Author name code: moore-ron ADS astronomy entries on 2022-09-14 author:"Moore, Ronald L." OR author:"Moore, Ron" NOT =author:"Moore, R.C." NOT =author:"Moore, R.D." -title:"IceCube" -title:"neutrino" -title:"neutron star" ------------------------------------------------------------------------ Title: Density of GeV muons in air showers measured with IceTop Authors: Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker Tjus, J.; Beise, J.; Bellenghi, C.; Benda, S.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Böser, S.; Botner, O.; Böttcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Brinson, B.; Bron, S.; Brostean-Kaiser, J.; Browne, S.; Burgman, A.; Burley, R. T.; Busse, R. S.; Campana, M. A.; Carnie-Bronca, E. G.; Chen, C.; Chen, Z.; Chirkin, D.; Choi, K.; Clark, B. A.; Clark, K.; Classen, L.; Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J. J.; Delgado López, D.; Dembinski, H.; Deoskar, K.; Desai, A.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Diaz, A.; Díaz-Vélez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M. A.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fedynitch, A.; Feigl, N.; Fiedlschuster, S.; Fienberg, A. T.; Finley, C.; Fischer, L.; Fox, D.; Franckowiak, A.; Friedman, E.; Fritz, A.; Fürst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glüsenkamp, T.; Gonzalez, J. G.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Günther, C.; Gutjahr, P.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Ha Minh, M.; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; Hymon, K.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G. S.; Jeong, M.; Jin, M.; Jones, B. J. P.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Kardum, L.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lazar, J. P.; Lee, J. W.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q. R.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K. B. M.; Makino, Y.; Mancina, S.; Mariş, I. C.; Martinez-Soler, I.; Maruyama, R.; McCarthy, S.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Mechbal, S.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyên, L. V.; Niederhausen, H.; Nisa, M. U.; Nowicki, S. C.; Obertacke Pollmann, A.; Oehler, M.; Oeyen, B.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D. V.; Park, N.; Parker, G. K.; Paudel, E. N.; Paul, L.; Pérez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Pries, B.; Przybylski, G. T.; Raab, C.; Rack-Helleis, J.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rechav, Z.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E. J.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S. E.; Sandrock, A.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Shimizu, N.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Stezelberger, T.; Stürwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Ter-Antonyan, S.; Thwaites, J.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.; Turley, C. F.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M. A.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Veitch-Michaelis, J.; Verpoest, S.; Walck, C.; Wang, W.; Watson, T. B.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M. J.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D. R.; Wolf, M.; Wrede, G.; Wulff, J.; Xu, X. W.; Yanez, J. P.; Yildizci, E.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.; Zhelnin, P.; IceCube Collaboration Bibcode: 2022PhRvD.106c2010A Altcode: 2022arXiv220112635A We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. Depending on the shower size, the muon densities have been measured at lateral distances between 200 and 1000 m. From these lateral distributions, we derive the muon densities as functions of energy at reference distances of 600 and 800 m for primary energies between 2.5 and 40 PeV and between 9 and 120 PeV, respectively. The muon densities are determined using, as a baseline, the hadronic interaction model Sibyll 2.1 together with various composition models. The measurements are consistent with the predicted muon densities within these baseline interaction and composition models. The measured muon densities have also been compared to simulations using the post-LHC models EPOS-LHC and QGSJet-II.04. The result of this comparison is that the post-LHC models together with any given composition model yield higher muon densities than observed. This is in contrast to the observations above 1 EeV where all model simulations yield for any mass composition lower muon densities than the measured ones. The post-LHC models in general feature higher muon densities so that the agreement with experimental data at the highest energies is improved but the muon densities are not correct in the energy range between 2.5 and about 100 PeV. Title: Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra Authors: Panesar, Navdeep K.; Tiwari, Sanjiv K.; Moore, Ronald L.; Sterling, Alphonse C.; De Pontieu, Bart Bibcode: 2022arXiv220900059P Altcode: We present the first IRIS Mg II slit-raster spectra that fully capture the genesis and coronal-jet-generating eruption of a central-disk solar minifilament. The minifilament arose in a negative-magnetic-polarity coronal hole. The Mg II spectroheliograms verify that the minifilament plasma temperature is chromospheric. The Mg II spectra show that the erupting minifilament's plasma has blueshifted upflow in the jet spire's onset and simultaneous redshifted downflow at the location of the compact jet bright point (JBP). From the Mg II spectra together with AIA EUV images and HMI magnetograms, we find: (i) the minifilament forms above a flux cancelation neutral line at an edge of a negative-polarity network flux clump; (ii) during the minifilament's fast-eruption onset and jet-spire onset, the JBP begins brightening over the flux-cancelation neutral line. From IRIS2 inversion of the Mg II spectra, the JBP's Mg II bright plasma has electron density, temperature, and downward (red-shift) Doppler speed of 1012 cm^-3, 6000 K, and 10 kms, respectively, and the growing spire shows clockwise spin. We speculate: (i) during the slow rise of the erupting minifilament-carrying twisted flux rope, the top of the erupting flux-rope loop, by writhing, makes its field direction opposite that of encountered ambient far-reaching field; (ii) the erupting kink then can reconnect with the far-reaching field to make the spire and reconnect internally to make the JBP. We conclude that this coronal jet is normal in that magnetic flux cancelation builds a minifilament-carrying twisted flux rope and triggers the JBP-generating and jet-spire-generating eruption of the flux rope. Title: Decaying Oblique Orbits as a Hypothesis for the Origin of Nearly Horizontal Impact Craters — A Survey of Some Candidate Paterae on Mars Authors: Moore, R. B. Bibcode: 2022LPICo2702.2011M Altcode: Factors influencing the occurrence of nearly horizontal impact craters are discussed hypothetically and tested by tabulating a set of 13 such craters on Mars over 20 km long. It is observed that these have headings >35deg from the equatorial plane. Title: Bipolar Ephemeral Active Regions, Magnetic Flux Cancellation, and Solar Magnetic Explosions Authors: Moore, Ronald L.; Panesar, Navdeep K.; Sterling, Alphonse C.; Tiwari, Sanjiv K. Bibcode: 2022ApJ...933...12M Altcode: 2022arXiv220313287M We examine the cradle-to-grave magnetic evolution of 10 bipolar ephemeral active regions (BEARs) in solar coronal holes, especially aspects of the magnetic evolution leading to each of 43 obvious microflare events. The data are from the Solar Dynamics Observatory: 211 Å coronal EUV images and line-of-sight photospheric magnetograms. We find evidence that (1) each microflare event is a magnetic explosion that results in a miniature flare arcade astride the polarity inversion line (PIL) of the explosive lobe of the BEAR's anemone magnetic field; (2) relative to the BEAR's emerged flux-rope Ω loop, the anemone's explosive lobe can be an inside lobe, an outside lobe, or an inside-and-outside lobe; (3) 5 events are confined explosions, 20 events are mostly confined explosions, and 18 events are blowout explosions, which are miniatures of the magnetic explosions that make coronal mass ejections (CMEs); (4) contrary to the expectation of Moore et al., none of the 18 blowout events explode from inside the BEAR's Ω loop during the Ω loop's emergence; and (5) before and during each of the 43 microflare events, there is magnetic flux cancellation at the PIL of the anemone's explosive lobe. From finding evident flux cancellation at the underlying PIL before and during all 43 microflare events-together with BEARs evidently being miniatures of all larger solar bipolar active regions-we expect that in essentially the same way, flux cancellation in sunspot active regions prepares and triggers the magnetic explosions for many major flares and CMEs. Title: Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks Authors: Tornow, F.; Ackerman, A. S.; Fridlind, A. M.; Cairns, B.; Crosbie, E. C.; Kirschler, S.; Moore, R. H.; Painemal, D.; Robinson, C. E.; Seethala, C.; Shook, M. A.; Voigt, C.; Winstead, E. L.; Ziemba, L. D.; Zuidema, P.; Sorooshian, A. Bibcode: 2022GeoRL..4998444T Altcode: Recent aircraft measurements over the northwest Atlantic enable an investigation of how entrainment from the free troposphere (FT) impacts cloud condensation nucleus (CCN) concentrations in the marine boundary layer (MBL) during cold-air outbreaks (CAOs), motivated by the role of CCN in mediating transitions from closed to open-cell regimes. Observations compiled over eight flights indicate predominantly far lesser CCN concentrations in the FT than in the MBL. For one flight, a fetch-dependent MBL-mean CCN budget is compiled from estimates of sea-surface fluxes, entrainment of FT air, and hydrometeor collision-coalescence, based on in-situ and remote-sensing measurements. Results indicate a dominant role of FT entrainment in reducing MBL CCN concentrations, consistent with satellite-observed trends in droplet number concentration upwind of CAO cloud-regime transitions over the northwest Atlantic. Relatively scant CCN may widely be associated with FT dry intrusions, and should accelerate cloud-regime transitions where underlying MBL air is CCN-rich, thereby reducing regional albedo. Title: Homologous Compact Major Blowout-eruption Solar Flares and their Production of Broad CMEs Authors: Sahu, Suraj; Joshi, Bhuwan; Sterling, Alphonse C.; Mitra, Prabir K.; Moore, Ronald L. Bibcode: 2022ApJ...930...41S Altcode: 2022arXiv220303954S We analyze the formation mechanism of three homologous broad coronal mass ejections (CMEs) resulting from a series of solar blowout-eruption flares with successively increasing intensities (M2.0, M2.6, and X1.0). The flares originated from NOAA Active Region 12017 during 2014 March 28-29 within an interval of ≍24 hr. Coronal magnetic field modeling based on nonlinear force-free field extrapolation helps to identify low-lying closed bipolar loops within the flaring region enclosing magnetic flux ropes. We obtain a double flux rope system under closed bipolar fields for all the events. The sequential eruption of the flux ropes led to homologous flares, each followed by a CME. Each of the three CMEs formed from the eruptions gradually attained a large angular width, after expanding from the compact eruption-source site. We find these eruptions and CMEs to be consistent with the "magnetic-arch-blowout" scenario: each compact-flare blowout eruption was seated in one foot of a far-reaching magnetic arch, exploded up the encasing leg of the arch, and blew out the arch to make a broad CME. Title: Towards Equitable, Diverse, and Inclusive science collaborations: The Multimessenger Diversity Network Authors: Bechtol, E.; IceCube; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.; Bechtol, K.; BenZvi, S.; Bleve, C.; Castro, D.; Cenko, B.; Corlies, L.; Furniss, A.; Hui, C. M.; Kaplan, D. L.; Key, J. S.; Madsen, J.; McNally, F.; McLaughlin, M.; Mukherjee, R.; Ojha, R.; Sanders, J.; Santander, M.; Schlieder, J.; Shoemaker, D. H.; Vigeland, S. Bibcode: 2022icrc.confE1383B Altcode: 2022PoS...395E1383B; 2021arXiv210712179B The Multimessenger Diversity Network (MDN), formed in 2018, extends the basic principle of multimessenger astronomy -- that working collaboratively with different approaches enhances understanding and enables previously impossible discoveries -- to equity, diversity, and inclusion (EDI) in science research collaborations. With support from the National Science Foundation INCLUDES program, the MDN focuses on increasing EDI by sharing knowledge, experiences, training, and resources among representatives from multimessenger science collaborations. Representatives to the MDN become engagement leads in their collaboration, extending the reach of the community of practice. An overview of the MDN structure, lessons learned, and how to join are presented. Title: Completing Aganta Kairos: Capturing Metaphysical Time on the Seventh Continent Authors: Madsen, J.; Mulot, L.; IceCube; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z. Bibcode: 2022icrc.confE1381M Altcode: 2022PoS...395E1381M; 2021arXiv210801687M We present an overview of the art project Aganta Kairos (To Fish the Metaphysical Time). This project celebrates the neutrino, the ghost particle, which scientists consider a cosmic messenger and the artist regards as a link between people who care about their relationship to the cosmos and question their origins. The artwork is based on a performance of celebration and seeks to build a human community that encompasses different knowledge domains and interpretations of the universe. This intersection of knowledge is realized during the performance of placing a plaque, held with witnesses, and during subsequent exhibitions. Images, sounds, videos, and sculpture testify to the diversity of approaches to questioning our origins, ranging from traditional western science to ancient shamanism. The sites were selected for their global coverage and, for the South Pole, Mediterranean, and Lake Baikal, their connection to ongoing neutrino experiments. In December 2020, a plaque was installed at the South Pole IceCube Laboratory, the seventh and final site. We provide examples of images and links to additional images and videos. Title: P-ONE second pathfinder mission: STRAW-b Authors: Rea, I. C.; Holzapfel, K.; Baron, A.; Bailly, N.; Bedard, J.; Bohmer, M.; Bosma, J.; Brussow, D.; Cheng, J.; Clark, K.; Croteau, B.; Danninger, M.; Deis, N.; Ens, M.; Fox, R.; Fruck, C.; Gartner, A.; Gernhäuser, R.; Grant, D.; He, H.; Henningsen, F.; Hotte, R.; Jenkyns, R.; Johnson, H.; Katil, A.; Kopper, C.; Krauss, C.; Kulin, I.; Leismüller, K.; Leys, S.; Lin, T. T. Y.; Macoun, P.; McElroy, T.; Meighen-Berger, S.; Michel, J.; Moore, R.; Morley, M.; Papp, L.; Pirenne, B.; Qiu, T.; Rankin, M.; Rea, I. C.; Resconi, E.; Round, A.; Ruskey, A.; Rutley, R.; Spannfellner, C.; Stacho, J.; Timmerman, R.; Tomlin, M.; Tradewell, M.; Traxler, M.; Uganecz, M.; Wagner, S.; Zheng, Y.; Yanez, J. P.; De Leo, F. Bibcode: 2022icrc.confE1092R Altcode: 2022PoS...395E1092R No abstract at ADS Title: Simulation Study of the Observed Radio Emission of Air Showers by the IceTop Surface Extension Authors: Coleman, A.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z. Bibcode: 2022icrc.confE.317C Altcode: 2021arXiv210709666C; 2022PoS...395E.317C Multi-detector observations of individual air showers are critical to make significant progress to precisely determine cosmic-ray quantities such as mass and energy of individual events and thus bring us a step forward in answering the open questions in cosmic-ray physics. An enhancement of IceTop, the surface array of the IceCube Neutrino Observatory, is currently underway and includes adding antennas and scintillators to the existing array of ice-Cherenkov tanks. The radio component will improve the characterization of the primary particles by providing an estimation of X$_\text{max}$ and a direct sampling of the electromagnetic cascade, both important for per-event mass classification. A prototype station has been operated at the South Pole and has observed showers, simultaneously, with the tanks, scintillator panels, and antennas. The observed radio signals of these events are unique as they are measured in the 70 to 350\,MHz band, higher than many other cosmic-ray experiments. We present a comparison of the detected events with the waveforms from CoREAS simulations, convoluted with the end-to-end electronics response, as a verification of the analysis chain. Using the detector response and the measurements of the prototype station as input, we update a Monte-Carlo-based study on the potential of the enhanced surface array for the hybrid detection of air showers by scintillators and radio antennas. Title: Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array. Authors: Bishop, A.; Hokanson-Fasig, B.; Karle, A.; Lu, L.; IceCube-Gen2; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Allison, P.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Arlen, T.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Bartos, I.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bohmer, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Cataldo, M.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Clark, R.; Classen, L.; Coleman, A.; Collin, G.; Connolly, A.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; Deaconu, C.; De Clercq, C.; De Kockere, S.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Farrag, K.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gartner, A.; Gerhardt, L.; Gernhaeuser, R.; Ghadimi, A.; Giri, P.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Hallmann, S.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haugen, J.; Haungs, A.; Hauser, S.; Hebecker, D.; Heinen, D.; Helbing, K.; Hendricks, B.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, B.; Hoffmann, R.; Hoinka, T.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Huege, T.; Hughes, K.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kalekin, O.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Katori, T.; Katz, U.; Kauer, M.; Keivani, A.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Krauss, C.; Kravchenko, I.; Krebs, R.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; LoSecco, J.; Lozano Mariscal, C. J.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Mandalia, S.; Maris, I. C.; Marka, S.; Marka, Z.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Meyers, Z.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nelles, A.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Oberla, E.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; Omeliukh, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Papp, L.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Petersen, T.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pinfold, J.; Pittermann, M.; Pizzuto, A.; Plaisier, I.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Pyras, L.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Riegel, M.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Shaevitz, M. H.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smith, D.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Soldner-Rembold, S.; Southall, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Taketa, A.; Tanaka, H.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Torres, J.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Veberic, D.; Verpoest, S.; Vieregg, A. G.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weinstock, L. S.; Weiss, M.; Weldert, J.; Welling, C.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wissel, S.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wren, S.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z.; Zierke, S. Bibcode: 2022icrc.confE1182B Altcode: 2021arXiv210800283B; 2022PoS...395E1182B The IceCube Neutrino Observatory has discovered a diffuse astrophysical flux up to 10 PeV and is now planning a large extension with IceCube-Gen2, including an optical array and a large radio array at shallow depth [1]. Neutrino searches for energies >100 PeV are best done with such shallow radio detectors like the Askaryan Radio Array (ARA) or similar (buried as deep as 200 meters below the surface) as they are cheaper to deploy. This poster explores the potential of opportunistically burying radio antennas within the planned IceCube-Gen2 detector volume (between 1350 meters and 2600 meters below the surface). A hybrid detection of events in optical and radio could substantially improve the uncertainty of neutrino cascade direction as radio signals do not scatter in ice. We show the first results of simulating neutrinos from an astrophysical and a cosmogenic flux interacting with 9760 ARA-style vertically polarized radio antennas distributed evenly across 122 strings. Title: Development of a scintillation and radio hybrid detector array at the South Pole Authors: Oehler, M.; Turcotte, R.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z. Bibcode: 2022icrc.confE.225O Altcode: 2022PoS...395E.225O; 2021arXiv210709983O At the IceCube Neutrino Observatory, a Surface Array Enhancement is planned, consisting of 32 hybrid stations, placed within the current IceTop footprint. This surface enhancement will considerably increase the detection sensitivity to cosmic rays in the 100 TeV to 1 EeV primary energy range, measure the effects of snow accumulation on the existing IceTop tanks and serve as R&D for the possible future large-scale surface array of IceCube-Gen2. Each station has one central hybrid DAQ, which reads out 8 scintillation detectors and 3 radio antennas. The radio antenna SKALA-2 is used in this array due to its low-noise, high amplification and sensitivity in the 70-350 MHz frequency band. Every scintillation detector has an active area of 1.5 m$^2$ organic plastic scintillators connected by wavelength-shifting fibers, which are connected to a silicon photomultiplier. The signals from the scintillation detectors are integrated and digitized by a local custom electronics board and transferred to the central DAQ. When triggered by the scintillation detectors, the filtered and amplified analog waveforms from the radio antennas are read out and digitized by the central DAQ. A full prototype station has been developed and built and was installed at the South Pole in January 2020. It is planned to install the full array by 2026. In this contribution the hardware design of the array as well as the installation plans will be presented. Title: Another Look at Erupting Minifilaments at the Base of Solar X-Ray Polar Coronal "Standard" and "Blowout" Jets Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep K. Bibcode: 2022ApJ...927..127S Altcode: 2022arXiv220112314S We examine 21 solar polar coronal jets that we identify in soft X-ray images obtained from the Hinode/X-ray telescope (XRT). We identify 11 of these as blowout jets and four as standard jets (with six uncertain), based on their X-ray-spire widths being respectively wide or narrow (compared to the jet's base) in the XRT images. From corresponding extreme ultraviolet (EUV) images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA), essentially all (at least 20 of 21) of the jets are made by minifilament eruptions, consistent with other recent studies. Here, we examine the detailed nature of the erupting minifilaments (EMFs) in the jet bases. Wide-spire ("blowout") jets often have ejective EMFs, but sometimes they instead have an EMF that is mostly confined to the jet's base rather than ejected. We also demonstrate that narrow-spire ("standard") jets can have either a confined EMF, or a partially confined EMF where some of the cool minifilament leaks into the jet's spire. Regarding EMF visibility: we find that in some cases the minifilament is apparent in as few as one of the four EUV channels we examined, being essentially invisible in the other channels; thus, it is necessary to examine images from multiple EUV channels before concluding that a jet does not have an EMF at its base. The sizes of the EMFs, measured projected against the sky and early in their eruption, is 14″ ± 7″, which is within a factor of 2 of other measured sizes of coronal-jet EMFs. Title: Discrimination of Muons for Mass Composition Studies of Inclined Air Showers Detected with IceTop Authors: Balagopal V., A.; IceCube; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z. Bibcode: 2022icrc.confE.212B Altcode: 2021arXiv210711293B; 2022PoS...395E.212B IceTop, the surface array of IceCube, measures air showers from cosmic rays within the energy range of 1 PeV to a few EeV and a zenith angle range of up to $\approx$ 36$^\circ$. This detector array can also measure air showers arriving at larger zenith angles at energies above 20 PeV. Air showers from lighter primaries arriving at the array will produce fewer muons when compared to heavier cosmic-ray primaries. A discrimination of these muons from the electromagnetic component in the shower can therefore allow a measurement of the primary mass. A study to discriminate muons using Monte-Carlo air showers of energies 20-100 PeV and within the zenith angular range of 45$^\circ$-60$^\circ$ will be presented. The discrimination is done using charge and time-based cuts which allows us to select muon-like signals in each shower. The methodology of this analysis, which aims at categorizing the measured air showers as light or heavy on an event-by-event basis, will be discussed. Title: Multimessenger NuEM Alerts with AMON Authors: Ayala, H.; Hawc; Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez Romero, J. d. D.; Camacho, J. R. Angeles; Arteaga Velazquez, J. C.; Kollamparambil, A. B.; Avila Rojas, D. O.; Ayala Solares, H. A.; Babu, R.; Baghmanyan, V.; Barber, A. S.; Becerra Gonzalez, J.; Belmont-Moreno, E.; Berley, D.; Brisbois, C.; Caballero Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Chaparro-Amaro, O.; Cotti, U.; Cotzomi, J.; Coutiño de Leon, S.; de la Fuente, E.; de León, C. L.; Diaz, L.; Diaz Hernandez, R.; Díaz Vélez, J. C.; Dingus, B.; Durocher, M.; Ellsworth, R.; Engel, K.; Espinoza Hernández, M. C.; Fan, J.; Fang, K.; Fernandez Alonso, M.; Fick, B.; Fleischhack, H.; Flores, J. L.; Fraija, N. I.; Garcia Aguilar, D.; Garcia-Gonzalez, J. A.; García-Luna, J. L.; García-Torales, G.; Garfias, F.; Giacinti, G.; Goksu, H.; González, M. M.; Goodman, J. A.; Harding, J. P.; Hernández Cadena, S.; Herzog, I.; Hinton, J.; Hona, B.; Huang, D.; Hueyotl-Zahuantitla, F.; Hui, M.; Humensky, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Jhee, H.; Joshi, V.; Kieda, D.; Kunde, G. J.; Kunwar, S.; Lara, A.; Lee, J.; Lee, W. H.; Lennarz, D.; Vargas, H. Leon; Linnemann, J.; Longinotti, A. L.; Lopez-Coto, R.; Luis-Raya, G.; Lundeen, J.; Malone, K.; Marandon, V.; Martinez, O.; Martinez Castellanos, I.; Martínez Huerta, H.; Martínez-Castro, J.; Matthews, J.; McEnery, J.; Miranda-Romagnoli, P.; Morales Soto, J. A.; Moreno Barbosa, E.; Mostafa, M.; Nayerhoda, A.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Olivera-Nieto, L.; Omodei, N.; Peisker, A.; Pérez Araujo, Y.; Pérez Pérez, E. G.; Rho, C. D.; Rivière, C.; Rosa-Gonzalez, D.; Ruiz-Velasco, E.; Ryan, J.; Salazar, H. I.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Serna-Franco, J.; Sinnis, G.; Smith, A. J.; Springer, W. R.; Surajbali, P.; Taboada, I.; Tanner, M.; Torres, I.; Torres Escobedo, R.; Turner, R.; Ureña-Mena, F.; Villaseñor, L.; Wang, X.; Watson, I. J.; Weisgarber, T.; Werner, F.; Willox, E.; Wood, J.; Yodh, G.; Zepeda, A.; Zhou, H.; IceCube; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z. Bibcode: 2022icrc.confE.958A Altcode: 2021arXiv210804920A; 2022PoS...395E.958A The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make up this channel and present a selection of recent results. Title: Density of GeV Muons Measured with IceTop Authors: Soldin, D.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S. A.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z. Bibcode: 2022icrc.confE.342S Altcode: 2022PoS...395E.342S; 2021arXiv210709583S We present a measurement of the density of GeV muons in near-vertical air showers using three years of data recorded by the IceTop array at the South Pole. We derive the muon densities as functions of energy at reference distances of 600 m and 800 m for primary energies between 2.5 PeV and 40 PeV and between 9 PeV and 120 PeV, respectively, at an atmospheric depth of about $690\,\mathrm{g/cm}^2$. The measurements are consistent with the predicted muon densities obtained from Sibyll~2.1 assuming any physically reasonable cosmic ray flux model. However, comparison to the post-LHC models QGSJet-II.04 and EPOS-LHC shows that the post-LHC models yield a higher muon density than predicted by Sibyll 2.1 and are in tension with the experimental data for air shower energies between 2.5 PeV and 120 PeV. Title: Further Evidence for the Minifilament-eruption Scenario for Solar Polar Coronal Jets Authors: Baikie, Tomi K.; Sterling, Alphonse C.; Moore, Ronald L.; Alexander, Amanda M.; Falconer, David A.; Savcheva, Antonia; Savage, Sabrina L. Bibcode: 2022ApJ...927...79B Altcode: 2022arXiv220108882B We examine a sampling of 23 polar-coronal-hole jets. We first identified the jets in soft X-ray (SXR) images from the X-ray telescope (XRT) on the Hinode spacecraft, over 2014-2016. During this period, frequently the polar holes were small or largely obscured by foreground coronal haze, often making jets difficult to see. We selected 23 jets among those adequately visible during this period, and examined them further using Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) 171, 193, 211, and 304 Å images. In SXRs, we track the lateral drift of the jet spire relative to the jet base's jet bright point (JBP). In 22 of 23 jets, the spire either moves away from (18 cases) or is stationary relative to (4 cases) the JBP. The one exception where the spire moved toward the JBP may be a consequence of line-of-sight projection effects at the limb. From the AIA images, we clearly identify an erupting minifilament in 20 of the 23 jets, while the remainder are consistent with such an eruption having taken place. We also confirm that some jets can trigger the onset of nearby "sympathetic" jets, likely because eruption of the minifilament field of the first jet removes magnetic constraints on the base-field region of the second jet. The propensity for spire drift away from the JBP, the identification of the erupting minifilament in the majority of jets, and the magnetic-field topological changes that lead to sympathetic jets, all support or are consistent with the minifilament-eruption model for jets. Title: Studies of a muon-based mass sensitive parameter for the IceTop surface array Authors: Kang, D.; Browne, S. A.; Haungs, A.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C. M.; Alves Junior, A. A.; Amin, N. M. B.; An, R.; Andeen, K.; Anderson, T.; Anton, G.; Arguelles, C.; Ashida, Y.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A. M.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R. C.; Beatty, J. J.; Becker, K. H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boddenberg, M.; Bontempo, F.; Borowka, J.; Boser, S.; Botner, O.; Bottcher, J.; Bourbeau, E.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Burley, R.; Busse, R.; Campana, M.; Carnie-Bronca, E.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B.; Clark, K.; Classen, L.; Coleman, A.; Collin, G.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dappen, C.; Dave, P.; De Clercq, C.; DeLaunay, J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K.; de Wasseige, G.; De With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Diaz-Velez, J. C.; Dittmer, M.; Dujmovic, H.; Dunkman, M.; DuVernois, M.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fan, K. L.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D. B.; Franckowiak, A.; Friedman, E.; Fritz, A.; Furst, P.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garcia, A.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glusenkamp, T.; Goldschmidt, A.; Gonzalez, J.; Goswami, S.; Grant, D.; Grégoire, T.; Griswold, S.; Gunduz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Minh, M. Ha; Hanson, K.; Hardin, J.; Harnisch, A. A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hunnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G.; Jeong, M.; Jones, B.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K. i.; Kintscher, T.; Kiryluk, J.; Klein, S.; Koirala, R.; Kolanoski, H.; Kontrimas, T.; Kopke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Kozynets, T.; Kun, E.; Kurahashi, N.; Lad, N.; Lagunas Gualda, C.; Lanfranchi, J.; Larson, M. J.; Lauber, F. H.; Lazar, J.; Lee, J.; Leonard, K.; Leszczyńska, A.; Li, Y.; Lincetto, M.; Liu, Q.; Liubarska, M.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K.; Makino, Y.; Mancina, S.; Maris, I. C.; Maruyama, R. H.; Mase, K.; McElroy, T.; McNally, F.; Mead, J. V.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyen, L. V.; Niederhausen, H.; Nisa, M.; Nowicki, S.; Nygren, D.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D.; Park, N.; Parker, G.; Paudel, E. N.; Paul, L.; Perez de los Heros, C.; Peters, L.; Peterson, J.; Philippen, S.; Pieloth, D.; Pieper, S.; Pittermann, M.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reichherzer, P.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Roberts, E.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M. K.; Schaufel, M.; Schieler, H.; Schindler, S.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L. J.; Schwefer, G.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spannfellner, C.; Spiczak, G.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Sturwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C.; Turcati, A.; Turcotte, R.; Turley, C.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Watson, T.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whitehorn, N.; Wiebusch, C. H.; Williams, D.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yu, S.; Yuan, T.; Zhang, Z. Bibcode: 2022icrc.confE.312K Altcode: 2022PoS...395E.312K; 2021arXiv210902506K IceTop is the surface instrumentation of the IceCube Neutrino Observatory at the South Pole. It is designed to measure extensive air showers of cosmic rays in the primary energy range from PeV to EeV. Air showers induced by heavier primary particles develop earlier in the atmosphere and produce more muons observable at ground level than lighter cosmic rays with the same primary energy. Therefore, the fraction of muons to all charged particles measured by IceTop characterizes the mass of primary particles. This analysis seeks a muon-based mass sensitive parameter by using the charge signal distribution for each individual cosmic ray event. In this contribution we present the analysis method for the mass-sensitive parameter and our studies of its possible application to the measurement of cosmic ray mass composition with the IceTop surface array. Title: Birth and Evolution of a Jet-Base-Topology Solar Magnetic Field with Four Consecutive Major Flare Explosions Authors: Doran, Ilana; Panesar, Navdeep K.; Tiwari, Sanjiv; Moore, Ron; Bobra, Monica; Sterling, Alphonse Bibcode: 2021AGUFMSH35B2039D Altcode: During 2011 September 6-8, NOAA solar active region (AR) 11283 produced four consecutive major coronal mass ejections (CMEs) each with a co-produced major flare (GOES class M5.3, X2.1, X1.8, and M6.7). We examined the ARs magnetic field evolution leading to and following each of these major solar magnetic explosions. We follow flux emergence, flux cancellation and magnetic shear buildup leading to each explosion, and look for sudden flux changes and shear changes wrought by each explosion. We use AIA 193 A images and line-of-sight HMI vector magnetograms from Solar Dynamics Observatory (SDO), and SunPy, SHARPkeys, and IDL Solarsoft to prepare and analyze these data. The observed evolution of the vector field informs how magnetic field emergence and cancellation lead to and trigger the magnetic explosions, and thus informs how major CMEs and their flares are produced. We find that (1) all four flares are triggered by flux cancellation, (2) the third and fourth explosions (X1.8 and M6.7) begin with a filament eruption from the cancellation neutral line, (3) in the first and second explosions a filament erupts in the core of a secondary explosion that lags the main explosion and is probably triggered by Hudson-effect field implosion under the adjacent main exploding field, and (4) the transverse field suddenly strengthens along each main explosions underlying neutral line during the explosion, also likely due to Hudson-effect field implosion. Our observations are consistent with flux cancellation at the explosions underlying neutral line being essential in the buildup and triggering of each of the four explosions in the same way as in smaller-scale magnetic explosions that drive coronal jets. Title: Characterizing Steady and Bursty Coronal Heating of a Solar Active Region Authors: Wilkerson, Lucy; Tiwari, Sanjiv; Panesar, Navdeep K.; Moore, Ronald Bibcode: 2021AGUFMSH15E2060W Altcode: One of the biggest problems in solar physics today is our inability to explain why the solar corona is so hot. In this project, we aimed to quantify transient and background coronal heating for a given active region in order to better understand coronal heating. We used SDO/AIA data of the active region NOAA 12712 observed on May 29, 2018 over a period of 24 hours with a 3-minute cadence. We calculated FeXVIII emission (hot component of AIA 94 Å channel) by removing warm components using AIA 171 and 193 Å channels. From the maximum, minimum, and mean brightness values of each pixel over the full 24 hour period, we made maximum, minimum, and mean brightness maps. We repeated this process in moving time windows of 16 hours, 8 hours, 5 hours, 3 hours, 1 hour, and 30 minutes. We used the total luminosity for each of these maps over time to make lightcurves that show the evolution of maximum, minimum, and mean brightness over time for each running window. Finally, we took the ratio of the total maximum and total minimum luminosity to total mean luminosity, and plotted these ratios over time. The average maximum to mean ratio was 8.40±0.00, 6.36±0.46, 5.29±0.34, 4.73±0.24, 4.19±0.19, 3.21±0.17, and 2.64±0.15 and the average minimum to mean ratio was 0.053±0.00, 0.08±0.00, 0.12±0.01, 0.14±0.02, 0.17±0.02, 0.26±0.02, and 0.33±0.03 for 24h, 16h, 8h, 5h, 3h, 1h, and 30m windows, respectively. As expected, the ratio of background to mean luminosity increased as the time window decreased, and the ratio of transient to mean luminosity decreased as the time window decreased. As such, the ratio of background to mean luminosity is a new and effective technique to quantify the background intensity of the active region. Our 24h window result suggests that at most 5% of the luminosity of the AR at a given time comes from the steady background heating. This upper limit increases to 33% of the luminosity of the AR for the 30 min running window. Title: Studying Solar Active-Region Magnetic Evolution Leading to a Confined Eruption Authors: Zigament, Benjamin; Sterling, Alphonse; Moore, Ronald; Falconer, David Bibcode: 2021AGUFMSH35B2037Z Altcode: Current research suggests that there exists a continuum of solar eruptions ranging from the comparatively small, such as coronal jets, to extremely large eruptions that produce coronal mass ejections (CMEs) and solar flares, with all sharing a common triggering mechanism: a filament/flux rope eruption triggered by magnetic flux cancellation. For coronal jets the erupting "minifilaments" are of length ~10,000 km (Sterling et al. 2015, Panesar et al. 2016), while the larger eruptions are accompanied by eruptions of typical filaments of size ~several x 10^4 --- ~3x10^5 km. Sterling et al. (2018) examined this idea for two small ARs (flux ~ 2x10^21 Mx) that erupted to make CMEs. They tracked the evolution of the ARs from emergence to eruption and found eruption to occur when some of the emerged flux drifted together and underwent cancellation along the main magnetic neutral line on the interior of the AR, with eruption occurring after about 30---50% of the total flux of the respective regions canceled. Here we perform a similar study, using Solar Dynamics Observatory (SDO) AIA EUV images and SDO/HMI magnetograms, of a smaller AR (total flux <~10^21 Mx) that emerged in isolation near the neutral line in a large overarching old weak-field magnetic arcade on 2014 September 8. It produced a confined eruption (i.e., one that did not make a CME) about three days later, on September 10 near 18:45 UT. The ARs flux reached maximum about 12 hr after emergence start, and then decreased continuously, with the decrease being partly from cancellation of small flux clumps in the interior of the AR. The eruption occurred when the flux had decreased by about 20%, and was centered on the neutral line of the emerged AR, but also involved filament-holding field along some of the old arcades neutral line. That filament underwent a confined eruption as part of the overall confined eruption. The emerged ARs being inside the larger arcade, its smaller size, and its smaller amount of cancellation may be reasons why the eruption was confined, instead of being ejective and producing a CME as in the two cases of Sterling et al (2018). This work was supported by funding from NASA's HGI Program. Title: A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors Authors: Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A. A.; Amin, N. M.; An, R.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Axani, S.; Bai, X.; Balagopal V., A.; Barbano, A.; Barwick, S. W.; Bastian, B.; Basu, V.; Baur, S.; Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker Tjus, J.; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Borowka, J.; Böser, S.; Botner, O.; Böttcher, J.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Browne, S.; Burgman, A.; Busse, R. S.; Campana, M. A.; Chen, C.; Chirkin, D.; Choi, K.; Clark, B. A.; Clark, K.; Classen, L.; Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desai, A.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Díaz-Vélez, J. C.; Dujmovic, H.; Dunkman, M.; DuVernois, M. A.; Dvorak, E.; Ehrhardt, T.; Eller, P.; Engel, R.; Erpenbeck, H.; Evans, J.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Fiedlschuster, S.; Fienberg, A. T.; Filimonov, K.; Finley, C.; Fischer, L.; Fox, D.; Franckowiak, A.; Friedman, E.; Fritz, A.; Fürst, P.; K. Gaisser, T.; Gallagher, J.; Ganster, E.; Garrappa, S.; Gerhardt, L.; Ghadimi, A.; Glaser, C.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Goswami, S.; Grant, D.; Grégoire, T.; Griffith, Z.; Griswold, S.; Gündüz, M.; Günther, C.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Ha Minh, M.; Hanson, K.; Hardin, J.; Harnisch, A. A.; Haungs, A.; Hauser, S.; Hebecker, D.; Helbing, K.; Henningsen, F.; Hettinger, E. C.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G. S.; Jeong, M.; Jones, B. J. P.; Joppe, R.; Kang, D.; Kang, W.; Kang, X.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kin, K.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kovacevich, M.; Kowalski, M.; Krings, K.; Kurahashi, N.; Kyriacou, A.; Lagunas Gualda, C.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lazar, J. P.; Lee, J. W.; Leonard, K.; Leszczyńska, A.; Li, Y.; Liu, Q. R.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Mahn, K. B. M.; Makino, Y.; Mancina, S.; Mariş, I. C.; Maruyama, R.; Mase, K.; McNally, F.; Meagher, K.; Medina, A.; Meier, M.; Meighen-Berger, S.; Merz, J.; Micallef, J.; Mockler, D.; Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Naab, R.; Nagai, R.; Naumann, U.; Necker, J.; Nguyễn, L. V.; Niederhausen, H.; Nisa, M. U.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Sullivan, E.; Pandya, H.; Pankova, D. V.; Park, N.; Parker, G. K.; Paudel, E. N.; Paul, L.; Pérez de los Heros, C.; Philippen, S.; Pieloth, D.; Pieper, S.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Prado Rodriguez, M.; Price, P. B.; Pries, B.; Przybylski, G. T.; Raab, C.; Raissi, A.; Rameez, M.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reimann, R.; Renzi, G.; Resconi, E.; Reusch, S.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Roellinghoff, G.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Saffer, J.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M.; Schaufel, M.; Schieler, H.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Sharma, A.; Shefali, S.; Silva, M.; Skrzypek, B.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stürwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Tilav, S.; Tischbein, F.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.; Turley, C. F.; Twagirayezu, J. P.; Ty, B.; Unland Elorrieta, M. A.; Valtonen-Mattila, N.; Vandenbroucke, J.; van Eijk, D.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Wallace, A.; Watson, T. B.; Weaver, C.; Weigel, P.; Weindl, A.; Weiss, M. J.; Weldert, J.; Wendt, C.; Werthebach, J.; Weyrauch, M.; Whelan, B. J.; Whitehorn, N.; Wiebusch, C. H.; Williams, D. R.; Wolf, M.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yoshida, S.; Yuan, T.; Zhang, Z.; IceCube collaboration Bibcode: 2021JInst..16P8034A Altcode: 2021arXiv210316931A IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment's photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors. Title: A fundamental mechanism of solar eruption initiation Authors: Jiang, Chaowei; Feng, Xueshang; Liu, Rui; Yan, XiaoLi; Hu, Qiang; Moore, Ronald L.; Duan, Aiying; Cui, Jun; Zuo, Pingbing; Wang, Yi; Wei, Fengsi Bibcode: 2021NatAs...5.1126J Altcode: 2021arXiv210708204J; 2021NatAs.tmp..128J Solar eruptions are spectacular magnetic explosions in the Sun's corona, and how they are initiated remains unclear. Prevailing theories often rely on special magnetic topologies that may not generally exist in the pre-eruption source region of corona. Here, using fully three-dimensional magnetohydrodynamic simulations with high accuracy, we show that solar eruptions can be initiated in a single bipolar configuration with no additional special topology. Through photospheric shearing motion alone, an electric current sheet forms in the highly sheared core field of the magnetic arcade during its quasi-static evolution. Once magnetic reconnection sets in, the whole arcade is expelled impulsively, forming a fast-expanding twisted flux rope with a highly turbulent reconnecting region underneath. The simplicity and efficacy of this scenario argue strongly for its fundamental importance in the initiation of solar eruptions. Title: What Causes Faint Solar Coronal Jets From Emerging Flux Regions In Coronal Holes? Authors: Harden, A.; Panesar, N.; Moore, R.; Sterling, A.; Adams, M. Bibcode: 2021AAS...23821314H Altcode: Using EUV images and line-of-sight magnetograms from Solar Dynamics Observatory, we examine eight emerging bipolar magnetic regions (BMRs) in central-disk coronal holes for whether the emerging magnetic arch made any noticeable coronal jets directly, via reconnection with ambient open field as modeled by Yokoyama & Shibata (1995). During emergence, each BMR produced no obvious EUV coronal jet of normal brightness, but each produced one or more faint EUV coronal jets that are discernible in AIA 193 Å images. The spires of these jets are much fainter and usually narrower than for typical EUV jets that have been observed to be produced by minifilament eruptions in quiet regions and coronal holes. For each of 26 faint jets from the eight emerging BMRs, we examine whether the faint spire was evidently made a la Yokoyama & Shibata (1995). We find: (1) 16 of these faint spires evidently originate from sites of converging opposite-polarity magnetic flux and show base brightenings like those in minifilament-eruption-driven coronal jets, (2) the 10 other faint spires maybe were made by a burst of the external-magnetic-arcade-building reconnection of the emerging magnetic arch with the ambient open field, reconnection directly driven by the arch's emergence, but (3) none were unambiguously made by such emergence-driven reconnection. Thus, for these eight emerging BMRs, the observations indicate that emergence-driven external reconnection of the emerging magnetic arch with ambient open field at most produces a jet spire that is much fainter than in previously-reported, much more obvious coronal jets driven by minifilament eruptions. Title: Network Jets As The Driver Of Counter-streaming Flows In A Solar Filament Authors: Panesar, N. K.; Tiwari, S.; Moore, R.; Sterling, A. Bibcode: 2021AAS...23820506P Altcode: We investigate the driving mechanism of counter-streaming flows in a solar filament, using EUV images from SDO/AIA, line of sight magnetograms from SDO/HMI, IRIS SJ images, and H-alpha data from GONG. We find that: (i) persistent counter-streaming flows along adjacent threads of a small (100" long) solar filament is present; (ii) both ends of the solar filament are rooted at the edges of magnetic network flux lanes; (iii) recurrent small-scale jets (also known as network jets) occur at both ends of the filament; (iv) some of the network jets occur at the sites of flux cancelation between the majority-polarity flux and merging minority-polarity flux patches; (v) these multiple network jets clearly drive the counter-streaming flows along the adjacent threads of the solar filament for ~2 hours with an average speed of 70 km s-1; (vi) some the network jets show base brightenings, analogous to the base brightenings of coronal jets; and (vii) the filament appears wider (4") in EUV images than in H-alpha images (2.5"), consistent with previous studies. Thus, our observations show that counter-streaming flows in the filament are driven by network jets and possibly these driving network jet eruptions are prepared and triggered by flux cancelation. Title: The Missing Cool Corona In The Flat Magnetic Field Around Solar Active Regions Authors: Singh, T.; Sterling, A.; Moore, R. Bibcode: 2021AAS...23831321S Altcode: SDO/AIA images the full solar disk in several EUV bands that are each sensitive to coronal plasma emissions of one or more specific temperatures. We observe that when isolated active regions (ARs) are on the disk, full-disk images in some of the coronal EUV channels show the outskirts of the AR as a dark moat surrounding the AR. Here we present several specific examples, selected from time periods when there was only a single AR present on the disk. Visually, moats are observed to be most prominent in the AIA 171 Angstrom band, which has the most sensitivity to emission from plasma at log10 T = 5.8. By using the emission measure distribution with temperature, we find the intensity of the moat to be most depressed over the temperature range log10 T ~ 5.7-6.2 for all the cases. We argue that the dark moat exists because the pressure from the strong magnetic field that splays out from the AR presses down on underlying magnetic loops, flattening those loops — along with the lowest of the AR's own loops over the moat — to a low altitude. Those loops, which would normally emit the bulk of the 171 Angstrom emission, are restricted to heights above the surface that are too low to have 171 Angstrom emitting plasmas sustained in them, while hotter EUV-emitting plasmas are sustained in the overlying higher-altitude long AR-rooted coronal loops. This potentially explains the low-coronal-temperature dark moats surrounding the ARs. Title: On Making Magnetic-flux-rope Omega Loops For Solar Bipolar Magnetic Regions Of All Sizes By Convection Cells Authors: Moore, R.; Tiwari, S.; Panesar, N.; Sterling, A. Bibcode: 2021AAS...23831318M Altcode: This poster gives an overview of Moore, R. L., Tiwari, S. K., Panesar, N. K., & Sterling, A. C. 2020, ApJ Letters, 902:L35. We propose that the magnetic-flux-rope omega loop that emerges to become any bipolar magnetic region (BMR) is made by a convection cell of the omega-loop's size from initially horizontal magnetic field ingested through the cell's bottom. This idea is based on (1) observed characteristics of BMRs of all spans (~1000 to ~200,000 km), (2) a well-known simulation of the production of a BMR by a supergranule-sized convection cell from horizontal field placed at cell bottom, and (3) a well-known convection-zone simulation. From the observations and simulations, we (1) infer that the strength of the field ingested by the biggest convection cells (giant cells) to make the biggest BMR omega loops is ~103 G, (2) plausibly explain why the span and flux of the biggest observed BMRs are ~200,000 km and ~1022 Mx, (3) suggest how giant cells might also make "failed BMR" omega loops that populate the upper convection zone with horizontal field, from which smaller convection cells make BMR omega loops of their size, (4) suggest why sunspots observed in a sunspot cycle's declining phase tend to violate the hemispheric helicity rule, and (5) support a previously proposed amended Babcock scenario (Moore, R. L., Cirtain, J. W., & Sterling, A. C. 2016, arXiv:1606.05371) for the sunspot cycle's dynamo process. Because the proposed convection-based heuristic model for making a sunspot-BMR omega loop avoids having ~105 G field in the initial flux rope at the bottom of the convection zone, it is an appealing alternative to the present magnetic-buoyancy-based standard scenario and warrants testing by high-enough-resolution giant-cell magnetoconvection simulations. Title: Coronal-jet-producing Minifilament Eruptions As A Possible Source Of Parker Solar Probe (PSP) Switchbacks Authors: Sterling, A.; Moore, R. Bibcode: 2021AAS...23812306S Altcode: The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun's atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "minifilament" flux rope that erupts and reconnects with coronal field. We argue that the reconnected erupting minifilament flux rope can manifest as an outward propagating Alfvenic fluctuation that steepens into an increasingly compact disturbance as it moves through the solar wind. Using previous observed properties of coronal jets that connect to coronagraph-observed white-light jets (a.k.a. "narrow CMEs"), along with typical solar wind speed values, we expect the coronal-jet-produced disturbances to traverse near-perihelion PSP in less than or about 25 min, with a velocity of about 400 km/s. To consider further the plausibility of this idea, we show that a previously studied series of equatorial latitude coronal jets, originating from the periphery of an active region, generate white-light jets in the outer corona (seen in STEREO/COR2 coronagraph images; 2.5 — 15 solar radii), and into the inner heliosphere (seen in STEREO/Hi1 heliospheric imager images; 15 — 84 solar radii). Thus it is tenable that disturbances put onto open coronal magnetic field lines by coronal-jet-producing erupting minifilament flux ropes can propagate out to PSP space and appear as switchbacks. This work was supported by the NASA Heliophysics Division, and by the NASA/MSFC Hinode Project. For further details see Sterling & Moore (2020, ApJ, 896, L18). Title: What Percentage Of The Brightest Coronal Loops Are Rooted In Mixed-polarity Magnetic Flux? Authors: Tiwari, S. K.; Evans, C. L.; Panesar, N.; Prasad, A.; Moore, R. Bibcode: 2021AAS...23820502T Altcode: We have previously shown (Tiwari et al. 2017, ApJ Letters, 843, L20) that the heating in active region (AR) coronal loops depends systematically on their photospheric magnetic setting. There, we found that the brightest and hottest loops of ARs are the ones connecting sunspot umbra/penumbra at one end to (a) penumbra, (b) unipolar plage, or (c) mixed-polarity plage on the other end. The coolest loops are the ones that connect sunspot umbra at both ends. In this work we study the brightest loops during 24 hours in the core of the active region that was observed by Hi-C 2.1. These loops have neither foot in sunspot umbra or penumbra, but in plage. We investigate what percentage of the brightest coronal loops (in SDO/AIA Fe XVIII emission) have mixed-polarity magnetic flux at least at one of their feet, and so the heating could be driven by magnetic flux cancellation. We confirm the footpoint locations of loops via non-force-free field extrapolations (using SDO/HMI magnetograms) and find that ∼40% of the loops have both feet in unipolar flux, and ∼60% of the loops have at least one foot in mixed-polarity flux. The loops having mixed-polarity foot-point flux are ∼15% longer lived on average than the ones with both feet unipolar, but their peak-intensity averages do not show any significant difference. While the presence of mixed-polarity magnetic flux at least at one foot in majority of loops strongly supports the cancellation idea, the absence of mixed-polarity magnetic flux (to the detection limit of HMI) in about 40% of the loops suggests cancellation may not be necessary for heating coronal loops, but rather might enhance heating by some factor. We will further discuss some points that support, and some points that challenge, the flux cancellation idea of coronal heating. Title: What Causes Faint Solar Coronal Jets from Emerging Flux Regions in Coronal Holes? Authors: Harden, Abigail R.; Panesar, Navdeep K.; Moore, Ronald L.; Sterling, Alphonse C.; Adams, Mitzi L. Bibcode: 2021ApJ...912...97H Altcode: 2021arXiv210307813H Using EUV images and line-of-sight magnetograms from Solar Dynamics Observatory, we examine eight emerging bipolar magnetic regions (BMRs) in central-disk coronal holes for whether the emerging magnetic arch made any noticeable coronal jets directly, via reconnection with ambient open field as modeled by Yokoyama & Shibata. During emergence, each BMR produced no obvious EUV coronal jet of normal brightness, but each produced one or more faint EUV coronal jets that are discernible in AIA 193 &angst; images. The spires of these jets are much fainter and usually narrower than for typical EUV jets that have been observed to be produced by minifilament eruptions in quiet regions and coronal holes. For each of 26 faint jets from the eight emerging BMRs, we examine whether the faint spire was evidently made a la Yokoyama & Shibata. We find that (1) 16 of these faint spires evidently originate from sites of converging opposite-polarity magnetic flux and show base brightenings like those in minifilament-eruption-driven coronal jets, (2) the 10 other faint spires maybe were made by a burst of the external-magnetic-arcade-building reconnection of the emerging magnetic arch with the ambient open field, with reconnection directly driven by the arch's emergence, but (3) none were unambiguously made by such emergence-driven reconnection. Thus, for these eight emerging BMRs, the observations indicate that emergence-driven external reconnection of the emerging magnetic arch with ambient open field at most produces a jet spire that is much fainter than in previously reported, much more obvious coronal jets driven by minifilament eruptions. Title: A Fundamental Mechanism of Solar Eruption Initiation Authors: Jiang, Chaowei; Feng, Xueshang; Liu, Rui; Yan, Xiaoli; Hu, Qiang; Moore, Ronald L. Bibcode: 2021EGUGA..2310493J Altcode: Solar eruptions are spectacular magnetic explosions in the Sun's corona and how they are initiated remains unclear. Prevailing theories often rely on special magnetic topologies, such as magnetic flux rope and magnetic null point, which, however, may not generally exist in the pre-eruption source region of corona. Here using fully three-dimensional magnetohydrodynamic simulations with high accuracy, we show that solar eruption can be initiated in a single bipolar configuration with no additional special topology. Through photospheric shearing motion alone, an electric current sheet forms in the highly sheared core field of the magnetic arcade during its quasi-static evolution. Once magnetic reconnection sets in, the whole arcade is expelled impulsively, forming a fast-expanding twisted flux rope with a highly turbulent reconnecting region underneath. The simplicity and efficacy of this scenario argue strongly for its fundamental importance in the initiation of solar eruptions. Title: Airborne Measurements of Contrail Ice Properties—Dependence on Temperature and Humidity Authors: Bräuer, T.; Voigt, C.; Sauer, D.; Kaufmann, S.; Hahn, V.; Scheibe, M.; Schlager, H.; Diskin, G. S.; Nowak, J. B.; DiGangi, J. P.; Huber, F.; Moore, R. H.; Anderson, B. E. Bibcode: 2021GeoRL..4892166B Altcode: The largest share in the climate impact of aviation results from contrail cirrus clouds. Here, the dependence of microphysical contrail ice properties and extinction on temperature and humidity is investigated. Contrail measurements were performed at various altitudes during the 2018 ECLIF II/NDMAX campaign with the NASA DC 8 chasing the DLR A320. Ice number concentrations and contrail extinction coefficients are largest at altitudes near 9.5 km, typical for short and medium range air traffic. At higher altitudes near 11.5 km, low ambient water vapor concentrations lead to smaller contrail particle sizes and lower extinction coefficients. In addition, contrails were detected below 8.2 km near the Schmidt Appleman contrail formation threshold temperature. Here, only a small fraction (<15%) of the emitted soot particles were activated into ice. Our observations enhance the understanding of contrail formation near the formation threshold and give a glimpse on the altitude dependence of climate relevant contrail properties. Title: The Missing Cool Corona in the Flat Magnetic Field around Solar Active Regions Authors: Singh, Talwinder; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2021ApJ...909...57S Altcode: 2020arXiv201215406S Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images the full solar disk in several extreme-ultraviolet (EUV) bands that are each sensitive to coronal plasma emissions of one or more specific temperatures. We observe that when isolated active regions (ARs) are on the disk, full-disk images in some of the coronal EUV channels show the outskirts of the AR as a dark moat surrounding the AR. Here we present seven specific examples, selected from time periods when there was only a single AR present on the disk. Visually, we observe the moat to be most prominent in the AIA 171 Å band, which has the most sensitivity to emission from plasma at log10 T = 5.8. By examining the 1D line-of-sight emission measure temperature distribution found from six AIA EUV channels, we find the intensity of the moat to be most depressed over the temperature range log10 T ≍ 5.7-6.2 for most of the cases. We argue that the dark moat exists because the pressure from the strong magnetic field that splays out from the AR presses down on underlying magnetic loops, flattening those loops—along with the lowest of the AR's own loops over the moat—to a low altitude. Those loops, which would normally emit the bulk of the 171 Å emission, are restricted to heights above the surface that are too low to have 171 Å emitting plasmas sustained in them, according to Antiochos & Noci, while hotter EUV-emitting plasmas are sustained in the overlying higher-altitude long AR-rooted coronal loops. This potentially explains the low-coronal-temperature dark moats surrounding the ARs. Title: Are the Brightest Coronal Loops Always Rooted in Mixed-polarity Magnetic Flux? Authors: Tiwari, Sanjiv K.; Evans, Caroline L.; Panesar, Navdeep K.; Prasad, Avijeet; Moore, Ronald L. Bibcode: 2021ApJ...908..151T Altcode: 2021arXiv210210146T A recent study demonstrated that freedom of convection and strength of magnetic field in the photospheric feet of active-region (AR) coronal loops, together, can engender or quench heating in them. Other studies stress that magnetic flux cancellation at the loop-feet potentially drives heating in loops. We follow 24 hr movies of a bipolar AR, using extreme ultraviolet images from the Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) and line-of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI)/SDO, to examine magnetic polarities at the feet of 23 of the brightest coronal loops. We derived Fe XVIII emission (hot-94) images (using the Warren et al. method) to select the hottest/brightest loops, and confirm their footpoint locations via non-force-free field extrapolations. From 6″ × 6″ boxes centered at each loop foot in LOS magnetograms we find that ∼40% of the loops have both feet in unipolar flux, and ∼60% of the loops have at least one foot in mixed-polarity flux. The loops with both feet unipolar are ∼15% shorter lived on average than the loops having mixed-polarity foot-point flux, but their peak-intensity averages are equal. The presence of mixed-polarity magnetic flux in at least one foot in the majority of the loops suggests that flux cancellation at the footpoints may drive most of the heating. But the absence of mixed-polarity magnetic flux (to the detection limit of HMI) in ∼40% of the loops suggests that flux cancellation may not be necessary to drive heating in coronal loops—magnetoconvection and field strength at both loop feet possibly drive much of the heating, even in the cases where a loop foot presents mixed-polarity magnetic flux. Title: Fine-scale explosive energy release at sites of magnetic flux cancellation in the core of a solar active region: Hi-C 2.1, IRIS and SDO observations Authors: Tiwari, Sanjiv Kumar; Moore, Ronald; De Pontieu, Bart; Winebarger, Amy; Panesar, Navdeep Kaur Bibcode: 2021cosp...43E1779T Altcode: The second sounding-rocket flight of the High-Resolution Coronal Imager (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution (~250 km, 4.4 s) coronal EUV images of Fe IX/X emission at 172 A, of a solar active region (AR NOAA 12712) near solar disk center. Three morphologically-different types (I: dot-like, II: loop-like, & III: surge/jet-like) of fine-scale sudden brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although type Is resemble IRIS bombs (in size, and brightness with respect to surroundings), our dot-like events are apparently much hotter, and shorter in span (70 s). Because Dot-like brightenings are not as clearly discernible in AIA 171 A as in Hi-C 172 A, they were not reported before. We complement the 5-minute-duration Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV and UV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying flux cancellation at the microflare's polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow. The light curves from Hi-C, AIA and IRIS peak nearly simultaneously for many of these events and none of the events display a systematic cooling sequence as seen in typical coronal flares, suggesting that these tiny brightening events have chromospheric/transition-region origin. Title: Coronal Jets Observed at Sites of Magnetic Flux Cancelation Authors: Panesar, Navdeep Kaur; Sterling, Alphonse; Moore, Ronald; Tiwari, Sanjiv Kumar Bibcode: 2021cosp...43E1783P Altcode: Solar jets of all sizes are magnetically channeled narrow eruptive events; the larger ones are often observed in the solar corona in EUV and coronal X-ray images. Recent observations show that the buildup and triggering of the minifilament eruptions that drive coronal jets result from magnetic flux cancelation under the minifilament, at the neutral line between merging majority-polarity and minority-polarity magnetic flux patches. Here we investigate the magnetic setting of on-disk small-scale jets (also known as jetlets) by using high resolution 172A images from the High-resolution Coronal Imager (Hi-C2.1) and EUV images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and UV images from the Interface Region Imaging Spectrograph (IRIS), and line-of-sight magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). We observe jetlets at edges of magnetic network lanes. From magnetograms co-aligned with the Hi-C, IRIS, and AIA images, we find that the jetlets stem from sites of flux cancelation between merging majority-polarity and minority-polarity flux patches, and some of the jetlets show faint brightenings at their bases reminiscent of the base brightenings in coronal jets. Based on these observations of jetlets and our previous observations of ∼90 coronal jets in quiet regions and coronal holes, we infer that flux cancelation is the essential process in the buildup and triggering of jetlets. Our observations suggest that network jetlet eruptions are small-scale analogs of both larger-scale coronal jet eruptions and the still-larger-scale eruptions that make major CMEs. Title: The Signature of Sulfur: Geochemical Characterization of Hydrothermal S-rich Deposits in Terrestrial Mars Analogs Authors: Moore, R.; Ende, J. J.; Burtt, P. K.; Szynkiewicz, A. Bibcode: 2020AGUFMEP017..11M Altcode: The Spirit rover found localized hydrothermal/fumarolic deposits enriched in Fe-, Ca-, and Mg-sulfate within Gusev crater. However, it did not find conclusive evidence for the presence of reduced S (e.g., sulfides, elemental S), which dominates analogous terrestrial hydrothermal settings. Consequently, the sulfate (SO4) enrichment and apparent absence of reduced S in Gusev sediments raises questions about the formation and oxidation mechanisms of S in acidic hydrothermal systems. To address these questions, we collected sediment and water samples from highly-acidic hot springs, mud pots, fumaroles, and drainages with elevated H2S emissions in four analog sites, including Yellowstone, Valles Caldera, Lassen, and Iceland. The method of Sulfur Sequential Extraction (SSE) was used to determine oxidation states and measure quantities and S isotope compositions of sulfides (S2-, S-), elemental S (S0), and sulfates (S6+). Results show that S0 was highly abundant in most sediment samples (0.3 - 20 wt.% S, but up to ~70 wt.% S), followed by S- (0.2 - 4.4 wt.% S), with significantly lower S6+ in the sediment and water column (0.07 - 1.6 wt.% S). In the majority of samples, the δ34S of S6+ was lower (-3 to +3‰) compared to emitted H2S (-2 to +6‰), but similar to S- and S0 precipitated in the hydrothermal sediments (-7 to +3‰), suggesting the importance of subsequent step-oxidation of the reduced S to sulfate. Our results indicate that surface hydrothermal systems are capable of producing large quantities of reduced S, and could explain high-S deposits on Mars. However, the reported S contents for Gusev crater are lower in range (0.4 - 5.6 wt.% S) and more oxidized (mainly sulfate) compared to the studied analog sites (0.2 - 24 wt.% S, mainly elemental S and sulfides). The negligible amounts of reduced S in Gusev may be a result of subsequent oxidation to SO4, and the overall smaller amount of S might reflect removal of SO4 by an active hydrological cycle during formation or later on over several billion years. Our previous study showed that ferric iron (Fe3+) reduction participates in the step-oxidation of hydrothermal H2S. This is especially compelling given the high concentrations of Fe3+ iron and Fe-sulfates detected in Gusev, and thus provides new context for the formation of sulfate in Martian oxygen-depleted surface environments. Title: Fine-scale explosive energy release at sites of magnetic flux cancellation in the core of a solar active region: Hi-C 2.1, IRIS and SDO observations Authors: Tiwari, S. K.; Panesar, N. K.; Moore, R. L.; De Pontieu, B.; Winebarger, A. R. Bibcode: 2020AGUFMSH0010007T Altcode: The second sounding-rocket flight of the High-Resolution Coronal Imager (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution (~250 km, 4.4 s) coronal EUV images of Fe IX/X emission at 172 Å, of a solar active region (AR NOAA 12712) near solar disk center. Three morphologically-different types (I: dot-like, II: loop-like, & III: surge/jet-like) of fine-scale sudden brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although type Is resemble IRIS bombs (in size, and brightness with respect to surroundings), our dot-like events are apparently much hotter, and shorter in span (70 s). Because Dot-like brightenings are not as clearly discernible in AIA 171 Å as in Hi-C 172 Å, they were not reported before. We complement the 5-minute-duration Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV and UV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying flux cancellation at the microflare's polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow. The light curves from Hi-C, AIA and IRIS peak nearly simultaneously for many of these events and none of the events display a systematic cooling sequence as seen in typical coronal flares, suggesting that these tiny brightening events have chromospheric/transition-region origin. Title: Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop Authors: Aartsen, M. G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Amin, N. M.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Balagopal V., A.; Barbano, A.; Barwick, S. W.; Bastian, B.; Baum, V.; Baur, S.; Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker Tjus, J.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Böser, S.; Botner, O.; Böttcher, J.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Buscher, J.; Busse, R. S.; Carver, T.; Chen, C.; Cheung, E.; Chirkin, D.; Choi, S.; Clark, B. A.; Clark, K.; Classen, L.; Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Dharani, S.; Diaz, A.; Díaz-Vélez, J. C.; Dujmovic, H.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eller, P.; Engel, R.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Fienberg, A. T.; Filimonov, K.; Finley, C.; Fox, D.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garrappa, S.; Gerhardt, L.; Ghorbani, K.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Grégoire, T.; Griffith, Z.; Griswold, S.; Günder, M.; Gündüz, M.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Hanson, K.; Haungs, A.; Hauser, S.; Hebecker, D.; Heereman, D.; Heix, P.; Helbing, K.; Hellauer, R.; Henningsen, F.; Hickford, S.; Hignight, J.; Hill, C.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huber, M.; Huber, T.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jansson, M.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jonske, F.; Joppe, R.; Kang, D.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katz, U.; Kauer, M.; Kellermann, M.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Koundal, P.; Kowalski, M.; Krings, K.; Krückl, G.; Kulacz, N.; Kurahashi, N.; Kyriacou, A.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lazar, J. P.; Leonard, K.; Leszczyńska, A.; Li, Y.; Liu, Q. R.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Ludwig, A.; Lünemann, J.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mallik, P.; Mallot, K.; Mancina, S.; Mariş, I. C.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Medina, A.; Meier, M.; Meighen-Berger, S.; Merino, G.; Merz, J.; Meures, T.; Micallef, J.; Mockler, D.; Momenté, G.; Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Muth, P.; Nagai, R.; Naumann, U.; Neer, G.; Nguyën, L. V.; Niederhausen, H.; Nisa, M. U.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Murchadha, A.; O'Sullivan, E.; Pandya, H.; Pankova, D. V.; Park, N.; Parker, G. K.; Paudel, E. N.; Peiffer, P.; Pérez de los Heros, C.; Philippen, S.; Pieloth, D.; Pieper, S.; Pinat, E.; Pizzuto, A.; Plum, M.; Popovych, Y.; Porcelli, A.; Price, P. B.; Przybylski, G. T.; Raab, C.; Raissi, A.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Rehman, A.; Reimann, R.; Relethford, B.; Renschler, M.; Renzi, G.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk Cantu, D.; Safa, I.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Scharf, M.; Schaufel, M.; Schieler, H.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schröder, F. G.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Shefali, S.; Silva, M.; Smithers, B.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Strotjohann, N. L.; Stürwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.; Turley, C. F.; Ty, B.; Unger, E.; Unland Elorrieta, M. A.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vannerom, D.; van Santen, J.; Verpoest, S.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Watson, T. B.; Weaver, C.; Weindl, A.; Weldert, J.; Wendt, C.; Werthebach, J.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woschnagg, K.; Wrede, G.; Wulff, J.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zhang, Z.; Zöcklein, M.; IceCube Collaboration Bibcode: 2020PhRvD.102l2001A Altcode: 2020arXiv200605215I We report here an extension of the measurement of the all-particle cosmic-ray spectrum with IceTop to lower energy. The new measurement gives full coverage of the knee region of the spectrum and reduces the gap in energy between previous IceTop and direct measurements. With a new trigger that selects events in closely spaced detectors in the center of the array, the IceTop energy threshold is lowered by almost an order of magnitude below its previous threshold of 2 PeV. In this paper we explain how the new trigger is implemented, and we describe the new machine-learning method developed to deal with events with very few detectors hit. We compare the results with previous measurements by IceTop and others that overlap at higher energy and with HAWC and Tibet in the 100 TeV range. Title: Network Jets as the Driver of Counter-streaming Flows in a Solar Filament Authors: Panesar, N. K.; Tiwari, S. K.; Moore, R. L.; Sterling, A. C. Bibcode: 2020AGUFMSH0240004P Altcode: We investigate the driving mechanism of counter-streaming flows in a solar filament, using EUV images from SDO/AIA, line of sight magnetograms from SDO/HMI, IRIS SJ images, and H-alpha data from GONG. We find that: (i) persistent counter-streaming flows along adjacent threads of a small (100" long) solar filament is present; (ii) both ends of the solar filament are rooted at the edges of magnetic network flux lanes; (iii) recurrent small-scale jets (also known as network jets) occur at both ends of the filament; (iv) some of the network jets occur at the sites of flux cancelation between the majority-polarity flux and merging minority-polarity flux patches; (v) these multiple network jets clearly drive the counter-streaming flows along the adjacent threads of the solar filament for ~2 hours with an average speed of 70 km s-1; (vi) some the network jets show base brightenings, analogous to the base brightenings of coronal jets; and (vii) the filament appears wider (4") in EUV images than in H-alpha images (2.5"), consistent with previous studies. Thus, our observations show that counter-streaming flows in the filament are driven by network jets and possibly these driving network jet eruptions are prepared and triggered by flux cancelation. Title: Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections Authors: Patsourakos, S.; Vourlidas, A.; Török, T.; Kliem, B.; Antiochos, S. K.; Archontis, V.; Aulanier, G.; Cheng, X.; Chintzoglou, G.; Georgoulis, M. K.; Green, L. M.; Leake, J. E.; Moore, R.; Nindos, A.; Syntelis, P.; Yardley, S. L.; Yurchyshyn, V.; Zhang, J. Bibcode: 2020SSRv..216..131P Altcode: 2020arXiv201010186P A clear understanding of the nature of the pre-eruptive magnetic field configurations of Coronal Mass Ejections (CMEs) is required for understanding and eventually predicting solar eruptions. Only two, but seemingly disparate, magnetic configurations are considered viable; namely, sheared magnetic arcades (SMA) and magnetic flux ropes (MFR). They can form via three physical mechanisms (flux emergence, flux cancellation, helicity condensation). Whether the CME culprit is an SMA or an MFR, however, has been strongly debated for thirty years. We formed an International Space Science Institute (ISSI) team to address and resolve this issue and report the outcome here. We review the status of the field across modeling and observations, identify the open and closed issues, compile lists of SMA and MFR observables to be tested against observations and outline research activities to close the gaps in our current understanding. We propose that the combination of multi-viewpoint multi-thermal coronal observations and multi-height vector magnetic field measurements is the optimal approach for resolving the issue conclusively. We demonstrate the approach using MHD simulations and synthetic coronal images. Title: On Making Magnetic-flux-rope Ω Loops for Solar Bipolar Magnetic Regions of All Sizes by Convection Cells Authors: Moore, Ronald L.; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Sterling, Alphonse C. Bibcode: 2020ApJ...902L..35M Altcode: 2020arXiv200913694M We propose that the flux-rope Ω loop that emerges to become any bipolar magnetic region (BMR) is made by a convection cell of the Ω-loop's size from initially horizontal magnetic field ingested through the cell's bottom. This idea is based on (1) observed characteristics of BMRs of all spans (∼1000 to ∼200,000 km), (2) a well-known simulation of the production of a BMR by a supergranule-sized convection cell from horizontal field placed at cell bottom, and (3) a well-known convection-zone simulation. From the observations and simulations, we (1) infer that the strength of the field ingested by the biggest convection cells (giant cells) to make the biggest BMR Ω loops is ∼103 G, (2) plausibly explain why the span and flux of the biggest observed BMRs are ∼200,000 km and ∼1022 Mx, (3) suggest how giant cells might also make "failed-BMR" Ω loops that populate the upper convection zone with horizontal field, from which smaller convection cells make BMR Ω loops of their size, (4) suggest why sunspots observed in a sunspot cycle's declining phase tend to violate the hemispheric helicity rule, and (5) support a previously proposed amended Babcock scenario for the sunspot cycle's dynamo process. Because the proposed convection-based heuristic model for making a sunspot-BMR Ω loop avoids having ∼105 G field in the initial flux rope at the bottom of the convection zone, it is an appealing alternative to the present magnetic-buoyancy-based standard scenario and warrants testing by high-enough-resolution giant-cell magnetoconvection simulations. Title: Possible Evolution of Minifilament-Eruption-Produced Solar Coronal Jets, Jetlets, and Spicules, into Magnetic-Twist-Wave “Switchbacks” Observed by the Parker Solar Probe (PSP) Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep K.; Samanta, Tanmoy Bibcode: 2020JPhCS1620a2020S Altcode: 2020arXiv201012991S Many solar coronal jets result from erupting miniature-filament (“minifilament”) magnetic flux ropes that reconnect with encountered surrounding far-reaching field. Many of those minifilament flux ropes are apparently built and triggered to erupt by magnetic flux cancelation. If that cancelation (or some other process) results in the flux rope’s field having twist, then the reconnection with the far-reaching field transfers much of that twist to that reconnected far-reaching field. In cases where that surrounding field is open, the twist can propagate to far distances from the Sun as a magnetic-twist Alfvénic pulse. We argue that such pulses from jets could be the kinked-magnetic-field structures known as “switchbacks,” detected in the solar wind during perihelion passages of the Parker Solar Probe (PSP). For typical coronal-jet-generated Alfvénic pulses, we expect that the switchbacks would flow past PSP with a duration of several tens of minutes; larger coronal jets might produce switchbacks with passage durations ∼1hr. Smaller-scale jet-like features on the Sun known as “jetlets” may be small-scale versions of coronal jets, produced in a similar manner as the coronal jets. We estimate that switchbacks from jetlets would flow past PSP with a duration of a few minutes. Chromospheric spicules are jet-like features that are even smaller than jetlets. If some portion of their population are indeed very-small-scale versions of coronal jets, then we speculate that the same processes could result in switchbacks that pass PSP with durations ranging from about ∼2 min down to tens of seconds. Title: Sequential Lid Removal in a Triple-decker Chain of CME-producing Solar Eruptions Authors: Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald L.; Joshi, Bhuwan Bibcode: 2020ApJ...901...38J Altcode: 2020arXiv200804525J We investigate the onsets of three consecutive coronal mass ejection (CME) eruptions in 12 hr from a large bipolar active region (AR) observed by the Solar Dynamics Observatory (SDO), the Solar Terrestrial Relations Observatory (STEREO), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), and the Geostationary Operational Environmental Satellite (GOES). Evidently, the AR initially had a "triple-decker" configuration: three flux ropes in a vertical stack above the polarity inversion line (PIL). Upon being bumped by a confined eruption of the middle flux rope, the top flux rope erupts to make the first CME and its accompanying AR-spanning flare arcade rooted in a far apart pair of flare ribbons. The second CME is made by eruption of the previously arrested middle flux rope, which blows open the flare arcade of the first CME and produces a flare arcade rooted in a pair of flare ribbons closer to the PIL than those of the first CME. The third CME is made by blowout eruption of the bottom flux rope, which blows open the second flare arcade and makes its own flare arcade and pair of flare ribbons. Flux cancellation observed at the PIL likely triggers the initial confined eruption of the middle flux rope. That confined eruption evidently triggers the first CME eruption. The lid-removal mechanism instigated by the first CME eruption plausibly triggers the second CME eruption. Further lid removal by the second CME eruption plausibly triggers the final CME eruption. Title: Network Jets as the Driver of Counter-streaming Flows in a Solar Filament/Filament Channel Authors: Panesar, Navdeep K.; Tiwari, Sanjiv K.; Moore, Ronald L.; Sterling, Alphonse C. Bibcode: 2020ApJ...897L...2P Altcode: 2020arXiv200604249P Counter-streaming flows in a small (100″ long) solar filament/filament channel are directly observed in high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) extreme-ultraviolet (EUV) images of a region of enhanced magnetic network. We combine images from SDO/AIA, SDO/Helioseismic and Magnetic Imager (HMI), and the Interface Region Imaging Spectrograph (IRIS) to investigate the driving mechanism of these flows. We find that: (I) counter-streaming flows are present along adjacent filament/filament channel threads for ∼2 hr, (II) both ends of the filament/filament channel are rooted at the edges of magnetic network flux lanes along which there are impinging fine-scale opposite-polarity flux patches, (III) recurrent small-scale jets (known as network jets) occur at the edges of the magnetic network flux lanes at the ends of the filament/filament channel, (IV) the recurrent network jet eruptions clearly drive the counter-streaming flows along threads of the filament/filament channel, (V) some of the network jets appear to stem from sites of flux cancelation, between network flux and merging opposite-polarity flux, and (VI) some show brightening at their bases, analogous to the base brightening in coronal jets. The average speed of the counter-streaming flows along the filament/filament channel threads is 70 km s-1. The average widths of the AIA filament/filament channel and the Hα filament are 4″ and 2"5, respectively, consistent with the earlier findings that filaments in EUV images are wider than in Hα images. Thus, our observations show that the continually repeated counter-streaming flows come from network jets, and these driving network jet eruptions are possibly prepared and triggered by magnetic flux cancelation. Title: Coronal-jet-producing Minifilament Eruptions as a Possible Source of Parker Solar Probe Switchbacks Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2020ApJ...896L..18S Altcode: 2020arXiv200604990S The Parker Solar Probe (PSP) has observed copious rapid magnetic field direction changes in the near-Sun solar wind. These features have been called "switchbacks," and their origin is a mystery. But their widespread nature suggests that they may be generated by a frequently occurring process in the Sun's atmosphere. We examine the possibility that the switchbacks originate from coronal jets. Recent work suggests that many coronal jets result when photospheric magnetic flux cancels, and forms a small-scale "minifilament" flux rope that erupts and reconnects with coronal field. We argue that the reconnected erupting-minifilament flux rope can manifest as an outward propagating Alfvénic fluctuation that steepens into an increasingly compact disturbance as it moves through the solar wind. Using previous observed properties of coronal jets that connect to coronagraph-observed white-light jets (a.k.a. "narrow CMEs"), along with typical solar wind speed values, we expect the coronal-jet-produced disturbances to traverse near-perihelion PSP in ≲25 minutes, with a velocity of ∼400 km s-1. To consider further the plausibility of this idea, we show that a previously studied series of equatorial latitude coronal jets, originating from the periphery of an active region, generate white-light jets in the outer corona (seen in STEREO/COR2 coronagraph images; 2.5-15 R), and into the inner heliosphere (seen in Solar-Terrestrial Relations Observatory (STEREO)/Hi1 heliospheric imager images; 15-84 R). Thus it is tenable that disturbances put onto open coronal magnetic field lines by coronal-jet-producing erupting-minifilament flux ropes can propagate out to PSP space and appear as switchbacks. Title: Onset of Magnetic Explosion in Solar Coronal Jets in Quiet Regions on the Central Disk Authors: Panesar, Navdeep K.; Moore, Ronald L.; Sterling, Alphonse C. Bibcode: 2020ApJ...894..104P Altcode: 2020arXiv200604253P We examine the initiation of 10 coronal jet eruptions in quiet regions on the central disk, thereby avoiding near-limb spicule-forest obscuration of the slow-rise onset of the minifilament eruption. From the Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å 12 s cadence movie of each eruption, we (1) find and compare the start times of the minifilament's slow rise, the jet-base bright point, the jet-base-interior brightening, and the jet spire, and (2) measure the minifilament's speed at the start and end of its slow rise. From (a) these data, (b) prior observations showing that each eruption was triggered by magnetic flux cancelation under the minifilament, and (c) the breakout-reconnection current sheet observed in one eruption, we confirm that quiet-region jet-making minifilament eruptions are miniature versions of CME-making filament eruptions, and surmise that in most quiet-region jets: (1) the eruption starts before runaway reconnection starts, (2) runaway reconnection does not start until the slow-rise speed is at least ∼1 km s-1, and (3) at and before eruption onset, there is no current sheet of appreciable extent. We therefore expect that (I) many CME-making filament eruptions are triggered by flux cancelation under the filament, (II) emerging bipoles seldom, if ever, directly drive jet production because the emergence is seldom, if ever, fast enough, and (III) at a separatrix or quasi-separatrix in any astrophysical setting of a magnetic field in low-beta plasma, a current sheet of appreciable extent can be built only dynamically by a magnetohydrodynamic convulsion of the field, not by quasi-static gradual converging of the field. Title: A Solar Magnetic-fan Flaring Arch Heated by Nonthermal Particles and Hot Plasma from an X-Ray Jet Eruption Authors: Lee, Kyoung-Sun; Hara, Hirohisa; Watanabe, Kyoko; Joshi, Anand D.; Brooks, David H.; Imada, Shinsuke; Prasad, Avijeet; Dang, Phillip; Shimizu, Toshifumi; Savage, Sabrina L.; Moore, Ronald; Panesar, Navdeep K.; Reep, Jeffrey W. Bibcode: 2020ApJ...895...42L Altcode: 2020arXiv200509875L We have investigated an M1.3 limb flare, which develops as a magnetic loop/arch that fans out from an X-ray jet. Using Hinode/EIS, we found that the temperature increases with height to a value of over 107 K at the loop top during the flare. The measured Doppler velocity (redshifts of 100-500 km s-1) and the nonthermal velocity (≥100 km s-1) from Fe XXIV also increase with loop height. The electron density increases from 0.3 × 109 cm-3 early in the flare rise to 1.3 × 109 cm-3 after the flare peak. The 3D structure of the loop derived with Solar TErrestrial RElations Observatory/EUV Imager indicates that the strong redshift in the loop-top region is due to upflowing plasma originating from the jet. Both hard X-ray and soft X-ray emission from the Reuven Ramaty High Energy Solar Spectroscopic Imager were only seen as footpoint brightenings during the impulsive phase of the flare, then, soft X-ray emission moved to the loop top in the decay phase. Based on the temperature and density measurements and theoretical cooling models, the temperature evolution of the flare arch is consistent with impulsive heating during the jet eruption followed by conductive cooling via evaporation and minor prolonged heating in the top of the fan loop. Investigating the magnetic field topology and squashing factor map from Solar Dynamics Observatory/HMI, we conclude that the observed magnetic-fan flaring arch is mostly heated from low atmospheric reconnection accompanying the jet ejection, instead of from reconnection above the arch as expected in the standard flare model. Title: Possible Production of Solar Spicules by Microfilament Eruptions Authors: Sterling, Alphonse C.; Moore, Ronald L.; Samanta, Tanmoy; Yurchyshyn, Vasyl Bibcode: 2020ApJ...893L..45S Altcode: 2020arXiv200404187S We examine Big Bear Solar Observatory (BBSO) Goode Solar Telescope (GST) high spatial resolution (0"06), high-cadence (3.45 s), Hα-0.8 Å images of central-disk solar spicules, using data of Samanta et al. We compare with coronal-jet chromospheric-component observations of Sterling et al. Morphologically, bursts of spicules, referred to as "enhanced spicular activities" by Samanta et al., appear as scaled-down versions of the jet's chromospheric component. Both the jet and the enhanced spicular activities appear as chromospheric-material strands, undergoing twisting-type motions of ∼20-50 km s-1 in the jet and ∼20-30 km s-1 in the enhanced spicular activities. Presumably, the jet resulted from a minifilament-carrying magnetic eruption. For two enhanced spicular activities that we examine in detail, we find tentative candidates for corresponding erupting microfilaments, but not the expected corresponding base brightenings. Nonetheless, the enhanced-spicular-activities' interacting mixed-polarity base fields, frequent-apparent-twisting motions, and morphological similarities to the coronal jet's chromospheric-temperature component, suggest that erupting microfilaments might drive the enhanced spicular activities but be hard to detect, perhaps due to Hα opacity. Degrading the BBSO/GST-image resolution with a 1"0-FWHM smoothing function yields enhanced spicular activities resembling the "classical spicules" described by, e.g., Beckers. Thus, a microfilament eruption might be the fundamental driver of many spicules, just as a minifilament eruption is the fundamental driver of many coronal jets. Similarly, a 0"5-FWHM smoothing renders some enhanced spicular activities to resemble previously reported "twinned" spicules, while the full-resolution features might account for spicules sometimes appearing as 2D-sheet-like structures. Title: CESM-release-cesm2.1.2 Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier; Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large; Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson; Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, Van; Vertenstein; Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner; Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand Bibcode: 2020zndo...3895328D Altcode: The Community Earth System Model release version cesm2.1.2 Title: Design and performance of the first IceAct demonstrator at the South Pole Authors: Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Arlen, T. C.; Auffenberg, J.; Axani, S.; Backes, P.; Bagherpour, H.; Bai, X.; Balagopal V., A.; Barbano, A.; Bartos, I.; Barwick, S. W.; Bastian, B.; Baum, V.; Baur, S.; Bay, R.; Beatty, J. J.; Becker, K. -H.; Becker Tjus, J.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Bohmer, M.; Börner, M.; Böser, S.; Botner, O.; Böttcher, J.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bretz, T.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Buscher, J.; Busse, R. S.; Carver, T.; Chen, C.; Cheung, E.; Chirkin, D.; Choi, S.; Clark, K.; Classen, L.; Coleman, A.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Diaz, A.; Díaz-Vélez, J. C.; Dujmovic, H.; Dunkman, M.; DuVernois, M. A.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eller, P.; Engel, R.; Evans, J. J.; Evenson, P. A.; Fahey, S.; Farrag, K.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Fox, D.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garrappa, S.; Gartner, A.; Gerhardt, L.; Gernhaeuser, R.; Ghorbani, K.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Griswold, S.; Günder, M.; Gündüz, M.; Haack, C.; Hallgren, A.; Halliday, R.; Halve, L.; Halzen, F.; Hanson, K.; Haugen, J.; Haungs, A.; Hebecker, D.; Heereman, D.; Heix, P.; Helbing, K.; Hellauer, R.; Henningsen, F.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Holzapfel, K.; Hoshina, K.; Huang, F.; Huber, M.; Huber, T.; Huege, T.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jonske, F.; Joppe, R.; Kalekin, O.; Kang, D.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karl, M.; Karle, A.; Katori, T.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krauss, C. B.; Krings, K.; Krückl, G.; Kulacz, N.; Kurahashi, N.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lazar, J. P.; Leonard, K.; Leszczyńska, A.; Leuermann, M.; Liu, Q. R.; Lohfink, E.; LoSecco, J.; Lozano Mariscal, C. J.; Lu, L.; Lucarelli, F.; Lünemann, J.; Luszczak, W.; Lyu, Y.; Ma, W. Y.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Makino, Y.; Mallik, P.; Mallot, K.; Mancina, S.; Mandalia, S.; Mariş, I. C.; Marka, S.; Marka, Z.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Medina, A.; Meier, M.; Meighen-Berger, S.; Menne, T.; Merino, G.; Meures, T.; Micallef, J.; Mockler, D.; Momenté, G.; Montaruli, T.; Moore, R. W.; Morse, R.; Moulai, M.; Muth, P.; Nagai, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nisa, M. U.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Oehler, M.; Olivas, A.; O'Murchadha, A.; O'Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Papp, L.; Park, N.; Peiffer, P.; Pérez de los Heros, C.; Petersen, T. C.; Philippen, S.; Pieloth, D.; Pinat, E.; Pinfold, J. L.; Pizzuto, A.; Plum, M.; Porcelli, A.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Raissi, A.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Renschler, M.; Renzi, G.; Resconi, E.; Rhode, W.; Richman, M.; Riegel, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schaufel, M.; Schieler, H.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schoenen, S.; Schröder, F. G.; Schumacher, J.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Shaevitz, M. H.; Shefali, S.; Silva, M.; Snihur, R.; Soedingrekso, J.; Soldin, D.; Söldner-Rembold, S.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stein, R.; Steinmüller, P.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stürwald, T.; Stuttard, T.; Sullivan, G. W.; Taboada, I.; Taketa, A.; Tanaka, H. K. M.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Tollefson, K.; Tomankova, L.; Tönnis, C.; Toscano, S.; Tosi, D.; Trettin, A.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.; Turley, C. F.; Ty, B.; Unger, E.; Unland Elorrieta, M. A.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veberic, D.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Watson, T. B.; Weaver, C.; Weindl, A.; Weiss, M. J.; Weldert, J.; Wendt, C.; Werthebach, J.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woschnagg, K.; Wrede, G.; Wren, S.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zöcklein, M. Bibcode: 2020JInst..15.2002A Altcode: 2019arXiv191006945A In this paper we describe the first results of IceAct, a compact imaging air-Cherenkov telescope operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector. Title: Hi-C 2.1 Observations of Small-scale Miniature-filament-eruption-like Cool Ejections in an Active Region Plage Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep K.; Reardon, Kevin P.; Molnar, Momchil; Rachmeler, Laurel A.; Savage, Sabrina L.; Winebarger, Amy R. Bibcode: 2020ApJ...889..187S Altcode: 2019arXiv191202319S We examine 172 Å ultra-high-resolution images of a solar plage region from the High-Resolution Coronal Imager, version 2.1 (Hi-C 2.1, or Hi-C) rocket flight of 2018 May 29. Over its five minute flight, Hi-C resolved a plethora of small-scale dynamic features that appear near noise level in concurrent Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) 171 Å images. For 10 selected events, comparisons with AIA images at other wavelengths and with Interface Region Imaging Spectrograph (IRIS) images indicate that these features are cool (compared to the corona) ejections. Combining Hi-C 172 Å, AIA 171 Å, IRIS 1400 Å, and Hα, we see that these 10 cool ejections are similar to the Hα "dynamic fibrils" and Ca II "anemone jets" found in earlier studies. The front of some of our cool ejections are likely heated, showing emission in IRIS 1400 Å. On average, these cool ejections have approximate widths 3"2 ± 2"1, (projected) maximum heights and velocities 4"3 ± 2"5 and 23 ± 6 km s-1, and lifetimes 6.5 ± 2.4 min. We consider whether these Hi-C features might result from eruptions of sub-minifilaments (smaller than the minifilaments that erupt to produce coronal jets). Comparisons with SDO's Helioseismic and Magnetic Imager (HMI) magnetograms do not show magnetic mixed-polarity neutral lines at these events' bases, as would be expected for true scaled-down versions of solar filaments/minifilaments. But the features' bases are all close to single-polarity strong-flux-edge locations, suggesting possible local opposite-polarity flux unresolved by HMI. Or it may be that our Hi-C ejections instead operate via the shock-wave mechanism that is suggested to drive dynamic fibrils and the so-called type I spicules. Title: Improving the Forecasting of Drivers of Severe Space Weather with the New MAG4 HMI Vector Magnetogram Database Authors: Fisher, M. A.; Falconer, D.; Moore, R.; Tiwari, S. Bibcode: 2020AAS...23521001F Altcode: MAG4 (MAGnetogram FOREcasting) is a large-database space-weather forecasting tool that makes near-real-time forecasts of a solar active regions (AR's) next-day chance of producing major eruptions (e.g., major flares or major Coronal Mass Ejections [CMEs]) that can drive severe space weather. The centerpiece of MAG4 is a pair of AR-event-rate forecasting curves obtained from a large database of (1) AR major-eruption histories and (2) an AR free-magnetic-energy proxy computed from magnetograms of the ARs. The pair of curves currently used for forecasting major flares are from MAG4's large database built from Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) AR line-of-sight (LOS) magnetograms and major-flare histories. Because MDI is now defunct, to forecast a current AR's major-flare rate, MAG4 presently uses the vertical-field component of the AR's Solar Dynamics Observatory (SDO)/ Helioseismic and Magnetic Imager (HMI) vector magnetogram to approximate the AR's MDI LOS magnetogram. Now that MAG4 has compiled a new comparably large database of AR major-flare histories and several alternative AR free-energy proxies computed from HMI vector magnetograms, we can quantify the improvement in MAG4's AR major-flare forecasts resulting from using the AR's HMI vector magnetogram with the pair of forecasting curves from MAG4's new HMI database instead of the presently-used pair from MAG4's MDI database. Using the Heidke Skill Score (HSS) and the statistical methods of Falconer et al. (2014), we show that this change gives for an optimized free-energy proxy (1) gives a 10-σ improvement in MAG4's major-flare forecasting performance, and (2) forecasting performance that ties or significantly exceeds that of the alternative AR free-energy proxies that are in the new database. Title: A CME-Producing Solar Eruption from the Interior of a Twisted Emerging Bipole Authors: Moore, R. L.; Adams, M.; Panesar, N. K.; Falconer, D. A.; Tiwari, S. K. Bibcode: 2019AGUFMSH43D3355M Altcode: In a negative-polarity coronal hole, magnetic flux emergence, seen by the Solar Dynamics Observatory's (SDO) Helioseismic Magnetic Imager (HMI), begins at approximately 19:00 UT on March 3, 2016. The emerged magnetic field produced sunspots with penumbrae by 3:00 UT on March 4, which NOAA numbered 12514. The emerging magnetic field is largely bipolar with the opposite-polarity fluxes spreading apart overall, but there is simultaneously some convergence and cancellation of opposite-polarity flux at the polarity inversion line (PIL) inside the emerging bipole. The emerging bipole shows obvious overall left-handed shear and/or twist in its magnetic field and corresponding clockwise rotation of the two poles of the bipole about each other as the bipole emerges. The eruption comes from inside the emerging bipole and blows it open to produce a CME observed by SOHO/LASCO. That eruption is preceded by flux cancellation at the emerging bipole's interior PIL, cancellation that plausibly builds a sheared and twisted flux rope above the interior PIL and finally triggers the blow-out eruption of the flux rope via photospheric-convection-driven slow tether-cutting reconnection of the legs of the sheared core field, low above the interior PIL, as proposed by van Ballegooijen and Martens (1989, ApJ, 343, 971) and Moore and Roumeliotis (1992, in Eruptive Solar Flares, ed. Z. Svestka, B.V. Jackson, and M.E. Machado [Berlin:Springer], 69). The production of this eruption is a (perhaps rare) counterexample to solar eruptions that result from external collisional shearing between opposite polarities from two distinct emerging and/or emerged bipoles (Chintzoglou et al., 2019, ApJ, 871:67). Title: A Two-Sided-Loop X-Ray Solar Coronal Jet and a Sudden Photospheric Magnetic-field Change, Both Driven by a Minifilament Eruption Authors: Sterling, A. C.; Harra, L. K.; Moore, R. L.; Falconer, D. A. Bibcode: 2019AGUFMSH11D3382S Altcode: Most of the commonly discussed solar coronal jets are of the type consisting of a

single spire extending approximately vertically from near the solar surface into the

corona. Recent research shows that eruption of a miniature filament (minifilament)

drives at least many such single-spire jets, and concurrently generates a miniflare at the

eruption site. A different type of coronal jet, identified in X-ray images during the

Yohkoh era, are two-sided-loop jets, which extend from a central excitation location

in opposite directions, along two opposite low-lying coronal loops that are more-or-less

horizontal to the surface. We observe such a two-sided-loop jet from the edge of active

region (AR) 12473, using data from Hinode XRT and EIS, and SDO AIA and HMI. Similar

to single-spire jets, this two-sided-loop jet results from eruption of a minifilament, which

accelerates to over 140 km/s before abruptly stopping upon striking overlying

nearly-horizontal magnetic field at ∼ 30,000 km altitude and producing the two-sided-loop

jet via interchange reconnection. Analysis of EIS raster scans show that a hot

brightening, consistent with a small flare, develops in the aftermath of the eruption,

and that Doppler motions (∼ 40 km/s) occur near the jet-formation region. As with

many single-spire jets, the trigger of the eruption here is apparently magnetic

flux cancelation, which occurs at a rate of ∼ 4×10^18 Mx/hr, comparable to the rate

observed in some single-spire AR jets. An apparent increase in the (line-of-sight)

flux occurs within minutes of onset of the minifilament eruption, consistent with the

apparent increase being due to a rapid reconfiguration of low-lying magnetic field

during the minifilament eruption. Details appear in Sterling et al. (2019, ApJ, 871, 220). Title: Are the brightest coronal loops always rooted in mixed-polarity magnetic flux? Authors: Evans, C.; Tiwari, S. K.; Panesar, N. K.; Prasad, A.; Moore, R. L. Bibcode: 2019AGUFMSH41F3324E Altcode: Magnetic energy dissipated in coronal loops heats the Sun's corona to millions of Kelvin. Some recent investigations indicate that in addition to the required magnetoconvection and field strength, heating in the brightest coronal loops are driven by flux cancellation at the loop-feet. To find coronal loop footpoints , we selected extreme ultraviolet (EUV) data from the Atmospheric Imaging Assembly (AIA) and line- of-sight (LOS) magnetograms from the Helioseismic and Magnetic Imager (HMI), both on-board the Solar Dynamics Observatory (SDO). We located the footpoints of 28 brightest coronal loops of the bipolar active region NOAA 12712 on 28 May 2018 in hot 94 images (calculated using the Warren et al. method) and confirm the location of these footpoints via non-force free field extrapolations. We examine the photospheric magnetic field in 6" boxes centered at each footpoint and find that ~20% of loops have both feet in unipolar magnetic flux, ~10% loops have both feet in mixed-polarity flux, and ~70% of loops have one foot in unipolar and one in mixed-polarity flux. The presence of mixed-polarity magnetic flux in at least one foot of majority of the brightest coronal loops suggests that flux cancellation at the footpoints may drive heating in them. However, the absence of mixed-polarity magnetic flux (to the detection limit of HMI) in a significant number of the brightest coronal loops suggests that flux cancellation may not be necessary to drive heating in the loops - the combination of magnetoconvection and the magnetic field strength at the footpoints could be responsible for much of the coronal loop heating even in cases where a footpoint presents mixed-polarity magnetic flux. Title: Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar Magnetic Network Lanes Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.; Winebarger, Amy R.; Tiwari, Sanjiv K.; Savage, Sabrina L.; Golub, Leon E.; Rachmeler, Laurel A.; Kobayashi, Ken; Brooks, David H.; Cirtain, Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.; Peter, Hardi; Testa, Paola; Walsh, Robert W.; Warren, Harry P. Bibcode: 2019ApJ...887L...8P Altcode: 2019arXiv191102331P We present high-resolution, high-cadence observations of six, fine-scale, on-disk jet-like events observed by the High-resolution Coronal Imager 2.1 (Hi-C 2.1) during its sounding-rocket flight. We combine the Hi-C 2.1 images with images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and the Interface Region Imaging Spectrograph (IRIS), and investigate each event’s magnetic setting with co-aligned line-of-sight magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). We find that (i) all six events are jetlet-like (having apparent properties of jetlets), (ii) all six are rooted at edges of magnetic network lanes, (iii) four of the jetlet-like events stem from sites of flux cancelation between majority-polarity network flux and merging minority-polarity flux, and (iv) four of the jetlet-like events show brightenings at their bases reminiscent of the base brightenings in coronal jets. The average spire length of the six jetlet-like events (9000 ± 3000 km) is three times shorter than that for IRIS jetlets (27,000 ± 8000 km). While not ruling out other generation mechanisms, the observations suggest that at least four of these events may be miniature versions of both larger-scale coronal jets that are driven by minifilament eruptions and still-larger-scale solar eruptions that are driven by filament eruptions. Therefore, we propose that our Hi-C events are driven by the eruption of a tiny sheared-field flux rope, and that the flux rope field is built and triggered to erupt by flux cancelation. Title: Fine-scale explosive energy release at sites of magnetic flux cancellation in the core of the solar active region observed by Hi-C 2.1, IRIS and SDO Authors: Tiwari, S. K.; Panesar, N. K.; Moore, R. L.; De Pontieu, B.; Winebarger, A. R. Bibcode: 2019AGUFMSH31C3323T Altcode: The second sounding-rocket flight of the High-Resolution Coronal Imager (Hi-C 2.1) provided unprecedentedly-high spatial and temporal resolution Title: CME-Forecasting Performance of MAG4 with its HMI Vector Magnetogram Database Authors: Schragal, N. T.; Falconer, D. A.; Tiwari, S. K.; Moore, R. L. Bibcode: 2019AGUFMSH33C3354S Altcode: Coronal mass ejections (CMEs), solar flares, and solar proton events (SPEs) pose a threat to space-based infrastructure and astronauts. Many years of developmental work on predicting these events from active region (AR) magnetograms from MDI and HMI have led to MAG4 (MAGnetogram FOREcasting), a large-database forecasting technique for near-real-time forecasting of the next-day major flare, CME, and SPE productivity of an AR. MAG4 uses a free-magnetic-energy proxy computed for the AR from an HMI magnetogram and the AR's previous-day major-flare productivity in conjunction with a pair of forecasting curves derived from MAG4's large database of AR magnetograms to forecast these events. Previous work on improving the major-flare forecasting performance of MAG4 by deriving the forecasting curves from HMI vector magnetograms instead of from MDI line-of-sight magnetograms has laid the groundwork for improving the CME and SPE forecasting of MAG4. The present work is a first step in similarly improving MAG4's CME forecasting performance. We use MAG4's HMI AR vector magnetograms and a list of AR-produced CME events during August 2010 - March 2014. As done previously for major flares, we carry out 3000 random divisions of the observed set of ARs into a control half-set and an experimental half-set to determine the forecasting performance of each of 48 different parameters computed from the AR magnetograms. Each control set gives the pair of CME forecasting curves for each parameter. Then these curves are used to forecast the next-day event rate from each AR magnetogram in the experimental set. We measure forecasting performance by the Heidke Skill score which ranges from -∞ to 1, where a score of 0 is for performance that is no better than random chance, negative scores are for performance worse than random chance, and 1 is for perfect performance. Preliminary results indicate that the best-performing AR magnetogram parameters for predicting CMEs are not the same as the ones for major flares. Title: Cradle-to-Grave Evolution and Explosiveness of the Magnetic Field from Bipolar Ephemeral Active Regions (BEARs) in Solar Coronal Holes Authors: Panesar, N. K.; Nagib, C.; Moore, R. L.; Sterling, A. C. Bibcode: 2019AGUFMSH11D3386P Altcode: We report on the entire magnetic evolution and history of magnetic-explosion eruption production of each of 7 bipolar ephemeral active regions (BEARs) observed in on-disk coronal holes in line-of-sight magnetograms and in coronal EUV images. One of these BEARs made no eruptions. The other 6 BEARs together display three kinds of magnetic-explosion eruptions: (1) blowout eruptions (eruptions that make a wide-spire blowout jet), (2) partially-confined eruptions (eruptions that make a narrow-spire standard jet), (3) confined eruptions (eruptions that make no jet, i.e., make only a spireless EUV microflare). The 7 BEARs are a subset of a set of 60 random coronal-hole BEARs that were observed from the advent to the final dissolution of the BEAR's minority-polarity magnetic flux. The emergence phase (time interval from advent to maximum minority flux) for the 60 BEARs had been previously visually estimated using the magnetograms, to find if magnetic-explosion eruption events commonly occur inside a BEAR's emerging magnetic field (as had been assumed by Moore et al 2010, ApJ 720:757). That inspection found no inside eruption during the estimated emergence phase of any of the 60 BEARs. In this new work, for each of the 7 BEARs, we obtain a more reliable determination of when the emergence phase ended by finding the time of the BEAR's maximum minority flux from a time plot of the BEAR's minority flux measured from the magnetograms. These plots show: (1) none of the 7 BEARs had an inside eruption while the BEAR was emerging, and (2) for these 7 BEARs, the visually-estimated emergence end time was never more than 6 hours before the measured time of maximum minority flux. Of the 60 BEARs, in only 6 was there an inside eruption within 6 hours after the visually-estimated end of emergence. The above two results for the 7 BEARs, together with the previous visual inspection of the 60 BEARs, support that a great majority (at least 90%) of the explosive magnetic fields from BEARs in coronal holes are prepared and triggered to explode by magnetic flux cancellation, and that such flux cancellation seldom occurs inside an emerging BEAR. The visual inspection of the magnetograms of the 60 BEARs showed that the pre-eruption flux cancellation was either on the outside of the BEAR during or after the BEAR's emergence or on the inside of the BEAR after the BEAR's emergence. Title: Onset of the Magnetic Explosion in On-disk Solar Coronal Jets Authors: Panesar, N. K.; Moore, R. L.; Sterling, A. C. Bibcode: 2019AGUFMSH11D3384P Altcode: In our recent studies of ~10 quiet region and ~13 coronal hole coronal, we found that flux cancelation is the fundamental process in the buildup and triggering of the minifilament eruption that drives the production of the jet. Here, we investigate the onset and growth of the ten on-disk quiet region jets, using EUV images from SDO/AIA and magnetograms from SDO/HMI. We find that: (i) in all ten events the minifilament starts to rise at or before the onset of the signature of internal or external reconnection; (ii) in two out of ten jets brightening from the external reconnection starts at the same time as the slow rise of the minifilament and (iii) in six out of ten jets brightening from the internal reconnection starts before the start of the brightening from external reconnection. These observations show that the magnetic explosion in coronal jets begins in the same way as the magnetic explosion in filament eruptions that make solar flares and coronal mass ejections (CMEs). Our results indicate (1) that coronal jets are miniature versions of CME-producing eruptions and flux cancelation is the fundamental process that builds and triggers both the small-scale and the large-scale eruptions, and (2) that, contrary to the view of Moore et al (2018), the current sheet at which the external reconnection occurs in coronal jets usually starts to form at or after the onset of (and as a result of) the slow rise of the minifilament flux-rope eruption, and so is seldom of appreciable size before the onset of the slow rise of the minifilament flux-rope eruption. Title: Fine-scale Explosive Energy Release at Sites of Prospective Magnetic Flux Cancellation in the Core of the Solar Active Region Observed by Hi-C 2.1, IRIS, and SDO Authors: Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; De Pontieu, Bart; Winebarger, Amy R.; Golub, Leon; Savage, Sabrina L.; Rachmeler, Laurel A.; Kobayashi, Ken; Testa, Paola; Warren, Harry P.; Brooks, David H.; Cirtain, Jonathan W.; McKenzie, David E.; Morton, Richard J.; Peter, Hardi; Walsh, Robert W. Bibcode: 2019ApJ...887...56T Altcode: 2019arXiv191101424T The second Hi-C flight (Hi-C 2.1) provided unprecedentedly high spatial and temporal resolution (∼250 km, 4.4 s) coronal EUV images of Fe IX/X emission at 172 Å of AR 12712 on 2018 May 29, during 18:56:21-19:01:56 UT. Three morphologically different types (I: dot-like; II: loop-like; III: surge/jet-like) of fine-scale sudden-brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. Although type Is (not reported before) resemble IRIS bombs (in size, and brightness with respect to surroundings), our dot-like events are apparently much hotter and shorter in span (70 s). We complement the 5 minute duration Hi-C 2.1 data with SDO/HMI magnetograms, SDO/AIA EUV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying likely flux cancellation at the microflare’s polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. In types I and II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow. The light curves from Hi-C, AIA, and IRIS peak nearly simultaneously for many of these events, and none of the events display a systematic cooling sequence as seen in typical coronal flares, suggesting that these tiny brightening events have chromospheric/transition region origin. Title: Further Evidence for Magnetic Flux Cancelation as the Build-up and Trigger Mechanism for Eruptions in Isolated Solar Active Regions Authors: Sterling, A. C.; Buell, A.; Moore, R. L.; Falconer, D. A. Bibcode: 2019AGUFMSH11D3388S Altcode: We examine the magnetic evolution of three eruption-producing solar active regions (ARs), one each from 2013, 2014, and 2017, using data from SDO HMI and AIA. Each of the ARs is relatively small, so that we can follow its entire development during a single disk passage, from birth by emergence through the time of the respective eruptions; the first-, second-, and third-born respectively lived 3, 6.5, and 3 days before eruption. Each AR was relatively isolated, with minimal interaction with surrounding ARs, allowing us to study each AR as an approximately isolated system. CMEs resulted from eruptions in the first two ARs, while the third AR's eruption was smaller and appeared confined. In each AR, the eruption was seated on an interval of the AR's magnetic polarity inversion line (neutral line) where opposite-polarity flux was merging together and undergoing apparent cancelation. Our results, together with an earlier pilot study of two ARs by Sterling et al. (2018), and along with recent studies of solar coronal jets, support the view that the magnetic field that explodes to produce solar eruptions of size scales ranging from jets to CMEs are usually built and triggered by flux cancelation along a sharp neutral line. Title: Magnetic Flux Cancellation as the Trigger Mechanism of Solar Coronal Jets Authors: McGlasson, Riley A.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2019ApJ...882...16M Altcode: 2019arXiv190606452M Coronal jets are transient narrow features in the solar corona that originate from all regions of the solar disk: active regions, quiet Sun, and coronal holes. Recent studies indicate that at least some coronal jets in quiet regions and coronal holes are driven by the eruption of a minifilament following flux cancellation at a magnetic neutral line. We have tested the veracity of that view by examining 60 random jets in quiet regions and coronal holes using multithermal (304, 171, 193, and 211 Å) extreme ultraviolet images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly and line-of-sight magnetograms from the SDO/Helioseismic and Magnetic Imager. By examining the structure and changes in the magnetic field before, during, and after jet onset, we found that 85% of these jets resulted from a minifilament eruption triggered by flux cancellation at the neutral line. The 60 jets have a mean base diameter of 8800 ± 3100 km and a mean duration of 9 ± 3.6 minutes. These observations confirm that minifilament eruption is the driver and magnetic flux cancellation is the primary trigger mechanism for most coronal hole and quiet region coronal jets. Title: CESM-release-cesm2.1.1 Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier; Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large; Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson; Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, van; Vertenstein; Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner; Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand Bibcode: 2019zndo...3895315D Altcode: The Community Climate Earth System Model release version cesm2.1.1 Title: Understanding the Mechanisms of Sulfate Formation in Acidic Volcanic Hydrothermal Environments on Mars Using Terrestrial Analogs Authors: Ende, J. J.; Faiia, A. M.; Burtt, P.; Moore, R.; Szynkiewicz, A. Bibcode: 2019LPICo2089.6212E Altcode: In this study, we use a combination of chemistry and oxygen isotopes as tracers for the oxidation mechanism of sulfate in volcanic acidic hydrothermal systems on Earth to better understand how sulfate forms in similar environments on Mars. Title: Fine-scale explosive energy release at sites of magnetic flux cancellation in the core of the solar active region observed by HiC2.1, IRIS and SDO Authors: Tiwari, Sanjiv K.; Panesar, Navdeep; Moore, Ronald L.; De Pontieu, Bart; Testa, Paola; Winebarger, Amy R. Bibcode: 2019AAS...23411702T Altcode: The second sounding-rocket flight of the High-Resolution Coronal Imager (HiC2.1) provided unprecedentedly-high spatial and temporal resolution (150 km, 4.5 s) coronal EUV images of Fe IX/X emission at 172 Å, of a solar active region (AR NOAA 12712) near solar disk center. Three morphologically-different types (I: dot-like, II: loop-like, & III: surge/jet-like) of fine-scale sudden brightening events (tiny microflares) are seen within and at the ends of an arch filament system in the core of the AR. We complement the 5-minute-duration HiC2.1 data with SDO/HMI magnetograms, SDO/AIA EUV and UV images, and IRIS UV spectra and slit-jaw images to examine, at the sites of these events, brightenings and flows in the transition region and corona and evolution of magnetic flux in the photosphere. Most, if not all, of the events are seated at sites of opposite-polarity magnetic flux convergence (sometimes driven by adjacent flux emergence), implying flux cancellation at the polarity inversion line. In the IRIS spectra and images, we find confirming evidence of field-aligned outflow from brightenings at the ends of loops of the arch filament system. These outflows from both ends of the arch filament system are seen as bi-directional flows in the arch filament system, suggesting that the well-known counter-streaming flows in large classical filaments could be driven in the same way as in this arch filament system: by fine-scale jet-like explosions from fine-scale sites of mixed-polarity field in the feet of the sheared field that threads the filament. Plausibly, the flux cancellation at these sites prepares and triggers a fine scale core-magnetic-field structure (a small sheared/twisted core field or flux rope along and above the cancellation line) to explode. In types I & II the explosion is confined, while in type III the explosion is ejective and drives jet-like outflow in the manner of larger jets in coronal holes, quiet regions, and active regions. Title: Hi-C2.1 Observations of Solar Jetlets at Sites of Flux Cancelation Authors: Panesar, Navdeep; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2019AAS...23411701P Altcode: Solar jets of all sizes are magnetically channeled narrow eruptive events; the larger ones are often observed in the solar corona in EUV and coronal X-ray images. Recent observations show that the buildup and triggering of the minifilament eruptions that drive coronal jets result from magnetic flux cancelation under the minifilament, at the neutral line between merging majority-polarity and minority-polarity magnetic flux patches. Here we investigate the magnetic setting of six on-disk small-scale jet-like/spicule-like eruptions (also known as jetlets) by using high resolution 172A images from the High-resolution Coronal Imager (Hi-C2.1) and EUV images from Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and line-of-sight magnetograms from SDO/Helioseismic and Magnetic Imager (HMI). From magnetograms co-aligned with the Hi-C and AIA images, we find that (i) these jetlets are rooted at edges of magnetic network lanes (ii) some jetlets stem from sites of flux cancelation between merging majority-polarity and minority-polarity flux patches (iii) some jetlets show faint brightenings at their bases reminiscent of the base brightenings in coronal jets. Based on the 6 Hi-C jetlets that we have examined in detail and our previous observations of 30 coronal jets in quiet regions and coronal holes, we infer that flux cancelation is the essential process in the buildup and triggering of jetlets. Our observations suggest that network jetlets result from small-scale eruptions that are analogs of both larger-scale coronal jet minifilament eruptions and the still-larger-scale eruptions that make major CMEs. This work was supported by the NASA/MSFC NPP program and the NASA HGI Program. Title: Invisibility of Solar Active Region Umbra-to-Umbra Coronal Loops: New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating Authors: Moore, Ronald L.; Tiwari, Sanjiv; Thalmann, Julia; Panesar, Navdeep; Winebarger, Amy Bibcode: 2019AAS...23410603M Altcode: How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. The corona is shaped by the magnetic field that fills it and the heating of the corona generally increases with increasing strength of the field. For each of two bipolar solar active regions having one or more sunspots in each of the two main opposite-polarity domains of magnetic flux, from comparison of a nonlinear force-free model of the active region's three-dimensional coronal magnetic field to observed extreme-ultraviolet coronal loops, we find that (1) umbra-to-umbra loops, despite being rooted in the strongest magnetic flux at both ends, are invisible, and (2) the brightest loops have one foot in a sunspot umbra or penumbra and the other foot in another sunspot's penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvetion drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the body of the loop.

This work was supported by funding from the Heliophysics Division of NASA's Science Mission Directorate, from NASA's Postdoctoral Program, and from the Austrian Science Fund. The results have been published in The Astrophysical Journal Letters (Tiwari, S. K., Thalmann, J. K., Panesar, N. K., Moore, R. L., & Winebarger, A. R. 2017, ApJ Letters, 843:L20). Title: A CME-Producing Solar Eruption from the Interior of an Emerging Bipolar Active Region Authors: Adams, Mitzi L.; Moore, Ronald L.; Panesar, Navdeep; Falconer, David Bibcode: 2019AAS...23430501A Altcode: In a negative-polarity coronal hole, magnetic flux emergence, seen by the Solar Dynamics Observatory's (SDO) Helioseismic Magnetic Imager (HMI), begins at approximately 19:00 UT on March 3, 2016. The emerged magnetic field produced sunspots, which NOAA numbered 12514 two days later. The emerging magnetic field is largely bipolar with the opposite-polarity fluxes spreading apart overall, but there is simultaneously some convergence and cancellation of opposite-polarity flux at the polarity inversion line (PIL) inside the emerging bipole. In the first fifteen hours after emergence onset, three obvious eruptions occur, observed in the coronal EUV images from SDO's Atmospheric Imaging Assembly (AIA). The first two erupt from separate segments of the external PIL between the emerging positve-polarity flux and the extant surrounding negative-polarity flux, with the exploding magnetic field being prepared and triggered by flux cancellation at the external PIL. The emerging bipole shows obvious overall left-handed shear and/or twist in its magnetic field. The third and largest eruption comes from inside the emerging bipole and blows it open to produce a CME observed by SOHO/LASCO. That eruption is preceded by flux cancellation at the emerging bipole's interior PIL, cancellation that plausibly builds a sheared and twisted flux rope above the interior PIL and finally triggers the blow-out eruption of the flux rope via photospheric-convection-driven slow tether-cutting reconnection of the legs of the sheared core field, low above the interior PIL, as proposed by van Ballegooijen and Martens (1989, ApJ, 343, 971) and Moore and Roumeliotis (1992, in Eruptive Solar Flares, ed. Z. Svestka, B.V. Jackson, and M.E. Machado [Berlin:Springer], 69). The production of this eruption is a (perhaps rare) counterexample to solar eruptions that result from external collisional shearing between opposite polarities from two distinct emerging and/or emerged bipoles (Chintzoglou et al., 2019, ApJ, 871:67).

This work was supported by NASA, the NASA Postdoctoral Program (NPP), and NSF. Title: Incorporating Students into Investigations of the Effects of Solar Eclipse Totality on Biological Organisms Authors: Sudbrink, D. L., Jr.; Mills, R.; Moore, R.; Rendleman, E. Bibcode: 2019ASPC..516..457S Altcode: Environmental changes during total solar eclipses can have impacts on behaviors of biological organisms. Observations of behaviors of several species of organisms were conducted during the Great American Eclipse of 21 August 2017 in Tennessee with students from U.S. Space & Rocket Center Space Camp, Project INSPIRE and Austin Peay State University. Detailed observations were made of crickets, honeybees, cattle and turtles during this study. Results indicated that there were at least temporary alterations of typical diurnal behavior of many of the animals studied near or during the totality of the eclipse. In these instances, typical diurnal behaviors were observed to resume after totality. Title: Improving Forecasting of Drivers of Severe Space Weather with the New MAG4 HMI Vector Magnetogram Database Authors: Falconer, David; Tiwari, Sanjiv; Moore, Ronald; Fisher, Megan Bibcode: 2019AAS...23431705F Altcode: Major solar flares and Coronal Mass Ejections (CMEs) are drivers of severe space weather. The strongest ones come from active regions (ARs). They are powered by explosive release of magnetic energy. MAG4 (Magnetogram Forecast) is a large-database near-real-time tool that measures an AR's free-energy proxy from the AR's deprojected HMI vector magnetograms. MAG4 converts the free-energy proxy to the AR's predicted event rate (and event probability) using a forecasting curve. MAG4 forecasts the event rate and probability for each AR on the disk, as well as for the full disk. The forecasting curves presently used by MAG4 are derived from a large sample of SOHO/MDI AR magnetograms. This requires the HMI vector magnetograms to be degraded in spatial resolution to approximate what MDI would have measured, in order to use the MDI forecasting curves. We report on the improved performance of MAG4 that results from using forecasting curves based on MAG4's new database of HMI vector magnetograms instead of using the present forecasting curves that are based on MDI line-of-sight magnetograms. MAG4's forecasting skill score significantly improves for major flares (M1 or greater). We present MAG4's improvement in forecasting SPEs (Solar Particle Events) and X-class flares as well. The improvement in forecasting CMEs will be evaluated in the future. These new forecasting curves are being implemented in the near-real-time operational MAG4, though forecasts from the old curves will still be given. This work is funded by NSF's Solar Terrestrial Program, and NASA/SRAG. Title: A Two-Sided-Loop X-Ray Solar Coronal Jet and a Sudden Photospheric Magnetic-field Change, Both Driven by a Minifilament Eruption Authors: Sterling, Alphonse C.; Harra, Louise; Moore, Ronald L.; Falconer, David Bibcode: 2019AAS...23431701S Altcode: Most of the commonly discussed solar coronal jets are of the type consisting of a single spire extending approximately vertically from near the solar surface into the corona. Recent research shows that eruption of a miniature filament (minifilament) drives at least many such single-spire jets, and concurrently generates a miniflare at the eruption site. A different type of coronal jet, identified in X-ray images during the Yohkoh era, are two-sided-loop jets, which extend from a central excitation location in opposite directions, along two opposite low-lying coronal loops that are more-or-less horizontal to the surface. We observe such a two-sided-loop jet from the edge of active region (AR) 12473, using data from Hinode XRT and EIS, and SDO AIA and HMI. Similar to single-spire jets, this two-sided-loop jet results from eruption of a minifilament, which accelerates to over 140 km/s before abruptly stopping upon striking overlying nearly-horizontal magnetic field at ∼30,000 km altitude and producing the two-sided-loop jet via interchange reconnection. Analysis of EIS raster scans show that a hot brightening, consistent with a small flare, develops in the aftermath of the eruption, and that Doppler motions (∼40 km/s) occur near the jet-formation region. As with many single-spire jets, the trigger of the eruption here is apparently magnetic flux cancelation, which occurs at a rate of ∼4×1018 Mx/hr, comparable to the rate observed in some single-spire AR jets. An apparent increase in the (line-of-sight) flux occurs within minutes of onset of the minifilament eruption, consistent with the apparent increase being due to a rapid reconfiguration of low-lying magnetic field during the minifilament eruption. Details appear in Sterling et al. (2019, ApJ, 871, 220). Title: Sheared Magnetic Arcades and the Pre-eruptive Magnetic Configuration of Coronal Mass Ejections: Diagnostics, Challenges and Future Observables Authors: Patsourakos, Spiros; Vourlidas, A.; Anthiochos, S. K.; Archontis, V.; Aulanier, G.; Cheng, X.; Chintzoglou, G.; Georgoulis, M. K.; Green, L. M.; Kliem, B.; Leake, J.; Moore, R. L.; Nindos, A.; Syntelis, P.; Torok, T.; Yardley, S. L.; Yurchyshyn, V.; Zhang, J. Bibcode: 2019shin.confE.194P Altcode: Our thinking about the pre-eruptive magnetic configuration of Coronal Mass Ejections has been effectively dichotomized into two opposing and often fiercely contested views: namely, sheared magnetic arcades and magnetic flux ropes. Finding a solution to this issue will have important implications for our understanding of CME initiation. We first discuss the very value of embarking into the arcade vs. flux rope dilemma and illustrate the corresponding challenges and difficulties to address it. Next, we are compiling several observational diagnostics of pre-eruptive sheared magnetic arcades stemming from theory/modeling, discuss their merits, and highlight potential ambiguities that could arise in their interpretation. We finally conclude with a discussion of possible new observables, in the frame of upcoming or proposed instrumentation, that could help to circumvent the issues we are currently facing. Title: 2019 GA Authors: Ludwig, F.; Stecklum, B.; Tichy, M.; Ticha, J.; Baransky, A.; McCarthy Obs, J. J.; Robson, M.; Moore, R.; Cloutier, W.; Lindner, P.; Holmes, R.; Foglia, S.; Buzzi, L.; Linder, T.; Ye, Q. -Z.; Collaboration, Z. T. F.; Duev, D. A.; Lin, H. -W.; Mahabal, A. A.; Masci, F. J.; Streaks, D.; Groeller, H.; Kowalski, R. A.; Leonard, G. J.; Africano, B. M.; Christensen, E. J.; Farneth, G. A.; Fuls, D. C.; Gibbs, A. R.; Grauer, A. D.; Larson, S. M.; Pruyne, T. A.; Seaman, R. L.; Shelly, F. C.; Birtwhistle, P.; Favero, G.; Furgoni, R.; Adamovsky, M.; Korlevic, K.; Nishiyama, K.; Urakawa, S.; Flynn, R. L.; Wells, G.; Bamberger, D. Bibcode: 2019MPEC....G...29L Altcode: No abstract at ADS Title: A K-12 Microgravity Educational Intervention Framework Authors: Carmona, J. A.; Smith, S. L.; York, J.; Moore, R.; Clyat, M.; Buchs, T.; Laufer, R.; Attai, S.; Matthews, L. S.; Hyde, T. W. Bibcode: 2019LPI....50.1574C Altcode: The CASPER group has developed a STEM outreach program where participating students will have access to a 1.5s drop tower housed on the Baylor University campus. Title: A Two-sided Loop X-Ray Solar Coronal Jet Driven by a Minifilament Eruption Authors: Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L.; Falconer, David A. Bibcode: 2019ApJ...871..220S Altcode: 2018arXiv181105557S Most of the commonly discussed solar coronal jets are the type that consist of a single spire extending approximately vertically from near the solar surface into the corona. Recent research supports that eruption of a miniature filament (minifilament) drives many such single-spire jets and concurrently generates a miniflare at the eruption site. A different type of coronal jet, identified in X-ray images during the Yohkoh era, are two-sided loop jets, which extend from a central excitation location in opposite directions, along low-lying coronal loops that are more-or-less horizontal to the surface. We observe such a two-sided loop jet from the edge of active region (AR) 12473, using data from Hinode X-Ray Telescope (XRT) and Extreme Ultraviolet Imaging Spectrometer (EIS), and from Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI). Similar to single-spire jets, this two-sided loop jet results from eruption of a minifilament, which accelerates to over 140 km s-1 before abruptly stopping after striking an overlying nearly horizontal-loop field at ∼30,000 km in altitude and producing the two-sided loop jet. An analysis of EIS raster scans shows that a hot brightening, consistent with a small flare, develops in the aftermath of the eruption, and that Doppler motions (∼40 km s-1) occur near the jet formation region. As with many single-spire jets, the magnetic trigger here is apparently flux cancelation, which occurs at a rate of ∼4 × 1018 Mx hr-1, broadly similar to the rates observed in some single-spire quiet-Sun and AR jets. An apparent increase in the (line-of-sight) flux occurs within minutes of the onset of the minifilament eruption, consistent with the apparent increase being due to a rapid reconfiguration of low-lying fields during and soon after the minifilament-eruption onset. Title: All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field Authors: Abeysekara, A. U.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Capistrán, T.; Carramiana, A.; Casanova, S.; Cotti, U.; Cotzomi, J.; Díaz-Vélez, J. C.; De León, C.; De la Fuente, E.; Dichiara, S.; DuVernois, M. A.; Espinoza, C.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; Galván-Gámez, A.; García-González, J. A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hona, B.; Hueyotl-Zahuantitla, F.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Lara, A.; León Vargas, H.; Luis-Raya, G.; Malone, K.; Marinelli, S. S.; Martínez-Castro, J.; Martinez, O.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pérez-Pérez, E. G.; Pretz, J.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Surajbali, P.; Taboada, I.; Tollefson, K.; Torres, I.; Villaseor, L.; Weisgarber, T.; Wood, J.; Zepeda, A.; Zhou, H.; Álvarez, J. D.; HAWC Collaboration; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Backes, P.; Bagherpour, H.; Bai, X.; Barbano, A.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K. -H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Carver, T.; Cheung, E.; Chirkin, D.; Clark, K.; Classen, L.; Collin, G. H.; Conrad, J. M.; Coppin, P.; Correa, P.; Cowen, D. F.; Cross, R.; Dave, P.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; Deoskar, K.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dujmovic, H.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Franckowiak, A.; Friedman, E.; Fritz, A.; Gaisser, T. K.; Gallagher, J.; Ganster, E.; Garrappa, S.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halve, L.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoinka, T.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; Hussain, R.; In, S.; Iovine, N.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Kappesser, D.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunwar, S.; Kurahashi, N.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Leonard, K.; Leuermann, M.; Liu, Q. R.; Lohfink, E.; Lozano Mariscal, C. J.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Makino, Y.; Mancina, S.; Mariş, I. C.; Maruyama, R.; Mase, K.; Maunu, R.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nagai, R.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; O'Sullivan, E.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Pizzuto, A.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rameez, M.; Rauch, L.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Renzi, G.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Safa, I.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schaufel, M.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schneider, J.; Schöneberg, S.; Schumacher, L.; Sclafani, S.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stein, R.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tönnis, C.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turcotte, R.; Turley, C. F.; Ty, B.; Unger, E.; Unland Elorrieta, M. A.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijk, D.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Watson, T. B.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Wrede, G.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; IceCube Collaboration Bibcode: 2019ApJ...871...96A Altcode: 2018arXiv181205682H We present the first full-sky analysis of the cosmic ray arrival direction distribution with data collected by the High-Altitude Water Cherenkov and IceCube observatories in the northern and southern hemispheres at the same median primary particle energy of 10 TeV. The combined sky map and angular power spectrum largely eliminate biases that result from partial sky coverage and present a key to probe into the propagation properties of TeV cosmic rays through our local interstellar medium and the interaction between the interstellar and heliospheric magnetic fields. From the map, we determine the horizontal dipole components of the anisotropy δ 0h = 9.16 × 10-4 and δ 6h = 7.25 × 10-4 (±0.04 × 10-4). In addition, we infer the direction (229.°2 ± 3.°5 R.A., 11.°4 ± 3.°0 decl.) of the interstellar magnetic field from the boundary between large-scale excess and deficit regions from which we estimate the missing corresponding vertical dipole component of the large-scale anisotropy to be {δ }N∼ -{3.97}-2.0+1.0× {10}-4. Title: CESM-release-cesm2.1.0 Authors: Danabasoglu; Lamarque; Bacmeister; Bailey; DuVivier; Edwards; Emmons; Fasullo; Garcia; Gettelman; Hannay; Holland; Large; Lauritzen; Lawrence; Lenaerts; Lindsay; Lipscomb; Mills; Neale; Oleson; Otto-Bliesner; Phillips; Sacks; Tilmes; Kampenhout, Van; Vertenstein; Bertini; Dennis; Deser; Fischer; Fox-Kemper; Kay; Kinnison; Kushner; Larson; Long; Mickelson; Moore; Nienhouse; Polvani; Rasch; Strand Bibcode: 2018zndo...3895306D Altcode: The Community Earth System Model release version 2.1.0 Title: Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy R.; Sterling, Alphonse C. Bibcode: 2018ApJ...869..147T Altcode: 2018arXiv181109554T A recent study using Hinode (Solar Optical Telescope/Filtergraph [SOT/FG]) data of a sunspot revealed some unusually large penumbral jets that often repeatedly occurred at the same locations in the penumbra, namely, at the tail of a penumbral filament or where the tails of multiple penumbral filaments converged. These locations had obvious photospheric mixed-polarity magnetic flux in Na I 5896 Stokes-V images obtained with SOT/FG. Several other recent investigations have found that extreme-ultraviolet (EUV)/X-ray coronal jets in quiet-Sun regions (QRs), in coronal holes (CHs), and near active regions (ARs) have obvious mixed-polarity fluxes at their base, and that magnetic flux cancellation prepares and triggers a minifilament flux-rope eruption that drives the jet. Typical QR, CH, and AR coronal jets are up to 100 times bigger than large penumbral jets, and in EUV/X-ray images they show a clear twisting motion in their spires. Here, using Interface Region Imaging Spectrograph (IRIS) Mg II k λ2796 SJ images and spectra in the penumbrae of two sunspots, we characterize large penumbral jets. We find redshift and blueshift next to each other across several large penumbral jets, and we interpret these as untwisting of the magnetic field in the jet spire. Using Hinode/SOT (FG and SP) data, we also find mixed-polarity magnetic flux at the base of these jets. Because large penumbral jets have a mixed-polarity field at their base and have a twisting motion in their spires, they might be driven the same way as QR, CH, and AR coronal jets. Title: IRIS and SDO Observations of Solar Jetlets Resulting from Network-edge Flux Cancelation Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.; Tiwari, Sanjiv K.; De Pontieu, Bart; Norton, Aimee A. Bibcode: 2018ApJ...868L..27P Altcode: 2018arXiv181104314P Recent observations show that the buildup and triggering of minifilament eruptions that drive coronal jets result from magnetic flux cancelation at the neutral line between merging majority- and minority-polarity magnetic flux patches. We investigate the magnetic setting of 10 on-disk small-scale UV/EUV jets (jetlets, smaller than coronal X-ray jets but larger than chromospheric spicules) in a coronal hole by using IRIS UV images and SDO/AIA EUV images and line-of-sight magnetograms from SDO/HMI. We observe recurring jetlets at the edges of magnetic network flux lanes in the coronal hole. From magnetograms coaligned with the IRIS and AIA images, we find, clearly visible in nine cases, that the jetlets stem from sites of flux cancelation proceeding at an average rate of ∼1.5 × 1018 Mx hr-1, and show brightenings at their bases reminiscent of the base brightenings in larger-scale coronal jets. We find that jetlets happen at many locations along the edges of network lanes (not limited to the base of plumes) with average lifetimes of 3 minutes and speeds of 70 km s-1. The average jetlet-base width (4000 km) is three to four times smaller than for coronal jets (∼18,000 km). Based on these observations of 10 obvious jetlets, and our previous observations of larger-scale coronal jets in quiet regions and coronal holes, we infer that flux cancelation is an essential process in the buildup and triggering of jetlets. Our observations suggest that network jetlet eruptions might be small-scale analogs of both larger-scale coronal jets and the still-larger-scale eruptions producing CMEs. Title: Magnetic Flux Cancelation as the Buildup and Trigger Mechanism for CME-producing Eruptions in Two Small Active Regions Authors: Sterling, Alphonse C.; Moore, Ronald L.; Panesar, Navdeep K. Bibcode: 2018ApJ...864...68S Altcode: 2018arXiv180703237S We follow two small, magnetically isolated coronal mass ejection (CME)-producing solar active regions (ARs) from the time of their emergence until several days later, when their core regions erupt to produce the CMEs. In both cases, magnetograms show: (a) following an initial period where the poles of the emerging regions separate from each other, the poles then reverse direction and start to retract inward; (b) during the retraction period, flux cancelation occurs along the main neutral line of the regions; (c) this cancelation builds the sheared core field/flux rope that eventually erupts to make the CME. In the two cases, respectively 30% and 50% of the maximum flux of the region cancels prior to the eruption. Recent studies indicate that solar coronal jets frequently result from small-scale filament eruptions, with those “minifilament” eruptions also being built up and triggered by cancelation of magnetic flux. Together, the small-AR eruptions here and the coronal jet results suggest that isolated bipolar regions tend to erupt when some threshold fraction, perhaps in the range of 50%, of the region's maximum flux has canceled. Our observed erupting filaments/flux ropes form at sites of flux cancelation, in agreement with previous observations. Thus, the recent finding that minifilaments that erupt to form jets also form via flux cancelation is further evidence that minifilaments are small-scale versions of the long-studied full-sized filaments. Title: Critical Magnetic Field Strengths for Solar Coronal Plumes in Quiet Regions and Coronal Holes? Authors: Avallone, Ellis A.; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy Bibcode: 2018ApJ...861..111A Altcode: 2018arXiv180511188A Coronal plumes are bright magnetic funnels found in quiet regions (QRs) and coronal holes (CHs). They extend high into the solar corona and last from hours to days. The heating processes of plumes involve dynamics of the magnetic field at their base, but the processes themselves remain mysterious. Recent observations suggest that plume heating is a consequence of magnetic flux cancellation and/or convergence at the plume base. These studies suggest that the base flux in plumes is of mixed polarity, either obvious or hidden in Solar Dynamics Observatory (SDO)/HMI data, but do not quantify it. To investigate the magnetic origins of plume heating, we select 10 unipolar network flux concentrations, four in CHs, four in QRs, and two that do not form a plume, and track plume luminosity in SDO/AIA 171 Å images along with the base flux in SDO/HMI magnetograms, over each flux concentration’s lifetime. We find that plume heating is triggered when convergence of the base flux surpasses a field strength of ∼200-600 G. The luminosity of both QR and CH plumes respond similarly to the field in the plume base, suggesting that the two have a common formation mechanism. Our examples of non-plume-forming flux concentrations, reaching field strengths of 200 G for a similar number of pixels as for a couple of our plumes, suggest that a critical field might be necessary to form a plume but is not sufficient for it, thus advocating for other mechanisms, e.g., flux cancellation due to hidden opposite-polarity field, at play. Title: Flux Cancelation as the Trigger of Coronal Hole Jet Eruptions Authors: Panesar, Navdeep Kaur; Sterling, Alphonse C.; Moore, Ronald Lee Bibcode: 2018tess.conf40806P Altcode: Coronal jets are magnetically channeled narrow eruptions often observed in the solar corona. Recent observations show that coronal jets are driven by the eruption of a small-scale filament (minifilament). Here we investigate the triggering mechanism of jet-driving minifilament eruptions in coronal holes, by using X-ray images from Hinode, EUV images from SDO/AIA, and line of sight magnetograms from SDO/HMI. We study 13 on-disk randomly selected coronal hole jets, and track the evolution of the jet-base. In each case we find that there is a minifilament present in the jet-base region prior to jet eruption. The minifilaments reside above a neutral line between majority-polarity and minority-polarity magnetic flux patches. HMI magnetograms show continuous flux cancelation at the neutral line between the opposite polarity flux patches. Persistent flux cancelation eventually destabilizes the field that holds the minifilament plasma. The erupting field reconnects with the neighboring far-reaching field and produces the jet spire. From our study, we conclude that flux cancelation is the fundamental process for triggering coronal hole jets. Other recent studies show that jets in quiet regions and active regions also are accompanied by flux cancelation at minifilament neutral lines (Panesar et al. 2016b, Sterling et al. 2017); therefore the same fundamental process - namely, magnetic flux cancelation - triggers at least many coronal jets in all regions of the Sun. Title: Solar Explosions Imager (SEIM): A Next-Generation High-Resolution and High-Cadence EUV Telescope for Unraveling Eruptive Solar Features Authors: Sterling, Alphonse C.; Moore, Ronald Lee; Winebarger, Amy R. Bibcode: 2018tess.conf11002S Altcode: We present a skeletal proposal for a space-based EUV telescope to fly on the Next Generation Solar Physics Mission (NGSPM). A primary motivation is to unravel physical processes leading to small-scale solar features, such as solar coronal jets, and the processes leading to larger eruptions as well. Recent evidence suggests that jets result from eruptions of small-scale filaments (size scale: ~1—a few arcsec), analogous to larger filament eruptions that drive CMEs, and it is plausible that the even-smaller-scale spicules (∼0′′.1) operate in a similar fashion. Therefore an instrument planned around the concept of observing jet features, but with the highest practical resolution and cadence, would be valuable for observing various erupting solar features on many size and time scales. Resolution and cadence should be comparable to or better than that of Hi-C, i.e. ≤0''.1 pixels and ≤10 s cadence. While no single instrument could span the entire needed data-set space needed to address fully these questions, the proposed instrument would complement first-rate instrumentation (namely, DKIST) expected to be in operation around the time of expected deployment. If resources permit, the proposed EUV instrument could be supplemented with additional instrumentation, or such additional instrumentation could be proposed as (a) separate effort(s). Especially complementary would be a photospheric magnetograph having ≤0''.1 pixels, ≤1-minute cadence, line-of-sight-field sensitivity of ≤10 G, and few-arc-minute FOV. (The SEIM concept has been presented as a WhitePaper with the same title to the NGSPM planning committee.) Title: Onset of the Magnetic Explosion in Solar Polar X-Ray Jets Authors: Moore, Ronald Lee; Sterling, Alphonse C.; Panesar, Navdeep Kaur Bibcode: 2018tess.conf30598M Altcode: We follow up on the Sterling et al (2015, Nature, 523, 437) discovery that nearly all solar polar X-ray jets are made by an explosive eruption of closed magnetic field carrying a miniature cool-plasma filament in its core. In the same X-ray and EUV movies used by Sterling et al (2015), we examine the onset and growth of the driving magnetic explosion in 15 of the 20 jets that they studied. We find evidence that: (1) in a large majority of polar X-ray jets, the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after both the minifilament's rise and the spire-producing breakout reconnection have started; and (2) in a large minority, (a) before the eruption starts there is a current sheet between the explosive closed field and the ambient open field, and (b) the eruption starts with breakout reconnection at that current sheet. The observed sequence of events as the eruptions start and grow support the idea that the magnetic explosions that make polar X-ray jets work the same way as the much larger magnetic explosions that make a flare and coronal mass ejection (CME). That idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around the pre-jet minifilament and triggers that field's jet-driving explosion, together suggest that flux cancelation inside the magnetic arcade that explodes in a flare/CME eruption is usually the fundamental process that builds the explosive field in the core of the arcade and triggers that field's explosion.

This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Science Program and the Heliophysics Guest Investigators Program. Title: MAG4's New Database of HMI Active-Region Vector Magnetograms: Sample Size and Initial Results for Major-Flare Forecasting Authors: Falconer, David Allen; Tiwari, Sanjiv K.; Moore, Ron L. Bibcode: 2018tess.conf41406F Altcode: We have developed a large-database method of forecasting an active region's (AR's) chance of producing a major flare (GOES M- or X-class) and its chance of producing a major CME (speed > 800 km/s) in the coming few days from a free-energy proxy - a proxy of the AR's free magnetic energy - measured from a magnetogram of the AR. We have named this forecasting tool MAG4 (for Magnetogram Forecast). In its present near-real-time operation mode, MAG4 forecasts each on-disk AR's rates of production of major flares and major CMEs in the coming few days, based on the observed major-flare and major-CME histories of 1,300 ARs observed within 30 degrees of disk center in MDI line-of-sight magnetograms. From the passages of these ARs across the 30-degree central disk, the presently-used MAG4 MDI database has the value of a free-energy proxy measured from 40,000 MDI magnetograms of these 1,300 ARs. We are now compiling a similar database of the about the same size for MAG4, but for HMI vector magnetograms that are of ARs observed within 45 degrees of disk center and that have been deprojected to disk center. This new MAG4 HMI database now has a wide variety of AR parameters measured from each of 40,000 deprojected HMI vector magnetograms of 900 ARs within 45 degrees of disk center (15 magnetograms of each AR per day during its passage across the 45-degree central disk). We present the MAG4 major-flare forecasting curves obtained from this new database for a few alternative free-energy proxies measured from either the vertical-field component or the horizontal-field component of the deprojected AR vector magnetograms. (The magnetogram's horizontal-field component more directly reflects the AR's free magnetic energy than does the magnetogram's vertical-field component.) By using our statistical method of measuring, via a skill score, whether the forecasting performance of one AR magnetogram parameter is significantly better than that of another, we show which free-energy proxy is the best major-flare predictor that we have found so far. Title: Birth of a Bipolar Active Region in a Small Solar Coronal Hole Authors: Adams, Mitzi; Panesar, Navdeep Kaur; Moore, Ronald L. Bibcode: 2018tess.conf20235A Altcode: We report on an the emergence of an anemone active region in a very small Title: Observations of Large Penumbral Jets from IRIS and Hinode Authors: Tiwari, Sanjiv K.; Moore, Ronald Lee; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep Kaur; Winebarger, Amy R.; Sterling, Alphonse C. Bibcode: 2018tess.conf40807T Altcode: Recent observations from Hinode (SOT/FG) revealed the presence of large penumbral jets (widths ≥ 500 km, larger than normal penumbral microjets, which have widths < 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a penumbral filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have mixed-polarity flux in Stokes-V images from SOT/FG. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 Å, whether they had any coronal-temperature plasma remains unclear. In the present work, for another sunspot, we use IRIS Mg II k 2796 slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images. Title: Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets Authors: Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep K. Bibcode: 2018ApJ...859....3M Altcode: 2018arXiv180512182M We follow up on the Sterling et al. discovery that nearly all polar coronal X-ray jets are made by an explosive eruption of a closed magnetic field carrying a miniature filament in its core. In the same X-ray and EUV movies used by Sterling et al., we examine the onset and growth of the driving magnetic explosion in 15 of the 20 jets that they studied. We find evidence that (1) in a large majority of polar X-ray jets, the runaway internal/tether-cutting reconnection under the erupting minifilament flux rope starts after both the minifilament’s rise and the spire-producing external/breakout reconnection have started; and (2) in a large minority, (a) before the eruption starts, there is a current sheet between the explosive closed field and the ambient open field, and (b) the eruption starts with breakout reconnection at that current sheet. The variety of event sequences in the eruptions supports the idea that the magnetic explosions that make polar X-ray jets work the same way as the much larger magnetic explosions that make a flare and coronal mass ejection (CME). That idea and recent observations indicating that magnetic flux cancellation is the fundamental process that builds the field in and around the pre-jet minifilament and triggers that field’s jet-driving explosion together suggest that flux cancellation inside the magnetic arcade that explodes in a flare/CME eruption is usually the fundamental process that builds the explosive field in the core of the arcade and triggers that field’s explosion. Title: Magnetic Flux Cancelation as the Trigger of Solar Coronal Jets in Coronal Holes Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2018ApJ...853..189P Altcode: 2018arXiv180105344P We investigate in detail the magnetic cause of minifilament eruptions that drive coronal-hole jets. We study 13 random on-disk coronal-hole jet eruptions, using high-resolution X-ray images from the Hinode/X-ray telescope(XRT), EUV images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). For all 13 events, we track the evolution of the jet-base region and find that a minifilament of cool (transition-region-temperature) plasma is present prior to each jet eruption. HMI magnetograms show that the minifilaments reside along a magnetic neutral line between majority-polarity and minority-polarity magnetic flux patches. These patches converge and cancel with each other, with an average cancelation rate of ∼0.6 × 1018 Mx hr-1 for all 13 jets. Persistent flux cancelation at the neutral line eventually destabilizes the minifilament field, which erupts outward and produces the jet spire. Thus, we find that all 13 coronal-hole-jet-driving minifilament eruptions are triggered by flux cancelation at the neutral line. These results are in agreement with our recent findings for quiet-region jets, where flux cancelation at the underlying neutral line triggers the minifilament eruption that drives each jet. Thus, from that study of quiet-Sun jets and this study of coronal-hole jets, we conclude that flux cancelation is the main candidate for triggering quiet-region and coronal-hole jets. Title: Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence. IV. Solar Coronal Turbulence Authors: Zank, G. P.; Adhikari, L.; Hunana, P.; Tiwari, S. K.; Moore, R.; Shiota, D.; Bruno, R.; Telloni, D. Bibcode: 2018ApJ...854...32Z Altcode: A new model describing the transport and evolution of turbulence in the quiet solar corona is presented. In the low plasma beta environment, transverse photospheric convective fluid motions drive predominantly quasi-2D (nonpropagating) turbulence in the mixed-polarity “magnetic carpet,” together with a minority slab (Alfvénic) component. We use a simplified sub-Alfvénic flow velocity profile to solve transport equations describing the evolution and dissipation of turbulence from 1\hspace{0.5em}{{t}}{{o}} 15 {R} (including the Alfvén surface). Typical coronal base parameters are used, although one model uses correlation lengths derived observationally by Abramenko et al., and the other assumes values 10 times larger. The model predicts that (1) the majority quasi-2D turbulence evolves from a balanced state at the coronal base to an imbalanced state, with outward fluctuations dominating, at and beyond the Alfvén surface, i.e., inward turbulent fluctuations are dissipated preferentially; (2) the initially imbalanced slab component remains imbalanced throughout the solar corona, being dominated by outwardly propagating Alfvén waves, and wave reflection is weak; (3) quasi-2D turbulence becomes increasingly magnetized, and beyond ∼ 6 {R}, the kinetic energy is mainly in slab fluctuations; (4) there is no accumulation of inward energy at the Alfvén surface; (5) inertial range quasi-2D rather than slab fluctuations are preferentially dissipated within ∼ 3 {R}; and (6) turbulent dissipation of quasi-2D fluctuations is sufficient to heat the corona to temperatures ∼ 2× {10}6 K within 2 {R}, consistent with observations that suggest that the fast solar wind is accelerated most efficiently between ∼ 2\hspace{0.5em}{{a}}{{n}}{{d}} 4 {R}. Title: A Microfilament-Eruption Mechanism for Solar Spicules Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2017AGUFMSH43A2791S Altcode: Recent studies indicate that solar coronal jets result from eruption of small-scale filaments, or "minifilaments" (Sterling et al. 2015, Nature, 523, 437; Panesar et al. ApJL, 832L, 7). In many aspects, these coronal jets appear to be small-scale versions of long-recognized large-scale solar eruptions that are often accompanied by eruption of a large-scale filament and that produce solar flares and coronal mass ejections (CMEs). In coronal jets, a jet-base bright point (JBP) that is often observed to accompany the jet and that sits on the magnetic neutral line from which the minifilament erupts, corresponds to the solar flare of larger-scale eruptions that occurs at the neutral line from which the large-scale filament erupts. Large-scale eruptions are relatively uncommon ( 1/day) and occur with relatively large-scale erupting filaments ( 10^5 km long). Coronal jets are more common (> 100s/day), but occur from erupting minifilaments of smaller size ( 10^4 km long). It is known that solar spicules are much more frequent (many millions/day) than coronal jets. Just as coronal jets are small-scale versions of large-scale eruptions, here we suggest that solar spicules might in turn be small-scale versions of coronal jets; we postulate that the spicules are produced by eruptions of ``microfilaments'' of length comparable to the width of observed spicules ( 300 km). A plot of the estimated number of the three respective phenomena (flares/CMEs, coronal jets, and spicules) occurring on the Sun at a given time, against the average sizes of erupting filaments, minifilaments, and the putative microfilaments, results in a size distribution that can be fit with a power-law within the estimated uncertainties. The counterparts of the flares of large-scale eruptions and the JBPs of jets might be weak, pervasive, transient brightenings observed in Hinode/CaII images, and the production of spicules by microfilament eruptions might explain why spicules spin, as do coronal jets. The expected small-scale neutral lines from which the microfilaments would be expected to erupt would be difficult to detect reliably with current instrumentation, but might be apparent with instrumentation of the near future. A summary of this work appears in Sterling and Moore 2016, ApJL, 829, L9. Title: Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes in Quiet Regions and Coronal Holes? Authors: Avallone, E. A.; Tiwari, S. K.; Panesar, N. K.; Moore, R. L. Bibcode: 2017AGUFMSH43A2797A Altcode: Coronal plumes are sporadic fountain-like structures that are bright in coronal emission. Each is a magnetic funnel rooted in a strong patch of dominant-polarity photospheric magnetic flux surrounded by a predominantly-unipolar magnetic network, either in a quiet region or a coronal hole. The heating processes that make plumes bright evidently involve the magnetic field in the base of the plume, but remain mysterious. Raouafi et al. (2014) inferred from observations that plume heating is a consequence of magnetic reconnection in the base, whereas Wang et al. (2016) showed that plume heating turns on/off from convection-driven convergence/divergence of the base flux. While both papers suggest that the base magnetic flux in their plumes is of mixed polarity, these papers provide no measurements of the abundance and strength of the evolving base flux or consider whether a critical magnetic field strength is required for a plume to become noticeably bright. To address plume production and evolution, we track the plume luminosity and the abundance and strength of the base magnetic flux over the lifetimes of six coronal plumes, using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 171 Å images and SDO/Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms. Three of these plumes are in coronal holes, three are in quiet regions, and each plume exhibits a unipolar base flux. We track the base magnetic flux over each plume's lifetime to affirm that its convergence and divergence respectively coincide with the appearance and disappearance of the plume in 171 Å images. We tentatively find that plume formation requires enough convergence of the base flux to surpass a field strength of ∼300-500 Gauss, and that quiet Sun and coronal-hole plumes both exhibit the same behavior in the response of their luminosity in 171 Å to the strength of the magnetic field in the base. Title: Dynamic Solar Coronal Jets occurring in a Near-Limb Active Region Authors: Velasquez, J.; Sterling, A. C.; Falconer, D. A.; Moore, R. L.; Panesar, N. K. Bibcode: 2017AGUFMSH43A2792V Altcode: Coronal Jets are long, narrow columns of plasma ejected from the lower solar atmosphere into the corona and observed at coronal wavelengths. In this study, we observe a series of coronal jets occurring in NOAA active region (AR) 12473 on 2015 December 30. At that time the AR was approaching the Sun's west limb, allowing for observation of the jets in profile, contrasting with our recent studies of on-disk active region jets (Sterling et al. 2016, ApJ, 821, 100; and 2017, ApJ, 844, 28). We observe the jets using X-ray images from Hinode's X-Ray Telescope (XRT) and EUV images from the Solar Dynamic Observatory's (SDO) Atmospheric Imaging Assembly (AIA). Here, we investigate the dynamic trajectories of about 9 jets, by measuring the distance between the jet base and the leading edge of the erupting jet (i.e., the jet length) as a function of time, when observed in 304 Angstrom AIA images. All of the selected jets are concurrently visible in X-rays, and thus we are measuring properties of the chromospheric-transition region "cool component" of X-ray jets; in most cases, the appearance of the jets, such as the length of their spire, differs substantially between the X-ray and EUV 304 Angstrom images. For our selection of jets, we find that in the 304 Angstrom images many of them spin as they extend. Most of those in our selection do not make coronal mass ejections (CMEs); on average our jets have outward velocities of about 126 km/s, average maximum lengths of 84,000 km, and average lifetimes of 38 min. These values fall in the range of outward velocities and lifetimes found by Panesar et al. (2016, ApJ, 822, L23) for active-region 304 Angstrom jets that did not make CMEs. These values are also comparable to those found by Moschou et al. (2013, Solar Phys, 284, 427) for a selection of quiet Sun and coronal hole 304 Angstrom jets. One of our selected jets did make a CME, and it has outward velocity of about 240 km/s, consistent with the Panesar et al. (2016) results for CME-producing jets. Title: Magnetic Flux Cancellation as the Trigger of Solar Coronal Jets Authors: McGlasson, R.; Panesar, N. K.; Sterling, A. C.; Moore, R. L. Bibcode: 2017AGUFMSH43A2796M Altcode: Coronal jets are narrow eruptions in the solar corona, and are often observed in extreme ultraviolet (EUV) and X-ray images. They occur everywhere on the solar disk: in active regions, quiet regions, and coronal holes (Raouafi et al. 2016). Recent studies indicate that most coronal jets in quiet regions and coronal holes are driven by the eruption of a minifilament (Sterling et al. 2015), and that this eruption follows flux cancellation at the magnetic neutral line under the pre-eruption minifilament (Panesar et al. 2016). We confirm this picture for a large sample of jets in quiet regions and coronal holes using multithermal (304 Å 171 Å, 193 Å, and 211 Å) extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO) /Atmospheric Imaging Assembly (AIA) and line-of-sight magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). We report observations of 60 randomly selected jet eruptions. We have analyzed the magnetic cause of these eruptions and measured the base size and the duration of each jet using routines in SolarSoft IDL. By examining the evolutionary changes in the magnetic field before, during, and after jet eruption, we found that each of these jets resulted from minifilament eruption triggered by flux cancellation at the neutral line. In agreement with the above studies, we found our jets to have an average base diameter of 7600 ± 2700 km and an average duration of 9.0 ± 3.6 minutes. These observations confirm that minifilament eruption is the driver and magnetic flux cancellation is the primary trigger mechanism for nearly all coronal hole and quiet region coronal jet eruptions. Title: Invisibility of Solar Active Region Umbra-to-Umbra Coronal Loops: New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating Authors: Tiwari, S. K.; Thalmann, J. K.; Panesar, N. K.; Moore, R. L.; Winebarger, A. R. Bibcode: 2017AGUFMSH43A2789T Altcode: Coronal heating generally increases with increasing magnetic field strength: the EUV/X-ray corona in active regions is 10-100 times more luminous and 2-4 times hotter than that in quiet regions and coronal holes, which are heated to only about 1.5 MK, and have fields that are 10-100 times weaker than that in active regions. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot's penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Our results from EUV observations and nonlinear force-free modeling of coronal magnetic field imply that, for any coronal loop on the Sun or on any other convective star, as long as the field can be braided by convection in at least one loop foot, the stronger the field in the loop, the stronger the coronal heating. Title: Origin of Pre-Coronal-Jet Minifilaments: Flux Cancellation Authors: Panesar, N. K.; Sterling, A. C.; Moore, R. L. Bibcode: 2017AGUFMSH41C..03P Altcode: We recently investigated the triggering mechanism of ten quiet-region coronal jet eruptions and found that magnetic flux cancellation at the neutral line of minifilaments is the main cause of quiet-region jet eruptions (Panesar et al 2016). However, what leads to the formation of the pre-jet minifilaments remained unknown. In the present work, we study the longer-term evolution of the magnetic field that leads to the formation of pre-jet minifilaments by using SDO/AIA intensity images and concurrent line of sight SDO/HMI magnetograms. We find that each of the ten pre-jet minifilaments formed due to progressive flux cancellation between the minority-polarity and majority-polarity flux patches (with a minority-polarity flux loss of 10% - 40% prior to minifilament birth). Apparently, the flux cancellation between the opposite polarity flux patches builds a highly-sheared field at the magnetic neutral line, and that field holds the cool transition region minifilament plasma. Even after the formation of minifilaments, the flux continues to cancel, making the minifilament body more thick and prominent. Further flux cancellation between the opposite-flux patches leads to the minifilament eruption and a resulting jet. From these observations, we infer that flux cancellation is usually the process that builds up the sheared and twisted field in pre-jet minifilaments, and that triggers it to erupt and drive a jet. Title: Coronal Heating and the Magnetic Field in Solar Active Regions Authors: Falconer, D. A.; Tiwari, S. K.; Winebarger, A. R.; Moore, R. L. Bibcode: 2017AGUFMSH43A2790F Altcode: A strong dependence of active-region (AR) coronal heating on the magnetic field is demonstrated by the strong correlation of AR X-ray luminosity with AR total magnetic flux (Fisher et al 1998 ApJ). AR X-ray luminosity is also correlated with AR length of strong-shear neutral line in the photospheric magnetic field (Falconer 1997). These two whole-AR magnetic parameters are also correlated with each other. From 150 ARs observed within 30 heliocentric degrees from disk center by AIA and HMI on SDO, using AR luminosity measured from the hot component of the AIA 94 Å band (Warren et al 2012, ApJ) near the time of each of 3600 measured HMI vector magnetograms of these ARs and a wide selection of whole-AR magnetic parameters from each vector magnetogram after it was deprojected to disk center, we find: (1) The single magnetic parameter having the strongest correlation with AR 94-hot luminosity is the length of strong-field neutral line. (2) The two-parameter combination having the strongest still-stronger correlation with AR 94-hot luminosity is a combination of AR total magnetic flux and AR neutral-line length weighted by the vertical-field gradient across the neutral line. We interpret these results to be consistent with the results of both Fisher et al (1998) and Falconer (1997), and with the correlation of AR coronal loop heating with loop field strength recently found by Tiwari et al (2017, ApJ Letters). Our interpretation is that, in addition to depending strongly on coronal loop field strength, AR coronal heating has a strong secondary positive dependence on the rate of flux cancelation at neutral lines at coronal loop feet. This work was funded by the Living With a Star Science and Heliophysics Guest Investigators programs of NASA's Heliophysics Division. Title: Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration Authors: Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald L.; Magara, Tetsuya; Moon, Yong-Jae Bibcode: 2017ApJ...845...26J Altcode: 2017arXiv170609176J Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), SDO/Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite (GOES), and RHESSI, we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼105 km) is analogous to that of coronal jets (base size ∼104 km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan-spine null-point magnetic topology happen on a wide range of size scales on the Sun. Title: A new method to quantify and reduce projection error in whole-solar-active-region parameters measured from vector magnetograms Authors: Falconer, David; Tiwari, Sanjiv K.; Moore, Ronald L.; Khazanov, Igor Bibcode: 2017SPD....4811107F Altcode: Projection error limits the use of vector magnetograms of active regions (ARs) far from disk center. For ARs observed up to 60o from disk center, we demonstrate a method of measuring and reducing the projection error in the magnitude of any whole-AR parameter derived from a vector magnetogram that has been deprojected to disk center. The method assumes that the center-to-limb curve of the average of the parameter’s absolute values measured from the disk passage of a large number of ARs and normalized to each AR’s absolute value of the parameter at central meridian, gives the average fractional projection error at each radial distance from disk center. To demonstrate the method, we use a large set of large-flux ARs and apply the method to a whole-AR parameter that is among the simplest to measure: whole-AR magnetic flux. We measure 30,845 SDO/HMI vector magnetograms covering the disk passage of 272 large-flux ARs, each having whole-AR flux >1022 Mx. We obtain the center-to-limb radial-distance run of the average projection error in measured whole-AR flux from a Chebyshev fit to the radial-distance plot of the 30,845 normalized measured values. The average projection error in the measured whole-AR flux of an AR at a given radial distance is removed by multiplying the measured flux by the correction factor given by the fit. The correction is important for both the study of evolution of ARs and for improving the accuracy of forecasting an AR’s major flare/CME productivity. We will also show corrections for other whole-AR parameters, especially AR free-energy proxies. Title: Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets Authors: Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep Bibcode: 2017SPD....4820006M Altcode: We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project. Title: Active Region Jets II: Triggering and Evolution of Violent Jets Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco Bibcode: 2017SPD....4830403S Altcode: We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ∼<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes. Title: Flux Cancelation as the trigger of quiet-region coronal jet eruptions Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2017SPD....4830402P Altcode: Coronal jets are frequent transient features on the Sun, observed in EUV and X-ray emissions. They occur in active regions, quiet Sun and coronal holes, and appear as a bright spire with base brightenings. Recent studies show that many coronal jets are driven by the eruption of a minifilament. Here we investigate the magnetic cause of jet-driving minifilament eruptions. We study ten randomly-found on-disk quiet-region coronal jets using SDO/AIA intensity images and SDO/HMI magnetograms. For all ten events, we track the evolution of the jet-base region and find that (a) a cool (transition-region temperature) minifilament is present prior to each jet eruption; (b) the pre-eruption minifilament resides above the polarity-inversion line between majority-polarity and minority-polarity magnetic flux patches; (c) the opposite-polarity flux patches converge and cancel with each other; (d) the ongoing cancelation between the majority-polarity and minority-polarity flux patches eventually destabilizes the field holding the minifilament to erupt outwards; (e) the envelope of the erupting field barges into ambient oppositely-directed far-reaching field and undergoes external reconnection (interchange reconnection); (f) the external reconnection opens the envelope field and the minifilament field inside, allowing reconnection-heated hot material and cool minifilament material to escape along the reconnected far-reaching field, producing the jet spire. In summary, we found that each of our ten jets resulted from a minifilament eruption during flux cancelation at the magnetic neutral line under the pre-eruption minifilament. These observations show that flux cancelation is usually the trigger of quiet-region coronal jet eruptions. Title: Magnetic Flux Cancellation as the Origin of Solar Quiet-region Pre-jet Minifilaments Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2017ApJ...844..131P Altcode: 2017arXiv170609079P We investigate the origin of 10 solar quiet-region pre-jet minifilaments, using EUV images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and magnetograms from the SDO Helioseismic and Magnetic Imager (HMI). We recently found that quiet-region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancellation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancellation between minority-polarity and majority-polarity flux patches. In each of 10 pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10%-40% from before to after the minifilament appears. For our 10 events, the minifilaments exist for periods ranging from 1.5 hr to 2 days before erupting to make a jet. Apparently, the flux cancellation builds a highly sheared field that runs above and traces the neutral line, and the cool transition region plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancellation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus, our observations strongly support that quiet-region magnetic flux cancellation results in both the formation of the pre-jet minifilament and its jet-driving eruption. Title: Evidence from IRIS that Sunspot Large Penumbral Jets Spin Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; De Pontieu, Bart; Tarbell, Theodore D.; Panesar, Navdeep K.; Winebarger, Amy; Sterling, Alphonse C. Bibcode: 2017SPD....4810506T Altcode: Recent observations from {\it Hinode} (SOT/FG) revealed the presence of large penumbral jets (widths $\ge$500 km, larger than normal penumbral microjets, which have widths $<$ 400 km) repeatedly occurring at the same locations in a sunspot penumbra, at the tail of a filament or where the tails of several penumbral filaments apparently converge (Tiwari et al. 2016, ApJ). These locations were observed to have mixed-polarity flux in Stokes-V images from SOT/FG. Large penumbral jets displayed direct signatures in AIA 1600, 304, 171, and 193 channels; thus they were heated to at least transition region temperatures. Because large jets could not be detected in AIA 94 \AA, whether they had any coronal-temperature plasma remains unclear. In the present work, for another sunspot, we use IRIS Mg II k 2796 Å slit jaw images and spectra and magnetograms from Hinode SOT/FG and SOT/SP to examine: whether penumbral jets spin, similar to spicules and coronal jets in the quiet Sun and coronal holes; whether they stem from mixed-polarity flux; and whether they produce discernible coronal emission, especially in AIA 94 Å images. The few large penumbral jets for which we have IRIS spectra show evidence of spin. If these have mixed-polarity at their base, then they might be driven the same way as coronal jets and CMEs. Title: Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle Authors: Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C. Bibcode: 2017SPD....4811103M Altcode: We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983, Nature, 304, 401) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region Ω-loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper giving a full description of our dynamo scenario is posted on arXiv (http://arxiv.org/abs/1606.05371).This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode Project. Title: Solar Active Region Coronal Jets. II. Triggering and Evolution of Violent Jets Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Martinez, Francisco Bibcode: 2017ApJ...844...28S Altcode: 2017arXiv170503040S We study a series of X-ray-bright, rapidly evolving active region coronal jets outside the leading sunspot of AR 12259, using Hinode/X-ray telescope, Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI), and Interface Region Imaging Spectrograph (IRIS) data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets. The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ≲ 2\prime\prime ) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2016). Some jets strands are difficult/impossible to detect, perhaps due to, e.g., their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ∼ 1.5× {10}19 Mx hr-1. An average flux of ∼ 5× {10}18 Mx canceled prior to each episode, arguably building up ∼1028-1029 erg of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption build up and triggering of at least many jets in active regions, quiet regions, and coronal holes. Title: New Evidence that Magnetoconvection Drives Solar-Stellar Coronal Heating Authors: Tiwari, Sanjiv K.; Thalmann, Julia K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy R. Bibcode: 2017ApJ...843L..20T Altcode: 2017arXiv170608035T How magnetic energy is injected and released in the solar corona, keeping it heated to several million degrees, remains elusive. Coronal heating generally increases with increasing magnetic field strength. From a comparison of a nonlinear force-free model of the three-dimensional active region coronal field to observed extreme-ultraviolet loops, we find that (1) umbra-to-umbra coronal loops, despite being rooted in the strongest magnetic flux, are invisible, and (2) the brightest loops have one foot in an umbra or penumbra and the other foot in another sunspot’s penumbra or in unipolar or mixed-polarity plage. The invisibility of umbra-to-umbra loops is new evidence that magnetoconvection drives solar-stellar coronal heating: evidently, the strong umbral field at both ends quenches the magnetoconvection and hence the heating. Broadly, our results indicate that depending on the field strength in both feet, the photospheric feet of a coronal loop on any convective star can either engender or quench coronal heating in the loop’s body. Title: The Triggering Mechanism of Coronal Jets and CMEs: Flux Cancelation Authors: Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald Bibcode: 2017shin.confE..27P Altcode: Recent investigations (e.g. Sterling et al 2015, Panesar et al 2016) show that coronal jets are driven by the eruption of a small-scale filament (10,000 - 20,000 km long, called a minifilament) following magnetic flux cancelation at the neutral line underneath the minifilament. Minifilament eruptions appear to be analogous to larger-scale solar filament eruptions: they both reside, before the eruption, in the highly sheared field between the adjacent opposite-polarity magnetic flux patches (neutral line); jet-producing minifilament and larger-scale solar filament first show a slow-rise, followed by a fast-rise as they erupt; during the jet-producing minifilament eruption a jet bright point (JBP) appears at the location where the minifilament was rooted before the eruption, analogous to the situation with CME-producing larger-scale filament eruptions where a solar flare arcade forms during the filament eruption along the neutral line along which the filament resided prior to its eruption. In the present study we investigate the triggering mechanism of CME-producing large solar filament eruptions, and find that enduring flux cancelation at the neutral line of the filaments often triggers their eruptions. This corresponds to the finding that persistent flux cancelation at the neutral is the cause of jet-producing minifilament eruptions. Thus our observations support coronal jets being miniature version of CMEs. Title: Probing the W tb vertex structure in t-channel single-top-quark production and decay in pp collisions at √{s}=8 TeV with the ATLAS detector Authors: Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz, V. Araujo; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M. -S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Pietra, M. Della; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Da Costa, J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S. -C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klioutchnikova, T.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; de Andrade Filho, L. Manhaes; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N. -A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F. -W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C. -L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, Q.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W. -M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L. Bibcode: 2017JHEP...04..124A Altcode: 2019arXiv190605310A To probe the W tb vertex structure, top-quark and W -boson polarisation observables are measured from t-channel single-top-quark events produced in proton-proton collisions at a centre-of-mass energy of 8 TeV. The dataset corresponds to an integrated luminosity of 20.2 fb-1, recorded with the ATLAS detector at the LHC. Selected events contain one isolated electron or muon, large missing transverse momentum and exactly two jets, with one of them identified as likely to contain a b-hadron. Stringent selection requirements are applied to discriminate t-channel single-top-quark events from background. The polarisation observables are extracted from asymmetries in angular distributions measured with respect to spin quantisation axes appropriately chosen for the top quark and the W boson. The asymmetry measurements are performed at parton level by correcting the observed angular distributions for detector effects and hadronisation after subtracting the background contributions. The measured top-quark and W -boson polarisation values are in agreement with the Standard Model predictions. Limits on the imaginary part of the anomalous coupling g R are also set from model-independent measurements. [Figure not available: see fulltext.] Title: 2017 FL1 Authors: Read, M. T.; Johnson, J. A.; Christensen, E. J.; Fuls, D. C.; Gibbs, A. R.; Grauer, A. D.; Kowalski, R. A.; Larson, S. M.; Leonard, G. J.; Matheny, R. G.; Seaman, R. L.; Shelly, F. C.; Schwartz, M.; Holvorcem, P. R.; McCarthy Obs, J. J.; Robson, M.; Moore, R.; Matthews, J.; Matthews, K.; Bosch, J. M.; Mantero, A.; Gibson, B.; Goggia, T.; Kahale, S.; Lowe, T.; Schultz, A.; Willman, M.; Chambers, K.; Chastel, S.; Denneau, L.; Flewelling, H.; Huber, M.; Lilly, E.; Magnier, E.; Wainscoat, R.; Waters, C.; Weryk, R.; Ryan, W. H.; Ryan, E. V.; Holmes, R.; Foglia, S.; Buzzi, L.; Linder, T.; Hudin, L.; Rowe, B. Bibcode: 2017MPEC....F...42R Altcode: No abstract at ADS Title: Evaluation of the Minifilament-Eruption Scenario for Solar Coronal Jets in Polar Coronal Holes Authors: Sterling, A. C.; Baikie, T. K.; Falconer, D. A.; Moore, R. L.; Savage, S. L. Bibcode: 2016AGUFMSH31B2574S Altcode: Solar coronal jets are suspected to result from magnetic reconnection low in the Sun's atmosphere. Sterling et al. (2015) looked at 20 jets in polar coronal holes, using X-ray images from the Hinode/X-Ray Telescope (XRT) and EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). They suggested that each jet was driven by the eruption of twisted closed magnetic field carrying a small-scale filament, which they call a "minifilament", and that the jet was produced by reconnection of the erupting field with surrounding open field. In this study, we carry out a more extensive examination of polar coronal jets. From 280 hours of XRT polar coronal hole observations spread over two years (2014-2016), we identified 117 clearly-identifiable X-ray jet events. From the broader set, we selected 25 of the largest and brightest events for further study in AIA 171, 193, 211, and 304 Angstrom images. We find that at least the majority of the jets follow the minifilament-eruption scenario, although for some cases the evolution of the minifilament in the onset of its eruption is more complex then presented in the simplified schematic of Sterling et al. (2015). For all cases in which we could make a clear determination, the spire of the X-ray jet drifted laterally away from the jet-base-edge bright point; this spire drift away from the bright point is consistent with expectations of the minifilament-eruption scenario for coronal-jet production. This work was supported with funding from the NASA/MSFC Hinode Project Office, and from the NASA HGI program. Title: Solar Coronal Jets in Active Regions Authors: Sterling, A. C.; Moore, R. L.; Martinez, F.; Falconer, D. A. Bibcode: 2016AGUFMSH43E..06S Altcode: Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015, Nature 523, 437), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different process, such as emerging flux. Here we present observations of NOAA active region 12259, over 13-20 Jan 2015, using observations from Hinode/XRT, and from SDO/AIA and HMI. We focused on 13 standout jets that we identified from an initial survey of the XRT X-ray images, and we found many more jets in the AIA data set, which have higher cadence and more continuous coverage than our XRT data. All 13 jets originated from identifiable magnetic neutral lines; we further found magnetic flux cancelation to be occurring at essentially all of these neutral lines. At least 6 of those 13 jets were homologous, developing with similar morphology from nearly the same location, and in fact there were many more jets in the homologous sequence apparent in the higher-fidelity AIA data. Each of these homologous jets was consistent with minifilament-like ejections at the start of the jets. Other jets displayed a variety of morphologies, at least some of which were consistent with minifilament eruptions. For other jets however we have not yet clearly deciphered the driving mechanism. Our overall conclusions are similar to those of our earlier study of active region jets (Sterling et al. 2016, ApJ, 821, 100), where we found: some jets clearly to result from mini-filament eruptions; it was difficult to disentangle the mechanism of some other jets; and all of the jets originated from magnetic neutral lines, most of which were undergoing flux cancelation. This work was supported by funding from NASA/HGI, from the Hinode project, and (for FM) from the NASA/MSFC Research Experience for Undergraduates (REU) program. Title: Sunspot Coronal Fan Loops: Location, Closure, and Heating Authors: Heerikhuisen, J.; Ruiz, S.; Tiwari, S. K.; Moore, R. L.; Winebarger, A. R. Bibcode: 2016AGUFMSH31B2578H Altcode: We define sunspot coronal fan loops to be structures that are bright in Fe IX/X 171Å images, have fan-like appearance, and have a foot in a sunspot. The exact location in aggregate within the sunspot in which the coronal fan loops are rooted has not previously been studied. Through umbra-edge and penumbra-edge maps and potential field extrapolations we show that fan loops are commonly found in the center of the umbra in single sunspot active regions, although they can also be located in the outer umbra or the penumbra. In bipolar active regions, a fan loop can be rooted in the center of the umbra at one footpoint as long as the other footpoint is located in a convective region e.g., in a plage or penumbra. Furthermore, the extrapolations illustrate that it is unlikely for fan loops to be open, which disagrees with the previously thought idea that fan loops occur along open magnetic field lines hosting a slow solar wind. We infer that any coronal field loop having one foot in a sunspot umbra (with no fan loops in it) has its other foot either in another umbra or in weak magnetic flux. Title: Flux Cancellation Leading to Solar Filament Eruptions Authors: Popescu, R. M.; Panesar, N. K.; Sterling, A. C.; Moore, R. L. Bibcode: 2016AGUFMSH31B2572P Altcode: Solar filaments are strands of relatively cool, dense plasma magnetically suspended in the lower density hotter solar corona. They trace magnetic polarity inversion lines (PILs) in the photosphere below, and are supported against gravity at heights of up to 100 Mm above the chromosphere by the magnetic field in and around them. This field erupts when it is rendered unstable by either magnetic flux cancellation or emergence at or near the PIL. We have studied the evolution of photospheric magnetic flux leading to ten observed filament eruptions. Specifically, we look for gradual magnetic changes in the neighborhood of the PIL prior to and during eruption. We use Extreme Ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA), and magnetograms from the Helioseismic and Magnetic Imager (HMI), both onboard the Solar Dynamics Observatory (SDO), to study filament eruptions and their photospheric magnetic fields. We examine whether flux cancellation or/and emergence leads to filament eruptions and find that continuous flux cancellation was present at the PIL for many hours prior to each eruption. We present two events in detail and find the following: (a) the pre-eruption filament-holding core field is highly sheared and appears in the shape of a sigmoid above the PIL; (b) at the start of the eruption the opposite arms of the sigmoid reconnect in the middle above the site of (tether-cutting) flux cancellation at the PIL; (c) the filaments first show a slow-rise, followed by a fast-rise as they erupt. We conclude that these two filament eruptions result from flux cancellation in the middle of the sheared field and are in agreement with the standard model for a CME/flare filament eruption from a closed bipolar magnetic field [flux cancellation (van Ballegooijen and Martens 1989 and Moore and Roumelrotis 1992) and runaway tether-cutting (Moore et. al 2001)]. Title: A New Method to Quantify and Reduce the net Projection Error in Whole-solar-active-region Parameters Measured from Vector Magnetograms Authors: Falconer, David A.; Tiwari, Sanjiv K.; Moore, Ronald L.; Khazanov, Igor Bibcode: 2016ApJ...833L..31F Altcode: 2016arXiv161201948F Projection errors limit the use of vector magnetograms of active regions (ARs) far from the disk center. In this Letter, for ARs observed up to 60° from the disk center, we demonstrate a method for measuring and reducing the projection error in the magnitude of any whole-AR parameter that is derived from a vector magnetogram that has been deprojected to the disk center. The method assumes that the center-to-limb curve of the average of the parameter’s absolute values, measured from the disk passage of a large number of ARs and normalized to each AR’s absolute value of the parameter at central meridian, gives the average fractional projection error at each radial distance from the disk center. To demonstrate the method, we use a large set of large-flux ARs and apply the method to a whole-AR parameter that is among the simplest to measure: whole-AR magnetic flux. We measure 30,845 SDO/Helioseismic and Magnetic Imager vector magnetograms covering the disk passage of 272 large-flux ARs, each having whole-AR flux >1022 Mx. We obtain the center-to-limb radial-distance run of the average projection error in measured whole-AR flux from a Chebyshev fit to the radial-distance plot of the 30,845 normalized measured values. The average projection error in the measured whole-AR flux of an AR at a given radial distance is removed by multiplying the measured flux by the correction factor given by the fit. The correction is important for both the study of the evolution of ARs and for improving the accuracy of forecasts of an AR’s major flare/coronal mass ejection productivity. Title: Coronal Jets from Minifilament Eruptions in Active Regions Authors: Sterling, A. C.; Martinez, F.; Falconer, D. A.; Moore, R. L. Bibcode: 2016AGUFMSH31B2567S Altcode: Solar coronal jets are transient (frequently of lifetime 10 min) features that shoot out from near the solar surface, become much longer than their width, and occur in all solar regions, including coronal holes, quiet Sun, and active regions (e.g., Shimojo et al. 1996, Certain et al. 2007). Sterling et al. (2015) and other studies found that in coronal holes and in quiet Sun the jets result when small-scale filaments, called ``minifilaments,'' erupt onto nearby open or high-reaching field lines. Additional studies found that coronal-jet-onset locations (and hence presumably the minifilament-eruption-onset locations) coincided with locations of magnetic-flux cancellation. For active region (AR) jets however the situation is less clear. Sterling et al. (2016) studied jets in one active region over a 24-hour period; they found that some AR jets indeed resulted from minifilament eruptions, usually originating from locations of episodes of magnetic-flux cancelation. In some cases however they could not determine whether flux was emerging or canceling at the polarity inversion line from which the minifilament erupted; and for other jets of that region minifilaments were not conclusively apparent prior to jet occurrence. Here we further study AR jets, by observing them in a single AR over a one-week period, using X-ray images from Hinode/XRT and EUV/UV images from SDO/AIA, and line-of-sight magnetograms and white-light intensity-grams from SDO/HMI. We initially identified 13 prominent jets in the XRT data, and examined corresponding AIA and HMI data. For at least several of the jets, our findings are consistent with the jets resulting from minifilament eruptions, and originating from sights of magnetic-field cancelation. Thus our findings support that, at least in many cases, AR coronal jets result from the same physical processes that produce coronal jets in quiet-Sun and coronal-hole regions. FM was supportedby the Research Experience for Undergraduates (REU) program at NASA/MSFC and the University of Alabama, Huntsville. Additional support was from the NASA HGI program and the Hinode project. Title: Plumes in Solar Coronal Holes: Magnetic Flux Content and Luminosity Authors: Paiste, J. H.; Tiwari, S. K.; Moore, R. L.; Winebarger, A. R. Bibcode: 2016AGUFMSH31B2573P Altcode: On-disc coronal hole plumes, formation and disappearance of which might have implications on heating of coronal loops, have drawn attention from several researchers recently. Raouafi et al. (2014) proposed that plumes form when magnetic reconnection at their footpoints occurs. Other observations, e.g. Wang et al. (2016), have shown that plumes form when magnetic flux at their feet in the photosphere converges and they disappear when the magnetic flux at their feet diverges. In this work, we take a quantitative look at this hypothesis, and find that the luminosity of plumes in 171 Å Fe IX/X emission broadly peaks in step with the plume-base flux content of unipolar magnetic field stronger than 200 Gauss. Flux convergence/divergence seems to help flux grow/decay at the plume base leading to brighter/dimmer intensity in AIA 171 channel. Title: Magnetic Flux Cancelation as the Trigger of Solar Quiet-region Coronal Jets Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.; Chakrapani, Prithi Bibcode: 2016ApJ...832L...7P Altcode: 2016arXiv161008540P We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions. Title: Babcock Redux: An Amendment of Babcock's Schematic of the Sun's Magnetic Cycle Authors: Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C. Bibcode: 2016usc..confE...5M Altcode: 2016arXiv160605371M We amend Babcock's original scenario for the global dynamo process that sustains the Sun's 22-year magnetic cycle. The amended scenario fits post-Babcock observed features of the magnetic activity cycle and convection zone, and is based on ideas of Spruit & Roberts (1983) about magnetic flux tubes in the convection zone. A sequence of four schematic cartoons lays out the proposed evolution of the global configuration of the magnetic field above, in, and at the bottom of the convection zone through sunspot Cycle 23 and into Cycle 24. Three key elements of the amended scenario are: (1) as the net following-polarity magnetic field from the sunspot-region -loop fields of an ongoing sunspot cycle is swept poleward to cancel and replace the opposite-polarity polar-cap field from the previous sunspot cycle, it remains connected to the ongoing sunspot cycle's toroidal source-field band at the bottom of the convection zone; (2) topological pumping by the convection zone's free convection keeps the horizontal extent of the poleward-migrating following-polarity field pushed to the bottom, forcing it to gradually cancel and replace old horizontal field below it that connects the ongoing-cycle source-field band to the previous-cycle polar-cap field; (3) in each polar hemisphere, by continually shearing the poloidal component of the settling new horizontal field, the latitudinal differential rotation low in the convection zone generates the next-cycle source-field band poleward of the ongoing-cycle band. The amended scenario is a more-plausible version of Babcock's scenario, and its viability can be explored by appropriate kinematic flux-transport solar-dynamo simulations. A paper of the above title and authors, giving a full description of the solar dynamo scenario of this abstract, is available at http://arxiv.org/abs/1606.05371. This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program and the Hinode Project. Title: A Microfilament-eruption Mechanism for Solar Spicules Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2016ApJ...828L...9S Altcode: 2016arXiv161200430S Recent investigations indicate that solar coronal jets result from eruptions of small-scale chromospheric filaments, called minifilaments; that is, the jets are produced by scaled-down versions of typical-sized filament eruptions. We consider whether solar spicules might in turn be scaled-down versions of coronal jets, being driven by eruptions of microfilaments. Assuming a microfilament's size is about a spicule's width (∼300 km), the estimated occurrence number plotted against the estimated size of erupting filaments, minifilaments, and microfilaments approximately follows a power-law distribution (based on counts of coronal mass ejections, coronal jets, and spicules), suggesting that many or most spicules could result from microfilament eruptions. Observed spicule-base Ca II brightenings plausibly result from such microfilament eruptions. By analogy with coronal jets, microfilament eruptions might produce spicules with many of their observed characteristics, including smooth rise profiles, twisting motions, and EUV counterparts. The postulated microfilament eruptions are presumably eruptions of twisted-core micro-magnetic bipoles that are ∼1.″0 wide. These explosive bipoles might be built and destabilized by merging and cancelation of approximately a few to 100 G magnetic-flux elements of size ≲ 0\buildrel{\prime\prime}\over{.} 5{--}1\buildrel{\prime\prime}\over{.} 0. If, however, spicules are relatively more numerous than indicated by our extrapolated distribution, then only a fraction of spicules might result from this proposed mechanism. Title: 2016 SH1 Authors: Bacci, P.; Tesi, L.; Fagioli, G.; Jaeger, M.; Prosperi, E.; Vollmann, W.; Foglia, S.; Galli, G.; Buzzi, L.; Tichy, M.; Ticha, J.; Sarneczky, K.; Sicoli, P.; Testa, A.; Pettarin, E.; Piani, F.; Matheny, R. G.; Christensen, E. J.; Fuls, D. C.; Gibbs, A. R.; Grauer, A. D.; Johnson, J. A.; Kowalski, R. A.; Larson, S. M.; Leonard, G. J.; Seaman, R. L.; Shelly, F. C.; Durig, D. T.; Schwartz, M.; Holvorcem, P. R.; McCarthy Obs, J. J.; Polansky, M.; Moore, R.; Yapoujian, B.; Spencer, A.; Dupouy, P.; de Vanssay, J. B.; Dangl, G.; Mantero, A.; Birtwhistle, P.; Hudin, L.; Rankin, D.; Mickleburgh, A. Bibcode: 2016MPEC....S...51B Altcode: No abstract at ADS Title: Suppression of heating of coronal loops rooted in opposite polarity sunspot umbrae Authors: Tiwari, Sanjiv K.; Thalmann, Julia; Moore, Ronald; Panesar, Navdeep; Winebarger, Amy Bibcode: 2016shin.confE..61T Altcode: EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 Å images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 Å images show dim regions in the umbrae of the sunspots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. The NLFFF model, validated by comparison of calculated model field lines with observed loops in AIA 193 and 94 Å, specifies the photospheric roots of the model field lines. Some model coronal magnetic field lines arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed. Title: Homologous Jet-driven Coronal Mass Ejections from Solar Active Region 12192 Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2016ApJ...822L..23P Altcode: 2016arXiv160405770P We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edge resulted in CMEs. Each jet-driven CME (∼200-300 km s-1) was slower-moving than most CMEs, with angular widths (20°-50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection. Title: A Series of Streamer-Puff CMEs Driven by Solar Homologous Jets from Active Region 12192 Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2016SPD....47.0622P Altcode: We investigate characteristics of solar coronal jets that originated from active region NOAA 12192 and produced coronal mass ejections (CMEs). This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multitude of jets occurred from the southeast edge of the active region, and in contrast to the major-flare eruptions in the core, six of these jets resulted in CMEs. Our jet observations are from multiple SDO/AIA EUV channels, including 304, 171 and 193Å, and CME observations are taken from SOHO/LASCO C2 coronograph. Each jet-driven CME was relatively slow-moving (~200 - 300 km s-1) compared to most CMEs; had angular width (20° - 50°) comparable to that of the streamer base; and was of the “streamer-puff” variety, whereby a preexisting streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. We expect that the jets result from eruptions of minifilaments (Sterling et al. 2015). We further propose that the CMEs are driven by magnetic twist injected into streamer-base coronal loops when erupting-twisted-minifilament field reconnects with the ambient field at the foot of those loops. This research was supported by funding from NASA's LWS program. Title: Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole Authors: Adams, Mitzi; Tennant, Allyn F.; Alexander, Caroline E.; Sterling, Alphonse C.; Moore, Ronald L.; Woolley, Robert Bibcode: 2016SPD....4740701A Altcode: We report on an eruption seen in a very small coronal hole (about 120'' across), beginning at approximately 19:00 UT on March 3, 2016. The event was initially observed by an amateur astronomer (RW) in an H-alpha movie from the Global Oscillation Network Group (GONG); the eruption attracted the attention of the observer because there was no nearby active region. To examine the region in detail, we use data from the Solar Dynamics Observatory (SDO), provided by the Atmospheric Imaging Assembly (AIA) in wavelengths 193 Å, 304 Å, and 94 Å, and the Helioseismic and Magnetic Imager (HMI). Data analysis and calibration activities such as scaling, rotation so that north is up, and removal of solar rotation are accomplished with SunPy. The eruption in low-cadence HMI data begins with the appearance of a bipole in the location of the coronal hole, followed by (apparent) expansion outwards when the intensity of the AIA wavelengths brighten; as the event proceeds, the coronal hole disappears. From high-cadence data, we will present results on the magnetic evolution of this structure, how it is related to intensity brightenings seen in the various SDO/AIA wavelengths, and how this event compares with the standard-anemone picture. Title: Minifilament Eruptions that Drive Coronal Jets in a Solar Active Region Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat Bibcode: 2016SPD....47.0334S Altcode: Solar coronal jets are common in both coronal holes and in active regions. Recently, Sterling et al. (2015), using data from Hinode/XRT and SDO/AIA, found that coronal jets originating in polar coronal holes result from the eruption of small-scale filaments (minifilaments). The jet bright point (JBP) seen in X-rays and hotter EUV channels off to one side of the base of the jet's spire develops at the location where the minifilament erupts, consistent with the JBPs being miniature versions of typical solar flares that occur in the wake of large-scale filament eruptions. Here we consider whether active region coronal jets also result from the same minifilament-eruption mechanism, or whether they instead result from a different mechanism, such as the hitherto popular ``emerging flux'' model for jets. We present observations of an on-disk active region that produced numerous jets on 2012 June 30, using data from SDO/AIA and HMI, and from GOES/SXI. We find that several of these active region jets also originate with eruptions of miniature filaments (size scale ~20'') emanating from small-scale magnetic neutral lines of the region. This demonstrates that active region coronal jets are indeed frequently driven by minifilament eruptions. Other jets from the active region were also consistent with their drivers being minifilament eruptions, but we could not confirm this because the onsets of those jets were hidden from our view. This work was supported by funding from NASA/LWS, NASA/HGI, and Hinode. Title: Hi-C Observations of Sunspot Penumbral Bright Dots Authors: Alpert, Shane E.; Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.; Savage, Sabrina L. Bibcode: 2016ApJ...822...35A Altcode: 2016arXiv160304968A We report observations of bright dots (BDs) in a sunspot penumbra using High Resolution Coronal Imager (Hi-C) data in 193 Å and examine their sizes, lifetimes, speeds, and intensities. The sizes of the BDs are on the order of 1″ and are therefore hard to identify in the Atmospheric Imaging Assembly (AIA) 193 Å images, which have a 1.″2 spatial resolution, but become readily apparent with Hi-C's spatial resolution, which is five times better. We supplement Hi-C data with data from AIA's 193 Å passband to see the complete lifetime of the BDs that appeared before and/or lasted longer than Hi-C's three-minute observation period. Most Hi-C BDs show clear lateral movement along penumbral striations, either toward or away from the sunspot umbra. Single BDs often interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to have smaller displacements. These BDs are about as numerous but move slower on average than Interface Region Imaging Spectrograph (IRIS) BDs, which was recently reported by Tian et al., and the sizes and lifetimes are on the higher end of the distribution of IRIS BDs. Using additional AIA passbands, we compare the light curves of the BDs to test whether the Hi-C BDs have transition region (TR) temperatures like those of the IRIS BDs. The light curves of most Hi-C BDs peak together in different AIA channels, indicating that their temperatures are likely in the range of the cooler TR (1-4 × 105 K). Title: Suppression of heating of coronal loops rooted in opposite polarity sunspot umbrae Authors: Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep; Winebarger, Amy R. Bibcode: 2016SPD....47.0336T Altcode: EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the HMI onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral areas of the opposite polarity sunspots. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.We hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbra. Many transient, outstandingly bright, loops in the AIA 94 movie of the AR do have this expected rooting pattern. We will also present another example of AR in which we find a similar rooting pattern of coronal loops. Title: Minifilament Eruptions that Drive Coronal Jets in a Solar Active Region Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Panesar, Navdeep K.; Akiyama, Sachiko; Yashiro, Seiji; Gopalswamy, Nat Bibcode: 2016ApJ...821..100S Altcode: We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), SDO/Helioseismic and Magnetic Imager (HMI), and STEREO-B. One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges, sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions. Title: Transition-region/Coronal Signatures and Magnetic Setting of Sunspot Penumbral Jets: Hinode (SOT/FG), Hi-C, and SDO/AIA Observations Authors: Tiwari, Sanjiv K.; Moore, Ronald L.; Winebarger, Amy R.; Alpert, Shane E. Bibcode: 2016ApJ...816...92T Altcode: 2015arXiv151107900T Penumbral microjets (PJs) are transient narrow bright features in the chromosphere of sunspot penumbrae, first characterized by Katsukawa et al. using the Ca II H-line filter on Hinode's Solar Optical Telescope (SOT). It was proposed that the PJs form as a result of reconnection between two magnetic components of penumbrae (spines and interspines), and that they could contribute to the transition region (TR) and coronal heating above sunspot penumbrae. We propose a modified picture of formation of PJs based on recent results on the internal structure of sunspot penumbral filaments. Using data of a sunspot from Hinode/SOT, High Resolution Coronal Imager, and different passbands of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we examine whether PJs have signatures in the TR and corona. We find hardly any discernible signature of normal PJs in any AIA passbands, except for a few of them showing up in the 1600 Å images. However, we discovered exceptionally stronger jets with similar lifetimes but bigger sizes (up to 600 km wide) occurring repeatedly in a few locations in the penumbra, where evidence of patches of opposite-polarity fields in the tails of some penumbral filaments is seen in Stokes-V images. These tail PJs do display signatures in the TR. Whether they have any coronal-temperature plasma is unclear. We infer that none of the PJs, including the tail PJs, directly heat the corona in active regions significantly, but any penumbral jet might drive some coronal heating indirectly via the generation of Alfvén waves and/or braiding of the coronal field. Title: Probing Solar Eruption by Tracking Magnetic Cavities and Filaments Authors: Sterling, A. C.; Johnson, J. R.; Moore, R. L.; Gibson, S. E. Bibcode: 2015AGUFMSH53B2489S Altcode: A solar eruption is a tremendous explosion on the Sun that happens when energy stored in twisted (or distorted) magnetic fields is suddenly released. When this field is viewed along the axis of the twist in projection at the limb, e.g. in EUV or white-light coronal images, the outer portions of the pre-eruption magnetic structure sometimes appears as a region of weaker emission, called a "coronal cavity," surrounded by a brighter envelope. Often a chromospheric filament resides near the base of the cavity and parallel to the cavity's central axis. Typically, both the cavity and filament move outward from the Sun at the start of an eruption of the magnetic field in which the cavity and filament reside. Studying properties the cavities and filaments just prior to and during eruption can help constrain models that attempt to explain why and how the eruptions occur. In this study, we examined six different at-limb solar eruptions using images from the Extreme Ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). For four of these eruptions we observed both cavities and filaments, while for the remaining two eruptions, one had only a cavity and the other only a filament visible in EIT images. All six eruptions were in comparatively-quiet solar regions, with one in the neighborhood of the polar crown. We measured the height and velocities of the cavities and filaments just prior to and during the start of their fast-eruption onsets. Our results support that the filament and cavity are integral parts of a single large-scale erupting magnetic-field system. We examined whether the eruption-onset heights were correlated with the expected magnetic field strengths of the eruption-source regions, but no clear correlation was found. We discuss possible reasons for this lack of correlation, and we also discuss future research directions. The research performed was supported by the National Science Foundation under Grant No. AGS-1460767; J.J. participated in the Research Experience for Undergraduates (REU) program, at NASA/MSFC. Additional support was from a grant from the NASA LWS program. Title: Evolution of Fine-scale Penumbral Magnetic Structure and Formation of Penumbral Jets Authors: Tiwari, S. K.; Moore, R. L.; Rempel, M.; Winebarger, A. R. Bibcode: 2015AGUFMSH13D2461T Altcode: Sunspot penumbra consists of spines (more vertical field) and penumbral filaments (interspines). Spines are outward extension of umbra. Penumbral filaments are recently found, both in observations and magnetohydrodynamic (MHD) simulations, to be magnetized stretched granule-like convective cells, with strong upflows near the head that continues along the central axis with weakening strength of the flow. Strong downflows are found at the tails of filaments and weak downflows along the sides of it. These lateral downflows often contain opposite polarity magnetic field to that of spines; most strongly near the heads of filaments. In spite of this advancement in understanding of small-scale structure of sunspot penumbra, how the filaments and spines evolve and interact remains uncertain.

Penumbral jets, bright, transient features, seen in the chromosphere, are one of several dynamic events in sunspot penumbra. It has been proposed that these penumbral microjets result from component (acute angle) reconnection of the magnetic field in spines with that in interspines and could contribute to transition-region and coronal heating above sunspots. In a recent investigation, it was proposed that the jets form as a result of reconnection between the opposite polarity field at edges of filaments with spine field, and it was found that these jets do not significantly directly heat the corona above sunspots. We discuss how the proposed formation of penumbral jets is integral to the formation mechanism of penumbral filaments and spines, and may explain why penumbral jets are few and far between. We also point out that the generation of the penumbral jets could indirectly drive coronal heating via generation of MHD waves or braiding of the magnetic field. Title: Revised View of Solar X-Ray Jets Authors: Sterling, A. C.; Moore, R. L.; Falconer, D. A.; Adams, M. Bibcode: 2015AGUFMSH23D..04S Altcode: We investigate the onset of ~20 random X-ray jets observed by Hinode/XRT. Each jetwas near the limb in a polar coronal hole, and showed a ''bright point'' in anedge of the base of the jet, as is typical for previously-observed X-ray jets. Weexamined SDO/AIA EUV images of each of the jets over multiple AIA channels,including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang,which detect cooler-coronal emissions. We find the jets to result from eruptionsof miniature (size <~10 arcsec) filaments from the bases of the jets. In manycases, much of the erupting-filament material forms a chromospheric-temperaturejet. In the cool-coronal channels, often the filament appears in absorption andthe hotter EUV component of the jet appears in emission. The jet bright point formsat the location from which the miniature filament erupts, analogous to theformation of a standard solar flare arcade via flare (``internal'') reconnection in the wake of the eruption of a typical larger-scale chromospheric filament. Thespire of the jet forms on open field lines that presumably have undergoneinterchange (''external'') reconnection with the erupting field that envelops andcarries the miniature filament. This is consistent with what we found for theonset of an on-disk coronal jet we examined in Adams et al. (2014), and theobservations of other workers. It is however not consistent with the basicversion of the ''emerging-flux model'' for X-ray jets. This work was supported byfunding from NASA/LWS, Hinode, and ISSI. Title: Exploring the properties of Solar Prominence Tornados Authors: Ahmad, E.; Panesar, N. K.; Sterling, A. C.; Moore, R. L. Bibcode: 2015AGUFMSH53B2485A Altcode: Solar prominences consist of relatively cool and dense plasma embedded in the hotter solar corona above the solar limb. They form along magnetic polarity inversion lines, and are magnetically supported against gravity at heights of up to ~100 Mm above the chromosphere. Often, parts of prominences visually resemble Earth-based tornados, with inverted-cone-shaped structures and internal motions suggestive of rotation. These "prominence tornados" clearly possess complex magnetic structure, but it is still not certain whether they actually rotate around a ''rotation'' axis, or instead just appear to do so because of composite internal material motions such as counter-streaming flows or lateral (i.e. transverse to the field) oscillations. Here we study the structure and dynamics of five randomly selected prominences, using extreme ultraviolet (EUV) 171 Å images obtained with high spatial and temporal resolution by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft. All of the prominences resided in non-active-region locations, and displayed what appeared to be tornado-like rotational motions. Our set includes examples oriented both broadside and end-on to our line-of-sight. We created time-distance plots of horizontal slices at several different heights of each prominence, to study the horizontal plasma motions. We observed patterns of oscillations at various heights in each prominence, and we measured parameters of these oscillations. We find the oscillation time periods to range over ~50 - 90 min, with average amplitudes of ~6,000 km, and with average velocities of ~7 kms-1. We found similar values for prominences viewed either broadside or end-on; this observed isotropy of the lateral oscillatory motion suggests that the apparent oscillations result from actual rotational plasma motions and/or lateral oscillations of the magnetic field, rather than to counter-streaming flows. This research was supported by the National Science Foundation under Grant No. AGS-1460767; EA participated in the Research Experience for Undergraduates (REU) program, at NASA/MSFC. Additional support was from a grant from the NASA LWS program. Title: Magnetic Structure and Formation of On-disk Coronal Plumes Authors: Antonsson, S.; Tiwari, S. K.; Moore, R. L.; Winebarger, A. R. Bibcode: 2015AGUFMSH53B2486A Altcode: "Plumes" are feather-like features found on the solar disk, in the plage-like field concentrations of quiet regions. On-disk plumes are analogous to polar/coronal-hole plumes but have not been studied in detail in the past. We research their formation and characteristics, such as lifetime, intensity and magnetic setting at the feet. Atmospheric Imaging Assembly (AIA) images in the 171 Å filter and Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms, both from the Solar Dynamics Observatory (SDO), are analyzed with the IDL SolarSoftWare package and used to study the plumes. We find that on-disk plumes form at the places of converging magnetic fields, and disappear when those fields disperse. However, plumes disappear after nearby events, such as flares, or with the emergence of opposite polarity. The lifetime of each plume tends to be several days, although some appear and disappear within several hours. On-disk plumes outline magnetic fields close to the sun, allowing a better understanding of fine magnetic structures than before. Additionally, since plumes must be heated to around 600,000 K to be visible in 171 Å, their formation and characteristics could tell about how they, and therefore the corona, are heated. Title: A Series of Streamer-Puff CMEs Driven by Solar Homologous Jets Authors: Panesar, N. K.; Sterling, A. C.; Moore, R. L. Bibcode: 2015AGUFMSH54B..07P Altcode: Solar coronal jets are magnetically channeled narrow eruptions often observed in the solar atmosphere, typically in EUV and X-ray emission, and occurring in various solar environments including active regions and coronal holes. Their driving mechanism is still under discussion, but facts that we know about jets include: (a) they are ejected from or near sites of compact magnetic explosions (compact ejective solar flares), (b) they sometimes carry chromospheric material high into the corona along with coronal-temperature plasma, (c) the cool-material jet velocities can reach 100 km s-1 or more, and (d) some active-region jets produce coronal mass ejections (CMEs). Here we investigate characteristics of EUV jets that originated from active region NOAA 12192 and produced CMEs. This active region produced many non-jet major flare eruptions (X and M class) that made no CME. A multitude of jets also occurred in the region, and in contrast to the major-flare eruptions, seven of these jets resulted in CMEs. Our jet observations are from multiple SDO/AIA EUV channels, including 304, 171, 193 and 94 Å, and our CME observations are from SOHO/LASCO C2 images. Each jet-driven CME was relatively slow-moving; had angular width (30° - 70°) comparable to that of the streamer base; and was of the "streamer-puff" variety, whereby a preexisting streamer was transiently inflated but not removed (blown out) by the passage of the CME. Much of the chromospheric-temperature plasma of the jets producing the CMEs escaped from the Sun, whereas relatively more of the chromospheric plasma in the non-CME-producing jets fell back to the solar surface. We also found that the CME-producing jets tended to be faster in speed and longer in duration than the non-CME-producing jets. This research was supported by funding from NASA's LWS program. Title: Visibility of Hinode/XRT X-Ray Jets at AIA/EUV Wavelengths, a Temperature Indicator Authors: Sterling, A. C.; Bakucz Canario, D.; Moore, R. L.; Falconer, D. A. Bibcode: 2015AGUFMSH31B2415S Altcode: X-ray jets have been observed for years using data from the X-Ray Telescope (XRT) on the Hinode Satellite. Recently with the launch of the Solar Dynamics Observatory (SDO) it has been possible to observe solar jets over a range of EUV of wavelengths using the Atmospheric Imaging Assembly (AIA). In this study, we investigated the appearance of X-ray jets in AIA images at wavelengths of 304, 171, 193, 211, 131, 94, and 335 Å. We selected 20 random X-ray jets from XRT movies of the polar coronal holes and then examined AIA EUV images from the same locations and times to determine the visibility of the jets at the different EUV wavelengths. We found that the jets were almost always visible in the 193 and 211 Å channel images. In the "hottest" EUV channels (94 Å, 335 Å), usually the spire of the jet was not visible, although sometimes a base brightening could be discerned. At other wavelengths (171, 131, and 335), the results were mixed. Based on the response characteristics of AIA (Lemen et al, 2011) to the temperature of the observed radiating solar plasma, our finding that most jets are visible in the 193 and 211 Å channels is consistent with other recent studies that measured jet temperatures of 1.5~2.0 MK (Pucci et al, 2012 & Paraschiv et al, 2015). This work was supported by the NASA LWS and HGI programs. Title: Destabilization of a Solar Prominence/Filament Field System by a Series of Eight Homologous Eruptive Flares Leading to a CME Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Innes, Davina E.; Moore, Ronald L. Bibcode: 2015ApJ...811....5P Altcode: 2015arXiv150801952P Homologous flares are flares that occur repetitively in the same active region, with similar structure and morphology. A series of at least eight homologous flares occurred in active region NOAA 11237 over 2011 June 16-17. A nearby prominence/filament was rooted in the active region, and situated near the bottom of a coronal cavity. The active region was on the southeast solar limb as seen from the Solar Dynamics Observatory/Atmospheric Imaging Assembly, and on the disk as viewed from the Solar TErrestrial RElations Observatory/EUVI-B. The dual perspective allows us to study in detail behavior of the prominence/filament material entrained in the magnetic field of the repeatedly erupting system. Each of the eruptions were mainly confined, but expelled hot material into the prominence/filament cavity system (PFCS). The field carrying and containing the ejected hot material interacted with the PFCS and caused it to inflate, resulting in a step-wise rise of the PFCS approximately in step with the homologous eruptions. The eighth eruption triggered the PFCS to move outward slowly, accompanied by a weak coronal dimming. As this slow PFCS eruption was underway, a final “ejective” flare occurred in the core of the active region, resulting in strong dimming in the EUVI-B images and expulsion of a coronal mass ejection (CME). A plausible scenario is that the repeated homologous flares could have gradually destabilized the PFCS, and its subsequent eruption removed field above the acitive region and in turn led to the ejective flare, strong dimming, and CME. Title: Search for Dark Matter in Events with Missing Transverse Momentum and a Higgs Boson Decaying to Two Photons in p p Collisions at √{s }=8 TeV with the ATLAS Detector Authors: Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K. -J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F. -W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C. -L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, L.; Yao, W. -M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration Bibcode: 2015PhRvL.115m1801A Altcode: 2015arXiv150601081A Results of a search for new phenomena in events with large missing transverse momentum and a Higgs boson decaying to two photons are reported. Data from proton-proton collisions at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb-1 have been collected with the ATLAS detector at the LHC. The observed data are well described by the expected standard model backgrounds. Upper limits on the cross section of events with large missing transverse momentum and a Higgs boson candidate are also placed. Exclusion limits are presented for models of physics beyond the standard model featuring dark-matter candidates. Title: Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Adams, Mitzi Bibcode: 2015Natur.523..437S Altcode: 2017arXiv170503373S Solar X-ray jets are thought to be made by a burst of reconnection of closed magnetic field at the base of a jet with ambient open field. In the accepted version of the `emerging-flux' model, such a reconnection occurs at a plasma current sheet between the open field and the emerging closed field, and also forms a localized X-ray brightening that is usually observed at the edge of the jet's base. Here we report high-resolution X-ray and extreme-ultraviolet observations of 20 randomly selected X-ray jets that form in coronal holes at the Sun's poles. In each jet, contrary to the emerging-flux model, a miniature version of the filament eruptions that initiate coronal mass ejections drives the jet-producing reconnection. The X-ray bright point occurs by reconnection of the `legs' of the minifilament-carrying erupting closed field, analogous to the formation of solar flares in larger-scale eruptions. Previous observations have found that some jets are driven by base-field eruptions, but only one such study, of only one jet, provisionally questioned the emerging-flux model. Our observations support the view that solar filament eruptions are formed by a fundamental explosive magnetic process that occurs on a vast range of scales, from the biggest mass ejections and flare eruptions down to X-ray jets, and perhaps even down to smaller jets that may power coronal heating. A similar scenario has previously been suggested, but was inferred from different observations and based on a different origin of the erupting minifilament. Title: Near-Sun speed of CMEs and the magnetic nonpotentiality of their source active regions Authors: Tiwari, Sanjiv K.; Falconer, David A.; Moore, Ronald L.; Venkatakrishnan, P.; Winebarger, Amy R.; Khazanov, Igor G. Bibcode: 2015GeoRL..42.5702T Altcode: 2015arXiv150801532T We show that the speed of the fastest coronal mass ejections (CMEs) that an active region (AR) can produce can be predicted from a vector magnetogram of the AR. This is shown by logarithmic plots of CME speed (from the SOHO Large Angle and Spectrometric Coronagraph CME catalog) versus each of ten AR-integrated magnetic parameters (AR magnetic flux, three different AR magnetic-twist parameters, and six AR free-magnetic-energy proxies) measured from the vertical and horizontal field components of vector magnetograms (from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager) of the source ARs of 189 CMEs. These plots show the following: (1) the speed of the fastest CMEs that an AR can produce increases with each of these whole-AR magnetic parameters and (2) that one of the AR magnetic-twist parameters and the corresponding free-magnetic-energy proxy each determine the CME-speed upper limit line somewhat better than any of the other eight whole-AR magnetic parameters. Title: Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes Authors: Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A. Bibcode: 2015ApJ...806...11M Altcode: 2015arXiv150403700M We study 14 large solar jets observed in polar coronal holes. In EUV movies from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA), each jet appears similar to most X-ray jets and EUV jets that erupt in coronal holes; but each is exceptional in that it goes higher than most, so high that it is observed in the outer corona beyond 2.2 R Sun in images from the Solar and Heliospheric Observatory/Large Angle Spectroscopic Coronagraph (LASCO)/C2 coronagraph. From AIA He ii 304 Å movies and LASCO/C2 running-difference images of these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R Sun at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most of the jets display measureable swaying and bending of a few degrees in amplitude; in three jets the swaying is discernibly oscillatory with a period of order 1 hr. These characteristics suggest that the driver in these jets is a magnetic-untwisting wave that is basically a large-amplitude (i.e., nonlinear) torsional Alfvén wave that is put into the reconnected open field in the jet by interchange reconnection as the jet erupts. From the measured spinning and swaying, we estimate that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R Sun. We point out that the torsional waves observed in Type-II spicules might dissipate in the corona in the same way as the magnetic-untwisting waves in our big jets, and thereby power much of the coronal heating in coronal holes. Title: Small-Scale Filament Eruptions Leading to Solar X-Ray Jets Authors: Sterling, Alphonse; Moore, Ronald; Falconer, David Bibcode: 2015TESS....140701S Altcode: We investigate the onset of ~10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Å, which detects chromospheric emissions, and 171, 193, and 211 Å, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size <~10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the hotter EUV component of the jet appears in emission. The jet bright point forms at the location from which the miniature filament erupts, analogous to the formation of a standard solar flare arcade in the wake of the eruption of a typical larger-scalechromospheric filament. The spire of the jet forms on open field lines that presumably have undergone interchange reconnection with the erupting field that envelops and carries the miniature filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions via ``internal'' and ``external'' reconnection of the erupting field. This is consistent with what we found for the onset of an on-disk coronal jet we examined in Adams et al. (2014). This work was supported by funding from NASA/LWS, Hinode, and ISSI. Title: A Prominence/filament eruption triggered by eight homologous flares Authors: Panesar, Navdeep K.; Sterling, Alphonse; Innes, Davina; Moore, Ronald Bibcode: 2015TESS....140805P Altcode: Eight homologous flares occurred in active region NOAA 11237 over 16 - 17 June 2011. A prominence system with a surrounding coronal cavity was adjacent to, but still magnetically connected to the active region. The eight eruptions expelled hot material from the active region into the prominence/filament cavity system (PFCS) where the ejecta became confined. We mainly aim to diagnose the 3D dynamics of the PFCS during the series of eight homologous eruptions by using data from two instruments: SDO/AIA and STEREO/EUVI-B, covering the Sun from two directions. The field containing the ejected hot material interacts with the PFCS and causes it to inflate, resulting in a discontinuous rise of the prominence/filament approximately in steps with the homologous eruptions. The eighth eruption triggers the PFCS to move outward slowly, accompanied by a weak coronal dimming. Subsequently the prominence/filament material drains to the solar surface. This PFCS eruption evidently slowly opens field overlying the active region, which results in a final ‘ejective’ eruption from the core of the active region. A strong dimming appears adjacent to the final eruption’s flare loops in the EUVI-B images, followed by a CME. We propose that the eight homologous flares gradually disrupted the PFCS and removed the overlying field above the active region, leading to the CME via the ‘lid removal’ mechanism. Title: More Macrospicule Jets in On-Disk Coronal Holes Authors: Adams, Mitzi; Sterling, Alphonse; Moore, Ronald Bibcode: 2015TESS....120301A Altcode: We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or at disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 Å, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, ~13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted "standard" picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety. Title: Evidence of suppressed heating of coronal loops rooted in opposite polarity sunspot umbrae Authors: Tiwari, Sanjiv K.; Thalmann, Julia K.; Winebarger, Amy R.; Panesar, Navdeep K.; Moore, Ronald Bibcode: 2015TESS....120404T Altcode: Observations of active region (AR) coronae in different EUV wavelengths reveal the presence of various loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect opposite-polarity plage or a sunspot to a opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the Heliosesmic Magnetic Imager (HMI) onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94 A, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral area of the positive-polarity sunspot to the dim umbral area of a negative-polarity sunspot. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.From this result, we further hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbrae. Many transient, outstandingly bright, loops in the AIA 94 A movie of the AR do have this expected rooting pattern. Title: Center-to-Limb Variation of Deprojection Errors in SDO/HMI Vector Magnetograms Authors: Falconer, David; Moore, Ronald; Barghouty, Nasser; Tiwari, Sanjiv K.; Khazanov, Igor Bibcode: 2015TESS....140204F Altcode: For use in investigating the magnetic causes of coronal heating in active regions and for use in forecasting an active region’s productivity of major CME/flare eruptions, we have evaluated various sunspot-active-region magnetic measures (e.g., total magnetic flux, free-magnetic-energy proxies, magnetic twist measures) from HMI Active Region Patches (HARPs) after the HARP has been deprojected to disk center. From a few tens of thousand HARP vector magnetograms (of a few hundred sunspot active regions) that have been deprojected to disk center, we have determined that the errors in the whole-HARP magnetic measures from deprojection are negligibly small for HARPS deprojected from distances out to 45 heliocentric degrees. For some purposes the errors from deprojection are tolerable out to 60 degrees. We obtained this result by the following process. For each whole-HARP magnetic measure: 1) for each HARP disk passage, normalize the measured values by the measured value for that HARP at central meridian; 2) then for each 0.05 Rs annulus, average the values from all the HARPs in the annulus. This results in an average normalized value as a function of radius for each measure. Assuming no deprojection errors and that, among a large set of HARPs, the measure is as likely to decrease as to increase with HARP distance from disk center, the average of each annulus is expected to be unity, and, for a statistically large sample, the amount of deviation of the average from unity estimates the error from deprojection effects. The deprojection errors arise from 1) errors in the transverse field being deprojected into the vertical field for HARPs observed at large distances from disk center, 2) increasingly larger foreshortening at larger distances from disk center, and 3) possible errors in transverse-field-direction ambiguity resolution.From the compiled set of measured vales of whole-HARP magnetic nonpotentiality parameters measured from deprojected HARPs, we have examined the relation between each nonpotentiality parameter and the speed of CMEs from the measured active regions. For several different nonpotentiality parameters we find there is an upper limit to the CME speed, the limit increasing as the value of the parameter increases. Title: Reconnection and Spire Drift in Coronal Jets Authors: Moore, Ronald; Sterling, Alphonse; Falconer, David Bibcode: 2015TESS....140702M Altcode: It is observed that there are two morphologically-different kinds of X-ray/EUV jets in coronal holes: standard jets and blowout jets. In both kinds: (1) in the base of the jet there is closed magnetic field that has one foot in flux of polarity opposite that of the ambient open field of the coronal hole, and (2) in coronal X-ray/EUV images of the jet there is typically a bright nodule at the edge of the base. In the conventional scenario for jets of either kind, the bright nodule is a compact flare arcade, the downward product of interchange reconnection of closed field in the base with impacted ambient open field, and the upper product of this reconnection is the jet-outflow spire. It is also observed that in most jets of either kind the spire drifts sideways away from the bright nodule. We present the observed bright nodule and spire drift in an example standard jet and in two example blowout jets. With cartoons of the magnetic field and its reconnection in jets, we point out: (1) if the bright nodule is a compact flare arcade made by interchange reconnection, then the spire should drift toward the bright nodule, and (2) if the bright nodule is instead a compact flare arcade made, as in a filament-eruption flare, by internal reconnection of the legs of the erupting sheared-field core of a lobe of the closed field in the base, then the spire, made by the interchange reconnection that is driven on the outside of that lobe by the lobe’s internal convulsion, should drift away from the bright nodule. Therefore, from the observation that the spire usually drifts away from the bright nodule, we infer: (1) in X-ray/EUV jets of either kind in coronal holes the interchange reconnection that generates the jet-outflow spire usually does not make the bright nodule; instead, the bright nodule is made by reconnection inside erupting closed field in the base, as in a filament eruption, the eruption being either a confined eruption for a standard jet or a blowout eruption (as in a CME) for a blowout jet, and (2) in this respect, the conventional reconnection picture for the bright nodule in coronal jets is usually wrong for observed coronal jets of either kind. Title: Exploring Euv Spicules Using 304 Ang He II Data from SDO/AIA Authors: Snyder, I. R.; Sterling, A. C.; Falconer, D. A.; Moore, R. L. Bibcode: 2014AGUFMSH51C4179S Altcode: We present results from an exploratory study of He II 304 ŠEUV spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 sec) and high-resolution (0.6 arcsec pixels) data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, in quiet-Sun or coronal-hole environments. We examined the maximum lengths, maximum rise velocities, and lifetimes of about 30 EUV spicules and the macrospicule. For the bulk of the EUV spicules the ranges of these quantities are respectively ~10,000----40,000 km, 20---100 km/s, and ~100--- ~600 sec. For the macrospicule the corresponding quantities are respectively ~60,000 km, ~130 km/s, and ~1800 sec, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most EUV spicules. The rise profiles of both the spicules and the macrospicules fit well to a second-order ("parabolic'') trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, whereas such brightenings were not apparent for the EUV spicules. Most of the EUV spicules remained visible during their decent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to address whether they are scaled-up versions of EUV spicules, or independent phenomena. A.C.S. and R.L.M. were supported by funding from the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program, and the Hinode Project. I.R.S. was supported by NSF's Research Experience for Undergraduates Program. Title: Speed of CMEs and the magnetic non-potentiality of their source active regions Authors: Tiwari, S. K.; Falconer, D. A.; Moore, R. L.; Venkatakrishnan, P. Bibcode: 2014AGUFMSH21C4134T Altcode: Most fast coronal mass ejections (CMEs) originate from solar active regions (ARs). Non-potentiality of ARs is expected to determine the speed and size of CMEs in the outer corona. Several other unexplored parameters might be important as well. To find out the correlation between the initial speed of CMEs and the non-potentiality of source ARs, we associated over a hundred of CMEs with source ARs via their co-produced flares. The speed of the CMEs are collected from the SOHO LASCO CME catalog. We have used vector magnetograms obtained mainly with HMI/SDO, also with Hinode (SOT/SP) when available within an hour of a CME occurence, to evaluate various magnetic non-potentiality parameters, e.g. magnetic free-energy proxies, computed magnetic free energy, twist, shear angle, signed shear angle etc. We have also included several other parameters e.g. total unsigned flux, net current, magnetic area of ARs, area of sunspots, to investigate their correlation, if any, with the initial speeds of CMEs. Our preliminary results show that the ARs with larger non-potentiality and area mostly produce fast CMEs but they can also produce slower ones. The ARs with lesser non-potentiality and area generally produce only slower CMEs, however, there are a few exceptions. The total unsigned flux correlate with the non-potentiality parameters and area of ARs but some ARs with large unsigned flux are also found to be least non-potential. A more detailed analysis is underway. SKT is supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. RLM is supported by funding from the Living With a Star Targeted Research and Technology Program of the Heliophysics Division of NASA's Science Mission Directorate. Support for MAG4 development comes from NASA's Game Changing Development Program, and Johnson Space Center's Space Radiation Analysis Group (SRAG). Title: Macrospicule Jets in On-Disk Coronal Holes Authors: Adams, M.; Sterling, A. C.; Moore, R. L. Bibcode: 2014AGUFMSH51C4178A Altcode: We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of ten jets in an equatorial coronal hole from 2011 February 27 and multiple jets found in equatorial coronal holes on these dates: 2010-June-4, 2012-March-13, 2013-May 29-2013, and 2014-February-24. We will show in detail the evolution of the jets and will compare the magnetic field arrangement and probable trigger mechanism of these events to those of a specific macrospicule jet observed on 2011 February 27. We recently discovered that this jet is a previously-unrecognized variety of blowout jet (Adams et al 2014, ApJ, 783: 11). In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field but is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. Title: Exploring He II 304 Å Spicules and Macrospicules at the Solar Limb Authors: Sterling, A. C.; Snyder, I. R.; Falconer, D. A.; Moore, R. L. Bibcode: 2014AGUFMSH53D..04S Altcode: We present results from a study of He II 304 Ang spicules and macrospiculesobserved at the limb of the Sun in 304 Ang channel image sequences from theAtmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Thesedata have both high spatial (0.6 arcsec pixels) and temporal (12 s) resolution. All of the observed events occurred in quiet or coronal hole regions near the solarpole. He II 304 Ang spicules and macrospicules are both transient jet-likefeatures, with the macrospicules being wider and having taller maximum heights thanthe spicules. We looked for characteristics of the populations of these twophenomena that might indicate whether they have the same initiation mechanisms. Weexamine the maximum heights, time-averaged rise velocities, and lifetimes of about30 spicules and about five macrospicules. For the spicules, these quantities are,respectively, ~10,000----40,000 km, 20---100 km/s, and a few 100--- ~600 sec. Forthe macrospicules the corresponding properties are >~60,000 km, >~55 km/s, andlifetimes of >~1800 sec. Therefore the macrospicules have velocities comparable tothose of the fastest spicules and live longer than the spicules. The leading-edgetrajectories of both the spicules and the macrospicules match well a second-order(``parabolic'') profile, although the acceleration in the fitted profiles is generally weaker than that of solar gravity. The macrospicules also have obviousbrightenings at their bases at their birth, while such brightenings are notapparent for most of the spicules. Our findings are suggestive of the twophenomena possibly having different initiation mechanisms, but this is not yetconclusive. A.C.S. and R.L.M. were supported by funding from the HeliophysicsDivision of NASA's Science Mission Directorate through the Living With a StarTargeted Research and Technology Program, and the Hinode Project. I.R.S. wassupported by NSF's Research Experience for Undergraduates Program. Title: Hi-C Observations of Penumbral Bright Dots Authors: Alpert, S.; Tiwari, S. K.; Moore, R. L.; Savage, S. L.; Winebarger, A. R. Bibcode: 2014AGUFMSH51C4182A Altcode: We use high-quality data obtained by the High Resolution Coronal Imager (Hi-C) to examine bright dots (BDs) in a sunspot's penumbra. The sizes of these BDs are on the order of 1 arcsecond (1") and are therefore hard to identify using the Atmospheric Imaging Assembly's (AIA) 0.6" pixel-1 resolution. These BDs become readily apparent with Hi-C's 0.1" pixel-1 resolution. Tian et al. (2014) found penumbral BDs in the transition region (TR) by using the Interface Region Imaging Spectrograph (IRIS). However, only a few of their dots could be associated with any enhanced brightness in AIA channels. In this work, we examine the characteristics of the penumbral BDs observed by Hi-C in a sunspot penumbra, including their sizes, lifetimes, speeds, and intensity. We also attempt to relate these BDs to the IRIS BDs. There are fewer Hi-C BDs in the penumbra than seen by IRIS, though different sunspots were studied. We use 193Å Hi-C data from July 11, 2012 which observed from ~18:52:00 UT--18:56:00 UT and supplement it with data from AIA's 193Å passband to see the complete lifetime of the dots that were born before and/or lasted longer than Hi-C's 5-minute observation period. We use additional AIA passbands and compare the light curves of the BDs at different temperatures to test whether the Hi-C BDs are TR BDs. We find that most Hi-C BDs show clear movement, and of those that do, they move in a radial direction, toward or away from the sunspot umbra. Single BDs interact with other BDs, combining to fade away or brighten. The BDs that do not interact with other BDs tend to move less. Our BDs are similar to the exceptional IRIS BDs: they move slower on average and their sizes and lifetimes are on the high end of the distribution of IRIS BDs. We infer that our penumbral BDs are some of the larger BDs observed by IRIS, those that are bright enough in TR emission to be seen in the 193Å band of Hi-C. Title: Trigger Mechanism of Solar Subflares in a Braided Coronal Magnetic Structure Authors: Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.; Moore, Ronald L. Bibcode: 2014ApJ...795L..24T Altcode: 2014arXiv1410.4260T Fine-scale braiding of coronal magnetic loops by continuous footpoint motions may power coronal heating via nanoflares, which are spontaneous fine-scale bursts of internal reconnection. An initial nanoflare may trigger an avalanche of reconnection of the braids, making a microflare or larger subflare. In contrast to this internal triggering of subflares, we observe external triggering of subflares in a braided coronal magnetic field observed by the High-resolution Coronal Imager (Hi-C). We track the development of these subflares using 12 s cadence images acquired by SDO/AIA in 1600, 193, 94 Å, and registered magnetograms of SDO/HMI, over four hours centered on the Hi-C observing time. These data show numerous recurring small-scale brightenings in transition-region emission happening on polarity inversion lines where flux cancellation is occurring. We present in detail an example of an apparent burst of reconnection of two loops in the transition region under the braided coronal field which is appropriate for releasing a short reconnected loop downward and a longer reconnected loop upward. The short loop presumably submerges into the photosphere, participating in observed flux cancellation. A subflare in the overlying braided magnetic field is apparently triggered by the disturbance of the braided field by the reconnection-released upward loop. At least 10 subflares observed in this braided structure appear to be triggered this way. How common this external trigger mechanism for coronal subflares is in other active regions, and how important it is for coronal heating in general, remain to be seen. Title: New Aspects of a Lid-removal Mechanism in the Onset of an Eruption Sequence that Produced a Large Solar Energetic Particle (SEP) Event Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.; Knox, Javon M. Bibcode: 2014ApJ...788L..20S Altcode: We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from the Solar Dynamics Observatory's (SDO) Helioseismic and Magnetic Imager (HMI) and Atmospheric and Imaging Assembly (AIA), and EUV images from STEREO/EUVI. This sequence produced two coronal mass ejections (CMEs) and a strong solar energetic particle event (SEP); here we focus on the magnetic onset of this important space weather episode. Cheng et al. showed that the first eruption's ("Eruption 1") flux rope was apparent only in "hotter" AIA channels, and that it removed overlying field that allowed the second eruption ("Eruption 2") to begin via ideal MHD instability; here we say that Eruption 2 began via a "lid removal" mechanism. We show that during Eruption 1's onset, its flux rope underwent a "tether weakening" (TW) reconnection with field that arched from the eruption-source active region to an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption 2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption 1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption 2's flare loops (GOES thermal temperatures of ~7.5 MK and 9 MK, compared to ~14 MK). The corresponding three sequential GOES flares were, respectively, due to TW reconnection plus earlier phase Eruption 1 tether-cutting reconnection, Eruption 1 later-phase tether-cutting reconnection, and Eruption 2 tether-cutting reconnection. Title: MAG4 versus Alternative Techniques for Forecasting Active-Region Flare Productivity Authors: Falconer, David; Moore, Ronald L.; Barghouty, Abdulnasser F; Khazanov, Igor Bibcode: 2014AAS...22440204F Altcode: MAG4 is a technique of forecasting an active region's rate of production of major flares in the coming few days from a free-magnetic-energy proxy. We present a statistical method of measuring the difference in performance between MAG4 and comparable alternative techniques that forecast an active region’s major-flare productivity from alternative observed aspects of the active region. We demonstrate the method by measuring the difference in performance between the “Present MAG4” technique and each of three alternative techniques, called “McIntosh Active-Region Class,” “Total Magnetic Flux,” and “Next MAG4.” We do this by using (1) the MAG4 database of magnetograms and major-flare histories of sunspot active regions, (2) the NOAA table of the major-flare productivity of each of 60 McIntosh active-region classes of sunspot active regions, and (3) five technique-performance metrics (Heidke Skill Score, True Skill Score, Percent Correct, Probability of Detection, and False Alarm Rate) evaluated from 2000 random two-by-two contingency tables obtained from the databases. We find that (1) Present MAG4 far outperforms both McIntosh Active-Region Class and Total Magnetic Flux, (2) Next MAG4 significantly outperforms Present MAG4, (3) the performance of Next MAG4 is insensitive to the forward and backward temporal windows used, in the range of one to a few days, and (4) forecasting from the free-energy proxy in combination with either any broad category of McIntosh active-region classes or any Mount Wilson active-region class gives no significant performance improvement over forecasting from the free-energy proxy alone (Present MAG4). Funding for this research came from NASA’s Game Changing Development Program, Johnson Space Center’s Space Radiation Analysis Group (SRAG), and AFOSR’s Multi-University Research Initiative. In particular, funding was facilitated by Dr. Dan Fry (NASA-JSC) and David Moore (NASA-LaRC). Title: New Aspects of a Lid-Removal Mechanism in the Onset of a SEP-Producing Eruption Sequence Authors: Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Knox, Javon M Bibcode: 2014AAS...22421202S Altcode: We examine a sequence of two ejective eruptions from a single active region on 2012 January 23, using magnetograms and EUV images from SDO/HMI and SDO/AIA, and EUV images from STEREO. Cheng et al. (2013) showed that the first eruption's (``Eruption 1'') flux rope was apparent only in ``hotter'' AIA channels, and that it removed overlying field that allowed the second eruption (``Eruption 2'') to begin via ideal MHD instability; here we say Eruption 2 began via a ``lid removal'' mechanism. We show that during Eruption-1's onset, its flux rope underwent ``tether weakening'' (TW) reconnection with the field of an adjacent active region. Standard flare loops from Eruption 1 developed over Eruption-2's flux rope and enclosed filament, but these overarching new loops were unable to confine that flux rope/filament. Eruption-1's flare loops, from both TW reconnection and standard-flare-model internal reconnection, were much cooler than Eruption-2's flare loops (GOES thermal temperatures of ~9 MK compared to ~14 MK). This eruption sequence produced a strong solar energetic particle (SEP) event (10 MeV protons, >10^3 pfu for 43 hrs), apparently starting when Eruption-2's CME blasted through Eruption-1's CME at 5---10 R_s. This occurred because the two CMEs originated in close proximity and in close time sequence: Eruption-1's fast rise started soon after the TW reconnection; the lid removal by Eruption-1's ejection triggered the slow onset of Eruption 2; and Eruption-2's CME, which started ~1 hr later, was three times faster than Eruption-1's CME. Title: Magnetic structure of sites of braiding in Hi-C active region Authors: Tiwari, Sanjiv Kumar; Alexander, Caroline; Winebarger, Amy R.; Moore, Ronald L. Bibcode: 2014AAS...22440904T Altcode: High-resolution Coronal Imager (Hi-C) observations of an active region (AR) corona, at a spatial resolution of 0.2 arcsec, have offered the first direct evidence of field lines braiding, which could deliver sufficient energy to heat the AR corona by current dissipation via magnetic reconnection, a proposal given by Parker three decades ago. The energy required to heat the corona must be transported from the photosphere along the field lines. The mechanism that drives the energy transport to the corona is not yet fully understood.To investigate simultaneous magnetic and intensity structure in and around the AR in detail, we use SDO/HMI+AIA data of + / - 2 hours around the 5 minute Hi-C flight. In the case of the QS, work done by convection/granulation on the inter-granular feet of the coronal field lines probably translates into the heat observed in the corona. In the case of the AR, as here, there could be flux emergence, cancellation/submergence, or shear flows generating large stress and tension in coronal field loops which is released as heat in the corona. However, to the best of our knowledge, there is no observational evidence available to these processes. We investigate the changes taking place in the photospheric feet of the magnetic field involved with brightenings in the Hi-C AR corona. Using HMI 45s magnetograms of four hours we find that, out of the two Hi-C sub-regions where the braiding of field lines were recently detected, flux emergence takes place in one region and flux cancellation in the other. The field in these sub-regions are highly sheared and have apparent high speed plasma flows at their feet. Therefore, shearing flows plausibly power much of the coronal and transition region heating in these areas of the AR. In addition, the presence of large flux emergence/cancellation strongly suggests that the work done by these processes on the pre-existing field also drives much of the observed heating.For this work, SKT and CEA were supported by an appointment to the NASA Postdoctoral Program at the NASA Marshall Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA, and AW and RLM were supported by funding from the Living With a Star Targeted Research and Technology Program of the Heliophysics Division of NASA's Science Mission Directorate. Title: Magnetic Untwisting in Jets that Go into the Outer Solar Corona in Polar Coronal Holes Authors: Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David Bibcode: 2014AAS...22440803M Altcode: We present results from a study of 14 jets that were observed in SDO/AIA EUV movies to erupt in the Sun’s polar coronal holes. These jets were similar to the many other jets that erupt in coronal holes, but reached higher than the vast majority, high enough to be observed in the outer corona beyond 2 solar radii from Sun center by the SOHO/LASCO/C2 coronagraph. We illustrate the characteristic structure and motion of these high-reaching jets by showing observations of two representative jets. We find that (1) the speed of the jet front from the base of the corona out to 2-3 solar radii is typically several times the sound speed in jets in coronal holes, (2) each high-reaching jet displays unusually large rotation about its axis (spin) as it erupts, and (3) in the outer corona, many jets display lateral swaying and bending of the jet axis with an amplitude of a few degrees and a period of order 1 hour. From these observations we infer that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is basically a large-amplitude (non-linear) torsional Alfven wave that is put into the open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate that the magnetic-untwisting wave loses most of its energy before reaching the outer corona. These observations of high-reaching coronal jets suggest that the torsional magnetic waves observed in Type-II spicules can similarly dissipate in the corona and thereby power much of the coronal heating in coronal holes and quiet regions. This work is funded by the NASA/SMD Heliophysics Division’s Living With a Star Targeted Research & Technology Program. Title: Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS Authors: Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arguin, J. -F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Crispin Ortuzar, M.; Cristinziani, M.; Crosetti, G.; Cuciuc, C. -M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot, F.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K. -J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G. -Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mazzanti, M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nuncio-Quiroz, A. -E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reinsch, A.; Reisin, H.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F. -W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schroer, N.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Stumer, I.; Stupak, J.; Styles, N. A.; Su, D.; Su, J.; Subramania, Hs.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C. -L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J. -W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration Bibcode: 2014PhRvL.112t1802A Altcode: 2014arXiv1402.3244A A search for evidence of invisible-particle decay modes of a Higgs boson produced in association with a Z boson at the Large Hadron Collider is presented. No deviation from the standard model expectation is observed in 4.5 fb-1 (20.3 fb-1) of 7 (8) TeV pp collision data collected by the ATLAS experiment. Assuming the standard model rate for ZH production, an upper limit of 75%, at the 95% confidence level is set on the branching ratio to invisible-particle decay modes of the Higgs boson at a mass of 125.5 GeV. The limit on the branching ratio is also interpreted in terms of an upper limit on the allowed dark matter-nucleon scattering cross section within a Higgs-portal dark matter scenario. Within the constraints of such a scenario, the results presented in this Letter provide the strongest available limits for low-mass dark matter candidates. Limits are also set on an additional neutral Higgs boson, in the mass range 110<mH<400 GeV, produced in association with a Z boson and decaying to invisible particles. Title: A Small-scale Eruption Leading to a Blowout Macrospicule Jet in an On-disk Coronal Hole Authors: Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.; Gary, G. Allen Bibcode: 2014ApJ...783...11A Altcode: We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversion line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright "flare" loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets. Title: Search for Dark Matter in Events with a Hadronically Decaying W or Z Boson and Missing Transverse Momentum in pp Collisions at √s =8 TeV with the ATLAS Detector Authors: Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Ahsan, M.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J. -F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Buehrer, F.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Charfeddine, D.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Cuciuc, C. -M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Damiani, D. S.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot, F.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K. -J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Holmgren, S. O.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G. -Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J. -R.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lukas, W.; Luminari, L.; Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mazzanti, M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nuncio-Quiroz, A. -E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penson, A.; Penwell, J.; Perepelitsa, D. V.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pizio, C.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.; Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues, L.; Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F. -W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schroer, N.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.; Subramania, Hs.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C. -L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J. -W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration Bibcode: 2014PhRvL.112d1802A Altcode: A search is presented for dark matter pair production in association with a W or Z boson in pp collisions representing 20.3 fb-1 of integrated luminosity at √s =8 TeV using data recorded with the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet with the jet mass consistent with a W or Z boson, and with large missing transverse momentum are analyzed. The data are consistent with the standard model expectations. Limits are set on the mass scale in effective field theories that describe the interaction of dark matter and standard model particles, and on the cross section of Higgs production and decay to invisible particles. In addition, cross section limits on the anomalous production of W or Z bosons with large missing transverse momentum are set in two fiducial regions. Title: Einar Tandberg-Hanssen Authors: Schmieder, Brigitte; Pecker, Jean-Claude; Gary, Allen; Wu, S. T.; Moore, Ronald; Biesmann, Else Bibcode: 2014IAUS..300....4S Altcode: I would like to report first on the scientific career of Einar Tandberg-Hanssen: how he became a Solar Physicist particularly interested in prominences. In the second part of my talk I will show what he brought to the French community from the science perspective. Title: Evidence for Solar Tether-cutting Magnetic Reconnection from Coronal Field Extrapolations Authors: Liu, Chang; Deng, Na; Lee, Jeongwoo; Wiegelmann, Thomas; Moore, Ronald L.; Wang, Haimin Bibcode: 2013ApJ...778L..36L Altcode: 2013arXiv1310.5098L Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of this rapid process has been a challenge. In this Letter, using a nonlinear force-free field (NLFFF) extrapolation technique, we present a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Evidence for the tether-cutting reconnection was first collected through multiwavelength observations and then by analysis of the field lines traced from positions of four conspicuous flare 1700 Å footpoints observed at the event onset. Right before the flare, the four footpoints are located very close to the regions of local maxima of the magnetic twist index. In particular, the field lines from the inner two footpoints form two strongly twisted flux bundles (up to ~1.2 turns), which shear past each other and reach out close to the outer two footpoints, respectively. Immediately after the flare, the twist index of regions around the footpoints diminishes greatly and the above field lines become low-lying and less twisted (lsim0.6 turns), overarched by loops linking the two flare ribbons formed later. About 10% of the flux (~3 × 1019 Mx) from the inner footpoints undergoes a footpoint exchange. This portion of flux originates from the edge regions of the inner footpoints that are brightened first. These rapid changes of magnetic field connectivity inferred from the NLFFF extrapolation are consistent with the tether-cutting magnetic reconnection model. Title: Detecting Nanoflare Heating Events in Subarcsecond Inter-moss Loops Using Hi-C Authors: Winebarger, Amy R.; Walsh, Robert W.; Moore, Ronald; De Pontieu, Bart; Hansteen, Viggo; Cirtain, Jonathan; Golub, Leon; Kobayashi, Ken; Korreck, Kelly; DeForest, Craig; Weber, Mark; Title, Alan; Kuzin, Sergey Bibcode: 2013ApJ...771...21W Altcode: The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 Å channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool (~105 K), dense (~1010 cm-3) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere. Title: Magnetic Untwisting in Most Solar X-Ray Jets Authors: Moore, Ronald L.; Sterling, A. C.; Falconer, D.; Robe, D. M. Bibcode: 2013SPD....4410304M Altcode: From 54 X-ray jets observed in the polar coronal holes by Hinode’s X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory’s Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T ~ 10^5 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets (1) strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field, and hence (2) strengthens the case made by Moore et al (2011, ApJ, 731: L18) that the Sun's granule-size emerging magnetic bipoles, by making Type-II spicules, power the global corona and solar wind. This work was funded by NASA’s LWS TRT Program, NASA's Hinode Project, and NSF's REU Program. Title: A Small-Scale Filament Eruption Leading to a Blowout Macrospicule Jet in an On-Disk Coronal Hole Authors: Sterling, Alphonse C.; Adams, M.; Moore, R. L.; Tennant, A. F.; Gary, G. A. Bibcode: 2013SPD....44...17S Altcode: We observe an eruptive jet that occurred in an on-disk solar coronal hole, using EUV images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA), supplemented by magnetic data from the SDO Helioseismic and Magnetic Imager (HMI). This jet is similar to features variously called macrospicules or erupting minifilaments. After an initial pre-eruptive phase, a concentration of absorbing, cool material in the AIA images moves with a substantially-horizontal motion toward a region of open magnetic field, and subsequently jets out along that vertical field. Prior to and during the jet's ~20 min lifetime, the magnetic flux integrated over the local region shows flux changes of &lt 20% of the background flux levels, with a time-averaged emergence rate of no more than <3 × 10^15 Mx/s in the neighborhood of the jet. Contrary to some jet models, there was no substantial recently-emerged bipolar field in the base of the jet. Instead, there was an established evolving magnetic arcade that held mini-filament-like cool plasma in its core field. We propose that subtle evolution of the magnetic flux in and around this arcade destabilized its core field, as in some standard-sized arcade blowout eruptions that produce a flare and CME following the slow rise of a standard-sized filament in the core of the arcade. Closed field carrying the cool plasma erupted into the open field and formed the blowout jet, evidently at least partly by interchange reconnection with the open field. Internal reconnection made compact bright "flare" loops inside the blowing-out arcade, while, on the outside, interchange reconnection made longer and dimmer EUV "crinkle" loops. That the loops made by the external reconnection were considerably larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets. Title: The Cool Component and the Dichotomy, Lateral Expansion, and Axial Rotation of Solar X-Ray Jets Authors: Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.; Robe, Dominic Bibcode: 2013ApJ...769..134M Altcode: We present results from a study of 54 polar X-ray jets that were observed in coronal X-ray movies from the X-ray Telescope on Hinode and had simultaneous coverage in movies of the cooler transition region (T ~ 105 K) taken in the He II 304 Å band of the Atmospheric Imaging Assembly (AIA) on Solar Dynamics Observatory. These dual observations verify the standard-jet/blowout-jet dichotomy of polar X-ray jets previously found primarily from XRT movies alone. In accord with models of blowout jets and standard jets, the AIA 304 Å movies show a cool (T ~ 105 K) component in nearly all blowout X-ray jets and in a small minority of standard X-ray jets, obvious lateral expansion in blowout X-ray jets but none in standard X-ray jets, and obvious axial rotation in both blowout X-ray jets and standard X-ray jets. In our sample, the number of turns of axial rotation in the cool-component standard X-ray jets is typical of that in the blowout X-ray jets, suggesting that the closed bipolar magnetic field in the jet base has substantial twist not only in all blowout X-ray jets but also in many standard X-ray jets. We point out that our results for the dichotomy, lateral expansion, and axial rotation of X-ray jets add credence to published speculation that type-II spicules are miniature analogs of X-ray jets, are generated by granule-size emerging bipoles, and thereby carry enough energy to power the corona and solar wind. Title: Energy release in the solar corona from spatially resolved magnetic braids Authors: Cirtain, J. W.; Golub, L.; Winebarger, A. R.; de Pontieu, B.; Kobayashi, K.; Moore, R. L.; Walsh, R. W.; Korreck, K. E.; Weber, M.; McCauley, P.; Title, A.; Kuzin, S.; Deforest, C. E. Bibcode: 2013Natur.493..501C Altcode: It is now apparent that there are at least two heating mechanisms in the Sun's outer atmosphere, or corona. Wave heating may be the prevalent mechanism in quiet solar periods and may contribute to heating the corona to 1,500,000 K (refs 1, 2, 3). The active corona needs additional heating to reach 2,000,000-4,000,000 K this heat has been theoretically proposed to come from the reconnection and unravelling of magnetic `braids'. Evidence favouring that process has been inferred, but has not been generally accepted because observations are sparse and, in general, the braided magnetic strands that are thought to have an angular width of about 0.2 arc seconds have not been resolved. Fine-scale braiding has been seen in the chromosphere but not, until now, in the corona. Here we report observations, at a resolution of 0.2 arc seconds, of magnetic braids in a coronal active region that are reconnecting, relaxing and dissipating sufficient energy to heat the structures to about 4,000,000 K. Although our 5-minute observations cannot unambiguously identify the field reconnection and subsequent relaxation as the dominant heating mechanism throughout active regions, the energy available from the observed field relaxation in our example is ample for the observed heating. Title: Observations from SDO, Hinode, and STEREO of a Twisting and Writhing Start to a Solar-filament-eruption Cascade Authors: Sterling, Alphonse C.; Moore, Ronald L.; Hara, Hirohisa Bibcode: 2012ApJ...761...69S Altcode: We analyze data from SDO (AIA, HMI), Hinode (SOT, XRT, EIS), and STEREO (EUVI) of a solar eruption sequence of 2011 June 1 near 16:00 UT, with an emphasis on the early evolution toward eruption. Ultimately, the sequence consisted of three emission bursts and two filament ejections. SDO/AIA 304 Å images show absorbing-material strands initially in close proximity which over ~20 minutes form a twisted structure, presumably a flux rope with ~1029 erg of free energy that triggers the resulting evolution. A jump in the filament/flux rope's displacement (average velocity ~20 km s-1) and the first burst of emission accompanies the flux-rope formation. After ~20 more minutes, the flux rope/filament kinks and writhes, followed by a semi-steady state where the flux rope/filament rises at (~5 km s-1) for ~10 minutes. Then the writhed flux rope/filament again becomes MHD unstable and violently erupts, along with rapid (50 km s-1) ejection of the filament and the second burst of emission. That ejection removed a field that had been restraining a second filament, which subsequently erupts as the second filament ejection accompanied by the third (final) burst of emission. Magnetograms from SDO/HMI and Hinode/SOT, and other data, reveal several possible causes for initiating the flux-rope-building reconnection, but we are not able to say which is dominant. Our observations are consistent with magnetic reconnection initiating the first burst and the flux-rope formation, with MHD processes initiating the further dynamics. Both filament ejections are consistent with the standard model for solar eruptions. Title: Using a global aerosol model adjoint to unravel the footprint of spatially-distributed emissions on cloud droplet number and cloud albedo Authors: Karydis, V. A.; Capps, S. L.; Moore, R. H.; Russell, A. G.; Henze, D. K.; Nenes, A. Bibcode: 2012GeoRL..3924804K Altcode: The adjoints of the GEOS-Chem Chemical Transport Model and a comprehensive cloud droplet parameterization are coupled to study the sensitivity of cloud droplet number concentration (Nd) over US regions and Central Europe to global emissions of anthropogenic fine mode aerosol precursors. Simulations reveal that the Nd over the midwestern and southeastern US is mostly sensitive to SO2 emissions during August, and to NH3 emissions during February. Over the western US, Nd is mostly sensitivity to SO2 and primary organic aerosol emissions. In Central Europe, Nd is most sensitive to NH3 and NOx emissions. As expected, local emissions strongly affect Nd; long-range transport, however, is also important for the western US and Europe. Emissions changes projected for the year 2050 are estimated to have the largest impacts on cloud albedo and Nd over Central Europe during August (42% and 82% change, respectively) and western US during February (12% and 36.5% change, respectively). Title: Dichotomy of X-Ray Jets in Solar Coronal Holes Authors: Robe, D. M.; Moore, R. L.; Falconer, D. A. Bibcode: 2012AGUFMSH51A2200R Altcode: It has been found that there are two different types of X-ray jets observed in the Sun's polar coronal holes: standard jets and blowout jets. A proposed model of this dichotomy is that a standard jet is produced by a burst of reconnection of the ambient magnetic field with the opposite-polarity leg of the base arcade. In contrast, it appears that a blowout jet is produced when the interior of the arcade has so much pent-up free magnetic energy in the form of shear and twist in the interior field that the external reconnection unleashes the interior field to erupt open. In this project, X-ray movies of the polar coronal holes taken by Hinode were searched for X-ray jets. Co-temporal movies taken by the Solar Dynamics Observatory in 304 Å emission from He II, showing solar plasma at temperatures around 80,000 K, were examined for whether the identified blowout jets carry much more He II plasma than the identified standard jets. It was found that though some jets identified as standard from the X-ray movies could be seen in the He II 304 Å movies, the blowout jets carried much more 80,000 K plasma than did most standard jets. This finding supports the proposed model for the morphology and development of the two types of jets. Title: Forecasting the Solar Drivers of Severe Space Weather from Active-Region Magnetograms Authors: Falconer, D. A.; Moore, R. L.; Barghouty, A. F.; Khazanov, I. G. Bibcode: 2012AGUFMSH51C..01F Altcode: Large flares and fast CMEs are the drivers of the most severe space weather including Solar Energetic Particle Events (SEP Events). Large flares and their co-produced CMEs are powered by the explosive release of free magnetic energy stored in non-potential magnetic fields of sunspot active regions. The free energy is stored in and released from the low-beta regime of the active region's magnetic field above the photosphere, in the chromosphere and low corona. From our work over the past decade and from similar work of several other groups, it is now well established that (1) a proxy of the free magnetic energy stored above the photosphere can be measured from photospheric magnetograms, and (2) an active region's rate of production of major CME/flare eruptions in the coming day or so is strongly correlated with its present measured value of the free-energy proxy. These results have led us to use the large database of SOHO/MDI full-disk magnetograms spanning Solar Cycle 23 to obtain empirical forecasting curves that from an active region's present measured value of the free-energy proxy give the active region's expected rates of production of major flares, CMEs, fast CMEs, and SEP Events in the coming day or so (Falconer et al 2011, Space Weather, 9, S04003). We will present these forecasting curves and demonstrate the accuracy of their forecasts. In addition, we will show that the forecasts for major flares and fast CMEs can be made significantly more accurate by taking into account not only the value of the free energy proxy but also the active region's recent productivity of major flares; specifically, whether the active region has produced a major flare (GOES class M or X) during the past 24 hours before the time of the measured magnetogram. By empirically determining the conversion of the value of free-energy proxy measured from a GONG or HMI magnetogram to that which would be measured from an MDI magnetogram, we have made GONG and HMI magnetograms useable with our MDI-based forecasting curves to forecast event rates. This work has been funded by NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences, and AFOSR's MURI Program. Development of this forecasting tool for JSC/Space Radiation Analysis Group was supported by NASA's Office of Chief Engineer Technical Excellence Initiative and is supported by NASA's AES (Advance Exploration Systems) Program. Title: A Twin-CME Scenario for Ground Level Enhancement Events Authors: Li, G.; Moore, R.; Mewaldt, R. A.; Zhao, L.; Labrador, A. W. Bibcode: 2012SSRv..171..141L Altcode: 2012SSRv..tmp....1L Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ∼GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed. Title: Prior Flaring as a Complement to Free Magnetic Energy for Forecasting Solar Eruptions Authors: Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor Bibcode: 2012ApJ...757...32F Altcode: From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1300 sunspot active regions across the 30° radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days; (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions; and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field. Title: Solar Spicules near and at the Limb, Observed from Hinode Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2012ASPC..454...87S Altcode: Solar spicules appear as narrow jets emanating from the chromosphere and extending into the corona. They have been observed for over a hundred years, mainly in chromospheric spectral lines such as H-alpha. Because they are at the limit of visibility of ground-based instruments, their nature has long been a puzzle. In recent years however, vast progress has been made in understanding them both theoretically and observationally, as spicule studies have undergone a revolution because of the superior resolution and time cadence of ground-based and space-based instruments. Even more rapid progress is currently underway, due to the Solar Optical Telescope (SOT) instrument on the Hinode spacecraft. Here we give a synopsis of our recent findings from a movie of sharpened images from the Hinode SOT Ca II filtergraph of spicules at and near the limb in a polar coronal hole. Title: Search for a Dark Matter Candidate Produced in Association with a Single Top Quark in pp¯ Collisions at s=1.96TeV Authors: Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Anzá, F.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Fuks, B.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C. -J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S. Bibcode: 2012PhRvL.108t1802A Altcode: 2012arXiv1202.5653C We report a new search for dark matter in a data sample of an integrated luminosity of 7.7fb-1 of Tevatron pp¯ collisions at s=1.96TeV, collected by the CDF II detector. We search for production of a dark-matter candidate, D, in association with a single top quark. We consider the hadronic decay mode of the top quark exclusively, yielding a final state of three jets with missing transverse energy. The data are consistent with the standard model; we thus set 95% confidence level upper limits on the cross section of the process pp¯→t+D as a function of the mass of the dark-matter candidate. The limits are approximately 0.5 pb for a dark-matter particle with mass in the range of 0-150GeV/c2. Title: Search for Dark Matter in Events with One Jet and Missing Transverse Energy in pp¯ Collisions at s=1.96TeV Authors: Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Bai, Y.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Fox, P. J.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harnik, R.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C. -J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhou, C.; Zucchelli, S. Bibcode: 2012PhRvL.108u1804A Altcode: 2012arXiv1203.0742T We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp¯ collisions at s=1.96TeV corresponding to an integrated luminosity of 6.7fb-1 recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5GeV/c2, and on spin-dependent interactions up to masses of 200GeV/c2. Title: Prior Flaring: A Complement to Free Magnetic Energy for Forecasting Solar Eruptions Authors: Falconer, David; Moore, R.; Barghouty, A.; Khazanov, I. Bibcode: 2012AAS...22050803F Altcode: From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1,300 sunspot active regions across the 30-degree radius central disk of the Sun, (2) a proxy of each active region’s free magnetic energy measured from each of the active region’s central-disk-passage magnetograms, and (3) each active region’s full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region’s magnetic field other than the free energy that are strong determinants of the active region’s productivity of major flares and fast CMEs in the coming few days, (2) an active region’s recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions, and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region’s free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that in addition to the free energy are reflected by recent major flaring are presumably the complexity of the field configuration and facets of the evolution of the field.

This work has been funded by NASA’s Heliophysics Division, NSF’s Division of Atmospheric Sciences, and AFOSR’s MURI Program. Development of this forecasting tool for JSC/Space Radiation Analysis Group was supported by NASA’s Office of Chief Engineer Technical Excellence Initiative and is supported by NASA’s AES (Advance Exploration Systems) Program. Title: Search for anomalous production of multiple leptons in association with W and Z bosons at CDF Authors: Aaltonen, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chung, W. H.; Chung, Y. S.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Dell'Orso, M.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Klimenko, S.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C. -J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Sorin, V.; Song, H.; Squillacioti, P.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zucchelli, S. Bibcode: 2012PhRvD..85i2001A Altcode: 2012arXiv1202.1260T This paper presents a search for anomalous production of multiple low-energy leptons in association with a W or Z boson using events collected at the CDF experiment corresponding to 5.1fb-1 of integrated luminosity. This search is sensitive to a wide range of topologies with low-momentum leptons, including those with the leptons near one another. The observed rates of production of additional electrons and muons are compared with the standard model predictions. No indications of phenomena beyond the standard model are found. A 95% confidence level limit is presented on the production cross section for a benchmark model of supersymmetric hidden-valley Higgs production. Particle identification efficiencies are also provided to enable the calculation of limits on additional models. Title: The Limit of Magnetic-Shear Energy in Solar Active Regions Authors: Moore, Ronald L.; Falconer, D. A.; Sterling, A. C. Bibcode: 2012AAS...22020438M Altcode: It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region’s magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region’s magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a CME/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of order 1 in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than 1 cannot be triggered to explode; as this ratio approaches 1, most active regions become capable of exploding; and when this ratio is 1, most active regions are compelled to explode.

This work was funded by NASA’s Science Mission Directorate through the Heliophysics Guest Investigators Program, the Hinode Project, and the Living With a Star Targeted Research & Technology Program. Title: Observations from SDO and Hinode of a Twisting and Writhing Start to a Solar-filament-eruption Cascade Authors: Sterling, Alphonse C.; Moore, R. L. Bibcode: 2012AAS...22050802S Altcode: We analyze data from SDO and hinode of a solar eruption sequence of 1 June 2011 near 16:00 UT, with emphasis on the early evolution toward eruption. Ultimately, the sequence consisted of three emission bursts and two filament ejections. SDO/AIA 304 Ang images show absorbing-material strands initially in close proximity that over 20 min form a twisted structure, presumably a flux rope with 1029 ergs of free energy that triggers the resulting evolution. A jump in the filament/flux rope's height (average velocity 20 km s-1) and the first burst of emission accompanies the flux-rope formation. After 20 min more, the flux rope/filament kinks and writhes, followed by a semi-steady state where the flux rope/filament rises at ( 5 km s-1) for 10 min. Then the writhed flux rope/filament again becomes MHD unstable and violently erupts, along with rapid (> 50 km s-1) ejection of the filament and the second burst of emission. That ejection removed field that had been restraining a second filament, which subsequently erupts as the second filament ejection accompanied by the third (final) burst of emission. Magnetograms from SDO/HMI and hinode/SOT, and other data, reveal several possible causes for initiating the flux-rope-building reconnection, but we are not able to say which is dominant. Our observations are consistent with tether-cutting reconnection initiating the first burst and the flux-rope formation, with MHD processes initiating the further dynamics. Both filament ejections are consistent with the standard model for solar eruptions. NASA supported this work through its Heliophysics program. Title: The Limit of Magnetic-shear Energy in Solar Active Regions Authors: Moore, Ronald L.; Falconer, David A.; Sterling, Alphonse C. Bibcode: 2012ApJ...750...24M Altcode: It has been found previously, by measuring from active-region magnetograms a proxy of the free energy in the active region's magnetic field, (1) that there is a sharp upper limit to the free energy the field can hold that increases with the amount of magnetic field in the active region, the active region's magnetic flux content, and (2) that most active regions are near this limit when their field explodes in a coronal mass ejection/flare eruption. That is, explosive active regions are concentrated in a main-sequence path bordering the free-energy-limit line in (flux content, free-energy proxy) phase space. Here, we present evidence that specifies the underlying magnetic condition that gives rise to the free-energy limit and the accompanying main sequence of explosive active regions. Using a suitable free-energy proxy measured from vector magnetograms of 44 active regions, we find evidence that (1) in active regions at and near their free-energy limit, the ratio of magnetic-shear free energy to the non-free magnetic energy the potential field would have is of the order of one in the core field, the field rooted along the neutral line, and (2) this ratio is progressively less in active regions progressively farther below their free-energy limit. Evidently, most active regions in which this core-field energy ratio is much less than one cannot be triggered to explode; as this ratio approaches one, most active regions become capable of exploding; and when this ratio is one, most active regions are compelled to explode. Title: Obituary: Einar A. Tandberg-Hanssen (1921-2011) Authors: Gary, G.; Emslie, A.; Hathaway, David; Moore, Ronald Bibcode: 2011BAAS...43..032G Altcode: Dr. Einar Andreas Tandberg-Hanssen was born on 6 August 1921, in Bergen, Norway, and died on July 22, 2011, in Huntsville, AL, USA, due to complications from ALS (Amyotrophic lateral sclerosis, often referred to as Lou Gehrig's disease).

His parents were administrator Birger Tandberg-Hanssen (1883-1951) and secretary Antonie "Mona" Meier (1895-1967).

He married Erna Rönning (27 October 1921 - 22 November 1994), a nurse, on 22 June 1951. She was the daughter of Captain Einar Rönning (1890-1969) and Borghild Lyshaug (1897-1980).

Einar and Erna had two daughters, Else Biesman (and husband Allen of Rapid City, SD, USA) and Karin Brock (and husband Mike of Gulf Shores, AL, USA). At the time of his death Einar had eight grandchildren and eight great-grandchildren.

Dr. Tandberg-Hanssen was an internationally-known member of the solar physics community, with over a hundred published scientific papers and several books, including Solar Activity (1967), Solar Prominences (1974), The Physics of Solar Flares (1988) and The Nature of Solar Prominences (1995).

Einar grew up in Langesund and Skien, Norway, where he took the qualifying exams at Skien High School in 1941. After the war he studied natural sciences at the University of Oslo and received his undergraduate degree in astronomy in 1950.

He worked as a research assistant in the Institute of Theoretical Astrophysics at the University of Oslo for three intervals in the 1950s, interspersed by fellowships at the Institut d'Astrophysique in Paris, Caltech in Pasadena, CA, the High Altitude Observatory in Boulder, CO, and the Cavendish Laboratory in the UK (at the invitation of British radio-astronomer Sir Martin Ryle). He earned a doctorate in astrophysics at the University in Oslo in 1960 with a dissertation titled "An Investigation of the Temperature Conditions in Prominences with a Special Study of the Excitation of Helium."

From 1959-61, Tandberg-Hanssen was a professor at the University in Oslo. He then traveled back to the High Altitude Observatory in Boulder, Colorado, where he was employed until 1974. He was then employed at the Space Science Laboratory at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. There, he was a Senior Research Scientist and later Deputy Director of the Laboratory. He served as Lab Director from 1987 until his retirement from NASA in 1993. He promptly took a part-time post within the Center for Space Plasma and Aeronomic Research at The University of Alabama in Huntsville, where he worked until his death.

During his tenure at NASA, he, along with Dr. Mona Hagyard and Dr. S. T. Wu, built up a substantial, internationally-based group of solar physicists at MSFC and UA Huntsville. He was a lead investigator on two instruments aboard NASA spacecraft: the S-056 X-Ray Event Analyzer on the Skylab Apollo Telescope Mount (which provided pioneering, high-time-cadence temperature and density information on solar X-ray-emitting regions) and the Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission (which carried out sweeping new studies of EUV emission from solar active regions and flares). Dr. Tandberg-Hanssen's books about various aspects of solar activity, viz.Solar Activity (Blaisdell, 1967), Solar Prominences (Reidel, 1974), The Physics of Solar Flares (with A. G. Emslie) (Cambridge, 1988), and The Nature of Solar Prominences (Reidel, 1995), have become international standard works within the discipline of solar physics.

In 1982, Dr. Tandberg-Hanssen was elected to membership in the Norwegian Academy of Science and Letters. From 1979-82 and 1982-85, respectively, he served as vice-president and president of Commission 10 of the International Astronomical Union (IAU). He served as president of the Federation of Astronomical and Geophysical Data Analysis Services from 1990-1994. He has received the NASA Exceptional Service Medal. He was also a long time editor of the journal Solar Physics.

Dr. Tandberg-Hanssen's Solar Physics Memoir paper, entitled Solar Prominences - An Intriguing Phenomenon http://www.springerlink.com/content/1166j74k577kv332/ was published shortly before his death. The article starts with an autobiographical account, where the author relates how his several study-trips abroad gradually led him to the study of solar physics in general, and prominences particularly.

Einar's residence as a research fellow at the Institut d'Astrophysique in Paris in the 1950s laid the foundation for a lifelong interest in France and French culture. His great interest in and knowledge of French mediaeval churches, as well as the Norwegian stave churches, is reflected in two books, Letters to My Daughters (Ivy House Pub. Group, 2004), and The Joy of Travel: More Letters to My Daughters (Pentland Press, 2007), which serve as a review, tourist guide and history book, shaped in the form of letters home to his two daughters, from his many travels in Norway and France.

Einar was a true gentleman and a true scholar. As evidenced by his papers, his books, and his dealings with others, he was always seeking not only to expand his own knowledge and understanding, but also to find new ways of communicating his remarkable insight to others. He is survived by his daughters, Else and Karin, and their families. Title: Lateral Offset of the Coronal Mass Ejections from the X-flare of 2006 December 13 and Its Two Precursor Eruptions Authors: Sterling, Alphonse C.; Moore, Ronald L.; Harra, Louise K. Bibcode: 2011ApJ...743...63S Altcode: Two GOES sub-C-class precursor eruptions occurred within ~10 hr prior to and from the same active region as the 2006 December 13 X4.3-class flare. Each eruption generated a coronal mass ejection (CME) with center laterally far offset (gsim 45°) from the co-produced bright flare. Explaining such CME-to-flare lateral offsets in terms of the standard model for solar eruptions has been controversial. Using Hinode/X-Ray Telescope (XRT) and EUV Imaging Spectrometer (EIS) data, and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO) and Michelson Doppler Imager (MDI) data, we find or infer the following. (1) The first precursor was a "magnetic-arch-blowout" event, where an initial standard-model eruption of the active region's core field blew out a lobe on one side of the active region's field. (2) The second precursor began similarly, but the core-field eruption stalled in the side-lobe field, with the side-lobe field erupting ~1 hr later to make the CME either by finally being blown out or by destabilizing and undergoing a standard-model eruption. (3) The third eruption, the X-flare event, blew out side lobes on both sides of the active region and clearly displayed characteristics of the standard model. (4) The two precursors were offset due in part to the CME originating from a side-lobe coronal arcade that was offset from the active region's core. The main eruption (and to some extent probably the precursor eruptions) was offset primarily because it pushed against the field of the large sunspot as it escaped outward. (5) All three CMEs were plausibly produced by a suitable version of the standard model. Title: Observed Aspects of Reconnection in Solar Eruptions Authors: Moore, Ronald L.; Sterling, Alphonse C.; Gary, G. Allen; Cirtain, Jonathan W.; Falconer, David A. Bibcode: 2011SSRv..160...73M Altcode: 2011SSRv..tmp..113M; 2011SSRv..tmp..189M; 2011SSRv..tmp...30M The observed magnetic field configuration and signatures of reconnection in the large solar magnetic eruptions that make major flares and coronal mass ejections and in the much smaller magnetic eruptions that make X-ray jets are illustrated with cartoons and representative observed eruptions. The main reconnection signatures considered are the imaged bright emission from the heated plasma on reconnected field lines. In any of these eruptions, large or small, the magnetic field that drives the eruption and/or that drives the buildup to the eruption is initially a closed bipolar arcade. From the form and configuration of the magnetic field in and around the driving arcade and from the development of the reconnection signatures in coordination with the eruption, we infer that (1) at the onset of reconnection the reconnection current sheet is small compared to the driving arcade, and (2) the current sheet can grow to the size of the driving arcade only after reconnection starts and the unleashed erupting field dynamically forces the current sheet to grow much larger, building it up faster than the reconnection can tear it down. We conjecture that the fundamental reason the quasi-static pre-eruption field is prohibited from having a large current sheet is that the magnetic pressure is much greater than the plasma pressure in the chromosphere and low corona in eruptive solar magnetic fields. Title: Confirmation of the 'Main Sequence' of Explosive Active Regions Authors: Falconer, David Allen; Moore, Ron Bibcode: 2011shin.confE..45F Altcode: We study the dependence of production of major CME/flare eruptions on the source active region's (AR's) location in (flux content, free energy) phase space. For this, an AR's flux content and a proxy of its free magnetic energy content can be adequately measured from 96-minute cadence SOHO/MDI magnetograms when the AR is within 30 degrees of disk center (Falconer et al 2008, ApJ, 688, 143). The AR's evolution in this phase space can thereby be tracked as it crosses the central disk. By our definition, an AR is (1) mature if its flux is growing by less than 50%/day when it rotates onto the 30-degree-radius central disk, or (2) emerging if its flux is growing faster than 50%/day when it enters the central disk or if it is born within the central disk. In an initial study of 46 ARs, 44 were mature and 2 were emerging. From 1800 MDI magnetograms of mature ARs, we found that (1) mature ARs have a sharp upper bound on the free energy they can attain that increases with increasing flux content, and (2) for mature ARs, nearly all CMEs and X-class flares are produced by ARs that are near the free-energy limit line. These ARs constitute the main sequence of explosive mature ARs (Falconer et al 2009, ApJ, 700, L166). The two emerging ARs attained free energy well beyond the limit for mature ARs of the same flux content, questioning whether emerging ARs have a free-energy limit and explosive main sequence like those for mature ARs. Here, from a much larger sample, we (1) confirm the free-energy limit and explosive main sequence for mature ARs, and (2) show that emerging ARs do have a free-energy limit and an explosive main sequence, each offset to higher free energy relative to its mature-AR counterpart.

This work was funded by NSF SHINE Program and by the AFOSR MURI Program. Title: The Main Sequence of Explosive Emerging Solar Active Regions Authors: Falconer, David; Moore, R. Bibcode: 2011SPD....42.2304F Altcode: 2011BAAS..43S.2304F We study the dependence of production of major CME/flare eruptions on the source active region's (AR's) location in (flux content, free energy) phase space. For this, an AR's flux content and a proxy of its free magnetic energy content can be adequately measured from 96-minute cadence SOHO/MDI magnetograms when the AR is within 30 degrees of disk center (Falconer et al 2008, ApJ, 688, 143). The AR's evolution in this phase space can thereby be tracked as it crosses the central disk. By our definition, an AR is (1) mature if its flux is growing by less than 50%/day when it rotates onto the 30-degree-radius central disk, or (2) emerging if its flux is growing faster than 50%/day when it enters the central disk or if it is born within the central disk. In an initial study of 46 ARs, 42 were mature and 4 were emerging. From 1800 MDI magnetograms of the 42 mature ARs, we found that (1) mature ARs have a sharp upper bound on the free energy they can attain that increases with increasing flux content, and (2) for mature ARs, nearly all CMEs and X-class flares are produced by ARs that are near the free-energy limit line. These ARs constitute the main sequence of explosive mature ARs (Falconer et al 2009, ApJ, 700, L166). Two of the four emerging ARs attained free energy well beyond the limit for mature ARs of the same flux content, questioning whether emerging ARs have a free-energy limit and explosive main sequence like those for mature ARs. Here, we show from a much larger sample of ARs ( 1000), of which about 1/3 are emerging, that emerging ARs do have a free-energy limit and a explosive main sequence, each offset to higher free energy relative to its mature-AR counterpart. Title: The Reason for the Main Sequence of Explosive Solar Active Regions Authors: Moore, Ronald L.; Falconer, D. A. Bibcode: 2011SPD....42.2305M Altcode: 2011BAAS..43S.2305M From measurement of magnetic flux and a proxy of free magnetic energy from 1800 SOHO/MDI line-of-sight magnetograms of 44 sunspot active regions, Falconer et al (2009, ApJ, 700, L169) showed (1) there is an upper limit to the free magnetic energy an active region can hold, (2) this limit increases with active-region magnetic size (flux content), (3) most major CME/flare eruptions are produce by active regions that are near their free-energy limit, (4) in (flux content, free-energy proxy) phase space, the source active regions for major CME/flare eruptions are concentrated along a main sequence, a path that runs close below the free-energy limit line, and (5) the free-energy limit and the main sequence probably result from the steep increase in CME/flare productivity as an active region approaches its free-energy limit, depleting the active region's free energy as fast as it is built up. Here we present (1) a new direct proxy of an active region's free magnetic energy, and (2) a corresponding proxy of the ratio of free energy to potential-field energy in the more-nonpotential parts of the active region. Each is measured from a vector magnetogram of the active region. From these two magnetic-energy proxies measured from Marshall Space Flight Center vector magnetograms of 42 of the active regions of Falconer et al (2009), we (1) affirm that the free-energy proxy measured in Falconer et al (2009) is indeed a proxy of an active region's free magnetic energy, (2) further support the above reason for the main sequence of explosive active regions, and (3) conclude that magnetic fields in active regions become ready to explode and produce CME/flare eruptions when their free energy becomes comparable to the potiential-field energy.

This work was supported by funding from NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences, and AFOSR's MURI Program. Title: Insights into Filament Eruption Onset from Solar Dynamics Observatory Observations Authors: Sterling, Alphonse C.; Moore, R. L.; Freeland, S. L. Bibcode: 2011SPD....42.0904S Altcode: 2011BAAS..43S.0904S We examine the buildup to and onset of an active region filament confined eruption of 2010 May 12, using EUV imaging data from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Array and line-of-sight magnetic data from the SDO Helioseismic and Magnetic Imager. Over the hour preceding eruption the filament undergoes a slow rise averaging 3 km/s, with a step-like trajectory. Accompanying a final rise step 20 minutes prior to eruption is a transient preflare brightening, occurring on loops rooted near the site where magnetic field had canceled over the previous 20 hr. Flow-type motions of the filament are relatively smooth with speeds 50 km/s prior to the preflare brightening and appear more helical, with speeds 50-100 km/s, after that brightening. After a final plateau in the filament's rise, its rapid eruption begins, and concurrently an outer shell "cocoon" of the filament material increases in emission in hot EUV lines, consistent with heating in a newly formed magnetic flux rope. The main flare brightenings start 5 minutes after eruption onset. The main flare arcade begins between the legs of an envelope-arcade loop that is nearly orthogonal to the filament, suggesting that the flare results from reconnection among the legs of that loop. This progress of events is broadly consistent with flux cancellation leading to formation of a helical flux rope that subsequently erupts due to onset of a magnetic instability and/or runaway tether cutting. A full description of this work appears in ApJ Letters 2011, 731, L3. NASA supported this work through its Solar Physics Supporting Research and Technology, Sun-Earth Connection Guest Investigator, and Living With a Star Targeted Research & Technology programs. Title: A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active-region free magnetic energy Authors: Falconer, David; Barghouty, Abdulnasser F.; Khazanov, Igor; Moore, Ron Bibcode: 2011SpWea...9.4003F Altcode: This paper describes a new forecasting tool developed for and currently being tested by NASA's Space Radiation Analysis Group (SRAG) at Johnson Space Center, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M- and X-class flares, coronal mass ejections, and solar energetic particle events. For each type of event, the algorithm is based on the empirical relationship between the event rate and a proxy of the active region's free magnetic energy. Each empirical relationship is determined from a data set of ∼40,000 active-region magnetograms from ∼1300 active regions observed by SOHO/Michelson Doppler Imager (MDI) that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic area from an MDI full-disk magnetogram, identifies each as a NOAA active region, and measures the proxy of the active region's free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free-magnetic-energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the data sets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI are briefly discussed. Title: Insights into Filament Eruption Onset from Solar Dynamics Observatory Observations Authors: Sterling, Alphonse C.; Moore, Ronald L.; Freeland, Samuel L. Bibcode: 2011ApJ...731L...3S Altcode: We examine the buildup to and onset of an active region filament confined eruption of 2010 May 12, using EUV imaging data from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Array and line-of-sight magnetic data from the SDO Helioseismic and Magnetic Imager. Over the hour preceding eruption the filament undergoes a slow rise averaging ~3 km s-1, with a step-like trajectory. Accompanying a final rise step ~20 minutes prior to eruption is a transient preflare brightening, occurring on loops rooted near the site where magnetic field had canceled over the previous 20 hr. Flow-type motions of the filament are relatively smooth with speeds ~50 km s-1 prior to the preflare brightening and appear more helical, with speeds ~50-100 km s-1, after that brightening. After a final plateau in the filament's rise, its rapid eruption begins, and concurrently an outer shell "cocoon" of the filament material increases in emission in hot EUV lines, consistent with heating in a newly formed magnetic flux rope. The main flare brightenings start ~5 minutes after eruption onset. The main flare arcade begins between the legs of an envelope-arcade loop that is nearly orthogonal to the filament, suggesting that the flare results from reconnection among the legs of that loop. This progress of events is broadly consistent with flux cancellation leading to formation of a helical flux rope that subsequently erupts due to onset of a magnetic instability and/or runaway tether cutting. Title: Solar X-ray Jets, Type-II Spicules, Granule-size Emerging Bipoles, and the Genesis of the Heliosphere Authors: Moore, Ronald L.; Sterling, Alphonse C.; Cirtain, Jonathan W.; Falconer, David A. Bibcode: 2011ApJ...731L..18M Altcode: From Hinode observations of solar X-ray jets, Type-II spicules, and granule-size emerging bipolar magnetic fields in quiet regions and coronal holes, we advocate a scenario for powering coronal heating and the solar wind. In this scenario, Type-II spicules and Alfvén waves are generated by the granule-size emerging bipoles (EBs) in the manner of the generation of X-ray jets by larger magnetic bipoles. From observations and this scenario, we estimate that Type-II spicules and their co-generated Alfvén waves carry into the corona an area-average flux of mechanical energy of ~7 × 105 erg cm-2 s-1. This is enough to power the corona and solar wind in quiet regions and coronal holes, and therefore indicates that the granule-size EBs are the main engines that generate and sustain the entire heliosphere. Title: Refractories, Structure and Properties of Authors: Moore, R. E. Bibcode: 2011emst.book.8079M Altcode: The definition of "refractory" employed as an adjective is variously applied; to people, it means obstinate or unmanageable, and to things such as ores, it means hard to reduce or to fuse. This latter usage is correct for refractory ceramic materials, which possess the key characteristic of refractoriness, i.e., they are difficult to fuse. Refractory ceramics are inorganic chemical substances, single or polyphase in nature, which are processed at high temperature and/or are intended for high-temperature applications. They are employed wherever a process involves treatment or exposure at elevated temperatures, e.g., the smelting of metals, the sintering of ceramics, the melting of glass, the processing of hydrocarbons and other chemicals, etc. Title: First results for the Solar Ultraviolet Magnetograph Investigation (SUMI) Authors: Moore, R. L.; Cirtain, J. W.; West, E.; Kobayashi, K.; Robinson, B.; Winebarger, A. R.; Tarbell, T. D.; de Pontieu, B.; McIntosh, S. W. Bibcode: 2010AGUFMSH11B1655M Altcode: On July 31, 2010 SUMI was launched to 286km above the White Sands Missile Range to observe active region 11092. SUMI is a spectro-polarimeter capable of measuring the spectrum for Mg II h & k at 280 nm and C IV at 155 nm. Simultaneous observations with Hinode and SDO provide total coverage of the region from the photosphere into the corona, a very unique and original data set. We will present the initial results from this first flight of the experiment and demonstrate the utility of further observations by SUMI. Title: 24-Hour Forecasting of CME/Flare Eruptions from Active-Region Magnetograms (Invited) Authors: Falconer, D. A.; Barghouty, A.; Khazanov, I. G.; Moore, R. L. Bibcode: 2010AGUFMSH54D..04F Altcode: We have developed an automated tool for forecasting severe space weather from full-disk magnetograms. This tool is now being used on a trial basis by NASA’s Space Radiation Analysis Group (SRAG) at JSC. SRAG is responsible for the monitoring and forecasting of exposure the astronauts to particle radiation. The tool is described in Falconer, Barghouty, Khazanov, and Moore (2010), submitted to Space Weather. The new software tool is designed for the empirical forecasting of M- and X-class flares, coronal mass ejections, and solar energetic particle events. For each of these event types, the algorithm is based on the empirical relationship between the event rate and a proxy of the active region’s free magnetic energy. The relationship is determined from ~40,000 active-region magnetograms from ~1,300 active regions that were observed within 30 heliographic degrees from disk center by SOHO/MDI, and that have known histories of flare, coronal mass ejection, and solar energetic particle event production during disk passage. The tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as a NOAA active region, and measures the proxy of the active region’s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into the active region’s expected event rate (see figure). The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. We can make this tool applicable to the full-disk line-of-sight magnetograms from SDO/HMI or as a backup, from NSO/GONG. By empirically determining the conversion of the value of free-energy proxy measured from an HMI magnetogram to that which would be measured from an MDI magnetogram, we can use the HMI magnetograms with the empirical relationships determined from our MDI data base to make forecasts of event rates. This work was funded by the NASA Technical Excellence Initiative, by the AFOSR MURI Program, and by the NASA LWS TR&T Program. Title: On the Origin of the Solar Moreton Wave of 2006 December 6 Authors: Balasubramaniam, K. S.; Cliver, E. W.; Pevtsov, A.; Temmer, M.; Henry, T. W.; Hudson, H. S.; Imada, S.; Ling, A. G.; Moore, R. L.; Muhr, N.; Neidig, D. F.; Petrie, G. J. D.; Veronig, A. M.; Vršnak, B.; White, S. M. Bibcode: 2010ApJ...723..587B Altcode: We analyzed ground- and space-based observations of the eruptive flare (3B/X6.5) and associated Moreton wave (~850 km s-1 ~270° azimuthal span) of 2006 December 6 to determine the wave driver—either flare pressure pulse (blast) or coronal mass ejection (CME). Kinematic analysis favors a CME driver of the wave, despite key gaps in coronal data. The CME scenario has a less constrained/smoother velocity versus time profile than is the case for the flare hypothesis and requires an acceleration rate more in accord with observations. The CME picture is based, in part, on the assumption that a strong and impulsive magnetic field change observed by a GONG magnetograph during the rapid rise phase of the flare corresponds to the main acceleration phase of the CME. The Moreton wave evolution tracks the inferred eruption of an extended coronal arcade, overlying a region of weak magnetic field to the west of the principal flare in NOAA active region 10930. Observations of Hα foot point brightenings, disturbance contours in off-band Hα images, and He I 10830 Å flare ribbons trace the eruption from 18:42 to 18:44 UT as it progressed southwest along the arcade. Hinode EIS observations show strong blueshifts at foot points of this arcade during the post-eruption phase, indicating mass outflow. At 18:45 UT, the Moreton wave exhibited two separate arcs (one off each flank of the tip of the arcade) that merged and coalesced by 18:47 UT to form a single smooth wave front, having its maximum amplitude in the southwest direction. We suggest that the erupting arcade (i.e., CME) expanded laterally to drive a coronal shock responsible for the Moreton wave. We attribute a darkening in Hα from a region underlying the arcade to absorption by faint unresolved post-eruption loops. Title: Fibrillar Chromospheric Spicule-like Counterparts to an Extreme-ultraviolet and Soft X-ray Blowout Coronal Jet Authors: Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L. Bibcode: 2010ApJ...722.1644S Altcode: We observe an erupting jet feature in a solar polar coronal hole, using data from Hinode/Solar Optical Telescope (SOT), Extreme Ultraviolet Imaging Spectrometer (EIS), and X-Ray Telescope (XRT), with supplemental data from STEREO/EUVI. From extreme-ultraviolet (EUV) and soft X-ray (SXR) images we identify the erupting feature as a blowout coronal jet: in SXRs it is a jet with a bright base, and in EUV it appears as an eruption of relatively cool (~50,000 K) material of horizontal size scale ~30'' originating from the base of the SXR jet. In SOT Ca II H images, the most pronounced analog is a pair of thin (~1'') ejections at the locations of either of the two legs of the erupting EUV jet. These Ca II features eventually rise beyond 45'', leaving the SOT field of view, and have an appearance similar to standard spicules except that they are much taller. They have velocities similar to that of "type II" spicules, ~100 km s-1, and they appear to have spicule-like substructures splitting off from them with horizontal velocity ~50 km s-1, similar to the velocities of splitting spicules measured by Sterling et al. Motions of splitting features and of other substructures suggest that the macroscopic EUV jet is spinning or unwinding as it is ejected. This and earlier work suggest that a subpopulation of Ca II type II spicules are the Ca II manifestation of portions of larger scale erupting magnetic jets. A different subpopulation of type II spicules could be blowout jets occurring on a much smaller horizontal size scale than the event we observe here. Title: Evidence for magnetic flux cancelation leading to an ejective solar eruption observed by Hinode, TRACE, STEREO, and SoHO/MDI Authors: Sterling, A. C.; Chifor, C.; Mason, H. E.; Moore, R. L.; Young, P. R. Bibcode: 2010A&A...521A..49S Altcode:
Aims: We study the onset of a solar eruption involving a filament ejection on 2007 May 20.
Methods: We observe the filament in Hα images from Hinode/SOT and in EUV with TRACE and STEREO/SECCHI/EUVI. Hinode/XRT images are used to study the eruption in soft X-rays. From spectroscopic data taken with Hinode/EIS we obtain bulk-flow velocities, line profiles, and plasma densities in the onset region. The magnetic field evolution was observed in SoHO/MDI magnetograms.
Results: We observed a converging motion between two opposite polarity sunspots that form the primary magnetic polarity inversion line (PIL), along which resides filament material before eruption. Positive-flux magnetic elements, perhaps moving magnetic features (MMFs) flowing from the spot region, appear north of the spots, and the eruption onset occurs where these features cancel repeatedly in a negative-polarity region north of the sunspots. An ejection of material observed in Hα and EUV marks the start of the filament eruption (its “fast-rise”). The start of the ejection is accompanied by a sudden brightening across the PIL at the jet's base, observed in both broad-band images and in EIS. Small-scale transient brightenings covering a wide temperature range (Log Te = 4.8-6.3) are also observed in the onset region prior to eruption. The preflare transient brightenings are characterized by sudden, localized density enhancements (to above Log ne [ cm-3] = 9.75, in Fe XIII) that appear along the PIL during a time when pre-flare brightenings were occurring. The measured densities in the eruption onset region outside the times of those enhancements decrease with temperature. Persistent downflows (red-shifts) and line-broadening (Fe XII) are present along the PIL.
Conclusions: The array of observations is consistent with the pre-eruption sheared-core magnetic field being gradually destabilized by evolutionary tether-cutting flux cancelation that was driven by converging photospheric flows, and the main filament ejection being triggered by flux cancelation between the positive flux elements and the surrounding negative field. A definitive statement however on the eruption's ultimate cause would require comparison with simulations, or additional detailed observations of other eruptions occurring in similar magnetic circumstances.

The video that accompanies Fig. 3 is only available in electronic form at http://www.aanda.org Title: Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets Authors: Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A. Bibcode: 2010ApJ...720..757M Altcode: By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop Hα macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Å snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T ~ 104 - 105 K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets. Title: Confirmation of the 'Main Sequence' of Explosive Active Regions Authors: Falconer, David; Moore, Ronald L. Bibcode: 2010shin.confE.106F Altcode: We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by mature sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 18,800 SOHO/MDI magnetograms. These magnetograms track the evolution of 420 mature active regions across the central disk of radius 0.5 RSun. A mature active region is one that has completed its rapid-emergence birth phase. The present study is an expansion of a previous initial study (Falconer, Moore, Gary, & Adams 2009, ApJ 700 L166), for which the sample was 1,865 magnetograms from 44 mature active regions. The two whole-active-region magnetic quantities are L⊙, a measure of the active region's total magnetic flux, and LWLSG, a proxy of the total free energy in an active region's magnetic field above the photosphere. We compiled each active region's production of CMEs, X flares, and M flares during its rotation across the disk. In addition, at the time of each magnetogram, we evaluated from the NOAA Catalog of Active Region Flares a flare-power measure, the active region's 48-hour average power output in 1-8 Å radiation from X and M flares. In agreement with our previous study, from the present expanded sample we again find that (1) CME/flare-productive active regions are concentrated in a 'main sequence' along a straight line in (Log L⊙, Log LWLSG) space, (2) this line is close below an upper edge of maximum attainable free magnetic energy, and (3) the average flare-power measure increases sharply across this line as the free-energy-limit front is approached. As before, this third result suggests that the main sequence of explosive active regions is the consequence of equilibrium between input of free energy by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in Mass-Luminosity space.

This work is funded by the NSF SHINE Program, by the NASA LWS TR&T Program, by the AFOSR MURI Program, and by the NASA Technical Excellence Initiative. Title: Hinode Solar Optical Telescope Observations of the Source Regions and Evolution of "Type II" Spicules at the Solar Polar Limb Authors: Sterling, Alphonse C.; Moore, Ronald L.; DeForest, Craig E. Bibcode: 2010ApJ...714L...1S Altcode: We examine solar spicules using high-cadence Ca II data of the north pole coronal hole region, using the Solar Optical Telescope (SOT) on the Hinode spacecraft. The features we observe are referred to as "Type II" spicules by De Pontieu et al. in 2007. By convolving the images with the inverse-point-spread function for the SOT Ca II filter, we are able to investigate the roots of some spicules on the solar disk, and the evolution of some spicules after they are ejected from the solar surface. We find that the source regions of at least some of the spicules correspond to locations of apparent-fast-moving (~few × 10 km s-1), transient (few 100 s), Ca II brightenings on the disk. Frequently the spicules occur when these brightenings appear to collide and disappear. After ejection, when seen above the limb, many of the spicules fade by expanding laterally (i.e., roughly transverse to their motion away from the solar surface), splitting into two or more spicule "strands," and the spicules then fade without showing any downward motion. Photospheric/chromospheric acoustic shocks alone likely cannot explain the high velocities (~100 km s-1) of the spicules. If the Ca II brightenings represent magnetic elements, then reconnection among those elements may be a candidate to explain the spicules. Alternatively, many of the spicules could be small-scale magnetic eruptions, analogous to coronal mass ejections, and the apparent fast motions of the Ca II brightenings could be analogs of flare loops heated by magnetic reconnection in these eruptions. Title: Blowout Jets: Hinode X-Ray Jets that Don't Fit the Standard Model Authors: Moore, Ronald L.; Cirtain, J. W.; Sterling, A. C. Bibcode: 2010AAS...21640620M Altcode: 2010BAAS...41..883M Nearly half of all H-alpha macrospicules in polar coronal holes appear to be miniature filament eruptions (Yamauchi et al 2004, ApJ, 605, 511). This suggests that there is a large class of X-ray jets in which the jet-base magnetic arcade undergoes a blowout eruption as in a CME, instead of remaining static as in most solar X-ray jets, the standard jets that fit the model advocated by Shibata (e.g., Shibata et al 1992, PASJ, 44, L173). Along with a cartoon depicting the standard model, we present a cartoon depicting the signatures expected of blowout jets in coronal X-ray images. From Hinode/XRT movies and STEREO/EUVI snapshots in polar coronal holes, we present examples of (1) X-ray jets that fit the standard model, and (2) X-ray jets that do not fit the standard model but do have features appropriate for blowout jets. These features are (1) a flare arcade inside the jet-base arcade in addition to the small flare arcade (bright point) outside that standard jets have, (2) a filament of cool (T 80,000 K) plasma that erupts from the core of the jet-base arcade, and (3) an extra jet strand that should not be made by the reconnection for standard jets but could be made by reconnection between the ambient unipolar open field and the opposite-polarity leg of the filament-carrying flux-rope core field of the erupting jet-base arcade. We therefore infer that these non-standard jets are blowout jets, jets made by miniature versions of the sheared-core-arcade eruptions that make CMEs.

This work was funded by NASA's Science Mission Directorate through the Heliophysics Guest Investigators Program, the Hinode Project, and the Living With a Star Targeted Research and Technology Program. Title: Confirmation of the "Main Sequence” of Explosive Active Regions Authors: Falconer, David; Moore, R. L. Bibcode: 2010AAS...21640612F Altcode: 2010BAAS...41..881F We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by mature sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from SOHO/MDI magnetograms of 420 active regions during their passage within 0.5 RSun of disk center. This study is a ten-fold expansion of our recent exploratory study (Falconer et al 2009, ApJ, 700, L166). The two measured magnetic quantities are LΦ, a measure of an active region's total magnetic flux, and LWLSG, a proxy of the total free energy in the active region's magnetic field above the photosphere. For each active region we also have (1) the times of CMEs, X flares, and M flares produced during disk passage, and (2) at the time of each magnetogram, a measure of the active region's power output in major flares, the 48-hour average power output in 1-8 Å radiation from its X and M flares. In agreement with our exploratory study, we again find (1) CME/flare-productive active regions are concentrated in a "main sequence” along a straight line in (Log LΦ, Log LWLSG) space, (2) this line is close below an upper edge of maximum attainable free magnetic energy, and (3) the average flare-power measure increases steeply across this line as the free-energy-limit edge is approached. As before, this third result suggests that the main sequence of explosive active regions results from equilibrium between the input of free energy by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and energy loss that is analogous to that for the main sequence of hydrogen-burning stars in Mass-Luminosity space.

NASA's LWS/TR&T Program, AFOSR's MURI Program, and NASA's TEI Program funded this work. Title: Solar Polar Spicules Observed with Hinode Authors: Sterling, Alphonse C.; Moore, R. L.; DeForest, C. E. Bibcode: 2010AAS...21640303S Altcode: 2010BAAS...41Q.878S We examine solar polar region spicules using high-cadence Ca II data from the Solar Optical Telescope (SOT) on the Hinode spacecraft. We sharpened the images by convolving them with the inverse-point-spread function of the SOT Ca II filter, and we are able to see some of the spicules originating on the disk just inside the limb. Bright points are frequently at the root of the disk spicules. These ``Ca II brightenings'' scuttle around at few x 10 km/s, live for 100 sec, and may be what are variously known as ``H2V grains,'' ``K2V grains,'' or "K2V bright points.'' When viewed extending over the limb, some of the spicules appear to expand horizontally or spit into two or more components, with the horizontal expansion or splitting velocities reaching 50 km/s. This work was funded by NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program, the Supporting Research and Program, the Heliospheric Guest Investigator Program, and the Hinode project. Title: Surface Gravity and Hawking Temperature from Entropic Force Viewpoint Authors: Aaltonen, T.; Adelman, J.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauer, G.; Beauchemin, P. -H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Dube, S.; Ebina, K.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Han, B. -Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S. -C.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Kietzman, B.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C. -J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Lovas, L.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramanov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, S. -Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wolfe, H.; Wright, T.; Wu, X.; Würthwein, F.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zhang, X.; Zheng, Y.; Zucchelli, S.; CDF Collaboration Bibcode: 2010MPLA...25.2825E Altcode: 2010arXiv1003.2049C We consider a freely falling holographic screen for the Schwarzschild and Reissner-Nordström black holes and evaluate the entropic force à la Verlinde. When the screen crosses the event horizon, the temperature of the screen agrees to the Hawking temperature and the entropic force gives rise to the surface gravity for both of the black holes. Title: Two types of magnetic flux cancelation in the solar eruption of 2007 May 20 Authors: Sterling, Alphonse; Moore, Ronald; Mason, Helen Bibcode: 2010cosp...38.1946S Altcode: 2010cosp.meet.1946S We study a solar eruption on 2007 May 20, in an effort to understand the cWe study a solar eruption of 2007 May 20, in an effort to understand the cause of the eruption's onset. The event produced a GOES class B6.7 flare peaking at 05:56 UT, while ejecting a surge/filament and producing a coronal mass ejection (CME). We examine several data sets, including Hα images from the Solar Optical Telescope (SOT) on Hinode, EUV images from TRACE, and line-of-sight magnetograms from SoHO/MDI. Flux cancelation occurs among two different sets of flux elements inside of the erupting active region: First, for several days prior to eruption, opposite-polarity sunspot groups inside the region move toward each other, leading to the cancelation of ∼ 1021 Mx of flux over three days. Second, within hours prior to the eruption, positive-polarity moving magnetic features (MMFs) flowing out of the positive-flux spots at ∼ 1 km/s repeatedly cancel with field inside a patch of negative-polarity flux located north of the sunspots. The filament erupts as a surge whose base is rooted in the location where the MMF cancelation occurs, while during the eruption that filament flows out along the polarity inversion line between the converging spot groups. We conclude that a plausible scenario is that the converging spot fields brought the magnetic region to the brink of instability, and the MMF cancelation pushed the system "over the edge," triggering the eruption. This work was funded by NASA's Science Mission Directorate thought the Living With a Star Targeted Research and Technology Program, the Supporting Research and Program, and the Hinode project. Title: The "Main Sequence" of Explosive Solar Active Regions: Discovery and Interpretation Authors: Falconer, David A.; Moore, Ronald L.; Gary, G. Allen; Adams, Mitzi Bibcode: 2009ApJ...700L.166F Altcode: We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R Sun. The two quantities are LWLSG, a gauge of the total free energy in an active region's magnetic field, and LΦ, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line "main sequence" in (log LWLSG, log LΦ) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space. Title: Search for Dark Photons from Supersymmetric Hidden Valleys Authors: Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Ancu, L. S.; Andeen, T.; Anzelc, M. S.; Aoki, M.; Arnoud, Y.; Arov, M.; Arthaud, M.; Askew, A.; Åsman, B.; Atramentov, O.; Avila, C.; Backusmayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Barfuss, A. -F.; Bargassa, P.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Bu, X. B.; Buchholz, D.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calfayan, P.; Calpas, B.; Calvet, S.; Cammin, J.; Carrasco-Lizarraga, M. A.; Carrera, E.; Carvalho, W.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Cheu, E.; Cho, D. K.; Choi, S.; Choudhary, B.; Christoudias, T.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Crépé-Renaudin, S.; Cuplov, V.; Cutts, D.; Ćwiok, M.; Das, A.; Davies, G.; de, K.; de Jong, S. J.; de La Cruz-Burelo, E.; Devaughan, K.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duflot, L.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Ermolov, P.; Escalier, M.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.; Gómez, B.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-de La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hossain, S.; Houben, P.; Hu, Y.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jakobs, K.; Jamin, D.; Jarvis, C.; Jesik, R.; Johns, K.; Johnson, C.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Juste, A.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kaushik, V.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khatidze, D.; Kim, T. J.; Kirby, M. H.; Kirsch, M.; Klima, B.; Kohli, J. M.; Konrath, J. -P.; Kozelov, A. V.; Kraus, J.; Kuhl, T.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Kvita, J.; Lacroix, F.; Lam, D.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, W. M.; Leflat, A.; Lellouch, J.; Li, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Love, P.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Mättig, P.; Magerkurth, A.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martin, B.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Mendoza, L.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Mitrevski, J.; Mommsen, R. K.; Mondal, N. K.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mulhearn, M.; Mundal, O.; Mundim, L.; Nagy, E.; Naimuddin, M.; Narain, M.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nilsen, H.; Nogima, H.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Ochando, C.; Onoprienko, D.; Orduna, J.; Oshima, N.; Osman, N.; Osta, J.; Otec, R.; Otero Y Garzón, G. J.; Owen, M.; Padilla, M.; Padley, P.; Pangilinan, M.; Parashar, N.; Park, S. -J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.; Pétroff, P.; Piegaia, R.; Piper, J.; Pleier, M. -A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M. -E.; Polozov, P.; Popov, A. V.; Potter, C.; Prado da Silva, W. L.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rakitine, A.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Renkel, P.; Rich, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Rominsky, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shamim, M.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Siccardi, V.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.; Soustruznik, K.; Spurlock, B.; Stark, J.; Stolin, V.; Stoyanova, D. A.; Strandberg, J.; Strandberg, S.; Strang, M. A.; Strauss, E.; Strauss, M.; Ströhmer, R.; Strom, D.; Stutte, L.; Sumowidagdo, S.; Svoisky, P.; Takahashi, M.; Tanasijczuk, A.; Taylor, W.; Tiller, B.; Tissandier, F.; Titov, M.; Tokmenin, V. V.; Torchiani, I.; Tsybychev, D.; Tuchming, B.; Tully, C.; Tuts, P. M.; Unalan, R.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vilanova, D.; Vint, P.; Vokac, P.; Voutilainen, M.; Wagner, R.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, G.; Weber, M.; Welty-Rieger, L.; Wenger, A.; Wetstein, M.; White, A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Xu, C.; Yacoob, S.; Yamada, R.; Yang, W. -C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, Z.; Yin, H.; Yip, K.; Yoo, H. D.; Youn, S. W.; Yu, J.; Zeitnitz, C.; Zelitch, S.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zutshi, V.; Zverev, E. G. Bibcode: 2009PhRvL.103h1802A Altcode: 2009arXiv0905.1478D We search for a new light gauge boson, a dark photon, with the D0 experiment. In the model we consider, supersymmetric partners are pair produced and cascade to the lightest neutralinos that can decay into the hidden sector state plus either a photon or a dark photon. The dark photon decays through its mixing with a photon into fermion pairs. We therefore investigate a previously unexplored final state that contains a photon, two spatially close leptons, and large missing transverse energy. We do not observe any evidence for dark photons and set a limit on their production. Title: Suppression of Active-Region CME Production by the Presence of Other Active Regions Authors: Falconer, David Allen; Moore, Ron; Barghouty, Abdulnasser; Khazanov, Igor Bibcode: 2009shin.confE.102F Altcode: From the SOHO mission's data base of MDI full-disk magnetograms spanning solar cycle 23, we have obtained a set of 40,000 magnetograms of 1,300 active regions, tracking each active region across the 30 degree central solar disk. Each active region magnetogram is cropped from the full-disk magnetogram by an automated code. The cadence is 96 minutes. From each active-region magnetogram, we have measured two whole-active-region magnetic quantities: (1) the magnetic size of the active region (the active region's total magnetic flux), and (2) a gauge of the active region's free magnetic energy (part of the free energy is released in the production of a flare and/or CME eruption). From NOAA Flare/CME catalogs, we have obtained the event (Flare/CME/SEP event) production history of each active region. Using all these data, we find that for each type of eruptive event, an active region's expected rate of event production increases as a power law of our gauge of active-region free magnetic energy. We have also found that, among active regions having nearly the same free energy, the rate of the CME production is less when there are many other active regions on the disk than when there are few or none, but there is no significant discernible suppression of the rate of flare production. This indicates that the presence of other active regions somehow tends to inhibit an active region's flare-producing magnetic explosions from becoming CMEs, contrary to the expectation from the breakout model for the production of CMEs.

This work is funded by the NASA Technical Excellence Initiative, by the AFOSR MURI Program, by the NASA LWS TR&T Program, and by the NSF SHINE Program. Title: Measurements of differential cross sections of Z/γ+jets+X events in pp¯ collisions at s=1.96 TeV Authors: Dø Collaboration; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Ancu, L. S.; Andeen, T.; Anzelc, M. S.; Aoki, M.; Arnoud, Y.; Arov, M.; Arthaud, M.; Askew, A.; Åsman, B.; Atramentov, O.; Avila, C.; Backusmayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, P.; Banerjee, S.; Barberis, E.; Barfuss, A. -F.; Bargassa, P.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Bu, X. B.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calfayan, P.; Calpas, B.; Calvet, S.; Cammin, J.; Carrasco-Lizarraga, M. A.; Carrera, E.; Carvalho, W.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Cheu, E.; Cho, D. K.; Choi, S.; Choudhary, B.; Christofek, L.; Christoudias, T.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Crépé-Renaudin, S.; Cuplov, V.; Cutts, D.; Ćwiok, M.; Das, A.; Davies, G.; de, K.; de Jong, S. J.; de La Cruz-Burelo, E.; Devaughan, K.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duflot, L.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Ermolov, P.; Escalier, M.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.; Gómez, B.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinson, A. P.; Heintz, U.; Hensel, C.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hossain, S.; Houben, P.; Hu, Y.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jakobs, K.; Jamin, D.; Jarvis, C.; Jesik, R.; Johns, K.; Johnson, C.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Juste, A.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kaushik, V.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khatidze, D.; Kim, T. J.; Kirby, M. H.; Kirsch, M.; Klima, B.; Kohli, J. M.; Konrath, J. -P.; Kozelov, A. V.; Kraus, J.; Kuhl, T.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Kvita, J.; Lacroix, F.; Lam, D.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, W. M.; Leflat, A.; Lellouch, J.; Li, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Love, P.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Mättig, P.; Magerkurth, A.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martin, B.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Mendoza, L.; Mercadante, P. G.; Merkin, M.; Merritt, K. W.; Meyer, A.; Meyer, J.; Mitrevski, J.; Mommsen, R. K.; Mondal, N. K.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mulhearn, M.; Mundal, O.; Mundim, L.; Nagy, E.; Naimuddin, M.; Narain, M.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nilsen, H.; Nogima, H.; Novaes, S. F.; Nunnemann, T.; O'Neil, D. C.; Obrant, G.; Ochando, C.; Onoprienko, D.; Orduna, J.; Oshima, N.; Osman, N.; Osta, J.; Otec, R.; Otero Y Garzón, G. J.; Owen, M.; Padilla, M.; Padley, P.; Pangilinan, M.; Parashar, N.; Park, S. -J.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Pawloski, G.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.; Pétroff, P.; Piegaia, R.; Piper, J.; Pleier, M. -A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pogorelov, Y.; Pol, M. -E.; Polozov, P.; Popov, A. V.; Potter, C.; da Silva, W. L. Prado; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rakitine, A.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Renkel, P.; Rich, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Robinson, S.; Rodrigues, R. F.; Rominsky, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Savage, G.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shamim, M.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Siccardi, V.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.; Soustruznik, K.; Spurlock, B.; Stark, J.; Stolin, V.; Stoyanova, D. A.; Strandberg, J.; Strandberg, S.; Strang, M. A.; Strauss, E.; Strauss, M.; Ströhmer, R.; Strom, D.; Stutte, L.; Sumowidagdo, S.; Svoisky, P.; Takahashi, M.; Tanasijczuk, A.; Taylor, W.; Tiller, B.; Tissandier, F.; Titov, M.; Tokmenin, V. V.; Torchiani, I.; Tsybychev, D.; Tuchming, B.; Tully, C.; Tuts, P. M.; Unalan, R.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Vachon, B.; van den Berg, P. J.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vilanova, D.; Vint, P.; Vokac, P.; Voutilainen, M.; Wagner, R.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, G.; Weber, M.; Welty-Rieger, L.; Wenger, A.; Wetstein, M.; White, A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Xu, C.; Yacoob, S.; Yamada, R.; Yang, W. -C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, Z.; Yin, H.; Yip, K.; Yoo, H. D.; Youn, S. W.; Yu, J.; Zeitnitz, C.; Zelitch, S.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zutshi, V.; Zverev, E. G. Bibcode: 2009PhLB..678...45D Altcode: 2009PhLB..678...45A; 2009arXiv0903.1748D We present cross section measurements for Z/γ+jets+X production, differential in the transverse momenta of the three leading jets. The data sample was collected with the DØ detector at the Fermilab Tevatron pp¯ collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of 1 fb. Leading and next-to-leading order perturbative QCD predictions are compared with the measurements, and agreement is found within the theoretical and experimental uncertainties. We also make comparisons with the predictions of four event generators. Two parton-shower-based generators show significant shape and normalization differences with respect to the data. In contrast, two generators combining tree-level matrix elements with a parton shower give a reasonable description of the shapes observed in data, but the predicted normalizations show significant differences with respect to the data, reflecting large scale uncertainties. For specific choices of scales, the normalizations for either generator can be made to agree with the measurements. Title: Chemical composition of aerosols and cloud condensation nuclei in the Eastern Mediterranean: Results from long-term studies. Authors: Bougiatioti, A.; Fountoukis, C.; Kalivitis, N.; Moore, R.; Nenes, A.; Pandis, S.; Mihalopoulos, N. Bibcode: 2009GeCAS..73R.145B Altcode: No abstract at ADS Title: Detection of a Preferred Direction of Polar-Latitude Magnetic Bipoles via the Reconnection Bright Point in X-Ray Jets Authors: Stern, Julie; Cirtain, J.; Falconer, D.; Moore, R.; DeLuca, E. Bibcode: 2009SPD....40.1304S Altcode: Martin and Harvey (1979, Sol. Phys. 64, 93) found that during the solar minimum between Cycles 20 and 21 ephemeral active regions at high latitudes (55-65 degrees) showed a definite preference for the east-west magnetic direction expected from Hale's Law for the active regions of the coming solar cycle. In the present study, we use Hinode X-Ray Telescope movies of X-ray jets observed in and around the polar coronal holes to examine whether the magnetic bipoles at polar latitudes (> 60 degrees) during the present Cycle 23-24 minimum display any preference in their east-west direction. The particular feature of an X-ray jet that we use to detect the magnetic direction of the magnetic bipole spanning the base of the jet is the smaller bright-point bipole produced at one end of the jet-base bipole by the jet-producing reconnection with the surrounding high-reaching background field in and around the coronal hole (a la Shibata et al 1992, PASJ, 44, L173). For any jet-producing bipole that has an obvious east-west component to its direction, the east-west magnetic direction of the bipole is deduced from the polarity of the polar-cap background field and whether the reconnection bright point is on the east or west end of the jet-base bipole. For an initial collection of about 100 polar jets, observed in late 2006 and early 2007 and produced by bipoles having obvious east-west inclination, we find that a majority ( 60%) of the bipoles had the east-west direction expected from Hale's Law for the coming solar cycle (Cycle 24). We can use this method to see if this direction preference at polar latitudes changes as Cycle 24 progresses.

This work was supported by the NASA/MSFC Undergraduate Student Research Program and by NASA's Heliophysics Division through the Hinode Mission and the Heliophysics Guest Investigators Program. Title: The "Main Sequence” of Explosive Solar Active Regions: Discovery and Interpretation Authors: Falconer, David; Moore, R. L.; Gary, G. A.; Adams, M. Bibcode: 2009SPD....40.1925F Altcode: We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1865 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 full-grown active regions across the central disk of radius 0.5 RSun. The two quantities are LWLSG, a gauge of the total free energy in an active region's magnetic field above the photosphere, and LΦ, a measure of the active region's total magnetic flux. We compiled each active region's production of CMEs, X flares, and M flares during its rotation across the disk. In addition, at the time of each magnetogram, we evaluated from the NOAA Catalog of Active Region Flares a flare-power measure, the active region's 48-hour average power output in 1-8 Å radiation from X and M flares. From these data, we find that (1) CME/flare-productive active regions are concentrated in a straight-line "main sequence” in (Log LWLSG, Log LΦ) space, (2) this line is close behind a front of maximum attainable magnetic twist, and (3) the average flare-power measure increases sharply across this line as the leading front is approached. These results suggest that the main sequence of explosive active regions is the consequence of equilibrium between input of free energy by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in Mass-Luminosity space.

This work was funded by NASA's LWS TR&T Program, NSF's SHINE Program, AFOSR's MURI Program, and NASA's Technical Excellence Initiative Program. Title: The Maximum Free Magnetic Energy Allowed in a Solar Active Region Authors: Moore, Ronald L.; Falconer, D. A. Bibcode: 2009SPD....40.1905M Altcode: Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are LWLSG, a gauge of the total free energy in an active region's magnetic field, and LΦ, a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 RSun central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size LΦ of the active region, (2) in (Log LWLSG, Log LΦ) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active-region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: áBñ ≡ ΦA ≈ 300 G, where Φ is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (< 10%) of the active region's free magnetic energy.

This work was funded by NASA's Heliophysics Division, NSF's Division of Atmospheric Sciences, and AFOSR's MURI Program. Title: Quiescent current sheets in the solar wind and origins of slow wind Authors: Suess, S. T.; Ko, Y. -K.; von Steiger, R.; Moore, R. L. Bibcode: 2009JGRA..114.4103S Altcode: 2009JGRA..11404103S Solar wind near the heliospheric current sheet is investigated using Ulysses and ACE data in a superposed epoch analysis for several days on either side of the current sheets. Only data near sunspot minima are used, minimizing the influence of transients. New results are shown for composition and ionization state. Existing results showing a ∼2 day wide depletion in He/H (He++/H+) at the current sheet are confirmed, although the depletion is generally more narrow. A recent finding of a broad 5-10 day wide reduction in He/H around the current sheet is also confirmed. An important result is that the narrow depletion is not a real phenomenon but is instead a statistical consequence of the superposition of transient depletions that also create the broad reduction in the averages. These transient depletions last from a few hours up to several days, come from the core of streamers, and are embedded in a quasi-steady flow from streamers' legs. Most depletions contain a current sheet just inside one edge, leading to the apparent narrow depletion at the current sheet in the superposed epoch analysis. These results lead us to a hypothesis for how the He/H depletions form with a current sheet just inside one edge. Fe/O fluctuations associated with the He/H fluctuations further show that mixing of plasma from coronal holes adjacent to streamer brightness boundaries into outflow inside the brightness boundary is not an important process. Title: Supernova 2009dc in UGC 10064 Authors: Puckett, T.; Moore, R.; Newton, J.; Orff, T. Bibcode: 2009CBET.1762....1P Altcode: 2009CBET.1762A...1P T. Puckett, Ellijay, GA, U.S.A.; R. Moore, Warwick, NY, U.S.A.; and J. Newton, Portal, AZ, U.S.A., report the discovery of an apparent supernova (mag 16.5) on unfiltered CCD images (limiting mag 18.4) taken with a 0.40-m reflector at Portal on Apr. 9.31 UT in the course of the Puckett Observatory Supernova Search. The new object was confirmed at mag 16.3 on images (limiting mag 18.5) taken by T. Orff on Apr. 10.42 with a 0.40-m reflector at Portal. SN 2009dc is located at R.A. = 15h51m12s.12, Decl. = +25o42m28s.0 (equinox 2000.0), which is 15".8 west and 20".8 north of the center of UGC 10064. Nothing is visible at this position on images taken by Puckett on Mar. 21 (limiting mag 19.3). Title: Supernova 2009ba in IC 582 Authors: Puckett, T.; Moore, R.; Orff, T. Bibcode: 2009CBET.1730....1P Altcode: 2009CBET.1730A...1P T. Puckett, Ellijay, GA, U.S.A.; and R. Moore, Warwick, NY, U.S.A., report the discovery of an apparent supernova (mag 18.4) on unfiltered CCD images (limiting mag 19.7) taken with a 0.35-m reflector at Ellijay on Mar. 21.18 UT in the course of the Puckett Observatory Supernova Search. The new object, which was confirmed at mag 18.3 on images (limiting mag 19.7) taken by T. Orff on Mar. 23.14 with a 0.60-m reflector at Ellijay, is located at R.A. = 9h59m01s.92, Decl. = +17o49m00s.1 (equinox 2000.0), which is 24".1 east and 1".9 south of the center of IC 582. Nothing is visible at this position on images taken by Puckett on Feb. 21 (limiting mag 19.5). Title: Quiescent Current Sheets in the Solar Wind and Origins of Slow Wind Authors: Suess, S. T.; Ko, Y. -; von Steiger, R.; Moore, R. L. Bibcode: 2008AGUFMSH43B..03S Altcode: Solar wind near the heliospheric current sheet is investigated using Ulysses and ACE data, in a superposed epoch analysis for several days on either side of the current sheets. Only data near sunspot minima are used, minimizing the influence of transients. New results are shown for composition and ionization state. Existing results showing a ~2 day wide depletion in He/H at the current sheet are confirmed, although the depletion is generally more narrow. A recent finding of a broad 5-10 day wide reduction in He/H around the current sheet is also confirmed. An important result is that the narrow depletion is not a real phenomenon, but is instead a statistical consequence of the superposition of transient depletions that also create the broad reduction in the averages. These transient depletions last from a few hours up to several days, come from the core of streamers, and are embedded in a quasi-steady flow from streamers legs. Most depletions contain a current sheet just inside one edge, leading to the apparent narrow depletion at the current sheet in the superposed epoch analysis. These results lead us to a hypothesis for how the He/H depletions form with a current sheet just inside one edge. Fe/O fluctuations associated with the He/H fluctuations further show that mixing of plasma from coronal holes adjacent to streamer brightness boundaries into outflow inside the brightness boundary is not an important process. Title: Magnetogram Measures of Total Nonpotentiality for Prediction of Solar Coronal Mass Ejections from Active Regions of Any Degree of Magnetic Complexity Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2008ApJ...689.1433F Altcode: For investigating the magnetic causes of coronal mass ejections (CMEs) and for forecasting the CME productivity of active regions, in previous work we have gauged the total nonpotentiality of a whole active region by either of two measures, LSSM and LSGM, two measures of the magnetic field along the main neutral line in a vector magnetogram of the active region. This previous work was therefore restricted to nominally bipolar active regions, active regions that have a clearly identifiable main neutral line. In the present paper, we show that our work can be extended to include multipolar active regions of any degree of magnetic complexity by replacing LSSM and LSGM with their generalized counterparts, WLSS and WLSG, which are corresponding integral measures covering all neutral lines in an active region instead of only the main neutral line. In addition, we show that for active regions within 30 heliocentric degrees of disk center, WLSG can be adequately measured from line-of-sight magnetograms instead of vector magnetograms. This approximate measure of active-region total nonpotentiality,LWLSG, with the extensive set of 96 minute cadence full-disk line-of-sight magnetograms from SOHO MDI, can be used to study the evolution of active-region total nonpotentiality leading to the production of CMEs. Title: Downstream development and Kona low genesis Authors: Moore, R. W.; Martius, O.; Davies, H. C. Bibcode: 2008GeoRL..3520814M Altcode: A composite analysis of 43 Kona lows in conjunction with a case study of a particularly damaging Kona low indicate that downstream development is dynamically important to the subtropical cyclogenesis. It takes the form of eastward propagating, statistically significant upstream potential vorticity (PV) anomalies with accompanying meridional wind anomalies at the tropopause level prior to the formation of a Kona low. The downstream development culminates in the formation of a PV streamer, a meridionally-elongated stratospheric intrusion of high PV air into the troposphere, associated with a breaking wave on the dynamical tropopause. Subsequently, the streamer `cuts off' from the stratospheric reservoir of high PV and translates equatorward, thereby providing a necessary dynamical forcing for the subtropical surface cyclogenesis. Title: New Evidence that CMEs are Self-Propelled Magnetic Bubbles Authors: Moore, R. L.; Sterling, A. C.; Suess, S. T. Bibcode: 2008ASPC..397...98M Altcode: We briefly describe the ``standard model'' for the production of coronal mass ejections (CMEs), and our view of how it works. We then summarize pertinent recent results that we have found from SOHO observations of CMEs and the flares at the sources of these magnetic explosions. These results support our interpretation of the standard model: a CME is basically a self-propelled magnetic bubble, a low-beta plasmoid, that (1) is built and unleashed by the tether-cutting reconnection that builds and heats the coronal flare arcade, (2) can explode from a flare site that is far from centered under the full-blown CME in the outer corona, and (3) drives itself out into the solar wind by pushing on the surrounding coronal magnetic field. Title: Early Hinode Observations of a Solar Filament Eruption Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2008ASPC..397..115S Altcode: We use Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images; this is one of the first filament eruptions seen with Hinode. The filament undergoes a slow rise for at least 30 min prior to its fast eruption and strong soft X-ray flaring, and the new Hinode data elucidate the physical processes occurring during the slow-rise period. During the slow-rise phase, a soft X-ray (SXR) sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. The SOT data show that magnetic flux cancelation occurs along the neutral line of the filament in the hours before eruption, and this likely caused the low-lying reconnection that produced the microflaring and the slow rise leading up to the eruption. Title: The Foggy EUV Corona and Coronal Heating by MHD Waves From Explosive Reconnection Events Authors: Moore, R. L.; Cirtain, J. W.; Falconer, D. A. Bibcode: 2008AGUSMSP43C..03M Altcode: In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, Cirtain et al (2006, Sol. Phys., 239, 295) found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete-loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e.g., the 0.1 arcsec/pixel resolution of the Hi-C sounding- rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are seen as UV explosive events, EUV blinkers, and type II spicules. These MHD waves propagate across field lines and dissipate, heating the plasma in the field between the bright loops and plumes. This work was funded by NASA's Heliophysics Division. Title: Magnetic Flux Cancelation Leading to the Eruption of a Coronal Mass Ejection: Observations from Hinode, SOHO, TRACE, and STEREO Authors: Sterling, A. C.; Chifor, C.; Mason, H.; Moore, R. L. Bibcode: 2008AGUSMSP23B..05S Altcode: We study a solar eruption involving ejection of a filament on 2007 May 20, using instruments on Hinode, STEREO, TRACE, and SOHO. We observe the filament in EUV from TRACE and STEREO, and in H-alpha from SOT on Hinode. We also see the eruption in soft X-rays with XRT on Hinode, and in several EUV lines from EIS on Hinode. SOHO/MDI magnetograms show that converging motion between opposite-polarity sunspots in the region result in expansion of large-scale loops overlying the region's primary magnetic neutral line, along which sits filament material prior to its eruption. The source location of an EUV filament's surge-like ejection is a negative-polarity magnetic region that is north of the interacting spots, and patches of magnetic field flow at ~ 0.5 km/s from the positive converging spots into the negative region in the north. Apparently, repeated episodes of flux cancelation occur where the flowing positive flux collides with the northern negative flux, and the source of the EUV filament's ejection is near this cancelation site. Spectroscopic data from EIS are available for a portion of the active region that includes the northern cancelation site, and from these data we obtain bulk-flow velocities, line-broadening turbulent velocities, and densities of plasma in the region. The array of observations is consistent with the pre-eruption sheared-core magnetic arcade being gradually destabilized by evolutionary tether-cutting flux cancelation that was driven by converging photospheric flows. Title: The "Main Sequence" of Explosive Solar Active Regions: Discovery and Interpretation Authors: Falconer, D.; Moore, R.; Gary, G. A. Bibcode: 2008AGUSMSP24A..07F Altcode: From ~ 2000 MDI magnetograms of 44 evolving active regions within 30 heliocentric degrees of disk center, we measured active-region magnetic size and total nonpotentiality. Besides displaying the upper limit on active- region size above which the sun rarely produces active regions and the lower limit on active-region size below which a magnetic flux concentration is not an active region, we discovered that active-region total nonpotentiality has an upper bound that increases with active-region magnetic size. For a given size, an active region can have only so much total nonpotentiality. We show that this limit amounts to an upper bound on a particular measure of an active region's nonpotentiality per unit flux, that is, an upper bound on a flux-normalized measure of an active region's nonpotentiality. This limit plausibly represents an upper bound on the overall degree of twist in an active region's magnetic field. If so, an active region's magnetic twist can increase to this limit but go no further. After being near the limit for a while the active region can loose nonpotentiality and retreat from the limit. Albeit entirely different physics, this evolution is analogous to how stars evolve to the main sequence, stay there a while and then evolve away from it. Unlike the stellar evolution path, an active region can evolve to its limit multiple times. We present evidence that what is enforcing this upper limit on flux-normalized nonpotentiality is that as an active region's magnetic field becomes more twisted, it more rapidly releases energy in the form of flares and CMEs. When an active region's energy-burn-down rate by flares and CMEs equals the rate of buildup of its nonpotential energy, it can get no more nonpotential. The upper limit on flux- normalized nonpotentiality is determined by the burn-down rate dependence on the flux-normalized nonpotentiality and an upper limit on how rapidly an active region's nonpotentiality can buildup. This work is funded by the NASA LWS TR&T Program, by the NSF SHINE Program, by the AFOSR MURI Program, and by the NASA Technical Excellence Initiative. Title: Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity Authors: Moore, R. H.; Ingall, E. D.; Sorooshian, A.; Nenes, A. Bibcode: 2008GeoRL..35.7801M Altcode: The CCN-relevant properties and droplet growth kinetics are determined for marine organic matter isolated from seawater collected near the Georgia coast. The organic matter is substantially less CCN active than (NH4)2SO4, but droplet growth kinetics are similar. Köhler Theory Analysis (KTA) is used to determine the average organic molar masses of two samples, which are 4370 +/- 24% and 4340 +/- 18% kg kmol-1. KTA is used to infer surface tension depression, which is in excellent agreement with direct measurements. For the first time it is shown that direct measurements of surface tension are relevant for CCN activation, and this study highlights the power of KTA. Title: Initiation of Solar Eruptions Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2008ASPC..383..163S Altcode: We consider processes occurring just prior to and at the start of the onset of flare- and CME-producing solar eruptions. Our recent work uses observations of filament motions around the time of eruption onset as a proxy for the evolution of the fields involved in the eruption. Frequently the filaments show a slow rise prior to fast eruption, indicative of a slow expansion of the field that is about to explode. Work by us and others suggests that reconnection involving emerging or canceling flux results in a lengthening of fields restraining the filament-carrying field, and the consequent upward expansion of the field in and around the filament produces the filament's slow rise; that is, the reconnection weakens the magnetic ``tethers'' (``tether-weakening'' reconnection), and results in the slow rise of the filament. It is still inconclusive, however, what mechanism is responsible for the switch from the slow rise to the fast eruption. Title: Learning by Doing: Science in a Large General Education Class Authors: Lebofsky, Larry A.; Moore, R. W.; Lebofsky, N. R. Bibcode: 2007DPS....39.2712L Altcode: 2007BAAS...39..464L Teaching science in a large (150+ students) class can be a challenge. This is especially true in a general education science class that is populated by non-science majors, athletes, and students with math phobias, as well as students with a variety of learning disabilities.

To illustrate Newton's Laws, we used The Egg Fling: knocking a pie pan from under a raw egg which then falls straight down into a container of water. Newton's Laws are projected on an overhead in constant view of the students, and an ELMO is used to give a live, big-screen view to engage even those in the back of the large lecture room. Students make predictions, watch the demo, then refine or correct predictions as we discuss which laws are illustrated. The Laws are later related to students’ science fiction books and the GEMS Moons of Jupiter activity.

Reading classic science fiction books allows students to see how our understanding of the universe and our technology have changed over the last 150 years, also adding a writing component to the class.

Student preceptors are critical to the success of this approach, leading small group discussions that could not easily be done with the whole class. Preceptors receive training before they lead activities or discussions with groups of 10 to 15 peers.

Students do live sky observations and informal measurements to track the motion and phases of the Moon against the background stars, but use technology (Heavens Above and Starry Night) to track and understand the rising and setting of the Sun and its relation to the reason for the seasons.

Using a combination of live demonstrations with technology, short assessments, and student preceptors makes teaching a large group possible, effective, and fun. Title: Learning by Doing: Science in a Large General Education Class Authors: Lebofsky, Larry A.; Moore, R. W.; Lebofsky, N. R. Bibcode: 2007AAS...211.0604L Altcode: 2007BAAS...39..736L Teaching science in a large (150+ students) class can be a challenge. This is especially true in a general education science class that is populated by non-science majors, athletes, and students with math phobias, as well as students with a variety of learning disabilities.

To illustrate Newton's Laws, we used The Egg Fling: knocking a pie pan from under a raw egg which then falls straight down into a container of water. Newton's Laws are projected on an overhead in constant view of the students, and an ELMO is used to give a live, big-screen view to engage even those in the back of the large lecture room. Students make predictions, watch the demo, then refine or correct predictions as we discuss which laws are illustrated. The Laws are later related to students’ science fiction books and the GEMS Moons of Jupiter activity.

Reading classic science fiction books allows students to see how our understanding of the universe and our technology have changed over the last 150 years, also adding a writing component to the class.

Student preceptors are critical to the success of this approach, leading small group discussions that could not easily be done with the whole class. Preceptors receive training before they lead activities or discussions with groups of 10 to 15 peers.

Students do live sky observations and informal measurements to track the motion and phases of the Moon against the background stars, but use technology (Heavens Above and Starry Night) to track and understand the rising and setting of the Sun and its relation to the reason for the seasons.

Using a combination of live demonstrations with technology, short assessments, and student preceptors makes teaching a large group possible, effective, and fun. Title: Hinode Observations of the Onset Stage of a Solar Filament Eruption Authors: Sterling, Alphonse C.; Moore, Ronald L.; Berger, Thomas E.; Bobra, Monica; Davis, John M.; Jibben, Patricia; Kano, Ryohei; Lundquist, Loraine L.; Myers, D.; Narukage, Noriyuki; Sakao, Taro; Shibasaki, Kiyoto; Shine, Richard A.; Tarbell, Theodore D.; Weber, Mark Bibcode: 2007PASJ...59S.823S Altcode: We used Hinode X-Ray Telescope (XRT) and Solar Optical Telescope (SOT) filtergraph (FG) Stokes-V magnetogram observations, to study the early onset of a solar eruption that includes an erupting filament that we observe in TRACE EUV images. The filament undergoes a slow rise for at least 20min prior to its fast eruption and strong soft X-ray (SXR) flaring; such slow rises have been previously reported, and the new Hinode data elucidate the physical processes occurring during this period. XRT images show that during the slow-rise phase, an SXR sigmoid forms from apparent reconnection low in the sheared core field traced by the filament, and there is a low-level intensity peak in both EUV and SXRs during the slow rise. MDI and SOT FG Stokes-V magnetograms show that the pre-eruption filament is along a neutral line between opposing-polarity enhanced network cells, and the SOT magnetograms show that these opposing fields are flowing together and canceling for at least six hours prior to eruption. From the MDI data we measured the canceling network fields to be ∼ 40G, and we estimated that ∼ 1019 Mx of flux canceled during the five hours prior to eruption; this is only ∼ 5% of the total flux spanned by the eruption and flare, but apparently its tether-cutting cancellation was enough to destabilize the sigmoid field holding the filament and resulted in that field's eruption. Title: New Evidence for the Role of Emerging Flux in a Solar Filament's Slow Rise Preceding Its CME-producing Fast Eruption Authors: Sterling, Alphonse C.; Harra, Louise K.; Moore, Ronald L. Bibcode: 2007ApJ...669.1359S Altcode: We observe the eruption of a large-scale (~300,000 km) quiet-region solar filament leading to an Earth-directed ``halo'' coronal mass ejection (CME), using data from EIT, CDS, MDI, and LASCO on SOHO and from SXT on Yohkoh. Initially the filament shows a slow (~1 km s-1 projected against the solar disk) and approximately constant velocity rise for about 6 hr, before erupting rapidly, reaching a velocity of ~8 km s-1 over the next ~25 minutes. CDS Doppler data show Earth-directed filament velocities ranging from <20 km s-1 (the noise limit) during the slow-rise phase, to ~100 km s-1 early in the eruption. Beginning within 10 hr prior to the start of the slow rise, localized new magnetic flux emerged near one end of the filament. Near the start of and during the slow-rise phase, soft X-ray (SXR) microflaring occurred repeatedly at the flux-emergence site, and the magnetic arcade over the filament progressively brightened in a fan of illumination in SXRs. These observations are consistent with ``tether-weakening'' reconnection occurring between the newly emerging flux and the overlying arcade field containing the filament, and apparently this reconnection is the cause of the filament's slow rise. We cannot, however, discern whether the transition from slow rise to fast eruption was caused by a final episode of tether-weakening reconnection, or by one or some combination of other possible mechanisms allowed by the observations. Intensity ``dimmings'' and ``brightenings'' occurring both near to and relatively far from the location of the filament are possible signatures of the expansion (``opening'') of the erupting field and its reconnection with overarching field during the eruption. Title: Origin of the Sheared Magnetic Fields that Explode in Flares and Coronal Mass Ejections Authors: Moore, R. L.; Sterling, A. C. Bibcode: 2007ASPC..369..539M Altcode: From observations of 37 flare-arcade events, their magnetic settings, their sheared core fields, and the coronal mass ejections from these events, we find evidence that the sheared core fields in mature magnetic arcades are not formed by bodily emergence of a twisted flux rope along the neutral line. This implies that these sigmoidal sheared fields are instead formed by reconnection and flows above and in the photosphere. A high priority of Solar-B should be to discover the evolutionary processes that build the sigmoidal sheared fields along mature neutral lines. Title: An All-Sky 2MASS Mosaic Constructed on the TeraGrid Authors: Laity, A.; Berriman, G. B.; Good, J. C. Katz, D. S.; Jacob, J. C. Brieger, L.; Moore, R. Williams, R. Deelman, E.; Singh, G.; Su, M. -H. Bibcode: 2007ASPC..376...65L Altcode: 2007adass..16...65L The Montage mosaic engine supplies on-request image mosaic services for the NVO astronomical community. A companion paper describes scientific applications of Montage. This paper describes one application in detail: the generation at SDSC of a mosaic of the 2MASS All-sky Image Atlas on the NSF TeraGrid. The goals of the project are: to provide a value-added 2MASS product that combines overlapping images to improve sensitivity; to demonstrate applicability of computing at-scale to astronomical missions and surveys, especially projects such as LSST; and to demonstrate the utility of the NVO Hyperatlas format. The numerical processing of an 8~TB, 32-bit survey to produce a 64-bit, 20~TB output atlas presented multiple scalability and operational challenges. An MPI Python module, MYMPI, was used to manage the alternately sequential and parallel steps of the Montage process. This allowed us to parallelize all steps of the mosaic process: that of many, sequential steps executing simultaneously for independent mosaics and that of a single MPI parallel job executing on many CPUs for a single mosaic. The Storage Resource Broker (SRB)

was used to archive the output results in the Hyperatlas. The 2MASS mosaics are now being assessed for scientific quality.

Around 130,000 CPU-hours were used to complete the mosaics. The output consists of 1734 plates spanning 6° for each of 3 bands. Each of the 5202 mosaics is roughly 4 GB in size, and each has been tiled into a 12×12 array of 26~MB files for ease of handling. The total size is about 20~TB in 750,000 tiles. Title: The Width of a Solar Coronal Mass Ejection and the Source of the Driving Magnetic Explosion: A Test of the Standard Scenario for CME Production Authors: Moore, Ronald L.; Sterling, Alphonse C.; Suess, Steven T. Bibcode: 2007ApJ...668.1221M Altcode: We show that the strength (BFlare) of the magnetic field in the area covered by the flare arcade following a CME-producing ejective solar eruption can be estimated from the final angular width (Final θCME) of the CME in the outer corona and the final angular width (θFlare) of the flare arcade: BFlare~1.4[(Final θCME)/θFlare2 G. We assume (1) the flux-rope plasmoid ejected from the flare site becomes the interior of the CME plasmoid; (2) in the outer corona (R>2 Rsolar) the CME is roughly a ``spherical plasmoid with legs'' shaped like a lightbulb; and (3) beyond some height in or below the outer corona the CME plasmoid is in lateral pressure balance with the surrounding magnetic field. The strength of the nearly radial magnetic field in the outer corona is estimated from the radial component of the interplanetary magnetic field measured by Ulysses. We apply this model to three well-observed CMEs that exploded from flare regions of extremely different size and magnetic setting. One of these CMEs was an over-and-out CME, that is, in the outer corona the CME was laterally far offset from the flare-marked source of the driving magnetic explosion. In each event, the estimated source-region field strength is appropriate for the magnetic setting of the flare. This agreement (1) indicates that CMEs are propelled by the magnetic field of the CME plasmoid pushing against the surrounding magnetic field; (2) supports the magnetic-arch-blowout scenario for over-and-out CMEs; and (3) shows that a CME's final angular width in the outer corona can be estimated from the amount of magnetic flux covered by the source-region flare arcade. Title: Study of Small-Scale Dynamics in Quiet Regions from TRACE/BBSO Observations Authors: Yamauchi, Y.; Wang, H.; Moore, R. L. Bibcode: 2007ASPC..369..573Y Altcode: TRACE UV observations of coronal holes and quiet regions were made in September 2004 jointly with Hα and magnetogram observations at Big Bear Solar Observatory (BBSO) to study the structure, evolution, and magnetic setting of small-scale explosive events in those regions. Such activity in the fine-scale mixed-polarity magnetic fields in the network is believed to play an important role in coronal heating and solar wind acceleration. From the observations, 373 events were identified. Of these, 343 events were in the form of a spiked jet and 10 events were in the form of an erupting loop. Twenty were unclassifiable. The spiky events were rooted in compact bipolar fields at the edges of the magnetic network and 76% of the events showed brightening at their base in C IV 1550 Å images. This is further evidence that spiky macrospicules are driven by reconnection between a network bipole and high-reaching magnetic fields. Title: An all-sky 2MASS mosaic constructed on the TeraGrid: processing steps for generation of a 20-terabyte 2MASS all-sky mosaic Authors: Berriman, G. B.; Good, J. C.; Laity, A. C.; Katz, D. S.; Jacob, J. C.; Brieger, L.; Moore, R. W.; Williams, R.; Deelman, E.; Singh, G.; Su, M. -H. Bibcode: 2007HiA....14Q.625B Altcode: 2006IAUSS...3E..57B The Montage mosaic engine supplies on-request image mosaic services for the NVO astronomical community. A companion paper describes scientific applications of Montage. This paper describes one application in detail: the generation at SDSC of a mosaic of the 2MASS All-sky Image Atlas on the NSF TeraGrid. The goals of the project are: to provide a `valueadded' 2MASS product that combines overlapping images to improve sensitivity; to demonstrate applicability of computing at-scale to astronomical missions and surveys, especially projects such as LSST; and to demonstrate the utility of the NVO Hyperatlas format. The numerical processing of an 8-TB 32-bit survey to produce a 64-bit 20-TB output atlas presented multiple scalability and operational challenges. An MPI Python module, MYMPI, was used to manage the alternately sequential and parallel steps of the Montage process. This allowed us to parallelize all steps of the mosaic process: that of many, sequential steps executing simultaneously for independent mosaics and that of a single MPI parallel job executing on many CPUs for a single mosaic. The Storage Resource Broker (SRB) developed at SDSC has been used to archive the output results in the Hyperatlas. The 2MASS mosaics are now being assessed for scientific quality. The input images consist of 4,121,440 files, each 2 MB in size. The input files that fall on mosaic boundaries are opened, read, and used multiple times in the processing of adjacent mosaics, so that a total of 14 TB in 6,275,494 files are actually opened and read in the creation of mosaics across the entire survey. Around 130,000 CPU-hours were used to complete the mosaics. The output consists of 1734 6-degree plates for each of 3 bands. Each of the 5202 mosaics is roughly 4 GB in size, and each has been tiled into a 12 × 12 array of 26-MB files for ease of handling. The total size is about 20 TB in 750 000 tiles. Title: The Coronal-dimming Footprint of a Streamer-Puff Coronal Mass Ejection: Confirmation of the Magnetic-Arch-Blowout Scenario Authors: Moore, Ronald L.; Sterling, Alphonse C. Bibcode: 2007ApJ...661..543M Altcode: A streamer puff is a recently identified variety of coronal mass ejection (CME) of narrow to moderate width. It (1) travels out along a streamer, transiently inflating the streamer but leaving it largely intact, and (2) occurs in step with a compact ejective flare in an outer flank of the base of the streamer. These aspects suggest the following magnetic-arch-blowout scenario for the production of these CMEs: the magnetic explosion that produces the flare also produces a plasmoid that explodes up the leg of an outer loop of the arcade base of the streamer, blows out the top of this loop, and becomes the core of the CME. In this paper, we present a streamer-puff CME that produced a coronal dimming footprint. The coronal dimming, its magnetic setting, and the timing and magnetic setting of a strong compact ejective flare within the dimming footprint nicely confirm the magnetic-arch-blowout scenario. From these observations, together with several published cases of a transequatorial CME produced in tandem with an ejective flare or filament eruption that was far offset from directly under the CME, we propose the following. Streamer-puff CMEs are a subclass (one variety) of a broader class of ``over-and-out'' CMEs that are often much larger than streamer puffs but are similar to them in that they are produced by the blowout of a large quasi-potential magnetic arch by a magnetic explosion that erupts from one foot of the large arch, where it is marked by a filament eruption and/or an ejective flare. Title: The Coronal-dimming Footprint Of A Streamer-puff Coronal Mass Ejection: Confirmation Of The Magnetic-arch-blowout Scenario Authors: Moore, Ronald L.; Sterling, A. C. Bibcode: 2007AAS...210.2907M Altcode: 2007BAAS...39..138M A streamer puff is a recently identified variety of coronal mass ejection (CME) of narrow to moderate width. It (1) travels out along a streamer, transiently inflating the streamer but leaving it largely intact, and (2) occurs in step with a compact ejective flare in an outer flank of the base of the streamer. These aspects suggest the following magnetic-arch-blowout scenario for the production of these CMEs: the magnetic explosion that produces the flare also produces a plasmoid that explodes up the leg of an outer loop of the arcade base of the streamer, blows out the top of this loop, and becomes the core of the CME. In this paper, we present a steamer-puff CME that produced a coronal dimming footprint. The coronal dimming, its magnetic setting, and the timing and magnetic setting of a strong compact ejective flare within the dimming footprint nicely confirm the magnetic-arch-blowout scenario. From these observations, together with several published cases of a trans-equatorial CME produced in tandem with an ejective flare or filament eruption that was far offset from directly under the CME, we propose the following. Streamer-puff CMEs are a subclass (one variety) of a broader class of “over-and-out” CMEs that are often much larger than steamer puffs but are similar to them in that they are produced by the blowout of a large quasi-potential magnetic arch by a magnetic explosion that erupts from one foot of the large arch, where it is marked by a filament eruption and/or an ejective flare.

This work was funded by the Heliophysics Division of NASA's Science Mission Directorate. Title: Combined Hinode, STEREO, And TRACE Observations of a Solar Filament Eruption: Evidence For Destabilization By Flux-Cancelation Tether Cutting Authors: Sterling, Alphonse C.; Moore, R. L.; Hinode Team Bibcode: 2007AAS...210.7207S Altcode: 2007BAAS...39R.179S We present observations from Hinode, STEREO, and TRACE of a solar filament eruption and flare that occurred on 2007 March 2. Data from the two new satellites, combined with the TRACE observations, give us fresh insights into the eruption onset process. HINODE/XRT shows soft X-ray (SXR) activity beginning approximately 30 minutes prior to ignition of bright flare loops. STEREO and TRACE images show that the filament underwent relatively slow motions coinciding with the pre-eruption SXR brightenings, and it underwent rapid eruptive motions beginning near the time of flare onset. Concurrent HINODE/SOT magnetograms showed substantial flux cancelation under the filament at the site of the pre-eruption SXR activity. From these observations we infer that progressive tether-cutting reconnection driven by photospheric convection caused the slow rise of the filament and led to its eruption.

NASA supported this work through a NASA Heliosphysics GI grant. Title: Forecasting Solar Coronal Mass Ejections from MDI Magnetograms Authors: Falconer, David; Moore, R.; Gary, A. Bibcode: 2007AAS...210.2702F Altcode: 2007BAAS...39..135F We have shown in Falconer, Moore, & Gary (2006 ApJ, 644, 1258), from a sample of 36 MSFC vector magnetograms of predominately bipolar active regions, that whether an active region will or will not be CME productive in the next few days is better predicted by measures of the active region’s total nonpotentiality ( 75% prediction success rate) than by measures of either its magnetic twist or its magnetic size ( 65% prediction success rate). Here we show that our two main-neutral-line measures of total nonpotentiality for bipolar active regions are easily generalized to measure multipolar active regions of any degree of magnetic complexity. We find that the generalized measures retain the CME-prediction success rate of the previous measures for bipolar active regions, and have the same CME-prediction success rate for multipolar active regions as for bipolar active regions. One of the generalized measures of total nonpotentiality is obtained from the vertical field component of the vector magnetogram. We show that for active regions within 30 degrees of disk center, similar CME-prediction success rates are obtained when this measure is obtained from the line-of-sight component of the vector magnetogram as though it were the vertical component. We report results for this measure of total nonpotentiality measured from active-region magnetograms from SOHO/MDI, a space-based line-of-sight magnetograph. We find that the CME-prediction success rate remains about 75%. MDI, with its full-disk field of view, 96-minute cadence, and over 10 years of operation with few gaps 1) provides a much larger data set than does the MSFC vector magnetograph, and 2) will allow us to examine whether the magnetic evolution of an active region (e.g., time-rate-of-change of the total nonpotentiality) provides a stronger CME prediction when combined with total nonpotentiality.This work is funded by the NASA LWS TR&T Program and by the NSF SHINE Program. Title: Cool-Plasma Jets that Escape into the Outer Corona Authors: Corti, Gianni; Poletto, Giannina; Suess, Steve T.; Moore, Ronald L.; Sterling, Alphonse C. Bibcode: 2007ApJ...659.1702C Altcode: We report on observations acquired in 2003 May during a SOHO-Ulysses quadrature campaign. The UVCS slit was set normal to the radial of the Sun along the direction to Ulysses at 1.7 Rsolar, at a northern latitude of 14.5°. From May 25 to May 28, UVCS acquired spectra of several short-lived ejections that represent the extension at higher altitudes of recursive EIT jets, imaged in He II λ304. The jets were visible also in LASCO images and seem to propagate along the radial to Ulysses. UVCS spectra showed an unusually high emission in cool lines, lasting for about 10-25 minutes, with no evidence of hot plasma. Analysis of the cool line emission allowed us to infer the physical parameters (temperature, density, and outward velocity) of jet plasma and the evolution of these quantities as the jet crossed the UVCS slit. From these quantities, we estimated the energy needed to produce the jet. We also looked for any evidence of the events in the in situ data. We conclude by comparing our results with those of previous works on similar events and propose a scenario that accounts for the observed magnetic setting of the source of the jets and allows the jets to be magnetically driven. Title: Forecasting coronal mass ejections from line-of-sight magnetograms Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2007JASTP..69...86F Altcode: 2007JATP...69...86F We show that the length of strong-gradient, strong-field main neutral line, LSGM, which can be measured from line-of-sight magnetograms such as from SOHO/MDI, is both a measure of active-region nonpotentiality and a useful predictor of an active region's future Coronal mass ejections (CME) productivity. To demonstrate that LSGM is a nonpotentiality measure, we show that it is strongly correlated with a direct measure of nonpotentiality. For an appropriate choice of a threshold value, an active region's measured LSGM can be used as a predictor of whether the active region will produce a CME within a few days after the magnetogram. For our set of 36 Marshall Space Flight CentreMSFC vector magnetograms of bipolar active regions, LSGM is found to have a success rate of 80% for prediction of CME productivity in the 0 2 day window. The development of LSGM as a method of measuring nonpotentiality for forecasting large, fast CMEs from present space-based assets is of value to NASA's space exploration initiative (manned missions to the Moon and Mars). Title: Probing the Magnetic Causes of CMEs: Free Magnetic Energy More Important Than Either Size Or Twist Authors: Falconer, D.; Moore, R.; Gary, A. Bibcode: 2006AGUFMSH31B..03F Altcode: To probe the magnetic causes of CMEs, we have examined three types of magnetic measures: size, twist and total nonpotentiality (or total free magnetic energy) of an active region. Total nonpotentiality is roughly the product of size times twist. For predominately bipolar active regions, we have found that total nonpotentiality measures have the strongest correlation with future CME productivity (~ 75% prediction success rate), while size and twist measures each have a weaker correlation with future CME productivity (~ 65% prediction success rate) (Falconer, Moore, &Gary, ApJ, 644, 2006). For multipolar active regions, we find that the CME-prediction success rates for total nonpotentiality and size are about the same as for bipolar active regions. We also find that the size measure correlation with CME productivity is nearly all due to the contribution of size to total nonpotentiality. We have a total nonpotentiality measure that can be obtained from a line-of-sight magnetogram of the active region and that is as strongly correlated with CME productivity as are any of our total-nonpotentiality measures from deprojected vector magnetograms. We plan to further expand our sample by using MDI magnetograms of each active region in our sample to determine its total nonpotentiality and size on each day that the active region was within 30 degrees of disk center. The resulting increase in sample size will improve our statistics and allow us to investigate whether the nonpotentiality threshold for CME production is nearly the same or significantly different for mutipolar regions than for bipolar regions. In addition, we will investigate the time rates of change of size and total nonpotentiality as additional causes of CME productivity. This work was funded by NSF through its Solar Terrestrial Research and SHINE Programs and by NASA through its LWS TR&T Program and its Solar and Heliospheric Physics SR&T Program. Title: Electric Currents in Granite and Gabbro Generated by Impacts Up To 1 km/sec Authors: Hollerman, W. A.; Lau, B. L.; Moore, R. J.; Malespin, C. A.; Bergeron, N. P.; Freund, F. T.; Wasilewski, P. J. Bibcode: 2006AGUFM.T31A0419H Altcode: For many years, radio noise, strange lights coming out of the ground, and other unusual phenomena have been detected prior to major earthquakes. Only recently have these signals been systematically monitored and their correlations to earthquakes have been more firmly established. A glow in the sky sometimes heralds a big quake. In January 1995, white, blue, or orange lights extending some 200 m into the air and spreading 1 to 8 km across the ground were reported by at least 23 eyewitnesses in and around Kobe, Japan. Hours later, a 6.9-magnitude earthquake killed more than 4,500 people. Such signals imply the movement of electric currents through rock and soil and their discharge into the air. During summer 2006 a research project started using the single-stage light gas gun at the NASA Goddard Space Flight Center in Maryland. The gun fires 63 mm diameter aluminum sabots of a few grams to 1.2 kilograms. A catcher was designed to stop the sabot while allowing a smaller projectile to impact a desired target at velocities up to 1 km/s. This presentation documents first results of the production of electric currents during impacts on granite and gabbro instrumented with capacitive sensors, contact electrodes, magnetic pick-up coils and photo diodes for light detection. This research is critical towards the development of techniques that could be used to monitor quakes on the Earth and estimate secondary effects of meteorite impacts on the Moon and Mars during the next phase of human space exploration. Title: Initiation of Coronal Mass Ejections Authors: Moore, Ronald L.; Sterling, Alphonse C. Bibcode: 2006GMS...165...43M Altcode: This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. The presentation outlines our current view of the eruption onset, based on results from our own observational work and from the observational and modeling work of others. From these results and from physical reasoning, we and others have inferred the basic processes that trigger and drive the explosion. We describe and illustrate these processes using cartoons. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination can trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough. Title: An All-Sky 2MASS Mosaic Constructed on the TeraGrid Authors: Berriman, G. B.; Brieger, L.; Good, J. C.; Moore, R.; Williams, R.; Laity, A. C.; Jacob, J. C.; Katz, D. S. Bibcode: 2006IAUSS...6E...8B Altcode: The Montage mosaic engine supplies on-request image mosaic services for the NVO astronomical community. A companion paper describes scientific applications of Montage. This paper describes one application in detail: the generation at SDSC of a mosaic of the 2MASS All-sky Image Atlas on the NSF TeraGrid. The goals of the project are: to provide a "value-added" 2MASS product that combines overlapping images to improve sensitivity; to demonstrate applicability of computing at-scale to astronomical missions and surveys, especially projects such as LSST; and to demonstrate the utility of the NVO Hyperatlas format. The numerical processing of an 8-TB 32-bit survey to produce a 64-bit 20-TB output atlas presented multiple scalability and operational challenges. An MPI Python module, MYMPI, was used to manage the alternately sequential and parallel steps of the Montage process. This allowed us to parallelize all steps of the mosaic process: that of many, sequential steps executing simultaneously for independent mosaics and that of a single MPI parallel job executing on many CPUs for a single mosaic. The Storage Resource Broker (SRB) developed at SDSC has been used to archive the output results in the Hyperatlas. The 2MASS mosaics are now being assessed for scientific quality. The input images consist of 4,121,440 files, each 2 MB in size. The input files that fall on mosaic boundaries are opened, read, and used multiple times in the processing of adjacent mosaics, so that a total of 14 TB in 6,275,494 files are actually opened and read in the creation of mosaics across the entire survey. Around 130,000 CPU-hours were used to complete the mosaics. The output consists of 1734 6-degree plates for each of 3 bands. Each of the 5202 mosaics is roughly 4 GB in size, and each has been tiled into a 12x12 array of 26-MB files for ease of handling. The total size is about 20 TB in 750,000 tiles. Title: Wide and Narrow CMEs and their Source Explosions Observed at the Spring 2003 SOHO-Sun-Ulysses Quadrature Authors: Suess, S. T.; Corti, G.; Poletto, G.; Sterling, A.; Moore, R. Bibcode: 2006ESASP.617E.147S Altcode: 2006soho...17E.147S No abstract at ADS Title: Magnetic Causes of Solar Coronal Mass Ejections: Dominance of the Free Magnetic Energy over the Magnetic Twist Alone Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2006ApJ...644.1258F Altcode: We examine the magnetic causes of coronal mass ejections (CMEs) by examining, along with the correlations of active-region magnetic measures with each other, the correlations of these measures with active-region CME productivity observed in time windows of a few days, either centered on or extending forward from the day of the magnetic measurement. The measures are from 36 vector magnetograms of bipolar active regions observed within ~30° of disk center by the Marshal Space Flight Center (MSFC) vector magnetograph. From each magnetogram, we extract six whole-active-region measures twice, once from the original plane-of-the-sky magnetogram and again after deprojection of the magnetogram to disk center. Three of the measures are alternative measures of the total nonpotentiality of the active region, two are alternative measures of the overall twist in the active-region's magnetic field, and one is a measure of the magnetic size of the active region (the active region's magnetic flux content). From the deprojected magnetograms, we find evidence that (1) magnetic twist and magnetic size are separate but comparably strong causes of active-region CME productivity, and (2) the total free magnetic energy in an active region's magnetic field is a stronger determinant of the active region's CME productivity than is the field's overall twist (or helicity) alone. From comparison of results from the non-deprojected magnetograms with corresponding results from the deprojected magnetograms, we find evidence that (for prediction of active-region CME productivity and for further studies of active-region magnetic size as a cause of CMEs), for active regions within ~30° of disk center, active-region total nonpotentiality and flux content can be adequately measured from line-of-sight magnetograms, such as from SOHO MDI. Title: Initiation of the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filamentby Localized Emerging Magnetic Field via Microflaring Authors: Sterling, Alphonse C.; Moore, R. L.; Harra, L. K. Bibcode: 2006SPD....37.0823S Altcode: 2006BAAS...38..234S EUV data from EIT show that a filament of 2001 February 28 underwent aslow-rise phase lasting about 6 hrs, before rapidly erupting in a fast-risephase. Concurrent images in soft X-rays (SXRs) from Yohkoh/SXT show that aseries of three microflares, prominent in SXT images but weak in EIT 195 AngEUV images, occurred near one end of the filament. The first and lastmicroflares occurred respectively in conjunction with the start of theslow-rise phase and the start of the fast-rise phase, and the second microflarecorresponded to a kink in the filament trajectory. Beginning within 10 hoursof the start of the slow rise, new magnetic flux emerged at the location of themicroflaring. This localized new flux emergence and the resulting microflares,consistent with reconnection between the emerging field and the sheared sigmoidcore magnetic field holding the filament, apparently caused the slow rise ofthis field and the transition to explosive eruption. For the first time insuch detail, the observations show this direct action of localized emergingflux in the progressive destabilization of a sheared core field in the onset ofa coronal mass ejection (CME). Similar processes may have occurred in otherrecently-studied events.NASA supported this work through NASA SR&T and SEC GI grants. Title: Magnetic Causes of Solar Coronal Mass Ejections: Dominance of the Free Magnetic Energy over Either the Magnetic Twist or Size Alone Authors: Falconer, David; Moore, R.; Gary, A. Bibcode: 2006SPD....37.2004F Altcode: 2006BAAS...38..248F We report further results from our ongoing assessment of magnetogram-based measures of active-region nonpotentiality and size as predictors of coronal mass ejections (CMEs). We have devised improved generalized measures of active-region nonpotentiality that apply to active regions of any degree of magnetic complexity, rather than being limited to bipolar active regions as our initial measures were. From a set of 50 active-regions, we have found that measures of total nonpotentiality have a 75-80% success rate in predicting whether an active region will produce a CME within 2 days after the magnetogram. This makes measures of total nonpotentiality a better predictor than either active-region size, or active-region twist (size-normalized nonpotentiality), which have 65% success rates. We have also found that we can measure from a line-of-sight magnetogram an active region's total nonpotentiality and the size, which allows use of to use MDI to evaluate these quantities for 4-5 consecutive days for each active region, and to investigate if there is some combination of size and total nonpotentiality that have a stronger predictive power than does total nonpotentiality.This work was funded by NASA through its LWS TR&T Program and its Solar and Heliospheric Physics SR&T Program, and by NSF through its Solar Terrestrial Research and SHINE Programs. Title: The Origin Of The Sheared Magnetic Fields That Erupt In Flares And Coronal Mass Ejections Authors: Moore, Ronald L.; Sterling, A. C. Bibcode: 2006SPD....37.2001M Altcode: 2006BAAS...38R.247M From a search of the Yohkoh/SXT whole-Sun movie in the years 2000 and 2001, we found 37 flare-arcade events for which there were full-disk magnetograms from SOHO/MDI, coronagraph movies from SOHO/LASCO, and before and after full-disk chromospheric images from SOHO/EIT and/or from ground-based observatories. For each event, the observations show or strongly imply that the flare arcade was produced in the usual way by the eruption of sheared core field (as a flux rope) from along the neutral line inside a mature bipolar magnetic arcade. Two-thirds (25) of these arcades had the normal leading-trailing magnetic polarity arrangement of the active regions in the hemisphere of the arcade, but the other third (12) had reversed polarity, their leading flux being the trailing-polarity remnant of one or more old active regions and their trailing flux being the leading-polarity remnant of one or more other old active regions. >From these observations, we conclude: (1) The sheared core field in a reversed-polarity arcade must be formed by processes in and above the photosphere, not by the emergence of a twisted flux rope bodily from below the photosphere. (2) The sheared core fields in the normal-polarity arcades were basically the same as those in the reversed-polarity arcades: both showed similar sigmoidal form and produced similar explosions (similar flares and CMEs). (3) Hence, the sheared core fields in normal-polarity mature arcades are likely formed mainly by the same processes as in reversed-polarity arcades. (4) These processes should be discernible in high-resolution magnetogram sequences and movies of the photosphere, chromosphere, and corona such those to come from Solar-B.This work was supported by NASA's Science Mission Directorate through its Solar and Heliospheric Physics Supporting Research & Technology program and its Heliophysics Guest Investigators program. Title: Developing a phosphor-based health monitoring sensor suite for future spacecraft Authors: Goedeke, S. M.; Hollerman, W. A.; Bergeron, N. P.; Allison, S. W.; Moore, R. J. Bibcode: 2006SPIE.6222E..0BG Altcode: 2006SPIE.6222E..10G The desire to explore the Moon and Mars by 2030 makes cost effective and low mass health monitoring sensors essential for spacecraft development. Parameters such as impact, temperature, and radiation fluence need to be measured in order to determine the health of a human occupied vehicle. A phosphor-based sensor offers one good approach to develop a robust health monitoring system. The authors have spent the last few years evaluating physical characteristics of zinc sulfide (ZnS) phosphors. These materials emit triboluminescence (TL) which is fluorescence produced as a result of an impact. Currently, two ZnS materials have been tested for impact response for velocities from 1 m/s to 6 km/s. These materials have also been calibrated for use as temperature sensors from room temperature to 350 °C. Finally, any sensor that is intended to function in space must be characterized for response to ionizing radiation. Research to date has included irradiating ZnS with 3 MeV protons and 20 keV electrons, which are likely components of the space radiation environment. Results have shown that that the fluorescence emission intensity decreases with radiation fluence. However, radiation induced damage can be annealed at small fluence levels. This annealing not only increased light intensity of the exposed sample from excitation but also TL excitation as well. Title: Muon Reconstruction and Identification for the Event Filter of the Atlas Experiment Authors: Ventura, A.; Dos Anjos, A.; Armstrong, S.; Baines, J. T. M.; Bee, C. P.; Bellomo, M.; Biglietti, M.; Bogaerts, J. A.; Bosman, M.; Carlino, G.; Caron, B.; Casado, P.; Cataldi, G.; Cavalli, D.; Comune, G.; Conde, P.; Conventi, F.; Crone, G.; Damazio, D.; de Santo, A.; Diaz Gomez, M.; di Mattia, A.; Ellis, N.; Emeliyanov, D.; Epp, B.; Falciano, S.; Garitaonandia, H.; George, S.; Ghete, V.; Goncalo, S.; Gorini, E.; Haller, J.; Kabana, S.; Khomich, A.; Kilvington, G.; Kirk, N.; Konstantinidis, N.; Kootz, A.; Lankford, A. J.; Lowe, A.; Luminari, L.; Maeno, T.; Masik, J.; Meessen, C.; Mello, A. G.; Moore, R.; Morettini, P.; Negri, A.; Nikitin, N.; Nisati, A.; Osuna, C.; Padilla, C.; Panikashvili, N.; Parodi, F.; Pasqualucci, E.; Perez Reale, V.; Pinfold, J. L.; Pinto, P.; Primavera, M.; Qian, Z.; Resconi, S.; Rosati, S.; Sanchez, C.; Santamarina, C.; Scannicchio, D. A.; Schiavi, C.; Segura, E.; de Seixas, J. M.; Sivoklokov, S.; Sobreira, A.; Soluk, R.; Spagnolo, S.; Stefanidis, E.; Sushkov, S.; Sutton, M.; Tapprogge, S.; Tarem, S.; Thomas, E.; Touchard, F.; Usai, G.; Venda Pinto, B.; Ventura, A.; Vercesi, V.; Wengler, T.; Werner, P.; Wheeler, S. J.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Zobernig, G. Bibcode: 2006apsp.conf..648V Altcode: The ATLAS Trigger requires high efficiency and selectivity in order to keep the full physics potential of the experiment and to reject uninteresting processes from the 40 MHz event production rate of the LHC. These goals are achieved with a trigger composed of three sequential levels of increasing accuracy that have to reduce the output event rate down to ~100 Hz. This work focuses on muon reconstruction and identification for the third level (Event Filter), for which specific algorithms from the off-line environment have been adapted to work in the trigger framework. Two different strategies for accessing data (wrapped and seeded modes) are described and their reconstruction potential is then shown in terms of efficiencies, resolutions and fake muon rejection power. Title: Strong shaking in Los Angeles expected from southern San Andreas earthquake Authors: Olsen, K. B.; Day, S. M.; Minster, J. B.; Cui, Y.; Chourasia, A.; Faerman, M.; Moore, R.; Maechling, P.; Jordan, T. Bibcode: 2006GeoRL..33.7305O Altcode: The southernmost San Andreas fault has a high probability of rupturing in a large (greater than magnitude 7.5) earthquake sometime during the next few decades. New simulations show that the chain of sedimentary basins between San Bernardino and downtown Los Angeles form an effective waveguide that channels Love waves along the southern edge of the San Bernardino and San Gabriel Mountains. Earthquake scenarios with northward rupture, in which the guided wave is efficiently excited, produce unusually high long-period ground motions over much of the greater Los Angeles region, including intense, localized amplitude modulations arising from variations in waveguide cross-section. Title: Tracking Strategy and Performance for the Atlas High Level Triggers Authors: Khomich, A.; Dos Anjos, A.; Armstrong, S.; Baines, J. T. M.; Bee, C. P.; Biglietti, M.; Bogaerts, J. A.; Bosman, M.; Caron, B.; Casado, P.; Cataldi, G.; Cavalli, D.; Cervetto, M.; Comune, G.; Conde, P.; Crone, G.; Damazio, D.; Diaz Gomez, M.; Ellis, N.; Emeliyanov, D.; Epp, B.; Falciano, S.; Garitaonandia, H.; George, S.; Ghete, V.; Goncalo, R.; Haller, J.; Kabana, S.; Khomich, A.; Kilvington, G.; Kirk, J.; Konstantinidis, N.; Kootz, A.; Lankford, A. J.; Lowe, A.; Luminari, L.; Maeno, T.; Masik, J.; di Mattia, A.; Meessen, C.; Mello, A. G.; Moore, R.; Morettini, P.; Negri, A.; Nikitin, N.; Nisati, A.; Osuna, C.; Padilla, C.; Panikashvili, N.; Parodi, F.; Perez Reale, V.; Pinfold, J. L.; Pinto, P.; Qian, Z.; Resconi, S.; Rosati, S.; Sanchez, C.; Santamarina, C.; de Santo, A.; Scannicchio, D. A.; Schiavi, C.; Segura, E.; de Seixas, J. M.; Sivoklokov, S.; Sobreira, A.; Soluk, R.; Stefanidis, E.; Sushkov, S.; Sutton, M.; Tapprogge, S.; Tarem, S.; Thomas, E.; Touchard, F.; Usai, G.; Venda Pinto, B.; Ventura, A.; Vercesi, V.; Wengler, T.; Werner, P.; Wheeler, S. J.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Zobernig, G. Bibcode: 2006apsp.conf.1077K Altcode: Tracking has a central role in the event selection at the High Level Triggers of ATLAS. The earliest stage where tracking information can be used is the Second Level Trigger, where about 10 ms will be available for event processing. This constraint, together with the high multiplicity environment of ATLAS due to the multiple pp collisions, poses great challenges to the track reconstruction algorithms. In this review, we will describe the pattern recognition strategy for tracking in the HLT, and present results on (a) the tracking performance for different trigger signatures, such as single high-pt leptons, b-jets, and exclusive B decays; and (b) timing measurements of the complete tracking chain, including data access, unpacking, clustering, space point formation and the final pattern recognition. Title: Implementation and Performance of a Tau Lepton Selection Within the Atlas Trigger System at the Lhc Authors: Dos Anjos, A.; Armstrong, S.; Baines, J. T.; Bee, C. P.; Biglietti, M.; Bogaerts, A.; Bosman, M.; Caron, B.; Casado, P.; Cataldi, G.; Cavalli, D.; Comune, G.; Conde, P.; Crone, G.; Damazio, D.; de Santo, A.; Diaz Gómez, M.; di Mattia, A.; Ellis, N.; Emeliyanov, D.; Epp, B.; Falciano, S.; Garitaonandia, H.; George, S.; Ghete, V.; Goncalo, R.; Haller, J.; Kabana, S.; Khomich, A.; Kilvington, G.; Kirk, J.; Konstantinidis, N.; Kootz, A.; Lankford, A. J.; Lowe, A.; Luminari, L.; Maeno, T.; Masik, J.; Meessen, C.; Mello, A. G.; Moore, R.; Morettini, P.; Negri, A.; Nikitin, N.; Nisati, A.; Osuna, C.; Padilla, C.; Panikashvili, N.; Parodi, F.; Pasqualucci, E.; Perez-Reale, V.; Pinfold, J. L.; Pinto, P.; Qian, Z.; Resconi, S.; Rosati, S.; Sánchez, C.; Santamarina, C.; Scannicchio, D. A.; Schiavi, C.; Segura, E.; de Seixas, J. M.; Sivoklokov, S.; Sobreira, A.; Soluk, R.; Stefanidis, E.; Sushkov, S.; Sutton, M.; Tapprogge, S.; Tarem, S.; Thomas, E.; Touchard, F.; Usai, G.; Venda Pinto, B.; Ventura, A.; Vercesi, V.; Wengler, T.; Werner, P.; Wheeler, S. J.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Zobernig, H.; Casado, P. Bibcode: 2006apsp.conf..546D Altcode: The ATLAS experiment at the Large Hadron Collider (LHC) has an interaction rate of up to 109 Hz. The trigger must efficiently select interesting events while rejecting the large amount of background. The First Level trigger will reduce this rate to around O(75 kHz). Subsequently, the High Level Trigger (HLT), comprising the Second Level trigger and the Event Filter, will reduce this rate by a factor of O(103). Triggering on taus is important for Higgs and SUSY searches at the LHC. In this paper tau trigger selections are presented based on a lepton trigger if the tau decays leptonically or via a dedicated tau hadron trigger if the tau disintegrates semileptonically. We present signal efficiency with the electron trigger using the data sample A → ττ → e hadron, and rate studies obtained from the dijet sample. Title: H-alpha and UV chromospheric jets from BBSO/TRACE observations Authors: Yamauchi, Y.; Wang, H.; Moore, R. L. Bibcode: 2006cosp...36.1944Y Altcode: 2006cosp.meet.1944Y Solar magnetic field controls the energy and mass flux in the corona as well as the structure of the corona Small-scale explosive events such as macrospicules and microflares are believed to play an important role for the conversion from magnetic to thermal energy to heat the corona We made joint observations with the Transition Region and Coronal Explorer TRACE and Big Bear Solar Observatory BBSO in September 2004 to study small-scale explosive events in quiet regions We studied the dynamics and evolution of small-scale events comparing the morphology and magnetic settings between H alpha and UV chromospheric jets We report on the results of the analysis and discuss the relation between the chromosphere and transition region through small-scale explosive events in the meeting Title: Recursive Narrowcmes Within a Coronal Streamer Authors: Bemporad, A.; Sterling, A. C.; Moore, R. L.; Poletto, G. Bibcode: 2005ESASP.600E.153B Altcode: 2005ESPM...11..153B; 2005dysu.confE.153B No abstract at ADS Title: A New Multidimensional Relativistic Hydrodynamics code based on Semidiscrete Central and WENO schemes Authors: Rahman, Tanvir; Moore, R. B. Bibcode: 2005astro.ph.12246R Altcode: We have proposed a new High Resolution Shock Capturing (HRSC) scheme for Special Relativistic Hydrodynamics (SRHD) based on the semidiscrete central Godunov-type schemes and a modified Weighted Essentially Non-oscillatory (WENO) data reconstruction algorithm. This is the first application of the semidiscrete central schemes with high order WENO data reconstruction to the SRHD equations. This method does not use a Riemann solver for flux computations and a number of one and two dimensional benchmark tests show that the algorithm is robust and comparable in accuracy to other SRHD codes. Title: A New Variety of Coronal Mass Ejection: Streamer Puffs from Compact Ejective Flares Authors: Bemporad, A.; Sterling, Alphonse C.; Moore, Ronald L.; Poletto, G. Bibcode: 2005ApJ...635L.189B Altcode: We report on SOHO UVCS, LASCO, EIT, and MDI observations of a series of narrow ejections that occurred at the solar limb. These ejections originated from homologous compact flares whose source was an island of included polarity located just inside the base of a coronal streamer. Some of these ejections result in narrow CMEs (``streamer puffs'') that move out along the streamer. These streamer puffs differ from ``streamer blowout'' CMEs in that (1) while the streamer is transiently inflated by the puff, it is not disrupted, and (2) each puff comes from a compact explosion in the outskirts of the streamer arcade, not from an extensive eruption along the main neutral line of the streamer arcade. From the observations, we infer that each streamer puff is produced by means of the inflation or blowing open of an outer loop of the arcade by ejecta from the compact-flare explosion in the foot of the loop. So, in terms of their production, our streamer puffs are a new variety of CME. Title: A New Multidimensional Hydrodynamics code based on Semidiscrete Central and WENO schemes Authors: Rahman, Tanvir; Moore, R. B. Bibcode: 2005astro.ph.11728R Altcode: We present a new multidimensional classical hydrodynamics code based on Semidiscrete Central Godunov-type schemes and high order Weighted Essentially Non-oscillatory (WENO) data reconstruction. This approach is a lot simpler and easier to implement than other Riemann solver based methods. The algorithm incorporates elements of the Piecewise Parabolic Method (PPM) in the reconstruction schemes to ensure robustness and applications of high order reconstruction schemes. A number of one and two dimensional benchmark tests have been carried out to verify the code. The tests show that this new algorithm and code is comparable in accuracy, efficiency and robustness to others. Title: Investigating the rp-process with the Canadian Penning trap mass spectrometer Authors: Clark, J. A.; Barber, R. C.; Blank, B.; Boudreau, C.; Buchinger, F.; Crawford, J. E.; Greene, J. P.; Gulick, S.; Hardy, J. C.; Hecht, A. A.; Heinz, A.; Lee, J. K. P.; Levand, A. F.; Lundgren, B. F.; Moore, R. B.; Savard, G.; Scielzo, N. D.; Seweryniak, D.; Sharma, K. S.; Sprouse, G. D.; Trimble, W.; Vaz, J.; Wang, J. C.; Wang, Y.; Zabransky, B. J.; Zhou, Z. Bibcode: 2005EPJAS..25..629C Altcode: The Canadian Penning trap (CPT) mass spectrometer at the Argonne National Laboratory makes precise mass measurements of nuclides with short half-lives. Since the previous ENAM conference, many significant modifications to the apparatus were implemented to improve both the precision and efficiency of measurement, and now more than 60 radioactive isotopes have been measured with half-lives as short as one second and with a precision ( Δm/m) approaching 10-8. The CPT mass measurement program has concentrated so far on nuclides of importance to astrophysics. In particular, measurements have been obtained of isotopes along the rp-process path, in which energy is released from a series of rapid proton-capture reactions. An X-ray burst is one possible site for the rp-process mechanism which involves the accretion of hydrogen and helium from one star onto the surface of its neutron star binary companion. Mass measurements are required as key inputs to network calculations used to describe the rp-process in terms of the abundances of the nuclides produced, the light-curve profile of the X-ray bursts, and the energy produced. This paper will present the precise mass measurements made along the rp-process path with particular emphasis on the “waiting-point” nuclides 68Se and 64Ge. Title: Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament, and Flare Emission Onset Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2005ApJ...630.1148S Altcode: We observe the eruption of an active-region solar filament on 1998 July 11 using high time cadence and high spatial resolution EUV observations from the TRACE satellite, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the CGRO satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. Prior to eruption the filament undergoes a slow upward movement in a slow-rise phase with an approximately constant velocity of ~15 km s-1 that lasts about 10 minutes. It then erupts in a fast-rise phase, accelerating to a velocity of ~200 km s-1 in about 5 minutes and then decelerating to ~150 km s-1 over the next 5 minutes. EUV brightenings begin about concurrently with the start of the filament's slow rise and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise and does not peak until the filament has traveled to a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Our observations are consistent with the slow-rise phase of the eruption resulting from the onset of ``tether cutting'' reconnection between magnetic fields beneath the filament, and the fast rise resulting from an explosive increase in the reconnection rate or by catastrophic destabilization of the overlying filament-carrying fields. About 2 days prior to the event, new flux emerged near the location of the initial brightenings, and this recently emerged flux could have been a catalyst for initiating the tether-cutting reconnection. With the exception of the sudden transition from the slow-rise phase to the fast-rise phase in our event, our filament's height-time profile is qualitatively similar to the plot of the erupting flux rope height as a function of time recently computed by Chen and Shibata for a model in which the eruption is triggered by reconnection between an emerging field and another field under the flux rope. Title: Emission spectra from ZnS:Mn due to low velocity impacts Authors: Hollerman, W. A.; Goedeke, S. M.; Bergeron, N. P.; Moore, R. J.; Allison, S. W.; Lewis, L. A. Bibcode: 2005SPIE.5897..138H Altcode: Triboluminescence (TL) is the emission of light due to crystal fracture and has been known for centuries. One of the most common examples of TL is the flash created from chewing wintergreen Lifesavers. Since 2003, the authors have been measuring triboluminescent properties of phosphors, of which zinc sulfide doped with manganese (ZnS:Mn) is an example. Preliminary results indicate that impact velocities greater than 0.5 m/s produce measurable TL from ZnS:Mn. To extend this research, the investigation of the emission spectrum was chosen. This differs from using filtered photodetectors in that the spectral composition of fluorescence can be ascertained. Previous research has utilized a variety of schemes that include scratching, crushing, and grinding to generate TL. In our case, the material is activated by a short duration interaction of a dropped mass and a small number of luminescence centers. This research provides a basis for the characterization and selection of materials for future spacecraft impact detection schemes. Title: Small-Scale Dynamics of the Chromospheric Network in Coronal Holes from TRACE/BBSO Observations Authors: Yamauchi, Y.; Wang, H.; Moore, R. L. Bibcode: 2005ESASP.592..579Y Altcode: 2005ESASP.592E.111Y; 2005soho...16E.111Y No abstract at ADS Title: Resolving multiple particles in a highly segmented silicon array Authors: Paduszynski, T.; Sprunger, P.; de Souza, R. T.; Hudan, S.; Alexander, A.; Davin, B.; Fleener, G.; McIntosh, A.; Metelko, C.; Moore, R.; Peters, N.; Poehlman, J.; Gauthier, J.; Grenier, F.; Roy, R.; Thériault, D.; Bell, E.; Garey, J.; Iglio, J.; Keksis, A. L.; Parketon, S.; Richers, C.; Shetty, D. V.; Soisson, S. N.; Soulioutis, G. A.; Stein, B.; Yennello, S. J. Bibcode: 2005NIMPA.547..464P Altcode: The design, construction, and performance of a new highly segmented charged particle detector array, FIRST, are described. This forward angle annular array (2⩽θ⩽28) has been developed to study peripheral and mid-central heavy-ion collisions at intermediate energies (E/A≈50MeV). FIRST consists of three individual telescopes that each utilize ion-passivated silicon detectors in either a Si(IP) Si(IP) CsI(Tl) stack or a Si(IP) CsI(Tl) stack. This array provides elemental identification for 1⩽Z⩽50 with isotopic identification of lighter elements, Z⩽13, over a wide dynamic range in energy. The high segmentation of each silicon detector provides good angular resolution in a compact geometry and allows deconvolution of multiple particles incident on a single telescope. The performance of the array in a commissioning experiment Zn64+Zn64,Bi209 at E/A=45MeV is shown. Title: MTRAP: the magnetic transition region probe Authors: Davis, J. M.; West, E. A.; Moore, R. L.; Gary, G. A.; Kobayashi, K.; Oberright, J. E.; Evans, D. C.; Wood, H. J.; Saba, J. L. R.; Alexander, D. Bibcode: 2005SPIE.5901..273D Altcode: The Magnetic Transition Region Probe is a space telescope designed to measure the magnetic field at several heights and temperatures in the solar atmosphere, providing observations spanning the chromospheric region where the field is expected to become force free. The primary goal is to provide an early warning system (hours to days) for solar energetic particle events that pose a serious hazard to astronauts in deep space and to understand the source regions of these particles. The required magnetic field data consist of simultaneous circular and linear polarization measurements in several spectral lines over the wavelength range from 150 to 855 nm. Because the observations are photon limited an optical telescope with a large (>18m2) collecting area is required. To keep the heat dissipation problem manageable we have chosen to implement MTRAP with six separate Gregorian telescopes, each with ~ 3 m2 collecting area, that are brought to a common focus. The necessary large field of view (5 × 5 arcmin2) and high angular resolution (0.025 arcsec pixels) require large detector arrays and, because of the requirements on signal to noise (103), pixels with large full well depths to reduce the readout time and improve the temporal resolution. The optical and engineering considerations that have gone into the development of a concept that meets MTRAP's requirements are described. Title: Study of Hα Macrospicules in Coronal Holes: Magnetic Structure and Evolution in Relation to Photospheric Magnetic Setting Authors: Yamauchi, Y.; Wang, H.; Jiang, Y.; Schwadron, N.; Moore, R. L. Bibcode: 2005ApJ...629..572Y Altcode: Small-scale solar dynamic events such as spicules, macrospicules, and microflares may play an important role in the coronal heating and solar wind acceleration in coronal holes. In these regions, the network fields concentrated along edges of supergranules are probably the source of the fine-scale activity that may drive the heating and acceleration. Recent Hα limb observations from Big Bear Solar Observatory (BBSO) have shown that most macrospicules have two different forms of magnetic structure-a spiked jet or an erupting loop, suggesting two different formation mechanisms. In this paper, we analyze BBSO Hα images and magnetograms of a coronal hole region near the disk center to study the evolution of the two types of macrospicule in relation to the magnetic arrangement at their base. We identified 78 macrospicules from the best day of 3 days of observations. Of these, 65 events were in the form of a spiked jet and were rooted in compact bipolar fields at the edges of the magnetic network. This supports the idea that spiky macrospicules are driven by reconnection between the network bipole and open magnetic fields. We also found five macrospicules that were in the form of an erupting loop oriented along a neutral line between the positive and negative network flux. They appear to be minifilament eruptions. Our results verify the magnetic structure inferred from our previous limb observations and support scenarios of coronal heating and solar wind generation through fine-scale explosive reconnection events seated in the magnetic network. Title: Shape and Reconnection of the Exploding Magnetic Field in the Onset of CMEs Authors: Moore, R. L.; Sterling, A. C.; Falconer, D. A.; Gary, G. A. Bibcode: 2005AGUSMSH54B..01M Altcode: From chromospheric and coronal images and line-of-sight and vector magnetograms of magnetic regions that produce CMEs, and from chromospheric and coronal movies of the onsets of CME eruptions, it appears that the magnetic field that explodes to drive the CME is initially the strongly sheared core of a magnetic arcade encasing a polarity dividing line in the magnetic flux. Before or during the onset of the explosion, the sheared core field becomes a flux rope, often carrying chromospheric material within it. For the erupting flux rope to drive the explosion, that is, for its magnetic energy content to decrease in the explosion, the flux rope's cross-sectional area must increase faster than its length. For instance, for isotropic expansion, the area increases as the square of the length, and the magnetic energy content of the flux rope decreases as the inverse of the length. The instability that initiates the eruption of the flux rope might be an ideal MHD kink instability, or might involve runaway tether-cutting reconnection. The reconnection begins below the flux rope (internal to the arcade) when the overall field configuration of the region is effectively that of a single bipole. When the flux rope resides in a multi-bipolar configuration having a magnetic null above the flux rope, the runaway tether-cutting reconnection might begin either below the flux rope or at the null above (external to) the arcade. We present examples of observed CME onsets that illustrate the above alternatives. In each example, reconnection below the flux rope begins early in the eruption. This indicates that internal tether cutting reconnection (classic tether-cutting reconnection) is important in unleashing the CME explosion in all cases, including those in which the explosion may be triggered by MHD kinking or by external reconnection (classic breakout reconnection). Title: Flare Emission Onset in the Slow-Rise and Fast-Rise Phases of an Erupting Solar Filament Observed with TRACE Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2005AGUSMSP44A..02S Altcode: We observe the eruption of an active-region solar filament of 1998 July~11 using high time cadence and high spatial resolution EUV observations from the TRACE satellite, along with soft X-ray images from the soft X-ray telescope (SXT) on the Yohkoh satellite, hard X-ray fluxes from the BATSE instrument on the ( CGRO) satellite and from the hard X-ray telescope (HXT) on Yohkoh, and ground-based magnetograms. We concentrate on the initiation of the eruption in an effort to understand the eruption mechanism. First the filament undergoes slow upward movement in a "slow rise" phase with an approximately constant velocity of ≍ 15~km~s-1 that lasts about 10~min, and then it erupts in a "fast-rise" phase, reaching a velocity of ≍ 200~km~s-1 in about 5~min, followed by a period of deceleration. EUV brightenings begin just before the start of the filament's slow rise, and remain immediately beneath the rising filament during the slow rise; initial soft X-ray brightenings occur at about the same time and location. Strong hard X-ray emission begins after the onset of the fast rise, and does not peak until the filament has traveled a substantial altitude (to a height about equal to the initial length of the erupting filament) beyond its initial location. Our observations are consistent with the slow-rise phase of the eruption resulting from the onset of "tether cutting" reconnection between magnetic fields beneath the filament, and the fast rise resulting from an explosive increase in the reconnection rate or by catastrophic destabilization of the overlying filament-carrying fields. About two days prior to the event new flux emerged near the location of the initial brightenings, and this recently-emerged flux could have been a catalyst for initiating the tether-cutting reconnection. With the exception of the initial slow rise, our findings qualitatively agree with the prediction for erupting-flux-rope height as a function of time in a model discussed by Chen & Shibata~(2000) based on reconnection between emerging flux and a flux rope. NASA supported this work through NASA SR&T and SEC GI grants. Title: Study of Small-Scale Dynamics in Coronal Holes and Quiet Regions from TRACE/BBSO Observations Authors: Yamauchi, Y.; Wang, H.; Moore, R. L. Bibcode: 2005AGUSMSP51B..02Y Altcode: We made high-spatial and temporal resolution TRACE UV/EUV observations of coronal holes and quiet regions in September 2004 jointly with BBSO Hα and magnetogram observations. From the observations, we study the dynamics, structure, and magnetic setting of small-scale explosive events such as microflares, macrospicules, and mini-filament eruptions, both in coronal holes and in quiet regions. These event are of interest because they may play an important role in coronal heating in these regions. These events are thought to result from explosions in fine-scale mixed-polarity magnetic fields in the network. However, even though the fine-scale magnetic structure of the network is expected to be essentially the same in both regions, coronal holes and quiet regions are quite different in that coronal holes show open field magnetic structure and are the source of fast solar wind while quiet regions have closed magnetic fields and are the source of slow solar wind. Study of small-scale dynamic events is important for solving the problem of coronal heating in the regions and for understanding whether the heating process is different in coronal holes than in quiet regions. We report on the time evolution of dynamics of these events in relation to the structure and evolution of the network magnetic flux at their footpoints. We also report whether any differences between the events in coronal holes and quiet regions are seen. Title: Macrospicules, Coronal Heating, and SolarB Authors: Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakurai, T. Bibcode: 2004ASPC..325..301Y Altcode: We investigated the magnetic structures of macrospicules in polar coronal holes using Hα images taken at Big Bear Solar Observatory. We found a total of 35 macrospicules. Half of the events were in the form of an erupting loop while the rest were in the form of a single-column spiked jet. These erupting-loop and spiked-jet macrospicules are considered to support models in which the coronal heating and solar wind acceleration in coronal holes are driven by explosive reconnection events seated in the network. We believe that the vector magnetograph on the forthcoming SolarB mission will provide critical clues to the mechanisms of coronal heating and solar wind acceleration by detecting magnetic activities at the base of macrospicules in the network and spicules rooted in the edges of the network flux clumps. These results are also presented in Astrophysical Journal (Yamauchi et al. 2004). Title: The NVO Comes of Age Authors: Szalay, A. S.; Cutri, R.; De Young, D.; Hanisch, R.; Moore, R.; Schreier, E.; Williams, R.; NVO Team Bibcode: 2004AAS...20513001S Altcode: 2004BAAS...36.1557S Astronomy faces a data avalanche. Breakthroughs in telescope, detector, and computer technology allow astronomical surveys to produce terabytes of images and catalogs. These datasets cover the sky in different wavebands, from gamma- and X-rays, optical, infrared, through to radio. With the advent of inexpensive storage technologies and the availability of high-speed networks, the concept of multi-terabyte on-line databases interoperating seamlessly is no longer outlandish.

These technological developments are changing the way astronomy is done. In August 2001, the US National Science Foundation awarded five-year funding to a collaboration ``Framework for the National Virtual Observatory", under its Information Technology Research program.

The project is now ready to present the first few applications, which are aimed at providing simple and commonly used services for most astronomers. The services represent some of the most generic patterns that astronomers need to deal with today's distributed data --``where do I find data that is relevant to me'', ``which surveys have information on my favorite objects''. etc. These services form the building blocks of other, higher level applications, similar to the way IDL or IRAF operate.

The NVO Project is working closely with similar development efforts worldwide. We have jointly formed the International Virtual Observatory Alliance, bringing together the leaders from all such efforts, and have agreed upon on common roadmap for development and interoperability. Title: Coronal Heating, Spicules, and SolarB Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H.; Yamauchi, Y.; Rabin, D. M. Bibcode: 2004ASPC..325..283M Altcode: We summarize certain observations of coronal luminosity, network magnetic flux, spicules, and macrospicules. These observations together imply that in quiet regions that are not influenced by active regions the coronal heating comes from magnetic activity in the edges of the network flux, possibly from explosions of sheared core fields around granule-sized inclusions of opposite-polarity flux. This scenario can be tested by SolarB. Title: Precise mass measurements of astrophysical interest made with the Canadian Penning trap mass spectrometer Authors: Clark, J. A.; Barber, R. C.; Blank, B.; Boudreau, C.; Buchinger, F.; Crawford, J. E.; Gulick, S.; Hardy, J. C.; Heinz, A.; Lee, J. K. P.; Levand, A. F.; Moore, R. B.; Savard, G.; Seweryniak, D.; Sharma, K. S.; Sprouse, G. D.; Trimble, W.; Vaz, J.; Wang, J. C.; Zhou, Z. Bibcode: 2004NuPhA.746..342C Altcode: The processes responsible for the creation of elements more massive than iron are not well understood. Possible production mechanisms involve the rapid capture of protons (rp-process) or the rapid capture of neutrons (r-process), which are thought to occur in explosive astrophysical events such as novae, x-ray bursts, and supernovae. Mass measurements of the nuclides involved with uncertainties on the order of 100 keV or better are critical to determine the process `paths', the energy output of the events, and the resulting nuclide abundances. Particularly important are the masses of `waiting-point' nuclides along the rp-process path where the process stalls until the subsequent β decay of the nuclides. This paper will discuss the precise mass measurements made of isotopes along the rp-process and r-process paths using the Canadian Penning Trap mass spectrometer, including the mass of the critical waiting-point nuclide 68Se. Title: External and Internal Reconnection in Two Filament-Carrying Magnetic Cavity Solar Eruptions Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2004ApJ...613.1221S Altcode: We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 Å Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar and Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ray Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at ~10 km s-1 prior to eruption and then accelerate to ~100 km s-1 during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of ~1014-1015 and ~1015-1016 g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the ``tether cutting'' and the ``breakout'' models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether-cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of the corresponding filament can be compared with expectations from the breakout model, thereby setting constraints that the breakout model must meet. Our findings are consistent with both runaway tether-cutting-type reconnection and fast breakout-type reconnection, occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which, if either, type of reconnection actually triggered the fast phase. In any case, we have found specific constraints that either model, or any other model, must satisfy if correct. Title: Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection That Fits the Breakout Model of Solar Magnetic Eruptions Authors: Gary, G. Allen; Moore, R. L. Bibcode: 2004ApJ...611..545G Altcode: We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption, as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare's explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. Title: A precision measurement of the mass of the top quark Authors: Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahmed, S. N.; Alexeev, G. D.; Alton, A.; Alves, G. A.; Arnoud, Y.; Avila, C.; Babintsev, V. V.; Babukhadia, L.; Bacon, T. C.; Baden, A.; Baffioni, S.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Beaudette, F.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blekman, F.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Bolton, T. A.; Borcherding, F.; Bos, K.; Bose, T.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Claes, D.; Clark, A. R.; Connolly, B.; Cooper, W. E.; Coppage, D.; Crépé-Renaudin, S.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Davis, G. A.; De, K.; de Jong, S. J.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Eltzroth, J. T.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Ferbel, T.; Filthaut, F.; Fisk, H. E.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, M.; Gavrilov, V.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gómez, B.; Goncharov, P. I.; Gounder, K.; Goussiou, A.; Grannis, P. D.; Greenlee, H.; Greenwood, Z. D.; Grinstein, S.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Han, C.; Hansen, S.; Hauptman, J. M.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Huang, J.; Huang, Y.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jain, S.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jöstlein, H.; Juste, A.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kesisoglou, S.; Khanov, A.; Kharchilava, A.; Klima, B.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kothari, B.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krivkova, P.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kupco, A.; Kuznetsov, V. E.; Landsberg, G.; Lee, W. M.; Leflat, A.; Lehner, F.; Leonidopoulos, C.; Li, J.; Li, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Luo, C.; Maciel, A. K. A.; Madaras, R. J.; Malyshev, V. L.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Mattingly, S. E. K.; Mayorov, A. A.; McCarthy, R.; McMahon, T.; Melanson, H. L.; Melnitchouk, A.; Merkin, A.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mutaf, Y. D.; Nagy, E.; Narain, M.; Narasimham, V. S.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nelson, S.; Nomerotski, A.; Nunnemann, T.; O'Neil, D.; Oguri, V.; Oshima, N.; Padley, P.; Papageorgiou, K.; Parashar, N.; Partridge, R.; Parua, N.; Patwa, A.; Peters, O.; Pétroff, P.; Piegaia, R.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Rajagopalan, S.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Ridel, M.; Rijssenbeek, M.; Rizatdinova, F.; Rockwell, T.; Royon, C.; Rubinov, P.; Ruchti, R.; Sabirov, B. M.; Sajot, G.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Sirotenko, V.; Slattery, P.; Smith, R. P.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, Y.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stoker, D.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strang, M. A.; Strauss, M.; Strovink, M.; Stutte, L.; Sznajder, A.; Talby, M.; Taylor, W.; Tentindo-Repond, S.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; Van Kooten, R.; Vaniev, V.; Varelas, N.; Villeneuve-Seguier, F.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, Z. -M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; Whiteson, D.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Womersley, J.; Wood, D. R.; Xu, Q.; Yamada, R.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Yu, J.; Zanabria, M.; Zhang, X.; Zhou, B.; Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A. Bibcode: 2004Natur.429..638A Altcode: 2004hep.ex....6031C; 2004hep.ex....6031D The standard model of particle physics contains parameters-such as particle masses-whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (Mt) and W boson (MW) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of Mt can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10-24s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +/- 5.3GeV/c2) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for Mt becomes 178.0 +/- 4.3GeV/c2. As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117GeV/c2, which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251GeV/c2. Title: On-disk Observations of Macrospicules in Coronal Holes Authors: Yamauchi, Y.; Wang, H.; Moore, R. L. Bibcode: 2004AAS...204.3715Y Altcode: 2004BAAS...36..711Y Small-scale solar dynamics, e.g., spicules and macrospicules, in coronal holes are believed to play an important role in the coronal heating and solar wind acceleration. Since photospheric magnetic flux observations have shown that there is a small fraction of opposite polarity in the coronal holes [e.g., DeForest et al., 1997, Sol. Phys., v175(2), 393-410], network magnetic fields in supergranule boundary are likely to be the most important factors responsible for the dynamics. However, the formation mechanism of macrospicules remains controversial, in particular in the relation with magnetic field arrangement at the base of macrospicules. At the last SPD meeting, from H-alpha limb observations from Big Bear Solar Observatory (BBSO), we reported that most macrospicules have one or the other of two forms, that of an erupting loop or that of a spiked jet. Each of these magnetic structural forms indicates that the macrospicule is rooted in mixed polarity magnetic flux [Yamauchi et al 2004, ApJ, in press]. Here, we have investigated BBSO on-disk H-alpha and magnetic data in coronal holes to find the disk counterparts of each type of macrospicules on the limb, such as microflares, mini-filament eruptions, or H-alpha jets. We will report results from the analysis and discuss the production of macrospicules in relation to the polarity arrangement and evolution of the network magnetic flux. Title: Forecasting Coronal Mass Ejections from Magnetograms Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A.; Balasubramanian, S. Bibcode: 2004AAS...204.2705F Altcode: 2004BAAS...36..693F We report further results from our ongoing assessment of magnetogram-based measures of active-region nonpotentiality (magnetic shear and twist), magnetic complexity and size as predictors of coronal mass ejections (CMEs). From a set of 36 vector magnetograms of predominantly bipolar active regions (Falconer, Moore, & Gary 2004, ApJ, submitted), we have found: (1) Each of five different measures of active-region nonpotentiality has a 75-80 (with correlation confidence level > 95%) in predicting whether an active region will produce a CME within 2 days after the magnetogram. (2) One of these measures can be obtained from a line-of-sight magnetogram without use of a vector magnetogram. Hence this measure appears to be the best practical measure of active-region nonpotentiality for operational CME forecasting. (3) Our measure of active-region size has a 65% success rate in predicting CMEs in this window, but the correlation is not statistically significant (confidence level ∼ 80%) for our sample size. We have applied a measure of active-region complexity (the fraction of magnetic flux not in the active region's primary bipole) to our set of 36 magnetograms and found a correlation with the CME productivity of the active regions. We are also applying measures of nonpotentiality, size, and complexity to multi-bipolar active regions to assess their CME-prediction ability for these more complicated active regions.

This work was funded by NASA through its LWS TR&T Program and its Solar and Heliospheric Physics SR&T Program, and by NSF through its Solar Terrestrial Research and SHINE Programs. Title: Solar Magnetic Explosions, Spicules, and the Heliosphere Authors: Moore, R. L.; Yamauchi, Y. Bibcode: 2004AAS...204.1801M Altcode: 2004BAAS...36..682M We present an example of each of the following observed characteristics of the magnetic origins of quiet-region coronal heating, spicules, macrospicules, and coronal mass ejections (CMEs). (1) In quiet regions, the luminosity of the corona is roughly proportional to the edge length of the underlying photospheric magnetic network (Falconer et al 2003, ApJ, 593, 549). (2) Spicules and EUV explosive events are concentrated at the edges of the magnetic network (e.g., Beckers, J. M. 1968, Sol. Phys., 3, 367; Porter, J. G. & Dere, K. P. 1991, ApJ, 370, 775). (3) Many macrospicules have the magnetic structure of a surge rooted around an inclusion of opposite-polarity magnetic flux (Yamauchi, Y. et al 2004, ApJ, in press). (4) CMEs and eruptive flares are driven by explosions of sheared magnetic fields rooted along polarity dividing lines (neutral lines) in the photospheric magnetic flux (e.g., Moore, R. L. et al 2001, ApJ, 552, 833). These characteristics together suggest that the mainstay of the heliosphere, the corona/solar wind rooted in quiet regions and coronal holes, may be driven by myriads of tiny magnetic explosions at the network edges, explosions like those that drive CMEs but of vastly smaller scale. If so, the steady solar wind and the CMEs that disrupt it both have the same root cause: explosions of initially- closed, strongly-sheared, bipolar magnetic fields. The photospheric vector magnetograms, chromospheric filtergrams, EUV spectra, and coronal images from Solar-B are expected to have sufficient sensitivity, spatial resolution, and cadence to test this scenario for coronal heating in quiet regions and coronal holes. This work was supported by NASA/OSS through its Solar & Heliospheric Physics SR&T Program and Sun-Earth Connection GI Program. Title: Magnetic Shear and Microflaring in Active Regions Observed with TRACE Authors: Porter, J. G.; Zhang, Y.; Falconer, D. A.; Moore, R. L. Bibcode: 2004AAS...204.3904P Altcode: 2004BAAS...36..715P We have previously reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and SOHO with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core" magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We are now extending these studies to cooler plasmas, incorporating sequences of UV images from TRACE (in addition to SOHO and Yohkoh data) into a comparison with longitudinal magnetograms from MDI and Kitt Peak and vector magnetograms from MSFC. We examine statistical measures of the microflaring and its association with the degree of magnetic shear in core fields. These studies support the previous results regarding the importance of magnetic shear for core-field microflaring in active regions. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program. Title: Quiet-Region Filament Eruptions Authors: Choudhary, D. P.; Moore, R. L. Bibcode: 2004AAS...204.1805C Altcode: 2004BAAS...36..683C We report characteristics of quiescent filament eruptions that did not produce coronal mass ejections (CMEs). It is known that there is a dichotomy of quiescent filament eruptions: those that produce CMEs and those that do not. We examined the quiescent filament eruptions, each of which was located far from disk center (>/= 0.7 RSun) in diffuse remnant magnetic fields of decayed active regions, was well observed in Halpha observations and Fe XII, and had good coronagraph coverage. We present the similarity and differences of two classes of filament eruptions. From their lack of CME production and the appearance of their eruptive motion in Fe XII movies, we conclude that the non-CME-producing filament eruptions are confined eruptions like the confined filament eruptions in active regions. We take the similarity of the confined and eruptive quiescent filament eruptions with their active-region counterparts to favor runaway tether-cutting reconnection for unleashing the magnetic explosion in all these eruptions. The results of this work have been published in Geophysical Research Letters (Geophys. Res. Lett, 30, 2107, 2003).

The work was performed while one of the authors (DPC) held a National Research Council NASA/MSFC Resident Research Associateship. Title: External and Internal Reconnection in Two Filament-Carrying Magnetic-Cavity Solar Eruptions Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2004AAS...204.1804S Altcode: 2004BAAS...36..683S We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4, using 195 Å Fe xii\ images from SOHO/EIT and magnetograms from SOHO/MDI\@. For the earlier event we also use soft X-ray data from Yohkoh/SXT, and hard X-ray data from Yohkoh/HXT and CGRO/BATSE\@. Both events occur in quadrupolar magnetic regions, and both have coronal features belonging to the same magnetic-cavity-structures as the filaments. In both cases the cavity and filament have a slow-rise phase of ∼ 10 km s-1 prior to eruption, followed by a fast-rise phase of ∼ 100 km s-1 during eruption. We estimate both filaments and both cavities to contain masses of ∼ 1014-15 g and ∼ 1015-16 g, respectively. We consider two specific magnetic-reconnection-based models for eruption onset, the ``tether cutting'' and the ``breakout'' models. In the earlier event SXT images show an intensity increase during the 12-minute interval over which the fast phase begins, consistent with tether-cutting. Substantial hard X-rays, however, do not occur until after fast eruption is underway, which provides a constraint on the tether-cutting model. Also around the time fast eruption begins there are brightenings and topological changes in the corona indicative of high-altitude reconnection, consistent with breakout. In both eruptions, however, fast rise onset occurs while cavity-related coronal loops are still evolving from ``closed'' to ``open,'' providing constraints on the breakout model. Therefore our findings are consistent with aspects of both models, but we cannot say which, if either, mechanism triggered the fast phase. We have also found specific constraints that either model, or any other eruption-onset model, must satisfy if correct. NASA supported this work through SR&T and SEC GI grants. Title: Triggering of the Two X-class Flares of 28 and 29 October 2003 Authors: Choudhary, D. P.; Moore, R. L.; Falconer, D.; Pojoga, S.; Tian-Sen, H.; Krucker, S.; Uddin, W. Bibcode: 2004AAS...204.0225C Altcode: 2004BAAS...36..982C From H-alpha movies from Aryabhatta Research Institute of Observational Sciences and from Prairie View Solar Observatory, hard X-ray movies from RHESSI, line-of-sight magnetogram movies from SOHO/MDI, and vector magnetograms from Marshal Space Flight Center, we examine the magnetic structure and evolution of the large delta-sunspot active region NOAA 10486 in relation to the onset and development of the two X-class flares that occurred in this active region on 28 and 29 October 2003. We find evidence that each of these flares was triggered by strongly sheared magnetic field via ``tether-cutting" reconnection with adjacent/overlying strongly sheared field. In the first flare, the initial brightening in H-alpha (1) was partly rooted in emerging sheared magnetic field along the edge of the large positive-polarity flux domain of the delta sunspot, and (2) consisted of four flare kernels, two in negative magnetic flux and two in positive magnetic flux. In the second flare, the brightening started in the core of a Z-shaped sigmoidal sheared magnetic field and the inner two of four H-alpha kernels were visible in 30-50 Kev hard x-ray image from RHESSI. Each flare spread from the initial quadrupolar brightening to develop into a much larger two-ribbon flare straddling a much more extensive swath of strongly sheared field along the edge of the large positive-flux domain of the delta sunspot, the first flare on the leading side and the second flare on the trailing side of this domain. Thus, localized internal reconnection triggered the explosion of these extensive sheared magnetic fields.

This research was supported by NASA's Office of Space Science through the Solar and Heliospheric Physics SR&T Program, and was done during Dr. Choudhary's tenure at MSFC/NSSTC as an NRC Senior Resident Research Associate. Title: The Magnetic Structure of Hα Macrospicules in Solar Coronal Holes Authors: Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakurai, T. Bibcode: 2004ApJ...605..511Y Altcode: Measurements by Ulysses in the high-speed polar solar wind have shown the wind to carry some fine-scale structures in which the magnetic field reverses direction by having a switchback fold in it. The lateral span of these magnetic switchbacks, translated back to the Sun, is of the scale of the lanes and cells of the magnetic network in which the open magnetic field of the polar coronal hole and polar solar wind are rooted. This suggests that the magnetic switchbacks might be formed from network-scale magnetic loops that erupt into the corona and then undergo reconnection with the open field. This possibility motivated us to undertake the study reported here of the structure of Hα macrospicules observed at the limb in polar coronal holes, to determine whether a significant fraction of these eruptions appear to be erupting loops. From a search of the polar coronal holes in 6 days of image-processed full-disk Hα movies from Big Bear Solar Observatory, we found a total of 35 macrospicules. Nearly all of these (32) were of one or the other of two different forms: 15 were in the form of an erupting loop, and 17 were in the form of a single-column spiked jet. The erupting-loop macrospicules are appropriate for producing the magnetic switchbacks in the polar wind. The spiked-jet macrospicules show the appropriate structure and evolution to be driven by reconnection between network-scale closed field (a network bipole) and the open field rooted against the closed field. This evidence for reconnection in a large fraction of our macrospicules (1) suggests that many spicules may be generated by similar but smaller reconnection events and (2) supports the view that coronal heating and solar wind acceleration in coronal holes and in quiet regions are driven by explosive reconnection events in the magnetic network. Title: Search for Kaluza-Klein Graviton Emission in pp¯ Collisions at √(s)=1.8 TeV Using the Missing Energy Signature Authors: Acosta, D.; Affolder, T.; Akimoto, H.; Albrow, M. G.; Ambrose, D.; Amidei, D.; Anikeev, K.; Antos, J.; Apollinari, G.; Arisawa, T.; Artikov, A.; Asakawa, T.; Ashmanskas, W.; Azfar, F.; Azzi-Bacchetta, P.; Bacchetta, N.; Bachacou, H.; Badgett, W.; Bailey, S.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Barone, M.; Bauer, G.; Bedeschi, F.; Behari, S.; Belforte, S.; Bell, W. H.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Bensinger, J.; Beretvas, A.; Berryhill, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bishai, M.; Blair, R. E.; Blocker, C.; Bloom, K.; Blumenfeld, B.; Blusk, S. R.; Bocci, A.; Bodek, A.; Bolla, G.; Bolshov, A.; Bonushkin, Y.; Bortoletto, D.; Boudreau, J.; Brandl, A.; Bromberg, C.; Brozovic, M.; Brubaker, E.; Bruner, N.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Byrum, K. L.; Cabrera, S.; Calafiura, P.; Campbell, M.; Carithers, W.; Carlson, J.; Carlsmith, D.; Caskey, W.; Castro, A.; Cauz, D.; Cerri, A.; Cerrito, L.; Chan, A. W.; Chang, P. S.; Chang, P. T.; Chapman, J.; Chen, C.; Chen, Y. C.; Cheng, M. -T.; Chertok, M.; Chiarelli, G.; Chirikov-Zorin, I.; Chlachidze, G.; Chlebana, F.; Christofek, L.; Chu, M. L.; Chung, J. Y.; Chung, W. -H.; Chung, Y. S.; Ciobanu, C. I.; Clark, A. G.; Coca, M.; Connolly, A.; Convery, M.; Conway, J.; Cordelli, M.; Cranshaw, J.; Culbertson, R.; Dagenhart, D.; D'Auria, S.; de Cecco, S.; Dejongh, F.; dell'Agnello, S.; dell'Orso, M.; Demers, S.; Demortier, L.; Deninno, M.; de Pedis, D.; Derwent, P. F.; Devlin, T.; Dionisi, C.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D'Onofrio, M.; Dorigo, T.; Eddy, N.; Einsweiler, K.; Engels, E.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fan, Q.; Farrington, S.; Feild, R. G.; Fernandez, J. P.; Ferretti, C.; Field, R. D.; Fiori, I.; Flaugher, B.; Flores-Castillo, L. R.; Foster, G. W.; Franklin, M.; Freeman, J.; Friedman, J.; Fukui, Y.; Furic, I.; Galeotti, S.; Gallas, A.; Gallinaro, M.; Gao, T.; Garcia-Sciveres, M.; Garfinkel, A. F.; Gatti, P.; Gay, C.; Gerdes, D. W.; Gerstein, E.; Giagu, S.; Giannetti, P.; Giolo, K.; Giordani, M.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Goldstein, J.; Gomez, G.; Goncharov, M.; Gorelov, I.; Goshaw, A. T.; Gotra, Y.; Goulianos, K.; Green, C.; Gresele, A.; Grim, G.; Grosso-Pilcher, C.; Guenther, M.; Guillian, G.; da Costa, J. Guimaraes; Haas, R. M.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hall, C.; Handa, T.; Handler, R.; Happacher, F.; Hara, K.; Hardman, A. D.; Harris, R. M.; Hartmann, F.; Hatakeyama, K.; Hauser, J.; Heinrich, J.; Heiss, A.; Hennecke, M.; Herndon, M.; Hill, C.; Hocker, A.; Hoffman, K. D.; Hollebeek, R.; Holloway, L.; Hou, S.; Huffman, B. T.; Hughes, R.; Huston, J.; Huth, J.; Ikeda, H.; Issever, C.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; Iwai, J.; Iwata, Y.; Iyutin, B.; James, E.; Jones, M.; Joshi, U.; Kambara, H.; Kamon, T.; Kaneko, T.; Kang, J.; Unel, M. Karagoz; Karr, K.; Kartal, S.; Kasha, H.; Kato, Y.; Keaffaber, T. A.; Kelley, K.; Kelly, M.; Kennedy, R. D.; Kephart, R.; Khazins, D.; Kikuchi, T.; Kilminster, B.; Kim, B. J.; Kim, D. H.; Kim, H. S.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, T. H.; Kim, Y. K.; Kirby, M.; Kirk, M.; Kirsch, L.; Klimenko, S.; Koehn, P.; Kondo, K.; Konigsberg, J.; Korn, A.; Korytov, A.; Kotelnikov, K.; Kovacs, E.; Kroll, J.; Kruse, M.; Krutelyov, V.; Kuhlmann, S. E.; Kurino, K.; Kuwabara, T.; Kuznetsova, N.; Laasanen, A. T.; Lai, N.; Lami, S.; Lammel, S.; Lancaster, J.; Lannon, K.; Lancaster, M.; Lander, R.; Lath, A.; Latino, G.; Lecompte, T.; Le, Y.; Lee, J.; Lee, S. W.; Leonardo, N.; Leone, S.; Lewis, J. D.; Li, K.; Lin, C. S.; Lindgren, M.; Liss, T. M.; Liu, J. B.; Liu, T.; Liu, Y. C.; Litvintsev, D. O.; Lobban, O.; Lockyer, N. S.; Loginov, A.; Loken, J.; Loreti, M.; Lucchesi, D.; Lukens, P.; Lusin, S.; Lyons, L.; Lys, J.; Madrak, R.; Maeshima, K.; Maksimovic, P.; Malferrari, L.; Mangano, M.; Manca, G.; Mariotti, M.; Martignon, G.; Martin, M.; Martin, A.; Martin, V.; Martínez, M.; Matthews, J. A.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; Menguzzato, M.; Menzione, A.; Merkel, P.; Mesropian, C.; Meyer, A.; Miao, T.; Miller, R.; Miller, J. S.; Minato, H.; Miscetti, S.; Mishina, M.; Mitselmakher, G.; Miyazaki, Y.; Moggi, N.; Moore, E.; Moore, R.; Morita, Y.; Moulik, T.; Mulhearn, M.; Mukherjee, A.; Muller, T.; Munar, A.; Murat, P.; Murgia, S.; Nachtman, J.; Nagaslaev, V.; Nahn, S.; Nakada, H.; Nakano, I.; Napora, R.; Niell, F.; Nelson, C.; Nelson, T.; Neu, C.; Neubauer, M. S.; Neuberger, D.; Newman-Holmes, C.; Ngan, C. -Y. P.; Nigmanov, T.; Niu, H.; Nodulman, L.; Nomerotski, A.; Oh, S. H.; Oh, Y. D.; Ohmoto, T.; Ohsugi, T.; Oishi, R.; Okusawa, T.; Olsen, J.; Orejudos, W.; Pagliarone, C.; Palmonari, F.; Paoletti, R.; Papadimitriou, V.; Partos, D.; Patrick, J.; Pauletta, G.; Paulini, M.; Pauly, T.; Paus, C.; Pellett, D.; Penzo, A.; Pescara, L.; Phillips, T. J.; Piacentino, G.; Piedra, J.; Pitts, K. T.; Pompoš, A.; Pondrom, L.; Pope, G.; Pratt, T.; Prokoshin, F.; Proudfoot, J.; Ptohos, F.; Pukhov, O.; Punzi, G.; Rademacker, J.; Rakitine, A.; Ratnikov, F.; Ray, H.; Reher, D.; Reichold, A.; Renton, P.; Rescigno, M.; Ribon, A.; Riegler, W.; Rimondi, F.; Ristori, L.; Riveline, M.; Robertson, W. J.; Rodrigo, T.; Rolli, S.; Rosenson, L.; Roser, R.; Rossin, R.; Rott, C.; Roy, A.; Ruiz, A.; Ryan, D.; Safonov, A.; Denis, R. St.; Sakumoto, W. K.; Saltzberg, D.; Sanchez, C.; Sansoni, A.; Santi, L.; Sarkar, S.; Sato, H.; Savard, P.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Scodellaro, L.; Scott, A.; Scribano, A.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Semeria, F.; Shah, T.; Shapiro, M. D.; Shepard, P. F.; Shibayama, T.; Shimojima, M.; Shochet, M.; Sidoti, A.; Siegrist, J.; Sill, A.; Sinervo, P.; Singh, P.; Slaughter, A. J.; Sliwa, K.; Snider, F. D.; Snihur, R.; Solodsky, A.; Speer, T.; Spezziga, M.; Sphicas, P.; Spinella, F.; Spiropulu, M.; Spiegel, L.; Steele, J.; Stefanini, A.; Strologas, J.; Strumia, F.; Stuart, D.; Sukhanov, A.; Sumorok, K.; Suzuki, T.; Takano, T.; Takashima, R.; Takikawa, K.; Tamburello, P.; Tanaka, M.; Tannenbaum, B.; Tecchio, M.; Tesarek, R. J.; Teng, P. K.; Terashi, K.; Tether, S.; Thom, J.; Thompson, A. S.; Thomson, E.; Thurman-Keup, R.; Tipton, P.; Tkaczyk, S.; Toback, D.; Tollefson, K.; Tonelli, D.; Tonnesmann, M.; Toyoda, H.; Trischuk, W.; de Troconiz, J. F.; Tseng, J.; Tsybychev, D.; Turini, N.; Ukegawa, F.; Unverhau, T.; Vaiciulis, T.; Varganov, A.; Vataga, E.; Vejcik, S.; Velev, G.; Veramendi, G.; Vidal, R.; Vila, I.; Vilar, R.; Volobouev, I.; von der Mey, M.; Vucinic, D.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wan, Z.; Wang, C.; Wang, M. J.; Wang, S. M.; Ward, B.; Waschke, S.; Watanabe, T.; Waters, D.; Watts, T.; Weber, M.; Wenzel, H.; Wester, W. C.; Whitehouse, B.; Wicklund, A. B.; Wicklund, E.; Wilkes, T.; Williams, H. H.; Wilson, P.; Winer, B. L.; Winn, D.; Wolbers, S.; Wolinski, D.; Wolinski, J.; Wolinski, S.; Wolter, M.; Worm, S.; Wu, X.; Würthwein, F.; Wyss, J.; Yang, U. K.; Yao, W.; Yeh, G. P.; Yeh, P.; Yi, K.; Yoh, J.; Yosef, C.; Yoshida, T.; Yu, I.; Yu, S.; Yu, Z.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zetti, F.; Zucchelli, S. Bibcode: 2004PhRvL..92l1802A Altcode: 2003hep.ex....9051A We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb-1 of pp¯ collisions at √(s)=1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a (3+1+n)-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for n=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71TeV, respectively. Title: Evidence for Gradual External Reconnection before Explosive Eruption of a Solar Filament Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2004ApJ...602.1024S Altcode: We observe a slowly evolving quiet-region solar eruption of 1999 April 18, using extreme-ultraviolet (EUV) images from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) and soft X-ray images from the Soft X-ray Telescope (SXT) on Yohkoh. Using difference images, in which an early image is subtracted from later images, we examine dimmings and brightenings in the region for evidence of the eruption mechanism. A filament rose slowly at about 1 km s-1 for 6 hours before being rapidly ejected at about 16 km s-1, leaving flare brightenings and postflare loops in its wake. Magnetograms from the Michelson Doppler Imager (MDI) on SOHO show that the eruption occurred in a large quadrupolar magnetic region with the filament located on the neutral line of the quadrupole's central inner lobe between the inner two of the four polarity domains. In step with the slow rise, subtle EIT dimmings commence and gradually increase over the two polarity domains on one side of the filament, i.e., in some of the loops of one of the two sidelobes of the quadrupole. Concurrently, soft X-ray brightenings gradually increase in both sidelobes. Both of these effects suggest heating in the sidelobe magnetic arcades, which gradually increase over several hours before the fast eruption. Also, during the slow pre-eruption phase, SXT dimmings gradually increase in the feet and legs of the central lobe, indicating expansion of the central-lobe magnetic arcade enveloping the filament. During the rapid ejection, these dimmings rapidly grow in darkness and in area, especially in the ends of the sigmoid field that erupts with the filament, and flare brightenings begin underneath the fast-moving but still low-altitude filament. We consider two models for explaining the eruption: ``breakout,'' which says that reconnection occurs high above the filament prior to eruption, and ``tether cutting,'' which says that the eruption is unleashed by reconnection beneath the filament. The pre-eruption evolution is consistent with gradual breakout that led to (and perhaps caused) the fast eruption. Tether-cutting reconnection below the filament begins early in the rapid ejection, but our data are not complete enough to determine whether this reconnection began early enough to be the cause of the fast-phase onset. Thus, our observations are consistent with gradual breakout reconnection causing the long slow rise of the filament, but allow the cause of the sudden onset of the explosive fast phase to be either a jump in the breakout reconnection rate or the onset of runaway tether-cutting reconnection, or both. Title: Tether-cutting Energetics of a Solar Quiet-Region Prominence Eruption Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2003ApJ...599.1418S Altcode: We study the morphology and energetics of a slowly evolving quiet-region solar prominence eruption occurring on 1999 February 8-9 in the solar north polar crown region, using soft X-ray data from the soft X-ray telescope (SXT) on Yohkoh and Fe XV EUV 284 Å data from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO). After rising at ~1 km s-1 for about six hours, the prominence accelerates to a velocity of ~10 km s-1, leaving behind EUV and soft X-ray loop arcades of a weak flare in its source region. Intensity dimmings occur in the eruption region cospatially in EUV and soft X-rays, indicating that the dimmings result from a depletion of material. Over the first two hours of the prominence's rapid rise, flarelike brightenings occur beneath the rising prominence that might correspond to ``tether-cutting'' magnetic reconnection. These brightenings have heating requirements of up to ~1028-1029 ergs, and this is comparable to the mechanical energy required for the rising prominence over the same time period. If the ratio of mechanical energy to heating energy remains constant through the early phase of the eruption, then we infer that coronal signatures for the tether cutting may not be apparent at or shortly after the start of the fast phase in this or similar low-energy eruptions, since the plasma-heating energy levels would not exceed that of the background corona. Title: Tether-Cutting Energetics of a Solar Quiet Region Prominence Eruption Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2003AGUFMSH22A0182S Altcode: We study the morphology and energetics of a slowly-evolving quiet region solar prominence eruption occurring on 1999 February 8---9 in the solar north polar crown region, using Fe~xv EUV 284~Å data from the EUV Imaging Telescope (EIT) on SOHO and soft X-ray data from the soft X-ray telescope (SXT) on Yohkoh. After rising at ≈ 1~km~s-1 for about six hours, the prominence accelerates to a velocity of ≈ 10~km~s-1, leaving behind EUV and soft X-ray loop arcades of a weak flare in its source region. Intensity dimmings occur in the eruption region cospatially in EUV and soft X-rays, indicating that the dimmings result from a depletion of material. Over the first two hours of the prominence's rapid rise, flare-like brightenings occur beneath the rising prominence which may correspond to ``tether cutting'' magnetic reconnection. These brightenings have heating requirements of up to ∼ 1028---1029~ergs, and this is comparable to the mechanical energy required for the rising prominence over the same time period. If the ratio of mechanical energy to heating energy remains constant through the early phase of the eruption, then we infer that coronal signatures for the tether cutting may not be apparent at or shortly after the start of the faster-rise phase of the prominence in this or similar low-energy eruptions, since the plasma-heating energy levels would not exceed that of the background corona. Our findings have strong implications for the correct use of observations in testing theoretical ideas for the onset of solar eruptions. Title: Filament eruption without coronal mass ejection Authors: Choudhary, Debi Prasad; Moore, Ronald L. Bibcode: 2003GeoRL..30.2107C Altcode: 2003GeoRL..30uSSC7C We report characteristics of quiescent filament eruptions that were not associated with coronal mass ejections (CMEs). We examined 12 quiescent filament eruptions, each of which was located far from disk center (>=0.7 RSun) in diffuse remnant magnetic fields of decayed active regions, was well observed in full-disk movies in Hα and Fe XII, and had good coronagraph coverage. Of the 12 events, 9 were associated with CMEs and 3 were not. Even though the two kinds of eruption were indistinguishable in their magnetic setting and in the eruptive motion of the filament in the Hα movies, each of the CME-producing eruptions produced a two-ribbon flare in Hα and a coronal arcade and/or two-ribbon flare in Fe XII, and each of the non-CME-producing eruptions did not. From this result, and the appearance of the eruptive motion in the Fe XII movies, we conclude that the non-CME-associated filament eruptions are confined eruptions like the confined filament eruptions in active regions. Title: A measure from line-of-sight magnetograms for prediction of coronal mass ejections Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2003JGRA..108.1380F Altcode: From a sample of 17 vector magnetograms of 12 bipolar active regions we have recently found (1) that a measure of the overall nonpotentiality (the overall twist and shear in the magnetic field) of an active region is given by the strong shear length LSS, the length of the portion of the main neutral line on which the observed transverse fields is strong (>150 Guass (G)) and strongly sheared (shear angle >45°), and (2) that LSS is well correlated with the coronal mass ejection (CME) productivity of the active regions during the ±2-day time window centered on the day of the magnetogram. In the present paper, from the same sample of 17 vector magnetograms, we show that there is a viable proxy for LSS that can be measured from a line-of-sight magnetogram. This proxy is the strong gradient length LSG, the length of the portion of the main neutral line on which the potential transverse field is strong (>150 G), and the gradient of the line-of-sight field is sufficiently steep (greater than ∼50 G/Mm). In our sample of active regions, LSG is statistically significantly correlated with LSS (correlation confidence level >95%), and LSG is as strongly correlated with active region CME productivity as is LSS (correlation confidence level ∼99.7%). Because LSG can be measured from line-of-sight magnetograms obtained from conventional magnetographs, such as the magnetograph mode of the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory, it is a dependable substitute for LSS for use in operational CME forecasting. In addition, via measurement of LSG, the years-long, nearly continuous sequence of 1.5-hour cadence full disk line-of-sight magnetograms from MDI can be used to track the growth and decay of the large-scale nonpotentiality in active regions and to examine the role of this evolution in active region CME productivity. Title: Solar Coronal Heating and the Magnetic Flux Content of the Network Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H. Bibcode: 2003ApJ...593..549F Altcode: We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT, under the assumption that practically all of the coronal luminosity in our quiet regions comes from plasma in the temperature range 0.9×106K<=T<=1.3×106 K. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths greater than ~100 G, (2) ~30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles. Title: Coronal Heating and the Magnetic Flux Content of the Network Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H. Bibcode: 2003SPD....34.1010M Altcode: 2003BAAS...35..826M We investigate the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity is measured from Fe IX/X-Fe XII pairs of coronal images from SOHO/EIT. The network magnetic flux content is measured from SOHO/MDI magnetograms. We find that the luminosity of the corona in our quiet regions increases roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network magnetic flux clumps. From (1) this result, (2) other observations of many fine-scale explosive events at the edges of network flux clumps, and (3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of network flux clumps, we infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. Our observational results together with our feasibility analysis allow us to predict that (1) at the edges of the network flux clumps there are many transient sheared-core bipoles of the size and lifetime of granules and having transverse field strengths > 100 G, (2) 30 of these bipoles are present per supergranule, and (3) most spicules are produced by explosions of these bipoles.

This work was supported by NASA's Office of Space Science through its Solar and Heliospheric Physics Supporting Research and Technology Program and its Sun-Earth Connection Guest Investigator Program. Title: Evidence for Gradual External Reconnection Leading to Explosive Eruption of a Solar Filament Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2003SPD....34.2301S Altcode: 2003BAAS...35..851S We observe a slowly-evolving quiet region solar eruption of 1999 April 18, using images in 195 Å Fe xii from EIT on SOHO, and in soft X-rays from SXT on Yohkoh. We examine dimmings and brightenings in difference images, where an early image is subtracted from later images, for evidence of the eruption mechanism. A filament rose slowly at about 1 km s-1 for six hours before being rapidly ejected at about 10 km s-1, leaving flare brightenings and post-flare loops in its wake. SOHO MDI data show that the eruption occurred in a quadrupolar region, with the filament location splitting the four magnetic sources. During the slow rise, subtle EIT dimmings occur between the filament and one of the remote magnetic regions. Concurrently, soft X-ray brightenings occur between the filament and either remote magnetic region. Both of these effects suggest temperature enhancements in magnetic loop systems on either side of the filament prior to eruption. Pre-eruption SXT dimmings occur on either side of and very close to the slowly rising filament, indicating expansion of enveloping magnetic loops. At the start of the rapid ejection, intense dimmings occur at the locations evacuated by the filament, and brightenings occur underneath the fast-moving but still low-altitude filament. We consider two models for explaining the eruption: ``breakout,'' which says that reconnection occurs high above the filament prior to eruption, and ``tether cutting,'' which says that the eruption is driven by reconnecting field lines beneath the filament. We find that pre-eruption evolution is consistent with breakout. Tether cutting-type reconnection occurs during the rapid ejection, but our data are not complete enough to determine whether that reconnection is the primary cause of the fast-phase onset. Title: Beyond Solar-B: MTRAP, the Magnetic TRAnsition Region Probe Authors: Davis, J. M.; Moore, R. L.; Hathaway, D. H.; Science Definition CommitteeHigh-Resolution Solar Magnetography Beyond Solar-B Team Bibcode: 2003SPD....34.2014D Altcode: 2003BAAS...35..846D The next generation of solar missions will reveal and measure fine-scale solar magnetic fields and their effects in the solar atmosphere at heights, small scales, sensitivities, and fields of view well beyond the reach of Solar-B. The necessity for, and potential of, such observations for understanding solar magnetic fields, their generation in and below the photosphere, and their control of the solar atmosphere and heliosphere, were the focus of a science definition workshop, "High-Resolution Solar Magnetography from Space: Beyond Solar-B," held in Huntsville Alabama in April 2001. Forty internationally prominent scientists active in solar research involving fine-scale solar magnetism participated in this Workshop and reached consensus that the key science objective to be pursued beyond Solar-B is a physical understanding of the fine-scale magnetic structure and activity in the magnetic transition region, defined as the region between the photosphere and corona where neither the plasma nor the magnetic field strongly dominates the other. The observational objective requires high cadence (< 10s) vector magnetic field maps, and spatially resolved spectra from the IR, visible, vacuum UV, to the EUV at high resolution (< 50km) over a large FOV ( 140,000 km). A polarimetric resolution of one part in ten thousand is required to measure transverse magnetic fields of < 30G. The latest SEC Roadmap includes a mission identified as MTRAP to meet these requirements. Enabling technology development requirements include large, lightweight, reflecting optics, large format sensors (16K x 16K pixels) with high QE at 150 nm, and extendable spacecraft structures. The Science Organizing Committee of the Beyond Solar-B Workshop recommends that: 1. Science and Technology Definition Teams should be established in FY04 to finalize the science requirements and to define technology development efforts needed to ensure the practicality of MTRAP's observational goals. 2. The necessary technology development funding should be included in Code S budgets for FY06 and beyond to prepare MTRAP for a new start no later than the nominal end of the Solar-B mission, around 2010. Title: Observation of Two Forms of Macrospicules in Coronal Holes: Spikes and Loops Authors: Yamauchi, Y.; Moore, R. L.; Suess, S. T.; Wang, H.; Sakurai, T. Bibcode: 2003SPD....34.0411Y Altcode: 2003BAAS...35..812Y Ulysses high-latitude observations show the existence of small structures in the high-speed solar wind that contain magnetic field reversals. These reversals sometimes appear to be associated with plasmoids or current sheets. We have proposed that the reversals are created by activity low in the magnetic network in coronal holes [Yamauchi et al., 2002, GRL, v29(10)]. Here we present solar evidence favoring this hypothesis. Since photospheric magnetic flux observations have shown that there is a small fraction of opposite polarity in coronal holes [e.g., Deforest et al., 1997, Sol. Phys., v175(2), 393-410], there should be local magnetic loops in the network. If one of these loops were to erupt into the corona, it could create a magnetic field reversal by reconnection with the surrounding open magnetic field. Tanaka [1972, Report of BBSO, No. 125] observed that some H-alpha mottles (spicules) in the network show a double-strand structure. The two strands might be the legs of an erupted network loop. Any coronal hole macrospicule that showed a bipolar erupting loop structure rather than a unipolar, jet-like spike, would be a candidate for such an event. From sequences of full-disk H-alpha images from Big Bear Solar Observatory, we have found 35 macrospicules in polar coronal holes. About half of these appear to be erupting loops, while the rest look more like unipolar spikes. Thus, we have found evidence that network-scale erupting magnetic loops are a common occurrence in coronal holes. This strengthens the possibility that such events are the source of the fine-scale field reversals in the high-speed wind. Title: CME Prediction from Line-of-Sight Magnetograms Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2003SPD....34.0503F Altcode: 2003BAAS...35R.814F We have previously shown for bipolar active regions that measures of active-region nonpotentiality from vector magnetograms are correlated with active-region CME productivity (Falconer, Moore, & Gary 2002, ApJ, 569, 1016). Guided by those measures and results, we have now obtained a measure from line-of-sight magnetograms that is well correlated both with our measures of active-region nonpotentiality from vector magnetograms and with active-region CME productivity. The measure is the length of strong-gradient main neutral line (LG). This is the length of a bipolar region's main neutral line on which the potential transverse field is greater than 150G, and the gradient in the line-of-sight field is greater than 50G/Mm.

From the sample of 17 MSFC magnetograms of 12 basically bipolar active regions used in our previous paper, we find that LG is strongly correlated (99.7%) with one of our vector-magnetogram measures of nonpotentiality, the length of strong-gradient main neutral line LSS. We also find that LG is as strongly correlated (99.7%) with CME productivity as is LSS. Being obtainable from line-of-sight magnetograms, LG makes the much larger data set of line-of-sight magnetograms (i.e. from SOHO/MDI and Kitt Peak) available for CME prediction study. This is especially important for evolutionary studies, with SOHO/MDI having no day/night, cloudy weather, or atmospheric seeing problems.

This work was supported by funding from NSF's Division of Atmospheric Sciences (Space Weather and Shine Programs) and by NASA's Office of Space Science (Living with a Star Program and Solar and Heliospheric Physics Supporting Research and Technology Program). Title: Search for minimal supergravity in single-electron events with jets and large missing transverse energy in pp¯ collisions at (s)=1.8 TeV Authors: Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahmed, S. N.; Alexeev, G. D.; Alton, A.; Alves, G. A.; Anderson, E. W.; Arnoud, Y.; Avila, C.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Bacon, T. C.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Beaudette, F.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blekman, F.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Bolton, T. A.; Borcherding, F.; Bos, K.; Bose, T.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Crépé-Renaudin, S.; Cummings, M. A.; Cutts, D.; Davis, G. A.; de, K.; de Jong, S. J.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doulas, S.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Eltzroth, J. T.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Fein, D.; Ferbel, T.; Filthaut, F.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Fox, H.; Frame, K. C.; Fu, S.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, M.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gilmartin, R.; Ginther, G.; Gómez, B.; Goncharov, P. I.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Grinstein, S.; Groer, L.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Huang, Y.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jain, S.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jöstlein, H.; Juste, A.; Kahl, W.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Khanov, A.; Kharchilava, A.; Kim, S. K.; Klima, B.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kothari, B.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krivkova, P.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kupco, A.; Kuznetsov, V. E.; Landsberg, G.; Lee, W. M.; Leflat, A.; Leggett, C.; Lehner, F.; Leonidopoulos, C.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Luo, C.; Maciel, A. K.; Madaras, R. J.; Malyshev, V. L.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Mayorov, A. A.; McCarthy, R.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Mutaf, Y.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Nomerotski, A.; Nunnemann, T.; O'Neil, D.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Papageorgiou, K.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Peters, O.; Pétroff, P.; Piegaia, R.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Przybycien, M. B.; Qian, J.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Ridel, M.; Rijssenbeek, M.; Rizatdinova, F.; Rockwell, T.; Roco, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sabirov, B. M.; Sajot, G.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sen, N.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Song, Y.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stoker, D.; Stolin, V.; Stone, A.; Stoyanova, D. A.; Strang, M. A.; Strauss, M.; Strovink, M.; Stutte, L.; Sznajder, A.; Talby, M.; Taylor, W.; Tentindo-Repond, S.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; Vaniev, V.; van Kooten, R.; Varelas, N.; Vertogradov, L. S.; Villeneuve-Seguier, F.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z. -M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Womersley, J.; Wood, D. R.; Xu, Q.; Yamada, R.; Yamin, P.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Youssef, S.; Yu, J.; Zanabria, M.; Zhang, X.; Zheng, H.; Zhou, B.; Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A. Bibcode: 2002PhRvD..66k2001A Altcode: 2002hep.ex....5002A We describe a search for evidence of minimal supergravity (MSUGRA) in 92.7 pb-1 of data collected with the DØ detector at the Fermilab Tevatron pp¯ collider at (s)=1.8 TeV. Events with a single electron, four or more jets, and large missing transverse energy were used in this search. The major backgrounds are from W+jets, misidentified multijet, tt¯, and WW production. We observe no excess above the expected number of background events in our data. A new limit in terms of MSUGRA model parameters is obtained. Title: Coronal Heating and the Increase of Coronal Luminosity with Magnetic Flux Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Hathaway, D. H. Bibcode: 2002AAS...200.8808M Altcode: 2002BAAS...34R.790M We present the observed scaling of coronal luminosity with magnetic flux in a set of quiet regions. Comparison of this with the observed scaling found for active regions by Fisher et al (1998, ApJ, 508, 985) suggests an underlying difference between coronal heating in active regions and quiet regions. From SOHO/EIT coronal images and SOHO/MDI magnetograms of 4 similar large quiet regions, we measure LCorona and Φ Total in random subregions ranging in area from about 4 supergranules [(70,000 km)2] to about 100 supergranules [(0.5 RSun)2], where LCorona is the luminosity of the corona in a subregion and Φ Total is the flux content of the magnetic network in the subregion. This sampling of our quiet regions yields a correlation plot of Log(LCorona) vs Log(Φ Total) appropriate for comparison with the corresponding plot from Fisher et al for active regions. For our quiet regions, the mean values of LCorona and Φ Total both increase linearly with area (simply because each set of subregions of the same area has very nearly the same mean coronal luminosity per unit area and mean magnetic flux per unit area), and in each constant-area set the values of LCorona and Φ Total "scatter" about their means for that area. This results in the linear least-squares fit to the Log(LCorona) vs Log(Φ Total) plot having a slope somewhat less than 1. If active regions mimicked our quiet regions in that all large sets of same-area active regions had the same mean coronal luminosity per unit area and same mean magnetic flux per unit area, then the least-squares fit to their Log(LCorona) vs Log(Φ Total) plot would also have a slope of less than 1. Instead, the slope for active regions is 1.2. Given the observed factor of 3 scatter about the least-squares linear fit, this slope is consistent with Φ Total on average increasing linearly with area (A) as in quiet regions, but LCorona on average increasing as the volume (A1.5) of the active region instead of as the area. This possiblity is reasonable if the heating in active regions is a burning down of previously-stored coronal magnetic energy rather than a steady dissipation of energy flux from below as expected in quiet regions. This work is supported by NASA, OSS, through its S&HP SR&T and SEC GI programs. Title: Forecasting Coronal Mass Ejections from Vector Magnetograms Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2002AAS...200.2005F Altcode: 2002BAAS...34..673F In a 17 vector magnetogram study of 12 bipolar active regions (Falconer, Moore, & Gary 2002, ApJ in press), we evaluated from each vector magnetogram four global measures of the magnetic field of the observed active region, and examined the correlation of each of these quantities with the CME productivity of the active regions. The four global magnetic quantities were 1) the total magnetic flux (Φ ), which is a measure of the size of an active region, and three measures of the global nonpotentiality of an active region: 2) the length of strong-field, strong-shear main neutral line (LSS), the net current (IN), and the magnetic twist parameter ( α =μ IN/Φ ). The CME productivity of each active region for each day of its disk passage was determined from Yohkoh/SXT coronal X-ray images together with GOES X-ray flux observations and, when available, SOHO/LASCO observations. For a centered time window of 5 days (day of the magnetogram +/- 2 days) for CME production, for each of the three measures of global nonpotentiality, whether the measure was above its median value was well correlated with whether the active region produced any CMEs. For each, the confidence level of the correlation was >= 99%. The sample size was too small to show a statistically significant correlation (confidence level >= 95%) of the global nonpotentiality measures with future CME production, that is, from the date of the magnetogram forward. We are doubling our sample, and will report on our statistical evaluation of global nonpotentiality as a predictor of future CME productivity. The vector magnetograms of the added active regions are from the first year of operation (September 2000 - October 2001) of the upgraded MSFC vector magnetograph. This work is funded by NSF through its Space Weather Program, and by NASA through its Living With a Star Targeted Research and Technology Program and its Solar and Heliospheric Physics Supporting Research and Technology Program. The upgrade of the MSFC vector magnetograph was funded by the HESSI mission. Title: Correlation of the Coronal Mass Ejection Productivity of Solar Active Regions with Measures of Their Global Nonpotentiality from Vector Magnetograms: Baseline Results Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2002ApJ...569.1016F Altcode: From conventional magnetograms and chromospheric and coronal images, it is known qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions in which the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. In this paper, we present measurements from active region vector magnetograms that begin to quantify the dependence of the CME productivity of an active region on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we obtain a measure of the size of the active region (the magnetic flux content, Φ) and three different measures of the global nonpotentiality (LSS, the length of strong-shear, strong-field main neutral line; IN, the net electric current arching from one polarity to the other; and α=μIN/Φ, a flux-normalized measure of the field twist). From these measurements and the observed CME productivity of the active regions, we find that: (1) All three measures of global nonpotentiality are statistically significantly correlated with each other and with the active region flux content. (2) All three measures of global nonpotentiality are significantly correlated with CME productivity. The flux content has some correlation with CME productivity, but at a less than statistically significant confidence level (less than 95%). (3) The net current is less strongly correlated with CME productivity than is α, and the correlation of flux content with CME productivity is weaker still. If these differences in correlation strength, and a significant correlation of α with flux content, persist to larger samples of active regions, this would suggest that active region size does not affect CME productivity except through global nonpotentiality. (4) For each of the four global magnetic quantities, the correlation with CME productivity is stronger for a +/-2 day time window for the CME production than for windows half as wide or twice as wide. This plausibly results from most CME-productive active regions producing less than one CME per day, and from active region evolution often significantly changing the global nonpotentiality over the course of several days. These results establish that measures of active region global nonpotentiality from vector magnetograms (such as LSS, IN, and α) should be useful for prediction of active region CMEs. Title: Modeling Carbon Flows Ffrom Land Use Change Aand Forestry Datasets Using Transition Probabilities - A Case Study From India Authors: Krishnaprasad, V.; Cardina, J.; Stinner, B.; Badarinath, K.; Moore, R.; Stinner, R.; Hoy, C. Bibcode: 2002cosp...34E.290K Altcode: 2002cosp.meetE.290K Forests and soils are a major sinks of carbon and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. In this study, `carbon flow' approach has been used to quantify the carbon flux from Indian forests for the years 1997 and 1999 using the landuse change data in forestry sector obtained from Satellite Remote sensing data. A simulation approach combining Markov chain processes using transition probabilities and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Results suggested a total carbon sink of about 18.3 Mt and 29.9 Mt for the years 1997 and 1999 from forest management and land use change in India. This is contrary to the previously reported studies, which suggests Indian forests as a source of carbon. Simulation results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and 3.4 Mha and 5.0Mha decrease in open and scrub forests, if similar land use changes that occurred during 1997-1999 would continue. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon flux from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce GHG emissions from land use change in the forestry sector are also reviewed in the study. Title: SXT and EIT Observations of A Quiet Region Large-Scale Eruption: Implications for Eruption Theories Authors: Sterling, A. C.; Moore, R. L.; Thompson, B. J. Bibcode: 2002mwoc.conf..165S Altcode: We present Yohkoh/SXT and SOHO/EIT observations of a set of slow, large scale, quiet-region solar eruptions. In SXT data, these events seem to appear ``out of nothing,'' indicating that they are associated initially with weak magnetic fields and corresponding low heating rates. These events evolve relatively slowly, affording us an opportunity to examine in detail their development. We look for signatures of the start of the eruptions through intensity variations, physical motions, and dimming signatures in the SXT and EIT data. In particular, we look to see whether the earliest signatures are brightenings occurring in the ``core'' region (i.e., the location where the magnetic shear is strongest and the post-flare loops develop); such early brightenings in the core could be indicative of a ``tether-cutting'' process, whereby the eruption is instigated by magnetic reconnection among highly-sheared core fields. In our best-observed case, we find motions of the core fields beginning well before brightenings in the core. This is new evidence that tether-cutting is not the primary mechanism operating in solar eruptions. Rather, our observations are more consistent with the eruption process known as the ``breakout model'' (Antiochos et al. 1999), which holds that the eruption results from initial slow magnetic reconnections occurring high above (far from) the core region. Title: Use of Yohkoh SXT in Measuring the Net Current and CME Productivity of Active Regions Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2002mwoc.conf..303F Altcode: In our investigation of the correlation of global nonpotentiality of active regions to their CME productivity (Falconer, D. A. 2001, JGR, in press, and Falconer, Moore, & Gary, 2000, EOS 82, 20 S323), we use Yohkoh SXT images for two purposes. The first use is to help resolve the 180o ambiguity in the direction of the observed transverse magnetic field. Resolution of the 180o ambiguity is important, since the net current, one of our measures of global nonpotentiality, is derived from integrating the dot product of the transverse field around a contour (IN = int BTcdot dl). The ambiguity results from the observed transverse field being determined from the linear polarization, which gives the plane of the direction, but leaves a 180o ambiguity. Automated methods to resolve the ambiguity ranging from the simple acute angle rule (Falconer, D. A. 2001) to the more sophisticated annealing method (Metcalf T. R. 1994). For many active regions, especially ones that are nearly potential these methods work well. But for very nonpotential active regions where the shear angle (the angle between the observed and potential transverse field) is near 90o throughout large swaths along the main neutral line, both methods can resolve the ambiguity incorrectly for long segments of the neutral line. By determining from coronal images, such as those from Yohkoh/SXT, the sense of shear along the main neutral line in the active region, these cases can be identified and corrected by a modification of the acute angle rule described here. The second use of Yohkoh/SXT in this study is to check for the cusped coronal arcades of long-duration eruptive flares. This signature is an excellent proxy for CMEs, and was used by Canfield, Hudson, and McKenzie (1999 GRL V26, 6, 627-630). This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program. Title: Contagious Coronal Heating from Recurring Emergence of Magnetic Flux Authors: Moore, R. L.; Falconer, D. A.; Sterling, A. C. Bibcode: 2002mwoc.conf...39M Altcode: For each of six old bipolar active regions, we present and interpret Yohkoh/SXT and SOHO/MDI observations of the development, over several days, of enhanced coronal heating in and around the old bipole in response to new magnetic flux emergence within the old bipole. The observations show: 1. In each active region, new flux emerges in the equatorward side of the old bipole, around a lone remaining leading sunspot and/or on the equatorward end of the neutral line of the old bipole. 2. The emerging field is marked by intense internal coronal heating, and enhanced coronal heating occurs in extended loops stemming from the emergence site. 3. In five of the six cases, a "rooster tail" of coronal loops in the poleward extent of the old bipole also brightens in response to the flux emergence. 4. There are episodes of enhanced coronal heating in surrounding magnetic fields that are contiguous with the old bipole but are not directly connected to the emerging field. From these observations, we suggest that the accommodation of localized newly emerged flux within an old active region entails far reaching adjustments in the 3D magnetic field throughout the active region and in surrounding fields in which the active region is embedded, and that these adjustments produce the extensive enhanced coronal heating. We Also Note That The Reason For The recurrence of flux emergence in old active regions may be that active-region flux tends to emerge in giant-cell convection downflows. If so, the poleward "rooster tail" is a coronal flag of a long-lasting downflow in the convection zone. This work was funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program. Title: Hα Proxies for EIT Crinkles: Further Evidence for Preflare ``Breakout''-Type Activity in an Ejective Solar Eruption Authors: Sterling, Alphonse C.; Moore, Ronald L.; Qiu, Jiong; Wang, Haimin Bibcode: 2001ApJ...561.1116S Altcode: We present Hα observations from Big Bear Solar Observatory of an eruptive flare in NOAA Active Region 8210, occurring near 22:30 UT on 1998 May 1. Previously, using the EUV Imaging Telescope (EIT) on the SOHO spacecraft, we found that a pattern of transient, localized brightenings, which we call ``EIT crinkles,'' appears in the neighborhood of the eruption near the time of flare onset. These EIT crinkles occur at a location in the active region well separated from the sheared core magnetic fields, which is where the most intense features of the eruption are concentrated. We also previously found that high-cadence images from the Soft X-ray Telescope (SXT) on Yohkoh indicate that soft X-ray intensity enhancements in the core begin after the start of the EIT crinkles. With the Hα data, we find remote flare brightening counterparts to the EIT crinkles. Light curves as functions of time of various areas of the active region show that several of the remote flare brightenings undergo intensity increases prior to the onset of principal brightenings in the core region, consistent with our earlier findings from EIT and SXT data. These timing relationships are consistent with the eruption onset mechanism known as the breakout model, introduced by Antiochos and colleagues, which proposes that eruptions begin with reconnection at a magnetic null high above the core region. Our observations are also consistent with other proposed mechanisms that do not involve early reconnection in the core region. As a corollary, our observations are not consistent with the so-called tether-cutting models, which say that the eruption begins with reconnection in the core. The Hα data further show that a filament in the core region becomes activated near the time of EIT crinkle onset, but little if any of the filament actually erupts, despite the presence of a halo coronal mass ejection (CME) associated with this event. Title: EIT and SXT Observations of a Quiet-Region Filament Ejection: First Eruption, Then Reconnection Authors: Sterling, Alphonse C.; Moore, Ronald L.; Thompson, Barbara J. Bibcode: 2001ApJ...561L.219S Altcode: We observe a slow-onset quiet-region filament eruption with the EUV Imaging Telescope (EIT) on the Solar Heliospheric Observatory (SOHO) and the soft X-ray telescope (SXT) on Yohkoh. This event occurred on 1999 April 18 and was likely the origin of a coronal mass ejection detected by SOHO at 08:30 UT on that day. In the EIT observation, one-half of the filament shows two stages of evolution: stage 1 is a slow, roughly constant upward movement at ~1 km s-1 lasting ~6.5 hr, and stage 2 is a rapid upward eruption at ~16 km s-1 occurring just before the filament disappears into interplanetary space. The other half of the filament shows little motion along the line of sight during the time of stage 1 but erupts along with the rest of the filament during stage 2. There is no obvious emission from the filament in the SXT observation until stage 2; at that time, an arcade of EUV and soft X-ray loops forms first at the central location of the filament and then expands outward along the length of the filament channel. A plot of EUV intensity versus time of the central portion of the filament (where the postflare loops initially form) shows a flat profile during stage 1 and a rapid upturn after the start of stage 2. This light curve is delayed from what would be expected if ``tether-cutting'' reconnection in the core of the erupting region were responsible for the initiation of the eruption. Rather, these observations suggest that a loss of stability of the magnetic field holding the filament initiates the eruption, with reconnection in the core region occurring only as a by-product. Title: Internal and external reconnection in a series of homologous solar flares Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2001JGR...10625227S Altcode: Using data from the extreme ultraviolet imaging telescope (EIT) on SOHO and the soft X-ray telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in National Oceanic and Atmospheric Administration (NOAA) active region 8210 over May 1-2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid parallels the EFR's neutral line at the site of the initial flaring in soft X rays. In EIT each flaring episode begins with the formation of a crinkle pattern external to the EFR. These EIT crinkles move out from, and then in toward, the EFR with velocities ~20 km s-1. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions but are modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare postflare loops, and a coronal mass ejection (CME). External reconnection, first occurring between the escaping CME and the coronal hole field and second occurring between fields formed as a result of the first external reconnection, results in the EIT crinkles and changes in the coronal hole boundary. By the end of the second external reconnection, the initial setup is reinstated; thus the sequence can repeat, resulting in morphologically homologous eruptions. Our inferred magnetic topology is similar to that suggested in the ``breakout model'' of eruptions [Antiochos, 1998], although we cannot determine if our eruptions are released primarily by the breakout mechanism (external reconnection) or, alternatively, primarily by the internal reconnection. Title: EIT Crinkles as Evidence for the Breakout Model of Solar Eruptions Authors: Sterling, Alphonse C.; Moore, Ronald L. Bibcode: 2001ApJ...560.1045S Altcode: We present observations of two homologous flares in NOAA Active Region 8210 occurring on 1998 May 1 and 2, using EUV data from the EUV Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory, high-resolution and high-time cadence images from the soft X-ray telescope on Yohkoh, images or fluxes from the hard X-ray telescope on Yohkoh and the BATSE experiment on board the Compton Gamma Ray Observatory, and Ca XIX soft X-ray spectra from the Bragg crystal spectrometer (BCS) on Yohkoh. Magnetograms indicate that the flares occurred in a complex magnetic topology, consisting of an emerging flux region (EFR) sandwiched between a sunspot to the west and a coronal hole to the east. In an earlier study we found that in EIT images, both flaring episodes showed the formation of a crinkle-like pattern of emission (``EIT crinkles'') occurring in the coronal hole vicinity, well away from a central ``core field'' area near the EFR-sunspot boundary. With our expanded data set, here we find that most of the energetic activity occurs in the core region in both events, with some portions of the core brightening shortly after the onset of the EIT crinkles, and other regions of the core brightening several minutes later, coincident with a burst of hard X-rays there are no obvious core brightenings prior to the onset of the EIT crinkles. These timings are consistent with the ``breakout model'' of solar eruptions, whereby the emerging flux is initially constrained by a system of overlying magnetic field lines, and is able to erupt only after an opening develops in the overlying fields as a consequence of magnetic reconnection at a magnetic null point. In our case, the EIT crinkles would be a signature of this pre-impulsive phase magnetic reconnection, and brightening of the core only occurs after the core fields begin to escape through the newly created opening in the overlying fields. Morphology in soft X-ray images and properties in hard X-rays differ between the two events, with complexities that preclude a simple determination of the dynamics in the core at the times of eruption. From the BCS spectra, we find that the core region expends energy at a rate of ~1026 ergs s-1 during the time of the growth of the EIT crinkles; this rate is an upper limit to energy expended in the reconnections opening the overlying fields. Energy losses occur at an order of magnitude higher rate near the time of the peak of the events. There is little evidence of asymmetry in the spectra, consistent with the majority of the mass flows occurring normal to the line of sight. Both events have similar electron temperature dependencies on time. Title: Onset of the Magnetic Explosion in Solar Flares and Coronal Mass Ejections Authors: Moore, Ronald L.; Sterling, Alphonse C.; Hudson, Hugh S.; Lemen, James R. Bibcode: 2001ApJ...552..833M Altcode: We present observations of the magnetic field configuration and its transformation in six solar eruptive events that show good agreement with the standard bipolar model for eruptive flares. The observations are X-ray images from the Yohkoh soft X-ray telescope (SXT) and magnetograms from Kitt Peak National Solar Observatory, interpreted together with the 1-8 Å X-ray flux observed by GOES. The observations yield the following interpretation. (1) Each event is a magnetic explosion that occurs in an initially closed single bipole in which the core field is sheared and twisted in the shape of a sigmoid, having an oppositely curved elbow on each end. The arms of the opposite elbows are sheared past each other so that they overlap and are crossed low above the neutral line in the middle of the bipole. The elbows and arms seen in the SXT images are illuminated strands of the sigmoidal core field, which is a continuum of sheared/twisted field that fills these strands as well as the space between and around them. (2) Although four of the explosions are ejective (appearing to blow open the bipole) and two are confined (appearing to be arrested within the closed bipole), all six begin the same way. In the SXT images, the explosion begins with brightening and expansion of the two elbows together with the appearance of short bright sheared loops low over the neutral line under the crossed arms and, rising up from the crossed arms, long strands connecting the far ends of the elbows. (3) All six events are single-bipole events in that during the onset and early development of the explosion they show no evidence for reconnection between the exploding bipole and any surrounding magnetic fields. We conclude that in each of our events the magnetic explosion was unleashed by runaway tether-cutting via implosive/explosive reconnection in the middle of the sigmoid, as in the standard model. The similarity of the onsets of the two confined explosions to the onsets of the four ejective explosions and their agreement with the model indicate that runaway reconnection inside a sheared core field can begin whether or not a separate system of overlying fields, or the structure of the bipole itself, allows the explosion to be ejective. Because this internal reconnection apparently begins at the very start of the sigmoid eruption and grows in step with the explosion, we infer that this reconnection is essential for the onset and growth of the magnetic explosion in eruptive flares and coronal mass ejections. Title: EIT Crinkles as Evidence for the Breakout Model of Solar Eruptions Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2001AGUSM..SH51B02S Altcode: Ejective solar eruptions generally involve: (i) a strong magnetic field ``core'' region, which envelops a magnetic inversion line and is the site of the earliest post-flare loop footpoints, and (ii) weaker magnetic fields surrounding the core. Determining whether the eruption begins in the core or in the surrounding fields is vital to understanding the eruption process. Here we discuss observational tests of two different models with opposing views on where the eruption begins. The ``tether-cutting model'' suggests that magnetic reconnection among fields in the core is the primary cause of the eruption; in this case, we expect the earliest signature of the start of the eruption to be brightenings inside the core. In contrast, the ``breakout model'' (Antiochos et al.~1999, ApJ, 510, 485) suggests that the eruption begins when overlying coronal fields are eroded away by low-energy reconnection far from the core; in this case, we would expect initial brightenings at sites remote from the core. To test these ideas, we examine relative timings of brightenings inside and outside the core region of a series of homologous flares in NOAA AR~8210 over 1998 May 1-2. As we previously reported (Sterling and Moore 2001, JGR, in press), these events displayed a crinkle-like pattern of emission in EIT 195 images (``EIT crinkles'') near the time of the eruptions, at locations remote from the core. We examine the onset of these remote brightenings relative to the core brightenings, observing the core using EIT data and high-cadence ( ~ 10~s), high resolution (2.5'' pixels) data from the Soft X-ray Telescope (SXT) on Yohkoh. We find that the EIT crinkles precede the core brightenings by several minutes, which is consistent with the breakout model, but inconsistent with the tether-cutting model. ACS is an NRC---MSFC Research Associate. Title: Coronal Heating and the Magnetic Flux Content of the Network Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H. Bibcode: 2001AGUSM..SH31D06F Altcode: Previously, from analysis of SOHO/EIT coronal images in combination with Kitt Peak magnetograms (Falconer et al 1998, ApJ, 501, 386-396), we found that the quiet corona is the sum of two components: the large-scale corona and the coronal network. The large-scale corona consists of all coronal-temperature ( million-degree) structures larger than the width of a chromospheric network lane (> 10,000 km). The coronal network (1) consists of all coronal-temperature structures of the scale of the network lanes and smaller (< 10,000 km), (2) is rooted in and loosely traces the photospheric magnetic network, (3) has its brightest features seated on polarity dividing lines (neutral lines) in the network magnetic flux, and (4) produces only about 5% of the total coronal emission in quiet regions. The heating of the coronal network is apparently magnetic in origin. Here, from analysis of EIT coronal images of quiet regions in combination with magnetograms of the same quiet regions from SOHO/MDI and from Kitt Peak, we examine the other 95% of the quiet corona and its relation to the underlying magnetic network. We find: (1) Dividing the large-scale corona into its bright and dim halves divides the area into bright "continents" and dark "oceans" having spans of 2-4 supergranules. (2) These patterns are also present in the photospheric magnetograms: the network is stronger under the bright half and weaker under the dim half. (3) The radiation from the large-scale corona increases roughly as the cube root of the magnetic flux content of the underlying magnetic network. In contrast, Fisher et al (1998, ApJ, 508, 985-998) found that the coronal radiation from an active region increases roughly linearly with the magnetic flux content of the active region. We assume, as is widely held, that nearly all of the large-scale corona is magnetically rooted in the network. Our results, together with the result of Fisher et al (1998), suggest that either the coronal heating in quiet regions has a large non-magnetic component, or, if the heating is predominantly produced via the magnetic field, the mechanism is significantly different than in active regions. This work is funded by NASA's Office of Space Science through the Solar Physics Supporting Research and Technology Program and the Sun-Earth Connection Guest Investigator Program. Title: Magnetic Characteristics of Active Region Heating Observed with TRACE, SOHO/EIT, and Yohkoh/SXT Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L. Bibcode: 2001AGUSM..SH41A05P Altcode: Over the past several years, we have reported results from studies that have compared the magnetic structure and heating of the transition region and corona (both in active regions and in the quiet Sun) by combining X-ray and EUV images from Yohkoh and SOHO with photospheric magnetograms from ground-based observatories. Our findings have led us to the hypothesis that most heating throughout the corona is driven from near and below the base of the corona by eruptive microflares occurring in compact low-lying "core" magnetic fields (i.e., fields rooted along and closely enveloping polarity inversion lines in the photospheric magnetic flux). We now extend these studies to cooler plasmas, incorporating sequences of UV and EUV images from TRACE (in addition to SOHO and Yohkoh data) into a comparison with longitudinal magnetograms from Kitt Peak and vector magnetograms from MSFC. These studies support the previous results regarding the importance of core-field activity to active region heating. Activity in fields associated with satellite polarity inclusions and/or magnetically sheared configurations is especially prominent. This work is funded by NASA's Office of Space Science through the Sun-Earth Connection Guest Investigator Program and the Solar Physics Supporting Research and Technology Program. Title: Prediction of Coronal Mass Ejections from Vector Magnetograms: Quantitative Measures as Predictors Authors: Falconer, D. A.; Moore, R. L.; Gary, G. A. Bibcode: 2001AGUSM..SH41C04F Altcode: In a pilot study of 4 active regions (Falconer, D.A. 2001, JGR, in press), we derived two quantitative measures of an active region's global nonpotentiality from the region's vector magnetogram, 1) the net current (IN), and 2) the length of the strong-shear, strong-field main neutral line (LSS), and used these two measures of the CME productivity of the active regions. We compared the global nonpotentiality measures to the active regions' CME productivity determined from GOES and Yohkoh/SXT observations. We found that two of the active regions were highly globally nonpotential and were CME productive, while the other two active regions had little global nonpotentiality and produced no CMEs. At the Fall 2000 AGU (Falconer, Moore, & Gary, 2000, EOS 81, 48 F998), we reported on an expanded study (12 active regions and 17 magnetograms) in which we evaluated four quantitative global measures of an active region's magnetic field and compared these measures with the CME productivity. The four global measures (all derived from MSFC vector magnetograms) included our two previous measures (IN and LSS) as well as two new ones, the total magnetic flux (Φ ) (a measure of an active region's size), and the normalized twist (α =μ IN/Φ ). We found that the three measures of global nonpotentiality (IN, LSS, α ) were all well correlated (>99% confidence level) with an active region's CME productivity within (2 days of the day of the magnetogram. We will now report on our findings of how good our quantitative measures are as predictors of active-region CME productivity, using only CMEs that occurred after the magnetogram. We report the preliminary skill test of these quantitative measures as predictors. We compare the CME prediction success of our quantitative measures to the CME prediction success based on an active region's past CME productivity. We examine the cases of the handful of false positive and false negatives to look for improvements to our predictors. This work is funded by NSF through the Space Weather Program and by NASA through the Solar Physics Supporting Research and Technology Program. Title: Search for Large Extra Dimensions in Dielectron and Diphoton Production Authors: Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Bantly, J.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, G. A.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Doulas, S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Groer, L.; Grudberg, P.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hou, S.; Huang, Y.; Ito, A. S.; Jerger, S. A.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Maciel, A. K.; Madaras, R. J.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.; Meng, X. C.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Norman, D.; Oesch, L.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Peters, O.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Rha, J.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sculli, J.; Sen, N.; Shabalina, E.; Shankar, H. C.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Stutte, L.; Sznajder, A.; Taylor, W.; Tentindo-Repond, S.; Thompson, J.; Toback, D.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; van Kooten, R.; Varelas, N.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z. -M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zhu, Z. H.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A. Bibcode: 2001PhRvL..86.1156A Altcode: 2000hep.ex....8065C; 2000hep.ex....8065D We report a search for effects of large extra spatial dimensions in pp¯ collisions at a center-of-mass energy of 1.8 TeV with the D0 detector, using events containing a pair of electrons or photons. The data are in good agreement with the expected background and do not exhibit evidence for large extra dimensions. We set the most restrictive lower limits to date, at the 95% C.L. on the effective Planck scale between 1.0 and 1.4 TeV for several formalisms and numbers of extra dimensions. Title: Astronomy Image Collections Authors: Moore, R. W. Bibcode: 2001ASPC..225..257M Altcode: 2001vof..conf..257M No abstract at ADS Title: Solar Prominence Eruption Authors: Moore, R. Bibcode: 2000eaa..bookE2282M Altcode: The prominence in a solar prominence eruption is a magnetic structure in the chromosphere and corona (see SOLAR PROMINENCES; SOLAR PROMINENCE: ACTIVE). Prior to its eruption, the prominence is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of solar magnetic structures appropriately called solar filamen... Title: Water Level Monitoring from Space Authors: Close, G.; Lee, C.; Moore, R.; Moore, T. Bibcode: 2000ESASP.458..105C Altcode: 2000geom.conf..105C No abstract at ADS Title: Erratum: An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines Authors: Falconer, D. A.; Gary, G. A.; Moore, R. L.; Porter, J. G. Bibcode: 2000ApJ...538..467F Altcode: In the paper ``An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines'' by D. A. Falconer, G. A. Gary, R. L. Moore, and J. G. Porter (ApJ, 528, 1004 [2000]), Figure 4 was rotated 180° and so did not match the figure caption. The correct orientation and figure caption is given here. Title: Sunspots and Giant-Cell Convection Authors: Moore, R.; Hathaway, D.; Reichmann, E. Bibcode: 2000SPD....31.0403M Altcode: 2000BAAS...32..835M From analysis of Doppler velocity images from SOHO/MDI, Hathaway et al (2000, Solar Phys., in press) have found clear evidence for giant convection cells that fill the solar surface, have diameters 3-10 times that typical of supergranules, and have lifetimes ≳ 10 days. Analogous to the superposition of the granular convection on the supergranular convection, the ~ 30,000 km diameter supergranules are superposed on these still larger giant cells. Because the giant cells make up the large-scale end of a continuous power spectrum that peaks at the size scale of supergranules, it appears that the giant cells are made by the same mode of convection as the supergranules. This suggests that the giant cells are similar to supergranules, just longer-lived, larger in diameter, and deeper. Here we point out that the range of lengths of large bipolar sunspot groups is similar to the size range of giant cells. This, along with the long lives (weeks) of large sunspots, suggests that large sunspots sit in long-lived, deep downflows at the corners of giant cells, and that the distance from leader to follower sunspots in large bipolar groups is the distance from one giant-cell corner to the next. By this line of reasoning, an unusually large and strong downdraft might pull in both legs of a rising spot-group magnetic flux loop, resulting in the formation of a delta sunspot. This leads us to suggest that a large, strong giant-cell corner downdraft should be present at the birthplaces of large delta sunspots for some time (days to weeks) before the birth. Thus, early detection of such downdrafts by local helioseismology might provide an early warning for the formation of those active regions (large delta sunspot groups) that produce the Sun's most violent flares and coronal mass ejections. This work is supported by NASA's Office of Space Science through the Solar Physics Branch of its Sun-Earth Connection Program. Title: Large-Scale Coronal Heating from `Cool' Activity in the Solar Magnetic Network Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H. Bibcode: 2000SPD....31.0208F Altcode: 2000BAAS...32..812F In either Fe IX/X images of Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular (large-scale corona). In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale corona and found that the network-scale coronal features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. Here we investigate the relationship between the large-scale corona and the network as seen in three different EIT filters (He II, Fe IX/X, and Fe XII), and in the magnetic field from SOHO/MDI. We find that, underlying the brighter regions of the large-scale corona (either Fe IX/X or Fe XII), the coronal network (Fe IX/X, and Fe XII), the transition region network (He II), and the magnetic flux content of the network are all enhanced relative to that underlying the dimmer regions of the large-scale corona. We find that the transition region network radiates more than the large-scale corona, which radiates more than the coronal network. From our results we infer that quiet-sun regions (supergranular or larger in size) with enhanced magnetic flux produce enhanced network activity. The small fraction of the network activity manifested as coronal network also increases with increasing magnetic flux. The network activity, predominately the transition region network activity, (or something else also correlated with the magnetic field) drives the heating of the large-scale corona. If the large-scale corona is being heated by the transition region activity, the heating must be done primarily by some nonthermal process (nonjet, possibly waves or currents), because the transition region is cool relative to the corona. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program. Title: Internal and External Reconnection in a Series of Homologous Solar Flares Authors: Sterling, A. C.; Moore, R. L. Bibcode: 2000SPD....31.1405S Altcode: 2000BAAS...32..847S Using data from the Extreme Ultraviolet Telescope (EIT) on SOHO and the Soft X-ray Telescope (SXT) on Yohkoh, we examine a series of morphologically homologous solar flares occurring in NOAA AR 8210 over May 1---2, 1998. An emerging flux region (EFR) impacted against a sunspot to the west and next to a coronal hole to the east is the source of the repeated flaring. An SXT sigmoid traces the EFR's neutral line at the site of the initial flaring in soft X-rays. In EIT, each flaring episode begins with the formation of a crinkle pattern external to the EFR\@. These EIT crinkles move out from, and then in toward, the EFR with velocities ~ 20 km s-1. A shrinking and expansion of the width of the coronal hole coincides with the crinkle activity, and generation and evolution of a postflare loop system begins near the time of crinkle formation. Using a schematic based on magnetograms of the region, we suggest that these observations are consistent with the standard reconnection-based model for solar eruptions, but modified by the presence of the additional magnetic fields of the sunspot and coronal hole. In the schematic, internal reconnection begins inside of the EFR-associated fields, unleashing a flare, postflare loops, and a CME\@. External reconnection, occurring between the escaping CME and the surrounding fields, results in the EIT crinkles and changes in the coronal hole boundary. Our inferred magnetic topology is similar to that suggested in the ` ` breakout model" of eruptions [Antiochos, 1998], although we cannot determine if the ultimate source of the eruptions in this case is due to the breakout mechanism or, alternatively, is primarily released by the internal reconnection. ACS is an NRC---MSFC Research Associate Title: An Assessment of Magnetic Conditions for Strong Coronal Heating in Solar Active Regions by Comparing Observed Loops with Computed Potential Field Lines Authors: Falconer, D. A.; Gary, G. A.; Moore, R. L.; Porter, J. G. Bibcode: 2000ApJ...528.1004F Altcode: We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global nonpotentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main-arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares.

From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global nonpotentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the island. (3) The main-arch bright loops are likely to be heated via reconnection driven at the magnetic null over the island. The details of how and where (along the null line) the reconnection is driven determine which of the split-end loops are selected for strong heating. (4) The null does not appear to be directly involved in the heating of the sheared core fields or in the heating of an extended loop rooted in the island. Rather, these all appear to be heated by microflares in the sheared core field. Title: On Heating the Sun's Corona by Magnetic Explosions: Feasibility in Active Regions and Prospects for Quiet Regions and Coronal Holes Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Suess, S. T. Bibcode: 1999ApJ...526..505M Altcode: We build a case for the persistent strong coronal heating in active regions and the pervasive quasi-steady heating of the corona in quiet regions and coronal holes being driven in basically the same way as the intense transient heating in solar flares: by explosions of sheared magnetic fields in the cores of initially closed bipoles.

We begin by summarizing the observational case for exploding sheared core fields being the drivers of a wide variety of flare events, with and without coronal mass ejections. We conclude that the arrangement of an event's flare heating, whether there is a coronal mass ejection, and the time and place of the ejection relative to the flare heating are all largely determined by four elements of the form and action of the magnetic field: (1) the arrangement of the impacted, interacting bipoles participating in the event, (2) which of these bipoles are active (have sheared core fields that explode) and which are passive (are heated by injection from impacted active bipoles), (3) which core field explodes first, and (4) which core-field explosions are confined within the closed field of their bipoles and which ejectively open their bipoles.

We then apply this magnetic-configuration framework for flare heating to the strong coronal heating observed by the Yohkoh Soft X-ray Telescope in an active region with strongly sheared core fields observed by the Marshall Space Flight Center vector magnetograph. All of the strong coronal heating is in continually microflaring sheared core fields or in extended loops rooted against these active core fields. Thus, the strong heating occurs in field configurations consistent with the heating being driven by frequent core-field explosions that are smaller than but similar to those in confined flares and flaring arches. From analysis of the thermal and magnetic energetics of two selected core-field microflares and a bright extended loop, we find that (1) it is energetically feasible for the sheared core fields to drive all of the coronal heating in the active region via a staccato of magnetic microexplosions, (2) the microflares at the feet of the extended loop behave as the flares at the feet of flaring arches in that more coronal heating is driven within the active bipole than in the extended loop, (3) the filling factor of the X-ray plasma in the core field microflares and in the extended loop is ~0.1, and (4) to release enough magnetic energy for a typical microflare (1027-1028 ergs), a microflaring strand of sheared core field need expand and/or untwist by only a few percent at most.

Finally, we point out that (1) the field configurations for strong coronal heating in our example active region (i.e., neutral-line core fields, many embedded in the feet of extended loops) are present in abundance in the magnetic network in quiet regions and coronal holes, and (2) it is known that many network bipoles do microflare and that many produce detectable coronal heating. We therefore propose that exploding sheared core fields are the drivers of most of the heating and dynamics of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to the multitude of fine-scale explosive events in the magnetic network, which drive microflares, spicules, global coronal heating, and, consequently, the solar wind. Title: Microflaring in Low-lying Core Fields and Extended Coronal Heating in the Quiet Sun Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L. Bibcode: 1999AAS...194.2302P Altcode: 1999BAAS...31..860P We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstantial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75)) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is ``cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program. Title: On Heating Large Bright Coronal Loops by Magnetic Microexplosions at their Feet: Feasibility of Empirical Energy Requirements Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G. Bibcode: 1999AAS...194.2303M Altcode: 1999BAAS...31..861M In previous work, by registering Yohkoh SXT coronal X-ray images with MSFC vector magnetograms, we found that (1) many of the larger bright coronal loops rooted at one or both ends in an active region are rooted around magnetic islands of included polarity, (2) the core field encasing the neutral line encircling the island is strongly sheared, and (3) this sheared core field is the seat of frequent microflares (Falconer et al 1997, ApJ, 482, 519; Porter et al 1998, in Solar Jets and Coronal Plumes, ed. T.-D. Guyenne (ESA SP-421), p. 147). This suggests that the coronal heating in these extended bright loops is driven by many small explosive releases of stored magnetic energy from the sheared core field at their feet, some of which magnetic microexplosions also produce the microflare heating in the core fields. In this paper, we show that this scenario is feasible in terms of the energy required for the observed coronal heating and the magnetic energy available in the observed sheared core fields. In a representative active region, from the X-ray and vector field data, we estimate the coronal heating energy consumption by a selected typical large bright loop, the coronal heating energy consumption by a typical microflare at the foot of this loop, the frequency of microflares at the foot, and the available magnetic energy in the microflaring core field. We find that (1) the rate of magnetic energy release to power the microflares at the foot ( ~ 6 x 10(25) erg/s) is enough to also power the coronal heating in the body of the extended loop ( ~ 2 x 10(25) erg/s), and (2) there is enough stored magnetic energy in the sheared core field to sustain the microflaring and extended loop heating for about a day, which is a typical time for buildup of neutral-line magnetic shear in an active region. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program. Title: Large-Scale Coronal Heating from the Solar Magnetic Network Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H. Bibcode: 1999AAS...194.2301F Altcode: 1999BAAS...31..860F In Fe XII images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi-supergranular. In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. The emission of the coronal network and bright points contribute only about 5% of the entire quiet solar coronal Fe XII emission. Here we investigate the large-scale corona, the supergranular and larger-scale structure that we had previously treated as a background, and that emits 95% of the total Fe XII emission. We compare the dim and bright halves of the large-scale corona and find that the bright half is 1.5 times brighter than the dim half, has an order of magnitude greater area of bright point coverage, has three times brighter coronal network, and has about 1.5 times more magnetic flux than the dim half. These results suggest that the brightness of the large-scale corona is more closely related to the large-scale total magnetic flux than to bright point activity. We conclude that in the quiet sun: (1) Magnetic flux is modulated (concentrated/diluted) on size scales larger than supergranules. (2) The large-scale enhanced magnetic flux gives an enhanced, more active, magnetic network and an increased incidence of network bright point formation. (3) The heating of the large-scale corona is dominated by more widespread, but weaker, network activity than that which heats the bright points. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program. Title: Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site Authors: McSween, H. Y.; Murchie, S. L.; Crisp, J. A.; Bridges, N. T.; Anderson, R. C.; Bell, J. F., III; Britt, D. T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M. P.; Greenwood, J. P.; Johnson, J. R.; Moore, H. J.; Moore, R. V.; Parker, T. J.; Rieder, R.; Singer, R.; Wänke, H. Bibcode: 1999JGR...104.8679M Altcode: 1999JGRE..104..679M Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence of a ``1 μm'' pyroxene absorption band. Plausible explanations include impact glass, band masking by magnetite, or presence of calcium- and iron-rich pyroxenes and olivine which push the absorption band minimum past the imager's spectral range. The inferred andesitic composition is most similar to terrestrial anorogenic icelandites, formed by fractionation of tholeiitic basaltic magmas. Early melting of a relatively primitive Martian mantle could produce an appropriate parent magma, supporting the ancient age of Pathfinder rocks inferred from their incorporation in Hesperian flood deposits. Although rocks of andesitic composition at the Pathfinder site may represent samples of ancient Martian crust, inferences drawn about a necessary role for water or plate tectonics in their petrogenesis are probably unwarranted. Title: Large-scale Coronal Heating, Clustering of Coronal Bright Points, and Concentration of Magnetic Flux Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H. Bibcode: 1999SSRv...87..181F Altcode: By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the large-scale quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells. Title: Coronal Heating by Magnetic Explosions Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Suess, S. T. Bibcode: 1999SSRv...87..283M Altcode: From magnetic fields and coronal heating observed in flares, active regions, quiet regions, and coronal holes, we propose that exploding sheared core magnetic fields are the drivers of most of the dynamics and heating of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to a multitude of fine-scale explosive events in the magnetic network, driving microflares, spicules, global coronal heating, and, consequently, the solar wind. Title: On Analysis of Dual Spacecraft Stereoscopic Observations to Determine the Three-Dimensional Morphology and Plasma Properties of Solar Coronal Flux Tubes Authors: Gary, G. Allen; Davis, John M.; Moore, Ronald Bibcode: 1998SoPh..183...45G Altcode: By using two spacecraft equipped with multi-bandpass X-ray telescopes, it is possible to obtain direct 3-dimensional morphology of coronal structures which is essential for understanding the energetics and dynamics of the solar atmosphere. X-ray observations taken only in orbit about the Earth are inadequate to fully resolve the 3-dimensional nature of the solar corona. These Earth-orbit observations produce 2-dimensional images and an appropriate model must be included to derive the 3-dimensional structures from the line-of-sight information. Stereoscopic observations from space will remove this limitation and are needed if we are to improve our knowledge of the 3-dimensional morphology of the corona. Title: Network Coronal Bright Points: Coronal Heating Concentrations Found in the Solar Magnetic Network Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Hathaway, D. H. Bibcode: 1998ApJ...501..386F Altcode: We examine the magnetic origins of coronal heating in quiet regions by combining SOHO/EIT Fe XII coronal images and Kitt Peak magnetograms. Spatial filtering of the coronal images shows a network of enhanced structures on the scale of the magnetic network in quiet regions. Superposition of the filtered coronal images on maps of the magnetic network extracted from the magnetograms shows that the coronal network does indeed trace and stem from the magnetic network. Network coronal bright points, the brightest features in the network lanes, are found to have a highly significant coincidence with polarity dividing lines (neutral lines) in the network and are often at the feet of enhanced coronal structures that stem from the network and reach out over the cell interiors. These results indicate that, similar to the close linkage of neutral-line core fields with coronal heating in active regions (shown in previous work), low-lying core fields encasing neutral lines in the magnetic network often drive noticeable coronal heating both within themselves (the network coronal bright points) and on more extended field lines rooted around them. This behavior favors the possibility that active core fields in the network are the main drivers of the heating of the bulk of the quiet corona, on scales much larger than the network lanes and cells. Title: The magnetic roots of enhanced coronal heating in large loops and plumes Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L. Bibcode: 1998ESASP.421..147P Altcode: 1998sjcp.conf..147P No abstract at ADS Title: Causality in Relativistic Multi-Particle Classical Dynamic Systems Authors: Moore, R. A. Bibcode: 1998clmp.conf..277M Altcode: No abstract at ADS Title: 3-D Magnetic Field Configuration Late in a Large Two-Ribbon Flare Authors: Moore, R. L.; Schmieder, B.; Hathaway, D. H.; Tarbell, T. D. Bibcode: 1997SoPh..176..153M Altcode: We present Hα and coronal X-ray images of the large two-ribbon flare of 25-26 June, 1992 during its long-lasting gradual decay phase. From these observations we deduce that the 3-D magnetic field configuration late in this flare was similar to that at and before the onset of such large eruptive bipolar flares: the sheared core field running under and out of the flare arcade was S-shaped, and at least one elbow of the S looped into the low corona. From previous observations of filament-eruption flares, we infer that such core-field coronal elbows, though rarely observed, are probably a common feature of the 3-D magnetic field configuration late in large two-ribbon flares. The rare circumstance that apparently resulted in a coronal elbow of the core field being visible in Hα in our flare was the occurrence of a series of subflares low in the core field under the late-phase arcade of the large flare; these subflares probably produced flaring arches in the northern coronal elbow, thereby rendering this elbow visible in Hα. The observed late-phase 3-D field configuration presented here, together with the recent sheared-core bipolar magnetic field model of Antiochos, Dahlburg, and Klimchuk (1994) and recent Yohkoh SXT observations of the coronal magnetic field configuration at and before the onset of large eruptive bipolar flares, supports the seminal 3-D model for eruptive two-ribbon flares proposed by Hirayama (1974), with three modifications: (1) the preflare magnetic field is closed over the filament-holding core field; (2) the preflare core field has the shape of an S (or backward S) with coronal elbows; (3) a lower part of the core field does not erupt and open, but remains closed throughout flare, and can have prominent coronal elbows. In this picture, the rest of the core field, the upper part, does erupt and open along with the preflare arcade envelope field in which it rides; the flare arcade is formed by reconnection that begins in the middle of the core field at the start of the eruption and progresses from reconnecting closed core field early in the flare to reconnecting `opened' envelope field late in the flare. Title: The Solar-B Mission Authors: Antiochos, Spiro; Acton, Loren; Canfield, Richard; Davila, Joseph; Davis, John; Dere, Kenneth; Doschek, George; Golub, Leon; Harvey, John; Hathaway, David; Hudson, Hugh; Moore, Ronald; Lites, Bruce; Rust, David; Strong, Keith; Title, Alan Bibcode: 1997STIN...9721329A Altcode: Solar-B, the next ISAS mission (with major NASA participation), is designed to address the fundamental question of how magnetic fields interact with plasma to produce solar variability. The mission has a number of unique capabilities that will enable it to answer the outstanding questions of solar magnetism. First, by escaping atmospheric seeing, it will deliver continuous observations of the solar surface with unprecedented spatial resolution. Second, Solar-B will deliver the first accurate measurements of all three components of the photospheric magnetic field. Solar-B will measure both the magnetic energy driving the photosphere and simultaneously its effects in the corona. Solar-B offers unique programmatic opportunities to NASA. It will continue an effective collaboration with our most reliable international partner. It will deliver images and data that will have strong public outreach potential. Finally, the science of Solar-B is clearly related to the themes of origins and plasma astrophysics, and contributes directly to the national space weather and global change programs. Title: Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions Authors: Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T. Bibcode: 1997ApJ...482..519F Altcode: By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (>~20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45°), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45°). From this sample, we find that (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G, (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km), (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines, (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them, (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them, and (6) the brightness of a persistently bright coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions (1) requires the presence of a polarity inversion in the magnetic field near at least one of the loop footpoints, (2) is greatly aided by the presence of strong shear in the core magnetic field along that neutral line, and (3) is controlled by some variable process that acts in this magnetic environment. We infer that this variable process is low-lying reconnection accompanying flux cancellation. Title: 3-D Magnetic Field Configuration Late in a Large Two-Ribbon Flare Authors: Moore, R. L.; Schmieder, B.; Hathaway, D. H.; Tarbell, T. D. Bibcode: 1997SPD....28.0157M Altcode: 1997BAAS...29R.889M We present H-alpha and coronal X-ray images of the large two-ribbon flare of 25/26 June 1992 during its long-lasting gradual decay phase. From these observations we deduce that the 3-D magnetic field configuration late in this flare was similar to that at and before the onset of such large eruptive bipolar flares: the sheared core field running under and out of the flare arcade was S-shaped, and at least one elbow of the S looped into the low corona. From previous observations of filament-eruption flares, we infer that such core-field coronal elbows, though rarely observed, are probably a common feature of the 3-D magnetic field configuration late in large two-ribbon flares. The rare circumstance that apparently resulted in a coronal elbow of the core field being visible in H-alpha in our flare was the occurrence of a series of subflares low in the core field under the late-phase arcade of the large flare; these subflares probably produced flaring arches in the northern coronal elbow, thereby rendering this elbow visible in H-alpha. The observed late-phase 3-D field configuration presented here, together with the recent sheared-core bipolar magnetic field model of Antiochos, Dahlburg, and Klimchuk (1994) and recent Yohkoh SXT observations of the coronal magnetic field configuration at and before the onset of large eruptive bipolar flares, supports the seminal 3-D model for eruptive two-ribbon flares proposed by Hirayama (1974), with three modifications: (1) the preflare magnetic field is closed over the filament-holding core field; (2) the preflare core field has the shape of an S (or backward S) with coronal elbows; (3) a lower part of the core field does not erupt and open, but remains closed throughout flare, and can have prominent coronal elbows. In this picture, the rest of the core field, the upper part, does erupt and open along with the preflare arcade envelope field in which it rides; the flare arcade is formed by reconnection that begins in the middle of the core field at the start of the eruption and progresses from reconnecting closed core field early in the flare to reconnecting "opened" envelope field late in the flare. Title: Using the radium quartet for evaluating groundwater input and water exchange in salt marshes Authors: Moore, R.; Moore, W. S. Bibcode: 1996GeCoA..60.4645M Altcode: No abstract at ADS Title: The relationship between methyl bromide and chlorophyll α in high latitude ocean waters Authors: Moore, R. M.; Webb, M. Bibcode: 1996GeoRL..23.2951M Altcode: We present a set of measurements of methyl bromide concentrations along with chlorophyll a data made in the high latitude, biologically productive, waters of the Labrador Sea in July 1995. Methyl bromide concentrations are found not to show a positive linear correlation with chlorophyll a above a chlorophyll concentration of ca. 0.7 mg L-1. Production rates of methyl bromide, calculated from a steady-state balance with ocean-atmosphere exchange, chemical degradation and downward mixing, are also found to have no positive linear correlation with chlorophyll a. If chlorophyll levels higher than ca. 0.7 mg L-1 are selected, a negative linear correlation is found between methyl bromide production rates (calculated using climatological wind speeds) and chlorophyll a. Labrador Sea waters were found to be undersaturated with methyl bromide, an observation which, when taken with evidence for a negative correlation between calculated methyl bromide production rate and the higher chlorophyll values, points to the existence of a biological consumption process. We conclude that models depending on an assumed positive linear correlation between methyl bromide and chlorophyll cannot be used to infer the source strength of methyl bromide in high latitude, productive waters. Title: New Promise for Electron Bulk Energization in Solar Flares: Preferential Fermi Acceleration of Electrons over Protons in Reconnection-driven Magnetohydrodynamic Turbulence Authors: Larosa, T. N.; Moore, R. L.; Miller, J. A.; Shore, S. N. Bibcode: 1996ApJ...467..454L Altcode: The hard X-ray luminosity of impulsive solar flares indicates that electrons in the low corona are bulk energized to energies of order 25 keV. LaRosa & Moore pointed out that the required bulk energization could be produced by cascading MHD turbulence generated by Alfvénic outflows from sites of strongly driven reconnection. LaRosa, Moore, & Shore proposed that the compressive component of the cascading turbulence dissipates into the electrons via Fermi acceleration. However, for this to be a viable electron bulk energization mechanism, the rate of proton energization by the same turbulence cannot exceed the electron energization rate. In this paper we estimate the relative efficiency of electron and proton Fermi acceleration in the compressive MHD turbulence expected in the reconnection outflows in impulsive solar flares. We find that the protons pose no threat to the electron energization. Particles extract energy from the MHD turbulence by mirroring on magnetic compressions moving along the magnetic field at the Alfvén speed. The mirroring rate, and hence the energization rate, is a sensitive function of the particle velocity distribution. In particular, there is a lower speed limit Vmin ≍ VA, below which the pitch-angle distribution of the particles is so highly collapsed to the magnetic field in the frame of the magnetic compressions that there is no mirroring and hence no Fermi acceleration. For coronal conditions, the proton thermal speed is much less than the Alfvén speed and proton Fermi acceleration is negligible. In contrast, nearly all of the electrons are super-Alfvénic, so their pitch-angle distribution is nearly isotropic in the frame of the magnetic compressions. Consequently, the electrons are so vigorously mirrored that they are Fermi accelerated to hard X-ray energies in a few tenths of a second by the magnetic compressions on scales of 105-103 cm in the cascading MHD turbulence. We conclude that dissipation of reconnection-generated MHD turbulence by electron Fermi acceleration plausibly accounts for the electron bulk energization in solar flares. Title: 3D Magnetic Fields and Coronal Heating in Active Regions Authors: Falconer, D. A.; Allen, G. A.; Moore, R. L.; Porter, J. G. Bibcode: 1996AAS...188.8603F Altcode: 1996BAAS...28..963F A major limitation in the analysis of solar disk images is that only 2D information is observed. 3D coronal magnetic structures can be modeled by comparing coronal images and field extrapolations. If a good correspondence is found between loops in the X-ray image and those derived from the extrapolation, then the extrapolated 3D coronal magnetic structure can be used for information about the height of the X-ray features. We show that even the simplest 3D extrapolation, the potential extrapolation, can be useful for the analysis of observed X-ray loops. For this analysis of 5 different active regions, we use Sakurai's potential field extrapolation code to determine the 3D potential model of the coronal magnetic structure from both Marshall Space Flight Center (MSFC) magnetograms and Kitt Peak magnetograms. The 3D magnetic field is compared to images of the persistent X-ray brightness derived from Yohkoh SXT images. Only some of the X-ray loops in some active regions fit well with 3D coronal potential magnetic structures. Large differences between the potential loops and observed loops that have one foot in the same place show that the observed loop traces nonpotential field. For many of the cases where there is no good fit, at least one footpoint of the observed loop is in a sizeable region of strong magnetic shear, so that potential coronal field would not be expected. Many of the extrapolated 3D magnetic field lines are far from any bright X-ray loop. That is, the active region is filled with magnetic loops, but only a fraction of these strongly emit X-rays. Since not all of the coronal structures experience strong heating, some factor is controlling which structures do. We have also found from these active regions that the presence of a neutral line with strong magnetic shear is a favorable condition for strong heating. Large loops in the high coronal envelope of an active region are apparently selected for enhanced heating by the presence of such magnetic shear near a footpoint of the large loop, independently of whether or not the envelope field is strongly nonpotential. Title: Microflaring in Sheared Core Magnetic Fields and Episodic Heating in Large Coronal Loops Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.; Rabin, D. M.; Shimizu, T. Bibcode: 1996AAS...188.7018P Altcode: 1996BAAS...28..941P We have previously reported that large, outstandingly-bright coronal loops within an active region or stemming from an active region have one end rooted around a magnetic island of included polarity that is itself a site of locally enhanced coronal heating (X-ray bright point) [Porter et al 1996, in Proceedings of the Yohkoh Solar/Stellar IAU Symposium, ed. Y. Uchida, T. Kosugi, H.S. Hudson (Kluwer: Dordrecht), in press]. This suggests that exceptional magnetic structure in and around the magnetic island fosters magnetic activity, such as microflaring, that results in the enhanced coronal heating in both the compact core field around the island and in the body of large loops that extend from this site. We have also reported that enhanced coronal heating in active regions goes hand-in-hand with strong magnetic shear in the core magnetic fields along polarity neutral lines (Falconer et al 1995, BAAS, 27(2), 976). Here, by combining MSFC vector magnetograms with an NSO full-disk magnetogram and Yohkoh SXT coronal images, we examine the incidence of sheared core fields, enhanced coronal heating, and microflaring in two active regions having several good examples of enhanced extended coronal loops. It appears that the localized microflaring activity in sheared core fields is basically similar whether the core field is on the neutral line around an island of included polarity or on the main neutral line of an entire bipolar active region. This suggests that the enhanced coronal heating in an extended loop stemming from near a polarity inversion line requires a special field configuration at its foot to plug it into the activity at the neutral line, rather than a different kind of activity in the core field on the neutral line. We also examine whether the waxing and waning of the coronal brightness of extended loops shows any correlation with the vigor or frequency of microflaring at the feet. This research was supported by the Solar Physics Branch of NASA's Office of Space Science. Title: Evidence that Strong Coronal Heating Results from Photospheric Magnetic Flux Cancellation Authors: Moore, R. L.; Falconer, D. A.; Porter, J. G.; Gary, G. A.; Shimizu, T. Bibcode: 1996AAS...188.8604M Altcode: 1996BAAS...28..963M Soft X-ray images of the Sun's corona, such as those from the Yohkoh SXT, show that the sites of strongest persistent (non-flare) coronal heating are located within the strong (>100 gauss) magnetic fields in sunspot regions and are limited to only certain places within these stong-field domains, covering only a fraction of the total area. We have examined the structure of the magnetic field at these sites in 5 active regions by superposing Yohkoh SXT coronal X-ray images on MSFC vector magnetograms. We find: (1) nearly all of the enhanced (outstandingly bright) coronal features that persist for tens of minutes are rooted near polarity neutral lines in the photospheric magnetic flux; (2) in most cases the core magnetic field closely straddling the neutral line at the root of the strong heating is strongly sheared; (3) the enhanced coronal X-ray brightness in the low-lying core fields shows spatial substructure that fluctuates on time scales of minutes, in the manner of microflaring; and (4) large parts of extensive enhanced coronal features often last for no more than a few hours. From these results, it appears that most enhanced coronal heating in active regions is a consequence of some process that (1) acts only in the presence of a photospheric polarity neutral line, (2) is episodic on times of about an hour, (3) usually gives stronger coronal heating in the presence of stronger magnetic shear, but is not required to act by the presence of magnetic shear, and (4) is often accompanied by microflaring in the core field. We point out that magnetic flux cancellation (driven by photospheric flows at the neutral line) is a process that plausibly meets all these requirements. The flux cancellation might directly drive microflaring, or trigger microflaring in the sheared core field, or both. The microflaring might directly produce the enhanced coronal heating in the core fields as well as generate MHD waves that propagate up into the enhanced extended coronal loops to provide the strong coronal heating in these. Title: Stochastic Electron Acceleration by Cascading Fast Mode Waves in Impulsive Solar Flares Authors: Miller, James A.; Larosa, T. N.; Moore, R. L. Bibcode: 1996ApJ...461..445M Altcode: We present a model for the acceleration of electrons from thermal to ultrarelativistic energies during an energy release fragment in an impulsive solar flare. Long-wavelength low-amplitude fast mode waves are assumed to be generated during the initial flare energy release (by, for example, large-scale restructuring of the magnetic field). These waves nonlinearly cascade to higher wavenumbers and eventually reach the dissipation range, whereupon they are transit-time damped by electrons in the tail of the thermal distribution. The electrons, in turn, are energized out of the tail and into substantially higher energies. We find that for turbulence energy densities much smaller than the ambient magnetic field energy density and comparable to the thermal particle energy density, and for a wide range of initial wavelengths, a sufficient number of electrons are accelerated to hard X-ray-producing energies on observed timescales. We suggest that MHD turbulence unifies electron and proton acceleration in impulsive solar flares, since a preceding study established that a second MHD mode (the shear Alfvén wave) preferentially accelerates protons from thermal to gamma-ray line-producing energies. Title: Effects of thermal conduction on the energy balance of open coronal regions Authors: Hammer, R.; Nesis, A.; Moore, R. L.; Suess, S. T.; Musielak, Z. M. Bibcode: 1996ASPC..109..525H Altcode: 1996csss....9..525H No abstract at ADS Title: Energization of the 10-100 keV Electrons in Solar Flares by Strongly-Driven Reconnection Authors: Moore, R. L.; Larosa, T. N.; Miller, J. A.; Shore, S. N. Bibcode: 1996mpsa.conf..565M Altcode: 1996IAUCo.153..565M No abstract at ADS Title: Magnetic Roots of Enhanced High Coronal Loops Authors: Porter, J. C.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.; Rabin, D. M.; Shimizu, T. Bibcode: 1996mpsa.conf..429P Altcode: 1996IAUCo.153..429P No abstract at ADS Title: Klein-Gordon Equation and the Local Critical Frequency for Alfven Waves Propagating in an Isothermal Atmosphere Authors: Musielak, Z. E.; Moore, R. L. Bibcode: 1995ApJ...452..434M Altcode: A Klein-Gordon equation approach developed by Musielak, Fontenla, and Moore for assessing reflection of Alfvén waves in a smoothly nonuniform medium is reexamined. In this approach, the local critical frequency for strong reflection is simply found by transforming the wave equations into their Klein-Gordon forms and then choosing the largest positive coefficient of the zeroth-order term to be the square of the local critical frequency. In this paper, we verify this approach for a particular atmosphere and show that the local critical frequency can be alternatively defined by using the turning-point property of Euler's equation. Our results are obtained specifically for steady state, linear Alfvén waves in an isothermal atmosphere with constant gravity and uniform vertical magnetic field. The upward Alfvén waves (those above the wave source) are standing waves and the downward waves (those below the wave source) are propagating waves. We demonstrate that for any given wave frequency both upward and downward waves have the same turning point or critical height. This height is determined by the condition ω = ΩA = VA/2H, where VA is the Alfvén velocity and H is the scale height; ΩA can be taken as the local critical frequency for strong reflection for the upward waves and as the local critical frequency for free propagation for the downward waves. Our turning-point analysis also yields another interesting result: for our particular model atmosphere the magnetic field perturbation wave equation yields the local critical frequency but the velocity-perturbation wave equation does not. Thus, for this model atmosphere, we find that the Klein-Gordon equation approach of Musielak, Fontenla, and Moore is correct in (1) its choice of the magnetic-field-perturbation wave equation for finding the local critical frequency, and (2) its assumption that the upward and downward waves have the same critical frequency. Title: On the Origin of ``Dividing Lines'' for Late-Type Giants and Supergiants Authors: Rosner, R.; Musielak, Z. E.; Cattaneo, F.; Moore, R. L.; Suess, S. T. Bibcode: 1995ApJ...442L..25R Altcode: We show how a change in the nature of the stellar dyanmo can lead to a transition in the topological character of stellar magnetic fields of evolved stars, from being mainly closed on the blueward side of the giant tracks in the Hertzsprung-Russell (H-R) diagram to being mainly open on their redward side. If such a topological transition occurs, then these stars naturally segregate into two classes: those having hot coronae on the blueward side, and those having massive cool winds on the redward side, thus leading naturally to the so-called dividing lines. Title: Rapid and Efficient Electron Bulk Energization in Solar Flares by Fermi Acceleration Authors: Larosa, T. N.; Moore, R. L.; Miller, J. M.; Shore, S. N. Bibcode: 1995SPD....26.1209L Altcode: 1995BAAS...27R.984L No abstract at ADS Title: Klein-Gordon Equation and Reflection of Alfvén Waves Authors: Musielak, Z. E.; Moore, R. L. Bibcode: 1995SPD....26..910M Altcode: 1995BAAS...27R.975M No abstract at ADS Title: Photospheric Origins of Enhanced High Coronal Loops Authors: Porter, J. G.; Falconer, D. A.; Moore, R. L.; Harvey, K. L.; Rabin, D. M. Bibcode: 1995SPD....26..704P Altcode: 1995BAAS...27..966P No abstract at ADS Title: Magnetic Shear and Enhanced Coronal Heating in Active Regions Authors: Falconer, D.; Moore, R. L.; Porter, J.; Shimizu, T.; Shearer, K. Bibcode: 1995SPD....26..913F Altcode: 1995BAAS...27..976F No abstract at ADS Title: Propagating Alfven Waves, Intermittent Magnetic Levitation, and Coronal Heating in Coronal Holes Authors: Moore, R. L.; Musielak, Z. E.; Krogulec, M.; Suess, S. T. Bibcode: 1995SPD....26..908M Altcode: 1995BAAS...27Q.975M No abstract at ADS Title: The Wall of Reconnection-driven Magnetohydrodynamic Turbulence in a Large Solar Flare Authors: Moore, R. L.; Larosa, T. N.; Orwig, L. E. Bibcode: 1995ApJ...438..985M Altcode: LaRosa and Moore (1993) recently proposed that the bulk dissipation of magnetic field that is required for the electron energization in the explosive phase of solar flares occurs in a 'fat current sheet', a wall of cascading magnetohydrodynamic (MHD) turbulence sustained by highly disordered driven reconnection of opposing magnetic fields impacting at a turbulent boundary layer. Here, we use the well-observed great two-ribbon eruptive flare of 1984 April 24/25 to assess the feasibility of both (1) the standard model for the overall three-dimensional form and action of the magnetic field and (2) the turbulent reconnection wall within it. We find (1) that the morphology of this flare closely matched that of the standard model; (2) the preflare sheared core field had enough nonpotential magnetic energy to power the flare; (3) the model turbulent wall required to achieve the flare's peak dissipative power easily fit within the overall span of the flaring magnetic field; (4) this wall was thick enough to have turbulent eddies large enough (diameters approximately 108 cm to produce the approximately ergs energy release fragments typically observed in the explosive phase of flares; (5) the aspect ratio (thickness/vertical extent) of the turbulent reconnection wall was in the 0.1-1 range expected by (Parker 1973). We therefore conclude that the viability of our version of the standard model (i.e., having the magnetic field dissipation occur in our turbulent reconnection wall) is well confirmed by this typical great two-ribbon eruptive flare. Title: Reflection of Alfvén waves in the solar wind Authors: Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.; Moore, R. L. Bibcode: 1994JGR....9923489K Altcode: We have revisited the problem of propagation of toroidal and linear Alfvén waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfvén waves with periods of the order of one day and longer and that non-WKB Alfvén waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers that seem to indicate that Alfvén waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfvén wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity,and magnetic field strength on the waves.

The obtained results clearly demonstrate that Alfvén wave reflection is strongly model dependent and that the strongest reflection can be expected in the models with the base temperatures higher than 106 K and with the base densities lower than 7 × 107 cm-3. In these models as well as in the models with lower temperatures and higher densities, Alfvén waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfvén waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfvén waves are always less effective in accelerating the plasma than WKB Alfvén waves. Finally, it is evident from our results that the region of strongest wave reflection is usually located at the base of the models and hence that interpretation of wave reflection based solely on the reflection coefficient can be misleading. Title: The Role of Alfven Waves in Solar Wind Acceleration Authors: Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Nerney, S. F.; Moore, R. L. Bibcode: 1994AAS...185.9206K Altcode: 1994BAAS...26.1472K The fact that Alfven waves may play a significant role in the energy balance in solar coronal holes has been known for a number of years. A special attention has been given to these waves because they can transfer energy to large distances and deposit efficiently momentum in the background medium. It has been shown that non-WKB effects are important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in acceleration of the solar wind than WKB waves. There are, however, some recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these waves exert a stronger acceleration force than WKB waves. To investigate the origin of these discrepancies, we have performed a series of parametric studies of the behavior of the waves under a variety of different conditions in solar coronal holes. The obtained results demonstrate that both Alfven wave reflection and the acceleration force due to the waves are strongly model dependent. The strongest reflection can be expected in models with the base temperatures higher than 10(6) K and with the base densities lower than 7 times 10(7) cm(-3) . However, the strongest acceleration force is expected in the models with the weakest reflection. This clearly indicates that linear non-WKB Alfven waves are always less effective in accelerating the plasma than WKB Alfven waves. Implications of this result for the heating in solar coronal holes and for the acceleration of the solar wind will be discussed. Title: Klein-Gordon Equation and Reflection of Alfven Waves Authors: Musielak, Z. E.; Moore, R. L. Bibcode: 1994AAS...18512106M Altcode: 1994BAAS...26.1520M It is of some interest to know the physical conditions that lead to efficient reflection of Alfven waves in the solar and stellar atmospheres. The problem seems to be important because these waves may play some role in non-radiative heating of the solar and stellar chromosphere and coronae, and may also be responsible for acceleration of the solar and cool massive stellar winds. A significant effort has been made by a number of authors to understand the behavior of these waves in highly inhomogeneous stellar atmospheres. The simplest treatment of the problem seems to be the so-called Klein-Gordon equation approach, which allows obtaining local critical frequencies by transforming the wave equations into their Klein-Gordon forms and then choosing the largest positive coefficient to be the square of the local critical frequency. In this paper, we show that the local critical frequency can be alternatively defined by using the turning-point property of Euler's equation. Our results are obtained specifically for Alfven waves propagating in an isothermal atmosphere with constant gravity and uniform vertical magnetic field. We demonstrate that Alfven waves in the upper (above the wave source) part of our model always form a standing wave pattern and that the waves in the lower (below the wave source) part of the model are always propagating (but partially reflected) waves. We also show that the turning point for the upward and downward waves is located at the height where the condition omega = Omega_A is satisfied and that Omega_A = V_A / 2 H, where V_A is the Alfven velocity and H is the scale height, can be taken as a local critical frequency because the waves undergo strong reflection in this region of the atmosphere where omega <= Omega_A . By applying our turning-point analysis to the Alfven wave equations for the velocity and magnetic field perturbation, we obtain an interesting result: for our particular model atmosphere the magnetic-field-perturbation wave equation yields the local critical frequency but the velocity-perturbation wave equation does not. A physical interpretation of the obtained results will be given. Title: Production of isoprene by marine phytoplankton cultures Authors: Moore, R. M.; Oram, D. E.; Penkett, S. A. Bibcode: 1994GeoRL..21.2507M Altcode: While release of isoprene from the terrestrial biosphere is well established and known to influence the tropospheric concentrations of a number of reactive species including ozone, very little is known of its production in the ocean and possible release to the marine boundary layer. Measurements reported here of low molecular weight trace gases produced by a series of laboratory phytoplankton have shown that isoprene is a major component. Though the results confirm that the oceans are a potential source of isoprene to the atmosphere, it is not possible to extrapolate release rates from laboratory studies to the very different conditions under which marine plants grow naturally. Title: Observations of Enhanced Coronal Heating in Sheared MAgnetic Fields Authors: Moore, R. T.; Porter, J.; Roumeliotis, G.; Tsuneta, S.; Shimizu, T.; Sturrock, P. A.; Acton, L. W. Bibcode: 1994kofu.symp...89M Altcode: From superposition of Yohkoh SXT images on MSFC vector magnetograms of two active regions, we find: (1) coronal heating is enhanced at sites of strong magnetic shear, and (2) this heating is produced by microflares. Title: Microflaring at the Feet of Large Active Region Loops Authors: Porter, J.; Moore, R. T.; Roumeliotis, G.; Shimizu, T.; Tsuneta, S.; Sturrock, P. A.; Acton, L. W. Bibcode: 1994kofu.symp...65P Altcode: By superposing Yohkoh SXT images on an MSFC magnetogram of an active region, we find that the brightest loops in the bipolar magnetic envelope spanning the active region are rooted near a compact site of mixed polarity and microflaring. Apparently, the enhanced coronal heating in these high loops is a consequence of the microflaring and/or related magnetic activity at this end site. Title: A New Path for the Electron Bulk Energization in Solar Flares: Fermi Acceleration by Magnetohydrodynamic Turbulence in Reconnection Outflows Authors: Larosa, T. N.; Moore, R. L.; Shore, S. N. Bibcode: 1994ApJ...425..856L Altcode: We recently proposed that a magnetohydrodynamic (MHD) turbulent cascade produces the bulk energization of electrons to approximately 25 keV in the impulsive phase of solar flares (LaRosa & Moore 1993). In that scenario, (1) the cascading MHD turbulence is fed by shear-unstable Alfvenic outflows from sites of strongly driven reconnection in the low corona, and (2) the electrons are energized by absorbing the energy that flows down through the cascade. We did not specify the physical mechanism by which the cascading energy is ultimately transferred to the electrons. Here we propose that Fermi acceleration is this mechanism, the process by which the electrons are energized and by which the cascading MHD turbulence is dissipated. We point out that in the expected cascade MHD fluctuations of scale 1 km can Fermi-accelerate electrons from 0.1 keV to approximately 25 keV on the subsecond timescales observed in impulsive flares, provided there is sufficient trapping and scattering of electrons in the MHD turbulence. We show that these same fluctuations provide the required trapping; they confine the electrons within the turbulent region until the turbulence eis dissipated. This results in the energization of all of the lectrons in each large-scale (5 x 107cm) turbulent eddy to 25 keV. The Fermi process also requires efficient scattering so that the pitch-angle distribution of the accelerating electrons remains isotropic. We propose that the electrons undergo resonant scattering by high-frequency plasma R-waves that, as suggested by others (Hamilton & Petrosian 1992), are generated by the reconnection. Ions are not scattered by R-waves. Provided that there is negligible generation of ion-scattering plasma turbulence (e.g., L-waves) by the reconnection or the MHD turbulence, the ions will not Fermi-accelerate and the cascading energy is transferred only to the electrons. We conclude that, given this situation, electron Fermi acceleration can plausibly account for the electron bulk energization in impulsive solar flares. Title: On the visualization of Bolyai-Lobatchevsky's geometry. Authors: Moore, R. G.; Espy, P. Bibcode: 1994AdSpR..14b.147M Altcode: 1994AdSpR..14..147M A group of U.S. universities, under the auspices of NASA's Space Grant College and Fellowship Program, has initiated a super-pressure balloon research project to measure ozone column density in the atmosphere above 20 kilometers, together with stratospheric circulation between 20 km and 40 km, over the continental U.S.A. Data from a balloon-borne ultraviolet spectrometer, together with time, altitude, latitude and longitude information from a Global Positioning System receiver, are recorded at ten-minute intervals during daytime hours in an on-board solid-state data logger. Coded messages are transmitted nightly from selected amateur radio ground stations to a receiver in the balloon gondola to command the transmission of packet radio bursts from the data logger to the ground stations, for relay to a central data collection and analysis facility at Utah State University. Discussions are under way with radio amateurs and members of the international scientific balloon community regarding extension of flights to cover the earth's northern hemisphere. Title: A Search for Sunspot Canopies Using a Vector Magnetograph Authors: Adams, M.; Solanki, S. K.; Hagyard, M. J.; Moore, R. L. Bibcode: 1994ASPC...64..342A Altcode: 1994csss....8..342A No abstract at ADS Title: A Mechanism for Bulk Energization in the Impulsive Phase of Solar Flares: MHD Turbulent Cascade Authors: Larosa, T. N.; Moore, R. L. Bibcode: 1993ApJ...418..912L Altcode: We propose that the large production rate (∼1036 s-1) of energetic electrons (≳25 keV) required to account for the impulsive-phase hard X-ray burst in large flares is achieved through MHD turbulent cascade of the bulk kinetic energy of the outflows from many separate reconnection events. Focusing on large two- ribbon eruptive flares as representative of most large flares, we envision the reconnection events to be the driven reconnection of oppositely directed elementary flux tubes pressing into the flare-length current-sheet interface that forms in the wake of the eruption of the sheared core of the preflare bipolar field configuration. We point our that, because the outflows from these driven reconnection events have speeds of order the Alfvén speed and because the magnetic field reduces the shear viscosity of the plasma, it is reasonable that the outflows are unstable and turbulent, so that the kinetic energy of an outflow is rapidly dissipated through turbulent cascade. If the largest eddies in the turbulence have diameters of order the expected widths of the outflows (107-108 cm), then the cascade dissipation of each of these eddies could produce a ∼1026 erg burst of energized electrons (∼3 × 1033 25 keV electrons) in ∼0.3 s, which agrees well with hard X-ray and radio sub-bursts commonly observed during the impulsive phase. Of order 102 simultaneous reconnection events with turbulent outflow would produce the observed rate of impulsive-phase plasma energization in the most powerful flares (∼1036 25 keV electrons s-1); this number of reconnection sites can easily fit within the estimated 3 × 109 cm span of the overall current-sheet dissipation region formed in these large flares. We therefore conclude that MHD turbulent cascade is a promising mechanism for the plasma energization observed in the impulsive phase of solar flares. Title: A Search for Sunspot Canopies Using a Vector Magnetograph Authors: Adams, M.; Solanki, S. K.; Hagyard, M.; Moore, R. L. Bibcode: 1993SoPh..148..201A Altcode: Using a magnetograph, we examine four sunspots for evidence of a magnetic canopy at the penumbra/photosphere boundary. The penumbral edge is determined from the photometric intensity and is defined to correspond to the value of the average intensity minus twice the standard deviation from the average. From a comparison of the location of this boundary with the location of contours of the vertical and horizontal components of the magnetic field, we conclude that the data are best represented by canopy-type fields close to all four sunspots. There is some evidence that the magnetic inclination in the canopies is 5°-15° with respect to the horizontal and that the canopy base height lies in the middle/upper photosphere. The observations further suggest that the magnetic canopy of a sunspot begins at its outer penumbral boundary. Title: A Linear Solution for Magnetic Reconnection Driven by Converging or Diverging Footpoint Motions Authors: Roumeliotis, George; Moore, Ronald L. Bibcode: 1993ApJ...416..386R Altcode: In this paper, we develop a linear, analytic model for magnetic reconnection and current sheet formation at an X-type neutral line in the solar atmosphere. The reconnection process is assumed to be driven by converging or diverging footpoint motions at the photosphere. In particular, we examine how the stressed magnetic configuration around the neutral line is influenced by the magnitude of the photospheric driving velocities and the properties of the plasma between the photosphere and the neutral line. From application of the model to the solar atmosphere in active regions, we suggest that flux cancellation in the photosphere may be accomplished through gradual, linear reconnection with little noticeable heating of the atmosphere around the reconnection site and that the classical coronal neutral line current sheet will likely undergo continual rapid dissipation that prevents the build-up of enough stored magnetic energy to power a flare. Title: Can Flare Energy be Built Up by Slow Deformation at an X-Type Separator? Authors: Moore, R. L.; Roumeliotis, G.; Larosa, T. N. Bibcode: 1993BAAS...25.1199M Altcode: No abstract at ADS Title: A Mechanism for Bulk Energization in the Impulsive Phase of Solar Flares: MHD Turbulent Cascade Authors: Larosa, T. N.; Moore, R. L. Bibcode: 1993BAAS...25R1197L Altcode: No abstract at ADS Title: Measurement of p-Mode Energy Propagation in the Quiet Solar Photosphere Authors: Fontenla, J. M.; Rabin, D.; Hathaway, D. H.; Moore, R. L. Bibcode: 1993ApJ...405..787F Altcode: We have measured and analyzed the p-mode oscillations in the profile of the Mg I 4571 A line in a quiet region near disk center. The oscillations are found to be mostly standing waves, in agreement with previous work. However, a small propagating component is measured, and we determine the direction, magnitude, and vertical variation of the energy propagation. The work integral indicates an upward energy flow of about 2 x 10 exp 7 ergs/sq cm/s at a height of 50 km above the base of the photosphere for waves with frequencies of 2-16 mHz. This energy flow decreases exponentially with height and drops below 10 exp 5 ergs/sq cm/s in the uppermost photosphere. The energy flow leaving the upper photosphere is at least an order of magnitude too small to constitute a significant source of heating for the chromosphere. However, the p-mode damping in the lower photosphere approaches levels large enough to account for the measured p-mode line widths. The relative amplitudes and phases of the thermodynamic quantities indicate that the p-mode are neither adiabatic nor isothermal in the photosphere. Title: On the Heating Mechanism of Coronal Holes Authors: Hammer, R.; Moore, R. L.; Musielak, Z. E.; Suess, S. T. Bibcode: 1993ASSL..183..587H Altcode: 1993pssc.symp..587H No abstract at ADS Title: SOURCE: The Solar Ultraviolet Radiation and Correlative Emissions Mission Authors: Smith, P. L.; Lean, J. L.; Christensen, A. B.; Harvey, K. L.; Judge, D. L.; Moore, R. L.; Torr, M. R.; Woods, T. N. Bibcode: 1993Metro..30..275S Altcode: The Solar Ultraviolet Radiation and Correlative Emissions (SOURCE) mission is intended to advance our ability to specify the spectral irradiance of the Sun in the extreme ultraviolet (EUV) wavelength range through simultaneous, radiometrically accurate measurements of the solar EUV spectral irradiance and measurements, including EUV and visible images, of solar parameters that are correlated with the EUV flux. The data will be used in combination with empirical modelling to develop and validate a more accurate system of proxy, or surrogate, indices for the solar EUV flux. Title: On reflection of Alfven waves in the solar wind Authors: Krogulec, M.; Musielak, Z. E.; Suess, S. T.; Moore, R. L.; Nerney, S. F. Bibcode: 1993STIN...9530582K Altcode: We have revisited the problem of propagation of toroidal and linear Alfven waves formulated by Heinemann and Olbert (1980) to compare WKB and non-WKB waves and their effects on the solar wind. They considered two solar wind models and showed that reflection is important for Alfven waves with periods of the order of one day and longer, and that non-WKB Alfven waves are no more effective in accelerating the solar wind than WKB waves. There are several recently published papers which seem to indicate that Alfven waves with periods of the order of several minutes should be treated as non-WKB waves and that these non-WKB waves exert a stronger acceleration force than WKB waves. The purpose of this paper is to study the origin of these discrepancies by performing parametric studies of the behavior of the waves under a variety of different conditions. In addition, we want to investigate two problems that have not been addressed by Heinemann and Olbert, namely, calculate the efficiency of Alfven wave reflection by using the reflection coefficient and identify the region of strongest wave reflection in different wind models. To achieve these goals, we investigated the influence of temperature, electron density distribution, wind velocity and magnetic field strength on the waves. The obtained results clearly demonstrate that Alfven wave reflection is strongly model dependent and that the strongest reflection can be expected in models with the base temperatures higher than 106 K and with the base densities lower than 7 x 107 cm-3. In these models as well as in the models with lower temperatures and higher densities, Alfven waves with periods as short as several minutes have negligible reflection so that they can be treated as WKB waves; however, for Alfven waves with periods of the order of one hour or longer reflection is significant, requiring a non-WKB treatment. We also show that non-WKB, linear Alfven waves are always less effective in accelerating the plasma than WKB Alfven waves. Finally, it is evident from our results that the region of strongest wave reflection is usually located at the base of the models, and hence that interpretation of wave reflection based solely on the reflection coefficient can be misleading. Title: Microflaring at the feet of large active region loops Authors: Porter, Jason; Moore, Ron; Roumeliotis, George; Shimizu, Toshifumi; Tsuneta, Saku; Sturrock, Peter; Acton, Loren Bibcode: 1993STIN...9670891P Altcode: By superposing Yohkoh SXT images on an MSFC magnetogram of an active region, we find that the brightest loops in the bipolar magnetic envelope spanning the active region are rooted near a compact site of mixed polarity and microflaring. Apparently, the enhanced coronal heating in these high loops is a consequence of the microflaring and/or related magnetic activity at this end site. Title: A Search for Circular Polarization in Cataclysmic Variables Authors: Stockman, H. S.; Schmidt, Gary D.; Berriman, G.; Liebert, James; Moore, R. L.; Wickramasinghe, D. T. Bibcode: 1992ApJ...401..628S Altcode: Results are presented of an optical and IR polarimetric observing program at Steward Observatory to search for AM Her systems and to detect circularly polarized light in CV systems in which a magnetic white dwarf may be present. Circular polarization techniques are found to be quite sensitive in detecting the polarized cyclotron emission, free-free emission, or photospheric emission in CV systems with highly magnetic white dwarfs. Of the known CVs, few or no AM Her systems remain undiscovered. Thus, the space density of these systems can be determined by the completeness of the original X-ray or photometric surveys and subsequent CV identifications. Selection effects of this survey's sensitivity cannot explain the lack of identified AM Her systems with very high field strengths or with long periods. Title: A New Way to Convert Alfven Waves into Heat in Solar Coronal Holes: Intermittent Magnetic Levitation Authors: Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C. -H. Bibcode: 1992ApJ...397L..55M Altcode: In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes. Title: Kinetics of the removal of dissolved aluminum by diatoms in seawater: A comparison with thorium Authors: Moran, S. B.; Moore, R. M. Bibcode: 1992GeCoA..56.3365M Altcode: Kinetic experiments were conducted using batch systems to investigate the removal of dissolved Al and 234Th tracer by dead Phaeodactylum tricomutrnm diatoms in seawater. Experiments were conducted at constant temperature (2°C), pH (7.8), and salinity (30 psu), using realistic oceanic concentrations of dissolved Al (50 nM), and 1, 2.5, 5, and 10 mg/L suspensions of dead diatoms in ultrafiltered (<10,000 NMW) seawater. Results are characterized by a rapid initial removal followed by slower sorption of dissolved Al and 234Th by the diatoms on time scales ranging from hours to days. Both the removal rate and the percentage of Al and 234Th removed are strong functions of the particle concentration ( Cp). Modelling the kinetic data as a reversible exchange of metal between solution and particles indicates a first-order dependence of the forward rate constants for Al and 234Th on Cp. Extending these results to oceanic scavenging, it is shown that a first-order dependence exists between oceanic scavenging rate constants for Al and Th and suspended particle concentration for Cp ~ 0.01-1 mg/L. This relationship is suggested to reflect the importance of physicochemical removal mechanisms (surface-adsorption, co agulation/sedimentation) rather than active biological uptake of dissolved Al and Th in oceanic waters. Oceanic scavenging rate constants for Al and Th qualitatively agree with removal rate constants predicted by the Brownian-pumping model for reactive metal scavenging. Title: Intermittent Magnetic Levitation and Heating by Alfven Waves in Solar Coronal Holes Authors: Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C. -H. Bibcode: 1992AAS...180.5506M Altcode: 1992BAAS...24R.819M No abstract at ADS Title: The Inadequacy of Resistive Dissipation in Solar Flares Authors: Larosa, T. N.; Moore, R. L. Bibcode: 1992AAS...180.1802L Altcode: 1992BAAS...24..754L No abstract at ADS Title: Why the Winds from Late-Type Giants; Supergiants are Cool Authors: Moore, R. L.; Musielak, Z. E.; An, C. -H.; Rosner, R.; Suess, S. T. Bibcode: 1992ASPC...26..464M Altcode: 1992csss....7..464M No abstract at ADS Title: Triggering of Eruptive Flares - Destabilization of the Preflare Magnetic Field Configuration Authors: Moore, R. L.; Roumeliotis, G. Bibcode: 1992LNP...399...69M Altcode: 1992IAUCo.133...69M; 1992esf..coll...69M This paper takes the three-dimensional configuration of the magnetic field in and before eruptive flares as our main guide to how the preflare field comes to lose its stability and erupt. From observed characteristics (1) of the preflare magnetic field configuration, (2) of the onset and development of the eruption of this configuration before and during the flare, and (3) of the onset and development of the flare energy release (i.e., the heating and particle acceleration) within the erupting field, the typical erupting field configuration for two-ribbon eruptive flares is constructed. The observational centerpiece for this construction is the evidence from the Marshall Space Flight Center vector magnetograph that strong magnetic shear along the main magnetic inversion line is critical for large eruptive flares. From (a) the empirical field configuration and (b) the observation that the initial flare brightening typically stems from points where opposite-polarity flux is gradually merging and canceling at or near the main inversion line, it is argued (1) that eruptive flares are driven by the eruptive expansion of the strongly sheared core of the preflare magnetic field, (2) that this eruption is triggered by preflare slow reconnection accompanying flux cancellation in the sheared core, and (3) that in some flares the triggering reconnection and flux cancellation is between opposite-polarity strands of the extant preflare sheared core field, while in other flares it is between the sheared core field and new emerging flux. Title: Heating of solar coronal holes by reflected Alfven waves Authors: Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C. -H. Bibcode: 1992MmSAI..63..777M Altcode: As a continuation of the work of Moore et al. (1991), who found evidence that coronal holes are heated by Alfven waves that are reflected back down within the coronal holes, this paper shows that to demonstrate this evidence, it is only necessary to consider a subset of the Moore et al. models, namely, those having radial magnetic field. Using these models, it is shown that the Alfven velocity is not constant in the atmosphere of coronal holes, but changes with height (or radius), causing downward reflection of all upward Alfven waves of sufficiently long wavelength (or period). Title: Klein-Gordon equation and reflection of Alfvén waves in nonuniform media Authors: Musielak, Z. E.; Fontenla, J. M.; Moore, R. L. Bibcode: 1992PhFlB...4...13M Altcode: A new analytical approach is presented for assessing the reflection of linear Alfven waves in smoothly nonuniform media. The general one-dimensional case in Cartesian coordinates is treated. It is shown that the wave equations, upon transformation into the form of the Klein-Gordon equation, display a local critical frequency for reflection. At any location in the medium, reflection becomes strong as the wave frequency descends past this characteristic frequency set by the local nonuniformity of the medium. This critical frequecy is given by the transformation as an explicit function of the Alfven velocity and its first and second derivatives, and hence as an explicit spatial function. The transformation thus directly yields, without solution of the wave equations, the location in the medium at which an Alfven wave of any given frequency becomes strongly reflected and has its propagation practically cut off. Title: Alfven wave reflection and heating in coronal holes - Theory and observation Authors: Suess, S. T.; Moore, R. L.; Musielak, Z. E.; An, C. -H. Bibcode: 1992sws..coll..117S Altcode: We present evidence for significant reflection of Alfven waves in an isothermal, hydrostatic model corona and that heating in coronal holes is provided by Alfven waves. For Alfven waves with periods of 5 min, upward propagating waves are reflected if the temperature is less than 10 exp 6 K, but escape into the solar wind if the temperature is greater than 10 exp 6 K. This sensitive temperature dependence may provide the self-limiting mechanism that has been suspected to exist because the reflected waves result in heating which raises the temperature which, in turn, decreases the reflection. The reflection occurs mostly inside of about 6 solar radii, depending on temperature, wave period, and magnetic field strength and geometry. The importance of this process has often been overlooked due to a poor choice of coronal Alfven speed and temperature. SOHO is well-suited to measure whether the required properties for reflection exist. Solar Probe, however, is the only definitive experiment to show if the waves actually exist to the degree necessary. Title: The potential source of dissolved aluminum from resuspended sediments to the North Atlantic Deep Water Authors: Moran, S. B.; Moore, R. M. Bibcode: 1991GeCoA..55.2745M Altcode: Laboratory and field studies were conducted to investigate the significance of resuspended sediments as a source of dissolved Al to the deep northwest Atlantic. Sediment resuspension experiments demonstrate the effect on dissolved Al concentration (initially 11 nM) of adding natural suspended sediments (ca. 0.1-10 mg/L) to seawater. The concentration of dissolved Al increased by the resuspension of sediments; for example, addition of 0.15 mg/L sediments caused dissolved Al to increase by 10 nM. Distributions of dissolved and leachable particulate Al off the tail of the Grand Banks, near the highenergy western boundary current, show elevated levels in the near-bottom waters. We suggest that resuspended sediments associated with nepheloid layers along the western boundary of the North Atlantic are a source of dissolved Al. Strong western boundary currents provide the energy to resuspend and maintain intense nepheloid layers of sediments. Continued resuspension and deposition of sediments within the nepheloid layer promotes the release of Al from sediments to the overlying water. The Al-rich terrigenous sediments that predominate along the deep boundary of the Denmark Strait, Labrador Sea, Newfoundland and off Nova Scotia constitute a potentially significant source of dissolved Al. Release of Al from resuspended sediments associated with nepheloid layers at a more northern location (e.g., Denmark Strait) may contribute to the near-linear increase in dissolved Al with depth observed in the deep northwest Atlantic. Title: Supercluster-Void Structure and Cartesian Tourbillons Compared Authors: Moore, R. E. M. Bibcode: 1991PThPh..86..765M Altcode: The cellular structure of supercluster-voids is currently regarded as a Voronoi tessellation. Descartes' theory of celestial tourbillons can also be regarded in terms of a Voronoi tessellation. Title: Alfven Wave Trapping, Network Microflaring, and Heating in Solar Coronal Holes Authors: Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C. -H. Bibcode: 1991ApJ...378..347M Altcode: Fresh evidence that much of the heating in coronal holes is provided by Alfven waves is presented. This evidence comes from examining the reflection of Alfven waves in an isothermal hydrostatic model coronal hole with an open magnetic field. Reflection occurs if the wavelength is as long as the order of the scale height of the Alfven velocity. For Alfven waves with periods of about 5 min, and for realistic density, magnetic field strength, and magnetic field spreading in the model, the waves are reflected back down within the model hole if the coronal temperature is only slightly less than 1.0 x 10 to the 6th K, but are not reflected and escape out the top of the model if the coronal temperature is only slightly greater than 1.0 x 10 to the 6th K. Because the spectrum of Alfven waves in real coronal holes is expected to peak around 5 min and the temperature is observed to be close to 1.0 x 10 to the 6th K, the sensitive temperature dependence of the trapping suggests that the temperature in coronal holes is regulated by heating by the trapped Alfven waves. Title: Heating Times and Heating Mechanisms in the Quiet Solar Atmosphere Authors: Hammer, R.; Moore, R. L. Bibcode: 1991BAAS...23.1442H Altcode: No abstract at ADS Title: Why the Winds from Late-Type Giants and Supergiants are Cool Authors: Moore, R. L.; Musielak, Z. E.; An, C. -H.; Rosner, R.; Suess, S. T. Bibcode: 1991BAAS...23Q1385M Altcode: No abstract at ADS Title: Magnetic Confinement, Alfven Wave Reflection, and the Origins of X-Ray and Mass-Loss ``Dividing Lines'' for Late-Type Giants and Supergiants Authors: Rosner, R.; An, C. -H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T. Bibcode: 1991ApJ...372L..91R Altcode: A simple qualitative model for the origin of the coronal and mass-loss dividing lines separating late-type giants and supergiants with and without hot, X-ray-emitting corona, and with and without significant mass loss is discussed. The basic physical effects considered are the necessity of magnetic confinement for hot coronal material on the surface of such stars and the large reflection efficiency for Alfven waves in cool exponential atmospheres. The model assumes that the magnetic field geometry of these stars changes across the observed 'dividing lines' from being mostly closed on the high effective temperature side to being mostly open on the low effective temperature side. Title: Report of the solar physics panel Authors: Withbroe, George L.; Fisher, Richard R.; Antiochos, Spiro; Brueckner, Guenter; Hoeksema, J. Todd; Hudson, Hugh; Moore, Ronald; Radick, Richard R.; Rottman, Gary; Scherrer, Philip Bibcode: 1991spsi....1...67W Altcode: Recent accomplishments in solar physics can be grouped by the three regions of the Sun: the solar interior, the surface, and the exterior. The future scientific problems and areas of interest involve: generation of magnetic activity cycle, energy storage and release, solar activity, solar wind and solar interaction. Finally, the report discusses a number of future space mission concepts including: High Energy Solar Physics Mission, Global Solar Mission, Space Exploration Initiative, Solar Probe Mission, Solar Variability Explorer, Janus, as well as solar physics on Space Station Freedom. Title: A Novel Way to Convert Alfvén Waves to Heat in Coronal Holes: Reflective Damping Authors: Moore, R. L. Bibcode: 1991BAAS...23R1037M Altcode: No abstract at ADS Title: The MSFC Solar GRO Guest Investigation Authors: Hagyard, M. J.; Gary, G. A.; Moore, R. L. Bibcode: 1991BAAS...23.1073H Altcode: No abstract at ADS Title: Simultaneous UV and X-ray Observations of Solar Microflares Authors: Porter, J. G.; Fontenla, J. M.; Moore, R. L.; Simnett, G. M. Bibcode: 1991BAAS...23..935P Altcode: No abstract at ADS Title: The X-Ray Counterparts of UV Microflares Authors: Porter, J. G.; Fontenla, J. M.; Moore, R. L.; Simnett, G. M. Bibcode: 1991BAAS...23.1027P Altcode: No abstract at ADS Title: The MSFC Vector Magnetograph, Eruptive Flares, and the SOLAR-A X-ray Images Authors: Moore, R. L.; Hagyard, M. J.; Davis, J. M.; Porter, J. G. Bibcode: 1991LNP...387..324M Altcode: 1991fpsa.conf..324M No abstract at ADS Title: Magnetic Confinement, Alfvén Wave Reflection, and the Origin of X-ray and Mass Loss "Dividing Lines" Authors: An, C. -H.; Rosner, R.; Musielak, Z. E.; Moore, R. L.; Suess, S. T. Bibcode: 1991mcch.conf..445A Altcode: No abstract at ADS Title: Reflection of Alfvén Waves and Heating in Solar Coronal Holes (With 1 Figure) Authors: Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C. -H. Bibcode: 1991mcch.conf..435M Altcode: No abstract at ADS Title: Heat transfer from Atlantic waters to sea ice in the Arctic Ocean: Evidence from dissolved argon Authors: Moore, R. M.; Spitzer, W. Bibcode: 1990GeoRL..17.2149M Altcode: In an attempt to determine whether the temperature and salinity properties of Arctic Ocean waters above the Atlantic water temperature maximum are the result of heat transfer to sea-ice, dissolved Ar has been measured as a temperature tracer. Consistent with such a hypothesis, it is found that there is a transition from supersaturation of Ar in the upper waters to undersaturation below a depth of 275m. Using the known dependence of the solubility of Ar on T and S, and assuming that the water was originally equilibrated with the atmosphere at 760mm Hg, it has been calculated that ca. 0.6° C of cooling can be attributed to transfer of heat to sea-ice. Title: The Advanced Solar Observatory Authors: Walker, Arthur B. C., Jr.; Bailey, Wayne; Chupp, Edward L.; Hudson, Hugh S.; Moore, Ronald; Roberts, William; Hoover, Richard B. Bibcode: 1990OptEn..29.1306W Altcode: A conceptual plan for the development of a comprehensive long duration solar space observatory, The Advanced Solar Observatory (ASO) is described. The ASO is intended to provide solar astronomers with the observational power necessary to address fundamental problems relating to the solar convection zone and activity cycle; the thermal and nonthermal processes that control the transport of energy, mass, and magnetic flux in the solar atmosphere; the generation of the solar wind; and the dynamics of the inner heliosphere. The ASO concept encompasses three proposed Space Station-based instrument ensembles: (1) the High Resolution Telescope Cluster, which includes far ultraviolet, extreme ultraviolet, and X-ray telescopes; (2) the Pinhole/Occulter Facility, which includes Fourier transform and coded aperture hard X-ray and gamma ray telescopes and occulted ultraviolet and visible light coronagraphs; and (3) the High Energy Facility, which contains neutron, gamma ray, and low frequency radio spectrometers. Two other facilities, the Orbiting Solar Laboratory, and a package of Global Dynamics Instrumentation, will, with the Space Station ensembles, form a comprehensive capability for solar physics. The scientific program of the ASO, current instrument concepts for the Space Station based ASO instrument ensembles, and plans for their accommodation on the Space Station are described. Title: Advanced Solar Observatory Authors: Walker, Arthur B.; Bailey, Wayne L.; Chupp, Edward L.; Hudson, Hugh S.; Moore, Ronald L.; Roberts, William T.; Hoover, Richard B.; Wu, Shi T. Bibcode: 1990SPIE.1235..802W Altcode: No abstract at ADS Title: A lunar based solar observatory rationale and concepts Authors: Davis, John M.; Balasubramaniam, K. S.; Gary, G. A.; Moore, Ronald L. Bibcode: 1990AIPC..207..567D Altcode: 1990am...proc..567D The rationale for a lunar solar observatory is described and the requirements for various candidate instruments are developed. The unique characteristics of the lunar surface, its stability, low seismicity, and long unobstructed paths make it an ideal site for a large, high performance optical telescope. The capabilities of such an instrument is used, as an example (1) for the science that might be achieved from the lunar surface, (2) to identify the magnitude of the instrumentation, and (3) to indicate the technologies that must be developed if such an observatory is to become a reality. Title: Magnetic Loops in the Chromospheric Network Authors: Moore, R. L.; Rabin, D. M.; Dowdy, J. F., Jr. Bibcode: 1990BAAS...22..815M Altcode: No abstract at ADS Title: Measurement of Dissipation or Pumping of P-Modes in the Solar Photosphere Authors: Fontenla, J. M.; Hathaway, D. H.; Rabin, D.; Moore, R. Bibcode: 1990BAAS...22..856F Altcode: No abstract at ADS Title: Reflection and Trapping of Alfven Waves in a Spherically Symmetric Stellar Atmosphere Authors: An, C. -H.; Suess, S. T.; Moore, R. L.; Musielak, Z. E. Bibcode: 1990ApJ...350..309A Altcode: Alfven wave propagation in a spherically symmetric isothermal and stratified stellar atmosphere are analzyed using a time-dependent MHD numerical model. Particular consideration is given to wave reflection and the resultant trapping of the wave due to a peak in the Alfven speed in the atmosphere. Resonance frequencies in the trapping region and the effect of trapping on Alfven wave pressure force and propagation are examined. The data reveal that Alfven wave trapping has a potentially important role in accelerating winds from cool stars. Title: Effect of Radiative Transfer on Convection in the Deep Photosphere of Late-Type Dwarfs Authors: Fontenla, J. M.; Musielak, Z. E.; Moore, R. L. Bibcode: 1990ASPC....9...82F Altcode: 1990csss....6...82F A method is proposed to eliminate the compressional instability of a shallow layer in the upper part of stellar convective zones in standard mixing-length models. By equating the radiative cooling time of mixing eddies to their convective turnover time, the effective sizes of the eddies are assumed to be the smallest of those which are not eliminated by radiative transfer. Computations of the models with this assumption leads to smooth temperature profiles in the previously unstable layers and reductions of the convective velocity above its maximum value. Title: Hallmarks of the magnetic field in the solar atmosphere - Structure, evolution, heating, and flaring Authors: Moore, Ronald L. Bibcode: 1990MmSAI..61..317M Altcode: Recent observations of the solar magnetic field and its effects on the solar atmosphere are discussed, with an emphasis on large-scale active regions and their implications for the fine-scale magnetic structure and for activity in the so-called quiet regions. Sample magnetograms, sunlight images, H-alpha images, X-ray images, and spectroheliograms are presented and characterized in detail, and the form and action of the magnetic field in flares are considered. It is pointed out that simultaneous observations of all levels (from the photosphere to the corona) at 100-km (about 100-marcsec) resolution are needed to see the extent of fields looping into the corona and understand their structure and activity; large space-based observatories would be required. Title: Driving of the Solar P-modes by Radiative Pumping in the Upper Photosphere Authors: Fontenla, Juan M.; Emslie, A. G.; Moore, Ronald L. Bibcode: 1990AIPC..198..218F Altcode: 1989AIPC..198..218F; 1990asan.conf..218F It is shown that one viable driver of the solar p-modes is radiative pumping in the upper photosphere where the opacity is dominated by the negative hydrogen ion. This new option is suggested by the similar magnitudes of two energy flows that have been evaluated by independent empirical methods. The similarity indicates that the p-modes are radiatively pumped in the upper photosphere and therefore provide the required nonradiative cooling. Title: A Mechanism for the Increase in Stellar Wind Mass Loss from Giants across the Dividing Line Authors: An, C. H.; Musielak, Z. E.; Rosner, R.; Moore, R. L.; Suess, S. T. Bibcode: 1990ASPC....9...70A Altcode: 1990csss....6...70A No abstract at ADS Title: Reflection and trapping of transient Alfven waves propagating in an isothermal atmosphere with constant gravity and uniform magnetic field Authors: An, C. -H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T. Bibcode: 1989ApJ...345..597A Altcode: A time-dependent linear magnetohydrodynamic numerical model was used to investigate the propagation of Alfven waves in an isothermal and stratified atmosphere with constant gravity and uniform vertical magnetic field. Results show that the Alfven wave transit time for the wave source to infinity is finite and that the wave exhibits continuous partial reflection which becomes total reflection as the front approaches infinity. The total reflection causes the waves to be trapped in the cavity that extends from the wave source to infinity and in which the wave energy is stored. The results suggest that the reflection of Alfven waves (of sufficiently long period) from the outer corona is an intrinsic phenomenon for any stellar atmosphere stratified by gravity and an open magnetic field, and that, therefore, such waves may be trapped in the stellar atmosphere. Title: Alfven Speed and Heating in Solar Coronal Holes Authors: Moore, R. L.; An, C. H.; Suess, S. T.; Musielak, Z. E. Bibcode: 1989BAAS...21.1180M Altcode: No abstract at ADS Title: Propagating and Nonpropagating Compression Waves in an Isothermal Atmosphere with Uniform Horizontal Magnetic Field Authors: Musielak, Z. E.; An, C. -H.; Moore, R. L.; Suess, S. T. Bibcode: 1989ApJ...344..478M Altcode: Full analytical solutions to the wave equations for steady vertical compression waves in an isothermal hydrostatic atmosphere with a uniform horizontal magnetic field are presented. It is shown that, in the steady state approach, the behavior of upward waves and downward waves is very different. It is shown that the finding of Thomas (1983), indicating that the cutoff frequency for vertically propagating magnetoacoustic waves in an isothermal atmosphere with a horizontal magnetic field is the same for isothermal atmosphere with no magnetic field, is true only for the downward waves. Title: Do Any White Dwarfs Have X-ray Coronae? Authors: Musielak, Z. E.; Fontenla, J. M.; Moore, R. L. Bibcode: 1989BAAS...21.1222M Altcode: No abstract at ADS Title: The Role of Alfven Wave Trapping in the Acceleration of Stellar Winds from Late-Type Giants and Supergiants Authors: An, C. -H.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Moore, R. L. Bibcode: 1989BAAS...21..792A Altcode: No abstract at ADS Title: Ubiquity of magnetic Loops in the Chromospheric Network Authors: Moore, R. L.; Rabin, D. M.; Dowdy, J. F., Jr. Bibcode: 1989BAAS...21..864M Altcode: No abstract at ADS Title: Reflection and Trapping of Alfven Waves in Coronal Holes Authors: An, C. -H.; Suess, S. T.; Moore, R. L.; Musielak, Z. E. Bibcode: 1989BAAS...21..844A Altcode: No abstract at ADS Title: Subphotospheric Excitation of Alfven Waves and Their Role in the Solar Atmosphere Authors: Musielak, Z. E.; Rosner, R.; Ulmschneider, P.; Moore, R. L. Bibcode: 1989BAAS...21R.830M Altcode: No abstract at ADS Title: Alfven Wave Trapping and Heating in Coronal Holes Authors: Moore, R. L.; An, C. -H.; Suess, S. T.; Musielak, Z. E. Bibcode: 1989BAAS...21Q.830M Altcode: No abstract at ADS Title: A sketch of solar physics. Authors: Moore, R. L. Bibcode: 1989GMS....54....1M Altcode: 1989sspp.conf....1M Solar physics is an important, exciting branch of science in three ways. To begin with, solar phenomena and the physics that governs them are fascinating and worthy of study in their own right. The length scales, temperatures, densities, magnetic fields, gravity, and rotation of the Sun yield an array of magnetohydrodynamic (MHD) phenomena that are captivating to observe, confounding to explain, and impossible to truely replicate in the laboratory. In another way, solar physics is important because the Sun is the nearest star. This makes our knowledge and understanding of the Sun, i.e., solar physics, a key to stellar astrophysics. Moreover, as in the MHD and plasma phenomena of the Sun, magnetized plasma is an essential ingredient of most cosmic systems of stellar and galactic scale, including the violent objects prominent in modern astrophysics (e.g., collapsed stellar objects with accretion disks, active galactic nuclei, and stellar and galactic jets). Because of this and the nearness of the Sun, solar physics guides and tests our understanding of processes that are important for much of astrophysics beyond that of normal stars. Finally, solar physics is important because the Sun, through its direct radiation and the solar wind, is the origin or driver of phenomena central to space physics: the interplanetary medium and the magnetospheres, ionospheres, and atmospheres of the planets. This domain includes solar-terrestrial effects of great practical importance: the Sun sustains life on Earth, drives our weather, and regulates our climate. As in astrophysics, plasma processes that govern solar phenomena also pervade space physics. For example, this is evident in the strong similarity between solar flares and magnetospheric substorms (e.g., see Svestka, 1976). So, in broad perspective, solar physics is a worthy endeavor because solar physics by itself is a challenging and rewarding science, because solar physics (together with space physics) is a key to much of astrophysics, and because of the preeminence of the Sun in space physics phenomena and the terrestrial environment. Title: Chromospheric explosions. Authors: Doschek, G. A.; Antiochos, S. K.; Antonucci, E.; Cheng, C. -C.; Culhane, J. L.; Fisher, G. H.; Jordan, C.; Leibacher, J. W.; MacNiece, P.; McWhirter, R. W. P.; Moore, R. L.; Rabin, D. M.; Rust, D. M.; Shine, R. A. Bibcode: 1989epos.conf..303D Altcode: The work of this team addressed the question of the response and relationship of the flare chromosphere and transition region to the hot coronal loops that reach temperatures of about 107K and higher. Flare related phenomena such as surges and sprays were also discussed. The team members debate three main topics: 1) whether the blue-shifted components of X-ray spectral lines are signatures of "chromospheric evaporation"; 2) whether the excess line broadening of UV and X-ray lines is accounted for by "convective velocity distribution" in evaporation; and 3) whether most chromospheric heating is driven by electron beams. These debates illustrated the strengths and weaknesses of our current observations and theories. Title: Yosemite Conference on Outstanding Problems in Solar System Plasma Physics: Theory and Instrumentation Authors: Waite, J. H., Jr.; Burch, J. L.; Moore, R. L. Bibcode: 1989GMS....54.....W Altcode: 1989sspp.conf.....W; 1994QB529.S625..... Science involves a well orchestrated interplay between theory and experiment. Past unexplained observations suggest new questions to be asked, and answering these questions many times requires new observational techniques or at least new applications of old techniques. Solar system plasma physics is a classic example of the scientific process at work and has benefited from the rapid technological exploration of our near space environment over the last 35 years. This book is a 1988 snapshot of the scientific process in solar system plasma physics. It is structured by a series of scientific questions. Under each of these headings are theoretical papers which review the pertinent science and properly formulate the question in specific observational terms. These are followed by experimental papers which address the present state of observational techniques which can be used to investigate these outstanding problems. In addition, two introductory papers offer overviews of the fields of solar physics and magnetospheric physics; each addresses itself, as a kind of short course in its respective discipline, to scientists from the other discipline. Title: The driver in flares and coronal mass ejections: Magnetic expansion Authors: Moore, Ronald L. Bibcode: 1988fnsm.work...97M Altcode: Chromospheric filaments, and hence the sheared magnetic fields that they trace, are observed to erupt in flares and coronal mass ejections. In the eruption, the filament-traced field is seen to expand in volume. For frozen-in magnetic field and isotropic expansion, the magnetic energy in a flux tube decreases as the flux tube expands. The amount of expansion of the magnetic field and the corresponding decrease in magnetic energy in a filament-eruption flare and/or coronal mass ejection can be estimated to order of magnitude from the observed expansion of the erupting filament. This evaluation for filament-eruption events in which the filament expansion is clearly displayed gives decreases in magnetic energy of the order of the total energy of the accompanying flare and/or coronal mass ejection. This simple expanding flux tube model can also fit the observed acceleration of coronal mass ejections, if it is assumed that the increase in mechanical energy of the mass ejection comes from the magnetic energy decrease in the expansion. These results encourage the view that magnetic expansion such as seen in filament eruptions drives both the plasma particle energization in flares and the bulk mass motion in coronal mass ejections. Title: Observed Magnetic Structure and Activity in the Quiet Solar Atmosphere Authors: Moore, R. L.; Dowdy, J. F., Jr.; Rabin, D. M. Bibcode: 1988BAAS...20.1009M Altcode: No abstract at ADS Title: Filament Eruptions and the Impulsive Phase of Solar Flares Authors: Kahler, S. W.; Moore, R. L.; Kane, S. R.; Zirin, H. Bibcode: 1988ApJ...328..824K Altcode: Filament motion during the onset of the solar flare impulsive phase is examined. The impulsive phase onset is established from profiles of about 30 keV X-ray fluxes and the rapid flare brightenings characteristic of the H-alpha flash phase. The filament motion begins several minutes before the impulsive or flash phase of the flare. No new accleration is observed in the motion of the filament during the onset of the impulsive phase for at least two of the four flares. The most common H-alpha brightenings associated with the impulsive phase lie near the magnetic inversion line roughly centered under the erupting filament. Filament speeds at the onset of the impulsive or flash phase lie in the range 30-180 km/s. These characteristics indicate that the filament eruption is not driven by the flare plasma pressure, but instead marks an eruption of magnetic field driven by a global MHD instability of the field configuration in the region of the flare. Title: The 2-D magnetohydrostatic configurations leading to flares or quiescent filament eruptions Authors: An, C. -H.; Suess, S. T.; Moore, R. L. Bibcode: 1988STIN...8825423A Altcode: To investigate the cause of flares and quiescent filament eruptions the quasi-static evolution of a magnetohydrostatic (MHS) model was studied. The results lead to a proposal that: the sudden disruption of an active-region filament field configuration and the accompanying flare result from the lack of a neighboring equilibrium state as magnetic shear is increased above the critical value; and a quiescent filament eruption is due to an ideal MHD kink instability of a highly twisted detached flux tube formed by the increase of plasma current flowing along the length of the filament. A numerical solution was developed for the 2-D MHS equation for the self-consistent equilibrium of a filament and overlying coronal magnetic field. Increase of the poloidal current causes increase of magnetic shear. As shear increases past a critical point, there is a discontinuous topological change in the equilibrium configuration. It was proposed that the lack of a neighboring equilibrium triggers a flare. Increase of the axial current results in a detached tube with enough helical twist to be unstable to ideal MHD kink modes. It was proposed that this is the condition for the eruption of a quiescent filament. Title: The Driver in Flares and Coronal Mass Ejections: Magnetic Expansion Authors: Moore, R. L. Bibcode: 1988BAAS...20R.745M Altcode: No abstract at ADS Title: Trapping of Magnetoacoustic Waves in an Isothermal Atmosphere Authors: Musielak, Z. E.; Moore, R. L.; Suess, S. T. Bibcode: 1988BAAS...20..683M Altcode: No abstract at ADS Title: Magnetic Modulation of the Short-Period Cutoff for Solar Global p-Mode Oscillations Authors: Moore, R. L.; Musielak, Z. E. Bibcode: 1988BAAS...20Q.684M Altcode: No abstract at ADS Title: The Observed Characteristics of Flare Energy Release. I. Magnetic Structure at the Energy Release Site Authors: Machado, Marcos E.; Moore, Ronald L.; Hernandez, Ana M.; Rovira, Marta G.; Hagyard, Mona J.; Smith, Jesse B., Jr. Bibcode: 1988ApJ...326..425M Altcode: It is shown that flaring activity as seen in X-rays usually encompasses two or more interacting magnetic bipoles within an active region. Soft and hard X-ray spatiotemporal evolution is considered as well as the time dependence of the thermal energy content in different magnetic bipoles participating in the flare, the hardness and impulsivity of the hard X-ray emission, and the relationship between the X-ray behavior and the strength and 'observable shear' of the magnetic field. It is found that the basic structure of a flare usually consists of an initiating closed bipole plus one or more adjacent closed bipoles impacted against it. Title: Chromospheric Emission Bifurcation of Sunspots Authors: Gary, G. A.; Moore, R. L. Bibcode: 1988BAAS...20..704G Altcode: No abstract at ADS Title: Detection of Microflares with the Present UVSP Authors: Porter, J. G.; Moore, R. L.; Reichmann, E. J.; Fontenla, J. M. Bibcode: 1988BAAS...20..711P Altcode: No abstract at ADS Title: Photospheric Radiative Pumping of the Solar Global p-Mode Oscillations Authors: Fontenla, J. M.; Moore, R. L. Bibcode: 1988BAAS...20..684F Altcode: No abstract at ADS Title: Kinematic Properties of the Ejected Matter in NGC 1275 Authors: Marr, J. M.; Backer, D. C.; Wright, M. C. H.; Readhead, A. C. S.; Moore, R. Bibcode: 1988IAUS..129...91M Altcode: The authors have mapped the nearby (z = 0.018), active galaxy NGC 1275 (3C 84) at 6 different epochs from 1981 to 1986 at 1.3 cm (22.3 GHz) with a global VLBI array of seven telescopes. They find a long-lived knot of emission separating from the brightest radio component with a projected velocity 0.46±0.12 h-1c. This knot moves through diffuse emission that also moves away from the main component with a slower projected velocity of 0.33±0.12 h-1c. It is shown that the knot and diffuse emission result from two separate events that occurred around 1959 and 1968. Title: Evidence that coronal mass ejections are magnetically self-propelled. Authors: Moore, Ronald L. Bibcode: 1988sscd.conf..520M Altcode: The observed embedment of erupting filaments in coronal mass ejections, the results of Kahler et al. (1988) on the observed dynamics of erupting filaments, and the empirical estimates of Moore (1988) of the magnetic energy released in filament eruptions reinforce each other in pointing to the conclusion that coronal mass ejections are magnetically self-propelled plasmoids. Title: Evidence That Magnetic Energy Shedding in Solar Filament Eruptions is the Drive in Accompanying Flares and Coronal Mass Ejections Authors: Moore, Ronald L. Bibcode: 1988ApJ...324.1132M Altcode: Both in solar regions of strong (100 - 1000 G) magnetic field (active regions) and in regions of weaker magnetic field (quiet regions), filaments of chromospheric material reside in sheared magnetic fields over magnetic inversion lines. Such filaments, and hence the sheared fields that they trace, often erupt in flares and coronal mass ejections. This paper shows that the apparent decrease of magnetic energy in observed filament-field eruptions is of the order of the total energy of the flare and/or coronal mass ejection in which the erupting filament is embedded. This quantitative match supports the long-standing tenet that the flare energy comes from the preflare magnetic field, and indicates that the magnetic energy dumped in a filament-eruption flare comes from the erupting flux tube. Title: Report of conference on outstanding questions in solar sytem plasma physics: Theory and instrumentation Authors: Burch, J. L.; Moore, R. L.; Waite, J. H., Jr. Bibcode: 1988EOSTr..69..796B Altcode: On February 2-5, 1988, 90 space physicists met at Yosemite National Park to discuss theoretical and instrumentation aspects of solar system plasma physics. The participants were divided nearly equally between those involved in the plasma physics of planetary, Earth, and cometary magnetospheres and those involved in the field of solar physics. This dichotomy led to a significant amount of cross fertilization of ideas between the two groups. In retrospect the exchange would have been facilitated by introductory tutorial lectures on the outstanding problems extant in the two subjects. Nonetheless, as the conference progressed, with plenty of time for informal discussion, the two groups found that not only are the Sun and the various planetary magnetospheres inextricably linked, as expected, via the solar wind, but also that they are characterized by a number of the same physical phenomena. For example, one phenomenon, the cyclotron maser resonance, was suggested to be responsible for Type III solar radio bursts. The same phenomenon is generally accepted to cause auroral kilometric radiation in the Earth's magnetosphere. Lively discussions were also held on collisionless shocks, which are important phenomena in the solar atmosphere, the solar wind, and in the interaction of the solar wind with planetary magnetospheres. The analogy of solar flares and magnetospheric substorms and the role of magnetic reconnection in solar and magnetospheric physics were also topics of mutual interest which spawned vigorous discussion as a result of the different perspectives of the two communities. Title: Coronal heating by microflares. Authors: Porter, J. G.; Moore, R. L. Bibcode: 1988sscd.conf..125P Altcode: No abstract at ADS Title: The kinetics of reversible Th reactions with marine particles Authors: Moore, R. M.; Millward, G. E. Bibcode: 1988GeCoA..52..113M Altcode: Experiments on the reversibility of Th adsorption on natural marine particles utilized the short-lived isotope 234Th as a tracer. The adsorption of Th from seawater onto mineral particles is a reversible process. The extent to which Th can desorb from the particles decreases as the particles age. The kinetics of adsorption-desorption reactions have been modelled as a three-stage equilibrium; values of the six rate constants have been evaluated. Attempts to determine a single rate constant for the adsorption of Th from seawater from a single parent-daughter disequilibrium, or to determine a forward and a back rate constant using two such disequilibria will yield rate constants that depend on the time for which the marine particles have been reacting with Th in seawater. Title: Microflares in the Solar Magnetic Network Authors: Porter, J. G.; Moore, R. L.; Reichmann, E. J.; Engvold, O.; Harvey, K. L. Bibcode: 1987ApJ...323..380P Altcode: It is suggested that the events observed by HRTS are microflares in tiny magnetic bipoles (some in cell interiors but most in the magnetic network) and that these same events, when strong enough and frequent enough in some of the larger bipoles, sustain X-ray bright points. In this paper, the authors present new evidence in favor of this hypothesis. Using C IV spectroheliograms in combination with magnetograms and He I λ10,830 spectroheliograms they find that impulsive heating events of the class observed by HRTS are common at small bipoles in the network, both at bipoles corresponding to X-ray bright points and at many weaker bipoles that show no sustained enhanced coronal brightness. Title: 10.7 cm solar radio flux and the magnetic complexity of active regions. Authors: Wilson, Robert M.; Rabin, Douglas; Moore, Ronald L. Bibcode: 1987SoPh..111..279W Altcode: During sunspot cycles 20 and 21, the maximum in smoothed 10.7-cm solar radio flux occurred about 1.5 yr after the maximum smoothed sunspot number, whereas during cycles 18 and 19 no lag was observed. Thus, although 10.7-cm radio flux and Zürich suspot number are highly correlated, they are not interchangeable, especially near solar maximum. The 10.7-cm flux more closely follows the number of sunspots visible on the solar disk, while the Zürich sunspot number more closely follows the number of sunspot groups. The number of sunspots in an active region is one measure of the complexity of the magnetic structure of the region, and the coincidence in the maxima of radio flux and number of sunspots apparently reflects higher radio emission from active regions of greater magnetic complexity. The presence of a lag between sunspot-number maximum and radio-flux maximum in some cycles but not in others argues that some aspect of the average magnetic complexity near solar maximum must vary from cycle to cycle. A speculative possibility is that the radio-flux lag discriminates between long-period and short-period cycles, being another indicator that the solar cycle switches between long-period and short-period modes. Title: On the inability of magnetically constricted transition regions to account for the 105 to 106 K plasma in the quiet solar atmosphere Authors: Dowdy, James F., Jr.; Moore, Ronald L.; Emslie, A. Gordon Bibcode: 1987SoPh..112..255D Altcode: Although `back conduction' from the corona has been shown to be inadequate for powering EUV emission below T ≈ 2 × 105 K, it is thought to be adequate in the temperature range 2 × 105 K < T < 106 K. No models to date, however, have included the large magnetic constriction which should occur in the legs of coronal loops where conductive `transition regions', hitherto thought to contain the bulk of the plasma in this higher temperature range, are located. On the basis of fine scale magnetograms, Dowdy et al. (1986) have estimated that these magnetic flux tubes are constricted from end to end by an areal factor of approximately 100. Furthermore, on the basis of simple steady-state conductive models, Dowdy et al. (1985) have shown that the large constriction can inhibit the conductive flow of heat by an order of magnitude. We are thus led to re-examine static models of this region of the atmosphere which incorporate not only conduction and radiation but also the effects of large magnetic constrictions. We find that the structure of this plasma depends not only on the magnitude of the constriction but also on the tube's shape. Title: Microflares, Spicules, and the Heating of the Corona Authors: Porter, J. G.; Moore, R. L.; Reichmann, E. J. Bibcode: 1987BAAS...19..921P Altcode: No abstract at ADS Title: An ISOL/post-accelerator facility for nuclear astrophysics at TRIUMF Authors: Buchmann, L.; D'Auria, J. M.; King, J. D.; MacKenzie, G.; Schneider, H.; Moore, R. B.; Rolfs, C. Bibcode: 1987NIMPB..26..151B Altcode: A facility to perform measurements of nuclear reaction rates in which one of the reactants is a radioactive species is described. The value of these reactions to the area of nuclear astrophysics is discussed in detail and calculations of expected yields for selected examples are given. This proposed facility is composed of an on-line isotope separator (ISOL) front-end coupled to a booster post-accelerator stage to raise the energy of a radioactive ion beam to sufficient energies (up to 1.5 MeV/u) to perform these studies. The advantages of this approach are presented along with a discussion of the feasibility of not only obtaining the necessary radioactive beam intensities of the important isotopes, but also of achieving the acceleration necessary. Details of one feasible accelerator system are presented. Title: Nonpotential Features Observed in the Magnetic Field of an Active Region Authors: Gary, G. A.; Moore, R. L.; Hagyard, M. J.; Haisch, Bernhard M. Bibcode: 1987ApJ...314..782G Altcode: A unique coordinated data set consisting of vector magnetograms, H-alpha photographs, and high-resolution ultraviolet images of a solar active region is used, together with mathematical models, to calculate potential and force-free magnetic field lines and to examine the nonpotential nature of the active region structure. It is found that the overall bipolar magnetic field of the active region had a net twist corresponding to net current of order 3 x 10 to the 12th A and average density of order 4 x 10 to the -4th A/sq m flowing antiparallel to the field. There were three regions of enhanced nonpotentiality in the interior of the active region; in one the field had a marked nonpotential twist or shear with height above the photosphere. The measured total nonpotential magnetic energy stored in the entire active region was of order 10 to the 32nd ergs, about 3 sigma above the noise level. Title: Observed form and action of the magnetic field in flares Authors: Moore, Ronald L. Bibcode: 1987SoPh..113..121M Altcode: 1982SoPh..113..121M No abstract at ADS Title: Flare research with the NASA/MSFC vector magnetograph: Observed characteristics of sheared magnetic fields that produce flares Authors: Moore, R. L.; Hagyard, M. J.; Davis, J. M. Bibcode: 1987SoPh..113..347M Altcode: 1982SoPh..113..347M The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, we find evidence that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both (1) the maximum shear angle exceed 85 degrees and (2) the extent of strong shear (shear angle > 80 degrees) exceed 10,000 km. Title: Magnetic location of C IV events in the quiet network. Authors: Porter, Jason G.; Reichmann, Ed J.; Moore, Ronald L.; Harvey, Karen L. Bibcode: 1986NASCP2442..383P Altcode: 1986copp.nasa..383P Ultraviolet Spectrograph and Polarimeter (UVSP) observations of C IV intensity in the quiet sun were examined and compared to magnetograms and He I 10830 A spectroheliograms from Kitt Peak National Laboratory. The observations were made between 3 and 9 April, 1985. Spatially rastered UVSP intensity measurements were obtained at 11 wavelength positions in the 1548 A line of C IV. It was concluded that the stochastic process whereby convective shuffling of loop footprints leads to many topically dissipative events in active regions and the larger bipoles treated here continues to operate in regions of fewer, weaker flux loops, but the resulting events above threshold are less frequent. Title: Accuracy Requirements for Vector Magnetic Field Measurements for Solar Flare Prediction Authors: Moore, R. L.; Gary, G. A.; Hagyard, M. J.; Davis, J. M. Bibcode: 1986BAAS...18.1043M Altcode: No abstract at ADS Title: The Evolution of the Compact Radio Source in 3C 345. I. VLBI Observations Authors: Biretta, J. A.; Moore, R. L.; Cohen, M. H. Bibcode: 1986ApJ...308...93B Altcode: A systematic analysis of VLBI observations of the superluminal radio source 3 C 345 is presented. Observation frequencies range from 2.3 to 89 GHz, and epochs are from 1979.25 through 1984.11. A newly ejected knot (C4) accelerates, changes position angle, and undergoes a large flux outburst. Older knots C2 and C3 have different speeds, little or no acceleration, and different position angles. The flux of C3 decays, and its spectrum steepens. The moving knots define an opening angle of about 27 deg and show direct evidence of expansion. The counterjet-to-jet flux ratio is -0.007 + or 0.007. Title: On the Magnetic Structure of the Quiet Transition Region Authors: Dowdy, J. F., Jr.; Rabin, D.; Moore, R. L. Bibcode: 1986SoPh..105...35D Altcode: Existing models of the quiet chromosphere-corona transition region predict a distribution of emission measure over temperature that agrees with observation for T ≳ 105 K. These `network' models assume that all magnetic field lines that emerge from the photosphere extend into and are in thermal contact with the corona. We show that the observed fine-scale structure of the photospheric magnetic network instead suggests a two-component picture in which magnetic funnels that open into the corona emerge from only a fraction of the network. The gas that makes up the hotter transition region is mostly contained within these funnels, as in standard models, but, because the funnels are more constricted in our picture, the heat flowing into the cooler transition region from the corona is reduced by up to an order of magnitude. The remainder of the network is occupied by a population of low-lying loops with lengths ≲ 104 km. We propose that the cooler transition region is mainly located within such loops, which are magnetically insulated from the corona and must, therefore, be heated internally. The fine-scale structure of ultraviolet spectroheliograms is consistent with this proposal, and theoretical models of internally heated loops can explain the behavior of the emission measure below T ≈ 105 K. Title: Wave speeds in the corona and the dynamics of mass ejections Authors: Suess, S. T.; Moore, R. L. Bibcode: 1986sfcp.rept..262S Altcode: A disturbance or coronal mass ejection being advected by the solar wind will expand at the fastest local characteristic speed - typically approximately the fast-mode speed. To estimate this characteristic wave speed and the velocity field in the ambient corona, it is necessary to know the magnetic field, temperature, and density. Only the density is known from coronal observations. The temperature, magnetic field, and velocity are not yet directly measured in the outer corona and must be estimated from a model. In this study, it is estimated that the magnetic field, solar wind velocity, and characteristic speeds use the MHD model of coronal expansion between 1 and 5 solar radii (R solar radii) with a dipole magnetic field at the base. This model, for a field strength of about 2 gauss at the base, gives flow speeds at low latitudes (near the heliospheric current sheet) of 250 km/s at 5 R solar radii and, 50 km/s at 2 solar radii, and fast-mode speeds to 400 to 500 km/s everywhere between 2 and 5 solar radii. This suggests that the outer edge of a velocity of mass ejection reported by MacQueen and Fisher (1983) and implies that the acceleration mechanism for coronal mass ejections is other than simple entrainment in the solar wind. Title: Bimodality of the solar cycle Authors: Rabin, D.; Wilson, R. M.; Moore, R. L. Bibcode: 1986GeoRL..13..352R Altcode: For sunspot cycles 1-20 (1755-1976), all cycles occurred in strings (two to six cycles in length) during which the period remained longer or shorter than the sample mean period. These strings have coincided with long-term trends of growth or decay in the amplitude of the cycle. In six out of six cases, the period of the cycle has switched from long to short (or the reverse) in coincidence with turning points in the long-term trend. This suggests that the solar dynamo has two modes with different mean periods. In the short-period mode, the amplitude of the cycle grows; in the long-period mode, the amplitude decays. The transition between modes has occurred at irregular intervals. A persistence of the long-period mode would eventually produce a grand minimum such as the Maunder minimum; a persistence of the short-period mode would produce a grand maximum. Unless the present interval between transitions turns out to be shorter than any previously observed interval, the present cycle (cycle 21) is part of a long-period, decaying trend and will be of longer-than-average duration (>133 months). Title: Disequilibria between 226Ra, 210Pb and 210Po in the Arctic Ocean and the implications for chemical modification of the Pacific water inflow Authors: Moore, R. M.; Smith, J. N. Bibcode: 1986E&PSL..77..285M Altcode: Measurements have been made of 226Ra and both dissolved and particulate forms of 210Pb and 210Po in a vertical profile at 85°50'N, 108°50'W in the Arctic Ocean. In the upper water column 226Ra shows a concentration maximum that is coincident with one in the nutrients, silicate, phosphate, and nitrate, while at the same depth, dissolved and particulate 210Pb and 210Po all show minimum concentrations. It is suggested that the concentration maxima are partly due to sources of the respective elements in the continental shelf sediments, the shelf waters being subsequently advected into the Arctic Ocean basins. The 210Pb and 210Po minima have similarly been explained by interaction between the shelf sediments and overlying waters. An estimate is made of the possible contributions of shelf sediments to the layer of silica-rich water which covers the Canada Basin at a depth of 100-150 m. Residence times have been calculated for dissolved 210Pb and 210Po at various depths in the water column. Surface water residence times of dissolved and particulate forms of these radionuclides are longer than in surface Atlantic waters, probably due to lower biological activity in the surface waters of the Canada Basin. An estimatee has been made of the average sinking velocity of particulate material. Title: Observations of the low-luminosity broad-line radio galaxy 1717+49. Authors: Puschell, J. J.; Moore, R.; Cohen, R. D.; Owen, F. N.; Phillips, A. C. Bibcode: 1986AJ.....91..751P Altcode: The elliptical galaxy 1717 + 49 (= A1718 + 49A = Arp 102B = VV 10= K508) contains an active nucleus characterized by a compact radio source, nonstellar visual-infrared emission, variable optical polarization, and strong broad emission lines. The luminosity of the active source is ∼l043 erg/s in the visual-infrared. The emission at 6 cm includes a structure whose position angle is nearly coincident with the mean position angle of the optical polarization. in terms of its visual-infrared and radio core characteristics, the object is similar to 3C 390.3, except that its luminosity is a factor of ∼20 lower. However, there is no evidence from our work or from previously published radio observations for the extended radio lobes which might be expected in an object like this. it is conceivable that the radio lobes are projected onto the core source. Scattering in the broad-line region or synchrotron radiation are both plausible explanations for the optical polarization. Title: Effect of Magnetic Constriction on Coronal Energy Losses and the Energy Balance of the Transition Region Authors: Dowdy, J. F.; Emslie, A. G.; Moore, R. L. Bibcode: 1986BAAS...18..703D Altcode: No abstract at ADS Title: 2-D Magnetohydrostatic Configurations Leading to Flares and Quiescent Filament Eruptions Authors: An, C. -H.; Suess, S. T.; Moore, R. L. Bibcode: 1986BAAS...18Q.709A Altcode: No abstract at ADS Title: Filament Eruption Speed at the Onset of the Impulsive Phase of Solar Flares Authors: Moore, R. L.; Kahler, S. W.; Kane, S. R.; Zirin, H. Bibcode: 1986BAAS...18R.708M Altcode: No abstract at ADS Title: Non-Potential Features Observed in the Magnetic Field of an Active Region Authors: Gary, G. A.; Moore, R. L.; Hagyard, M. J.; Haisch, B. M. Bibcode: 1986BAAS...18..709G Altcode: No abstract at ADS Title: The Ultraviolet Excess of Quasars. III. The Highly Polarized Quasars PKS 0736+017 and PKS 1510-089 Authors: Malkan, M. A.; Moore, R. L. Bibcode: 1986ApJ...300..216M Altcode: Ultraviolet/optical/infrared spectrophotometry of the highly-polarized quasars (HPQ's) PKS 0736 + 047 and PKS 1510 089 is analyzed. A blazer continuum component like that in BL Lac objects (e.g. with violent variability, high polarization, and a steep power-law shape) contributes about half the visual light of 1510 - 089, and at least three-quarters of that in 0736 + 017. The remaining light has the same spectrum as normal (low-polarization) quasars, including an ultraviolet excess or blue bump, which is easily detected in the IUE spectra of 1510 - 089, and weakly detected in 0736 + 017. The line fluxes do vary, but not as much as the continuum. The ratios of the broad emission lines, and the Balmer continuum are normal in both quasars. Title: Evolution of the Compact Radio Source 3c 345 Authors: Cohen, J. Biretta. M.; Moore, R. Bibcode: 1986IAUS..119..157C Altcode: No abstract at ADS Title: Chromospheric explosions. Authors: Doschek, G. A.; Antiochos, S. K.; Antonucci, E.; Cheng, C. -C.; Culhane, J. L.; Fisher, G. H.; Jordan, C.; Leibacher, J. W.; MacNiece, P.; McWhirter, R. W. P.; Moore, R. L.; Rabin, D. M.; Rust, D. M.; Shine, R. A. Bibcode: 1986NASCP2439....4D Altcode: The work of this team addressed the question of the response and relationship of the flare chromosphere and transition region to the hot coronal loops that reach temperatures of about 107K and higher. Flare related phenomena such as surges and sprays are also discussed. The team members debated three main topics: 1. whether the blue-shifted components of X-ray spectral lines are signatures of "chromospheric evaporation"; 2. whether the excess line broadening of UV and X-ray lines is accounted for by "convective velocity distribution" in evaporation; and 3. whether most chromospheric heating is driven by electron beams. Title: High Resolution Telescope and Spectrograph (HRTS) Authors: Moore, R. Bibcode: 1986stos.work....6M Altcode: The major objectives of the high resolution telescope and spectrograph (HRTS) are: (1) the investigation of the energy balance and mass balance of the temperature minimum, chromosphere, transition zone, and corona in quiet regions on the Sun as well as in plages, flares, and sunspots; (2) the investigation of the velocity field of the lower corona to study the origin of the solar wind; and (3) the investigation of preflare and flare phenomena. The HRTS instruments consists of a telescope, an ultraviolet spectrograph, an ultraviolet spectroheliograph, and an H alpha slit display system, all housed in a thermal control cannister mounted on an instrument pointing system. Title: Observed form and action of the magnetic energy release in flares Authors: Machado, Marcos E.; Moore, Ronald L. Bibcode: 1986AdSpR...6f.217M Altcode: 1986AdSpR...6..217M We review the observable spatio-temporal characteristics of the energy release in flares, and their association with the magnetic environment and tracers of field dynamics. The observations indicate that impulsive phase manifestations, like particle acceleration, may be related to the formation of neutral sheets at the interface between interacting bipoles, but that the site for the bulk of the energy release is within closed loops rather than at the interaction site. Title: Soft X-ray telescope (SXRT) Authors: Moore, R. Bibcode: 1986stos.work....3M Altcode: The soft X-ray telescope (SXRT) will provide direct images of the solar corona with spatial resolution of about 1 arcsecond. These images will show the global structure of the corona, the location and area of coronal holes, and the presence of even the smallest active regions and flares. The good spatial resolution will show the fine scale magnetic structure and changes in these phenomena. These observations are essential for monitoring, predicting, and understanding the solar magnetic cycle, coronal heating, solar flares, coronal mass ejections, and the solar wind. These observations complement those of the White Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will detect active regions and coronal holes near the east limb, thereby giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth. The instrument consists of a grazing incidence collecting mirror with a full-disk film camera at the primary focus, and a secondary relay optic that feeds a CCD camera with a field of view about the size of an average active region. Title: Wave speeds in the corona and the dynamics of mass ejections. Authors: Suess, S. T.; Moore, R. L. Bibcode: 1986NASCP2421..262S Altcode: A disturbance or coronal mass ejection being advected by the solar wind will expand at the fastest local characteristic speed - typically approximately the fast-mode speed. To estimate this characteristic wave speed and the velocity field in the ambient corona, it is necessary to know the magnetic field, temperature, and density. Only the density is known from coronal observations. The authors estimate the magnetic field, solar wind velocity, and characteristic speeds using an MHD model of coronal expansion between 1 and 5 R_sun; with a dipole magnetic field at the base. This model suggests that the outer edge of a mass ejection will appear to move at a nearly constant rate of 400 to 500 km/s between 2 and 5 R_sun;. This result is in agreement with the observations by MacQueen and Fisher (1983) and implies that the acceleration mechanism for coronal mass ejections is other than simple entrainment in the solar wind. Title: Active Cavity Radiometer (ACR) Authors: Moore, R. Bibcode: 1986stos.work....7M Altcode: The active cavity radiometer (ACR) measures the total solar irradiance to determine the magnitude and direction of variations in the total solar radiative output. The ACR is an electrically self calibrating cavity pyroheliometer capable of measuring the total solar irradiance with an absolute accuracy better than 0.2% and capable of detecting changes in the total irradiance smaller than 0.001%. The data will be used to study the physical behavior of the Sun and the Earth's climate. Title: Evolution of the compact radio source 3C 345. Authors: Biretta, J.; Cohen, M.; Moore, R. Bibcode: 1986IAUS..119..157B Altcode: The quasar 3C 345 is recognized as a strong, variable, superluminal radio source, an optically violent variable, and a weak X-ray source. The authors present results of VLBI monitoring between 1979 and 1984 at 2.3, 5.0, 10.7, and 22.2 GHz. These results are interpreted in terms of a relativistic jet model. Title: Associations of Compact C IV Events, He I 10830 A Dark Points, and Magnetic Structures Authors: Porter, J. G.; Reichmann, E. J.; Moore, R. L.; Harvey, K. L. Bibcode: 1985BAAS...17..842P Altcode: No abstract at ADS Title: Filament Eruptions in the Impulsive Phase of Solar Flares Authors: Moore, R. L.; Kahler, S. W.; Kane, S. R.; Zirin, H. Bibcode: 1985BAAS...17..905M Altcode: No abstract at ADS Title: Inhibition of Conductive Heat Flow by Magnetic Construction in the Corona and Transition Region - Dependence on the Shape of the Construction Authors: Dowdy, J. F., Jr.; Moore, R. L.; Wu, S. T. Bibcode: 1985SoPh...99...79D Altcode: The magnetic field that fills the corona is rooted in a small fraction of the solar surface. The consequent constriction of the field lines inhibits the conduction of heat down from the corona, thereby strongly affecting the energy balance in the corona and transition region. In this paper, we clarify how the shape of the constriction acts together with the amount of constriction to inhibit the heat flow. Title: Evidence for submergencew of magnetic flux in a growing active region Authors: Rabin, D. M.; Moore, R. L.; Hagyard, M. J. Bibcode: 1985svmf.nasa..437R Altcode: In NOAA Active Region 2372 (April 1980), 4 x 10 to the 20th power maxwell of magnetic flux concentrated within a 30" circular area disappeared overnight. Vector magnetograms show that all components of the magnetic field weakened together. If the field had weakened through diffusion or fluid flow, 80% of the original flux would still have been detected by the magnetograph within a suitably enlarged area. In fact there was at least a threefold decrease in detected flux. Evidently, magnetic field was removed from the photosphere. Since the disappearing flux was located in a region of low magnetic shear and low activity, it is unlikely that the field dissipated through reconnection. The most likely possibility is that flux submerged. Observations suggest that even in the growth phase of active regions, submergence is a strong process comparable in magnitude to emergence. Title: Magnetic Constriction and Energy Balance in the Upper Transition Region Authors: Dowdy, J. F.; Emslie, A. G.; Moore, R. L. Bibcode: 1985BAAS...17Q.633D Altcode: No abstract at ADS Title: The Extended Range X-Ray Telescope center director's discretionary fund report Authors: Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.; Tandberg-Hanssen, E. A. Bibcode: 1985msfc.reptQ....H Altcode: An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD. Title: Wave Speeds in the Corona and the Dynamics of Mass Ejections Authors: Suess, S. T.; Moore, R. L. Bibcode: 1985BAAS...17R.636S Altcode: No abstract at ADS Title: Active Cavity Radiometer (ACR) Authors: Moore, R. L. Bibcode: 1985tpss.procU....M Altcode: The active cavity radiometer (ACR) measures the total solar irradiance to determine the magnitude and direction of variations in the total solar radiative output. The ACR is an electrically self calibrating cavity pyroheliometer capable of measuring the total solar irradiance with an absolute accuracy better than 0.2% and capable of detecting changes in the total irradiance smaller than 0.001%. The data will be used to study the physical behavior of the Sun and the Earth's climate. Title: White Light Coronograph (WLC) and Ultra-Violet Coronal Spectrometer (UVCS) Authors: Moore, R. L. Bibcode: 1985tpss.procS....M Altcode: The white light coronagraph (WLC) and ultraviolet coronal spectrometer (UVCS) together reveal the corona and the roots of the solar wind from 1.5 to 6 solar radii from Sun center. The WLC measures the plasma density and spatial structure of the corona and coronal mass ejections at a resolution of about 20 arcseconds. The UVCS, in combination with the WLC, measures the temperature and radial outflow speed of the coronal plasma. These instruments will detect mass ejections from active regions and high speed solar wind streams from coronal holes a few days before the source regions rotate onto the face of the Sun, thus giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth. Title: Anticipated scientific return of the Advanced Solar Observatory Authors: Moore, Ron; Bohlin, David Bibcode: 1985aso..conf.....M Altcode: The scientific importance of the Advanced Solar Observatory (ASO) is discussed with emphasis on its soft X-ray, XUV, and EUV facilities. The principal achievement expected from the ASO's SXR/XUV and EUV telescope is a greatly improved resolution of the magnetic structure and activity in the transition region and corona. Observations from these facilities, combined with complementary observations of the photosphere and chromosphere from Solar Optical Telescope and of the higher corona from the Pinhole/Occulter Facility, are expectecd to yield significant advances in all major areas of solar physics concerning the causes and effects of solar magnetic fields. Title: High Resolution Telescope and Spectrograph (HRTS) Authors: Moore, R. L. Bibcode: 1985tpss.procT....M Altcode: The major objectives of the high resolution telescope and spectrograph (HRTS) are: (1) the investigation of the energy balance and mass balance of the temperature minimum, chromosphere, transition zone, and corona in quiet regions on the Sun as well as in plages, flares, and sunspots; (2) the investigation of the velocity field of the lower corona to study the origin of the solar wind; (3) the investigation of preflare and flare phenomena. The HRTS instruments consists of a telescope, an ultraviolet spectrograph, and ultraviolet spectroheliograph, and an H alpha slit display system, all housed in a thermal control canister mounted on an instrument pointing system. Title: Sunspots. Authors: Moore, R.; Rabin, D. Bibcode: 1985ARA&A..23..239M Altcode: It is pointed out that the sun provides a close-up view of many astrophysically important phenomena, nearly all connected with the causes and effects of solar magnetic fields. The present article provides a review of the role of sunspots in a number of new areas of research. Connections with other solar phenomena are examined, taking into account flares, the solar magnetic cycle, global flows, luminosity variation, and global oscillations. A selective review of the structure and dynamic phenomena observed within sunspots is also presented. It is found that sunspots are usually contorted during the growth phase of an active region as magnetic field rapidly emerges and sunspots form, coalesce, and move past or even through each other. Attention is given to structure and flows, oscillations and waves, and plans for future studies. Title: Evidence for submergence of magnetic flux in a growing active region. Authors: Rabin, D. M.; Moore, R. L.; Hagyard, M. J. Bibcode: 1985NASCP2374..437R Altcode: No abstract at ADS Title: The ultraviolet excess of quasars 3: The highly polarized quasars PKS 0736+017 and PKS 1510-089 Authors: Malkan, M. A.; Moore, R. L. Bibcode: 1985STIN...8522268M Altcode: Ultraviolet/optical/infrared spectrophotometry of the highly-polarized quasars (HPQ's) PKS 0736+017 and PKS 1510-089 is analyzed. A blazar continuum component like that in BL Lac objects (e.g. with violent variability, high polarization, and a steep power-law shape) contributes about half the visual light of 1510-089, and at least three-quarters of that in 0736+017. The remaining light has the same spectrum as normal (low-polarization) quasars, including an ultraviolet excess or blue bump, which is easily detected in the IUE spectra of 1510-089, and weakly detected in 0736+017. The line fluxes do vary, but not as much as the continuum. The ratios of the broad emission lines, and the Balmer continuum are normal in both quasars. Title: Soft X-Ray Telescope (SXRT) Authors: Moore, R. L. Bibcode: 1985tpss.procQ....M Altcode: The soft X-ray telescope (SXRT) will provide direct images of the solar corona with spatial resolution of about 1 arcsecond. These images will show the global structure of the corona, the location and area of coronal holes, and the presence of even the smallest active regions and flares. The good spatial resolution will show the fine scale magnetic structure and changes in these phenomena. These observations are essential for monitoring, predicting, and understanding the solar magnetic cycle, coronal heating, solar flares, coronal mass ejections, and the solar wind. These observations complement those of the White Light Coronagraph and Ultra-Violet Coronal Spectrometer; the SXRT will detect active regions and coronal holes near the east limb, thereby giving a week or more of advanced warning for disturbed geomagnetic conditions at Earth. The instrument consists of a grazing incidence collecting mirror with a full disk film camera at the primary focus, and a secondary relay optic that feeds a CCD camera with a field of view about the size of an average active region. Title: A case for submergence of magnetic flux in a solar active region Authors: Rabin, D.; Moore, R.; Hagyard, M. J. Bibcode: 1984ApJ...287..404R Altcode: In NOAA Active Region 2372 (April 1980), 4 x 10 to the 20th maxwells of magnetic flux concentrated in an area 30 arcsec across disappeared overnight. Vector magnetograms show that all components of the magnetic field weakened together. If the field had weakened through diffusion or fluid flow, 90 percent of the original flux would still have been detected by the magnetograph within a suitably enlarged area. In fact there was a threefold decrease in detected flux. Evidently, magnetic field was removed from the photosphere. Since the disappearing flux was located in a region of low magnetic shear and low activity in H-alpha and Ly-alpha, it is unlikely that the field dissipated through reconnection. It is argued that the most likely possibility is that flux submerged. The observations suggest that even during the growth phase of active regions, submergence is a strong process comparable in magnitude to emergence. Title: Implications of solar flare dynamics for reconnection in magnetospheric substorms Authors: Moore, R. L.; Horwitz, J. L.; Green, J. L. Bibcode: 1984P&SS...32.1439M Altcode: From observations of two-ribbon solar flares, we present a new line of evidence that magnetic reconnection is of key importance in magnetospheric substorms. We infer that in substorms reconnection of closed field lines in the near-Earth thinned plasma sheet both initiates and is driven by the overall MHD instability that drives the tailward expulsion of the reconnected closed field (0 loops). The general basis for this inference is the longstanding notion that two-ribbon flares and substorms are essentially similar phenomena, driven by similar processes. We give an array of observed similarities that substantiate this view. More specifically, our inference for substorms is drawn from observations of filament eruptions in two-ribbon flares, from which we conclude that the heart of the overall instability consists of reconnection and eruption of the closed magnetic field in and around the filament. We propose that essentially the same overall instability operates in substorms. Our point is not that the magnetic field configuration or the microphysics in substorms is identical to that in two-ribbon flares, but that the overall instability results from essentially the same combination of reconnection and eruption of closed magnetic field. Title: Vertical profile of artificial radionuclide concentrations in the Central Arctic Ocean Authors: Livingston, Hugh D.; Kupferman, Stuart L.; Bowen, Vaughan T.; Moore, R. M. Bibcode: 1984GeCoA..48.2195L Altcode: The artificial radionuclides 90Sr, 137Cs, 238Pu, 239,240Pu and 241Am have been measured in eight water samples collected in 1979, at intervals from surface to bottom, through the ice at the LOREX satellite camp SS near the North Pole. Differences in the concentrations and ratios of these nuclides, compared with values measured, over time, in the various water masses that flow into the Arctic Ocean, can be used as semi-independent checks on rates of flow to the LOREX stations and on residence times in the Arctic Ocean. An unexpected finding was that water labelled with low-level liquid waste from the Windscale plant on the Irish Sea is a major component of the 1500 m LOREX sample, and has reached there in no more than eight to ten years. Even from this one station in the Polar Ocean, estimation of the inventories of the various radionuclides is good enough to emphasize the importance of horizontal advection of the various supply terms to the Arctic. Title: Heating the sun's lower transition region with fine-scale electric currents Authors: Rabin, D.; Moore, R. Bibcode: 1984ApJ...285..359R Altcode: This paper discusses the hypothesis that the lower transition region is locally heated by the dissipation of electric currents. It proposes a model based on ohmic heating by filamentary electric currents that flow along the magnetic field. The current filaments must be of fine scale, with a narrow dimension in the range 1 cm to 1 km, and the ambient magnetic field must be greater than about 10 gauss. An ensemble of filamentary currents that agree in sign across the horizontal scale of a photospheric granule can generate enough heat to match observations without the need for anomalous resistivity. Thermal conduction perpendicular to the axis of a current filament produces a distribution of emission measure over temperature that is in good agreement with observations. Title: Energy Release in Solar Flares Authors: Sturrock, P. A.; Kaufman, P.; Moore, R. L.; Smith, D. F. Bibcode: 1984SoPh...94..341S Altcode: We examine observational evidence concerning energy release in solar flares. We propose that different processes may be operative on four different time scales: (a) on the sub-second time scale of `sub-bursts' which are a prominent feature of mm-wave microwave records; (b) on the few-seconds time scale of `elementary bursts' which are a prominent feature of hard X-ray records; (c) on the few-minutes time scale of the impulsive phase; and (d) on the tens-of-minutes or longer time scale of the gradual phase. Title: Bimodality of the Solar Cycle Authors: Rabin, D. M.; Moore, R. L.; Wilson, R. M. Bibcode: 1984BAAS...16Q.993R Altcode: No abstract at ADS Title: High-Speed Polarimetry of BL Lac Authors: Moore, R. L.; Schmidt, G. D.; West, S. C. Bibcode: 1984BAAS...16..951M Altcode: No abstract at ADS Title: Energy Release in Solar Flares Authors: Sturrock, P. A.; Kaufmann, P.; Moore, R. L.; Smith, D. F. Bibcode: 1984BAAS...16..890S Altcode: No abstract at ADS Title: Sunspot Oscillations and the Short-Period Cutoff for Global p-Mode Oscillations Authors: Moore, R.; Rabin, D. Bibcode: 1984BAAS...16..978M Altcode: No abstract at ADS Title: Magnetic Structure and Heating of the Upper and Lower Transition Region Authors: Dowdy, J. F., Jr.; Wu, S. T.; Moore, R. L. Bibcode: 1984BAAS...16..729D Altcode: No abstract at ADS Title: Photospheric Electric Current and Transition Region Brightness Within an Active Region Authors: Deloach, A. C.; Hagyard, M. J.; Rabin, D.; Moore, R. L.; Smith, B. J., Jr.; West, E. A.; Tandberg-Hanssen, E. Bibcode: 1984SoPh...91..235D Altcode: Distributions of vertical electric current density (Jz) calculated from vector measurements of the photospheric magnetic field are compared with ultraviolet spectroheliograms to investigate whether resistive heating is an important source of enhanced emission in the transition region. The photospheric magnetic fields in Active Region 2372 were measured on 6 and 7 April, 1980 with the MSFC vector magnetograph; ultraviolet wavelength spectroheliograms (Lα and Nv 1239 Å) were obtained with the UVSP experiment aboard the Solar Maximum Mission satellite. Spatial registration of the Jz (5 arc sec resolution) and UV (3 arc sec resolution) maps indicates that the maximum current density is cospatial with a minor but persistent UV enhancement, but there is little detected current associated with other nearby bright areas. We conclude that although resistive heating may be important in the transition region, the currents responsible for the heating are largely unresolved in our measurements and have no simple correlation with the residual current measured on 5 arc sec scales. Title: The optical polarization properties of "normal" quasars. Authors: Stockman, H. S.; Moore, R. L.; Angel, J. R. P. Bibcode: 1984ApJ...279..485S Altcode: In 1977, a linear polarization survey of bright QSOs from the catalog of Burbidge et al. (1977) was begun. Stockman and Angel (1978) and Stockman (1978) have reported preliminary results of this survey. Since these reports, the bright QSO survey has been completed and an extended survey of fainter QSOs with known variability and/or spectral indices has been conducted. This paper presents the final report of the results of the surveys. The selection criteria for the bright QSO survey are defined, the observational techniques are described, and the polarization data for the entire sample are presented. An analysis of the data is performed, taking into account the probability distribution of polarization, the variability of polarization, and the color dependence of polarization. Models for the origin of polarization are also discussed. Title: A comparison of the properties of highly polarized QSOs versus low-polarization QSOs. Authors: Moore, R. L.; Stockman, H. S. Bibcode: 1984ApJ...279..465M Altcode: An optical linear-polarization survey testing the relationships between polarization and other properties of QSOs is presented. Polarimetric observations of 239 QSOs have been made. Data from the literature are used to analyze the relationships between polarization and radio, optical, and X-ray properties. The highly polarized QSOs are generally compact radio sources, are associated with radio properties such as low-frequency variability and superluminal motion, exhibit large-amplitude rapid photometric variability, have steep nonthermal optical continua, and may show excess X-ray emission. No relationship is seen between polarization and redshift, optical luminosity, or the equivalent width of emission lines. The results are discussed in the context of both isotropic and anisotropic (beaming) models. While the associations between the optical and radio properties of highly polarized QSOs provide strong motivation for the anisotropic model, the lack of associations with redshift, optical luminosity, and emission-line strength is inconsistent with this model. It is concluded that the highly polarized QSOs are probably fundamentally different in their physical properties from low-polarization QSOs. Title: The radio morphology of blazars and relationships to optical polarization and to normal radio galaxies. Authors: Wardle, J. F. C.; Moore, R. L.; Angel, J. R. P. Bibcode: 1984ApJ...279...93W Altcode: The authors present high dynamic range VLA maps of 16 BL Lac objects and highly polarized quasars. Extended radio structure with a variety of morphologies is common in the sample. There is weak evidence for a connection between preferred position angles of optical polarization and radio morphology. Preferred-angle objects are more likely to exhibit two-sided radio structure than random-angle objects. A much stronger correlation is found for random-angle objects between the prominence of the radio core and the rms scatter in the position angle of the optical polarization. There is remarkably good agreement between the position angle of the small-scale radio structure and the characteristic angle of optical polarization. Four of five sources are aligned within 15°. The luminosity of the extended radio emission from BL Lac objects is compared with that of "normal" radio galaxies. It is concluded that the results of this study can be successfully interpreted within the context of the relativistic jet model. Title: On the Formation of Magnetic Shear: Clues from a Well-Observed Active Region Authors: Moore, R. L.; Rabin, D. M. Bibcode: 1984BAAS...16..528M Altcode: No abstract at ADS Title: A Case for Submergence of Magnetic Flux in a Solar Active Region Authors: Rabin, D. M.; Moore, R. L. Bibcode: 1984BAAS...16..528R Altcode: No abstract at ADS Title: Dissolved-particulate interactions of aluminium in ocean waters Authors: Moore, R. M.; Millward, G. E. Bibcode: 1984GeCoA..48..235M Altcode: Two N. Atlantic profiles of dissolved Al are reported, they show an increase in Al concentration with depth as reported previously for the central Arctic Ocean ( MOORE, 1981) and for the N.W. Atlantic below 1000 m ( HYDES, 1979). Laboratory experiments were carried out to investigate the effect of pressure on the equilibrium between dissolved Al and pelagic, red clays. These studies showed an increase in dissolved Al with increasing pressure; e.g. at 1000 atm. the concentration of Al in solution increased by about 30% in two days. It was also observed that when the pressure was released the excess dissolved Al was rapidly removed from solution onto the clays. Calculations of the effect of pressure on the equilibrium concentration of Al in the presence of Gibbsite show that the dissolution should be favoured by a pressure increase. Laboratory leaching experiments using dilute acid were also undertaken to assess the mobility of Al in atmospheric particulates. The results suggest that a significant proportion, up to 20%, of the Al is not strongly bound in mineral lattices: this figure represents the upper limit for the leachable fraction which greatly exceeds earlier estimates. These results improve our understanding of Al marine geochemistry by emphasising the importance of inorganic rather than biological processes in determining its oceanic distribution. Title: Superluminal Acceleration of the New Component in 3C345 Authors: Moore, R. L.; Biretta, J. A.; Readhead, A. C. S.; Baath, L. B. Bibcode: 1984IAUS..110..109M Altcode: VLBI observations of 3C 345 at 10.8 GHz and 22.2 GHz show that the position angle of the new component is increasing as it separates from the core. Also, the apparent velocity of the component is increasing. This is the first clear evidence for non-radial motion and acceleration of an individual component in an extragalactic radio source. Title: The role of magnetic field shear in solar flares Authors: Hagyard, M. J.; Moore, R. L.; Emslie, A. G. Bibcode: 1984AdSpR...4g..71H Altcode: 1984AdSpR...4...71H We present observational results and their physical implications garnered from the deliberations of the FBS Magnetic Shear Study Group on magnetic field shear in relation to flares. The observed character of magnetic shear and its involvement in the buildup and release of flare energy are reviewed and illustrated with emphasis on recent results from the Marshall Space Flight Center vector magnetograph. It is pointed out that the magnetic field in active regions can become sheared by several processes, including shear flow in the photosphere, flux emergence, magnetic reconnection, and flux submergence. Modeling studies of the buildup of stored magnetic energy by shearing are reported which show ample energy storage for flares. Observational evidence is presented that flares are triggered when the field shear reaches a critical degree, in qualitative agreement with some theoretical analyses of sheared force-free fields. Finally, a scenario is outlined for the class of flares resulting from large-scale magnetic shear; the overall instability driving the energy release results from positive feedback between reconnection and eruption of the sheared field. Title: Magnetic changes observed in a solar flare Authors: Moore, R. L.; Hurford, G. J.; Jones, H. P.; Kane, S. R. Bibcode: 1984ApJ...276..379M Altcode: The authors present observations of a large impulsive flare (1B/M4, 1980 April 10). Observations of the microwave/hard X-ray burst show the time development of the impulsive energy release. Chromospheric (Hα) and photospheric (Fe I λ5324) filtergrams and photospheric (Fe I λ8688) magnetograms, intensitygrams, and velocitygrams show magnetic structure, flare emission, mass motion, and magnetic changes. These observations show that strong flare-wrought magnetic changes in the chromosphere and corona produce observable, sudden, permanent changes in the photospheric magnetic field. The observations also show that one of the changes was initiated by transient brightening in Fe I λ5324 and λ8688 in step with the impulsive energy release and filament eruption. Title: Observation of the impulsive phase of a simple flare. Authors: Tandberg-Hanssen, E.; Kaufmann, P.; Reichmann, E. J.; Teuber, D. L.; Moore, R. L.; Orwig, L. E.; Zirin, H. Bibcode: 1984SoPh...90...41T Altcode: 1984SoPh...90...41B; 1984SoPh...90...41H We present a broad range of complementary observations of the onset and impulsive phase of a fairly large (1B, M1.2) but simple two-ribbon flare. The observations consist of hard X-ray flux measured by the SMM HXRBS, high-sensitivity measurements of microwave flux at 22 GHz from Itapetinga Radio Observatory, sequences of spectroheliograms in UV emission lines from Ov (T ≈ 2 × 105 K) and FeXXI (T ≈ 1 × 107 K) from the SMM UVSP, Hα and HeI D3 cine-filtergrams from Big Bear Solar Observatory, and a magnetogram of the flare region from the MSFC Solar Observatory. From these data we conclude: The overall magnetic field configuration in which the flare occurred was a fairly simple, closed arch containing nonpotential substructure. Title: Energy release in solar flares Authors: Sturrock, P. A.; Kaufmann, P.; Moore, R. L.; Smith, D. F. Bibcode: 1984ersf.rept.....S Altcode: This document presents observational evidence concerning energy release in solar flares. It is proposed that a different process may be operative on four different time scales: (1) on the sub-second time scale of sub-bursts which are a prominent feature of mm-wave microwave records; (2) on the few-seconds time scale of elementary bursts which are a prominent feature of hard X-ray records; (3) on the few-minutes time scale of the impulsive phase; and (4) on the tens-of-minutes or longer time scale of the gradual phase. It is proposed that the concentration of magnetic field into magnetic knots at the photosphere has important consequences for the coronal magnetic-field structure such that the magnetic field in this region may be viewed as an array of elementary flux tubes. The release of the free energy of one such tube may produce an elementary burst. The development of magnetic islands during this process may be responsible for the sub-bursts. The impulsive phase may be simply the composite effect of many elementary bursts. It is also proposed that the gradual phase of energy release, with which flares typically begin and with which many flares end, involves a steady process of reconnection, whereas the impulsive phase involves a more rapid stochastic process of reconnection which is a consequence of mode interaction. In the case of two-ribbon flares, the late part of the gradual phase may be attributed to reconnection of a large current sheet which is being produced as a result of filament eruption. A similar process may be operative in smaller flares. Title: Anomalous neon-helium ratios in the Arctic Ocean Authors: Top, Zafer; Clarke, W. B.; Moore, R. M. Bibcode: 1983GeoRL..10.1168T Altcode: Measurements of dissolved helium and neon were made on seawater samples collected at the Lomonosov Ridge Experiment site (LOREX, 1979) and at the FRAM III drifting ice station (1981) in the Arctic Ocean. The most striking feature of the results is the high values of Ne/He in the shallow depths compared to previous results in other oceans. Ice formation and refreezing of meltwater appear to be the mechanisms which could explain the observed Ne/He anomaly. Title: Superluminal acceleration in 3C345 Authors: Moore, R. L.; Readhead, A. C. S.; Baath, L. Bibcode: 1983Natur.306...44M Altcode: 1983Nat...306...44M The superluminal quasar 3C345 has a curved, one-sided jet-like radio structure1,2. Ejected material has been observed travelling at apparent speeds of 13-17c (ref. 3). We report here new observations at 22 GHz which show that the most recently ejected component4 is not moving radially away from the compact radio core, but along a trajectory which could be interpreted as either a curved path originating in the compact core, or a straight line, in which case the origin of ejection is not coincident with the compact radio core. The observations provide evidence of acceleration of this component. Title: Optical polarimetry of broad-line radio galaxies. Authors: Rudy, R. J.; Schmidt, G. D.; Stockman, H. S.; Moore, R. L. Bibcode: 1983ApJ...271...59R Altcode: The authors have observed the linear polarization of 13 broad-line radio galaxies drawn from the list of Grandi and Osterbrock. Two of the objects, 3C 109 and 3C 234, are strongly polarized. As a class, these active galaxies display larger polarizations than both Seyfert 1 galaxies and quasars. The polarizations are attributed primarily to extinction and scattering by dust, though nonthermal components may contribute at a secondary level. The existence of dust affords a partial explanation for two of the spectral signatures of broad-line radio galaxies: steep Balmer decrements and strong forbidden lines relative to the permitted lines. Title: On Heating the Lower Transition Region with Fine-Scale Currents Authors: Rabin, D. M.; Moore, R. L. Bibcode: 1983BAAS...15..700R Altcode: No abstract at ADS Title: The Impulsive Phase of a Simple Flare Authors: Moore, R. L.; Tandberg-Hanssen, E.; Reichmann, E. J.; Teuber, D. L.; Kaufmann, P.; Orwig, L. E.; Zirin, H. Bibcode: 1983BAAS...15..697M Altcode: No abstract at ADS Title: GHz Observations of X-Ray Selected Active Galactic Nuclei: Evidence for Inverse Compton Boosting Authors: Edelson, R.; Moore, R.; Maccacaro, T.; Gioia, I. Bibcode: 1983BAAS...15..649E Altcode: No abstract at ADS Title: Inhibition of Heat Conduction by Magnetic Constriction in the Transition Region: Dependence on Tube Shape Authors: Dowdy, J. F., Jr.; Moore, R. L.; Wu, S. T. Bibcode: 1983BAAS...15Q.700D Altcode: No abstract at ADS Title: Book-Review - Microwave Remote Sensing - Active and Passive Authors: Ulaby, F. T.; Moore, R. K.; Fung, A. K.; Rasool, S. I. Bibcode: 1983SSRv...35..295U Altcode: No abstract at ADS Title: Structure of the Lower Transition Zone in an Active Region Authors: Rabin, D. M.; Moore, R. L. Bibcode: 1982BAAS...14..925R Altcode: No abstract at ADS Title: Magnetic Changes Observed in a Flare: True and Flase Transients and True Permanent Changes Authors: Moore, R. L.; Hurford, G. J.; Jones, H. P.; Kane, S. R. Bibcode: 1982BAAS...14..899M Altcode: No abstract at ADS Title: The noise of BL Lacertae Authors: Moore, R. L.; Angel, J. R. P.; Duerr, R.; Lebofsky, M. J.; Wisniewski, W. Z.; Rieke, G. H.; Axon, D. J.; Bailey, J.; Hough, J. M.; McGraw, J. T. Bibcode: 1982ApJ...260..415M Altcode: Results are presented from an intensive optical and IR monitoring program of the flux and polarization characteristics of BL Lac. It is found that the polarization variations increase in amplitude with increasing time interval, and that the path traced out by the polarization vector in the Q-U plane is a random walk. In view of earlier measurements of BL Lac, the polarization fluctuations can be represented at low frequencies by the flat power spectrum of white noise, up to a frequency of 0.05 cycles/day. Above this frequency, the spectrum steepens to that of a random walk. A model for BL Lac suggested by the polarimetric noise can be constructed from independent sources of light with randomly oriented, strong polarization. Small random differences in spectral index from source to source could also explain the variable wavelength dependence of polarization. Title: A Comparison of the Position Angles of Radio Structure and Optical Polarization in BL Lac Objects Authors: Moore, R. L.; Wardle, J. F. C.; Angel, J. R. P. Bibcode: 1982BAAS...14..934M Altcode: No abstract at ADS Title: VLA Observations of BLLac Objects Authors: Wardle, J. F. C.; Moore, R. L.; Angel, J. R. P. Bibcode: 1982BAAS...14..934W Altcode: No abstract at ADS Title: Evidence for a Poleward Meridional Flow on the Sun Authors: Topka, K.; Moore, R.; Labonte, B. J.; Howard, R. Bibcode: 1982SoPh...79..231T Altcode: We define for observational study two subsets of all polar zone filaments, which we call polemost filaments and polar filament bands. The behavior of the mean latitude of both the polemost filaments and the polar filament bands is examined and compared with the evolution of the polar magnetic field over an activity cycle as recently distilled by Howard and LaBonte (1981) from the past 13 years of Mt. Wilson full-disk magnetograms. The magnetic data reveal that the polar magnetic fields are built up and maintained by the episodic arrival of discrete f-polarity regions that originate in active region latitudes and subsequently drift to the poles. After leaving the active-region latitudes, these unipolar f-polarity regions do not spread equatorward even though there is less net flux equatorward; this indicates that the f-polarity regions are carried poleward by a meridional flow, rather than by diffusion. The polar zone filaments are an independent tracer which confirms both the episodic polar field formation and the meridional flow. We find: The mean latitude of the polemost filaments tracks the boundary of the polar field cap and undergoes an equatorward dip during each arrival of additional polar field. Title: Finite-n ballooning mode theory for axisymmetric toroidal plasmas Authors: Moore, R. W.; Dobrott, D. Bibcode: 1982JPlPh..28..103M Altcode: Ballooning mode theory for finite toroidal mode number n is derived for shearfree and sheared axisymmetric toroidal plasmas. The resulting finite-n theory is applicable for both compressible and incompressible perturbations. The inclusion of finite compressibility changes the ballooning mode eigenfunctions and eigenvalues, but not the form of the finite-n correction. Title: Study of the Post-Flare Loops on 1973JUL29 - Part Four - Revision of T and NE Values and Comparison with the Flare of 1980MAY21 Authors: Švestka, Z.; Dodson-Prince, H. W.; Martin, S. F.; Mohler, O. C.; Moore, R. L.; Nolte, J. T.; Petrasso, R. D. Bibcode: 1982SoPh...78..271S Altcode: We present revised values of temperature and density for the flare loops of 29 July 1973 and compare the revised parameters with those obtained aboard the SMM for the two-ribbon flare of 21 May 1980. The 21 May flare occurred in a developed sunspot group; the 29 July event was a spotless two-ribbon flare. We find that the loops in the spotless flare extended higher (by a factor of 1.4-2.2), were less dense (by a factor of 5 or more in the first hour of development), were generally hotter, and the whole loop system decayed much slower than in the spotted flare (i.e. staying at higher temperature for a longer time). We also align the hot X-ray loops of the 29 July flare with the bright Hα ribbons and show that the Hα emission is brightest at the places where the spatial density of the hot elementary loops is enhanced. Title: Remote Flare Brightenings and Type-Iii Reverse Slope Bursts Authors: Tang, F.; Moore, R. L. Bibcode: 1982SoPh...77..263T Altcode: We present two large flares which were exceptional in that each produced an extensive chain of Hα emission patches in remote quiet regions more than 105 km away from the main flare site. They were also unusual in that a large group of the rare type III reverse slope bursts accompanied each flare. Title: The Relationship Between Low Frequency Variability and Optical Polarization of QSOS Authors: Moore, R. L. Bibcode: 1982lfve.conf...49M Altcode: The author reports on an extensive survey of the optical linear polarization of QSOs. The results of this survey show that there are two basic types of QSOs which can be distinguished on the basis of their optical polarization. The majority of radio-loud QSOs (≡85%) and essentially all radio-quiet QSOs have relatively stable low polarization (P > 2%). A small fraction of radio-loud QSOs (≡15%) exhibit high polarization (P ≡ 4-20%) which is rapidly variable on time scales of days. Title: The optical polarization of QSOs Authors: Moore, R. L. Bibcode: 1982IAUS...97..341M Altcode: A description is presented of an extensive survey of the optical linear polarization of QSOs. A primary conclusion from the survey is that the great majority of QSO's have very low (but significant) intrinsic optical polarization. The distribution of polarization is dominated by QSOs with P less than 1.5%. Among the low polarization ('normal') QSOs, there are no significant polarimetric differences between radio-loud and radio-quiet QSOs. A small fraction of QSOs exhibit distinctly higher polarization with P in the range from 4 to 20%. Essentially no QSOs have intermediate polarizations with P in the range from 2% to 4%. The discontinuity in the distribution of polarization suggests that there are two basic types of QSOs, including the normal QSOs and the highly polarized QSOs (HPQs). Title: Observations of sudden changes of magnetic structure in a flare. Authors: Moore, R. L.; Hurford, G. J.; Jones, H. P.; Kane, S. R. Bibcode: 1982BAAS...14Q.572M Altcode: No abstract at ADS Title: Residence Hall Rental Rates Authors: Moore, R. K. Bibcode: 1982NRAON...5....8M Altcode: No abstract at ADS Title: Dynamic Phenomena in the Visible Layers of Sunspots Authors: Moore, R. L. Bibcode: 1981SSRv...28..387M Altcode: The empirical properties of the various dynamic phenomena are reviewed and interrelated with emphasis on recent observational results. The topics covered are:

1.

Introduction

2.

Aperiodic Phenomena

2.1.

Externally Driven Phenomena

2.1.1.

Umbral Flares

2.1.2.

Inverse Evershed Flow

2.2.

Internally Driven Phenomena

2.2.1

Penumbra

2.2.1.1.

Penumbral Grains

2.2.1.2.

Evershed Flow

2.2.2.

Umbra

2.2.2.1.

Umbral Dots

2.2.2.2.

Inhomogeneity of the Umbral Magnetic Field

2.2.2.3.

Umbral Turbulence

3.

Oscillations and Waves

3.1.

Chromosphere

3.1.1.

Umbra: Oscillations and Flashes

3.1.2.

Penumbra: Running Waves and Dark Puffs

3.2.

Photosphere

4.

Overview It is proposed from the observations that umbral dots and penumbral grains are essentially the same phenomenon, and that the observational goal of highest priority with respect to both the origin of the periodic phenomena and the problem of the missing heat flux is to better determine the nature of these elementary bright features. Title: Oceanographic distributions of zinc, cadmium, copper and aluminium in waters of the central arctic Authors: Moore, R. M. Bibcode: 1981GeCoA..45.2475M Altcode: Vertical profiles are presented of dissolved cadmium, zinc, copper and aluminium at the LOREX 79 site in the central Arctic Ocean. Cd, Zn and Cu show unusually high surface concentrations of 0.3, 3 and 5 nmoll-1 respectively; these levels are related to contributions from surface run-off and from the underlying nutrient-rich Bering Sea winter water. Al has lower surface concentrations than observed elsewhere and shows no correlation with the nutrients; the importance of aeolian supply is questioned and the results point to a major role for inorganic removal of Al at least in the Arctic Ocean. Title: Structure of the sunspot penumbra Authors: Moore, R. L. Bibcode: 1981ApJ...249..390M Altcode: An exceptionally highly resolved sunspot photograph is presented which reveals the fine-scale structure of the photospheric penumbra down to 0.2 arcsec. The photograph was taken through a glass filter in a 170-A FWHM band centered on 4660 A on the 65-cm vacuum Gregorian telescope at Big Bear Solar Observatory during practically perfect seeing. The photograph reveals the penumbra to be full of extremely fine-scale fibril structures, with apparent widths near the resolution limit. The three-dimensional structure of the photospheric penumbra is seen to be similar to that of the chromospheric penumbra and superpenumbra, with dark fibrils arching above a lower brighter structure and many of the bright fibrils representing portions of wider bright structures shining through the narrow spaces between the elevated dark fibrils. Thus, in contrast to previous pictures, much of the dark component of the photospheric penumbra is not physically analogous to the intergranular dark lanes in the normal photosphere. Title: X-Ray and Hα Observations of a Filament / Disappearance Flare - an Empirical Analysis of the Magnetic Field Configuration Authors: Kahler, S. W.; Webb, D. F.; Moore, R. L. Bibcode: 1981SoPh...70..335K Altcode: A flare event occurred which involved the disappearance of a filament near central meridian on 29 August 1973. The event was well observed in X-rays with the AS & E telescope on Skylab and in Hα at BBSO. It was a four-ribbon flare involving both new and old magnetic inversion lines which were roughly parallel. The Hα, X-ray, and magnetic field data are used to deduce the magnetic polarities of the Hα brightenings at the footpoints of the brightest X-ray loops. These magnetic structures and the preflare history of the region are then used to argue that the event involved a reconnection of magnetic field lines rather than a brightening in place of pre-existing loops. The simultaneity of the Hα brightening onsets in the four ribbons and the apparent lack of an eruption of the filament are consistent with this interpretation. These observations are compared to other studies of filament disappearances. The preflare structures and the alignment of the early X-ray flare loops with the Hα filament are consistent with the schematic picture of a filament presented first by Canfield et al. (1974). Title: Inhibition of Heat Conduction into the Transition Region by Magnetic Construction Authors: Dowdy, J.; Moore, R.; Wu, S. T. Bibcode: 1981BAAS...13..835D Altcode: No abstract at ADS Title: X-Ray Observations of Two Different Systems of "Post Flare" Loops Authors: Svestka, Z.; Dodson-Prince, H. W.; Mohler, O. C.; Martin, S. F.; Moore, R. L.; Nolte, J. T.; Petrasso, R. D. Bibcode: 1981BAAS...13R.542S Altcode: No abstract at ADS Title: The Optical Polarization of Quasi-Stellar and BL Lacertae Objects. Authors: Moore, R. L. Bibcode: 1981PhDT.........2M Altcode: In this dissertation, I examine the optical linear polarization of quasi-stellar objects (QSOs) and BL Lacertae objects. I present extensive polarimetric observations of a large sample of QSOs, systematically analyze the correlations between polarization and other properties of QSOs, compare the properties of QSOs and BL Lac objects, and discuss the implications of these results for theoretical models. The large high-accuracy polarization survey which is presented establishes that the majority of radio-loud QSOs ((TURN) 85%) and essentially all radio-quiet QSOs have low polarization (P < 2%), and that there is a discontinuity in the distribution of polarization between these QSOs and the rare highly polarized (P > 3%) QSOs. A physical distinction between "normal" low polarization QSOs and highly polarized QSOs (HPQs) is apparent not only in the polarization distribution, but also in the polarimetric variability and wavelength dependence. Normal QSOs exhibit little evidence of polarimetric variability over time scales of years, and the polarization appears to increase at shorter wavelengths. In contrast, the HPQs show strong rapid ((tau) (TURN) days) variability and the polarization is more nearly wavelength independent. Systematic analyses of the correlations between polarization and other properties of QSOs also indicate a physical distinction between normal QSOs and HPQs. It is shown that high polarization is correlated with rapid, large-amplitude photometric variability, relatively steep, smooth optical/infrared continua, a high ratio of X-ray to optical emission, compact radio structure, and extreme properties such as low-frequency variability and superluminal expansion. Other correlation analyses demonstrate that normal QSOs and HPQs are still related phenomena; the distributions of redshift, optical luminosity, and emission line equivalent width are similar for normal QSOs and HPQs. The characteristics established for the class of HPQs clearly demonstrate that HPQs and BL Lac objects are intimately related. However, HPQs also exhibit some properties (e.g. strong emission lines) characteristic of normal QSOs. Thus, the HPQs represent a crucial link between the QSO and BL Lac phenomena. The origins of the optical polarized emission in BL Lac objects, HPQs, and normal QSOs are examined. The high, wavelength-independent polarization and power law energy distribution observed in HPQs and BL Lac objects suggest that the continuum is synchrotron radiation. Scattering in an asymmetric geometry may be responsible for the polarization of normal QSOs. I discuss the implications of these results for two types of theoretical models. In the first model it is assumed that the emission is isotropic and not relativistically enhanced. This implies that the tremendous luminosities (L (LESSTHEQ) 10('15)L(,(CIRCLE))) from the rapidly variable HPQs (and BL Lac objects) are produced in a central engine only light-days across. In normal QSOs, this central emission must be obscured and reprocessed by surrounding material. Theoretical constraints concerning the central engine are presented, and it is shown that rapid reacceleration of electrons to relativistic energies is required. Although the "isotropic" model described above cannot be ruled out, the characteristics of the HPQs suggest an alternative "anisotropic" model in which the variable highly polarized emission is produced in a jet oriented along our line-of-sight. Relativistic enhancement of this emission eases restrictions imposed by the high apparent luminosity and rapid variability of HPQs and BL Lac objects. In normal QSOs, the jet is oriented away from us and only the isotropic component of QSO emission (e.g. low polarization continuum and emission lines) is visible. This model readily accounts for many of the observed properties of normal QSOs, HPQs, and BL Lac objects. However, two important predictions of this model, that the HPQs should be systematically more luminous and have weaker emission lines than normal QSOs, are not supported by my results. Title: Dynamic phenomena in sunspots Authors: Moore, R. L. Bibcode: 1981phss.conf..259M Altcode: A detailed summary of observed dynamic phenomena associated with sunspots is presented, together with a description of the observational techniques and available analytical formulations for the processes under study. The phenomena detected thus far are grouped into aperiodic events and oscillations and waves. Aperiodic phenomena comprise umbral flares, the superpenumbra, and inverse Evershed flow. Internal, aperiodic manifestations include penumbral grains, the photospheric penumbral dark fibrils, Evershed flow, umbral dots, the inhomogeneity of the umbral magnetic field, and umbral turbulence. Oscillations and flashes are seen in the umbra, while running waves and dark puffs have been detected in the penumbra, and oscillations are located in the photosphere. All the observed features are evidence of mass motion and change on time scales of less than an hour. Title: Closure of the Greenbank Airstrip Authors: Moore, R. K. Bibcode: 1981NRAON...3....4M Altcode: No abstract at ADS Title: The class of highly polarized quasars : observations and description. Authors: Moore, R. L.; Stockman, H. S. Bibcode: 1981ApJ...243...60M Altcode: The properties of the class of quasars whose optical continua are highly polarized are presented and discussed. A recent polarization survey of quasars has discovered ten new definite members of this class and eight possible members. There are now 17 highly polarized quasars known and an additional nine quasars which are possibly highly polarized. This represents a dramatic increase in the size of the class and allows a much better description of their properties. In general, highly polarized quasars are compact, flat-spectrum radio sources, have steep optical continua, and exhibit rapid large-amplitude variability. While their continua are very similar to BL Lac objects, their typical luminosities and emission line strengths appear to be similar to those of normal low-polarization quasars. As a link between normal quasars and BL Lac objects, the highly polarized quasars are a key test for theoretical models. Title: Room and Board Expenses at Greenbank Authors: Moore, R. K. Bibcode: 1981NRAON...2....6M Altcode: No abstract at ADS Title: Anomalous crustal structures in ocean basins: Continental fragments and oceanic plateaus Authors: Carlson, R. L.; Christensen, N. I.; Moore, R. P. Bibcode: 1980E&PSL..51..171C Altcode: Plateau-like features in ocean basins exhibit crustal structures which differ markedly from the relatively simple, three-layer model which applies to most of the oceanic crust. While some plateaus are known or thought to be fragments of continental crust (e.g. Rockall Bank, Lord Howe Rise), others appear to be of oceanic origin (e.g. Shatsky Rise, Broken Ridge), and their seismic structures, though variable, are significantly different. Continental fragments are similar in structure to continental shield areas: Depth to Moho is typically about 30 km, and the lower crust consists of a 6.8-7.0 km/s layer, 14-18 km thick, overlain by a 5.8-6.4 km/s layer of variable thickness, while velocity structures are variable at upper crustal levels. By contrast, the Moho apparently occurs at shallower levels beneath oceanic plateaus, which are characterized by the presence of a 7.3-7.6 km/s layer, 6-15 km thick at the base of the crust. This basal layer is commonly overlain by units having velocities typical of oceanic layers 2 and 3. Refractors having velocities which correspond to layer 3 tend to occur at deeper levels in continental fragments than they do beneath oceanic plateaus. That high-velocity basal layers have been detected at the base of normal oceanic crust and in some ophiolites suggests that oceanic plateaus are truly marine in origin. Upper and middle crustal levels probably consist of basaltic and gabbroic rocks, respectively. The nature of the basal layer is difficult to assess. Olivine gabbro, mafic garnet granulite, and epidote amphibolite all exhibit velocities in the appropriate ranges, as does a mixture of mafic and ultramafic lithologies. Partially serpentinized peridotite cannot be ruled out on the basis of shear and compressional wave velocities alone. Title: Coronal holes, the height of the chromosphere,and the origin of spicules. Authors: Rabin, D.; Moore, R. L. Bibcode: 1980ApJ...241..394R Altcode: Analysis of 650 microphotometric scans across the solar limb reveals that the H(alpha) chromosphere is slightly taller inside coronal holes than in quiet regions outside holes. The change in height occurs as a step at the hole boundaries; this suggests that the increase with latitude in the average height of spicules found by Lippincott and by Athay was the average result of upward steps at the polar hole boundaries rather than a gradual latitude trend. It is estimated that the power consumed by spicules is of the same order as that returning by conduction from the corona, but the bulk of the spicules (which sets the height of the chromosphere) shows almost no response. It is concluded that spicules are not caused by heat conduction from the corona but are driven from below, suggesting that spicules are more closely connected with the heating of the corona than with its cooling. Title: The Magnetic Evolution of Active Regions: Disappearance of Photospheric Magnetic Flux Authors: Topka, K.; Moore, R. L. Bibcode: 1980BAAS...12..792T Altcode: No abstract at ADS Title: A New Heuristic Model of the Solar Cycle Authors: Moore, R. L. Bibcode: 1980BAAS...12..893M Altcode: No abstract at ADS Title: Hα Activity in X-Ray Bright Points and the Origin of Spicules Authors: Moore, R. L.; Golub, L. Bibcode: 1980BAAS...12..817M Altcode: No abstract at ADS Title: Polar Crown Filaments and the Polar Magnetic Field Authors: Topka, K.; Moore, R. L.; Labonte, B. J.; Howard, R. Bibcode: 1980BAAS...12..893T Altcode: No abstract at ADS Title: Coordinated Worldwide Monitoring of BL Lacertae Authors: Moore, R.; McGraw, J.; Angel, R.; Duerr, R.; Lebofsky, M.; Rieke, G.; Wiesniewski, W.; Axon, D.; Bailey, J.; Hough, J.; Breger, M.; Clayton, J.; Martin, P.; Miller, J.; Schmidt, G.; Schulz, H.; Thompson, I. Bibcode: 1980BAAS...12..808M Altcode: No abstract at ADS Title: A Continuum Bright Point at the Penumbral Edge Authors: Zirin, H.; Moore, R. L. Bibcode: 1980SoPh...67...79Z Altcode: A small continuum bright point, observed at the outer edge of the penumbra of a small spot in a large complex spot group, is related to an occurrence beneath the Sun's surface. The characteristics of the point appear to be unique, and the name `penumbra-periphery bright point' is proposed. Title: Structure of the Penumbra Authors: Moore, R. L. Bibcode: 1980BAAS...12..476M Altcode: No abstract at ADS Title: Optical and infrared variability of B2 1308+326. Authors: Moore, R. L.; Angel, J. R. P.; Rieke, G. H.; Lebofsky, M. J.; Wisniewski, W. Z.; Mufson, S. L.; Vrba, F. J.; Miller, H. R.; McGimsey, B. Q.; Williamon, R. M. Bibcode: 1980ApJ...235..717M Altcode: Optical and infrared polarimetric and photometric observations of the BL Lacertae object B2 1308+326 during its high-luminosity outburst in the spring of 1978 are reported. The energy distribution, polarization at 0.6 and 2.2 microns, flux and polarization variability and position angle and strength of polarization variations of B2 1308+326, which has a luminosity greater than 10 to the 48th ergs/sec, are observed to be similar to those of BL Lac objects of much lower luminosity, suggesting the same emission process. Models of BL Lac object emission accounting for the high luminosity of B2 1308+326 are examined, and the isotropic synchrotron model is found to be more applicable to the optical and infrared emission of BL Lac objects than a model invoking relativistically enhanced emission. Title: Implications of the Variability and Polarization of BL Lac Objects Authors: Angel, J. R. P.; Moore, R. L. Bibcode: 1980NYASA.336...55A Altcode: 1980txra.symp...55A No abstract at ADS Title: The thermal X-ray flare plasma Authors: Moore, R.; McKenzie, D. L.; Svestka, Z.; Widing, K. G.; Dere, K. P.; Antiochos, S. K.; Dodson-Prince, H. W.; Hiei, E.; Krall, K. R.; Krieger, A. S. Bibcode: 1980sfsl.work..341M Altcode: 1980sofl.symp..341M Following a review of current observational and theoretical knowledge of the approximately 10 to the 7th K plasma emitting the thermal soft X-ray bursts accompanying every H alpha solar flare, the fundamental physical problem of the plasma, namely the formation and evolution of the observed X-ray arches, is examined. Extensive Skylab observations of the thermal X-ray plasmas in two large flares, a large subflare and several compact subflares are analyzed to determine plasma physical properties, deduce the dominant physical processes governing the plasma and compare large and small flare characteristics. Results indicate the density of the thermal X-ray plasma to be higher than previously thought (from 10 to the 10th to 10 to the 12th/cu cm for large to small flares), cooling to occur radiatively as much as conductively, heating to continue into the decay phase of large flares, and the mass of the thermal X-ray plasma to be supplied primarily through chromospheric evaporation. Implications of the results for the basic flare mechanism are indicated. Title: The filament eruption in the 3B flare of July 29, 1973 - Onset and magnetic field configuration Authors: Moore, R. L.; Labonte, B. J. Bibcode: 1980IAUS...91..207M Altcode: The filament eruption in the large expanding two-ribbon solar flare which occurred July 29, 1973 is discussed. Observational evidence is presented for the preflare magnetic field configuration, the nature of the filament destabilization and triggering of the flare, and the magnetic field configuration after the filament eruption. The observations show that the filament is under an arcade of closed magnetic field lines prior to the eruption. The eruption of the filament and the onset of the two-ribbon H-alpha flare are preceded by precursor activity in the form of small H-alpha brightenings and mass motion along the neutral line and well below the bottom edge of the filament. The precursor H-alpha brightenings and the first brightenings in the flare ribbons are in the vicinity of the steepest magnetic field gradient in the flare region. Title: X-ray and Hα Observations of a Filament-Disappearance Flare: An Empirical Analysis of the Magnetic Field Configuration Authors: Kahler, S. W.; Webb, D. F.; Moore, R. L. Bibcode: 1979BAAS...11..659K Altcode: No abstract at ADS Title: Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma Authors: Moore, R. L. Bibcode: 1979cait.reptR....M Altcode: The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed. Title: The behaviour of dissolved organic material, iron and manganese in estuarine mixing Authors: Moore, R. M.; Burton, J. D.; Williams, P. J. LeB.; Young, M. L. Bibcode: 1979GeCoA..43..919M Altcode: Fractionation by ultra-filtration of the dissolved organic material (DOM) in the River Beaulieu, with typical concentrations of dissolved organic carbon (DOC) of 7-8 mg C/l, showed it to be mainly in the nominal molecular weight range of 10 3-10 5, with 16-23% of the total DOC in the fraction > 10 5. The molecular weight distribution of DOM in the more alkaline River Test (average DOC, 2 mg C/l) was similar. In the River Beaulieu water, containing 136-314 βg Fe/l in 'dissolved' forms, 90% or more of this Fe was in the nominal molecular weight fraction > 10 5. Experiments showed that DOM of nominal molecular weight <10 5 could stabilize Fe(III) in 'dissolved' forms. The concentrations of 'dissolved' Fe in the river water probably reflect the presence of colloidal Fe stabilized by organic material and this process may influence the apparent molecular weight of the DOM. Dissolved. Mn (100-136 βg/l) in the River Beaulieu was mainly in true solution, probably as Mn(II), with some 30% in forms of molecular weight greater than ca 10 4. During mi xing in the Beaulieu Estuary, DOC and dissolved Mn behave essentially conservatively. This contrasts with the removal of a large fraction of the dissolved Fe (Holliday and LISS, 1976, Est. Coastal Mar. Sci. 4, 349-353). Concentrations of lattice-held Fe and Mn in suspended particulate material were essentially uniform in the estuary, at 3.2 and 0.012%, respectively, whereas the non-lattice held fractions decreased markedly with increase in salinity. For Mn the decrease was linear and could be most simply accounted for by the physical mixing of riverborne and marine participates, although the possibility that some desorption occurs is not excluded. The non-linear decrease in the concentration of non-lattice held Fe in particulates reflected the more complex situation in which physical mixing is accompanied by removal of material from the 'dissolved' fraction. Title: Nonequilibrium ionization in solar and stellar winds. Authors: Dupree, A. K.; Moore, R. T.; Shapiro, P. R. Bibcode: 1979ApJ...229L.101D Altcode: Substantial and systematic departures from ionization equilibrium can occur in the solar transition region and corona when mass outflows are present. Modeling calculations illustrate the general characteristics of the ionization balance in such regions. The presence of nonequilibrium conditions suggests a natural explanation for the extended region of EUV line emission that is observed above the solar limb. Comparison with observations of a coronal hole on the disk indicates that outflow may not start until temperatures of about 250,000 K are reached. Additional consequences include a diminution of the density discrepancy between ultraviolet and radio observations of coronal holes, and potential effects on the energy balance in solar and stellar atmospheres undergoing mass loss. Title: LP 131-66: a color class "m" white dwarf. Authors: Liebert, J.; Dahn, C. C.; Gresham, M.; Hege, E. K.; Moore, R. L.; Romanishin, W.; Strittmatter, P. A. Bibcode: 1979ApJ...229..196L Altcode: A cool degenerate star with very red colors is reported. The colors are V = 17.77, B-V = 1.47, (V-R)J = 1.15, and (V-I)KM = 1.29. The B-V color is substantially redder than in any previous low-luminosity degenerate except the blanketed LP 701-29; yet in this case there are no obvious features in the optical spectrum. Comparison is made with BVI colors presented for other cool white dwarfs and with model-atmosphere predictions. Considerable scatter and evidence for blanketing are noted in the colors of the very cool stars. One interpretation of the extreme colors of LP 131-66 is that it has a temperature substantially below 4000 K, probably with a helium-rich atmosphere. An alternative possibility is that peculiar blanketing, not apparent in the spectroscopic observations, reddens the optical energy distribution, with the star having a somewhat higher temperature. Title: The local nature of the anticenter anomalous-velocity streams and their focus. Authors: Burton, W. B.; Moore, R. L. Bibcode: 1979AJ.....84..189B Altcode: We discuss the phenomenological aspects of a complex of associated H I features in the anticenter region of the Galaxy. We show that spatially extended streams comprised of high- and intermediate-velocity hydrogen clouds culminate in a focus of activity where there is a disruption and localized density minimum in the permitted-velocity material. We argue that the region of activity, and by association the forbidden-velocity material, are located within the Galaxy. This suggests constraints for the interpretation of at least the anticenter anomalous-velocity clouds. Title: Physics of the Sun - Synoptic Observations at MT.WILSON Rotation of the Sun - Large-Scale Velocity Fields - Active Regions Regions - Solar Axis Elements - Big Bear Solar Observatory - Instruments - Blue Continuum in Flares - Thermal X-Ray Plasma in Solar Flares Authors: Howard, R.; Goeden, R.; Eaton, S.; Labonte, B.; Patterson, A.; Zirin, H.; Tanaka, H.; Moore, R. Bibcode: 1979haob.rept..716H Altcode: No abstract at ADS Title: The Anticenter High-Velocity Stream as a Galactic Phenomenon Authors: Moore, R. L.; Burton, W. B. Bibcode: 1979IAUS...84..535M Altcode: No abstract at ADS Title: Short-Term Optical Variability of B2 1308+326 Authors: Moore, R. L.; Angel, J. R. P.; Miller, H. R.; McGimsey, B. Q. Bibcode: 1978BAAS...10..662M Altcode: No abstract at ADS Title: The shell around Nova DQ Herculis 1934. Authors: Williams, R. E.; Woolf, N. J.; Hege, E. K.; Moore, R. L.; Kopriva, D. A. Bibcode: 1978ApJ...224..171W Altcode: Spectral scans have been obtained of different regions of the extended nova shell surrounding DQ Her, using an intensified Reticon detector. The spectra show unusually strong recombination lines of ionized carbon, nitrogen, and oxygen, which indicate enhancements of CNO with respect to H over solar values of roughly a factor of 100 in parts of the shell. In addition, a strong broad emission feature at 3644-A is identified as the Balmer continuum, formed at a very low temperature (not exceeding about 500 K). Most of the hydrogen emission and CNO recombination lines originate in the cold ionized gas. However, forbidden lines of N II and O II are also observed which indicate the presence of a hotter component of gas. Title: Evidence that the Mass of the Thermal X-Ray Plasma in Solar Flares is Supplied by Conduction-Driven Evaporation. Authors: Moore, R. L. Bibcode: 1978BAAS...10..442M Altcode: No abstract at ADS Title: Polar Coronal Holes and the Variation with Latitude of the Height of the Hα Chromosphere. Authors: Rabin, D. M.; Moore, R. L. Bibcode: 1978BAAS...10..430R Altcode: No abstract at ADS Title: On the polarization and mass of BL Lac objects. Authors: Angel, J. R. P.; Boroson, T. A.; Adams, M. T.; Duerr, R.; Giampapa, M. S.; Gresham, M. S.; Gural, P. S.; Hubbard, E. N.; Kopriva, D. A.; Moore, R. L.; Peterson, B. M.; Schmidt, G. D.; Turnshek, D. A.; Wilkerson, M. S.; Zotov, N. V.; Maza, J.; Kinman, T. D. Bibcode: 1978bllo.conf..117A Altcode: 1978blo..conf..117A Optical polarization measurements have been obtained for 12 BL Lac objects, including many repeated observations during a night. It is found that the shortest time scale for substantial changes in polarization is about 10 hours. Fluctuations with a 1-day characteristic time are common. This time is identified with the dynamical time scale of the most luminous material close to a black hole. It follows that the typical mass is about 2 billion solar masses. Observations over several years show that five out of 12 objects have a preferred orientation of position angle, perhaps defined by the angular-momentum vector of accreted material. Title: The Thermal X-Ray Plasma in Solar Flares Authors: Moore, R. L. Bibcode: 1978BBSOP.174....1M Altcode: The observational knowledge of the thermal x-ray plasma in solar flares and its physical interpretation are reviewed, including results from Skylab prior to the Skylab Solar Workshop on Solar Flares. The review covers the main results and ideas in the published literature through 1977. Title: Cenozoic igneous rocks of the Colorado Plateau Authors: Moore, R. B. Bibcode: 1978LPICo.329...28M Altcode: No abstract at ADS Title: Interstellar bubbles. II. Structure and evolution. Authors: Weaver, R.; McCray, R.; Castor, J.; Shapiro, P.; Moore, R. Bibcode: 1977ApJ...218..377W Altcode: The detailed structure of the interaction of a strong stellar wind with the interstellar medium is presented. First, an adiabatic similarity solution is given which is applicable at early times. Second, a similarity solution is derived which includes the effects of thermal conduction between the hot (about 1 million K) interior and the cold shell of swept-up interstellar matter. This solution is then modified to include the effects of radiative energy losses. The evolution of an interstellar bubble is calculated, including the radiative losses. The quantitative results for the outer-shell radius and velocity and the column density of highly ionized species such as O VI are within a factor 2 of the approximate results of Castor, McCray, and Weaver (1975). The effect of stellar motion on the structure of a bubble, the hydrodynamic stability of the outer shell, and the observable properties of the hot region and the outer shell are discussed. Title: A very large optical telescope array linked with fused silica fibers. Authors: Angel, J. R. P.; Adams, M. T.; Boroson, T. A.; Moore, R. L. Bibcode: 1977ApJ...218..776A Altcode: An approach to the problem of building a very large optical array telescope (aperture of 500 sq m) is proposed which makes use of single fused-silica fibers to bring together light from about 100 mirrors, each having a diameter of approximately 2.5 m. The properties of fused-silica fibers are examined, particularly their transmission as a function of wavelength in the optical and IR regions as well as the effect of fiber propagation on focal ratio. A design for a fiber-linked optical array telescope (FLOAT) which would work well with currently available fibers is presented in which single fibers are located at the prime focus of each mirror. Mounting of the mirror array and accurate pointing of each telescope are considered, and the properties of a FLOAT intended for spectroscopic observations are compared with those of more conventional telescopes. It is noted that a FLOAT is ideally suited for spectrophotometric observations of stellar objects in the wavelength range from 0.3 to 2.5 microns. Title: Halpha macrospicules: identification with EUV macrospicules and with flares in X-ray bright points. Authors: Moore, R. L.; Tang, F.; Bohlin, J. D.; Golub, L. Bibcode: 1977ApJ...218..286M Altcode: The paper presents observational evidence that two newly observed transient solar phenomena, EUV macrospicules and X-ray bright-point flares, are closely related. Time-lapse H-alpha filtergram observations of the limb in quiet regions show small surgelike eruptions called H-alpha macrospicules. From the similarity of H-alpha macrospicules and EUV macrospicules, and from comparison of simultaneous H-alpha and He II 304 A observations, we conclude that H-alpha macrospicules are EUV macrospicules viewed in H-alpha, although most EUV macrospicules are too faint in H-alpha to appear on H-alpha filtergrams of normal exposure. From comparison of simultaneous X-ray and H-alpha observations of flares in X-ray bright points situated on the limb, we show that flares in X-ray bright points often produce H-alpha macrospicules. Title: The nonequilibrium ionization of solar flare coronal plasma and the emergent X-ray spectrum. Authors: Shapiro, P. R.; Moore, R. T. Bibcode: 1977ApJ...217..621S Altcode: Consequences of a lack of equilibrium between the ionization and recombination of ions in the coronal plasma responsible for the thermal X-ray emission spectrum of solar flares are considered. A model of an impulsively heated nonequilibrium flare plasma is investigated in which a preflare coronal loop is 'instantaneously' heated, with rapid thermalization of the loop electrons occurring at a temperature of the order of 100 million K. It is shown that since the plasma is out of ionization equilibrium during the first few seconds before the onset of some energy-releasing instability, the emergent X-ray spectrum is a superposition of the thermal bremsstrahlung spectrum of hot electrons and the X-ray line and enhanced two-photon continuous spectra of the nonequilibrium ionization structure. Soft X-ray emission from this plasma is therefore burstlike, jumping to a significantly higher level when the electron temperature jumps and decaying dramatically as the gas becomes more ionized. The plasma model is used in a detailed calculation of the ionization structure of and the X-ray emission from the coronal flare plasma during the impulsive phase of solar flares. Title: Umbral Flares. Authors: Tang, F.; Moore, R. L. Bibcode: 1977BAAS....9..329T Altcode: No abstract at ADS Title: A Diagnostic Diagram for the Heating and Cooling of the Thermal X-Ray Plasma in Solar Flares. Authors: Moore, R. L. Bibcode: 1977BAAS....9..311M Altcode: No abstract at ADS Title: A Calculation of Saturn's Gravitational Contraction History. Authors: Pollack, J. B.; Grossman, A. S.; Moore, R.; Graboske, H. C., Jr. Bibcode: 1977Icar...30..111P Altcode: A calculation has been made of the gravitational contraction of a homogeneous, quasi-equilibrium Saturn model of solar composition. The calculations begin at a time when the planet's radius is ten times larger than its present size, and the subsequent gravitational contraction is followed for 4.5 × 10 9 years. For the first million years of evolution, the Saturn model contracts rapidly like a pre-main sequence star and has a much higher luminosity and effective temperature than at present. Later stages of contraction occur more slowly and are analogous to the cooling phase of a degenerate white dwarf star. Examination of the interior structure of the models indicates the presence of a metallic hydrogen region near the center of the planet. Differences in the size of this region for Jupiter and Saturn may, in part, be responsible for Saturn having a weaker magnetic field. While the interior temperatures are much too high for the fluids in the molecular and metallic regions to become solids by the current epoch, the temperature in the outer portion of the metallic zone falls below Stevenson's [ Phys. Rev. J. (1975)] phase separation curve for helium after 1.2 billion years of evolution. This would lead to a sinking of helium from the outer to the inner portion of the metallic region, as described by Salpeter [ Astrophys. J.181, L83-L86 (1973)]. At the current epoch, the radius of the model is about 9% larger, while its excess luminosity is comparable to the observed value of Rieke [ Icarus26, 37-44 (1975)], as refined by Wright [Harvard College Obs. Preprint No. 480 (1976)]. This behavior of the Saturn model may be compared to the good agreement with both Jupiter's observed radius and excess luminosity shown by an analogous model of Jupiter [Graboske et al., Astrophys. J.199, 255-264 (1975)]. The discrepancy in radius of our Saturn model may be due to errors in the equations of state and/or our neglect of a rocky core. However, arguments are presented which indicate that helium separation may cause an expansion of the model and thus lead to an even bigger discrepancy in radius. Improvement in the radius may also foster a somewhat larger predicted luminosity. At least part and perhaps most of Saturn's excess luminosity is due to the loss of internal thermal energy that was built up during the early rapid contraction, with a minor contribution coming from Saturn's present rate of contraction. These two sources dominate Jupiter's excess luminosity. If helium separation makes an important contribution to Saturn's excess luminosity, then planetwide segregation is required. Finally, because Saturn's early high luminosity was about an order of magnitude smaller than Jupiter's, water-ice satellites may have been able to form closer to Saturn to Jupiter. Title: Information on Heating and Cooling in Solar Flares from Broad-Band Observations of the X-Ray and EUV Spectrum. Authors: Moore, R. L. Bibcode: 1976BAAS....8Q.549M Altcode: No abstract at ADS Title: The Formation of Saturn's Satellites and Rings, as Influenced by Saturn's Contraction History Authors: Pollack, J. B.; Grossman, A. S.; Moore, R.; Graboske, H. C., Jr. Bibcode: 1976Icar...29...35P Altcode: We have used Pollack et al.'s 1976 calculations of the quasi-equilibrium contraction of Saturn to study the influence of the planet's early high luminosity on the formation of its satellites and rings. Assuming that the condensation of ices ceased at the same time within Jupiter's and Saturn's primordial nebulae, and using limits for the time of cessation derived for Jupiter's system by Pollack and Reynolds (1974) and Cameron and Pollack (1975), we arrive at the following tentative conclusions. Titan is the innermost satellite at whose position a methane-containing ice could condense, a result consistent with the presence of methane in this satellite's atmosphere. Water ice may have been able to condense at the position of all the satellites, a result consistent with the occurrence of low-density satellites close to Saturn. The systematic decrease in the mass of Saturn's regular satellites with decreasing distance from Saturn may have been caused partially by the larger time intervals for the closer satellites between the start of contraction and the first condensation of ices at their positions and between the start of contraction and the time at which Saturn's radius became less than a satellite's orbital radius. Ammonia ices, principally NH 4SH, were able to condense at the positions of all but the innermost satellites. Water ice may bave been able to condense in the region of the rings close to the end of the condensation period. We speculate that the rings are unique to Saturn because on the one hand, temperatures within Jupiter's Roche limit never became cool enough for ice particles to form before the end of the condensation period and on the other hand, ice particles formed only very early within Uranus' and Neptune's Roche limits, and were eliminated by gas drag effects that caused them to spiral into the planet before the gas of these planets' nebula was eliminated. Gas drag would also have eliminated any rocky particles initially present inside the Roche limit. We also derive an independent estimate of several million years for the time between the start of the quasi-equilibrium contraction of Saturn and the cessation of condensation. This estimate is based on the density and mass characteristics of Saturn's satellites. Using this value rather than the one found for Jupiter's satellites, we find that the above conclusions about the rings and the condensation of methane-and ammonia-containing ices remain valid. Title: Time-dependent radiative cooling of a hot, diffuse cosmic gas, and the emergent X-ray spectrum. Authors: Shapiro, P. R.; Moore, R. T. Bibcode: 1976ApJ...207..460S Altcode: A new, detailed calculation is presented of the nonequilibrium radiative cooling of an optically thin low-density (n < lO cm-3) interstellar gas which is suddenly shock-heated to 106 K and cools to 1O K. Results include the ionization structure, radiative energy-loss, and X-ray spectrum from 0.5 to 70 A for the cooling gas under a variety of initial conditions. It is found that the initial condition of the gas is unimportant only if the gas is preionized. These results are relevant to the diffuse galactic soft X-ray background at 0.25 keV, the observation by Copernicus of interstellar 0 vi, and studies of the late radiative phase of supernova remnants. Subject headings: interstellar: matter - nebulae: supernova remnants - X-rays: general Title: Identification of Hα Macrospicules with EUV Macrospicules and with Flares in X-Ray Bright Points Authors: Moore, R. L.; Tang, F.; Bohlin, J. D.; Golub, L. Bibcode: 1976BAAS....8..333M Altcode: No abstract at ADS Title: The Absence of Center-to-Limb Variations in Solar Hard X-Ray Emission Authors: Datlowe, D. W.; Moore, R. L. Bibcode: 1976BAAS....8..318D Altcode: No abstract at ADS Title: Proceedings of the workshop: the solar constant and the earth's atmosphere. held at Big Bear Solar Observatory, North Shore Drive, Big Bear City, Calif., 19 - 21 May 1975. Authors: Zirin, H.; Moore, R. L.; Walter, J. Bibcode: 1976SoPh...46..377Z Altcode: The paper summarizes the chief points made at an interdisciplinary workshop on the solar constant and the earth's climate, at which the main sessions covered the solar background, the climate record background, solar constant measurements, the effects of solar constant variations on the atmosphere, and future observational programs. Some data and graphs are presented showing the principal features of the earth's climatic history in the past million years, causal factors in climatic change during the earth's history, the variance spectrum of climatic change, potential origins of climatic change as a function of time scale of the change, direct measurements of the solar constant, relations between the solar constant, the earth's surface temperature, and the percentage of ice cover for Seller's global-averaged models, and experiments proposed for the NASA program of measuring the total and spectral irradiance of the sun from spacecraft. Title: Solar XUV Spectral Irradiance Monitor Authors: Moore, R. L. Bibcode: 1976BBSOP.158....1M Altcode: Scientific uses for an XUV (A < 3000 A) spectral flux monitor on the Solar Physics Spacelab and the performance requirements for these uses are defined for the disciplines of solar physics and aeronomy. The study emphasizes solar physics uses with particular emphasis on solar flares. It is concluded that: 1. An XUV monitor which meets the needs of solar physics will also be very useful for aeronomy. 2. The observation of solar flares is the scientific use of greatest potential. 3. The measurement of the XUV flux of a significant number of flares during a Spacelab mission requires a sensitivity of 0.1%. Some basic design questions posed by the results of the study are briefly discussed. Title: Cooperative studies of chromospheric structure and magnetic fields Authors: Zirin, H.; Moore, R. L. Bibcode: 1975cait.rept.....Z Altcode: This report concentrates on chromospheric phenomena and their associated magnetic fields. The following three areas of research are discussed: (1) Morphology of active regions, i.e. relations between magnetic field structure and plages, filaments, and flares; (2) Sunspot phenomena, especially umbral flashes and running penumbral waves; (3) Structure and dynamics of quiet regions, e.g. chromospheric network, spicules and oscillations. Title: Heating and Cooling of the Thermal X-Ray Plasma in Solar Flares Authors: Moore, R. L.; Datlowe, D. W. Bibcode: 1975SoPh...43..189M Altcode: Characteristic times for heating and cooling of the thermal X-ray plasma in solar flares are estimated from the time profile of the thermal X-ray burst and from the temperature, emission measure and over-all length scale of the flare-heated plasma at thermal X-ray maximum. The heating is assumed to be due to magnetic field reconnection, and the cooling is assumed to be due to heat conduction and radiation. Title: A superfluid helium system for an LST IR experiment Authors: Breckenridge, R. W., Jr.; Moore, R. W., Jr. Bibcode: 1975ladi.reptS....B Altcode: The results are presented of a study program directed toward evaluating the problems associated with cooling an LST instrument to 2 K for a year by using superfluid helium as the cooling means. The results include the parametric analysis of systems using helium only, and systems using helium plus a shield cryogen. A baseline system, using helium only is described. The baseline system is sized for an instrument heat leak of 50 mw. It contains 71 Kg of superfluid helium and has a total, filled weight of 217 Kg. A brief assessment of the technical problems associated with a long life, spaceborne superfluid helium storage system is also made. It is concluded that a one year life, superfluid helium cooling system is feasible, pending experimental verification of a suitable low g vent system. Title: Flares in Ephemeral Active Regions. Authors: Moore, R. L.; Tang, F. Bibcode: 1975BAAS....7..423M Altcode: No abstract at ADS Title: The Nature of Magnetic Field Reconnection in Solar Flares: Implications of Recent Observational Evidence Authors: Moore, R. L. Bibcode: 1975BAAS....7R.351M Altcode: No abstract at ADS Title: Umbral Oscillations and Penumbral Waves in H&alpha Authors: Moore, R. L.; Tang, F. Bibcode: 1975SoPh...41...81M Altcode: We present examples of umbral oscillations observed on Big Bear Hα filtergram movies and investigate the relation between umbral oscillations and running penumbral waves occurring in the same sunspot. Umbral oscillations near the center of the umbra are probably physically independent of the penumbral waves because the period of these umbral oscillations (150 s) is shorter than the penumbral wave period (270 s) but not a harmonic. We also report `dark puffs' which emerge from the edge of the umbra and move outward across the penumbra, and which have the same period as the running penumbral waves. We interpret these dark puffs to be the extension of chromospheric umbral oscillations at the edge of the umbra. It is suggested that the dark puffs and the running penumbral waves have a common source: photospheric oscillations just inside the umbra. Title: Analysis of OGO-5 and OSO-7 X-ray data Authors: Moore, R. L. Bibcode: 1975cait.reptQ....M Altcode: The physical nature of solar flares implied by the data was studied. The empirical results were obtained primarily from the OGO-5 and OSO-7 X-ray data in combination with optical data. The principal conclusions regarding the physics of flares are the following. (1) Flares are produced by magnetic field reconnection. (2) The resulting thermal X-ray plasma is cooled primarily by heat conduction rather than by radiative cooling. (3) The heating and cooling of the thermal X-ray plasma are approximately in balance during the maximum phase of the flare. Title: Analysis of OGO-5 and OGO-7 X-ray data. Final report. Authors: Moore, R. L. Bibcode: 1975aoox.book.....M Altcode: No abstract at ADS Title: The Response of an Isothermal Atmosphere to Pressure Fluctuations at Its Base and the Five-Minute Oscillations in the Solar Photosphere Authors: Moore, R. L. Bibcode: 1974SoPh...36..321M Altcode: The steady-state vertical-velocity response of an isothermal atmosphere to pressure fluctuations of arbitrary period and horizontal wavelength at its base is derived in the approximation of dissipationless polytropic motion in the atmosphere. It is pointed out that, since only upward modes can be excited in an isothermal atmosphere perturbed from below, the infinite response found by Worrall (1972) at the critical frequency ωg does not occur. The correct behavior of the response is presented in some detail. Title: Heating and Cooling of the Thermal Plasma in Solar Flares. Authors: Moore, R. L. Bibcode: 1974BAAS....6R.347M Altcode: No abstract at ADS Title: The Response of an Isothermal Atmosphere to Pressure Fluctuations at its Base and the Five-Minute Oscillations in the Solar Photosphere Authors: Moore, R. L. Bibcode: 1974BAAS....6R.292M Altcode: No abstract at ADS Title: On the Generation of Umbral Flashes and Running Penumbral Waves Authors: Moore, R. L. Bibcode: 1973SoPh...30..403M Altcode: From a review of the observed properties of umbral flashes and running penumbral waves it is proposed that the source of these periodic phenomena is the oscillatory convection which Danielson and Savage (1968) and Savage (1969) ave shown is likely to occur in the superadiabatic subphotospheric layers of sunspot umbras. Periods and growth rates are computed for oscillatory modes arising in a simple two-layer model umbra. The results suggest that umbral flashes result from disturbances produced by oscillatory convection occurring in the upper subphotospheric layer of the umbra where the superadiabatic temperature gradient is much enhanced over that in lower layers, while running penumbral waves are due to oscillations in a layer just below this upper layer. Title: Generation of Umbral Flashes and Running Penumbral Waves. Authors: Moore, R. L. Bibcode: 1973BAAS....5....1M Altcode: No abstract at ADS Title: Electron Microprobe Analyses of Lithic Fragments and Their Minerals from Luna 20 Fines Authors: Conrad, George H.; Hlava, Paul F.; Green, Jonathan A.; Moore, R. B.; Moreland, Grover; Dowty, Eric; Prinz, Martin; Keil, Klaus; Nehru, C. E.; Bunch, T. E. Bibcode: 1973unm..rept...12C Altcode: No abstract at ADS Title: Structure of the Chromosphere-Corona Transition Region Authors: Moore, R. L.; Fung, P. C. W. Bibcode: 1972SoPh...23...78M Altcode: The structure and energy balance of the chromosphere-corona transition region is investigated by means of a static, planar model which is compared with the results of XUV-resonance-line observations. In this model, the transition region is heated by thermal conduction from the corona and cooled by radiative losses. Comparison of the model with observational results implies that this is the dominant process in the energy balance of the transition region, and that the base of the transition region is inherently non-static and/or non-planar. The model explains the observational finding of Noyes et al. (1970) that the number density and the downward heat flux both increase by the same factor from quiet regions to active regions. The implications of these results are discussed with regard to spicules. Title: The perihelion of Mercury. Authors: Moore, R. E.; Greenspan, D. Bibcode: 1972BAAS....4R.421M Altcode: No abstract at ADS Title: The structure and heating of the chromosphere-corona transition region Authors: Moore, Ronald Lee Bibcode: 1972PhDT.........4M Altcode: No abstract at ADS Title: Structure and energy balance of the chromosphere-corona transition region. Authors: Moore, R. L.; Fung, P. C. W. Bibcode: 1971BAAS....3..501M Altcode: No abstract at ADS Title: Erratum: Lithium in chondritic meteorites. W. Nichiporuk and Moore, Earth Planet. Sci. Letters 9 (1970) 280-286 W. Nichiporuk and Moore, Earth Planet. Sci. Letters 9 (1970) 280-286 Authors: Nichiporuk, W.; Moore Bibcode: 1971E&PSL..10..380N Altcode: No abstract at ADS Title: A Mechanism for Pulsar Radio Emission Authors: Sturrock, P. A.; Moore, R. L. Bibcode: 1969BAAS....1T.206S Altcode: No abstract at ADS Title: High-dispersion spectroscopic observations of Mars from 8700 Å to 1.22 microns. Authors: Barker, E. S.; Schorn, R. A.; Gray, L.; Moore, R. Bibcode: 1969BAAS....1Q.213B Altcode: No abstract at ADS Title: Notes on Backscattering and Depolarization by Gently Undulating Surfaces Authors: Fung, A. K.; Moore, R. K.; Parkins, B. E. Bibcode: 1965JGR....70.1559F Altcode: In this letter we show that backscattered radar signals can be obtained from a gently undulating surface which has no regions normal to the incident wave. We further show that the depolarization of circularly polarized waves is predicted by the Kirchhoff, or physical optics, method and that edge effect as defined by Beckmann and Spizzichino [1963] for gently undulating surfaces is not always negligible and can contribute to depolarization. In recent work, Hagfors [1964] claims that only those regions which are normal to the incident wave are effective in backscattering and that the reflection coefficient to be used is the one for normal incidence. From this it was concluded that the scattering properties of the surface for the two principal linear polarizations are the same and that the depolarization of circularly polarized waves, which has been observed experimentally [Evans and Pettengill, 1963], [Cosgriff et al., 1960], is not predicted by the Kirchhoff method. Beckmann, considering the case of scattering in the plane of incidence from a perfectly conducting surface, shows that depolarization does not occur because edge effect is always negligible. Upon close examination of these two conclusions, we find that the Kirchhoff method predicts depolarization of waves backscattered from a gently undulating surface and that edge effect is not always negligible. Title: Effects of Structure Size on Moon and Earth Radar Returns at Various Angles Authors: Fung, A. K.; Moore, R. K. Bibcode: 1964JGR....69.1075F Altcode: Radar scatter from lunar and terrestrial surfaces is compared with theoretical calculations based on a novel autocorrelation function for surface-height deviation from the mean. A very close fit is obtained with the lunar experimental return curves of Evans and Pettengill over the entire range from normal incidence to 85° from normal. The correlation function approaches different exponentials for different lag distances. Most of the contribution near normal incidence is due to that range of the autocorrelation that approximates the slowly varying exponential found alone in several theories, whereas the part of the autocorrelation near the origin that approximates a more rapidly varying exponential governs return at large angles. The autocorrelation differs from the slowly varying exponential only near the origin. Thus it appears, as is intuitively evident, that large-scale features determine the return at near-normal incidence and small-scale features determine that from nearer grazing incidence. Title: Radiofrequency Radiation and Particle Acceleration From Solar Flare Filaments Due to Collective Motion at Multiples of the Cyclotron Frequency Authors: Moore, R. L.; Johnston, J. R. Bibcode: 1964NASSP..50..371M Altcode: 1964psf..conf..371M No abstract at ADS Title: a V. H. F. Propagation Phenomenon Associated with Aurora Authors: Moore, R. K. Bibcode: 1951JGR....56...97M Altcode: Anomalous propagation observed by radio amateurs at frequencies of 28 to 148 Mc during displays of aurora polaris is described. This phenomenon, first correlated with aurora in 1939, is characterized by the following features: (1) A very high fading rate, such that voice modulation is rendered unintelligible (2) Directional antennas give best results when pointed north (toward the aurora) (3) Lack of skip effect (4) Little change in polarization Comparison of reports of the radio phenomenon with visual observations of aurora indicates this effect is most common with auroral displays extending below 56° geomagnetic latitude, although the lack of amateur stations at high latitudes may influence these data. Until more precise fading data are available, development of a suitable theory is deferred. Title: Southern Extent of Aurora Borealis in North America Authors: Gartlein, C. W.; Moore, R. K. Bibcode: 1951JGR....56...85G Altcode: Results are presented for the first 11 years of a study of the frequency of overhead auroras in North America as a function of latitude in a region south of the auroral zone. The data have been averaged in various ways so that monthly and annual variations are demonstrated. It appears that there is a relatively constant level of auroral activity throughout the year in the region 58° to 60° geomagnetic latitude, while auroras appearing overhead south of these latitudes are more frequent during equinoctial periods. Auroras have been seen as far south as 52° during this period every month of the year. Correlation of auroral frequency with sunspot number is not high on a month-by-month or three-month running-mean basis. Title: Erratum: The Ultraviolet Solar Spectrum λλ2935-3060 Authors: Babcock, H. D.; Moore; Coffeen Bibcode: 1949ApJ...110..104B Altcode: No abstract at ADS Title: New Comet Authors: Shapley, H.; van Maanen; Moore; Nagata, M. Bibcode: 1931IAUC..327....1S Altcode: A telegram from Professor Shapley announces that van Maanen has telegraphed the photographic confirmation by Moore, Mt. Wilson, of a comet found by Nagata. The following position was given: 1931 UT R.A. Decl. July 17 16h26m 10 41 + 9 48 Title: The Spectrum of Radium Emanation Authors: Nyswander, R. E.; Lind, S. C.; Moore, R. B. Bibcode: 1921ApJ....54..285N Altcode: No abstract at ADS