceleration to very high energies along the jet of Centaurus A Authors: H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chen, A.; Colafrancesco, S.; Curyło, M.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O'C.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, N.; Kosack, K.; Kostunin, D.; Kraus, M.; Lamanna, G.; Lau, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mares, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Żywucka, N. Bibcode: 2020Natur.582..356H Altcode: 2020arXiv200704823T The nearby radio galaxy Centaurus A belongs to a class of active galaxies that are luminous at radio wavelengths. Most show collimated relativistic outflows known as jets, which extend over hundreds of thousands of parsecs for the most powerful sources. Accretion of matter onto the central supermassive black hole is believed to fuel these jets and power their emission1. Synchrotron radiation from relativistic electrons causes the radio emission, and it has been suggested that the X-ray emission from Centaurus A also originates in electron synchrotron processes2-4. Another possible explanation is inverse Compton scattering with cosmic microwave background (CMB) soft photons5-7. Synchrotron radiation needs ultrarelativistic electrons (about 50 teraelectronvolts) and, given their short cooling times, requires some continuous re-acceleration mechanism8. Inverse Compton scattering, on the other hand, does not require very energetic electrons, but the jets must stay highly relativistic on large scales (exceeding 1 megaparsec). Some recent evidence disfavours inverse Compton-CMB models9-12, although other work seems to be compatible with them13,14. In principle, the detection of extended γ-ray emission, which directly probes the presence of ultrarelativistic electrons, could distinguish between these options. At gigaelectronvolt energies there is also an unusual spectral hardening15,16 in Centaurus A that has not yet been explained. Here we report observations of Centaurus A at teraelectronvolt energies that resolve its large-scale jet. We interpret the data as evidence for the acceleration of ultrarelativistic electrons in the jet, and favour the synchrotron explanation for the X-rays. Given that this jet is not exceptional in terms of power, length or speed, it is possible that ultrarelativistic electrons are commonplace in the large-scale jets of radio-loud active galaxies. Title: Probing the Magnetic Field in the GW170817 Outflow Using H.E.S.S. Observations Authors: Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Baghmanyan, V.; Barbosa-Martins, V.; Barnacka, A.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chen, A.; Cotter, G.; Curyło, M.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Eichhorn, F.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Konno, R.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; Nakashima, K.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Parsons, R. D.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Noel, A. Priyana; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zorn, J.; Żywucka, N.; H. E. S. S. Collaboration; Rodrigues, X. Bibcode: 2020ApJ...894L..16A Altcode: 2020arXiv200410105H The detection of the first electromagnetic counterpart to the binary neutron star (BNS) merger remnant GW170817 established the connection between short γ-ray bursts and BNS mergers. It also confirmed the forging of heavy elements in the ejecta (a so-called kilonova) via the r-process nucleosynthesis. The appearance of nonthermal radio and X-ray emission, as well as the brightening, which lasted more than 100 days, were somewhat unexpected. Current theoretical models attempt to explain this temporal behavior as either originating from a relativistic off-axis jet or a kilonova-like outflow. In either scenario, there is some ambiguity regarding how much energy is transported in the nonthermal electrons versus the magnetic field of the emission region. Combining the Very Large Array (radio) and Chandra (X-ray) measurements with observations in the GeV-TeV domain can help break this ambiguity, almost independently of the assumed origin of the emission. Here we report for the first time on deep H.E.S.S. observations of GW170817/GRB 170817A between 124 and 272 days after the BNS merger with the full H.E.S.S. array of telescopes, as well as on an updated analysis of the prompt (<5 days) observations with the upgraded H.E.S.S. phase-I telescopes. We discuss implications of the H.E.S.S. measurement for the magnetic field in the context of different source scenarios. Title: Planet Hunters TESS I: TOI 813, a subgiant hosting a transiting Saturn-sized planet on an 84-day orbit Authors: Eisner, N. L.; Barragán, O.; Aigrain, S.; Lintott, C.; Miller, G.; Zicher, N.; Boyajian, T. S.; Briceño, C.; Bryant, E. M.; Christiansen, J. L.; Feinstein, A. D.; Flor-Torres, L. M.; Fridlund, M.; Gandolfi, D.; Gilbert, J.; Guerrero, N.; Jenkins, J. M.; Jones, K.; Kristiansen, M. H.; Vanderburg, A.; Law, N.; López-Sánchez, A. R.; Mann, A. W.; Safron, E. J.; Schwamb, M. E.; Stassun, K. G.; Osborn, H. P.; Wang, J.; Zic, A.; Ziegler, C.; Barnet, F.; Bean, S. J.; Bundy, D. M.; Chetnik, Z.; Dawson, J. L.; Garstone, J.; Stenner, A. G.; Huten, M.; Larish, S.; Melanson, L. D.; Mitchell, T.; Moore, C.; Peltsch, K.; Rogers, D. J.; Schuster, C.; Smith, D. S.; Simister, D. J.; Tanner, C.; Terentev, I.; Tsymbal, A. Bibcode: 2020MNRAS.494..750E Altcode: 2019arXiv190909094E; 2020MNRAS.tmp..148E We report on the discovery and validation of TOI 813 b (TIC 55525572 b), a transiting exoplanet identified by citizen scientists in data from NASA's Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant (R\star - 1.94 R, M\star = 1.32 M). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of 2 MJup (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of 83.8911-0.0031+0.0027 d, a planet radius of 6.71 ± 0.38 R and a semimajor axis of 0.423-0.037+0.031 AU. The planet's orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of ∼6 m s-1, making this a promising system to measure the mass of a relatively long-period transiting planet. Title: Detection of very-high-energy γ-ray emission from the colliding wind binary η Car with H.E.S.S. Authors: H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Armstrong, T.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chen, A.; Colafrancesco, S.; Cotter, G.; Curyło, M.; Davids, I. D.; Davies, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Eichhorn, F.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Hörbe, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Joshi, V.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marchegiani, P.; Marcowith, A.; Mares, A.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Morris, P.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; Nakashima, K.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Scalici, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spencer, S.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Tomankova, L.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Watson, J.; Werner, F.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zorn, J.; Żywucka, N. Bibcode: 2020A&A...635A.167H Altcode: 2020arXiv200202336H; 2020A&A...635A.167.
Aims: Colliding wind binary systems have long been suspected to be high-energy (HE; 100 MeV < E < 100 GeV) γ-ray emitters. η Car is the most prominent member of this object class and is confirmed to emit phase-locked HE γ rays from hundreds of MeV to ~100 GeV energies. This work aims to search for and characterise the very-high-energy (VHE; E >100 GeV) γ-ray emission from η Car around the last periastron passage in 2014 with the ground-based High Energy Stereoscopic System (H.E.S.S.).
Methods: The region around η Car was observed with H.E.S.S. between orbital phase p = 0.78-1.10, with a closer sampling at p ≈ 0.95 and p ≈ 1.10 (assuming a period of 2023 days). Optimised hardware settings as well as adjustments to the data reduction, reconstruction, and signal selection were needed to suppress and take into account the strong, extended, and inhomogeneous night sky background (NSB) in the η Car field of view. Tailored run-wise Monte-Carlo simulations (RWS) were required to accurately treat the additional noise from NSB photons in the instrument response functions.
Results: H.E.S.S. detected VHE γ-ray emission from the direction of η Car shortly before and after the minimum in the X-ray light-curve close to periastron. Using the point spread function provided by RWS, the reconstructed signal is point-like and the spectrum is best described by a power law. The overall flux and spectral index in VHE γ rays agree within statistical and systematic errors before and after periastron. The γ-ray spectrum extends up to at least ~400 GeV. This implies a maximum magnetic field in a leptonic scenario in the emission region of 0.5 Gauss. No indication for phase-locked flux variations is detected in the H.E.S.S. data. Title: CESM-release-cesm2.1.2 Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier; Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large; Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson; Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, Van; Vertenstein; Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner; Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand Bibcode: 2020zndo...3895328D Altcode: The Community Earth System Model release version cesm2.1.2 Title: X-ray Exoplanet Transits Authors: Drake, J. J.; Kashyap, V.; Poppenhager, K.; Wolk, S.; Moore, C.; Hong, J.; Wargelin, B.; Winston, E.; Elvis, M.; Pillitteri, I. Bibcode: 2020AAS...23517311D Altcode: The evolution of planetary atmospheres is one of the most uncertain aspects of exoplanetary astrophysics. Successful models require knowledge of atmospheric source and loss terms and of how they change on a large range of timescales, from days to Gyrs. Atmospheric loss is in principle a tractable problem, depending on planetary characteristics such as orbit, magnetic field, rotation period and atmospheric chemical composition, and on the host star photon and particle radiation properties that drive the loss. In practice, the coupled physics and chemistry involved are extremely complex and likely require sophisticated time-dependent 3D models to treat properly. An alternative observational approach that has been pursued in the ultraviolet is to use planetary transits to detect the escaping gas in absorption against the stellar background light. Here, we build on a pioneering detection of the X-ray transit of the hot Jupiter HD189733b by Poppenhager and co-workers and highlight the utility of the soft X-ray band for such measurements. We explore X-ray transit observations of close-in gas giants as a potentially powerful means of exploring planetary atmospheres and measuring scale heights, outflows and inferring chemical compositions. The required measurements could be obtained with either next-generation flagship missions, or with repeated observations by much more modest small satellite missions. Title: H.E.S.S. detection of very high-energy γ-ray emission from the quasar PKS 0736+017 Authors: H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chen, A.; Colafrancesco, S.; Curyło, M.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O. 'C.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kraus, M.; Lamanna, G.; Lau, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mares, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Muller, J.; Moore, C.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Żywucka, N.; Smith, P. S. Bibcode: 2020A&A...633A.162H Altcode: 2019arXiv191104761H Context. Flat-spectrum radio-quasars (FSRQs) are rarely detected at very high energies (E ≥ 100 GeV) due to their low-frequency-peaked spectral energy distributions. At present, only six FSRQs are known to emit very high-energy (VHE) photons, representing only 7% of the VHE extragalactic catalog, which is largely dominated by high-frequency-peaked BL Lacertae objects.
Aims: Following the detection of MeV-GeV γ-ray flaring activity from the FSRQ PKS 0736+017 (z = 0.189) with Fermi-LAT, the H.E.S.S. array of Cherenkov telescopes triggered target-of-opportunity (ToO) observations on February 18, 2015, with the goal of studying the γ-ray emission in the VHE band.
Methods: H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi-LAT, the multi-wavelength coverage of the flare includes Swift observations in soft X-ray and optical-UV bands, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, and the ATOM, the KAIT, and the ASAS-SN telescopes.
Results: VHE emission from PKS 0736+017 was detected with H.E.S.S. only during the night of February 19, 2015. Fermi-LAT data indicate the presence of a γ-ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling timescale of around six hours. The γ-ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The γ-ray observations with H.E.S.S. and Fermi-LAT are used to put constraints on the location of the γ-ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line region rBLR with a bulk Lorentz factor Γ ≃ 20, or at the level of the radius of the dusty torus rtorus with Γ ≃ 60.
Conclusions: PKS 0736+017 is the seventh FSRQ known to emit VHE photons, and at z = 0.189 is the nearest so far. The location of the γ-ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments. Title: Solar Soft X-ray Variations from the 2008-2019 Solar Cycle inferred from CORONAS/SphinX, GOES/XRS, Hinode/XRT, MinXSS, NuSTAR, and RHESSI Instruments Authors: Moore, C.; Takeda, A.; Sylwester, B.; Sylwester, J.; Hannah, I.; Dennis, B.; Reeves, K.; Woods, T. Bibcode: 2020AAS...23535901M Altcode: The Solar spectral irradiance (SSI) is vital for understanding the physics of all layers of the solar atmosphere from the photosphere to the corona. While most of the contribution to the Total Solar Irradiance (TSI) reside in visible and infrared light, the UV and X-rays have the largest change in magnitude. Quantifying the UV and X-ray variations over the solar cycle is critical for constraining the physics of solar flares, active regions, the quiet Sun, as well as the atmospheres of planets and moons in the heliosphere. The GOES/XRS spectrally integrated 0.1 - 0.8 nm energy flux has been a longstanding diagnostic of soft x-ray variations, but is limited by non-linearities in signal response for low solar flux levels and an observed minimum detection limit. The Hinode/XRT filter images provide a unique alternative proxy for solar soft X-ray flux inferences with larger dynamic range and a lower flux sensitivity. We compare the spectral irradiance estimate from a Hinode/XRT filter-ratio technique results to the lowest spectra measured-to-date between 1.25 - 3 keV by CORONAS/SPhinX in 2009, and MinXSS CubeSat spectra in 2016 - 2019. We also highlight the large variability in the soft X-ray spectra as directly measured by CORONAS/SphinX, MinXSS, NuSTAR, and RHESSI intermittently between 2009 - 2019. Title: SmallSat Solar Axion and Activity X-ray Imager (SSAXI) Authors: Hong, J.; Romaine, S.; Kenter, A.; Moore, C.; Reeves, K.; Ramsey, B.; Kilaru, K.; Vogel, J.; Ruz Armendariz, J.; Hudson, H.; Perez, K. Bibcode: 2020AAS...23527101H Altcode: The axion is a promising dark matter candidate as well as a solution to the strong charge-parity (CP) problem in quantum chromodynamics (QCD). We describe a new concept for SmallSat Solar Axion and Activity X-ray Telescope (SSAXI) to search for solar axions or axion-like particles (ALPs) and to monitor solar activity over a wide dynamic range. SSAXI aims to unambiguously identify X-rays converted from axions in the solar magnetic field along the line of sight to the solar core, effectively imaging the solar core. SSAXI employs Miniature lightweight Wolter-I focusing X-ray optics (MiXO) and monolithic CMOS X-ray sensors in a compact package. The wide energy range (0.5 - 5 keV) of SSAXI can easily distinguish spectra of axion-converted X-rays from solar X-ray spectra, while encompassing the prime energy band (3 - 4.5 keV) of axion-converted X-rays. The high angular resolution (30 arcsec) and large field of view (40 arcmin) in SSAXI will easily resolve the enhanced X-ray flux over the 3 arcmin wide solar core while fully covering the X-ray activity over the entire solar disc. The fast readout in the inherently radiation tolerant CMOS X-ray sensors enables high resolution spectroscopy over a wide dynamic range with a broad range of operational temperatures. We present multiple mission implementation options for SSAXI under ESPA class. SSAXI will operate in a Sun-synchronous orbit for 1 yr preferably near a solar minimum to accumulate sufficient X-ray photon statistics. Title: H.E.S.S. and Fermi-LAT observations of PSR B1259-63/LS 2883 during its 2014 and 2017 periastron passages Authors: H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chaves, R. C. G.; Chen, A.; Colafrancesco, S.; Curyło, M.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mares, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zorn, J.; Żywucka, N.; Bordas, P. Bibcode: 2020A&A...633A.102H Altcode: 2019arXiv191205868H Context. PSR B1259-63/LS 2883 is a gamma-ray binary system consisting of a pulsar in an eccentric orbit around a bright Oe stellar-type companion star that features a dense circumstellar disc. The bright broad-band emission observed at phases close to periastron offers a unique opportunity to study particle acceleration and radiation processes in binary systems. Observations at gamma-ray energies constrain these processes through variability and spectral characterisation studies.
Aims: The high- and very-high-energy (HE, VHE) gamma-ray emission from PSR B1259-63/LS 2883 around the times of its periastron passage are characterised, in particular, at the time of the HE gamma-ray flares reported to have occurred in 2011, 2014, and 2017. Short-term and average emission characteristics of PSR B1259-63/LS 2883 are determined. Super-orbital variability is searched for in order to investigate possible cycle-to-cycle VHE flux changes due to different properties of the companion star's circumstellar disc and/or the conditions under which the HE gamma-ray flares develop.
Methods: Spectra and light curves were derived from observations conducted with the H.E.S.S-II array in 2014 and 2017. Phase-folded light curves are compared with the results obtained in 2004, 2007, and 2011. Fermi-LAT observations from 2010/11, 2014, and 2017 are analysed.
Results: A local double-peak profile with asymmetric peaks in the VHE light curve is measured, with a flux minimum at the time of periastron tp and two peaks coinciding with the times at which the neutron star crosses the companion's circumstellar disc (~tp ± 16 d). A high VHE gamma-ray flux is also observed at the times of the HE gamma-ray flares (~tp + 30 d) and at phases before the first disc crossing (~tp - 35 d). The spectral energy range now extends to below 200 GeV and up to ~45 TeV.
Conclusions: PSR B1259-63/LS 2883 displays periodic flux variability at VHE gamma-rays without clear signatures of super-orbital modulation in the time span covered by the monitoring of the source with the H.E.S.S. telescopes. This flux variability is most probably caused by the changing environmental conditions, particularly at times close to periastron passage at which the neutron star is thought to cross the circumstellar disc of the companion star twice. In contrast, the photon index remains unchanged within uncertainties for about 200 d around periastron. At HE gamma-rays, PSR B1259-63/LS 2883 has now been detected also before and after periastron, close to the disc crossing times. Repetitive flares with distinct variability patterns are detected in this energy range. Such outbursts are not observed at VHEs, although a relatively high emission level is measured. The spectra obtained in both energy regimes displays a similar slope, although a common physical origin either in terms of a related particle population, emission mechanism, or emitter location is ruled out. Title: A very-high-energy component deep in the γ-ray burst afterglow Authors: Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Bissaldi, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chen, A.; Colafrancesco, S.; Curyło, M.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Giunti, L.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kreter, M.; Lamanna, G.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mares, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Sailer, S.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H. M.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Żywucka, N.; de Palma, F.; Axelsson, M.; Roberts, O. J. Bibcode: 2019Natur.575..464A Altcode: 2019arXiv191108961A Gamma-ray bursts (GRBs) are brief flashes of γ-rays and are considered to be the most energetic explosive phenomena in the Universe1. The emission from GRBs comprises a short (typically tens of seconds) and bright prompt emission, followed by a much longer afterglow phase. During the afterglow phase, the shocked outflow—produced by the interaction between the ejected matter and the circumburst medium—slows down, and a gradual decrease in brightness is observed2. GRBs typically emit most of their energy via γ-rays with energies in the kiloelectronvolt-to-megaelectronvolt range, but a few photons with energies of tens of gigaelectronvolts have been detected by space-based instruments3. However, the origins of such high-energy (above one gigaelectronvolt) photons and the presence of very-high-energy (more than 100 gigaelectronvolts) emission have remained elusive4. Here we report observations of very-high-energy emission in the bright GRB 180720B deep in the GRB afterglow—ten hours after the end of the prompt emission phase, when the X-ray flux had already decayed by four orders of magnitude. Two possible explanations exist for the observed radiation: inverse Compton emission and synchrotron emission of ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray and γ-ray range and their photon indices remain comparable to each other throughout the afterglow. This discovery places distinct constraints on the GRB environment for both emission mechanisms, with the inverse Compton explanation alleviating the particle energy requirements for the emission observed at late times. The late timing of this detection has consequences for the future observations of GRBs at the highest energies. Title: Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers Authors: Amole, C.; Ardid, M.; Arnquist, I. J.; Asner, D. M.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Cao, G.; Chen, C. J.; Chen, S.; Chowdhury, U.; Clark, K.; Collar, J. I.; Cooper, P. S.; Coutu, C. B.; Cowles, C.; Crisler, M.; Crowder, G.; Cruz-Venegas, N. A.; Dahl, C. E.; Das, M.; Fallows, S.; Farine, J.; Filgas, R.; Fuentes, J.; Girard, F.; Giroux, G.; Hackett, B.; Hagen, A.; Hall, J.; Hardy, C.; Harris, O.; Hillier, T.; Hoppe, E. W.; Jackson, C. M.; Jin, M.; Klopfenstein, L.; Kozynets, T.; Krauss, C. B.; Laurin, M.; Lawson, I.; Leblanc, A.; Levine, I.; Licciardi, C.; Lippincott, W. H.; Loer, B.; Mamedov, F.; Mitra, P.; Moore, C.; Nania, T.; Neilson, R.; Noble, A. J.; Oedekerk, P.; Ortega, A.; Pal, S.; Piro, M. -C.; Plante, A.; Priya, S.; Robinson, A. E.; Sahoo, S.; Scallon, O.; Seth, S.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Sullivan, T.; Tardif, F.; Tiwari, D.; Vázquez-Jáuregui, E.; Wagner, J. M.; Walkowski, N.; Weima, E.; Wichoski, U.; Wierman, K.; Woodley, W.; Yan, Y.; Zacek, V.; Zhang, J.; PICO Collaboration Bibcode: 2019PhRvD.100h2006A Altcode: 2019arXiv190512522A The primary advantage of moderately superheated bubble chamber detectors is their simultaneous sensitivity to nuclear recoils from weakly interacting massive particle (WIMP) dark matter and insensitivity to electron recoil backgrounds. A comprehensive analysis of PICO gamma calibration data demonstrates for the first time that electron recoils in C3F8 scale in accordance with a new nucleation mechanism, rather than one driven by a hot spike as previously supposed. Using this semiempirical model, bubble chamber nucleation thresholds may be tuned to be sensitive to lower energy nuclear recoils while maintaining excellent electron recoil rejection. The PICO-40L detector will exploit this model to achieve thermodynamic thresholds as low as 2.8 keV while being dominated by single-scatter events from coherent elastic neutrino-nucleus scattering of solar neutrinos. In one year of operation, PICO-40L can improve existing leading limits from PICO on spin-dependent WIMP-proton coupling by nearly an order of magnitude for WIMP masses greater than 3 GeV c-2 and will have the ability to surpass all existing non-xenon bounds on spin-independent WIMP-nucleon coupling for WIMP masses from 3 to 40 GeV c-2 . Title: CESM-release-cesm2.1.1 Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier; Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large; Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson; Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, van; Vertenstein; Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner; Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand Bibcode: 2019zndo...3895315D Altcode: The Community Climate Earth System Model release version cesm2.1.1 Title: H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830-211 Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Arrieta, M.; Backes, M.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chand, T.; Chandra, S.; Chaves, R. C. G.; Chen, A.; Colafrancesco, S.; Condon, B.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O'C.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu; Kosack, K.; Kraus, M.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Lohse, T.; López-Coto, R.; Lorentz, M.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, R. M.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Żywucka, N. Bibcode: 2019MNRAS.486.3886H Altcode: 2019MNRAS.tmp.1061A; 2019arXiv190405139H PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its high-energy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of ∼67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum. Title: Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber Authors: Amole, C.; Ardid, M.; Arnquist, I. J.; Asner, D. M.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Cao, G.; Chen, C. J.; Chowdhury, U.; Clark, K.; Collar, J. I.; Cooper, P. S.; Coutu, C. B.; Cowles, C.; Crisler, M.; Crowder, G.; Cruz-Venegas, N. A.; Dahl, C. E.; Das, M.; Fallows, S.; Farine, J.; Felis, I.; Filgas, R.; Girard, F.; Giroux, G.; Hall, J.; Hardy, C.; Harris, O.; Hillier, T.; Hoppe, E. W.; Jackson, C. M.; Jin, M.; Klopfenstein, L.; Kozynets, T.; Krauss, C. B.; Laurin, M.; Lawson, I.; Leblanc, A.; Levine, I.; Licciardi, C.; Lippincott, W. H.; Loer, B.; Mamedov, F.; Mitra, P.; Moore, C.; Nania, T.; Neilson, R.; Noble, A. J.; Oedekerk, P.; Ortega, A.; Piro, M. -C.; Plante, A.; Podviyanuk, R.; Priya, S.; Robinson, A. E.; Sahoo, S.; Scallon, O.; Seth, S.; Sonnenschein, A.; Starinski, N.; Štekl, I.; Sullivan, T.; Tardif, F.; Vázquez-Jáuregui, E.; Walkowski, N.; Weima, E.; Wichoski, U.; Wierman, K.; Yan, Y.; Zacek, V.; Zhang, J.; PICO Collaboration Bibcode: 2019PhRvD.100b2001A Altcode: 2019arXiv190204031A Final results are reported from operation of the PICO-60 C3F8 dark matter detector, a bubble chamber filled with 52 kg of C3 F8 located in the SNOLAB underground laboratory. The chamber was operated at thermodynamic thresholds as low as 1.2 keV without loss of stability. A new blind 1404-kg-day exposure at 2.45 keV threshold was acquired with approximately the same expected total background rate as the previous 1167-kg-day exposure at 3.3 keV. This increased exposure is enabled in part by a new optical tracking analysis to better identify events near detector walls, permitting a larger fiducial volume. These results set the most stringent direct-detection constraint to date on the weakly interacting massive particle (WIMP)-proton spin-dependent cross section at 3.2 ×1 0-41 cm2 for a 25 GeV WIMP, improving on previous PICO results for 3-5 GeV WIMPs by an order of magnitude. Title: H.E.S.S. and Suzaku observations of the Vela X pulsar wind nebula Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Backes, M.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chand, T.; Chandra, S.; Chaves, R. C. G.; Chen, A.; Colafrancesco, S.; Condon, B.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O. 'C.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kraus, M.; Lamanna, G.; Lau, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Lohse, T.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Maxted, N. I.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Żywucka, N. Bibcode: 2019A&A...627A.100H Altcode: 2019arXiv190507975H Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon.
Aims: Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling.
Methods: We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra.
Results: The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10-12 erg cm-3. The data indicate the presence of a cutoff in the electron spectrum at energies of 100 TeV and a magnetic field strength of 6 μG. Constraints on the presence of turbulent magnetic fields are weak.
Conclusions: The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range ≳ 10 keV.

Spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A100 Title: Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE γ-ray observations with H.E.S.S. Authors: H. E. S. S. Collaboration; Abdalla, H.; Adam, R.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chand, T.; Chandra, S.; Chen, A.; Colafrancesco, S.; Curyło, M.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O. 'C.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jardin-Blicq, A.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kraus, M.; Lamanna, G.; Lau, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mares, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Muller, J.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Żywucka, N.; Meyer, M. Bibcode: 2019A&A...627A.159H Altcode: 2019arXiv190604996H The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy (100 MeV < E < 100 GeV) γ-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 target-of-opportunity observations were undertaken with the High Energy Stereoscopic System (H.E.S.S.) in the very-high-energy (VHE, E > 100 GeV) γ-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with 8.7σ significance above an energy threshold of 66 GeV. No VHE variability was detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of 4.2 ± 0.3. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole was estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at r ≳ 1.7 × 1017 cm from the black hole, that is beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models were used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data were used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279. Title: Upper limits on very-high-energy gamma-ray emission from core-collapse supernovae observed with H.E.S.S. Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Ashkar, H.; Backes, M.; Barbosa Martins, V.; Barnard, M.; Becherini, Y.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Breuhaus, M.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chand, T.; Chandra, S.; Chaves, R. C. G.; Chen, A.; Colafrancesco, S.; Curylo, M.; Davids, I. D.; Deil, C.; Devin, J.; de Wilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O. 'C.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kraus, M.; Lamanna, G.; Lau, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Levy, C.; Lohse, T.; López-Coto, R.; Lypova, I.; Mackey, J.; Majumdar, J.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mares, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Muller, J.; Moore, C.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Remy, Q.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Żywucka, N.; Maxted, N. I. Bibcode: 2019A&A...626A..57H Altcode: 2019arXiv190410526H Young core-collapse supernovae with dense-wind progenitors may be able to accelerate cosmic-ray hadrons beyond the knee of the cosmic-ray spectrum, and this may result in measurable gamma-ray emission. We searched for gamma-ray emission from ten supernovae observed with the High Energy Stereoscopic System (H.E.S.S.) within a year of the supernova event. Nine supernovae were observed serendipitously in the H.E.S.S. data collected between December 2003 and December 2014, with exposure times ranging from 1.4 to 53 h. In addition we observed SN 2016adj as a target of opportunity in February 2016 for 13 h. No significant gamma-ray emission has been detected for any of the objects, and upper limits on the >1 TeV gamma-ray flux of the order of 10-13 cm-2s-1 are established, corresponding to upper limits on the luminosities in the range 2 × 1039 to 1 × 1042 erg s-1. These values are used to place model-dependent constraints on the mass-loss rates of the progenitor stars, implying upper limits between 2 × 10-5 and 2 × 10-3 M yr-1 under reasonable assumptions on the particle acceleration parameters. Title: VizieR Online Data Catalog: HESS and Suzaku observations of Vela X (HESS Coll+, 2019) Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Anguener, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Backes, M.; Barnard, M.; Becherini, Y.; Berge, D.; Bernloehr, K.; Blackwell, R.; Boettcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Buechele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caro, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chand, T.; Chandra, S.; Chaves, R. C. G.; Chen, A.; Colafrancesco, S.; Condon, B.; Davids, I. D.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Atai, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O'c.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Feijen, K.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Fuessling, M.; Gabici, S.; Gallant, Y. A.; Gate, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jacholkowska, Y. A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzy'nski, K.; Katsuragawa, M.; Katz, U.; Khangulyan, D.; Khelifi, B.; King, J.; Klepser, S.; Klu'Zniak, W.; Komin, Nu.; Kosack, K.; Kostunin, D.; Kraus, M.; Lamanna, G.; Lau, J.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Lohse, T.; Lopez-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marti-Devesa, G.; Marx, R.; Maurin, G.; Maxted, N. I.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; de Ona Wilhelmi, E.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana, Noel A.; Prokhorov, D. A.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schuessler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tus, R.; Uchiyama, Y.; van der, Walt D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Voelk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Ziegler, A.; Zorn, J.; Zywucka, N. Bibcode: 2019yCat..36270100H Altcode: Spectra from H.E.S.S. and Suzaku XIS observations of three regions in the Vela X cocoon referred to in the paper as pointing 0 (p0), pointing 1 (p1), and pointing (p2). Errors combine statistical and systematic uncertainties of instrumental origin and from the analysis method.

HESS spectra contain Centre of energy bin (energy, eV), Lower width of energy bin (energyerrorlo, eV), Higher width of energy bin (energyerrorhi, eV), Flux (flux, 1/cm2/TeV), Lower flux error (fluxerrorlo, 1/cm2/TeV) and Higher flux error (fluxerrorhi, 1/cm2/TeV)

Suzaku XIS spectra contain Centre of energy bin (energy, eV), Width of energy bin (energy_error, eV), Flux (flux, 1/cm2/TeV), and Flux error (flux_error, 1/cm2/TeV)

(2 data files). Title: Particle transport within the pulsar wind nebula HESS J1825-137 Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Arrieta, M.; Backes, M.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chand, T.; Chandra, S.; Chaves, R. C. G.; Chen, A.; Colafrancesco, S.; Condon, B.; Davids, I. D.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O. 'C.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Kraus, M.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Lohse, T.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Martí-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana Noel, A.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, R. M.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N. Bibcode: 2019A&A...621A.116H Altcode: 2018arXiv181012676H Context. We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics.
Aims: The nebula was studied using a deep exposure from over 12 years of H.E.S.S. I operation, together with data from H.E.S.S. II that improve the low-energy sensitivity. Enhanced energy-dependent morphological and spatially resolved spectral analyses probe the very high energy (VHE, E > 0.1 TeV) γ-ray properties of the nebula.
Methods: The nebula emission is revealed to extend out to 1.5° from the pulsar, 1.5 times farther than previously seen, making HESS J1825-137, with an intrinsic diameter of 100 pc, potentially the largest γ-ray PWN currently known. Characterising the strongly energy-dependent morphology of the nebula enables us to constrain the particle transport mechanisms. A dependence of the nebula extent with energy of R ∝ Eα with α = -0.29 ± 0.04stat ± 0.05sys disfavours a pure diffusion scenario for particle transport within the nebula. The total γ-ray flux of the nebula above 1 TeV is found to be (1.12 ± 0.03stat ± 0.25sys) × 10-11 cm-2 s-1, corresponding to 64% of the flux of the Crab nebula.
Results: HESS J1825-137 is a PWN with clearly energy-dependent morphology at VHE γ-ray energies. This source is used as a laboratory to investigate particle transport within intermediate-age PWNe. Based on deep observations of this highly spatially extended PWN, we produce a spectral map of the region that provides insights into the spectral variation within the nebula.

Sky maps as FITS files and spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/621/A116 Title: CESM-release-cesm2.1.0 Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier; Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large; Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson; Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, Van; Vertenstein; Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner; Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand Bibcode: 2018zndo...3895306D Altcode: The Community Earth System Model release version 2.1.0 Title: VizieR Online Data Catalog: HESS J1825-137 particle transport (H.E.S.S. Collaboration, 2019) Authors: H. E. S. S. Collaboration; Abdalla, H.; Aharonian, F.; Ait Benkhali, F.; Anguener, E. O.; Arakawa, M.; Arcaro, C.; Armand, C.; Arrieta, M.; Backes, M.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernloehr, K.; Blackwell, R.; Boettcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Buechele, M.; Bulik, T.; Bylund, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chand, T.; Chandra, S.; Chaves, R. C. G.; Chen, A.; Colafrancesco, S.; Condon, B.; Davids, I. D.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Atai, A.; Dmytriiev, A.; Donath, A.; Doroshenko, V.; Drury, L. O'c.; Dyks, J.; Egberts, K.; Emery, G.; Ernenwein, J. -P.; Eschbach, S.; Fegan, S.; Fiasson, A.; Fontaine, G.; Funk, S.; Fuessling, M.; Gabici, S.; Gallant, Y. A.; Gate, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.; Haupt, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Huber, D.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzynski, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khelifi, B.; King, J.; Klepser, S.; Kluzniak, W.; Komin, Nu.; Kosack, K.; Kraus, M.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemiere, A.; Lemoine-Goumard, M.; Lenain, J. -P.; Leser, E.; Lohse, T.; Lopez-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marti-Devesa, G.; Marx, R.; Maurin, G.; Meintjes, P. J.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Moore, C.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Priyana, Noel A.; Prokhorov, D. A.; Prokoph, H.; Puehlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Ruiz-Velasco, E.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schuessler, F.; Schulz, A.; Schutte, H.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Senniappan, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sinha, A.; Sol, H.; Specovius, A.; Spir-Jacob, M.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der, Walt D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Vincent, P.; Vink, J.; Voisin, F.; Voelk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, R. M.; White, R.; Wierzcholska, A.; Yang, R.; Yoneda, H.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Zywucka, N. Bibcode: 2018yCat..36210116H Altcode: FITS files with sky maps corresponding to figures 1 and 3 in the paper. Spectral points corresponding to figures 2 and 10, as well as spectral fit information corresponding to table 5 in the paper.

(7 data files). Title: Probing the gravitational redshift with an Earth-orbiting satellite Authors: Litvinov, D. A.; Rudenko, V. N.; Alakoz, A. V.; Bach, U.; Bartel, N.; Belonenko, A. V.; Belousov, K. G.; Bietenholz, M.; Biriukov, A. V.; Carman, R.; Cimó, G.; Courde, C.; Dirkx, D.; Duev, D. A.; Filetkin, A. I.; Granato, G.; Gurvits, L. I.; Gusev, A. V.; Haas, R.; Herold, G.; Kahlon, A.; Kanevsky, B. Z.; Kauts, V. L.; Kopelyansky, G. D.; Kovalenko, A. V.; Kronschnabl, G.; Kulagin, V. V.; Kutkin, A. M.; Lindqvist, M.; Lovell, J. E. J.; Mariey, H.; McCallum, J.; Molera Calvés, G.; Moore, C.; Moore, K.; Neidhardt, A.; Plötz, C.; Pogrebenko, S. V.; Pollard, A.; Porayko, N. K.; Quick, J.; Smirnov, A. I.; Sokolovsky, K. V.; Stepanyants, V. A.; Torre, J. -M.; de Vicente, P.; Yang, J.; Zakhvatkin, M. V. Bibcode: 2018PhLA..382.2192L Altcode: 2017arXiv171010074L We present an approach to testing the gravitational redshift effect using the RadioAstron satellite. The experiment is based on a modification of the Gravity Probe A scheme of nonrelativistic Doppler compensation and benefits from the highly eccentric orbit and ultra-stable atomic hydrogen maser frequency standard of the RadioAstron satellite. Using the presented techniques we expect to reach an accuracy of the gravitational redshift test of order 10-5, a magnitude better than that of Gravity Probe A. Data processing is ongoing, our preliminary results agree with the validity of the Einstein Equivalence Principle. Title: The Vertical Dust Profile over Gale Crater Authors: Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M. Bibcode: 2017AGUFM.P23D2758G Altcode: Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio in the vertical column of atmosphere over Gale Crater. Title: The Vertical Dust Profile Over Gale Crater, Mars Authors: Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M. -P.; Battalio, M. Bibcode: 2017JGRE..122.2779G Altcode: We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column. Title: New Solar Soft X-Ray (SXR) Spectral Irradiance Measurements Bridge the SDO and RHESSI Spectral Gap to Study Flare Energetics Authors: Woods, T. N.; Jones, A.; Mason, J.; Moore, C.; Eparvier, F.; Caspi, A.; Chamberlin, P. Bibcode: 2016usc..confE..14W Altcode: The extreme ultraviolet (EUV) spectrum is rich in many different emission lines that reveal plasma characteristics concerning active region evolution and explosive energy release during coronal eruptions. Solar EUV imagers, such as SDO AIA, provide insight into the location, thermal structure, and dynamics of the coronal eruptions and associated flares. In addition, the solar EUV spectral irradiance from SDO EVE, with its higher spectral resolution, provides more detailed thermal evolution of the eruption and has better characterized some aspects of the eruptions such as relationship of coronal dimming and mass loss and post-eruption coronal loop cooling. Complementary to SDO are hard x-ray (HXR) measurements by RHESSI that have clarified the initiation of energy release from magnetic reconnection in the corona. New solar soft x-ray (SXR) spectral irradiance from the Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is now bridging this spectral gap between SDO EUV and RHESSI HXR observations. MinXSS-1 was deployed from the ISS in May 2016 for a 1-year mission, and MinXSS-2 is being launched in October 2016 for a 5-year mission. The energy release during solar flares is expected to peak in the SXR and thus the SXR has been monitored with GOES broadband photometers for decades, but there has been very limited SXR spectral measurements. With the new and unique MinXSS measurements of the SXR spectral variability during flares, coupled with solar SXR images from Hinode, EUV data from SDO, and HXR data from RHESSI, the processes for releasing energy during an eruption and affecting post-eruption thermal evolution can be explored in more detail. Furthermore, the new SXR spectral irradiance measurements can help improve the accuracy of broad band SXR measurements by GOES XRS, SDO EVE ESP, and XPS aboard TIMED and SORCE. Such improvements can lead to better understanding the solar impacts in Earth's ionosphere and thermosphere and how they might affect some of our space-based communication and navigation systems. This presentation will focus on how these new solar SXR spectral measurements can enhance the SDO studies of eruptive flares. Title: Establishment of Laser Link Between Ground Station and Hayabusa2 LIDAR Authors: Noda, H.; Mizuno, T.; Kunimori, H.; Takeuchi, H.; Senshu, H.; Ogawa, N.; Saiki, T.; Yamaguchi, T.; Pollard, A.; Moore, C.; Namiki, N.; Tsuda, Y. Bibcode: 2016LPI....47.1289N Altcode: Laser link experiment between ground SLR stations and a laser altimeter named LIDAR on Hayabusa2 was carried out, and the uplink laser pulses were detected. Title: Optical Survey of the Tumble Rates of Retired GEO Satellites Authors: Binz, C.; Davis, M.; Kelm, B.; Moore, C. Bibcode: 2014amos.confE..61B Altcode: The Naval Research Lab (NRL) and the Defense Advanced Research Projects Agency (DARPA) have made significant progress toward robotic rendezvous and docking between spacecraft, however the long-term attitude motion evolution of uncontrolled resident space objects has never been well-characterized. This effort set out to identify the motion exhibited in retired satellites at or near geosynchronous orbit (GEO). Through analysis of the periodic structure of observed reflected light curves, estimated tumble rates were determined for several retired satellites, typically in a super-GEO disposal orbit. The NRL's 1-meter telescope at Midway Research Center was used to track and observe the objects while the sun-satellite-observer geometry was most favorable; typically over a one- to two-hour period, repeated multiple times over the course of weeks. By processing each image with calibration exposures, the relative apparent magnitude of the brightness of the object over time was determined. Several tools, including software developed internally, were used for frequency analysis of the brightness curves. Results show that observed satellites generally exhibit a tumble rate well below the notional bounding case of one degree per second. When harmonics are found to exist in the data, modeling and simulation of the optical characteristics of the satellite can help to resolve ambiguities. This process was validated on spacecraft for which an attitude history is known, and agreement was found. Title: The World's Strangest Supernova May Not Be a Supernova At All Authors: Moore, C. Bibcode: 2012JAVSO..40..421M Altcode: (Abstract only) SN 2008ha is the least luminous supernova ever to be observed. It is unclear what caused this obscurity to occur. For the last three years I have been doing independent follow-up research on SN 2008ha. SN 2008ha is believed to be 100 times brighter than a nova, but 1,000 times dimmer then a supernova. The spectrum to some degree was classic Type Ia supernova because of the lack of hydrogen and abundance of silicon, but there are many other factors to be considered. SN 2008ha had a short rise time of only 10 days (typical Type Ia is 19.5 days). It has low expansion velocities of only 2,000km compared to the typical Ia with very small kinetic energy per unit mass of ejecta. Although some elements of the spectrum are consistent with those of a Type Ia, narrow lines were observed. This is just one of several characteristics that SN 2008ha shares with the "SN 2002cx-like class" of supernovae. SN 2008ha is believed to be the most extreme of this sub-class of supernovae with the smallest amount of space between lines, 5 days shorter rise time, being significantly fainter, and having lower velocities. With all these things considered, it does make classification as a Type Ia questionable. In fact it is even questionable if this is a supernova at all, and not just an "imposter." This may have just been a "star burp" which means that the supernova may have failed, resulting in some parts of the star being left, maybe even enough remains to explode again as seen in the case of SN 2006jc. This may have occurred because the explosion was not deep enough in the core of the star, and only eliminating some or all of the hydrogen envelope and leaving behind the carbon and oxygen inner layers, instead resulting in a Type Ic supernova. It would be interesting to see what, if anything is left of the star; this could make it a possible Hubble candidate. The idea that it may "burp" again makes it especially important. Title: Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption Authors: Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C. Bibcode: 2012EGUGA..1411454P Altcode: Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included different efficiencies of laser performance (e.g., frequency doubling) at the two wavelengths and temperature dependence. We will discuss improvements on the control of our system to eliminate drift due to conversion efficiency and temperature dependence. We will detail complications with operating this instrument from a mobile platform for in situ measurements in the field. Finally, we will present data acquisition and processing approaches along with results of calibration curves, and comparisons to conventional mercury analyzers (i.e., a Tekran 2537 mercury vapor analyzer) during ambient air measurements. Title: Bromine-induced Atmospheric Mercury Depletion Events (AMDEs) at the Dead Sea: magnitude, frequency, spatial extent, and modeled reaction pathways Authors: Tas, E.; Obrist, D.; Moore, C.; Peleg, M.; Luria, M. Bibcode: 2012EGUGA..1412475T Altcode: Bromine-induced Atmospheric Mercury Depletion Events (AMDEs) at the Dead Sea: magnitude, frequency, spatial extent, and modeled reaction pathways Title: NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument Authors: Jurgenson, C.; Santoro, F.; Creech-Eakman, M.; Houairi, K.; Bloemhard, H.; Vasisht, G.; Swain, M.; Deroo, P.; Moore, C.; Schmidt, L.; Boston, P.; Rodeheffer, D.; Chen, P. Bibcode: 2010SPIE.7735E..19J Altcode: 2010SPIE.7735E..43J Less than 20 years after the discovery of the first extrasolar planet, exoplanetology is rapidly growing with more than one discovery every week on average since 2007. An important step in exoplanetology is the chemical characterization of exoplanet atmospheres. It has recently been shown that molecular signatures of transiting exoplanets can be studied from the ground. To advance this idea and prepare more ambitious missions such as THESIS, a dedicated spectrometer named the New Mexico Tech Extrasolar Spectroscopic Survey Instrument (NESSI) is being built at New Mexico Tech in collaboration with the NASA Jet Propulsion Laboratory. NESSI is a purpose-built multi-object spectrograph that operates in the J, H, and K-bands with a resolution of R = 1000 in each, as well as a lower resolution of R = 250 across the entire J/H/K region. Title: Monte Carlo modeling of Io’s [OI] 6300 Å and [SII] 6716 Å auroral emission in eclipse Authors: Moore, C.; Miki, K.; Goldstein, D. B.; Stapelfeldt, K.; Varghese, P. L.; Trafton, L. M.; Evans, R. W. Bibcode: 2010Icar..207..810M Altcode: We present a Monte Carlo (MC) model of [OI] 6300 Å and [SII] 6716 Å emission from Io entering eclipse. The simulation accounts for the 3-D distribution of SO 2, O, SO, S, and O 2 in Io's atmosphere, several volcanic plumes, and the magnetic field around Io. Thermal electrons from the jovian plasma torus are input along the simulation domain boundaries and move along the magnetic field lines distorted by Io, occasionally participating in collisions with neutrals. We find that the atmospheric asymmetry resulting from varying degrees of atmospheric collapse across Io (due to eclipse ingress) and the presence of volcanoes contributes significantly to the unique morphology of the [OI] 6300 Å emission. The [OI] radiation lifetime of ∼134 s limits the emission to regions that have a sufficiently low neutral density so that intermolecular collisions are rare. We find that at low altitudes (typically <40 km) and in volcanic plumes (Pele, Prometheus, etc.) the number density is large enough (>4 × 10 9 cm -3) to collisionally quench nearly all (>95%) of the excited oxygen for reasonable quenching efficiencies. Upstream (relative to the plasma flow), Io's perturbation of the jovian magnetic field mirrors electrons with high pitch angles, while downstream collisions can trap the electrons. This magnetic field perturbation is one of the main physical mechanisms that results in the upstream/downstream brightness asymmetry in [OI] emission seen in the observation by Trauger et al. (Trauger, J.T., Stapelfeldt, K.R., Ballester, G.E., Clarke, J.I., 1997. HST observations of [OI] emissions from Io in eclipse. AAS-DPS Abstract (1997DPS29.1802T)). There are two other main causes for the observed brightness asymmetry. First, the observation's viewing geometry of the wake spot crosses the dayside atmosphere and therefore the wake's observational field of view includes higher oxygen column density than the upstream side. Second, the phased entry into eclipse results in less atmospheric collapse and thus higher collisional quenching on the upstream side relative to the wake. We compute a location (both in altitude and latitude) for the intense wake emission feature that agrees reasonably well with this observation. Furthermore, the peak intensity of the simulated wake feature is less than that observed by a factor of ∼3, most likely because our model does not include direct dissociation-excitation of SO 2 and SO. We find that the latitudinal location of the emission feature depends not so much on the tilt of the magnetic field as on the relative north/south flux tube depletion that occurs due to Io's changing magnetic latitude in the plasma torus. From 1-D simulations, we also find that the intensity of [SII] 6716 and 6731 Å emission is much weaker than that of [OI] even if the [SII] excitation cross section is 10 3 times larger than excitation to [OI]. This is because the density of S + is much less than that of O and because the Einstein- A coefficient of the [SII] emission is a factor of ∼10 smaller than that of [OI]. Title: Supernova 2009he in UGC 10361 Authors: Puckett, T.; Moore, C.; Orff, T. Bibcode: 2009CBET.1868....1P Altcode: 2009CBET.1868A...1P T. Puckett, Ellijay, GA, U.S.A.; and C. Moore, Warwick, NY, U.S.A., report the discovery of an apparent supernova (mag 17.5) on unfiltered CCD images (limiting mag 18.9) taken with a 0.50-m reflector at Ellijay on July 3.16 UT in the course of the Puckett Observatory Supernova Search. The new object, which was confirmed at mag 17.5 on images (limiting mag 19.5) taken by T. Orff on July 4.17 with a 0.60-m reflector at Ellijay, is located at R.A. = 16h22m12s.33, Decl. = +57o16'22".5 (equinox 2000.0), which is 21".8 east and 6".9 north of the center of UGC 10361. Nothing is visible at this position on images taken by Puckett on June 22 (limiting mag 19.4). Title: Extending Deep H-alpha Galaxy Surveys to Higher Redshift with NEWFIRM Authors: Lee, Janice C.; Ly, C.; Moore, C.; Salim, S.; Dale, D.; Finn, R.; Momcheva, I. Bibcode: 2009AAS...21342401L Altcode: 2009BAAS...41Q.246L H-alpha nebular emission is one of the most direct tracers of star formation. As such, a great deal of our current understanding of star formation in local galaxies is based on a long and rich history of H-alpha observational studies. However, there is a dearth of analogous work at intermediate redshifts -- a critical period in galaxy evolution where the overall star formation activity reaches its maximum. Here, we present first results from our on-going campaign to extend deep, wide H-alpha galaxy surveys to earlier cosmic times by taking advantage of the new capabilities offered by the NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) at the KPNO 4m. Our strategy is to obtain (1%) narrowband imaging of key extragalactic fields in low-OH airglow windows at 1.19 and 2.09 microns (H-alpha at z 0.8 and 2.2, respectively). Our filters are coupled such that the [OII] emission of H-alpha emitters detected at 2.09 microns will also be captured in the 1.19 micron narrowband. Continuum measurements are provided by J and Ks-band observations. Follow-up spectroscopy is being obtained with IMACS at the Magellan 6.5m at Las Campanas. We discuss our overall survey design and candidate selection, examine the properties of our narrowband excess emitters, and give an overview of the science that our survey data will address. The H-alpha SFR limits of our 1.19 and 2.09 micron data will reach to 1 M_sun/yr and 12 M_sun/yr, respectively. A companion poster describes preliminary results on H-alpha luminosity functions and star formation rate densities. Title: A Comparison of UV and Hα Star Formation Rates In Intermediate Redshift Galaxies Authors: Walton, Josiah; Salim, S.; Lee, J.; Ly, C.; Finn, R.; Moore, C.; Dale, D.; McCarthy, D.; Kulesa, C.; Kennefick, J. Bibcode: 2009AAS...21342403W Altcode: 2009BAAS...41..246W We present results of a study which directly compares star formation rates (SFRs) based on two commonly used indicators, the UV non-ionizing continuum and H-alpha nebular emission, for star-forming galaxies at z 0.8. Using UV data from the GALEX ultra-deep imaging survey in the Extended Groth Strip (EGS), Hubble Deep Field North (HDFN), and COSMOS fields, we construct a PSF-based UV flux catalog, which effectively deals with object blending. In the EGS and HDFN regions, we extract H-alpha fluxes from new near-IR (NIR) narrowband imaging observations obtained with the PISCES NIR camera on the 2.3m Bok telescope on Kitt Peak. For the COSMOS field, H-alpha fluxes are extracted from new NIR narrowband imaging observations taken with the NEWFIRM NIR camera on the Kitt Peak 4m. From the rest-frame far-UV flux and UV slope, we calculate dust-corrected UV SFRs. We also calculate SFRs from H-alpha fluxes, corrected for 1 magnitude of extinction. For galaxies at z 0.8, we examine the correlation between dust-corrected UV and H-alpha SFRs, and compare with previous results at lower redshifts. Walton's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF, and The Observatories of the Carnegie Institute of Washington. Title: Stellar Surface Image of LO Pegasi via Light-curve Inversion Authors: Harmon, Robert O.; Moore, C.; Decker, R. Bibcode: 2009AAS...21343406H Altcode: 2009BAAS...41Q.304H We present images of dark starspots on the surface of the K8 main-sequence star LO Pegasi. CCD images of the star and surrounding field were acquired through B, V, R and I filters at Perkins Observatory in June and July, 2008. The images were dark-subtracted and flat-fielded and then aperture photometry was performed to yield light curves through each of the four filters. These light curves were then simultaneously inverted via an algorithm devised by one of us (Harmon) so as to yield images of the spots based on the rotational modulation they produced in the light curves. The use of multiple filters significantly improves the latitude resolution of the reconstructions. Comparison of our results with results from 2006 and 2007 shows that the spot structure was more complex in 2008 than in the prior years.

This research was funded by the NSF REU Program and the Ohio Wesleyan University Summer Science Research Program. Title: Hα Luminosity Functions and Star Formation Rate Volume Densities at z=0.8 Authors: Ly, Chun; Lee, J.; Dale, D.; Salim, S.; Moore, C.; Finn, R.; Momcheva, I. Bibcode: 2009AAS...21342402L Altcode: 2009BAAS...41R.246L As part of a larger effort to extend deep, wide H-alpha galaxy surveys to higher redshift using the NOAO Extremely Wide-Field Infrared Mosaic (NEWFIRM) at the KPNO-4m, we have identified a sample of galaxies with H-alpha emission at z=0.8. The galaxies are selected as narrowband excess emitters in a 1% custom filter centered on the 1.187 micron low OH-airglow window (hereafter 1190NB). Thus far, the observations include three NEWFIRM pointings (FOV 27.'6x27.'6) in the Subaru-XMM Deep Survey (SXDS), one pointing in the Cosmic Origins Survey (COSMOS) and one in SSA22. These fields have been chosen for the panchromatic ancillary data that are available. Emission-line galaxy candidates are identified by the comparison of 1190NB and J-band fluxes, and we detect sources to a 5sigma sensitivity of 23.0 AB and an SFR of 1 Msun/yr. We present H-alpha and rest-frame optical and UV luminosity functions, and star formation rate volume densities, and compare our results with previous studies. Title: Dark Skies from the Ground Up: Part 2. Programs to Raise Awareness During the International Year of Astronomy Authors: Walker, C. E.; Bueter, C.; Crelin, G.; Duriscoe, D.; Moore, C.; Heatherly, S. A.; Maddalena, R.; Mann, T.; Patten, K.; Pompea, S. M.; Sparks, R.; Schaaf, F.; Simmons, M.; Smith, M.; Tafreshi, B. Bibcode: 2008ASPC..400..116W Altcode: Six dark skies-related programs assembled for the International Year of Astronomy (IYA) are described here. Programs on dark skies awareness and preservation like GLOBE at Night, Dark Skies Discovery Sites, Quiet Skies, Astronomy Nights at the (National) Parks, a digital photography contest and the Good Neighbor Lighting program are presented. Title: ``Dark Skies are a Universal Resource'' Programs Planned for the International Year of Astronomy Authors: Walker, C. E.; Berglund, K.; Bueter, C.; Crelin, B.; Duriscoe, D.; Moore, C.; Gauthier, A.; Gay, P. L.; Foster, T.; Heatherly, S. A.; Maddalena, R.; Mann, T.; Patten, K.; Pompea, S. M.; Sparks, R.; Schaaf, F.; Simmons, M.; Smith, C.; Smith, M.; Tafreshi, B. Bibcode: 2008ASPC..400..298W Altcode: In an effort to help more people appreciate the ongoing loss of a dark night sky for much of the world's population and to raise public knowledge about diverse impacts of excess artificial lighting on local environments, the International Year of Astronomy's Dark Skies Working Group has established six ``Dark Skies'' programs and six ``Dark Skies'' resources. The Dark Skies programs include GLOBE at Night (with Earth Hour), Astronomy Nights in the [National] Parks, Dark Skies Discovery Sites, Quiet Skies, Good Neighbor Lighting, and a digital photography contest. Resources include the light education toolkit, the ``Let There Be Night'' DVD and planetarium program, the 6-minute video, online interactions like Second Life, podcasts, and traveling exhibits. The programs and resources are summarized here, as they were in a poster for the June 2008 ASP/AAS conference. For more information on these programs and resources, visit http://astronomy2009.us/darkskies/. Title: Supernova 2008ha in UGC 12682 Authors: Puckett, T.; Moore, C.; Newton, J.; Orff, T. Bibcode: 2008CBET.1567....1P Altcode: 2008CBET.1567A...1P T. Puckett, Ellijay, GA, U.S.A.; C. Moore, Warwick, NY, U.S.A.; and J. Newton, Portal, AZ, U.S.A., report the discovery of an apparent supernova (mag 18.8) on unfiltered CCD images (limiting mag 19.4) taken with a 0.40-m reflector at Portal on Nov. 7.17 UT in the course of the Puckett Observatory Supernova Search. The new object was confirmed at mag 18.2 on images (limiting mag 19.8) taken by T. Orff on Nov. 9.16 with a 0.60-m reflector at Ellijay. SN 2008ha is located at R.A. = 23h34m52s.69, Decl. = +18o13'35".4 (equinox 2000.0), which is about 12" west and 0".5 south of the center of UGC 12682. Nothing is visible at this position on images taken by Puckett on Sept. 8 (limiting mag 19.4). The exact center of the apparent host galaxy was very hard to measure, so its coordinates were taken from the Sinbad website (position end figures 53s.55, 35".9), though Puckett's measurements on the brightest nodule yield position end figures 53s.31, 38".0. Title: Automation - Recent Progress at Mt Stromlo SLR Station Authors: Moore, C. Bibcode: 2008lara.workE..78M Altcode: No abstract at ADS Title: Assessing Tracking Performance of High Satellites at Mt Stromlo SLR Station Authors: Moore, C. Bibcode: 2008lara.workE..42M Altcode: No abstract at ADS Title: On the Generation of SLR Output Files at Mt Stromlo Authors: Moore, C. Bibcode: 2008lara.workE..82M Altcode: No abstract at ADS Title: Effects of Ranging in Circular Polarization Authors: Luck, J.; Moore, C. Bibcode: 2008lara.workE.111L Altcode: No abstract at ADS Title: Observing Earth from the Vantage Point of Venus Orbit Authors: Grinspoon, David H.; Williams, D. M.; Piccioni, G.; Bertaux, J.; Moore, C. Bibcode: 2008DPS....40.0105G Altcode: 2008BAAS...40Q.386G Earth has been photographed as a single pixel - a "pale blue dot” - by Voyager, Cassini, the Mars Exploration Rovers, and other spacecraft, and studied spectroscopically with Galileo during an Earth fly-by. But our planet has not been the subject of sustained spectroscopic and photometric observations as an unresolved, disk-averaged, time-variable single pixel object (at least not by humans). Disk averaged observations of Earth have, however, been modeled extensively as proxy for observations of extrasolar terrestrial planets which will be possible in the future with instruments such as Darwin or Terrestrial Planet Finder. Interplanetary observations of Earth can mimic these planned observations of extrasolar planets. Features that could potentially be observed include the "red edge” of vegetation, seasonal albedo changes, photometric phase effects such as specular reflection from oceans, rotation rate, spectral differences between oceanic and terrestrial hemispheres, and the seasonal and secular variations in CO2 abundance caused by the hemispheric distribution of vegetation and by the industrial activities of "intelligent” organisms. We have begun regular observations of Earth with the Venus Express spacecraft, and will present some preliminary results, and discuss how these observations can provide context for future observations of Earth-like extrasolar planets. Title: First disk-resolved millimeter observations of Io's surface and SO{2} atmosphere Authors: Moullet, A.; Lellouch, E.; Moreno, R.; Gurwell, M. A.; Moore, C. Bibcode: 2008A&A...482..279M Altcode: Aims: In spite of considerable progress in the last two decades, Io's atmosphere remains poorly understood. The goal of this work is to improve our understanding of its spatial distribution, temperature and dynamics.
Methods: We present millimeter observations of Io's surface and SO2 atmosphere at 1.4 mm obtained with the IRAM Plateau de Bure Interferometer in January-February 2005. With a synthesized beam of 0.5×1.5'', these observations resolve Io's ~1.0'' disk in the longitudinal / local time direction, and sample the leading and trailing hemispheres of Io.
Results: The measured continuum total flux and visibilities show that continuum radiation originates from a depth of at least 1 cm in Io's subsurface. On both the leading and trailing sides, emission in the SO2 216.643 GHz line appears spatially narrower than the continuum, and suggests that the atmosphere covers ~80% of the surface on the leading side and ~60% on the trailing. On the leading side, disk-resolved spectra yield Doppler shift measurements, indicating a beam-integrated limb-to-limb velocity difference of 330 ± 100 m/s in the prograde direction. Such a flow allows an improved fit of disk-averaged SO2 spectra, but its origin remains to be understood. Mean gas temperatures are in the range 130-180 K, in agreement with estimates from IR measurements, and with a tendency for higher trailing vs leading side gas temperatures. On the basis of realistic plume models, we find that the contribution of isolated volcanic plumes to the SO2 emission is small.

Appendix A is only available in electronic form at http://www.aanda.org Title: Io's Surface and SO2 Atmosphere: First Disk-resolved Millimetric Observations Authors: Moullet, A.; Lellouch, E.; Moreno, R.; Gurwell, M.; Moore, C. Bibcode: 2007LPICo1357..102M Altcode: No abstract at ADS Title: Numerical modeling of ionian volcanic plumes with entrained particulates Authors: Zhang, J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L.; Moore, C.; Miki, K. Bibcode: 2004Icar..172..479Z Altcode: Volcanic plumes on Jupiter's moon Io are modeled using the direct simulation Monte Carlo (DSMC) method. The modeled volcanic vent is interpreted as a "virtual" vent. A parametric study of the "virtual" vent gas temperature and velocity is performed to constrain the gas properties at the vent by observables, particularly the plume height and the surrounding condensate deposition ring radius. Also, the flow of refractory nano-size particulates entrained in the gas is modeled with "overlay" techniques which assume that the background gas flow is not altered by the particulates. The column density along the tangential line-of-sight and the shadow cast by the plume are calculated and compared with Voyager and Galileo images. The parametric study indicates that it is possible to obtain a unique solution for the vent temperature and velocity for a large plume like Pele. However, for a small Prometheus-type plume, several different possible combinations of vent temperature and velocity result in both the same shock height and peak deposition ring radius. Pele and Prometheus plume particulates are examined in detail. Encouraging matches with observations are obtained for each plume by varying both the gas and particle parameters. The calculated tangential gas column density of Pele agrees with that obtained from HST observations. An upper limit on the size of particles that track the gas flow well is found to be ∼10 nm, consistent with Voyager observations of Loki. While it is certainly possible for the plumes to contain refractory dust or pyroclastic particles, especially in the vent vicinity, we find that the conditions are favorable for SO 2 condensation into particles away from the vent vicinity for Prometheus. The shadow cast by Prometheus as seen in Galileo images is also reproduced by our simulation. A time averaged frost deposition profile is calculated for Prometheus in an effort to explain the multiple ring structure observed around the source region. However, this multiple ring structure may be better explained by the calculated deposition of entrained particles. The possibility of forming a dust cloud on Io is examined and, based on a lack of any such observed clouds, a subsolar frost temperature of less than 118 K is suggested. Title: Matching Various Observations of Io with DSMC Modeling: Plume, Plume Shadow, Sodium Field Around Pele Authors: Zhang, J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L.; Moore, C.; Miki, K. Bibcode: 2004LPI....35.1972Z Altcode: Volcanic plumes on Jupiter's moon Io are modeled using the direct simulation Monte Carlo (DSMC) method. Numerical matches to various observations of Io with DSMC Modeling: plume, plume shadow and Sodium field around Pele are presented. Title: Monte Carlo Modeling of [O I] 630 nm Auroral Emission on Io Authors: Moore, C.; Miki, K.; Goldstein, D. B.; Varghese, P. L.; Trafton, L.; Zhang, J. Bibcode: 2004LPI....35.1983M Altcode: A three-dimensional Monte Carlo model for the motion of electrons and excited oxygen atoms is used to simulate the electron flow around Io, electron-neutral collisions, and the resulting [O I] 630 nm emission. Title: Modeling of Particulates and Condensates in Io's Pele-type Volcanic Plumes Authors: Moore, C.; Zhang, J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. Bibcode: 2003LPI....34.2102M Altcode: DSMC is used to model dust flow and condensate formation in Io's Pele-Type Plumes. It is found that particles up to .1 micron in diamter can reach the shock front. Title: BooNE Authors: McKenney, S.; Smith, D.; Koutsoliotas, S.; Church, E.; Stancu, I.; Vandalen, G. J.; Johnson, R. A.; Bugel, L.; Conrad, J. M.; Formaggio, J.; Shaevitz, M. H.; Tamminga, B.; Zimmerman, E.; Bhat, C.; Brown, B. C.; Ford, R.; Kasper, P.; Kourbanis, I.; Malensek, A.; Marsh, W.; Martin, P.; Mills, F.; Moore, C.; Russell, A.; Stefanski, R.; Eitel, K.; Garvey, G. T.; Hawker, E.; Louis, W. C.; Mills, G. B.; Sandberg, V.; Sapp, B.; Tayloe, R.; White, D. H.; Imlay, R.; Kim, H. J.; Malik, A.; Metcalf, W.; Sung, M.; Azemoon, T.; Ball, R.; Berbeco, R.; Riles, K.; Roe, B. P.; Wadia, N.; Yamamoto, J.; Bazarko, A. O.; Meyers, P. D.; Shoemaker, F. C. Bibcode: 2000APS..DNP.AS046M Altcode: The phenomenon of neutrino oscillations, where a neutrino of one type spontaneously transforms into a neutrino of another type, has important and far-reaching consequences for particle physics and cosmology. For this phenomenon to occur, at least one neutrino must be massive and the heretofore observed lepton flavor conservation law must be violated. There are, at present, several results that indicate neutrino oscillations and it is not clear how and if these experimental results are indicative of the situation that actually obtains in Nature. There is evidence for a deficit of electrons neutrinos observed emanating from the sun. There is evidence for a deficit of electron neutrinos compared to muon neutrinos created in the upper atmosphere. And, there is an excess of electron antineutrinos observed in a beam of muon antineutrinos by the LSND experiment. The Booster Neutrino Experiment (BooNE) will focus on the final observation by definitely testing the LSND result. BooNE has been approved to run at Fermilab and is currently under construction. If the LSND result is due to oscillations, the first stage of the experiment (miniBooNE) will observe approximately 1000 oscillation events in the first calendar year of operation. Title: Possible Radio Counterpart of MXB 1730-335 Authors: Rutledge, R.; Moore, C.; Fox, D.; Lewin, W.; van Paradijs, J. Bibcode: 1998ATel....8....1R Altcode: Contemporaneous observations with RXTE All-Sky Monitor (2-10 keV) and the VLA at 4.9 and 8.4 GHz reveal a transient radio point-source, the intensity of which is correlated with the X-ray flux of MXB 1730-335 (The Rapid Burster; RB). Title: Outburst of MXB 1730-335 Authors: Fox, D.; Guerriero, R.; Lewin, W.; Rutledge, R.; Moore, C.; van der Klis, M.; van Paradijs, J. Bibcode: 1998ATel....9....1F Altcode: The Rapid Burster (MXB 1730-335) has been detected by the All-Sky Monitor of the Rossi X-ray Timing Explorer in three consecutive 90-second dwells over the course of the last 28 hours (beginning 28 Jan 1998 22:20 UT). The source was detected at fitted count rates of 14, 11, and 15 cts/sec (per SSC), with uncertainties of ~2 cts/sec. During quiescence fitted count rates are generally < 6 cts/sec and consistent with zero (3 sigma). Title: MXB 1730-335 Authors: Guerriero, R.; Fox, D.; Lewin, W.; Rutledge, R.; Moore, C.; van der Klis, M.; van Paradijs, J. Bibcode: 1998IAUC.6815....2G Altcode: 1998IAUC.6815R...1G; 1998IAUC.6815B...1G R. Guerriero, D. Fox and W. Lewin, Massachusetts Institute of Technology; R. Rutledge, University of California at Berkeley; C. Moore, Kapteyn Institute; M. van der Klis, Astronomical Institute 'Anton Pannekoek', University of Amsterdam (UA); and J. van Paradijs, University of Alabama in Huntsville and UA, report: "The All-Sky Monitor of the Rossi X-ray Timing Explorer indicates the beginning of a new x-ray outburst of this rapid burster. Discovery of a likely radio counterpart (IAUC 6813) makes timely radio and infrared observations extremely valuable." Title: MXB 1730-335 Authors: Rutledge, R.; Moore, C.; Fox, D.; Lewin, W.; van Paradijs, J. Bibcode: 1998IAUC.6813....2R Altcode: 1998IAUC.6813B...1R; 1998IAUC.6813R...1R R. Rutledge, University of California at Berkeley; C. Moore, Kapteyn Institute; D. Fox and W. Lewin, Massachusetts Institute of Technology; and J. van Paradijs, University of Amsterdam and University of Alabama at Huntsville, report the discovery of a radio transient with flux density correlated with the RXTE/ASM x- ray flux of the rapid burster MXB 1730-335 (cf. IAUC 6409, 6506), in five observations at the Very Large Array at 8.0 GHz during the Dec. 1996 and June/July 1997 outbursts. The position of the radio source is R.A. = 17h33m24s.61, Decl. = -33o23'19".8 (equinox 2000.0; uncertainty 0".1). Details for a proposed radio campaign during the next outburst (expected in the next few months) will be given at http://astron.berkeley.edu/~rutledge/rb.html. Title: Identification of a Likely Radio Counterpart to the Rapid Burster (MXB 1730-335) Authors: Rutledge, R.; Moore, C.; Fox, D.; Lewin, W. H. G.; van Paradijs, J. Bibcode: 1997AAS...19110005R Altcode: 1997BAAS...29.1370R We have identified a likely radio counterpart to the X-ray low-mass-X-ray-binary MXB 1730-335 (The Rapid Burster; RB). The counterpart, which is between 4-5.6sigma away from the X-ray position, has during our five observations shown radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM -- the chance probabilty of an unrelated background source duplicating this is 1.6%. If the radio and X-ray flux are correlated on ~ seconds timescales, then observations of radio bursts are well within current instrumentation capability. Title: Systematic Collection and Analysis of Meteoritic Materials from Meteor Crater, Arizona Authors: Kargel, J. S.; Coffin, P.; Kraft, M.; Lewis, J. S.; Moore, C.; Roddy, D.; Shoemaker, E. M.; Wittke, J. H. Bibcode: 1996LPI....27..645K Altcode: We have started a systematic collection and analysis of meteoritic materials from Meteor Crater, Arizona. Since our earlier report (Kargel, J.S., Kraft, M.D., Roddy, D.J., Wittke, J.H., and Lewis, J.S., 1995, Eos, v. 76, p. F337), we have found 47 small fragments of the Canyon Diablo iron meteorite. We also have collected impactite lapilli; oxidized meteorite fragments; and materials we call amalgamated meteoritic/lithic fragments (AMLs), which consist of target rocks fused with and impregnated by oxidized meteoritic iron. The composition of the impactite lapilli is consistent with admixture of about 3 parts Kaibab Formation (siliceous dolomitic limestone) and 1 part oxidized meteorite. In addition, the lapilli contain microscopic spherules of Ni-rich metal (up to 90% Ni), which can only be explained by partial oxidation of Canyon Diablo metal. Our interpretation of the lapilli is that the impact event melted and devolatilized rocks of the Kaibab Formation (siliceous limestone and dolomite), which mixed with molten meteoritic metal. If impact heated metal droplets or vapor condensates attained about 3500 K, then CO2 released from the Kaibab Formation may have thermally decomposed to CO and O2 and caused partial oxidation of the metal. Title: A Search for HI Absorption against Gravitational Lenses Authors: McMahon, P. M.; Moore, C.; Hewitt, J. N.; Rupen, M. P.; Carilli, C. Bibcode: 1993AAS...183.1203M Altcode: 1993BAAS...25S1307M We observed the radio spectrum of two gravitationally lensed sources, MG 0414+0534 and PKS 1830-211, to search for neutral hydrogen absorption associated with the foreground lensing galaxies. The primary purpose of these observations is to determine the redshift of the lensing galaxies, which are both extremely faint, making optical determinations difficult at best. The observations were performed on the Greenbank 140' telescope using the spectral processor. The observed frequency range extends from 750 to 1000 MHz, corresponding to a redshift range of 0.42 <= z <= 0.9, and covers most of the range in redshifts predicted by lensing models. The main difficulty with observations in this frequency range is severe interference from a variety of sources. We discuss several methods of minimizing the effects of such interference and present our results in terms of optical depth limits as a function of wavelength. Title: Tambo Quemado: Extraordinary Concentrations of REE and Refractory Trace Elements Caused by Artificial Heating Authors: Olsen, E.; Hutcheon, I.; Moore, C. Bibcode: 1993LPI....24.1103O Altcode: No abstract at ADS Title: Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions Authors: Moore, C. E. Bibcode: 1993tshc.book.....M Altcode: No abstract at ADS Title: Atmospheric-lithospheric interactions on Venus: experimental investigations. Authors: Tucker, D. W.; Marshall, J. R.; Greeley, R.; Moore, C.; Pollack, J. Bibcode: 1988NASTM4041..119T Altcode: No abstract at ADS Title: Book-Review - the Solar Spectrum 3069A - 2095A from the Echelle Spectrograph Flown in 1961 and 1964 - an Extension from Rowland's Preliminary Table of Solar Spectrum Wavelengths Authors: Moore, C. E.; Tousey, R.; Brown, D. M. Bibcode: 1984Sci...223R.584M Altcode: No abstract at ADS Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition - B: Multiplet table; O IV. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1983stas.book.....M Altcode: No abstract at ADS Title: The solar spectrum 3069 A - 2095 A. From the Echelle Spectrograph flown in 1961 and 1964 Authors: Moore, C. E.; Tousey, R.; Brown, C. M. Bibcode: 1982sses.book.....M Altcode: 1982QB501.S95...... The final listing of solar lines recorded in the NRL echelle spectra photographed at high resolution from Aerobee rockets flown in 1961 and 1964 is presented. The wavelength range covered is 3059A to 2095A. It is intended to accompany NRL report no. 7788, An Atlas of the Solar Spectrum Between 2226 and 2922 Argstroms, which presents the solar irradiance at 0.03 A resolution as derived from the echelle spectra. Solar wavelengths are given to 0.01 A, and estimated solar intensities are listed on a visual scale of 1 to 9. Laboratory wavelengths, multiplet numbers, and references are cited for each line. Approximately 6150 lines are reported, of which 80% are identified. Title: New Analyses of Antarctic Carbonaceous Chondrites Authors: Moore, C.; Cronin, J.; Pizzarello, S.; Ma, M. -S.; Schmitt, R. Bibcode: 1981PolRe.......29M Altcode: No abstract at ADS Title: The Solar Spectrum 3069Å - 2095Å - Extension of Rowland's Preliminary Table of Solar Spectrum Wavelengths Authors: Moore, C. E.; Tousey, R.; Brown, C. M. Bibcode: 1981BAAS...13R.879M Altcode: No abstract at ADS Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition - B: Multiplet table; O V. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1980stas.book.....M Altcode: No abstract at ADS Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition - B: Multiplet tables O VI, O VII, O VIII. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1979stas.book.....M Altcode: No abstract at ADS Title: The presence of Si I series in the ultraviolet solar spectrum: 3000 to 1200 Å. Authors: Moore, C. E.; Brown, C. M.; Sandlin, G. D.; Tilford, S. G.; Tousey, R. Bibcode: 1977ApJS...33..393M Altcode: Laboratory and solar data are presented which form the basis for identifying chromospheric Si I absorption lines in UV rocket spectra of the solar limb. Prints of the Si I laboratory spectrum between 1520 and 1570 A are matched with those of the chromospheric spectrum, and a striking line-to-line coincidence is observed. Individual absorption series of Si I covering the 3p(2), 3P, 1D, and 1S ground terms are tabulated in multiplet form over the wavelength range from 1517 to 3069 A. It is noted that many of the solar lines are blended with both other Si I lines and lines of other spectra. Title: Leading atomic lines present in solar spectra: H through Ca. Authors: Moore, C. E. Bibcode: 1977OPurA..10..131M Altcode: No abstract at ADS Title: XUV spectrum of CI observed from Skylab during a solar flare. Authors: Feldman, U.; Brown, C. M.; Doschek, G. A.; Moore, C. E.; Rosenberg, F. D. Bibcode: 1976JOSA...66..853F Altcode: 1976OSAJ...66..853F A list of 193 neutral carbon lines observed in the XUV spectrum of a solar flare between 100 and 2000 A using the normal incidence spectrograph flown on Skylab is presented. Of these, 69 are newly identified lines arising from transitions from upper levels of high quantum number where the quantum number is not less than six. The new lines have allowed the determination of 63 new energy levels. Wavelengths for an additional 109 transitions were calculated by polynomial fitting using reference wavelengths of unblended neutral carbon, Si, N, and S lines emitted in the same atmospheric regions of the flare. The calculated lines falling between 1102 and 1140 A were not observed due to low instrumental efficiency at these wavelengths. The calculated wavelengths are in excellent agreement with those of Johansson (1965). It appears that in solar spectra recombination processes are dominant, enhancing the populations of the high quantum levels relative to the populations of levels with small quantum numbers. Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition - B: Multiplet tables; O I. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1976stas.book.....M Altcode: No abstract at ADS Title: The first spectrum of hafnium (Hf_I). Authors: Meggers, W. F.; Moore, C. E. Bibcode: 1976fsh..book.....M Altcode: No abstract at ADS Title: Ultraviolet Solar Identifications Based on Extended Absorption Series Observed in the Laboratory Spectrum of SI I Authors: Moore, C. E.; Tousey, R.; Sandlin, G. D.; Brown, C. M.; Ginter, M. L.; Tilford, S. G. Bibcode: 1975Ap&SS..38..359M Altcode: 1975IAUCo..27..359M The absorption spectrum of Si i in the wavelength region 1500 1900 Å has been photographed at high resolution. The silicon vapour was produced in a 122 cm long King furnace at 1800 2300°C. Forty-two Rydberg series have been observed from the ground state terms 3p 2 3 P and1 D to terms associated with the 3pns and 3pnd configurations. All of the series from these configurations withJ<4 have been extended with the 3pnd 3 D {3/o} levels reachingn=56. Numerous perturbations have been observed. This laboratory work has provided the basis for extending the identification of silicon lines in the solar spectrum. Nearly all lines found in the laboratory spectrum are also found in rocket spectrograms of the solar chromosphere. More than 300 lines have been attributed to Si i. The excellent correlation between laboratory and solar Si i lines will be illustrated. Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition - B: Multiplet table; N I, N II, N III. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1975stas.book.....M Altcode: No abstract at ADS Title: A multiplet table of astrophysical interest - Pt.1: Table of multiplets - Pt.2: Finding list of all lines in the table of multiplets Authors: Moore, Charlotte E. Bibcode: 1972mtai.book.....M Altcode: 1972QB465.M6....... No abstract at ADS Title: Erratum: Lithium in chondritic meteorites. W. Nichiporuk and Moore, Earth Planet. Sci. Letters 9 (1970) 280-286 W. Nichiporuk and Moore, Earth Planet. Sci. Letters 9 (1970) 280-286 Authors: Nichiporuk, W.; Moore Bibcode: 1971E&PSL..10..380N Altcode: No abstract at ADS Title: National Bureau of Standards, Washington, D.C. Report 1969-1970. Authors: Moore, C. E. Bibcode: 1971BAAS....3..154M Altcode: No abstract at ADS Title: Nsrds-Nbs 35 Authors: Moore, C. E. Bibcode: 1971nsnb.book.....M Altcode: No abstract at ADS Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition - B: Multiplet tables; N IV, N V, N VI, N VII. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1971stas.book.....M Altcode: No abstract at ADS Title: National Bureau of Standards, Washington, D.C. Report 1968-1969. Authors: Moore, C. E. Bibcode: 1970BAAS....2...98M Altcode: No abstract at ADS Title: Silicon in the sun Authors: Moore, Charlotte E. Bibcode: 1970VA.....12..307M Altcode: A brief survey is given of silicon lines in the spectra of the solar photosphere, chromosphere and corona. These lines arise not only from the spectrum of the neutral atom, but also from the ionic spectra of every stage of ionization, i.e. Si I through Si XIV. The ionization potentials range from 8 to 2673 eV, and the wavelengths of the solar identifications span the interval from 6 Å to 25129 Å. The wide range of excitation and ionization thus represented makes silicon a suitable element for detailed study of solar models, fluxes, abundances and the like. Title: Ionization potentials and ionization limits derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1970ipil.book.....M Altcode: No abstract at ADS Title: Selected tables of atomic spectra Authors: Moore, Charlotte E. Bibcode: 1970stas.book.....M Altcode: No abstract at ADS Title: Bibliography on the analyses of optical atomic spectra. Sect. 1: 1H - 23V; Sect.2: 24[W] - 41[Nb]; Sect.3: 42[Mo] - 57[La], 72[Hf] - 89[Ac]; Sect.4: 57[La] - 71[Lu], 89[Ac] - 99[Es] Authors: Moore, Charlotte E. Bibcode: 1969baoa.book.....M Altcode: No abstract at ADS Title: National Bureau of Standards, Washington, D.C. Report 1967-1968. Authors: Moore, C. E. Bibcode: 1969BAAS....1...84M Altcode: No abstract at ADS Title: Partial Grotrian Diagrams of Astrophysical Interest Authors: Moore, Charlotte E.; Merrill, Paul W. Bibcode: 1968pgda.book.....M Altcode: No abstract at ADS Title: Bibliography on the analyses of optical atomic spectra - Sect.1: 1[H] - 23[V] Authors: Moore, Charlotte E. Bibcode: 1968baoa.book.....M Altcode: No abstract at ADS Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition; B: Multiplet tables - SI I. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1967stas.book.....M Altcode: No abstract at ADS Title: Future spectroscopy for late-type stars Authors: Moore, C. E. Bibcode: 1967lts..conf...15M Altcode: No abstract at ADS Title: Elements in the Sun Authors: Moore, Charlotte E. Bibcode: 1966ossg.book...44M Altcode: No abstract at ADS Title: The solar spectrum 2935 A to 8770 A Authors: Moore, Charlotte E.; Minnaert, M. G. J.; Houtgast, J. Bibcode: 1966sst..book.....M Altcode: No abstract at ADS Title: Selected tables of atomic spectra - A: Atomic energy levels - Second edition; B: Multiplet tables - SI II, SI III, SI IV. Data derived from the analyses of optical spectra Authors: Moore, Charlotte E. Bibcode: 1965stas.book.....M Altcode: No abstract at ADS Title: National Bureau of Standards Report Authors: Moore, Charlotte E.; Branscomb, Lewis M. Bibcode: 1963AJ.....68..657M Altcode: No abstract at ADS Title: Extensive Cosmic Ray Air Showers at 4200 m Authors: Clark, G.; Moore, C.; Escobar, I.; Hersil, J.; Olbert, S.; Scott, D. Bibcode: 1962JPSJS..17C.243C Altcode: 1962PSJaP..17C.243C; 1962JPSJ...17C.243C; 1962ICRC....7C.243C No abstract at ADS Title: An ultraviolet multiplet table Authors: Moore, C. E. Bibcode: 1962aumt.book.....M Altcode: No abstract at ADS Title: An ultraviolet multiplet table Authors: Moore, Charlotte E. Bibcode: 1961aumt.book.....M Altcode: No abstract at ADS Title: Faint lines in the arc spectrum of Iron (Fe1) Authors: Kiess, Carl C.; Rubin, Vera C.; Moore, Charlotte E. Bibcode: 1961flas.book.....K Altcode: No abstract at ADS Title: The Solar Spectrum from 2635 TO 2085A. Authors: Malitson, H. H.; Purcell, J. D.; Tousey, R.; Moore, C. E. Bibcode: 1960ApJ...132..746M Altcode: Solar ultraviolet spectra obtained from rockets flown on December 15,1952, February 21,1955, and June 4, 1956, are presented and analyzed over the wave-length range 2635-2085 A, together with an absolute spectral intensity-distribution-curve. In all, 538 absorption features were observed, and 949 atomic lines are listed as contributing to the observed spectrum. Title: A multiplet table of astrophysical interest. Part 1 Authors: Moore, Charlotte E. Bibcode: 1959mtai.book.....M Altcode: No abstract at ADS Title: Identification list of lines in stellar spectra. Authors: Moore, C. E. Bibcode: 1959NBSTN..36....1M Altcode: No abstract at ADS Title: Obituary: Henry Norris Russell Authors: Moore, C. E. Bibcode: 1957Obs....77...67M Altcode: No abstract at ADS Title: Rotational Lines of Ch, OH, and CN in the Solar Spectrum Authors: Moore, Charlotte E.; Broida, Herbert P. Bibcode: 1957LIACo...7..252M Altcode: No abstract at ADS Title: Molecules in the Solar Spectrum. Introductory Report Authors: Broida, Herbert P.; Moore, Charlotte E. Bibcode: 1957LIACo...7..217B Altcode: No abstract at ADS Title: Atomic spectra—Their rôle in astrophysics Authors: Moore, Charlotte E. Bibcode: 1956VA......2.1209M Altcode: This paper deals with the use of atomic spectra as a connecting link between stars and atoms, illustrated by the spectrum of the Sun, our nearest star. The importance of the multiplets found from the analyses of laboratory spectra, in the identification of solar lines is exemplified by selected lines of P I, S I, Si I, Mg I, and Fe I. Solar lines identified from predicted wavelengths, calculated from the energy levels, are found among these spectra. The elements represented in the Sun only in compounds or by only one atomic line are discussed in some detail. A second revision of Rowland's Table of Solar Spectrum Wavelengths, including measured equivalent widths and revised identifications, provides an excellent example of the rôle of atomic spectra in astrophysics. Title: Spectroscopy Authors: Moore, Charlotte E. Bibcode: 1956SCoA....1...13M Altcode: No abstract at ADS Title: A Revised Analysis of the Solar Spectrum from 2990 TO 2635 A. Authors: Wilson, N. L.; Tousey, R.; Purcell, J. D.; Johnson, F. S.; Moore, C. E. Bibcode: 1954ApJ...119..590W Altcode: New solar spectra from 2990 to 2635 A, obtained from spectrographs flown in rockets on February 9, 1950, September 3, 1952, and December 15,1952, are presented and analyzed. Lines as close as 0.3 A were observed. Nearly 500 lines are recorded and are attributed to 1054 atomic lines. The detailed spectral-intensity distribution-curve is presented instead of the customary visual-intensity estimates. The effect of instrumental blending is illustrated by comparing a long-wave-length region of the rocket spectrum with the high-resolution Utrecht Atlas curve, after averaging the latter over appropriate wavelength intervals. Title: The Identification of Solar Lines Authors: Moore, Charlotte E. Bibcode: 1953sun..book..186M Altcode: No abstract at ADS Title: An ultraviolet multiplet table Authors: Moore, Charlotte E. Bibcode: 1952aumt.book.....M Altcode: No abstract at ADS Title: Predicted lines of Fe I in the arc and in the sun. Authors: Kiess, C. C.; Moore, Charlotte E. Bibcode: 1950AJ.....55..173K Altcode: In their analysis of the arc spectrum of iron, Professor Russell and Miss Moore present a list of 1254 Fe I lines, calculated from term combinations, that are present in the sun's spectrum but have not been reported in laboratory descriptions of the iron spectrum. They state, "It is evident that the spectrum of the iron arc is very far from being fully observed." An opportunity to test this statement was found recently, at the National Bureau of Standards, on some spectrograms on which the iron comparison-spectrum was over-exposed. One set of plates, taken with a Rowland grating, ruled with 20,000 lines per inch, covered the region from 66ooA to 868oA; the other set, taken with a grating ruled by R. W. Wood with 30,000 lines per inch, covered the region 3600A to 4300A. All the faint lines appearing on the plates have been measured and com- pared with the published list of predicted iron lines in the sun's spectrum, with gratifying results. In the regions covered by our observations, there are 231 solar lines in the red, identified by prediction as Fe I, and 268 in the violet a total of 499. Of these predicted lines 28 per cent have now been observed in the arc. The percentages of observed lines, arranged by solar intensity, are distributed as follows: Percentage of Lines Observed Solar Int. Red Violet Total 42 46 0 55 22 34 -I 28 19 22 -2 30 13 23 -3 4 0 4 In addition, there are 18 unclassified iron lines in the red and 131 in the violet list that coincide with solar lines that have heretofore been wholly or partially unidentified. As soon as the laboratory measurements have been confirmed by additional observations with different gratings, doubtless many of these new lines will be classified, and definitively identified in the solar spectrum. National Bureau of Standards, W)ishington, D. C. Title: An ultraviolet multiplet table - Sect. 1-2 Authors: Moore, C. E. Bibcode: 1950aumt.book.....M Altcode: No abstract at ADS Title: Erratum: The Ultraviolet Solar Spectrum λλ2935-3060 Authors: Babcock, H. D.; Moore; Coffeen Bibcode: 1949ApJ...110..104B Altcode: No abstract at ADS Title: The Ultraviolet Solar Spectrum, λλ 2935-3060. Authors: Babcock, Harold D.; Moore, Charlotte E.; Coffeen, Mary F. Bibcode: 1948ApJ...107..287B Altcode: Solar spectrograms, obtained with a 21-foot concave grating, show better detail below X 3100 than has been reported previously. New measurements of wave length and visual estimates of intensity have been made for 665 lines, XX 2935-3060. Solar standards of wave length near X 4500 were observed in the second order for fixing the scale in the overlapping third order. Final measurements were made in the second-order ultraviolet. The new intensities are consistent with those found in the region of greater wave lengths; many of them differ widely from the early values. From a thorough study of laboratory data, identifications have been found for three-fourths of the tabulated lines. The lower E.P. is given for every classified line. Additional measurements (500 lines, XX 3060-3150), not presented in detail, show that differences be- tween our interpretation of solar spectrograms and that made by Jewell from Rowland's plates occur even where it is easy to obtain excellent spectrograms. The text is accompanied by tables and reproductions of spectra Title: No. 745. The ultraviolet solar spectrum, λλ 2835-3060. Authors: Babcock, Harold D.; Moore, Charlotte E.; Coffeen, Mary F. Bibcode: 1948CMWCI.745....1B Altcode: 1948QB4.M93n745.... No abstract at ADS Title: A Multiplet Table of Astrophysical Interest Authors: Moore, Charlotte E. Bibcode: 1946C&T....62Q.420M Altcode: No abstract at ADS Title: Neutral barium in the Sun Authors: Moore, Charlotte E.; Russell, Norris Bibcode: 1946PAAS...10...64M Altcode: No abstract at ADS Title: The solar spectrum lambda 2914-lambda 3060. Authors: Babcock, Harold D.; Moore, Charlotte E. Bibcode: 1946AJ.....52Q..41B Altcode: From spectrograms (i .25 A/mm) obtained with the second order of a ~i-foot concave grating a new description of the spectrum between ~29I4 and X3060 has been prepared, giving improved wave lengths and intensities for 550 lines. Since most of these are blends, the observational data are subject to greater difficulties of interpretation than in more open regions of the spectrum. By the method of overlapping orders the wave lengths were referred to adopted solar standards in the blue region. Intensities were obtained by estimation, on a scale intended to correspond to Rowland's intensities in the violet and near ultraviolet. By comparison with the Revised Multiplet Table1 and other laboratory data fairly definitive identifications have been found for 380 lines, 200 of which are associated with singly ionized atoms. Among the latter, members of the iron group are especially prominent. Lines of Zr ii, Cd ii, Sc ii, Y ii, Cb ii, and Eu ii are also present. Our results confirm the reality and the identification of most of the principal features described by Cornu2 and by Fabry and Buisson,3 but differ in respect to numerous finer details because of the greater dispersion and resolving power which we have used. Comparison with Rowland's data4 shows that the wave lengths in this part of the Revised Rowland require only small corrections, but we add some weak lines not recorded by him, reject some which he included, and extensively revise the intensities and the identifications. Intense lines of Fe and Ni which characterize this region of the solar spectrum have extensive wings when observed in the central part of the disk. Rowland described some of these as weak lines, doubtless because, with inadequate filtering, his spectrograms were affected by false light. At the solar limb, and indeed well inside it, we find these wings suppressed, leaving narrow dark cores. Such effects are more conspicuous in the ultraviolet than elsewhere in the spectrum. To remove overlapping spectral orders and reduce the scattering of intense radiation in adjacent parts of the order in use, filters were mounted in front of the slit. Best results were obtained with 50 mm of concentrated aqueous solution of NiSO4 in conjunction with 5 mm of Corning glass number 986. Exposure times extended up to 6 hours. We are indebted to Dr. J. C. Duncan and to Mrs. H. A. Coffeen for valuable aid in obtaining and reducing the spectrograms. I.Charlotte E. Moore, A Multiplet Tahle of Astrophysical Interest. Revised Edition, Princeton Contr. No. 20, 1945. 2.C. R. 86, 103, 1878. 3.J. Phys. Radium, 6th ser., 2, 197 and 297, 1921; Ap. J. 54, 297, 1921. 4.St. John and others, Revision of Rowland's Preliminary Tahle of Solar Spectrum ~Vave Lengths. Pub. Carnegie Instn. No. 396, 1928. Mount Wilson Observatory, Pasadena, Cal~., and National Bureau of Standards, Washington, D. C. Title: Progress on the revision of the multiplet table Authors: Moore, Charlotte E. Bibcode: 1946PAAS...10..256M Altcode: No abstract at ADS Title: Series Lines of Magnesium in the Solar Spectrum. Authors: Babcock, Harold D.; Moore, Charlotte E. Bibcode: 1945ApJ...101..374B Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. General Arrangement of the Multiplet Table Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D...6M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Forbidden Lines Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D..21M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Arrangement of the Multiplets of Each Spectrum Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D...9M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. The Multiplet Table-General Considerations Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D...4M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Basis of Selection Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D...5M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20....1M Altcode: 1945QB4.P94n20..... No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part II - Finding List of All Lines in the Table of Multiplets. Contents of Section on Forbidden Lines. Index Card. Errata. Finding List Authors: Moore, Charlotte E. Bibcode: 1945CoPri..21D...3M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Details of Publication. Bibliography-Description Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D..23M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part II - Finding List of All Lines in the Table of Multiplets. Body of Multiplet Table Authors: Moore, Charlotte E. Bibcode: 1945CoPri..21....1M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Spectra Omitted from the R M T Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D..20M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Spectroscopic Notation Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D..16M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part II - Finding List of All Lines in the Table of Multiplets. Blends. Scope. Part B-Forbidden Lines Authors: Moore, Charlotte E. Bibcode: 1945CoPri..21D...2M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part II - Finding List of All Lines in the Table of Multiplets. Part A-Observed and Permitted Predicted Lines Authors: Moore, Charlotte E. Bibcode: 1945CoPri..21D...1M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Columns of the Table of Multiplets Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D..13M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part I - Table of Multiplets. Special Notes on Individual Spectra Authors: Moore, Charlotte E. Bibcode: 1945CoPri..20D..18M Altcode: No abstract at ADS Title: A Multiplet Table of Astrophysical Interest. Revised Edition. Part II - Finding List of All Lines in the Table of Multiplets. Forbidden Lines Authors: Moore, Charlotte E. Bibcode: 1945CoPri..21...87M Altcode: No abstract at ADS Title: The Arc Spectrum of Iron (Fe 1) Authors: Russel, Henry Norris; Moore, Charlotte E.; Weeks, Dorothy W. Bibcode: 1944asif.book.....R Altcode: No abstract at ADS Title: Elements in the Sun Authors: Moore, Charlotte E. Bibcode: 1943S&T.....2R...3M Altcode: No abstract at ADS Title: The Stronger Lines of Singly Ionized Dysprosium and Identifications in the Solar Spectrum. Authors: King, Arthur S.; Moore, Charlotte E. Bibcode: 1943ApJ....98...33K Altcode: Table 1 lists 527 of the stronger lines of Dy n in the spectral range XX 2970-8280. A large proportion of these lines appear in the high-temperature furnace; and their furnace intensities, supplementing those in the arc and spark, indicate, in the absence of term-analysis, the relative levels from which the lines arise. The solar spectrum was examined for the presence of 95 selected lines whose laboratory behavior indicated a low-level origin. Of these, 57 were identified in the sun, in part as members of blends. Of the others, 20 are masked and 18 absent Title: The Presence of Gold in the Sun Authors: Moore, Charlotte E.; King, Arthur S. Bibcode: 1943PASP...55..109M Altcode: No abstract at ADS Title: Thorium in the Sun Authors: Moore, Charlotte E.; King, Arthur S. Bibcode: 1943PASP...55...36M Altcode: No abstract at ADS Title: No. 681. The stronger lines of singly ionized dysprosium and identifications in th solar spectrum. Authors: King, Arthur S.; Moore, Charlotte E. Bibcode: 1943CMWCI.681....1K Altcode: 1943QB4.M93n681.... No abstract at ADS Title: Book Reviews: The Masses of the Stars Authors: Russell, Henry Norris; Moore, Charlotte E. Bibcode: 1940PA.....48..285R Altcode: No abstract at ADS Title: Neutral Barium in the Sun Authors: Moore, Charlotte E.; Russell, H. N. Bibcode: 1940PASP...52..373M Altcode: No abstract at ADS Title: The Systematic and Accidental Errors of Spectroscopic Parallaxes. Authors: Russell, Henry Norris; Moore, Charlotte E. Bibcode: 1940ApJ....92..354R Altcode: I. The stars for which trigonometric and spectroscopic parallaxes are available were divided into eight groups of approximately equal number, in order of the "reduced" spectroscopic parallaxes and of the reduced proper motions, and the mean reduced spectroscopic and trigonometric parallaxes were compared. Tue deviations from linear correlation between the two are no larger than can be attributed to the accidental and sampling errors-both for the biased and impartial groupings and also for four ranges of spectral class among main-sequence stars, for all these together, and for giants. To distinguish between the results of the assumptions of linear correlation between the absolute mag- nitudes and between the reduced parallaxes would demand several times the observa- tional data now available (i 140 stars). For stars differing greatly in absolute magni- tude from the general mean (such as Groombridge 1830), these linear correlations are probably invalid; and the data are at present insufficient for a reliable calibration. II. The dispersion constants for the reduced parallaxes have been redetermined by analysis of these mean values (Table 4) and compared with those obtained by our earlier correlation analysis (Table 5). The factor i/i, by which the differences of the tabular spectroscopic absolute magnitude from the mean for the spectral subclass must be multiplied in order to obtain an impartial calibration, comes out consistently larger by the latter method. III. The correlation between the reduced parallaxes and proper motions (which is equivalent to that between the absolute magnitude M and H = in + 5 log j~) shows that, for groups brighter and fainter than the normal for the spectral subclass, = 0.74 for main-sequence stars and o.66 for giants. Comparison of giants and dwarfs gives ~M/~H = 0.69; of stars in different parts of the main sequence, o.8o. IV. Unavoidable deviations of spectroscopic absolute magnitudes from the true values may arise from physical causes within the stars, such as differeiices in the relative abundance of hydrogen and heavy elements, either in the interior or in the atmosphere, and differences in the contribulion of negative hydrogen ions to the general opacity. These differences may account for a considerable portion of the apparent "errors" of spectroscopic parallaxes. V. These effects, combined with a correlation between the masses and the space- velocities of the stars, may cause grouping by H to be systematically different from one by M; but this appears inadequate to account for the systematic differences mentioned above. VI. Since no conclusive reasons have been found for preferring one of the sets of con- stants described in (II) to the other, weighted means have been taken, and the remain- ing dispersion constants have been determined with the aid of these. Results for the reduced parallaxes appear in Table 9; and the corresponding constants for the absolute magnitudes (derived on the assumption that these have a normal distribution), in Table io. The mean-square difference 0 between the spectroscopic absolute magnitudes, M~, as published in Mt. W. Contr. No. 511, and the true values is ±o'~'48 for main-sequence stars as a whole and ± o~ for giants. Joy's values, derived from double stars and clusters, are in substantial agreement with this. To obtain an impartial calibration, * Contributions from the Mount Wilson Observatory, Carnegie Institution of Wash- ington, No. 636. `Research associate of the Carnegie Institution of Washington Title: A Comparison of spectroscopic and trigonometric parallaxes Authors: Russell, Henry Norris; Moore, Charlotte E. Bibcode: 1939PAAS....9..133R Altcode: No abstract at ADS Title: New identifications of solar lines Authors: Moore, Charlotte E. Bibcode: 1939PAAS....9...15M Altcode: No abstract at ADS Title: The spectrum of ionized vanadium Authors: Meggers, W. F.; Moore, Charlotte E. Bibcode: 1939PAAS....9Q.225M Altcode: No abstract at ADS Title: A Comparison of Spectroscopic and Trigonometric Parallaxes Authors: Russell, Henry Norris; Moore, Charlotte E. Bibcode: 1938ApJ....87..389R Altcode: The calibration of spectroscofric absolute magnitudes has been made by selecting groups of stars with similar intensities for pairs of "sensitive" lines and adjusting the calibration-curves so that the absolute magnitudes which these lines give for each group shall agree with those determined for the same stars from other data (trigo- nometric parallaxes, proper motions, etc.). Since the spectroscopic data are affected by accidental errors, this practically unavoidable process gives a regressioii-curve which inevitably underestimates the deviations of the individual absolute magnitudes from the general mean for the spectral class concerned, while giving an accurate value I or this mean. The magnitude of this effect can be determined by the comparison of the spectro- scopic and trigonometric parallaxes of the same stars, provided that the accidental errors of the latter are known. Formulae are developed for the determination of the constants involved in this problem, and of the statistical errors of the constants derived from samples of finite size. The spectroscopic parallaxes of Mo~unt Wilson Contribution No. 511 are then com- pared with the trigonometric parallaxes given in Schlesinger's General Catalogue (Yale, 1936). For the 1140 stars of the main sequence which are available, the real dispersion in absolute magnitude about the mean for the subclass of the Draper classification corresponds to a standard deviation of ±34 per cent in the parallax, while the errors of the spectroscopic determination (including the effects of real differences between stars whose sensitive lines appear the same) give a standard deviation of ±38 per cent. The means for all the stars of a given subclass are accurate within 5 per cent, except for a few faint M dwarfs. The differences between the individual spectroscopic absolute magnitudes and the mean for the subclass should be multiplied by 1.19 to give an im- proved calibration for groups selected according to the spectroscopic criteria, but by 2.6 in order to give values which wifi be correct in the mean for groups of stars selected by criteria independent of the spectroscopic data. When these stars are divided into seven groups according to spectral type, the results for all are similar, although with some- what larger fluctuations than would be anticipated from errors of sampling. Comparison of the mean for groups of stars selected by spectroscopic absolute magnitude and by proper motion fully confirms the anticipated differences. For the giant stars, 732 in number, the parallaxes are smaller; but good mean results can be obtained. The standard deviation in parallax, corresponding to real dispersion in absolute magnitude, is ± 52 per cent (increased by the inclusion of supergiants and subgiants), while that arising from the spectroscoJ~ic errors is ± 38 per cent. The general means of the spectroscopic and trigonometric parallaxes agree perfectly. The differences from the mean require no correction for grouping according to spectroscopic criteria, but a factor of 1.6 when the criteria are independent. A special discussion of ~7 stars of great absolute brightness shows that the probable errors assigned in "Schlesinger's Catalogue" represent correctly the true accidental errors of the determinations. Formulae and tables are given (sec. 13) for the rapid application of the corrections to the spectroscopic parallaxes. These are important for only a small fraction of the whole number of stars. Their applicabifity to supergiants is doubtful. * Contributions from the Mount Wilson Observatory, Carnegie Institution of Wash- ington, No. 589. `Research Associate, Mount Wilson Observatory. 38 Title: Orbit of the binary 20 Persei Authors: Moore, Charlotte E. Bibcode: 1937AJ.....46..162M Altcode: No abstract at ADS Title: New Identifications of Solar Lines Authors: Moore, Charlotte E. Bibcode: 1937ApJ....85...79M Altcode: A summary of elements present in the solar spectrum-is discussed. The 92 chemical elements are divided into five groups as follows: 61 present; 3 possibly present (Sn, Ta, Tb); 2 having insufficient solar data (Ne, Cs); 7 having insufficient laboratory data; 19 absent. Over 400 faint new lines have been measured between X 66oo and X 7330 as part of Mr. Babcock's work on the infrared solar spectrum. Among these, the two Li lines at X 6707, previously found only in the spot spectrum, have been measured in the spec- trum of the disk (intensity -3). Similarly, the stronger Rb line X 7800 is also present in the disk spectrum. Os and Ir may now be classified as present without question. Their presence has previously been suspected but not confirmed. Tu has been detected for the first time. It occurs only in the ionized state, like most of the rare earths. Laboratory material has been lacking for this element until recently. Three elements, Sn, Ta, and Tb, must remain as doubtfully present. Laboratory measures are needed for Sn and Tb. The three strongest Ta lines agree with faint solar lines recorded by Rowland, but the reality of two of the solar lines is somewhat ques- tionable. The strongest accessible line of Ne is suspected to be present in the chromosphere, but further measures are needed for confirmation of its presence. For Cs, the infrared sun-spot spectrum must be adequately photographed before any statement can be made as to its presence or absence. Of the 7 elements with insufficient laboratory data, the spectra of Th, U, and Ho may be observed in the near future. The remaining 4 elements Ma, 85, 87, and Ii, have not been isolated in sufficient quantity, if at all, to make this possible. The 19 absent elements are listed in order of excitation potential of the accessible lines, except for the radioactive elements, which are not to be expected Title: Measures and dynamical parallaxes of 108 A double stars Authors: Aitken, Robert Grant; Moore, Charlotte Emma Bibcode: 1937LicOB..18...53A Altcode: 1937LicOB.485...53A; 1936LicOB..18...53A No abstract at ADS Title: No. 565. New identifications of solar lines. Authors: Moore, Charlotte E. Bibcode: 1937CMWCI.565....1M Altcode: 1937QB4.M93n565.... No abstract at ADS Title: A Scale of Wave-Lengths in the Infra-Red Solar Spectrum Authors: Babcock, Harold D.; Moore, Charlotte E.; Hoge, Wendell P. Bibcode: 1936ApJ....83..103B Altcode: Interferometer measurements made in 1927 have in some cases been slightly improved in relative value without systematic change of scale. Similar new observations extend the scale to X 10603. Standards of reference have been chosen from the A band of atmospheric oxygen as previously determined from neon standards. With the concave grating alone provisional standards have been measured as far as A 12103 in terms of adopted solar standards in the visual region by the method of over- lapping orders. Methods of reduction are described, and tables for finding the correction due to observer's motion relative to the sun are given. Resulis, in Table VT, include 249 lines, of which 142 are telluric. The accuracy of the wave-lengths in Table VT, when tested indirectly by means of a much larger collection of data based on these standards, is found to be decidedly higher than that of most laboratory data in the infra-red, and even well beyond X ioooo our wave-lengths appear to be reliable to about i part in a rniffion Title: Identifications of infra-red solar lines Authors: Moore, Charlotte E.; Babcock, H. D. Bibcode: 1936PAAS....8..120M Altcode: No abstract at ADS Title: No. 534. A scale of wave-lengths in the infra-red solar spectrum. Authors: Babcock, Harold D.; Moore, Charlotte E.; Hoge, Wendell P. Bibcode: 1936CMWCI.534....1B Altcode: 1936QB4.M93n534.... No abstract at ADS Title: Recent identifications of solar lines Authors: Moore, Charlotte E. Bibcode: 1936PAAS....8R.218M Altcode: No abstract at ADS Title: The Presence of Phosphorus in the Sun Authors: Moore, Charlotte E.; Babcock, Harold D.; Kiess, C. C. Bibcode: 1934ApJ....80...59M Altcode: On the basis of specroscopic evidence phosphorus may with some assurance be added to the long list of elements present in the sun. Three infra-red solar lines are attributed without question to phosphorus, and two with some doubt. The laboratory spectrum is discussed and a table gives the observable multiplets and corresponding solar data from which the results are derived. Title: The Presence of Sulphur in the Sun Authors: Moore, Charlotte E.; Babcock, Harold D. Bibcode: 1934ApJ....79..492M Altcode: With the aid of new laboratory material on analysis, and unpublished infra-red solar wave-lengths, the spectroscopic evidence of the presence of sulphur in the sun is discussed. Meissner's identifications are revised and extended. Seventeen sulphur lines are identified in the solar spectrum without question and six with some doubt. The observable lines of ionized sulphur have such high excitation potentials that they could not be expected to appear in the sun. The coincidence of a few solar and laboratory wave-lengths is probably due to chance. Tables give the laboratory and solar data on which the results are based Title: A multiplet table of astrophysical importance Authors: Moore, Charlotte E. Bibcode: 1933PAAS....7Q..97M Altcode: No abstract at ADS Title: Measures and dynamical parallaxes of 323 A double stars Authors: Aitken, Robert Grant; Moore, Charlotte Emma Bibcode: 1933LicOB..16...96A Altcode: 1933LicOB.451...96A; 1932LicOB..16...96A No abstract at ADS Title: Atomic lines in the sun-spot spectrum Authors: Moore, Charlotte E. Bibcode: 1933alss.book.....M Altcode: 1933QB525.M58...... No abstract at ADS Title: A multiplet table of astrophysical interest Authors: Moore, Charlotte Emma Bibcode: 1933mtai.book.....M Altcode: 1933QB465.M6....... No abstract at ADS Title: On the masses of giant stars Authors: Russell, H. N.; Moore, Charlotte E. Bibcode: 1933PAAS....7..184R Altcode: No abstract at ADS Title: Atomic lines in the sun-spot spectrum Authors: Moore, Charlotte E. Bibcode: 1933PAAS....7R..10M Altcode: No abstract at ADS Title: The Presence of Ytterbium in the Sun Authors: Moore, Charlotte E.; Meggers, William F. Bibcode: 1932PASP...44..175M Altcode: No abstract at ADS Title: Some Results from a Study of the Atomic Lines in the Sun-Spot Spectrum Authors: Moore, Charlotte E. Bibcode: 1932ApJ....75..298M Altcode: A detailed study of the atomic lines in the sun-spot spectrum has resulted in a deter- mination of the effective temperature of sun-spots and the pressure and amount of material above them. Intensities for 6312 lines of atomic origin in the spot spectrum have been estimated on the Rowland scale on original negatives and on prints made from them. The plates were those taken with the 150-foot tower telescope and 75-foot spectrograph for the Mount Wilson map of the spot spectrum. The third order was used from X39oo to X 5400, the second order from X 5400 to X óooo. The spectrum of the disk appears on each side of the spot spectrum. The use of a quarter-wave plate and Nicol prism gives the lines subject to Zeeman effect a dentate appearance in the spectrum of the spot, which makes it possible to select the atomic lines. Intensities estimated from the prints agree systematically with those from the plates. The identifications of lines in the solar spectrum from X 2975 to X 6635 and in the spot spectrum from X 3894 to A 6635 have been revised and extended. Lines of Lu~ have been identified for the first time. The principal criteria employed have been labora- tory wave-lengths and intensities, the multiplet relations and excitation potentials, which are now available for almost all elements except the rare earths, and the behavior of the lines in the spectrum of `y Cygni, a giant star of class F8. Nine hundred and thirty-six faint solar lines not previously identified and 21 spot lines have been recog- nized as faint members of multiplets not yet observed in the laboratory, but accurately predictable. Of these, 437 are due to Fe, 122 to Cr, 89 to Ni, 73 to Cr~, 67 to Ti, 50 to Fe+, 43 to Ti+, 21 to Co, 20 to Zr+, 12 to V, 9 to V+, 7 to Sc+, and 7 to Mn. Three hun- dred and ninety-six new atomic lines which appear oniy in the spot spectrum have been measured and 193 identified. A quantitative study of the composition of the atmosphere above sun-spots has been based on the calibration of the Rowland intensity scale. This gives a quantity V which is the logarithm of the ratio of the number of atoms producing a line in the spot spec- trum to that effective in the formation of the same line in the solar spectrum. From thermodynamic theory, V = Y0+SE~, where V0 is the logarithm of the ratio of the num- bers of neutral atoms above equal areas of the photospheres of spot and disk, E~ the excitation potential, and S= 5040 (i/T- i/T'). T and T' are the effective temperatures of disk and spot, respectively. For enhanced lines, V0 must be replaced by Y1, the corre- sponding quantity for ionized atoms. The observed data from 6 elements give a weighted mean value of S equal to -0.190±0.010. Taking T= 574Q0 K, T'=472o° ± 400 K, where the probable error is a measure of the accordance of the observations. From the observed values of V0 and V1 and the Saha equation as modified by Pannekoek and Fowler, the ratio of the electron pressures P~ (spot) and ~e (disk) can be found. Eight elements have a sufficient number of arc and spark lines present in both solar and spot spectra to be used. The weighted mean value of log (P~/Pe) iS -0.22 ± 0.07, i.e., the electron pressure over the spot is o.6o ± 0.10 times that over the disk. Russell has defined the "level of ionization" as the ionization potential of an atom which would be just 50 per cent ionized under given conditions. For the spot this level is 7.0±0.1 volts, as compared with 8.5±0.1 for the disk. From these quantities the percentages of ionization for disk and spot were calculated for 28 elements. By compar- ing these percentages with V0 and Y1, it was found that the amount of material per unit `Contributions from the Mount Wilson Observatory, Carnegie Institution of Washing- ton, No. 446; continued from this Journal, April, 1932. 29 Title: Some Results from a Study of the Atomic Lines in the Sun-Spot Spectrum Authors: Moore, Charlotte E. Bibcode: 1932ApJ....75..222M Altcode: A detailed study of the atomic lines in the sun-spot spectrum has resulted in a deter- mination of the effective temperature of sun-spots and the pressure and amount of material above them. Intensities for 6312 lines of atomic origin in the spot spectrum have been estimated on the Rowland scale on original negatives and on prints made from them. The plates were those taken with the 150-foot tower telescope and 75-foot spectrograph for the Mount Wilson map of the spot spectrum. The third order was used from X39oo to X 5400; the second order from X 5400 to X óooo. The spectrum of the disk appears on each side of the spot spectrum. The use of a quarter-wave plate and Nicol prism gives the lines subject to Zeeman effect a dentate appearance in the spectrum of the spot, which makes it possible to select the atomic lines. Intensities estimated from the prints agree systematically with those from the plates. The identifications of lines in the solar spectrum from X 2975 to X 6635 and in the spot spectrum from X 3894 to X 6635 have been revised and extended. Lines of Lu~ have been identified for the first time. The principal criteria employed have been labora- tory wave-lengths and intensities, the multiplet relations and excitation potentials, which are now available for almost all elements except the rare earths, and the behavior of the lines in the spectrum of `y Cygni, a giant star of class F8. Nine hundred and thirty-six faint solar lines not previously identified and 21 spot lines have been recog- nized as faint members of mattiplets not yet observed in the laboratory, but accurately predictable. Of these, 437 are due to Fe, 122 to Cr, 89 to Ni, 73 to Cr~, 67 to Ti, 50 to F&, 43 to Ti+, 21 to Co, 20 to Zr+, 12 to V, 9 to V~, 7 to Sc+, and 7 to Mn. Three hun- dred and ninety-six new atomic lines which appear only in the spot spectrum have been measured and 193 identified. A quantitative study of the composition of the atmosphere above sun-spots has been based on the calibration of the Rowland intensity scale. This gives a quantity Y, which is the logarithm of the ratio of the number of atoms producing a line in the spot spec- trum to that effective in the formation of the same line in the solar spectrum. From thermodynìamic theory Y = Y0+SE~, where V0 is the logarithm of the ratio of the num- bers of neutral atoms above equal areas of the photospheres of spot and disk, E~ the excitation potential, and S=5o4o (i/T- i/T'). Tand T' are the effective temperatures of disk and spot, respectively. For enhanced lines, Y0 must be replaced by Y1, the corre- sponding quantity for ionized atoms. The observed data from 6 elements give a weighted mean value of S equal to -0.190 ± 0.010. Taking T= 57400 K, T' = 47200 ± 4Q0 K, where the probable error is a measure of the accordance of the observations. From the observed values of V0 and V1 and the Saha equation as modified by Pannekoek and Fowler, the ratio of the electron pressures P~ (spot) and Fe (disk) can be found. Eight elements have a sufficient number of arc and spark lines present in both solar and spot spectra to be used. The weighted mean value of log (P~/Pe) iS -0.22 ± 0.07, i.e., the electron pressure over the spot is o.6o ± 0.10 times that over the disk. Russell has defined the "level of ionization" as the ionization potential of an atom which would be just 50 per cent ionized under given conditions. For the spot this level is 7.0 ± o.i volts, as compared with 8.5 ± o.i for the disk. From these quantities the percentages of ionization for disk and spot were calculated for 28 elements. By compar- ing these percentages with F0 and Y1, it was found that the amount of material per uni Title: No. 446. Some results from a study of the atomic lines in the Sun-spot spectrum. Authors: Moore, Charlotte E. Bibcode: 1932CMWCI.446....1M Altcode: 1932QB4.M93n446.... No abstract at ADS Title: The Absence of Rhenium from the Solar Spectrum Authors: Moore, Charlotte E.; Meggers, W. F. Bibcode: 1931PASP...43..345M Altcode: No abstract at ADS Title: Some Results from a Recent Study of the Atomic Lines in the Sun-Spot Spectrum Authors: Moore, Charlotte E. Bibcode: 1931PASP...43..272M Altcode: No abstract at ADS Title: New Comet Authors: Shapley, H.; van Maanen; Moore; Nagata, M. Bibcode: 1931IAUC..327....1S Altcode: A telegram from Professor Shapley announces that van Maanen has telegraphed the photographic confirmation by Moore, Mt. Wilson, of a comet found by Nagata. The following position was given: 1931 UT R.A. Decl. July 17 16h26m 10 41 + 9 48 Title: Atomic Lines in the Sun-Spot Spectrum. Authors: Moore, Charlotte Emma Bibcode: 1931PhDT.........2M Altcode: No abstract at ADS Title: The relation between the degree of anomalous dispersion and line intensity (abstract) Authors: Moore, Charlotte E. Bibcode: 1931PAAS....6..234M Altcode: No abstract at ADS Title: A calibration of Rowland's intensity scale for solar lines (abstract) Authors: Russell, Henry Norris; Adams, Walter S.; Moore, Charlotte E. Bibcode: 1931PAAS....6..117R Altcode: No abstract at ADS Title: The Presence of Ionized Lutecium in the Sun Authors: Moore, Charlotte E. Bibcode: 1930PASP...42..346M Altcode: No abstract at ADS Title: Elements and ephemeris of Comet B 1930 (Beyer) Authors: Bower, Ernest Clare; Moore, Charlotte Emma Bibcode: 1930LicOB..15...16B Altcode: 1930LicOB.423...16B No abstract at ADS Title: Photographic determinations of the position of the moon Authors: Moore, Charlotte Emma; Shapley, Harlow Bibcode: 1930AnHar..85..169M Altcode: No abstract at ADS Title: Observations of Comet B 1929 (Neujmin) and of minor planets Authors: Krieger, Charles John; Bobrovnikoff, Nicholas Theodore; Whipple, Fred Lawrence; Moore, Charlotte Emma; Hayford, Phyllis Bibcode: 1930LicOB..15...20K Altcode: 1930LicOB.424...20K No abstract at ADS Title: Dynamical parallaxes of 1777 double stars Authors: Russell, H. N.; Moore, C. E. Bibcode: 1929AJ.....39..165R Altcode: No abstract at ADS Title: The relation between the degree of anomalous dispersion and line intensity (abstract) Authors: Moore, Charlotte E. Bibcode: 1929PA.....37..273M Altcode: No abstract at ADS Title: The Presence of Predicted Iron Lines in the Solar Spectrum and the Terms in the Arc Spectrum of Iron Authors: Moore, Charlotte E.; Russell, Henry Norris Bibcode: 1928ApJ....68..151M Altcode: No abstract at ADS Title: A Calibration of Rowland's Scale of Intensities for Solar Lines Authors: Russell, Henry Norris; Adams, Walter S.; Moore, Charlotte E. Bibcode: 1928ApJ....68....1R Altcode: No abstract at ADS Title: On the Presence of the Rare-Earth Elements in the Sun Authors: St. John, Charles E.; Moore, Charlotte E. Bibcode: 1928ApJ....68...93S Altcode: No abstract at ADS Title: Predicted lines of CrII in the spectra of the Sun and of alpha Persei. Authors: Dunham, T., Jr.; Moore, C. E. Bibcode: 1928ApJ....68...37D Altcode: No abstract at ADS Title: No. 364. On the presence of the rare-earth elements in the Sun. Authors: St. John, Charles E.; Moore, Charlotte E. Bibcode: 1928CMWCI.364....1S Altcode: No abstract at ADS Title: A calibration of Rowland's intensity scale for solar lines (abstract) Authors: Russell, Henry Norris; Adams, Walter S.; Moore, Charlotte E. Bibcode: 1928PA.....36..295R Altcode: No abstract at ADS Title: No. 365. The presence of predicted iron lines in the solar spectrum and the terms in the arc spectrum of iron. Authors: Moore, Charlotte E.; Russell, Henry Norris. Bibcode: 1928CMWCI.365....1M Altcode: No abstract at ADS Title: No. 360. Predicted lines of Cr II in the spectra of the Sun and of alpha Persei. Authors: Dunham, Theodore, Jr.; Moore, Charlotte E. Bibcode: 1928CMWCI.360....1D Altcode: No abstract at ADS Title: No. 358. A calibration of Rowland's scale of intensities for solar lines. Authors: Russell, Henry Norris; Adams, Walter S.; Moore, Charlotte E. Bibcode: 1928CMWCI.358....1R Altcode: No abstract at ADS Title: As to Cadmium in the Sun Authors: St. John, C. E.; Moore, Charlotte E. Bibcode: 1927PASP...39..314S Altcode: No abstract at ADS Title: Laboratory Evidence on the Presence in the Sun of Ionized Praseodymium, Neodymium and Samarium Authors: King, A. S.; Moore, Charlotte E. Bibcode: 1927PASP...39..238K Altcode: No abstract at ADS Title: The Probable Occurrence of Doubly-Ionized Cerium in the Sun Authors: King, A. S.; Moore, Charlotte E. Bibcode: 1927PASP...39..240K Altcode: No abstract at ADS Title: Laboratory Evidence on the Presence of Ionized Cerium in the Sun Authors: King, A. S.; Moore, Charlotte E. Bibcode: 1927PASP...39...47K Altcode: No abstract at ADS Title: On the Winged Lines in the Solar Spectrum Authors: Moore, Charlotte E.; Russell, Henry Norris Bibcode: 1926ApJ....63....1M Altcode: No abstract at ADS