Author name code: ren ADS astronomy entries on 2022-09-14 author:"Ren, Deqing" ------------------------------------------------------------------------ Title: A high-speed and high-efficiency imaging polarimeter based on ferroelectric liquid crystal retarders: Design and test Authors: Guo, Jing; Ren, Deqing; Zhu, Yongtian; Zhang, Xi Bibcode: 2021PASJ...73..405G Altcode: 2021PASJ..tmp...19G Polarimeters play a key role in investigating solar magnetic fields. In this paper, a High speed and high efficiency Imaging POlarimeter (HIPO) is proposed based on a pair of ferroelectric liquid crystal retarders (FLCs), with the ultimate goal of measuring magnetic fields of prominences and filaments from the ground. A unique feature of the HIPO is that it enables high cadence polarization measurements covering a wide field of view (FOV); the modulation frequency of the HIPO is able to achieve ∼100 Hz, which greatly suppresses the seeing-induced crosstalk, and the maximum FOV can reach 62 × 525. Additionally, FLC retardances under low and high states were calibrated individually and found to have a slight discrepancy, which is neglected in most works. Based on FLC calibration results, an optimization was performed using a constrained nonlinear minimization approach to obtain the maximum polarimetric efficiency. Specifically, optimized efficiencies of the Stokes Q, U, and V are well balanced and determined as (ξQ, ξU, ξV) = (0.5957, 0.5534, 0.5777), yielding a total efficiency of 0.9974. Their practical efficiencies are measured as (ξQ', ξU', ξV') = (0.5934, 0.5385, 0.5747), slightly below the optimized values but still resulting in a high total efficiency of 0.9861. The HIPO shows advantages in terms of modulation frequency and polarimetric efficiency compared with most other representative ground-based solar polarimeters. In the observations, measurement accuracy is found to be better than 2.7 × 10-3 by evaluating full Stokes Hα polarimetry results of the chromosphere. This work lays a foundation for the development of high-speed and high-accuracy polarimeters for our next-generation solar instruments. Title: Global optimization-based reference star differential imaging for high-contrast exoplanet imaging survey Authors: Ren, Deqing; Chen, Yili Bibcode: 2021MNRAS.502.2158R Altcode: 2021MNRAS.tmp...64R We propose a data reduction approach called global optimization-based reference star differential imaging (G-RDI), which can be used for exoplanet imaging survey, where large numbers of target stars from the same young stellar association are imaged and where no field rotation is needed. One of the unique features of our G-RDI is that we select reference stars from other scientific target stars in the same stellar association to optimize for high-contrast imaging with a target star, which maximizes the observational efficiency and also delivers good performance to remove the speckle noise so that high contrast is achievable even at a small inner working angle (IWA) to the host star of being imaged. We proposed the G-RDI that is optimized for high-contrast exoplanet imaging at a small IWA and to provide a contrast that is significantly better than the current reference star differential imaging (RDI) method. In addition, we also propose the use of multiple reference stars and found that our G-RDI can further deliver better performance in that case. The result was compared with other exoplanet data reduction techniques, including the traditional RDI, and it indicated that our G-RDI with two reference stars can significantly improve the contrast performance at a small IWA with a high observational efficiency - two critical features that current data reduction techniques cannot offer. This approach could be used with both equatorial and alt-azimuth mount telescopes, and provides a new option for future exoplanet imaging surveys with high observational efficiency at a small IWA. Title: Persistence of the long-duration daytime TEC enhancements at different longitudinal sectors during the August 2018 geomagnetic storm Authors: Li, Q.; Huang, F.; Zhong, J.; Zhang, R.; Kuai, J.; Lei, J.; Liu, L.; Ren, D.; Guo, J.; Ma, H.; Yoshikawa, A.; Hu, L.; Cui, J. Bibcode: 2020AGUFMSA0350013L Altcode: In this study, the ionospheric responses around the Asian-Australian, American, and African sectors during the August 2018 geomagnetic storm were investigated based on the Beidou GEO satellite and MIT Madrigal total electron contents (TECs), combined with measurements from ionosondes, magnetometers, and Global Ultraviolet Imager (GUVI). The mid and low latitude TECs were dominated by positive responses over the three longitudinal sectors during the storm on August 26-29. It is unique that all TECs at the Asian-Australian, American, and African sectors displayed large daytime enhancements larger than 10 TECu on August 27-29, during the recovery phase, when the ionosphere is usually dominated by plasma depletions due to the ionospheric disturbance dynamo and/or disturbed thermospheric compositions. The combination and competition of the disturbed vertical plasma drifts through the solar wind-magnetosphere-ionosphere (SW-M-I) coupling, and disturbed neutral composition contribute significantly to the daytime TEC responses at different longitudinal sectors on August 26 during the main and early recovery phases. The eastward equatorial electrojet and O/N2 are larger than the quiet reference during the recovery phase on August 27-29, which suggest the enhanced upward vertical plasma drifts combined with higher O/N2 make an important contribution on the daytime positive ionospheric storm during the recovery phase. The enhanced vertical plasma drifts could not be driven by the SW-M-I coupling or ionospheric disturbance dynamo associated with geomagnetic storm. Further studies should be untaken to explore the dominant sources for the enhanced upward vertical drifts during the recovery phase. Title: A High-Efficiency and High-Accuracy Polarimeter for Solar Magnetic Field Measurements Authors: Ren, Deqing; Han, Zijian; Guo, Jing Bibcode: 2020SoPh..295..109R Altcode: Solar activity is dominated by the magnetic field. Nowadays, a polarimeter is a mandatory tool to measure solar magnetic fields, which are generally faint and correspond to a polarization of an order of 10−2-10−4. As such, polarization measurements of high efficiency with a high accuracy are crucial to investigate faint magnetic fields. Here we propose a high-efficiency and high-accuracy polarimeter, which is based on a pair of nematic liquid crystal variable retarders (LCVRs) and a Wollaston prism (WP). It uses a dedicated Stokes modulation strategy to achieve high efficiency. A calibration unit (CU) is developed to measure the polarimeter response matrix, which provides a high-precision calibration to correct possible systematic errors. Compared with other traditional polarimeters, the modulation scheme of our polarimeter is flexible. In addition to be able to measure all the three Stokes polarization components (Q , U , or V ) simultaneously, it can also measure one or two of these polarization components alone, with high polarization efficiency. Dedicated alignment and calibration techniques optimized for our polarimeter are developed and high measurement accuracy is achieved. In our laboratory experimental test, our two-image based polarization measurement delivers an overall measurement accuracy of the order of 10−4, which is about 10 times better, compared with our previous polarimeters that use the traditional four-image polarization modulation. This work provides a new option for high-efficiency and high-accuracy polarization measurement for future solar synoptic observations. Title: A low-cost and duplicable portable solar adaptive optics system based on LabVIEW hybrid programming Authors: Ren, Deqing; Wang, Gang Bibcode: 2020PASJ...72...30R Altcode: We have developed a portable solar adaptive optics (PSAO) for diffraction-limited imaging based on today's multi-core personal computer. Our PSAO software is written in LabVIEW code, which features block-diagram function based programming and can dramatically speed up the software development. The PSAO can achieve a ~1000 Hz open-loop correction speed with a Shack-Hartmann Wave-front Sensor (SH-WFS) in 11 × 11 sub-aperture configuration. The image shift measurements for solar wave-front sensing are the most time-consuming computations in a solar adaptive optics (AO) system. Since our current LabVIEW program does not fully support multi-core techniques for the image shift measurements, it cannot fully take advantage of the multi-core computer's power for parallel computation. In order to accelerate the AO system's running speed, a dedicated message passing interface/open multi-processing parallel programming technique is developed for our LabVIEW-based AO program, which fully supports multi-core parallel computation in LabVIEW programming. Our experiments demonstrate that the hybrid parallel technique can significantly improve the running speed of the solar AO system, and this work paves the way for the applications of a low-cost and duplicable PSAO system for large solar telescopes. Title: A Host-star Calibration Based Polarimeter for Earth-like Exoplanet Imaging Authors: Ren, Deqing; Ranganathan, Mohanakrishna; Christian, Damian J. Bibcode: 2019PASP..131k5004R Altcode: We propose a polarimeter, which is dedicated to Earth-like exoplanet imaging for future space missions. We adopt a minimum-polarization-component design philosophy, which makes a compact and robust system as well as high-performance achievable in the real world. Our polarimeter consists of two polarization components of a liquid crystal variable retarders (LCVR) and a Wollaston prism. The polarimeter can deliver an extra contrast better than 10-4.5. Combined with one of the currently available coronagraphs that are delivering a contrast on the order of 10-6.5, the coronagraph and polarimeter system can deliver a contrast better than 10-11 at a small inner working angle in the visible over the entire imaging plane. We discuss the polarimeter design concept and dedicated data-reduction technique. Our unique host-star calibration algorithm allows the starlight to be totally removed, regardless of whether the host-star image is intrinsically polarized or whether the light is polarized by preoptics, such as the telescope that is located before the polarimeter, which makes exoplanet polarization imaging feasible with any telescope, optical system, and target star. Using minimum-polarization components with a solid-state image LCVR as the key polarization component, our polarimeter is less sensitive to the wavefront phase and amplitude errors than other exoplanet imaging techniques. Based on commercial-grade optical components, we demonstrated for the first time that by combining our polarimeter with a currently available coronagraph, the polarimeter and coronagraph system can deliver a contrast better than 10-11 at a small inner working angle in the visible wavelengths, which paves the way for Earth-like exoplanet imaging for a future space mission. Title: Numerical Simulation Research of Advanced Multiple Aperture Seeing Profiler Authors: Yang, F.; Zhao, G.; Ren, D. Q. Bibcode: 2019AcASn..60...51Y Altcode: The Advanced Multiple Aperture Seeing Profiler (A-MASP) consists of two small telescopes, and it could measure the daytime turbulence profile by observing the granulation of the solar surface. The advanced formula used to measure the turbulence profile could eliminate the relative pointing error between the two telescopes. The method of numerical simulation is used to study the detection performance of this instrument. The A-MASP is insensitive to turbulence near the earth's surface after the calculation formula of turbulence profile for eliminating jitter is used. When the distance of the two telescopes is 0.4 meter, turbulence below 400 meters could not be measured. In A-MASP, the sample height is not uniform, which will cause the distortion of the measurement result. Thus a method for calculating the equivalent sampling height is proposed, which could correct this distortion effectively. 100 layers of phase screens were used to simulate the atmospheric turbulence profile. The results show that when the distance of the telescopes is different, the results of turbulent profile measurements have their own focuses. When the distance is relatively close (0.4 m), A-MASP has a high accuracy for measuring the turbulence profile from 0.4 km to 5 km. When the distance is 1.2 meters and 2.0 meters, the measurement of turbulence profile above 5 km is more accurate. Turbulent profiles could be obtained at different heights by changing the distance of the telescopes. Title: The First Solar Seeing Profile Measurement with Two Apertures and Multiple Guide Regions Authors: Ren, Deqing; Zhao, Gang; Wang, Xin; Beck, Christian; Broadfoot, Robert Bibcode: 2019SoPh..294....1R Altcode: 2018SoPh..294....1R Ground-based observations suffer from atmospheric turbulence perturbations, which seriously degrade the image quality. The seeing profile associated with the turbulence is critical to characterize an astronomical site. The optimal design and performance estimation of future solar ground-layer adaptive optics (GLAO) and multi-conjugate adaptive optics (MCAO) heavily rely on our knowledge of the seeing profile at a specific site. Many current optical seeing profile measurement techniques require one to use a large solar telescope for that purpose. The development of a portable instrument to measure and characterize the seeing profile is thus highly needed, in particular for testing potential new sites or for the regularly monitoring of the seeing condition at existing sites. Recently, we proposed the Advanced Multiple Aperture Seeing Profiler (A-MASP), which uses multiple small telescopes and multiple regions of interest (ROIs) on the solar surface to measure the seeing profile up to an altitude of 30 km. Here, we report our recent proof-of-concept observation run of the A-MASP technique with the Dunn Solar Telescope (DST) of the National Solar Observatory (NSO). We found that the Fried parameter, r0, was about 12 cm at the observed wavelength of 630 nm in the early morning and that there were three main turbulence layers. The strongest one was the mix layer near the ground. We observed the evolution of the top of the mix layer and found that it can rise to about 1.5 km in about 18 min, which is consistent with the theory of daytime boundary layer evolution. Another turbulence layer was observed from 8 to 15 km, which is at the top of the convective layer. Comparing an instrument with two sub-apertures with a real A-MASP instrument, we found that they should lead to similar results except for the altitude h =0. Title: A simulation study of the equatorial ionospheric response to the October 2013 geomagnetic storm Authors: Lei, J.; Ren, D. Bibcode: 2017AGUFMSA34A..06L Altcode: The ionospheric observation from ionosonde at Sao Luis (2.5S, 44.2W; 7S dip latitude) around the magnetic equator showed that the nighttime ionospheric F2 peak height (hmF2) was uplifted by more than 150 km during the October 2013 geomagnetic storm. The changes of hmF2 at the magnetic equator were generally attributed to the variations of vertical drift associated with zonal electric field. In this paper, the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) simulation results are utilized to explore the possible physical mechanisms responsible for the observed increase of hmF2 at Sao Luis. The TIEGCM reproduced the changes of F2 peak electron density (NmF2) and its height (hmF2) during the main and recovery phases of the October 2013 storm. A series of controlled simulations revealed that, besides the enhancement of vertical plasma drift, the convergence of horizontal neutral winds and thermospheric expansion also contributed significantly to the profound increase of nighttime hmF2 observed at Sao Luis on 2 October. Moreover, the changes of neutral winds and neutral temperature in the equatorial region are associated with the interference of storm time travelling atmospheric disturbances originating from high latitudes. Title: Phase Quantization Study of Spatial Light Modulator for Extreme High-contrast Imaging Authors: Dou, Jiangpei; Ren, Deqing Bibcode: 2016ApJ...832...84D Altcode: 2016arXiv160904870D Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10-10. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10-10 in comparison to that by using a deformable mirror. Title: Advanced Multiple Aperture Seeing Profiler Authors: Ren, Deqing; Zhao, Gang Bibcode: 2016PASP..128j5002R Altcode: Measurements of the seeing profile of the atmospheric turbulence as a function of altitude are crucial for solar astronomical site characterization, as well as the optimized design and performance estimation of solar Multi-Conjugate Adaptive Optics (MCAO). Knowledge of the seeing distribution, up to 30 km, with a potential new solar observation site, is required for future solar MCAO developments. Current optical seeing profile measurement techniques are limited by the need to use a large facility solar telescope for such seeing profile measurements, which is a serious limitation on characterizing a site's seeing conditions in terms of the seeing profile. Based on our previous work, we propose a compact solar seeing profiler called the Advanced Multiple Aperture Seeing Profile (A-MASP). A-MASP consists of two small telescopes, each with a 100 mm aperture. The two small telescopes can be installed on a commercial computerized tripod to track solar granule structures for seeing profile measurement. A-MASP is extreme simple and portable, which makes it an ideal system to bring to a potential new site for seeing profile measurements. Title: Feasibility of hydrogen density estimation from tomographic sensing of Lyman alpha emission Authors: Waldrop, L.; Kamalabadi, F.; Ren, D. Bibcode: 2015AGUFMSA32A..07W Altcode: In this work, we describe the scientific motivation, basic principles, and feasibility of a new approach to the estimation of neutral hydrogen (H) density in the terrestrial exosphere based on the 3-D tomographic sensing of optically thin H emission at 121.6 nm (Lyman alpha). In contrast to existing techniques, Lyman alpha tomography allows for model-independent reconstruction of the underlying H distribution in support of investigations regarding the origin and time-dependent evolution of exospheric structure. We quantitatively describe the trade-off space between the measurement sampling rate, viewing geometry, and the spatial and temporal resolution of the reconstruction that is supported by the data. We demonstrate that this approach is feasible from either earth-orbiting satellites such as the stereoscopic NASA TWINS mission or from a CubeSat platform along a trans-exosphere trajectory such as that enabled by the upcoming Exploration Mission 1 launch. Title: Multiple-Aperture-Based Solar Seeing Profiler Authors: Ren, Deqing; Zhao, Gang; Zhang, Xi; Dou, Jiangpei; Chen, Rui; Zhu, Yongtian; Yang, Feng Bibcode: 2015PASP..127..870R Altcode: No abstract at ADS Title: The Direct Imaging Search of Exoplanets from Ground and Space Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian Bibcode: 2015IAUGA..2255996D Altcode: Exoplanets search is one of the hottest topics in both modern astronomy and public domain. Until now over 1990 exoplanets have been confirmed mostly by the indirect radial velocity and transiting approaches, yielding several important physical information such as masses and radius. The study of the physics of planet formation and evolution will focus on giant planets through the direct imaging.However, the direct imaging of exoplanets remains challenging, due to the large flux ratio difference and the nearby angular distance. In recent years, the extreme adaptive optics (Ex-AO) coronagraphic instrumentation has been proposed and developed on 8-meter class telescopes, which is optimized for the high-contrast imaging observation from ground, for the giant exoplanets and other faint stellar companions. Gemini Planet Imager (GPI) has recently come to its first light, with a development period over 10 years. The contrast level has been pushed to 10-6. Due to the space limitation or this or other reasons, none professional adaptive optics is available for most of current 3~4 meter class telescopes, which will limit its observation power to some extent, especially in the research of high-contrast imaging of exoplanets.In this presentation, we will report the latest observation results by using our Extreme Adaptive Optics (Ex-AO) as a visiting instrument for high-contrast imaging on ESO’s 3.58-meter NTT telescope at LSO, and on 3.5-meter ARC telescope at Apache Point Observatory, respectively. It has demonstrated the Ex-AO can be used for the scientific research of exoplanets and brown dwarfs. With a update of the currect configuration with critical hardware, the dedicated instrument called as EDICT for imaging research of young giant exoplanets will be presented. Meanwhile, we have fully demonstrated in the lab a contrast on the order of 10-9 in a large detection area, which is a critical technique for future Earth-like exoplanets imaging space missions. And a space program of JEEEDIS will also be presented in this talk. Title: Multiple-Aperture Based Solar Seeing Profiler Authors: Zhao, Gang; Ren, Deqing Bibcode: 2015IAUGA..2256161Z Altcode: Characterization of daytime atmospheric turbulence profile up to 30 km above the telescope is crucial for designs and performance estimations of solar Multi-Conjugate Adaptive Optics (MCAO) systems. To measure seeing profiles up to 30km, we introduce the Multiple Aperture Seeing Profiler (MASP). It bases on the principle of S-DIMM+ and consists of two portable small telescopes similar to SHABAR. Thus the MASP take the advantages of both S-DIMM+ and SHABAR. It is portable and can be used without big telescope, while it has ability to measure turbulence profile up to 30km. Numerical simulations are carried out to evaluate the performance of MASP. We find that for one layer case, MASP can retrieve the seeing with error ~5% using 800 frames of WFS data, which is quite similar with the results of a telescope with diameter of 1120mm. We also simulate profiles with four turbulence layers, and find that our MASP can well retrieve the strengths and heights of the four turbulence layers. Since previous measurements at BBSO showed that daytime turbulence profile typically consists of four layers, MASP we introduced is sufficient for actual seeing measurement. Title: Solar Ground-Layer Adaptive Optics Authors: Ren, Deqing; Jolissaint, Laurent; Zhang, Xi; Dou, Jianpei; Chen, Rui; Zhao, Gang; Zhu, Yongtian Bibcode: 2015PASP..127..469R Altcode: No abstract at ADS Title: A High-contrast Imaging Algorithm: Optimized Image Rotation and Subtraction Authors: Dou, Jiangpei; Ren, Deqing; Zhao, Gang; Zhang, Xi; Chen, Rui; Zhu, Yongtian Bibcode: 2015ApJ...802...12D Altcode: 2015arXiv150103893D Image Rotation and Subtraction (IRS) is a high-contrast imaging technique that can be used to suppress the speckle noise and facilitate the direct detection of exoplanets. IRS is different from Angular Differential Imaging (ADI), in that it will subtract a copy of the image with 180° rotated around its point-spread function (PSF) center, rather than the subtraction of the median of all of the PSF images. Since the planet itself will be rotated to the other side of the PSF, IRS does not suffer from planet self-subtraction. In this paper, we have introduced an optimization algorithm to IRS (OIRS), that can provide an extra contrast gain at small angular separations. The performance of OIRS has been demonstrated with ADI data. We then made a comparison of the signal-to-noise ratio (S/N) achieved by algorithms of locally optimized combinations of images and OIRS. Finally, we found that the OIRS algorithm can deliver a better S/N for small angular separations. Title: A coronagraph based on two spatial light modulators for active amplitude apodizing and phase corrections Authors: Dou, Jiangpei; Ren, Deqing; Zhang, Xi; Zhu, Yongtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao Bibcode: 2014SPIE.9147E..8OD Altcode: Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. Recently, Ren and Zhu proposed for the first time a coronagraph that integrates a liquid crystal array (LCA) for the active pupil apodizing and a deformable mirror (DM) for the phase corrections. Here, for demonstration purpose, we present the initial test result of a coronagraphic system that is based on two liquid crystal spatial light modulators (SLM). In the system, one SLM is served as active pupil apodizing and amplitude correction to suppress the diffraction light; another SLM is used to correct the speckle noise that is caused by the wave-front distortions. In this way, both amplitude and phase error can be actively and efficiently compensated. In the test, we use the stochastic parallel gradient descent (SPGD) algorithm to control two SLMs, which is based on the point spread function (PSF) sensing and evaluation and optimized for a maximum contrast in the discovery area. Finally, it has demonstrated a contrast of 10-6 at an inner working angular distance of ~6.2 λ/D, which is a promising technique to be used for the direct imaging of young exoplanets on ground-based telescopes. Title: Period variation and four color light curves investigation of AB And Authors: Li, K.; Hu, S. -M.; Jiang, Y. -G.; Chen, X.; Ren, D. -Y. Bibcode: 2014NewA...30...64L Altcode: New determined B, V, R and I light curves of AB And have been analyzed by the fourth version of the Wilson-Devinney code. This is the first time to obtain four color light curves of AB And simultaneously. It is found that AB And is a middle mass ratio W-type contact binary system with a degree of contact factor f=25.2%±0.2%. One dark spot on the primary component is introduced to explain the unequal height of the two maxima. The orbital period investigation based on all the visual, photographic, photoelectric and CCD times of light minimum shows that the period of AB And includes a long-term increase (dP/dt=1.46×10-7 days yr) and an oscillation (A3=0.121 days; T3=98.3 years). These may be caused by mass transfer and the light time effect of a third compact companion. Title: The first portable solar and stellar adaptive optics Authors: Ren, Deqing; Li, Rong; Zhang, Xi; Dou, Jiangpei; Zhu, Yiangtian; Zhao, Gang; Wu, Zhen; Chen, Rui; Liu, Chengchao; Yang, Feng; Yang, Chao Bibcode: 2014SPIE.9148E..2WR Altcode: We have developed a portable solar and stellar adaptive optics (PSSAO) system, which is optimized for solar and stellar high-resolution imaging in the near infrared wavelength range. Our PSSAO features compact physical size, low cost and high performance. The AO software is based on LabVIEW programing and the mechanical and optical components are based on off-the-shelf commercial components, which make a high quality, duplicable and rapid developed AO system possible. In addition, our AO software is flexible, and can be used with different telescopes with or without central obstruction. We discuss our portable AO design philosophy, and present our recent on-site observation results. According to our knowledge, this is the first portable adaptive optics in the world that is able to work for solar and stellar high-resolution imaging with good performances. Title: A high-contrast coronagraph for earth-like exoplanet direct imaging: design and test Authors: Liu, C. C.; Ren, D. Q.; Dou, J. P.; Zhu, Y. T.; Zhang, X.; Zhao, G.; Wu, Zh.; Chen, R. Bibcode: 2014arXiv1406.2364L Altcode: The high-contrast coronagraph for direct imaging earth-like exoplanet at the visible needs a contrast of 10^(-10) at a small angular separation of 4 lambda/D or less. Here we report our recent laboratory experiment that is close to the limits. The test of the high-contrast imaging coronagraph is based on our step-transmission apodized filter. To achieve the goal, we use a liquid crystal array (LCA) as a phase corrector to create a dark hole based on our dedicated focal dark algorithm. We have suppressed the diffracted and speckle noise near the star point image to a level of 1.68 x 10^(-9) at 4 lambda/D, which can be immediately used for the direct imaging of Jupiter like exoplanets. This demonstrates that high-contrast coronagraph telescope in space has the potentiality to detect and characterize earth-like planets. Title: GRB 130822A: weihai optical upper limit. Authors: Xu, D.; Ren, D. -Y.; Cao, C.; Hu, S. -M. Bibcode: 2013GCN.15114....1X Altcode: 2013GCN..15114...1X No abstract at ADS Title: GRB 130821A: weihai optical upper limit. Authors: Xu, D.; Ren, D. -Y.; Cao, C.; Hu, S. -M. Bibcode: 2013GCN.15124....1X Altcode: 2013GCN..15124...1X No abstract at ADS Title: GRB 130420B: weihai optical upper limit. Authors: Xu, D.; Cao, C.; Hu, S.; Ren, D. Bibcode: 2013GCN.14426....1X Altcode: 2013GCN..14426...1X No abstract at ADS Title: A dark-hole correction test for the step-transmission filter based coronagraphic system Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Li, Rong Bibcode: 2012SPIE.8442E..0DD Altcode: We present the initial test of the dark-hole correction for the high-contrast imaging coronagraph that is based on the step-transmission filter. The dark hole is created by a 12x12 actuator deformable mirror (DM) that has been put in the conjugate plane of the pupil image of the coronagraph. In this test, we use the stochastic parallel gradient descent (SPGD) optimization algorithm to directly control the DM to provide an optimal phase to minimize the intensity in target regions, where the dark hole is created and the contrast can be enhanced. For demonstration purpose, the test is carried out in a single wavelength and should be improved in next step for broad-band high-contrast imaging. Finally, it is shown in the test that an extra contrast ~50 times improvement has reached in the dark hole in the coronagraphic image plane. Such a technique could be used for a future space-based high-contrast observation and is promising for the direct imaging of an Earth-like exoplanet. Title: Laboratory test of a polarimetry imaging subtraction system for the high-contrast imaging Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Li, Rong Bibcode: 2012SPIE.8446E..8DD Altcode: We propose a polarimetry imaging subtraction test system that can be used for the direct imaging of the reflected light from exoplanets. Such a system will be able to remove the speckle noise scattered by the wave-front error and thus can enhance the high-contrast imaging. In this system, we use a Wollaston Prism (WP) to divide the incoming light into two simultaneous images with perpendicular linear polarizations. One of the images is used as the reference image. Then both the phase and geometric distortion corrections have been performed on the other image. The corrected image is subtracted with the reference image to remove the speckles. The whole procedure is based on an optimization algorithm and the target function is to minimize the residual speckles after subtraction. For demonstration purpose, here we only use a circular pupil in the test without integrating of our apodized-pupil coronagraph. It is shown that best result can be gained by inducing both phase and distortion corrections. Finally, it has reached an extra contrast gain of 50-times improvement in average, which is promising to be used for the direct imaging of exoplanets. Title: A demonstration test of the dual-beam polarimetry differential imaging system for the high-contrast observation Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Wang, Xue; Zhang, Xi; Li, Rong Bibcode: 2012SPIE.8446E..1XD Altcode: We propose a dual-beam polarimetry differential imaging test system that can be used for the direct imaging of the exoplanets. The system is composed of a liquid crystal variable retarder (LCVR) in the pupil to switch between two orthogonal polarized states, and a Wollaston prism (WP) that will be inserted before the final focal focus of the system to create two polarized images for the differential subtraction. Such a system can work separately or be integrated in the coronagraph system to enhance the high-contrast imaging. To demonstrate the feasibility of the proposed system, here we show the initial test result both with and without integrating our developed coronagraph. A unique feature for this system is that each channel can subtract with itself by using the retarder to rotate the planet's polarization orientation, which has the best performance according to our lab test results. Finally, it is shown that the polarimetry differential imaging system is a promising technique and can be used for the direct imaging observation of reflected lights from the exoplanets. Title: Recent progress on the portable solar adaptive optics Authors: Ren, Deqing; Zhang, Xi; Penn, Matt; Wang, Haimin; Dou, Jiangpei; Zhu, Yongtian; Rong, Li; Wang, Xue Bibcode: 2012SPIE.8447E..3KR Altcode: The portable solar adaptive optics is a compact adaptive optics system that will be the first visitor solar instrument in the world. As so, it will be able to work with any solar telescope with a aperture size up to ~ 2.0 meters, which will cover the largest solar telescope currently operational. The portable AO features small physical size, high-flexibility and high-performance, and is a duplicable and affordable system. It will provide wave-front correction down to the 0.5-μm wavelength, and will be used for solar high-resolution imaging in the near infrared and the visible. It will be the first AO system that uses LabVIEW based high quality parallel and block-diagram programming, which fully takes advantage of today's multi-core CPUs, and makes a rapid development of an AO system possible. In this publication, we report our recent progress on the portable adaptive optics, which includes the laboratory test for performance characterization, and initial on-site scientific observations. Title: Speckle Noise Subtraction and Suppression with Adaptive Optics Coronagraphic Imaging Authors: Ren, Deqing; Dou, Jiangpei; Zhang, Xi; Zhu, Yongtian Bibcode: 2012ApJ...753...99R Altcode: Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We further discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique. Title: Correction of Non-Common-Path Error for Extreme Adaptive Optics Authors: Ren, Deqing; Dong, Bing; Zhu, Yongtian; Christian, Damian J. Bibcode: 2012PASP..124..247R Altcode: The future direct imaging of exoplanets depends critically on wave-front corrections. Extreme adaptive optics is being proposed to meet such a critical requirement. One limitation to the performance of adaptive optics is the differential wave-front aberration that is not measured by a conventional wave-front sensor because of the so-called non-common-path error. In this article, we propose a simple approach that can be used to eliminate differential aberration with extreme adaptive optics and is optimized for best image performance or directly optimized for high-contrast coronagraphic imaging. The approach that we propose can correct differential aberration in a single step, which guarantees high accuracy and allows adaptive optics to correct the differential aberration on a real-time scale. This approach is based on an iterative optimization algorithm that commands the deformable mirror directly and uses the focal-plane point-spread function as a metric function to evaluate the correction performance. Title: Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01 Authors: Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.; Mujunen, A.; Natale, S.; Oliva, A.; Palmonari, F.; Paniccia, M.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy, M.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Saouter, P.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P. Bibcode: 2011ApJ...736..105A Altcode: 2011arXiv1106.2269T The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be), and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June. Title: A Coronagraph Using a Liquid Crystal Array and a Deformable Mirror for Active Apodizing and Phase Corrections Authors: Ren, Deqing; Zhu, Yongtian Bibcode: 2011PASP..123..341R Altcode: Almost all high-contrast imaging coronagraphs proposed until now are based on passive coronagraph optical components. That is, the coronagraph cannot be actively controlled to be optimized for best performance. Pupil apodizing, which modifies the light transmission on the pupil, is one of the promising techniques for high-contrast imaging. Here, we propose, for the first time, a high-contrast imaging coronagraph that integrates a liquid crystal array for active pupil apodizing and a deformable mirror for active phase correction. In such a way, source errors such as the initial transmission error and wavefront error can be actively and efficiently compensated based on an optimized algorithm, which is optimized for maximum contrast in the discovery area. In addition, the use of a liquid crystal array makes this system more flexible and able to create any apodizing pupil, including square or circle aperture with or without central obstruction. In this article, we discuss the working principle and estimated performance of the coronagraph. We also demonstrate that the chromatic aberration induced by a liquid crystal array is sufficiently small, which makes it suitable to be used for ground-based near-infrared coronagraphic Extreme-AO systems. Title: Relative Composition and Energy Spectra of Light Nuclei in Cosmic Rays: Results from AMS-01 Authors: Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P. Bibcode: 2010ApJ...724..329A Altcode: Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon-1. The isotopic ratio 7Li/6Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data. Title: A portable solar adaptive optics system: software and laboratory developments Authors: Ren, Deqing; Penn, Matt; Plymate, Claude; Wang, Haimin; Zhang, Xi; Dong, Bing; Brown, Nathan; Denio, Andrew Bibcode: 2010SPIE.7736E..3PR Altcode: 2010SPIE.7736E.124R We present our recent process on a portable solar adaptive Optics system, which is aimed for diffraction-limited imaging in the 1.0 ~ 5.0-μm infrared wavelength range with any solar telescope with an aperture size up to 1.6 meters. The realtime wave-front sensing, image processing and computation are based on a commercial multi-core personal computer. The software is developed in LabVIEW. Combining the power of multi-core imaging processing and LabVIEW parallel programming, we show that our solar adaptive optics can achieve excellent performance that is competitive with other systems. In addition, the LabVIEW's block diagram based programming is especially suitable for rapid development of a prototype system, which makes a low-cost and high-performance system possible. Our adaptive optics system is flexible; it can work with any telescope with or without central obstruction with any aperture size in the range of 0.6~1.6 meters. In addition, the whole system is compact and can be brought to a solar observatory to perform associated scientific observations. According to our knowledge, this is the first adaptive optics that adopts the LabVIEW high-level programming language with a multi-core commercial personal computer, and includes the unique features discussed above. Title: Testing of a transmission-filter coronagraph for ground-based imaging of exoplanets Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Wang, Xue Bibcode: 2010SPIE.7735E..8ED Altcode: 2010SPIE.7735E.273D We present the latest laboratory test of a new coronagraph using one step-transmission filter at the visible wavelength. The primary goal of this work is to test the feasibility and stability of the coronagraph, which is designed for the ground-based telescope especially with a central obstruction and spider structures. The transmission filter is circular symmetrically coated with inconel film on one surface and manufactured with a precisely position-controlled physical mask during the coating procedure. At first, the transmission tolerance of the filter is controlled within 5% for each circular step. The target contrast of the coronagraph is set to be 10-5~10-7 at an inner working angle around 5λ/D. Based on the high-contrast imaging test-bed in the laboratory, the point spread function image of the coronagraph is obtained and it has delivered a contrast better than 10-6 at 5λ/D. As a follow-up effort, the transmission error should be controlled in 2% and the transmission for such filter will be optimized in the near infrared wavelength, which should deliver better performances. Finally, it is shown that the transmission-filter coronagraph is a promising technique to be used for the direct imaging of exoplanets from the ground. Title: A Transmission-Filter Coronagraph: Design and Test Authors: Ren, Deqing; Dou, Jiangpei; Zhu, Yongtian Bibcode: 2010PASP..122..590R Altcode: 2015arXiv151003796R We propose a transmission-filter coronagraph for direct imaging of Jupiter-like exoplanets with ground-based telescopes. The coronagraph is based on a transmission filter that consists of finite number of transmission steps. A discrete optimization algorithm is proposed for the design of the transmission filter that is optimized for ground-based telescopes with central obstructions and spider structures. We discussed the algorithm that is applied for our coronagraph design. To demonstrate the performance of the coronagraph, a filter was manufactured and laboratory tests were conducted. The test results show that the coronagraph can achieve a high contrast of 10-6.5 at an inner working angle of 5λ/D, which indicates that our coronagraph can be immediately used for the direct imaging of Jupiter-like exoplanets with ground-based telescopes. Title: A portable solar adaptive optics system Authors: Ren, Deqing; Penn, Matt; Wang, Haimin; Chapman, Gary; Plymate, Claude Bibcode: 2009SPIE.7438E..0PR Altcode: We are developing a portable adaptive optics system for solar telescopes. The adaptive optics has a small physical size and is optimized for diffraction-limited imaging in the 1.0 ~ 5.0-μm infrared wavelength range for 1.5-m class solar telescopes. By replacing a few optical components, it can be used with a solar telescope of any aperture size that is currently available. The software is developed by LabVIEW. LabVIEW's block diagram based programming makes it suitable for rapid development of a prototype system. The portable adaptive optics will be used with a 1.5-meter solar telescope for high-resolution magnetic field investigation in the infrared. We discuss the design philosophy for such a portable, low-cost, and high-performance system. Estimated performances are also presented. Title: Focal plane wave-front sensing algorithm for high-contrast imaging Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi Bibcode: 2009ScChG..52.1284D Altcode: 2015arXiv151003791D High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star. A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system. We derive an algorithm for the wave-front measurement directly from 3 focal plane images. The 3 images are achieved through a deformable mirror to provide specific phases for the optics system. We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front, which is a critical procedure for wave-front sensing. The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically, which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging. Title: An IFU for diffraction-limited 3D spectroscopic imaging: laboratory and on-site tests Authors: Ren, Deqing; Keller, Christoph; Plymate, Claude Bibcode: 2009SPIE.7438E..18R Altcode: 2009SPIE.7438E..35R We have developed a state-of-the-art image slicer Integral Field Unit (IFU) for the McMath-Pierce Solar Telescope (McMP) located at Kitt Peak National Solar Observatory. The IFU will be used for high-resolution 3-dimensional spectroscopy and polarimetry over a small field of view that is well corrected by adaptive optics. It consists of 19 effective slices that correspond to a field of view of 6.27"x 7". The IFU delivers a 152" long slit to an existing spectrograph producing diffraction-limited 3-dimensional spectroscopy. The 3-D instrument is being used for highspatial and high-temporal resolution imaging of the Sun, which is crucial for the magnetic field and spectroscopic studies of 2-dimensional solar fine structures. We discuss the instrument construction, laboratory test and on-site trial observations with the McMP. Title: Wave-front sensing and correction for 4-meter LAMOST Authors: Zhang, Xi; Ren, Deqing; Zhu, Yongtian; Dou, Jiangpei Bibcode: 2009SPIE.7439E..0VZ Altcode: 2009SPIE.7439E..20Z LAMOST is a 4m spectroscopic telescope recently operational at Xinglong, China. Several active optics are being used to remove optical aberration of the telescope, but large residual aberration exists since the active optics actuators on the telescope's segmented mirrors cannot provide enough precision. We proposed a wave-front sensing system and the corresponding algorithm to measure this low frequency residual aberration. We developed a compact Shack-Hartmann wave-front sensor that can use point source as well as extended structure images for wave-front sensing and can achieve good measurement accuracy. The wave-front sensing algorithm is realized by LabVIEW that is based on block-diagram programming and is suitable for rapid prototype development. Combined with deformable mirrors, the system will be able to provide a fine wave-front correction and therefore eventually remove the residual aberration for LAMOST. The wave-front sensor and the DMs will also be used for our high-contrast imaging coronagraph to remove speckle noise for the direct imaging of exoplanets. Title: Laboratory experiment of a high-contrast imaging coronagraph with new step-transmission filters Authors: Dou, Jiangpei; Ren, Deqing; Zhu, Yongtian; Zhang, Xi Bibcode: 2009SPIE.7440E..19D Altcode: 2009SPIE.7440E..37D We present the latest results of our laboratory experiment of the coronagraph with step-transmission filters. The primary goal of this work is to test the stability of the coronagraph and identify the main factors that limit its performance. At present, a series of step-transmission filters has been designed. These filters were manufactured with Cr film on a glass substrate with a high surface quality. During the process of the experiment of each filter, we have identified several contrast limiting factors, which includes the non-symmetry of the coating film, transmission error, scattered light and the optical aberration caused by the thickness difference of coating film. To eliminate these factors, we developed a procedure for the correct test of the coronagraph and finally it delivered a contrast in the order of 10-6~10-7 at an angular distance of 4λD, which is well consistent with theoretical design. As a follow-up effort, a deformable mirror has been manufactured to correct the wave-front error of the optical system, which should deliver better performance with an extra contrast improvement in the order of 10-2~10-3. It is shown that the step-transmission filter based coronagraph is promising for the high-contrast imaging of earth-like planets. Title: The eruption of a small filament in the quiet Sun Authors: Ren, D. B.; Jiang, Y. C.; Yang, J. Y.; Zheng, R. S.; Bi, Y.; Wang, M. Bibcode: 2008Ap&SS.318..141R Altcode: 2008Ap&SS.tmp..216R We analyzed multi-wavelength observations of the eruption of a small-scale filament on the quiet Sun. The filament first became thicker, then broke into two, and eventually underwent a partial eruption with possible rotating motion. The eruption was followed by a small flare with three bright kernels on either side of the eruptive section in H α and a small coronal dimming near one end of this section in EUV and soft X-ray. On the photosphere, MDI magnetograms show the flux emergence or motions and cancellation between opposite polarities before and during the filament eruption. We find that this small-scale filament shows the similar characteristics as the previous findings in the large-scale filament eruptions on the multi-wavelength, indicating the common nature. Title: Study of the solar anisotropy of cosmic ray primaries of about 200 GeV energy with the L3+C muon detector Authors: L3 Collaboration; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; van den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiarusi, T.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.; Duran, I.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grabosch, H. J.; Grenier, G.; Grimm, O.; Groenstege, H.; Gruenewald, M. W.; Guo, Y. N.; Gupta, S.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller, Ch.; Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.; Hirschfelder, J.; Hofer, H.; Hoferjun, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.; Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur, M.; Kawakami, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal, M.; Koutsenko, V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger, A.; Kuijpers, J.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Lei, Y.; Leich, H.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña, C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Meng, X. W.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; van Mil, A.; Milcent, H.; Mirabelli, G.; Mohanty, G. B.; Monteleoni, B.; Muanza, G. S.; Muijs, A. J. M.; Musy, M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Parriaud, J. -F.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran, K. C.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.; Riemann, S.; Riles, K.; Roe, B. P.; Rojkov, A.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, S.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Saidi, R.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.; Schmitt, V.; Schoeneich, B.; Schopper, H.; Schotanus, D. J.; Sciacca, C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sulanke, H.; Sultanov, G.; Sun, L. Z.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen, H.; Van de Walle, R. T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.; Wang, X. L.; Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen, T. A. M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, J. S.; Xu, Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.; Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou, S. J.; Zhu, G. Y.; Zhu, R. Y.; Zhu, Q. Q.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M. Bibcode: 2008A&A...488.1093L Altcode: Context: Primary cosmic rays experience multiple deflections in the non-uniform galactic and heliospheric magnetic fields which may generate anisotropies.
Aims: A study of anisotropies in the energy range between 100 and 500 GeV is performed. This energy range is not yet well explored.
Methods: The L3 detector at the CERN electron-positron collider, LEP, is used for a study of the angular distribution of atmospheric muons with energies above 20 GeV. This distribution is used to investigate the isotropy of the time-dependent intensity of the primary cosmic-ray flux with a Fourier analysis.
Results: A small deviation from isotropy at energies around 200 GeV is observed for the second harmonics at the solar frequency. No sidereal anisotropy is found at a level above 10-4. The measurements were performed in the years 1999 and 2000. Title: Observations of Comets Authors: Sanner, J.; Hellmann, D.; Idel, B.; Niedermayer, C.; Kupper, R.; Martin, P. M.; Rumpel, N.; Kubitscheck, L.; Stamm, L.; Ivanov, V.; Kryachko, T.; Korotkiy, S.; Casali, M.; Marinello, W.; Micheli, M.; Pizzetti, G.; Soffiantini, A.; Buzzi, L.; Naves, R.; Campas, M.; Hasubick, W.; Reina, E.; Ligustri, R.; Kadota, K.; Herald, D.; McAndrew, S. G.; Sanchez, A.; Rodriguez, D.; Christie, G. W.; Natusch, T.; Donato, L.; Gonano, M.; Gonano, V.; Guido, E.; Santini, V.; Sostero, G.; Gilmore, A. C.; Kilmartin, P. M.; Lai, L.; Baransky, A.; Aleksakhina, E.; Csak, B.; Santa, G.; Haja, O.; Kozak, M.; Young, J.; Hill, R. E.; Beshore, E. C.; Boattini, A.; Gibbs, A. R.; Grauer, A. D.; Kowalski, R. A.; Larson, S. M.; Bezpalko, M.; Torres, D.; Kracke, R.; Spitz, G.; Kistler, J.; Stuart, J.; Scruggs, S.; Moritz, N.; Elliott, R.; Salvo, R.; Durig, D. T.; Lin, S. M.; Whang, U.; Ren, D.; Kabir, N. K.; Phillips, R. M.; Owuor, B. R.; Enoch, R. W.; Caruthers, T. A.; Bishnoi, M.; Solano, J. P.; Payne, D. R.; Paz, J. M.; Ikari, Y.; Castellano, J.; Ferrando, R.; Vidal, J. R.; Baldris, F.; Cortes, E.; Kocher, P.; Rinner, C.; Kugel, F.; Franco, L.; Vollmann, W.; Bacci, P.; Villegas, J. M.; Aymami, J. M.; Piludu, P.; Biasci, F.; Garrigos S., A.; Nevski, V.; Camarasa, J.; Bel, J.; Overhaus, C.; Borghini, W.; Sommacal, D.; Ohshima, Y.; Sugiyama, Y.; McNaught, R. H.; Garradd, G. J.; McCormick, J.; Sherrod, P. C.; Sanchez, J. L.; Buso, V. A.; Mazalan, G. D.; Diez, E. J.; Tifner, F.; Hernandez, J. F.; Garcia, F.; Moreno Q., J. A.; Ruiz M., J. M.; Rodriguez R., F. A.; Piret, C.; Muler, G.; Henriquez, J. A.; Canales, O.; Benavides, R.; Temprano, J.; Navarro P., J. P.; Lacruz, J.; Birtwhistle, P.; Climent, T.; Marsden, B. G. Bibcode: 2008MPEC....N...31S Altcode: No abstract at ADS Title: Laboratory experiment of a coronagraph based on step-transmission filters Authors: Dou, Jiangpei; Zhu, Yongtian; Ren, Deqing; Zhang, Xi Bibcode: 2008SPIE.7010E..4JD Altcode: 2008SPIE.7010E.130D This paper presents the first results of a step-transmission-filter based coronagraph in the visible wavelengths. The primary goal of this work is to demonstrate the feasibility of the coronagraph that employs step-transmission filters, with a required contrast in the order of better than 10-5 at an angular distance larger than 4λ/D. Two 13-step-transmission filters were manufactured with 5% transmission accuracy. The precision of the transmitted wave distortion and the coating surface quality were not strictly controlled at this time. Although in perfect case the coronagraph can achieve theoretical contrast of 10-10, it only delivers 10-5 contrast because of the transmission error, poor surface quality and wave-front aberration stated above, which is in our estimation. Based on current techniques, step-transmission filters with better coating surface quality and high-precision transmission can be made. As a follow-up effort, high-quality step-transmission filters are being manufactured, which should deliver better performance. The step-transmission-filter based coronagraph has the potential applications for future high-contrast direct imaging of earth-like planets. Title: Minor Planet Observations [850 Cordell-Lorenz Observatory, Sewanee] Authors: Durig, D. T.; Lin, S. M.; Whang, U.; Parrish, T. L.; Carter, A. L.; Mitchell, W. M.; Kong, N. E.; Ren, D.; Kabir, N. K.; Thompson, A. W.; Hubbard, M. A.; Searvance, S. M.; Weber, L. M.; Phillips, R. M.; Owuor, B. R.; Enoch, R. W.; Caruthers, T. A.; Bishnoi, M.; Solano, J. P.; Payne, D. R.; Paz, J. M.; Veselovskyi, S. Bibcode: 2008MPC..63370...1D Altcode: No abstract at ADS Title: Comet Observations [850 Cordell-Lorenz Observatory, Sewanee] Authors: Durig, D. T.; Lin, S. M.; Whang, U.; Parrish, T. L.; Carter, A. L.; Mitchell, W. M.; Kong, N. E.; Ren, D.; Kabir, N. K.; Thompson, A. W.; Hubbard, M. A.; Searvance, S. M.; Weber, L. M.; Phillips, R. M.; Owuor, B. R.; Enoch, R. W.; Caruthers, T. A.; Bishnoi, M.; Solano, J. P.; Payne, D. R.; Paz, J. M.; Veselovskyi, S. Bibcode: 2008MPC..63321..20D Altcode: No abstract at ADS Title: A Coronagraph Based on Stepped-Transmission Filters Authors: Ren, Deqing; Zhu, Yongtian Bibcode: 2007PASP..119.1063R Altcode: We propose a coronagraph for direct imaging of Earth-like planets orbiting nearby bright stars. The coronagraph is based on an apodization pupil composed of two stepped-transmission filters. We show that the coronagraph can achieve 10-10 high-contrast imaging at an angular distance larger than (2-3)λ/D theoretically. The employment of the stepped-transmission filters significantly simplifies the manufacturing of the transmission pupil, making it possible to be used for high-contrast imaging in practice. Title: Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01 Authors: AMS-01 Collaboration; Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Cardano, F.; Casadei, D.; Casaus, J.; Castellini, G.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; Dai, T. S.; Delgado, C.; Difalco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Yu.; Gast, H.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Liu, C. L.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Olzem, J.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P. Bibcode: 2007PhLB..646..145A Altcode: 2007astro.ph..3154A A measurement of the cosmic ray positron fraction e/(e+e) in the energy range of 1 30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 106 is reached by identifying converted bremsstrahlung photons emitted from positrons. Title: The evolution of a complex solar radio burst corresponding to special configuration of microwave sources Authors: Xie, R. X.; Ren, D. B.; Liu, Y. Y. Bibcode: 2007AdSpR..39.1474X Altcode: A complex radio burst associated with periodic (∼1 and 6 min) pulsations and several kinds fine structures, e.g., normal- and reverse-drifting type III bursts, zebra patterns, and slowly drifting structure was observed with the radio spectrometers (1.0-2.0, 2.6-3.8, 5.2-7.6, and 0.65-1.5 GHz) at the National Astronomical Observatories of China (NAOC) in Beijing and Yunnan on 19 October 2001. In combination with the images of 17 and 34 GHz from NoRH and the magnetograms from MDI we reveal the existence and evolution of preexisting and new emerging sources, and find the horseshoe-shaped structure of microwave sources intensity during the late phase of the burst. Through the detailed comparison of the evolution of each source with the time profiles of radio bursts corresponding to these sources we indicate that the intimate correlation between the microwave sources evolution and the generation of the radio burst associated fine structures. Some fine structures can be considered as the MHD turbulence and plasma emission mechanism, based on the anisotropic beam instability and hybrid waves generations. From the characteristics of observations we may presume that the coronal magnetic structures should contain an extended coronal loop system and multiple discrete electrons acceleration/injection sites. The mechanisms of this complex radio burst are deal with the incoherent gyrosynchrotron emission from the trapped electrons and the coherent plasma emission from the non trapped electrons. Title: The solar flare of the 14th of July 2000 (L3+C detector results) Authors: Achard, P.; Adrian, O.; Aguilar-Benitez, M.; van den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chiarusi, T.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.; Duran, I.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, W.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grabosch, H. J.; Grenier, G.; Grimm, O.; Groenstege, H.; Gruenewald, M. W.; Guida, M.; Guo, Y. N.; Gupta, S. K.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller, Ch.; Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.; Hirschfelder, J.; Hofer, H.; Hofer, H.; Hohlmann, M.; Holzner, A.; Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.; Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur, M.; Kawakami, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal, M.; Koutsenko, V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger, A.; Kuijpers, J.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Lei, Y.; Leich, H.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña, C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Meng, X. W.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; van Mil, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Monteleoni, B.; Muanza, G. S.; Muijs, A. J. M.; Musy, M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Parriaud, J. -F.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran, K. C.; Razis, P.; Rembeczki, S.; Ren, D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.; Riemann, S.; Rojkov, A.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.; Schoeneich, B.; Schotanus, D. J.; Sciacca, C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen, H.; Van de Walle, R. T.; Vasquez, R.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.; Wang, X. L.; Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen, T. A. M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.; Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou, S. J.; Zhu, G. Y.; Zhu, R. Y; Zhu, Q. Q.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M.; L3 Collaboration Bibcode: 2006A&A...456..351A Altcode: 2006A&A...456..351L Aims.Several experiments have reported observations on possible correlations between the flux of high energy muons and intense solar flares. If confirmed, these observations would have significant implications for acceleration processes in the heliosphere able to accelerate protons and other ions to energies of at least tens of GeV. Methods: The solar flare of the 14 of July 2000 offered a unique opportunity for the L3+C experiment to search for a correlated enhancement in the flux of muons using the L3 precision muon spectrometer. Its capabilities for observing a directional excess in the flux of muons above 15 GeV (corresponding to primary proton energies above 40 GeV) are presented along with observations made on the 14th of July 2000. Results: We report an excess which appeared at a time coincident with the peak increase of solar protons observed at lower energies. The probability that the excess is a background fluctuation is estimated to be 1%. No similar excess of the muon flux was observed up to 1.5 h after the solar flare time. Title: Progress on the 1.6-meter New Solar Telescope at Big Bear Solar Observatory Authors: Denker, C.; Goode, P. R.; Ren, D.; Saadeghvaziri, M. A.; Verdoni, A. P.; Wang, H.; Yang, G.; Abramenko, V.; Cao, W.; Coulter, R.; Fear, R.; Nenow, J.; Shoumko, S.; Spirock, T. J.; Varsik, J. R.; Chae, J.; Kuhn, J. R.; Moon, Y.; Park, Y. D.; Tritschler, A. Bibcode: 2006SPIE.6267E..0AD Altcode: 2006SPIE.6267E..10D The New Solar Telescope (NST) project at Big Bear Solar Observatory (BBSO) now has all major contracts for design and fabrication in place and construction of components is well underway. NST is a collaboration between BBSO, the Korean Astronomical Observatory (KAO) and Institute for Astronomy (IfA) at the University of Hawaii. The project will install a 1.6-meter, off-axis telescope at BBSO, replacing a number of older solar telescopes. The NST will be located in a recently refurbished dome on the BBSO causeway, which projects 300 meters into the Big Bear Lake. Recent site surveys have confirmed that BBSO is one of the premier solar observing sites in the world. NST will be uniquely equipped to take advantage of the long periods of excellent seeing common at the lake site. An up-to-date progress report will be presented including an overview of the project and details on the current state of the design. The report provides a detailed description of the optical design, the thermal control of the new dome, the optical support structure, the telescope control systems, active and adaptive optics systems, and the post-focus instrumentation for high-resolution spectro-polarimetry. Title: Estimated performance of a symmetric nulling coronagraph for exoplanet imaging Authors: Ren, D.; Serabyn, E. Bibcode: 2006SPIE.6265E..3XR Altcode: 2006SPIE.6265E.119R The direct detection of the earth-similar planets nearby bright stars needs high-contrast imaging. We proposed a nulling coronagraph that can, in principle, totally cancel the on-axis point-source starlight for broadband high-contrast imaging. The nulling coronagraph also features close angular distance imaging and high throughput. Equipped with a telescope with only 1.5-m aperture size, it has the potentiality to be able to resolving and directly detecting earth-similar planets at 0.1" (1 λ/D) close-distance in the visible wavelength range. The requirement for a small telescope is a significant advantage for future space missions. We discuss the working principle, instrument realization, error and sensitivity analysis, and the estimated performance of the nulling coronagraph. Title: Development of an IFU for diffraction-limited 3D spectropolarimetry Authors: Ren, Deqing; Keller, Christoph; Plymate, Claude Bibcode: 2006SPIE.6269E..5ZR Altcode: 2006SPIE.6269E.191R Ground-based telescopes can achieve diffraction-limited images when equipped with adaptive optics (AO). A major limitation of AO is the small field of view, which is due to the limited isoplanatic patch size. Nevertheless, conventional long-slit spectrographs cannot sample the entire AO-corrected field of view in a single exposure. However, equipped with a modern, large detector array, the Integral Field Unit (IFU) technique will allow a 3-dimensional (3-D) data cube to be recorded simultaneously over the entire AO corrected field of view, with a conventional long-slit spectrographs. We are building a state-of-the-art image slicer IFU for the National Solar Observatory's (NSO) McMath-Pierce Solar Telescope (McMP). This will be the first time that an advanced image slicer IFU is used for 3-D spectroscopy and polarimetry at a solar telescope. The IFU consists of 25 slices that will sample a 6.25" x 8" AO corrected field of view simultaneously, and produces a 200" long slit for diffraction-limited 3-D spectroscopy and polarimetry. This IFU 3-D technique will provide the most high spatial, high temporal resolution with high throughput for solar spectroscopy and polarimetry. This is critical for state-of-the-art spectral diagnosis of solar velocity and magnetic fields. We discuss the design, construction, and testing of this new IFU. Title: A search for flaring very-high-energy cosmic γ-ray sources with the L3+C muon spectrometer Authors: L3 Collaboration; Adriani, O.; Aguilar-Benitez, M.; van den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiarusi, T.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de La Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.; Deiters, K.; Della Volpe, D.; Delmeire, E.; Denes, P.; Denotaristefani, F.; de Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.; Duran, I.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grabosch, H. J.; Grenier, G.; Grimm, O.; Groenstege, H.; Gruenewald, M. W.; Guida, M.; Guo, Y. N.; Gupta, S. K.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller, Ch.; Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.; Hirschfelder, J.; Hofer, H.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.; Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur, M.; Kawakami, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal, M.; Koutsenko, V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger, A.; Kuijpers, J.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Lei, Y.; Leich, H.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña, C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Meng, X. W.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; van Mil, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Monteleoni, B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Parriaud, J. -F.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Quartieri, J.; Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran, K. C.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.; Riemann, S.; Riles, K.; Roe, B. P.; Rojkov, A.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, S.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Saidi, R.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.; Schmitt, V.; Schoeneich, B.; Schopper, H.; Schotanus, D. J.; Sciacca, C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sulanke, H.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen, H.; van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.; Wang, X. L.; Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen, T. A. M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, J. S.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.; Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou, S. J.; Zhu, G. Y.; Zhu, R. Y.; Zhu, Q. Q.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M. Bibcode: 2006APh....25..298A Altcode: 2006APh....25..298L; 2006APh....25..298T The L3+C muon detector at the CERN electron positron collider, LEP, is used for the detection of very-high-energy cosmic γ-ray sources through the observation of muons of energies above 20, 30, 50 and 100 GeV. Daily or monthly excesses in the rate of single-muon events pointing to some particular direction in the sky are searched for. The periods from mid July to November 1999, and April to November 2000 are considered. Special attention is also given to a selection of known γ-ray sources. No statistically significant excess is observed for any direction or any particular source. Title: Spectral Subtraction: A New Approach to Remove Low- and High-Order Speckle Noise Authors: Ren, Deqing; Wang, Haimin Bibcode: 2006ApJ...640..530R Altcode: We present a novel ``spectral subtraction algorithm'' (SSA) technique to remove speckle noise. It consists of a low-order and a high-order SSA and is based on a three-dimensional image spectroscopy in which the three-dimensional data cube is available and thus the speckle noise introduced by the wave-front error can be efficiently subtracted. For the low-order SSA, speckles up to the second or third order can be totally subtracted, leaving the residual speckles dominated only by the third or fourth order, respectively, and imaging contrast is increased consequently; for the high-order SSA, speckles up to the fourth or fifth order can be subtracted, leaving the residual speckles dominated only by the fifth or sixth order, respectively, and the performance is further improved. This is the first demonstration that such high-order speckles could be subtracted. Since the SSAs are conducted over a wide spectral band, a white-light image can be re-assembled from the three-dimensional data cube. The white-light image would increase the single-to-noise ratio and reduce the exposure time, which are crucial for the search of faint companion objects. Combined with a coronagraph, the SSA can provide an extra contrast gain for the coronagraph imaging, relax the requirement for the wave-front quality (no adaptive optics correction is required for a space-borne imaging system), and significantly increase the performance of exoplanet imaging and biomarker spectroscopy. Title: Symmetric nulling coronagraph based on a rotational shearing interferometer Authors: Ren, Deqing; Serabyn, Eugene Bibcode: 2005ApOpt..44.7070R Altcode: We describe a fully symmetric nulling coronagraph for single-aperture telescopes that is based on a rotational shearing interferometer (RSI) and that is intended for the imaging of faint companions to nearby bright stars. In the proposed layout, all asymmetries inherent in previous single-aperture RSI-based nulling coronagraphs have been eliminated, and the bright and dark outputs are both accessible. As a result, deep, broadband, dual-polarization rejection of on-axis starlight should be possible with this system. Title: A study of cosmic ray secondaries induced by the Mir space station using AMS-01 Authors: Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Carosi, G.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Chuang, Y. L.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Delgado, C.; Demirköz, B.; Deus, J. D.; Dinu, N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Henning, R.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lopes, I.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.; Monreal, B.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Postolache, V.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang, Y. H.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Yeh, P.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P. Bibcode: 2005NIMPB.234..321A Altcode: 2004hep.ex....6065T; 2004hep.ex....6065C The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the ∼100 MeV to 1 TeV range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle Discovery from June 2 to June 12, 1998, and collected 108 cosmic ray triggers. Part of the Mir space station was within the AMS-01 field of view during the four day Mir docking phase of this flight. We have reconstructed an image of this part of the Mir space station using secondary π- and μ- emissions from primary cosmic rays interacting with Mir. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission. Title: The New Solar Telescope at Big Bear Solar Observatory - A Progress Report Authors: Denker, C.; Cao, W.; Chae, J.; Coulter, R.; Kuhn, J. R.; Marquette, W. H.; Moon, Y.; Park, Y.; Ren, D.; Tritschler, A.; Varsik, J. R.; Wang, H.; Yang, G.; Shoumko, S.; Goode, P. R. Bibcode: 2005AGUSMSP43A..07D Altcode: The New Solar Telescope (NST) is a new 1.6-meter, off-axis telescope for the Big Bear Solar Observatory (BBSO) in California. The NST is collaboration between BBSO, the Korean Astronomical Observatory (KAO) and Institute for Astronomy (IfA) at the University of Hawaii. BBSO is an ideal site for high-spatial resolution observations, since this mountain-lake site provides consistent seeing conditions with extended periods of excellent seeing from sunrise to sunset. These unique seeing characteristics make BBSO ideally suited for combined high-resolution campaigns and synoptic observations, which are essential for studies of solar activity and space weather. In this progress report, we present the latest information on the optical design, the optical support structure, the telescope control system and the requisite instrumentation for the telescope. Acknowledgements: This work has been supported by NSF under grants ATM-0236945, ATM-0342560, MRI-0320540, and Air Force DURIP F-49620-03-1-0271. Title: Measurement of the shadowing of high-energy cosmic rays by the Moon: A search for TeV-energy antiprotons Authors: L3 Collaboration; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; van den Akker, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M. G.; Anderhub, H.; Andreev, V. P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Bähr, J.; Baldew, S. V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillère, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Böhm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Romeo, G. Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chiarusi, T.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de La Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Déglon, P.; Debreczeni, J.; Degré, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; Denotaristefani, F.; de Salvo, A.; Diemoz, M.; Dierckxsens, M.; Ding, L. K.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Duda, M.; Duran, I.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Extermann, P.; Faber, G.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Yu.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grabosch, H. J.; Grenier, G.; Grimm, O.; Groenstege, H.; Gruenewald, M. W.; Guida, M.; Guo, Y. N.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Haller, Ch.; Hatzifotiadou, D.; Hayashi, Y.; He, Z. X.; Hebbeker, T.; Hervé, A.; Hirschfelder, J.; Hofer, H.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Huo, A. X.; Ito, N.; Jin, B. N.; Jindal, P.; Jing, C. L.; Jones, L. W.; de Jong, P.; Josa-Mutuberría, I.; Kantserov, V.; Kaur, M.; Kawakami, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Kok, E.; Korn, A.; Kopal, M.; Koutsenko, V.; Kräber, M.; Kuang, H. H.; Kraemer, R. W.; Krüger, A.; Kuijpers, J.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Lei, Y.; Leich, H.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Li, L.; Li, Z. C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Ma, X. H.; Ma, Y. Q.; Malgeri, L.; Malinin, A.; Maña, C.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Meng, X. W.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; van Mil, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Monteleoni, B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Nahnhauer, R.; Naumov, V. A.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Parriaud, J. -F.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Pioppi, M.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Quartieri, J.; Qing, C. R.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Ravindran, K. C.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Rewiersma, P.; Riemann, S.; Riles, K.; Roe, B. P.; Rojkov, A.; Romero, L.; Rosca, A.; Rosemann, C.; Rosier-Lees, S.; Rosenbleck, C.; Roth, S.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Saidi, R.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schäfer, C.; Schegelsky, V.; Schmitt, V.; Schoeneich, B.; Schopper, H.; Schotanus, D. J.; Sciacca, C.; Servoli, L.; Shen, C. Q.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sulanke, H.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, Samuel C. C.; Ting, S. M.; Tonwar, S. C.; Tóth, J.; Trowitzsch, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Unger, M.; Valente, E.; Verkooijen, H.; van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wang, R. G.; Wang, Q.; Wang, X. L.; Wang, X. W.; Wang, Z. M.; Weber, M.; van Wijk, R.; Wijnen, T. A. M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Y. P.; Xu, J. S.; Xu, Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yang, X. F.; Yao, Z. G.; Yeh, S. C.; Yu, Z. Q.; Zalite, An.; Zalite, Yu.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, S.; Zhang, Z. P.; Zhao, J.; Zhou, S. J.; Zhu, G. Y.; Zhu, R. Y.; Zhu, Q. Q.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zöller, M.; Zwart, A. N. M. Bibcode: 2005APh....23..411L Altcode: 2005astro.ph..3472L The shadowing of high-energy cosmic rays by the Moon has been observed with a significance of 9.4 standard deviations with the L3 + C muon spectrometer at CERN. A significant effect of the Earth magnetic field is observed. Since no event deficit on the east side of the Moon has been observed, an upper limit at 90% confidence level on the antiproton to proton ratio of 0.11 is obtained for primary energies around 1 TeV. Title: Optimal Designs, Mask Manufacture, and Experimental Results for Shaped Pupil Coronagraphs Authors: Kasdin, N. J.; Vanderbei, R. J.; Littman, M. G.; Ren, D.; Carr, M.; Spergel, D. N. Bibcode: 2004AAS...205.0514K Altcode: 2004AAS...205..514K; 2004BAAS...36.1343K Recently, NASA has settled on a coronagraphic ``Terrestrial Planet Finder'' as its next flagship observatory. This monolithic space telescope will be equipped with a coronagraph for finding planets. As a result, the current research being done into coronagraphic concepts and wavefront control is of great importance. At Princeton, we have been studying optimal shaped pupils as a means of achieving the needed high contrast for terrestrial planet detection and characterization. In this paper, we present our most promising optimal shaped pupil designs, discuss design tradeoffs, and explore manufacturing sensitivities. We then present our recent laboratory results using shaped pupils. We present our most recent pupils manufactured via a variety of methods and show the imaged point spread functions where we have achieved between 10-6 and 10-7 contrast at better than 5 λ /D. We gratefully acknowledge the support of the Jet Propulsion Laboratory of the National Aeronautics and Space Administration for this work. Title: All-sky extrasolar planet searches with multi-object dispersed fixed-delay interferometer in optical and near IR Authors: Ge, Jian; Mahadevan, Suvrath; van Eyken, Julian C.; DeWitt, Curtis; Friedman, Jerry; Ren, Deqing Bibcode: 2004SPIE.5492..711G Altcode: An all sky survey for extrasolar planets with wide field telescopes, Sloan 2.5m and WIYN 3.5 telescopes, is being developed. This survey will use a multi-object version of current Exoplanet Tracker (ET) Doppler instrument commissioned at the KPNO 2.1m telescope in June 2004. This instrument is based on dispersed fixed-delay interferometer, a combination of a Michelson interferometer with a moderate dispersion spectrometer (Ge 2002). This custom designed instrument (f/2 optics) has a wavelength coverage of ~ 600 Å with a 4kx4k CCD camera at a spectral resolution of R = 5,000. The measured instrument detection efficiency, including telescope, fiber, interferometer, spectrometer and detector losses, has ~ 18% (or 50% throughput from the fiber input to the detector), more than 4 times higher than current echelle instruments being used for planet detection. ET has been able to routinely obtain S/N ~ 80 data for V ~ 8 mag. stars in 15 min exposures with the KPNO 2.1m. It allows us to reach ~ 3.5 m/s Doppler precision for radial velocity (RV) stable stars with S/N ~ 120 per pixel. It also allows us to confirm an exoplanet curve of HD 130322 (V = 8.05) with rms Doppler error of 12.3 m/s (preliminary results). We are in the middle of design of two prototype multiple object RV instrument for the Sloan and WIYN telescopes, which are capable of observing 50 stars (V ~ 8-13) in a single exposure. We plan to conduct the all sky survey for planets around ~ 1 millions of stars with Sloan starting in 2008. Our goal is to identify ~ 100,000 extrasolar planets with ~ 1,000 solar analogues through this survey. Title: Results from upgrades to the radial velocity instrument, ET, at the KPNO 2.1 m Authors: van Eyken, Julian C.; Ge, Jian; Mahadevan, Suvrath; DeWitt, Curtis; Friedman, Jerry; Finnerty, Padraic; Ren, Deqing; Zugger, Mike Bibcode: 2004SPIE.5492..445V Altcode: A radial velocity (RV) survey instrument, Exoplanet Tracker (ET), has been commissioned at the Kitt Peak 2.1m telescope. It is a fiber-fed, fixed-delay Michelson interferometer followed by a medium resolution volume phase holographic spectrograph (operating at ~5000) for the visual band, and is planned to be opened to the public for RV related research in 2005. Since 2002 the measured total throughput of ET from above the atmosphere to the detector has been improved to about 18% (or 50% for the instrument itself from the fiber input to the detector), ~5 times higher than the current cross-dispersed echelle spectrometers for Doppler planet searches. We present new preliminary results from our improved version of ET, with 600 Angstrom wavelength coverage, showing RV measurements for HD 130322 (V=8.05), a known planet-bearing star, using 15 min exposures. A best short-term Doppler precision of 2.9 m/s has been achieved with this new instrument. We will start a pilot planet search of around 500 V=8--9 mag. stars with the 2.1m telescope in the Spring of 2005, and a multiple object RV feasibility study will also be conducted at the Sloan 2.5m wide field telescope in Spring 2005. Title: An Image Slicer Integral Field Unit with Diffraction-limited Performance for Three-Dimensional Imaging Spectroscopy Authors: Ren, Deqing; Ge, Jian Bibcode: 2004PASP..116...46R Altcode: We have designed and constructed an advanced image slicer (AIS) integral field unit (IFU). The IFU employs an all-mirror design and will be installed in the Penn State near-IR Imager and Spectrograph (PIRIS) for three-dimensional integral field spectroscopy at various astronomical telescopes. Using the AIS technique, the slicer IFU can preserve the telescope's focal ratio and pupil (both position and size) while maximizing the packing efficiency for three-dimensional data on the detector. Compared to other existing AIS IFU designs, our design, which uses monolithic optical components for both pupil and field mirror arrays, provides a convenient engineering solution for manufacturing, using the state-of-the-art diamond-turning machines and alignment of the IFU optics. Our slicer mirror array was also manufactured by diamond turning, with all the mirrors simultaneously machined, which also simplifies the procedure for the manufacture and the assembly of the mirrors. We present the IFU optical description, component test results, and overall IFU system performance. We also discuss possible science applications using the IFU. Title: HXMT satellite for space hard X-ray observation Authors: Wu, Y. P.; Ren, D. H.; You, Z. Bibcode: 2004AdSpR..34.2667W Altcode: In this paper, the Hard X-ray Modulation Telescope mission is introduced. Its primary objective is to perform the hard X-ray all sky survey of high resolution and high sensitivity. The expected angular resolution and position accuracy of the satellite are better than 10 ' and 2 ', respectively. The preliminary mission design is analyzed. And a new attitude subsystem scheme is presented to meet the high precision demand of attitude determination. A conclusion is drawn that the mission design is feasible. The possible launch of it will significantly advance the astrophysical study. Title: New Results from the RV instrument, Exoplanet Tracker, at the KPNO 2.1m Authors: DeWitt, C.; Ge, J.; Mahadevan, S.; Van Eyken, J.; Ren, D.; Friedman, G. Bibcode: 2003AAS...203.1702D Altcode: 2003BAAS...35.1234D This poster presents preliminary results from the commissioning of the radial velocity survey instrument, Exoplanet Tracker (ET), at the Kitt Peak 2.1m telescope. ET is a fiber-fed, fixed-delay Michelson interferometer followed by a medium resolution (R=10000) volume phase holographic spectrograph for the visual band. It will be open to the public for RV related research. ET's total throughput from above the atmosphere to the detector is about 30%, 5-10 times higher than the current cross-dispersed echelle spectrometers for Doppler planet searches. In this instrument, Doppler shifts are tracked by measuring phase changes in the interference fringes of the stellar lines against the interferometer comb, instead of measuring line shifts directly as in the echelle approach.

A prototype of this instrument has also already confirmed 2 extra-solar planet curves (51 Peg and upsilon Andromeda), detected by previous surveys with echelles. Our Doppler precision with the prototype is 7.9 m/s measuring for a RV standard star, eta Cas. Our goal is to reach 1-3 m/s with the survey instrument.

This work has been supported by the NSF with grant AST-0243090, the Penn State Eberly College of Sciences and JPL. Title: Remote Sensing and In Situ Information: Looking at the Potrillo Volcanic Field of the Southern Rio Grande Rift in a more Spatially Integrated Way Authors: Williams, W. J.; Abdelsalam, M. G.; McMillan, M. E.; Thurmond, A. K.; Ren, D. Bibcode: 2003AGUFM.V51G0362W Altcode: Studies of the Potrillo volcanic field in the southern Rio Grande rift have resulted in robust datasets for volcanic stratigraphy, geochemistry and both 3He surface exposure and 40Ar/39Ar geochronology to produce a magma dynamics model. Williams' model incorporates the physical, spatial, temporal, chemical, and emplacement mechanisms for this Pleistocene age field. Volcanic activity was not continuous throughout its ~1 Ma - 20 ka history. Rather, there has been punctuated activity with frequent shifts of foci and some reoccupation of edifices after 50 ka upwards to 100 ka of quiescence. At least five eruptive phases have been documented and field-wide polycyclicity on the order of 103 to 105 years now quantified. Our current study uses remote sensing techniques that include Enhanced Thematic Mapper Plus (ETM+) and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) integration along with Digital Elevation Map (DEM) analyses. Evaluation of the remote sensing imagery with in situ information allows for correlation of geologic field relationships to spectral response, evaluation of deposit age versus deposit degradation (e.g. hematite development and/or spectral response), and better recognition of temporal-spatial volcanic center distributions in relationship to structural control. We also demonstrate an effective method for using ASTER data for geological mapping and other field studies in arid regions. ASTER has 14 bands, hence allowing for 364 red-green-blue (RGB) color combinations. Therefore, we apply a statistical approach including the Optimum Index Factor (OIF) to assist in selecting the most effective RGB color combinations for discriminating different geological materials. Small volume basaltic centers such as found in the Potrillo volcanic field do display a broad range of morphologic features, with several similar to those interpreted from the Mars Orbital Lander Altimeter (MOLA) topographic data: shields and flows (lava-tube and fissure-fed). A better understanding of Mars planetary volcanism through terrestrial analogs can be gained by integrating remote sensing, temporal, geochemical and geologic spatial information. Therefore, presented are preliminary observations of the Potrillo deposits for use as a terrestrial analog, with emphasis on phreatomagmatic centers (e.g. Kilbourne Hole and Malpais maar) in order to draw comparisons with martian landforms influenced by water (ice) during eruptions. Title: First planet confirmation with the exoplanet tracker Authors: van Eyken, Julian C.; Ge, Jian C.; Mahadevan, Suvrath; DeWitt, Curtis; Ren, Deqing Bibcode: 2003SPIE.5170..250V Altcode: The Exoplanet Tracker (ET) is a new concept of instrument for measuring stellar radial velocity variations. ET is based on a dispersed fixed-delay interferometer, a combination of Michelson interferometer and medium resolution (R~6700) spectrograph which overlays interferometer fringes on a long-slit stellar spectrum. By measuring shifts in the fringes rather than the Doppler shifts in the absorption lines themselves, we are able to make accurate stellar radial velocity measurements with a high throughput and low cost instrument. The single-order operation of the instrument can also in principle allow multi-object observations. We plan eventually to conduct deep large scale surveys for extra-solar planets using this technique. We present confirmation of the planetary companion to 51Peg from our first stellar observations at the Kitt Peak 2.1m telescope, showing results consistent with previous observations. We outline the fundamentals of the instrument, and summarize our current progress in terms of accuracy and throughput. Title: A Single-Mode Fiber Interferometer for the Adaptive Optics Wave-Front Test Authors: Ren, D.; Rimmele, T. R.; Hegwer, S.; Murray, L. Bibcode: 2003PASP..115..355R Altcode: A new and innovative single-mode fiber interferometer is proposed for the wave-front test of the adaptive optics (AO) system. It is based on a modified Mach-Zehnder interferometer with the two arms replaced by optical fibers. It avoids the difficulty of fringe interpretation of the conventional Mach-Zehnder interferometer. As fibers are used, the whole instrument is compact, flexible, and suitable for the AO on-site test. Furthermore, as minimum optical components are used, the interferometer is free of calibration and has high measurement accuracy. The operation of the interferometer is also very simple, and wave front can be tested quickly. We discuss the working principle, experiment setup, fringe analysis, and its application for an existing AO system. The interferometer can also be used to test wave aberrations of a single lens or an optical system. Title: Design and Performance of a Versatile Penn State near IR Imager and Spectrograph Authors: Ge, Jian; Chakraborty, Abhijit; Debes, John H.; Ren, Deqing; Friedman, Jerry Bibcode: 2003SPIE.4841.1503G Altcode: A versatile near IR instrument called Penn State near IR Imager and Spectrograph (PIRIS) with a 256 x 256 PICNIC IR array has been developed at Penn State and saw its first light at the Mt. Wilson 100 inch in October 2001. The optical design consists of five optical subsystems including (1) the slit aperture wheel, (2) an achromat collimator optic, (3) a grism/filter and pupil assembly, (4) a pupil imaging optic, and (5) achromat camera optics. This instrument has imaging, spectroscopy and coronagraph modes. It is being updated to have an integral field 3-D imaging spectroscopy mode and a very high IR spectroscopy mode (R ~ 150,000) with an anamorphic silicon immersion grating in 2003. The instrument is designed to take full advantage of high Strehl ratio images delivered by high order adaptive optics systems. Its imaging mode has f/37 and f/51 optics to allow diffraction-limited imaging in H and K bands, respectively. Its spectroscopy mode has R = 20, 180, 400, 2000, and 5000. The lowest resolution is obtained with a non-deviation prism. The medium resolution spectroscopy mode is conducted with three commercial fused-silica grisms. They can be either used in long slit spectroscopy mode with a blocking filter or used as a cross-disperser for a high resolution silicon grism. High resolution spectroscopy is done with silicon grisms and cross-disperser grisms, which are designed to work on high orders (~ 80) to completely cover H and K bands for R = 5000 separately, or simultaneously cover H and K bands for R = 2000. Coronagraphy is done by inserting an apodizing mask, held in the slit aperture wheel, in the focal plane and a Lyot stop (pupil mask) at a reimaged pupil inside the dewar. Image contrast can be enhanced by using different combinations of the apodizing mask and pupil mask. Several of Gaussian pupil masks have also been installed in the pupil wheel for high contrast imaging. We have successfully detected two substellar companions during our first light at Mt. Wilson 100 inch telescope. We were also able to evaluate our cononagraphy and gaussion pupil mask modes, which demonstrate 10-3 - 10-4 contrast 1 arcsec region around a bright point source. A hybrid coronagraph mode, a combination of an apodizing focal plane mask with a Gaussian shaped pupil mask, has been tested and produces 10-5 - 10-6 deep contrast as close as 4 λ/D at 2.2 μm in the lab. Low resolution spectroscopy modes including a vision prism (R = 20) and three fused silicon grisms (R = 200 400) have been tested in the lab. The spectroscopy results are reported here. Title: Optical design of high-order adaptive optics for the NSO Dunn Solar Telescope and the Big Bear Solar Observatory Authors: Ren, Deqing; Hegwer, Steven L.; Rimmele, Thomas; Didkovsky, Leonid V.; Goode, Philip R. Bibcode: 2003SPIE.4853..593R Altcode: The National Solar Observatory (NSO) and the New Jersey Institute of Technology are jointly developing high order solar Adaptive Optics (AO) to be deployed at both the Dunn Solar Telescope (DST) and the Big Bear Solar Telescope (BBST). These AO systems are expected to deliver first light at the end of 2003. We discuss the AO optical designs for both the DST and the BBST. The requirements for the optical design of the AO system are as follows: the optics must deliver diffraction-limited imaging at visible and near infrared over a 190"×190" field of view. The focal plane image must be flat over the entire field of view to accommodate a long slit and fast spectrograph. The wave-front sensor must be able to lock on solar structure such as granulation. Finally, the cost for the optical system must fit the limited budget. Additional design considerations are the desired high bandwidth for tip/tilt correction, which leads to a small, fast and off-the-shelf tilt-tip mirror system and high throughput, i.e., a minimal number of optical surfaces. In order to eliminate pupil image wander on the wave-front sensor, both the deformable mirror and tip-tilt mirror are located on the conjugation images of the telescope pupil. We discuss the details of the optical design for the high order AO system, which will deliver high resolution image at the 0.39 - 1.6 μm wavelength range. Title: The design and construction of a Multiple-Integral-Field-Unit for 8-meter Telescopes Authors: Ren, Deqing; Allington-Smith, Jeremy R.; Sharples, Ray M.; Dodsworth, George N. Bibcode: 2003SPIE.4842..384R Altcode: Integral Field Spectroscopy (IFS) is a powerful tool for astronomy, of particular importance to large aperture telescopes. We have designed and constructed a prototype integral field unit (IFU) for multiple-IFS which may be deployed to any desired position in a 30' diameter field of view and will deliver a good image quality simultaneously at visible (0.45 - 1.0 μm) and near infrared (1.0 - 1.8 μm) wavelength ranges. The design and construction of the multiple-IFU for the prime focus of an 8-meter telescope is discussed in this paper. The IFU uses optical fibers whose flexibility is an important advantage for a multiple-IFU. Simple and compact optics is essential for the design of the IFU. Key design issues, such as the fore-optics, microlens array and fiber bundle, are described in detail. Finally the achievable performance of the IFU is estimated. Title: Compact high-resolution 3D imaging spectrometer for discovering oases on Mars Authors: Ge, Jian; Ren, Deqing; Lunine, Jonathan I.; Brown, Robert H.; Yelle, Roger V.; Soderblom, Laurence A. Bibcode: 2003SPIE.4859...45G Altcode: Two key infrared instrument components, high resolution silicon grisms and cryogenic image slicers, are being developed at Penn State under NASA support for potential applications in future Mars missions. These new instrument components are planned to be used in a new kind of instrument called a CUBE Machine for detecting and characterizing possible organic compounds on the martian surface through spectroscopically observing martian rocks, soil, and organic matter in IR wavelengths (1-5 μm). It is a compact, robust and light-weight 3D near-IR imaging spectrometer and takes full advantage of these new instrument components to enable an order of magnitude improvement in spectral resolution and observing efficiency and also large simultaneous wavelength coverage (~1-5 μm). Due to high dispersion (n = 3.4), silicon grisms provide at least 2 times higher spectral dispersion than any commercially made grisms. These silicon grisms will be the key elements for making the instrument compact enough to fit into spacecrafts and simultaneously provide high enough spectral resolution to resolve the weak spectral features from organic materials. The reflective imaging slicers enable us to collect spectral information from the Mars surface in three dimensional form - two spatial dimensions and one spectral dimension. This unique capability obviates the need to make many scans to build up the data cube as traditional instruments such as spot scanned spectrometers, or slit scanned spectrometers, resulting in an order of magnitude increase in observing efficiency. In addition, use of the Cube Machine to produce spectral maps of a target body will result in dramatically reduced operational complexity, data processing complexity, and increased geometric fidelity of the final data. With current available large IR arrays such as 2kx2k HgCdTe arrays this new instrument will provide large simultaneous wavelength coverage at high spectral resolution. We have successfully developed silicon grisms with 1 inch in dimension and 54.7 degree in blaze angle. These grisms can provide a diffraction-limited spectral resolution of R~20,000 at 2 μm, which is already high enough for most astrobiology space mission applications. The grisms have very smooth grating facets, with typical rms roughness of ~9 nm, indicating a total integrated scattered light level less than 1% in the entire IR wavelengths to allow high precision spectroscopy. The optical design of the image slicers has been finished. The optics required to assemble a prototype image slicer is being procured. Title: Image Slicer Integral Field Unit for Solar Telescope Authors: Ren, Deqing; Hegwer, Steven L. Bibcode: 2003SPIE.4853..551R Altcode: Integral Field Spectroscopy (IFS) can provide two-dimensional spatial and one spectral information for spectroscopic observation simultaneously. This is important for solar observatory because of the nature of the extended object of the solar observatory. Integrated Field Unit (IFU) is the key and basic tool for IFS. An innovative IFU was designed at National Solar Observatory which will deliver good image quality at visible (0.39 - 1.0 mm) and near infrared (1.0-1.6 mm) wavelength ranges simultaneously. The IFU is realized by using image slicer and will take the full advantage of the excellent corrected image of a high order Adaptive Optics (AO) and provide powerful image spectroscopic ability for a spectrograph/ polarimeter. This may be the first time that advanced IFU will achieve at visible and near infrared simultaneously and be used for solar observatory. A unique design is a key importance to ensure that the IFU image slicer can work at visible and near infrared wavelengths with excellent optical performance. The IFU design is discussed in detail in this paper. It is demonstrated that the IFU image slicer technique is suitable for both visible and near infrared solar observatories and will be particularly useful for 4 or 8-meter telescopes. Title: Solar adaptive optics: a progress report Authors: Rimmele, Thomas R.; Richards, Kit; Hegwer, Steven L.; Ren, Deqing; Fletcher, S.; Gregory, Scott; Didkovsky, Leonid V.; Denker, Carsten J.; Marquette, William; Marino, J.; Goode, Philip R. Bibcode: 2003SPIE.4839..635R Altcode: We present a progress report of the solar adaptive optics (AO) development program at the National Solar Observatory (NSO) and the Big Bear Solar Observatory (BBSO). Examples of diffraction-limited observations obtained with the NSO low-order solar adaptive optics system at the Dunn Solar Telescope (DST) are presented. The design of the high order adaptive optics systems that will be deployed at the DST and the BBSO is discussed. The high order systems will provide diffraction-limited observations of the Sun in median seeing conditions at both sites. Title: Technical challenges of the Advanced Technology Solar Telescope Authors: Rimmele, Thomas R.; Keil, Stephen L.; Keller, Christoph U.; Hill, Frank; Briggs, John; Dalrymple, Nathan E.; Goodrich, Bret D.; Hegwer, Steven L.; Hubbard, Rob; Oschmann, Jacobus M.; Radick, Richard R.; Ren, Deqing; Wagner, Jeremy; Wampler, Stephen; Warner, Mark Bibcode: 2003SPIE.4837...94R Altcode: The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope in the world, providing a unique scientific tool to study the Sun and possibly other astronomical objects, such as solar system planets. We briefly summarize the science drivers and observational requirements of ATST. The main focus of this paper is on the many technical challenges involved in designing a large aperture solar telescope. The ATST project has entered the design and development phase. Development of a 4-m solar telescope presents many technical challenges. Most existing high-resolution solar telescopes are designed as vacuum telescopes to avoid internal seeing caused by the solar heat load. The large aperture drives the ATST to an open-air design, similar to night-time telescope designs, and makes thermal control of optics and telescope structure a paramount consideration. A heat stop must reject most of the energy (13 kW) at prime focus without introducing internal seeing. To achieve diffraction-limited observations at visible and infrared wavelengths, ATST will have a high order (order 1000 DoF) adaptive optics system using solar granulation as the wavefront sensing target. Coronal observations require occulting in prime focus, a Lyot stop and contamination control of the primary. An initial set of instruments will be designed as integral part of the telescope. First telescope design and instrument concepts will be presented. Title: High-order adaptive optical system for Big Bear Solar Observatory Authors: Didkovsky, Leonid V.; Dolgushyn, Alexander; Marquette, William; Nenow, Jeff; Varsik, John; Goode, Philip R.; Hegwer, Steven L.; Ren, Deqing; Fletcher, Steve; Richards, Kit; Rimmele, Thomas; Denker, Carsten J.; Wang, Haimin Bibcode: 2003SPIE.4853..630D Altcode: We present a high-order adaptive optical system for the 26-inch vacuum solar telescope of Big Bear Solar Observatory. A small elliptical tip/tilt mirror is installed at the end of the existing coude optical path on the fast two-axis tip/tilt platform with its resonant frequency around 3.3 kHz. A 77 mm diameter deformable mirror with 76 subapertures as well as wave-front sensors (correlation tracker and Shack-Hartman) and scientific channels for visible and IR polarimetry are installed on an optical table. The correlation tracker sensor can detect differences at 2 kHz between a 32×32 reference frame and real time frames. The WFS channel detects 2.5 kHz (in binned mode) high-order wave-front atmosphere aberrations to improve solar images for two imaging magnetographs based on Fabry-Perot etalons in telecentric configurations. The imaging magnetograph channels may work simultaneously in a visible and IR spectral windows with FOVs of about 180×180 arc sec, spatial resolution of about 0.2 arc sec/pixel and SNR of about 400 and 600 accordingly for 0.25 sec integration time. Title: Design and construction of the prototype synchrotron radiation detector Authors: This Paper Is Dedicated To The Memory Of Johannes `Jos'kuipers; Anderhub, H.; Bates, J. R.; Bätzner, D.; Baumgartner, S.; Biland, A.; Camps, C.; Capell, M.; Commichau, V.; Djambazov, L.; Fanchiang, Y. -J.; Flügge, G.; Fritschi, M.; Grimm, O.; Hangarter, K.; Hofer, H.; Horisberger, U.; Kan, R.; Kästli, W.; Kenney, G. P.; Kim, G. N.; Kim, K. S.; Koutsenko, V.; Kräber, M.; Kuipers, J.; Lebedev, A.; Lee, M. W.; Lee, S. -C.; Lewis, R.; Lustermann, W.; Pauss, F.; Rauber, T.; Ren, D.; Ren, Z. L.; Röser, U.; Son, D.; Ting, Samuel C. C.; Tiwari, A. N.; Viertel, G. M.; von Gunten, H.; Wicki, S. Waldmeier; Wang, T. -S.; Yang, J.; Zimmermann, B. Bibcode: 2002NIMPA.491...98T Altcode: The Prototype Synchrotron Radiation Detector (PSRD) is a small-scale experiment designed to measure the rate of low-energy charged particles and photons in near the Earth's orbit. It is a precursor to the Synchrotron Radiation Detector (SRD), a proposed addition to the upgraded version of the Alpha Magnetic Spectrometer (AMS-02). The SRD will use the Earth's magnetic field to identify the charge sign of electrons and positrons with energies above 1TeV by detecting the synchrotron radiation they emit in this field. The differential energy spectrum of these particles is astrophysically interesting and not well covered by the remaining components of AMS-02. Precise measurements of this spectrum offer the possibility to gain information on the acceleration mechanism and characteristics of all cosmic rays in our galactic neighbourhood. The SRD will discriminate against protons as they radiate only weakly. Both the number and energy of the synchrotron photons that the SRD needs to detect are small. The identification is complicated by the presence of a large particle and photon background. Existing measurements of these backgrounds are insufficient for the construction of the large-scale SRD, so a measurement in space was indispensable. The PSRD was designed to fly as a Space Shuttle secondary payload, within the Shuttle Small Payloads Project. The flight on board the Space Shuttle Endeavour took place from 5 to 17 December 2001. The scientific goal, hardware and the flight of the PSRD are described in this report. Title: On the Application of Integral Field Unit Design Theory for Imaging Spectroscopy Authors: Ren, Deqing; Allington-Smith, Jeremy Bibcode: 2002PASP..114..866R Altcode: Integral field spectroscopy is a powerful tool for astronomical observation, of particular importance to large telescopes. In this paper, different techniques for the design and construction of integral field units (IFUs) are described, concentrating on the use of lenslet arrays coupled to fibers. The theory of the design of the foreoptics, lenslets, and fibers is presented. The effects of the fiber oversizing and focal ratio degradation on IFU performance are described. A mathematical model is developed that can be used to calculate the optimized fiber core size according to the required coupling efficiency. A figure of merit for the IFU system is also derived, which can be used to estimate and compare the performance of different IFU systems. Finally, a design example is given to demonstrate the applications of this theory. Title: The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I - results from the test flight on the space shuttle Authors: AMS Collaboration; Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Cho, K.; Choi, M. J.; Choi, Y. Y.; Chuang, Y. L.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Delgado, C.; Deus, J. D.; Dinu, N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimms, O.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kim, M. Y.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Lanciotti, E.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lopes, I.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Postolache, V.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Rossin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E. S.; Shin, J. W.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; von Gunten, H.; Wicki, S. Waldmeier; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang, Y. H.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Yeh, P.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P. Bibcode: 2002PhR...366..331A Altcode: The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 (June 1998) in a 51.7° orbit at altitudes between 320 and 390km.

A search for antihelium nuclei in the rigidity range 1-140GV was performed. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of <1.1×10-6 was obtained.

The high energy proton, electron, positron, helium, antiproton and deuterium spectra were accurately measured.

For each particle and nuclei two distinct spectra were observed: a higher energy spectrum and a substantial second spectrum. Positrons in the second spectrum were found to be much more abundant than electrons. Tracing particles from the second spectra shows that most of them travel for an extended period of time in the geomagnetic field, and that the positive particles (p and e+) and negative ones (e-) originate from two complementary geographic regions. The second helium spectrum flux over the energy range 0.1-1.2GeV/nucleon was measured to be (6.3+/-0.9)×10-3(m2ssr)-1. Over 90 percent of the helium flux was determined to be 3He at the 90% confidence level. Title: HXMT satellite for space hard X-ray observation Authors: Wu, Y.; Ren, D.; You, Z. Bibcode: 2002cosp...34E..16W Altcode: 2002cosp.meetE..16W Space hard X-ray in the energy band from 10Kev to 250KeV is very important to the research of high energy astrophysical processes, especially some of the fundamental problems in astrophysics. Due to imaging difficulty in the hard X-ray band, Observations made over this band is comparatively less than other bands such as soft X-ray and gamma -ray. Up to now, there has been no hard X ray all sky- survey of high sensitivity. Based on the Direct Demodulation imaging method recently developed, the Hard X- ray Modulation Telescope(HXMT) mission is proposed under the Major State Basic Research Development Program of China. The scientific objective of HXMT mission is to realize the first hard X-ray all sky survey of high sensitivy and angular resolution in the world, and to present the first detailed sky map of hard X r a y - distribution. In this article, the physical basis, the imaging principle and the basic structure of HXMT are briefly introduced. The expected angular resolution of observation and position accuracy of radiant source are 2' and 0.2' respectively. Based on the analysis of the mission requirement of HXMT, the mission design of HXMT satellite is presented in which the concept of integrative design approach is presented and implemented. The design of spacecraft subsystems such as strcuture,C&DH and energy are also introduced. To meet the high precision demand of the attitude determination of HXMT, a new Attitude Determination &Control Subsystem(ADCS) scheme is presented in which the Microminiature Inertial Measurement Unit(MIMU) is employed as one of the key attitude sensors. Combined with star tracker, the expected attitude measurement accuracy is 0.01° in the normal mission mode. Based on all these thoughts, the ADCS is analyzed and its general design is presented in the paper. As the first chinese space hard X-ray observatory, the design approach of HXMT satellite is also helpful for other space exploration missions such as solar activity inspection etc. Title: Design and construction of a fiber bundle connector using microlenses Authors: Ren, Deqing; Sharples, Ray M.; Allington-Smith, Jeremy R.; Dodsworth, George N.; Robertson, David J.; Dalton, Gavin B. Bibcode: 2001OptEn..40.2709R Altcode: A prototype of a multiway fibre bundle connector for astronomical applications is described. The connector provides for connection and disconnection in the fiber trains that feed an astronomical spectrograph. It also provides the more important function of converting the focal ratio from f/2 to f/5 because f/2 is too fast either for good transmission of light along a substantial length of fiber or for the input to typical astronomical spectrographs. The fiber bundle connector consists of 100 coupling fibers. It works over the full 0.9- to 1.8-micrometers wavelength range, and the chromatic aberration is well corrected in the design. The design principle and the construction of the connector are discussed. The measured coupling efficiency is up to 88%. The coupling efficiency is compared with a theoretical estimate, and good agreement is achieved. Possible further improvement is discussed. Title: Characterization of Lenslet Arrays for Astronomical Spectroscopy Authors: Lee, David; Haynes, Roger; Ren, Deqing; Allington-Smith, Jeremy Bibcode: 2001PASP..113.1406L Altcode: Microlens arrays are now widely used in a variety of astronomical instruments that require high performance. This paper describes the applications of microlenses in astronomical spectroscopy and discusses the necessary performance requirements. A variety of optical tests, including high dynamic range point-spread function measurements and determination of encircled energy, were developed to characterize the performance of a variety of lenslet arrays. Results are presented that indicate the best types of lenslet array for use for astronomical spectroscopy. Title: Integral field spectroscopy with the GEMINI multi-object spectrographs Authors: Allington-Smith, Jeremy R.; Content, Robert; Dodsworth, George N.; Murray, Graham J.; Ren, Deqing; Robertson, David J.; Turner, James E.; Webster, John Bibcode: 2000SPIE.4008.1172A Altcode: The GEMINI Multiobject Spectrograph (GMOS), due for delivery in late 2000, will include a powerful integral field spectroscopic capability. The instrument scan switch to this mode by the remote insertion of an integral field unit (IFU) into the focal plane in place of multiobject masks. The initial implementation of the GMOS IFU will cover a field in excess of 50 square arcsec with a sampling of 0.2 arcsec via 1500 spatial elements with spectra covering up to 3000 pixels. The spectrum length may also be doubled by halving the field. A separate field is provided at fixed offset to facilitate accurate background subtraction. The system employs a fiber-lenslet technique that provides significant benefits over unlensed fiber reformatters and fiberless lenslet arrays. The specific advantages are unit filling factor, high throughput and long spectra. The IFU has been designed in the light of our experience with two other successful devices of this type. We summarize the design of the device and discuss how the IFU will be operated within the context of GMOS and the GEMINI telescopes. Finally, we present options for implementing IFUs with finer spatial resolution on GMOS. Title: Fiber multi-object spectrograph (FMOS) for the Subaru Telescope Authors: Maihara, Toshinori; Ohta, Kouji; Tamura, Naoyuki; Ohtani, Hiroshi; Akiyama, Masayuki; Noumaru, Junichi; Kaifu, Norio; Karoji, Hiroshi; Iye, Masanori; Dalton, Gavin B.; Parry, Ian R.; Robertson, David J.; Sharples, Ray M.; Ren, Deqing; Allington-Smith, Jeremy R.; Taylor, Keith; Gillingham, Peter R. Bibcode: 2000SPIE.4008.1111M Altcode: Design concept of the fiber multi-object spectrograph (FMOS) for Subaru Telescope together with innovative ideas of optical and structural components is presented. Main features are; i) wide field coverage of 30 arcmin in diameter, ii) 400 target multiplicity, iii) 0.9 to 1.8 micrometers near-IR wavelengths, and iv) OH-airglow suppression capability. The instrument is proposed to be built under the Japan-UK-Australia international collaboration scheme. Title: Protons in near earth orbit Authors: Alcaraz, J.; Alvisi, D.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buenerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cavalletti, R.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiarini, A.; Chiueh, T. H.; Chuang, Y. L.; Cindolo, F.; Commichau, V.; Contin, A.; Cotta-Ramusino, A.; Crespo, P.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Deus, J. D.; Dinu, N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Feng, C. C.; Fiandrini, E.; Finelli, F.; Fisher, P. H.; Flaminio, R.; Fluegge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giusti, P.; Grandi, D.; Gu, W. Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S. C.; Levi, G.; Levtchenko, P.; Liu, C. L.; Liu, H. T.; Lolli, M.; Lopes, I.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Massera, F.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mezzanotte, F.; Mezzenga, R.; Mihul, A.; Molinari, G.; Mourao, A.; Mujunen, A.; Palmonari, F.; Pancaldi, G.; Papi, A.; Park, I. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pilastrini, R.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postema, H.; Postolache, V.; Prati, E.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Recupero, S.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, S. C. C.; Ting, S. M.; Tornikoski, M.; Torromeo, G.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Usoskin, I.; Valtonen, E.; Vandenhirtz, J.; Velcea, F.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang, Y. H.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, M.; Ye, S. W.; Yeh, P.; Xu, Z. Z.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A. Bibcode: 2000PhLB..472..215A Altcode: 2000hep.ex....2049A; 2000hep.ex....2049C The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux /~70m-2s-1sr-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region. Title: A silicon microstrip tracker in space: experience with the AMS silicon tracker on STS-91. Authors: Alcaraz, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Bene, P.; Berdugo, J.; Bertucci, B.; Biland, A.; Blasko, S.; Bourquin, M.; Burger, W. J.; Cai, X. D.; Capell, M.; Casaus, J.; Cristinziani, M.; Dai, T. S.; Emonet, P.; Eronen, T.; Extermann, P.; Fiandrini, E.; Hasan, A.; Hofer, H.; Klimentov, A.; Laitinen, T.; Lamanna, G.; Lebedev, A.; Levtchenko, P.; Lubelsmeyer, K.; Lustermann, W.; Menichelli, M.; Pauluzzi, M.; Perrin, E.; Produit, N.; Rapin, D.; Raupach, F.; Ren, D.; Ribordy, M.; Richeux, J. -P.; Riihonen, E.; Shoutko, V.; Suter, H.; Torsti, J.; Ulbricht, J.; Vandenhirtz, J.; Viertel, G.; Vite, D.; Wallraff, W.; Weisgerber, M.; Wu, S. X. Bibcode: 1999NCimA.112.1325A Altcode: The Alpha Magnetic Spectrometer (AMS) is designed as an independent module for installation on the International Space Station (ISS) in the year 2003 for an operational period of three years. The principal scientific objectives include searches for antimatter and dark matter in cosmic rays. The AMS tracker uses silicon microstrip sensors to reconstruct charged-particle trajectories. A first version of the AMS, equipped with 2.1 m2 of silicon sensors and a permanent magnet, was flown on the NASA space shuttle Discovery during June 2 - 12, 1998. The authors describe the detector and present results of the tracker performance during the flight. Title: Search for antihelium in cosmic rays. Authors: Alcaraz, J.; Alvisi, D.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Bourquin, M.; Bruni, G.; Buenerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cavalletti, R.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Catellini, G.; Chang, Y. H.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiarini, A.; Chiueh, T. H.; Chuang, Y. L.; Cindolo, F.; Commichau, V.; Contin, A.; Cotta-Ramusino, A.; Crespo, P.; Cristinziani, M.; da Cunha, J. P.; Dai, T. S.; Deus, J. D.; Ding, L. K.; Dinu, N.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Emonet, P.; Eppling, F. J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Feng, C. C.; Fiandrini, E.; Finelli, F.; Fisher, P. H.; Flaminio, R.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Gu, W. Q.; Guzik, T. G.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M. A.; Hungerford, W.; Ionica, M.; Ionica, R.; Isbert, J.; Jongmanns, M.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Krieger, J.; Kossakowski, R.; Koutsenko, V.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S. C.; Levi, G.; Levtchenko, P.; Li, T. P.; Liu, H. T.; Lolli, M.; Lopes, I.; Lu, G.; Lu, Y. S.; Lubelsmeyer, K.; Luckey, D.; Lustermann, W.; Maehlum, G.; Mana, C.; Margotti, A.; Massera, F.; Mayet, F.; McNeil, R. R.; Meillon, B.; Menichelli, M.; Mezzanotte, F.; Mezzenga, R.; Mihul, A.; Molinari, G.; Mourao, A.; Mujunen, A.; Palmonari, F.; Pancaldi, G.; Papi, A.; Park, I. H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pilastrini, R.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postema, H.; Prati, E.; Produit, N.; Rancoita, P. G.; Rapin, D.; Raupach, F.; Recupero, S.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Shoutko, V.; Shoumilov, E.; Siedling, R.; Son, D.; Song, T.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, S. C. C.; Ting, S. M.; Tenbusch, F.; Torromeo, G.; Torsti, J.; Trumper, J.; Ulbricht, J.; Urpo, S.; Usoskin, I.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vite, D.; von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, B. C.; Wang, J. Z.; Wang, Y. H.; Wefel, J. P.; Werner, E. A.; Williams, C.; Wu, S. X.; Xia, P. C.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, M.; Yeh, P.; Zhang, H. Y.; Zhao, D. X.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A. Bibcode: 1999PhLB..461..387A Altcode: 2000hep.ex....2048C; 2000hep.ex....2048A The alpha magnetic spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7° orbit at altitudes between 320 and 390 km. A total of 2.86×106 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of <1.1×10-6 is obtained. Title: Apochromatic lenses for near-infrared astronomical instruments Authors: Ren, Deqing; Allington-Smith, Jeremy R. Bibcode: 1999OptEn..38..537R Altcode: A method based on the Herzberger approach has been investigated for the selection of glasses for the apochromatic correction at near-infrared (NIR) wavelength. The method avoids the algebraic complexity and simplifies the glass selection processes. Doublet and triplet glass combinations can be chosen directly from the plot of partial dispersion versus V number. Good combinations of NIR doublets and triplets are given. Design examples show that the method is practical and efficient. Title: Multiobject spectroscopy with optical fibers on the 2.1m telescope at Observatorio ``Guillermo Haro" Authors: Carrasco, B. E.; Vazquez, S.; Escobedo, G.; Ren, D.; Langarica, R. Bibcode: 1998larm.confE.170C Altcode: Within a collaborative programme between I.N.A.O.E. and Durham University, we present a project to adapt the fibre positioning system Autofib-1.5 (Af-1.5) to the 2.1m telescope at the Observatorio ``Guillermo Haro" in Cananea, Son., Mexico. Af-1.5 is a robot that moves on the x,y & z direction to position 55 fibres across a field plate. It was built at Durham University as a prototype for the William Herschel Telescope (WHT) prime focus fibre positioning system Autofib-2. Af-1.5 has been used on the WHT during two observing runs and its performance has been extensively evaluated in the laboratory. The 2.1m Cananea telescope with a new corrector system will provide a 47.8 arcmin field of view. The corrector mounting is also the mechanical interface between the telescope and the fibre positioner. Af-1.5 fibres diameter are equivalent to 2.1 arcsec, the positioning accuracy to 0.2 arcsec and the minimun fibre separation to 16 arcsec. In the first stage the multifibre system will be used with a low resolution fibre bench spectrograph to study the satellite dynamics around elliptical galaxies to determine the mas s and extension of dark galactic halos. Title: Multi-Fiber Spectroscopy at the Observatorio "Guillermo Haro" Authors: Carrasco, B. E.; Vazquez, S.; Ren, D.; Sharples, R. M.; Langarica, R.; Lewis, I. J.; Parry, I. R. Bibcode: 1998ASPC..152..117C Altcode: 1998fopa.proc..117C No abstract at ADS Title: Compact all-reflective near-infrared spectrograph and imager Authors: Ren, Deqing; Allington-Smith, Jeremy R.; Rauscher, Bernard J. Bibcode: 1997SPIE.3122..280R Altcode: We have designed a compact all-reflective near infrared (1 - 2.5 micrometer) long slit spectrograph and imager (CAIRS) for the UK infrared telescope (UKIRT). CAIRS will provide a comprehensive spectroscopic and imaging capability in the near infrared. In spectrograph mode, it uses one slit or two slits for use with image slicers so that it can be used to provide two-dimensional spectroscopy over an extended field. Different gratings can be used in order to reach resolving powers up to 5000. As the instrument uses only mirrors, there is no chromatic aberration and all primary aberrations are almost completely eliminated over a large field of view. Title: A search for the neutral Higgs boson at LEP Authors: Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; An, Q.; Anderhub, H.; Anderson, A. L.; Andreev, V. P.; Antonov, L.; Antreasyan, D.; Arce, P.; Arefiev, A.; Atamanchuk, A.; Azemoon, T.; Aziz, T.; Baba, P. V. K. S.; Bachmann, S.; Bagnaia, P.; Bakken, J. A.; Baksay, L.; Ball, R. C.; Banerjee, S.; Bao, J.; Barillére, R.; Barone, L.; Baschirotto, A.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Behrens, J.; Bencze, Gy. L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Bizzarri, R.; Blaising, J. J.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Bosetti, M.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J. G.; Brock, I. C.; Brooks, M.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Capell, M.; Caria, M.; Carlino, G.; Cartacci, A. M.; Castello, R.; Cerrada, M.; Cesaroni, F.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chen, M.; Chen, W. Y.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Chung, S.; Civinini, C.; Clare, I.; Clare, R.; Coan, T. E.; Cohn, H. O.; Coignet, G.; Colino, N.; Contin, A.; Cui, X. T.; Cui, X. Y.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; Degré, A.; Deiters, K.; Dénes, E.; Denes, P.; Denotaristefani, F.; Dhina, M.; Dibitonto, D.; Diemoz, M.; Dimitrov, H. R.; Dionisi, C.; Djambazov, L.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Easo, S.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Extermann, P.; Fabbretti, R.; Fabre, M.; Falciano, S.; Fan, S. J.; Fackler, O.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Fernandez, G.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J.; Filthaut, F.; Finocchiaro, G.; Fisher, P. H.; Forconi, G.; Foreman, T.; Freudenreich, K.; Friebel, W.; Fukushima, M.; Gailloud, M.; Galaktionov, Yu.; Gallo, E.; Ganguli, S. N.; Garcia-Abia, P.; Gele, D.; Gentile, S.; Goldfarb, S.; Gong, Z. F.; Gonzalez, E.; Gougas, A.; Goujon, D.; Gratta, G.; Gruenewald, M.; Gu, C.; Guanziroli, M.; Guo, J. K.; Gupta, V. K.; Gurtu, A.; Gustafson, H. R.; Gutay, L. J.; Hangarter, K.; Hasan, A.; Hauschildt, D.; He, C. F.; He, J. T.; Hebbeker, T.; Hebert, M.; Herten, G.; Hervé, A.; Hilgers, K.; Hofer, H.; Hoorani, H.; Hu, G.; Hu, G. Q.; Ille, B.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jezequel, S.; Jin, B. N.; Jones, L. W.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu.; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Khokhar, S.; Kienzle-Focacci, M. N.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, D.; Kirsch, S.; Kittel, W.; Klimentov, A.; König, A. C.; Koffeman, E.; Kornadt, O.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krastev, V. R.; Krenz, W.; Krivshich, A.; Kuijten, H.; Kumar, K. S.; Kunin, A.; Landi, G.; Lanske, D.; Lanzano, S.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, D. M.; Leedom, I.; Leggett, C.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Leytens, X.; Li, C.; Li, H. T.; Li, P. J.; Liao, J. Y.; Lin, W. T.; Lin, Z. Y.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Y.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubbers, J. M.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, J. M.; Ma, W. G.; MacDermott, M.; Malhotra, P. K.; Malik, R.; Malinin, A.; Maña, C.; Maolinbay, M.; Marchesini, P.; Marion, F.; Marin, A.; Martin, J. P.; Martinez-Laso, L.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McBride, P.; McMahon, T.; McNally, D.; Merk, M.; Merola, L.; Meschini, M.; Metzger, W. J.; Mi, Y.; Mills, G. B.; Mir, Y.; Mirabelli, G.; Mnich, J.; Möller, M.; Monteleoni, B.; Morand, R.; Morganti, S.; Moulai, N. E.; Mount, R.; Müller, S.; Nadtochy, A.; Nagy, E.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Neyer, C.; Niaz, M. A.; Nippe, A.; Nowak, H.; Organtini, G.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Pascala, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Perrier, J.; Pevsner, A.; Piccolo, D.; Pieri, M.; Piroué, P. A.; Plasil, F.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Qi, Z. D.; Qian, J. M.; Qureshi, K. N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Ren, D.; Ren, Z.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Rind, O.; Rizvi, H. A.; Rodriguez, F. J.; Roe, B. P.; Röhner, M.; Röhner, S.; Romero, L.; Rose, J.; Rosier-Lees, S.; Rosmalen, R.; Rosselet, Ph.; van Rossum, W.; Roth, S.; Rubbia, A.; Rubio, J. A.; Rykaczewski, H.; Sachwitz, M.; Salicio, J.; Salicio, J. M.; Sanders, G. S.; Santocchia, A.; Sarakinos, M. S.; Sartorelli, G.; Sassowsky, M.; Sauvage, G.; Schäfer, C.; Schegelsky, V.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schopper, H.; Schotanus, D. J.; Shotkin, S.; Schreiber, H. J.; Shukla, J.; Schulte, R.; Schulte, S.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Scott, I.; Sehgal, R.; Seiler, P. G.; Sens, J. C.; Servoli, L.; Sheer, I.; Shen, D. Z.; Shevchenko, S.; Shi, X. R.; Shumilov, E.; Shoutko, V.; Son, D.; Sopczak, A.; Spartiotis, C.; Spickerman, T.; Spillantini, P.; Starosta, R.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Strauch, K.; Stringfellow, B. C.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Suter, H.; Swain, J. D.; Syed, A. A.; Tang, X. W.; Taylor, L.; Terzi, G.; Ting, Samuel C. C.; Ting, S. M.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tsipolitis, G.; Tully, C.; Tung, K. L.; Ulbricht, J.; Urbán, L.; Uwer, U.; Valente, E.; van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vikas, P.; Vikas, U.; Vivargent, M.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vuilleumier, L.; Wadhwa, M.; Wallraff, W.; Wang, C.; Wang, C. R.; Wang, G. H.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Weber, J.; Weill, R.; Wenaus, T. J.; Wenninger, J.; White, M.; Willmout, C.; Wittgenstein, F.; Wright, D.; Wu, S. X.; Wynhoff, S.; Wyslouch, B.; Xie, Y. Y.; Xu, J. G.; Xu, Z. Z.; Xue, Z. L.; Yan, D. S.; Yang, B. Z.; Yang, C. G.; Yang, G.; Ye, C. H.; Ye, J. B.; Ye, Q.; Yeh, S. C.; Yin, Z. W.; You, J. M.; Yunus, N.; Yzerman, M.; Zaccardelli, C.; Zemp, P.; Zeng, M.; Zeng, Y.; Zhang, D. H.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, J. F.; Zhu, R. Y.; Zichichi, A.; van der Zwaan, B. C. C. Bibcode: 1993PhLB..303..391A Altcode: We update the results of a search for the Standard Model neutral Higgs boson using a data sample corresponding to 1 062 000 hadronic Z decays. We exclude the existence of the Minimal Standard Model Higgs boson in the mass range 0 <= mH < 57.7 GeV at the 95% confidence level.

Supported by the Hungarian OTKA fund under contract number 2970. Title: Possible mode conversion between Love and Rayleigh waves at a continental margin Authors: Gregersen, Sø; Ren Bibcode: 1978GeoJ...54..121G Altcode: 1978GeoJI..54..121G No abstract at ADS