Author name code: schmitt ADS astronomy entries on 2022-09-14 =author:"Schmitt, J.H.M.M." OR =author:"Schmitt, Juergen H.M.M." OR =author:"Schmitt, J." ------------------------------------------------------------------------ Title: The stellar content of the ROSAT all-sky survey Authors: Freund, S.; Czesla, S.; Robrade, J.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2022A&A...664A.105F Altcode: 2022arXiv220512874F
Aims: We present and apply a method to identify the stellar content of the ROSAT all-sky survey (RASS).
Methods: We performed a crossmatch between the RASS sources and stellar candidates selected from Gaia Early Data Release 3 (EDR3) and estimated stellar probabilities for every RASS source from the geometric properties of the match and additional properties, namely the X-ray to G-band flux ratio and the counterpart distances.
Results: A comparison with preliminary detections from the first eROSITA all-sky survey (eRASS1) show that the positional offsets of the RASS sources are larger than expected from the uncertainties given in the RASS catalog. From the RASS sources with reliable positional uncertainties, we identify 28 630 (24.9%) sources as stellar; this is the largest sample of stellar X-ray sources to date. Directly from the stellar probabilities, we estimate the completeness and reliability of the sample to be about 93% and confirm this value by comparing it to the identification of randomly shifted RASS sources, preliminary stellar eRASS1 identifications, and results from a previous identification of RASS sources. Our stellar RASS sources contain sources of all spectral types and luminosity classes. According to their position in the color-magnitude diagram, many stellar RASS sources are young stars with ages of a few 107 yr or binaries. When plotting the X-ray to bolometric flux ratio as a function of the color, the onset of convection and the saturation limit are clearly visible. We note that later-type stars reach continuously higher FX/Fbol values, which is probably due to more frequent flaring. The color distribution of the stellar RASS sources clearly differs from the unrelated background sources. We present the three-dimensional distribution of the stellar RASS sources that shows a clear increase in the source density near known stellar clusters.

Tables B.1 and B.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/664/A105 Title: Classification of various Gaia-Alerted objects Authors: Dennefeld, M.; Pellouin, C.; Dupuis, H.; Favard, St.; Schmitt, J.; Adami, C.; Russeil, D. Bibcode: 2022ATel15509....1D Altcode: We observed several Gaia Alerted (Hodgkin et al. 2021, A & A, 652, 76) objects during a commissioning run of the new spectro-imager MISTRAL at the 1.93m telescope at Haute-Provence observatory (OHP), during the nights of June 28, 29 and 30, 2022. Title: Observation of Gaia22cry(AT2022nmq), candidate SN Authors: Dennefeld, M.; Dupuis, H.; Favard, St.; Schmitt, J. Bibcode: 2022ATel15486....1D Altcode: We observed Gaia22cry (alias AT 2022nmq, first alerted by ZTF (22aaoolua) as a SN candidate on June 25 (TNSATR 151039) and discovered independantly on June 26, 2022 by Gaia Alerts (Hodgkin et al. 2022 TNSATR 151356)) at Haute-Provence Observatory (OHP) on June 30th, 01:30 TU. The spectro-imager MISTRAL was used at the 1.93m telescope and the object was quite conspicuous on the r band image (r ~ 18.0). Title: Observations of the Type Ia supernova 2022frn Authors: Tanchon, E.; Basa, S.; Blondin, S.; Adami, C.; Schmitt, J.; Report Bibcode: 2022TNSAN.135....1T Altcode: No abstract at ADS Title: Eight Years of TIGRE Robotic Spectroscopy: Operational Experience and Selected Scientific Results Authors: González-Pérez, José Nicolás; Mittag, Marco; Schmitt, Jürgen H. M. M.; Schröder, Klaus-Peter; Jack, Dennis; Rauw, Gregor; Nazé, Yaël Bibcode: 2022FrASS...9.2546G Altcode: 2022arXiv220602832G TIGRE (Telescopio Internacional de Guanajuato Robótico Espectroscópico) has been operating in fully robotic mode in the La Luz Observatory (Guanajuato, Mexico) since the end of 2013. With its sole instrument, HEROS, an échelle spectrograph with a spectral resolution R ∼20,000, TIGRE has collected more than 48,000 spectra of 1,151 different sources with a total exposure time of more than 11,000 h in these 8 years. Here we briefly describe the system and the upgrades performed during the last years. We present the statistics of the weather conditions at the La Luz Observatory, emphasizing the characteristics that affect the astronomical observations. We evaluate the performance and efficiency of TIGRE, both optical and operational, and describe the improvements of the system implemented to optimize the telescope's performance and meet the requirements of the astronomer in terms of timing constraints for the observations and the quality of the spectra. We describe the actions taken to slow down the optical efficiency loss due to the aging of the optical surfaces as well as the upgrades of the scheduler and the observing procedures to minimize the time lost due to interrupted observations or observations that do not reach the required quality. Finally, we highlight a few of the main scientific results obtained with TIGRE data. Title: The corona - chromosphere connection studied with simultaneous eROSITA and TIGRE observations Authors: Fuhrmeister, B.; Czesla, S.; Robrade, J.; González-Pérez, J. N.; Schneider, C.; Mittag, M.; Schmitt, J. H. M. M. Bibcode: 2022A&A...661A..24F Altcode: 2021arXiv210614546F Stellar activity manifests itself in a variety of different phenomena, some of which we can measure as activity tracers from different atmospheric layers of the star, typically at different wavelengths. Stellar activity is furthermore inherently time variable, therefore simultaneous measurements are necessary to study the correlation between different activity indicators. In this study we compare X-ray fluxes measured within the first all-sky survey conducted by the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) instrument on board the Spectrum-Roentgen-Gamma observatory to Ca II H&K excess flux measurements RHK+, using observations made with the robotic TIGRE telescope. We created the largest sample of simultaneous X-ray and spectroscopic Ca II H&K observations of late-type stars obtained so far, and in addition, previous measurements of Ca II H&K for all sample stars were obtained. We find the expected correlation between our log(LX/Lbol) to log(RHK+) measurements, but when the whole stellar ensemble is considered, the correlation between coronal and chromospheric activity indicators does not improve when the simultaneously measured data are used. A more detailed analysis shows that the correlation of log(LX/Lbol) to log(RHK+) measurements of the pseudo-simultaneous data still has a high probability of being better than that of a random set of non-simultaneous measurements with a long time baseline between the observations. Cyclic variations on longer timescales are therefore far more important for the activity flux-flux relations than short-term variations in the form of rotational modulation or flares, regarding the addition of "noise" to the activity flux-flux correlations. Finally, regarding the question of predictability of necessarily space-based log (LX/Lbol) measurements by using ground-based chromospheric indices, we present a relation for estimating log (LX/Lbol) from RHK+ values and show that the expected error in the calculated minus observed (C-O) log (LX/Lbol) values is 0.35 dex.

Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A24 Title: eROSITA X-ray scan of the η Chamaeleontis cluster. Member study and search for dispersed low-mass stars Authors: Robrade, J.; Czesla, S.; Freund, S.; Schmitt, J. H. M. M.; Schneider, P. C. Bibcode: 2022A&A...661A..34R Altcode: Context. The nearby young open cluster η Chamaeleontis has been observed by eROSITA/SRG during its CalPV phase for 150 ks. The extended ROentgen Survey with an Imaging Telescope Array (eROSITA) data were taken in the field-scan mode, an observing mode of Spectrum-Roentgen-Gamma (SRG) that follows a rectangular grid-like pattern, here covering a 5 × 5 deg field with an exposure depth of about 5 ks.
Aims: The η Cha cluster with an age of about 8 Myr is a key target for investigating the evolution of young stars, and we aim to study the known members in X-rays. Additionally, we search for potential new members of the anticipated dispersed low-mass cluster population in a sensitive wide-field X-ray observation.
Methods: Using eROSITA X-ray data, we studied the η Cha region. Detected sources were identified by cross-matching X-ray sources with Gala and 2MASS, and young stars were identified by their X-ray activity, the position in the color-magnitude diagram, and by their astrometric and kinematic properties. X-ray-luminosities, light curves, and spectra of cluster members were obtained and compared with previous X-ray data. Literature results of other member searches were used to verify our new member candidates in the observed field.
Results: We determine X-ray properties of virtually all known η Cha members and identify five additional stellar systems that show basically identical characteristics, but they are more dispersed. Four of them were previously proposed as potential members; this status is supported by our X-ray study. Based on their spatial distribution, further members are expected beyond the sky region we surveyed. The identified stellar systems very likely belong to the ejected halo population, which brings the total number of η Cha cluster members to at least 23.
Conclusions: Sensitive X-ray surveys are best suited to identifying active stars, and the combination of the ongoing eROSITA all-sky survey with Gala measurements provides an unprecedented opportunity to study the nearby, young stellar population.

The source catalog is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A34 Title: X-raying the Sco-Cen OB association: The low-mass stellar population revealed by eROSITA Authors: Schmitt, J. H. M. M.; Czesla, S.; Freund, S.; Robrade, J.; Schneider, P. C. Bibcode: 2022A&A...661A..40S Altcode: 2021arXiv210614549S We present the results of the first X-ray all-sky survey (eRASS1) performed by the eROSITA instrument on board the Spectrum-Roentgen-Gamma observatory of the Sco-Cen OB association. Bona fide Sco-Cen member stars are young and are therefore expected to emit X-rays at the saturation level. The sensitivity limit of eRASS1 makes these stars detectable down to about a tenth of a solar mass. By cross-correlating the eRASS1 source catalog with the Gaia EDR3 catalog, we arrive at a complete identification of the stellar (i.e., coronal) source content of eROSITA in the Sco-Cen association, and in particular obtain for the first time a 3D view of the detected stellar X-ray sources. Focusing on the low-mass population and placing the optical counterparts identified in this way in a color-magnitude diagram, we can isolate the young stars out of the detected X-ray sources and obtain age estimates of the various Sco-Cen populations. A joint analysis of the 2D and 3D space motions, the latter being available only for a smaller subset of the detected stellar X-ray sources, reveals that the space motions of the selected population show a high degree of parallelism, but there is also an additional population of young, X-ray emitting and essentially cospatial stars that appears to be more diffuse in velocity space. Its nature is currently unclear. We argue that with our procedures, an identification of almost the whole stellar content of the Sco-Cen association will become possible once the final Gaia and eROSITA catalogs are available by the end of this decade. We furthermore call into question any source population classification scheme that relies on purely kinematic selection criteria.

Full Table A.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A40 Title: The eROSITA Final Equatorial-Depth Survey (eFEDS). Variability catalogue and multi-epoch comparison Authors: Boller, Th.; Schmitt, J. H. M. M.; Buchner, J.; Freyberg, M.; Georgakakis, A.; Liu, T.; Robrade, J.; Merloni, A.; Nandra, K.; Malyali, A.; Krumpe, M.; Salvato, M.; Dwelly, T. Bibcode: 2022A&A...661A...8B Altcode: 2021arXiv210614523B The 140-square-degrees Final Equatorial-Depth Survey (eFEDS) field, observed with the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma mission, provides a first look at the variable eROSITA sky. We analysed the intrinsic X-ray variability of the eFEDS sources and provide X-ray light curves and tables with variability test results in the 0.2-2.3 keV (soft) and 2.3-5.0 keV (hard) bands. We performed variability tests using the traditional normalised excess variance and maximum amplitude variability methods (as performed for the 2RXS catalogue), and we present results from the Bayesian excess variance and Bayesian block methods. We identified 65 sources as being significantly variable in the soft band. In the hard band, only one source is found to vary significantly. For the most variable sources, the light curves are well fit by an empirical stellar flare model and reveal extreme flare properties. A few highly variable active galactic nuclei have also been detected. About half of the variable eFEDS sources are detected in the X-rays for the first time with eROSITA. Comparison with 2RXS and XMM-Newton observations provides variability information on timescales of years to decades.

Table of the eFEDS sources with variability test results is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/661/A8 Title: The eROSITA Final Equatorial-Depth Survey (eFEDS). The Stellar Counterparts of eROSITA sources identified by machine learning and Bayesian algorithms Authors: Schneider, P. C.; Freund, S.; Czesla, S.; Robrade, J.; Salvato, M.; Schmitt, J. H. M. M. Bibcode: 2022A&A...661A...6S Altcode: 2021arXiv210614521S Stars are ubiquitous X-ray emitters and will be a substantial fraction of the X-ray sources detected in the on-going all-sky survey performed by the eROSITA instrument aboard the Spectrum Roentgen Gamma (SRG) observatory. We use the X-ray sources in the eROSITA Final Equatorial-Depth Survey (eFEDS) field observed during the SRG performance verification phase to investigate different strategies to identify the stars among other source categories. We focus here on Support Vector Machine (SVM) and Bayesian approaches, and our approaches are based on a cross-match with the Gaia catalog, which will eventually contain counterparts to virtually all stellar eROSITA sources. We estimate that 2060 stars are among the eFEDS sources based on the geometric match distance distribution, and we identify the 2060 most likely stellar sources with the SVM and Bayesian methods, the latter being named HamStars in the eROSITA context. Both methods reach completeness and reliability percentages of almost 90%, and the agreement between both methods is, incidentally, also about 90%. Knowing the true number of stellar sources allowed us to derive association probabilities pij for the SVM method similar to the Bayesian method so that one can construct samples with defined completeness and reliability properties using appropriate cuts in pij. The thus identified stellar sources show the typical characteristics known for magnetically active stars, specifically, they are generally compatible with the saturation level, show a large spread in activity for stars of spectral F to G, and have comparatively high fractional X-ray luminosities for later spectral types. Title: The nature of the X-ray sources constituting the 6.7 keV Galactic ridge emission Authors: Schmitt, J. H. M. M.; Czesla, S.; Schneider, P. C.; Freund, S.; Robrade, J. Bibcode: 2022A&A...661A..88S Altcode: We reanalyze the deep Chandra X-ray observations near the Galactic center and show that reliable identifications of X-ray sources can be obtained with the Gaia EDR3 data to investigate which types of stellar sources are responsible for the X-ray emission observed from the Galactic ridge (GRXE). In the central 3 arcmin region 318 X-ray sources are detected, about one-third of which can be identified with objects listed in Gaia EDR3; however, only 22 objects have parallaxes and colors and can be placed into a color-magnitude diagram and thus be identified as coronal X-ray emitters. A rather large fraction of the X-ray sources cannot be identified with Gaia EDR3 entries, and we discuss the optical brightnesses of these sources. We analyze the counting events obtained in the 6.7 keV iron line spectral region and show that they are mainly caused by background events; however, 237 events can be associated with the detected X-ray sources, and we carry out an intensity measurement of the whole iron line complex. Our analysis shows that the mean energy of this iron line complex is located at a wavelength of ≈1.87 Å, where a variety of emission lines of iron ions in ionization stages FeXXIII-FeXXV are located; another line at 7.0 keV is only marginally detected, while the fluorescent 6.4 keV neutral iron line is clearly not seen. We demonstrate that only a few of the detected X-ray sources are responsible for the bulk of the observed iron line emission. We discuss to what extent coronal emission can be held responsible and demonstrate that M dwarfs and active binary systems like RS CVn systems do not significantly contribute to the observed emission; instead, it appears that the Galactic ridge emission is produced by optically fainter sources. Among the known population of cataclysmic variables, polars and dwarf novae appear to be the most promising candidates as main contributors to the GRXE. Title: A highly mutually inclined compact warm-Jupiter system KOI-984? Authors: Sun, L.; Ioannidis, P.; Gu, S.; Schmitt, J. H. M. M.; Wang, X.; Kouwenhoven, M. B. N.; Perdelwitz, V.; Flammini Dotti, F.; Czesla, S. Bibcode: 2022MNRAS.512.4604S Altcode: 2021arXiv211109668S The discovery of a population of close-orbiting giant planets (≤ 1 au) has raised a number of questions about their origins and dynamical histories. These issues have still not been fully resolved, despite over 20 years of exoplanet detections and a large number of discovered exoplanets. In particular, it is unclear whether warm Jupiters (WJs) form in situ, or whether they migrate from further outside and are even currently migrating to form hot Jupiters. Here, we report the possible discovery and characterization of the planets in a highly mutually inclined (Imut ≃ 45°) compact two-planet system (KOI-984), in which the newly discovered warm Jupiter KOI-984c is on a 21.5-d moderately eccentric (e ≃ 0.4) orbit, in addition to a previously known 4.3-d planet candidate KOI-984b. Meanwhile, the orbital configuration of a moderately inclined (Imut ≃ 15°) low-mass (mc ≃ 24M; Pb ≃ 8.6 d) perturbing planet near the 1:2 mean-motion resonance with KOI-984b could also well reproduce the observed transit-timing variations and transit-duration variations of KOI-984b. Such an eccentric WJ with a close-in sibling would pose a challenge to the proposed formation and migration mechanisms of WJs if the first scenario is supported with more evidence in the near future; this system with several other well measured inclined WJ systems (e.g. Kepler-419 and Kepler-108) may provide additional clues to the origin and dynamical histories of WJs. Title: The Janus Camera Onboard ESA JUICE Mission: The Science Planning Strategy Authors: Lucchetti, A.; Tubiana, C.; Roatsch, T.; Hueso, R.; Denk, T.; Schmidt, J.; Lopes, R. M. C.; Williams, D.; Bell, J.; Schneider, N.; Lara, L. M.; Gwinner, K.; Stephan, K.; Tosi, F.; Aboudan, A.; Bilotta, T.; Cremonese, G.; Della Corte, V.; Dattolo, A.; Hviid, S.; Mertens, V.; Matz, K. -D.; Politi, R.; Schrödter, R.; Trauthan, F.; Zusi, M.; Palumbo, P.; Janus Team Bibcode: 2022LPICo2678.2144L Altcode: We present the resulting JANUS VIS-camera (onboard ESA JUICE mission) planning strategy we are developing in order to fulfill the JANUS scientific requirements. Title: VizieR Online Data Catalog: eFEDS catalogue of variable X-ray sources (Boller+, 2022) Authors: Boller, T.; Schmitt, J. H. M. M.; Buchner, J.; Freyberg, M.; Georgakakis, A.; Liu, T.; Robrade, J.; Merloni, A.; Nandra, K.; Malyali, A.; Krumpe, M.; Salvato, M.; Dwelly, T. Bibcode: 2022yCat..36610008B Altcode: Intrinsic X-ray variability of eFEDS sources in the 0.2-2.3keV (soft) and 2.3-5.0keV (hard) bands has been determined. Variability tests have been performed using the normalized excess variance, the maximum amplitude variability method as performed for the 2RXS catalogue as well as the Bayesian excess variance and the Bayesian block methods. In total 65 sources have been identified as being significantly variable in the soft band. In the hard band only one source is found to vary significantly. For the most variable sources fits to stellar flare events reveal extreme flare properties. A few highly variable AGN have also been detected. About half of the variable eFEDS sources have been detected at X-rays with eROSITA for the first time.

(2 data files). Title: VizieR Online Data Catalog: eta Cha cluster eROSITA X-ray scan (Robrade+, 2022) Authors: Robrade, J.; Czesla, S.; Freund, S.; Schmitt, J. H. M. M.; Schneider, P. C. Bibcode: 2022yCat..36610034R Altcode: The nearby young open cluster eta Chamaeleontis has been observed by eROSITA/SRG during its CalPV phase for 150ks. The extended ROentgen Survey with an Imaging Telescope Array (eROSITA) data were taken in the field-scan mode, an observing mode of Spectrum-Roentgen-Gamma (SRG) that follows a rectangular grid-like pattern, here covering a 5x5deg field with an exposure depth of about 5ks. We present the X-ray source catalog of the eROSITA eta Cha field scan in the main (0.2-2.3keV) and hard (2.3-5.0keV) energy band.

(2 data files). Title: Orbital obliquity sampling in the Kepler-20 system using the 3D animation software Blender Authors: Müller, H. M.; Ioannidis, P.; Schmitt, J. H. M. M. Bibcode: 2022A&A...657A..37M Altcode: 2021arXiv211009268M Context. The mutual orbital alignment in multiple planetary systems is an important parameter for understanding their formation. There are a number of elaborate techniques to determine the alignment parameters using photometric or spectroscopic data. Planet-planet occultations (PPOs), which can occur in multiple transiting systems, are one intuitive example. While the presence of PPOs constrains the orbital alignment, the absence at first glance does not.
Aims: Planetary systems, for which the measurement of orbital obliquities with conventional techniques remains elusive, call for new methods whereby at least some information on the alignments can be obtained. Here we develop a method that uses photometric data to gain this kind of information from multi-transit events.
Methods: In our approach we synthesize multi-transit light curves of the exoplanets in question via the construction of a grid of projected orbital tilt angles α, while keeping all transit parameters constant. These model light curves contain PPOs for some values of α. To compute the model light curves, we use the 3D animation software Blender for our transit simulations, which allows the use of arbitrary surface brightness distributions of the star, such as limb darkening from model atmospheres. The resulting model light curves are then compared to actual measurements.
Results: We present a detailed study of the multi-transiting planetary system Kepler-20, including parameter fits of the transiting planets and an analysis of the stellar activity. We apply our method to Kepler-20 b and c, where we are able to exclude some orbital geometries, and find a tendency of these planets to eclipse in front of different stellar hemispheres in a prograde direction.
Conclusions: Despite the low statistical significance of our results in the case of Kepler-20, we argue that our method is valuable for systems where PPO signals larger than the noise can occur. According to our analysis, noise ≤ 2 × 10−4 for planets like Kepler-20 b, or a planet radius ≥ 3 REarth for the smaller component and Kepler-20-like photometry, would be sufficient to achieve significant results. Title: Hα and He I absorption in HAT-P-32 b observed with CARMENES. Detection of Roche lobe overflow and mass loss Authors: Czesla, S.; Lampón, M.; Sanz-Forcada, J.; García Muñoz, A.; López-Puertas, M.; Nortmann, L.; Yan, D.; Nagel, E.; Yan, F.; Schmitt, J. H. M. M.; Aceituno, J.; Amado, P. J.; Caballero, J. A.; Casasayas-Barris, N.; Henning, Th.; Khalafinejad, S.; Molaverdikhani, K.; Montes, D.; Pallé, E.; Reiners, A.; Schneider, P. C.; Ribas, I.; Quirrenbach, A.; Zapatero Osorio, M. R.; Zechmeister, M. Bibcode: 2022A&A...657A...6C Altcode: 2021arXiv211013582C We analyze two high-resolution spectral transit time series of the hot Jupiter HAT-P-32 b obtained with the CARMENES spectrograph. Our new XMM-Newton X-ray observations of the system show that the fast-rotating F-type host star exhibits a high X-ray luminosity of 2.3 × 1029 erg s−1 (5-100 Å), corresponding to a flux of 6.9 × 104 erg cm−2 s−1 at the planetary orbit, which results in an energy-limited escape estimate of about 1013 g s−1 for the planetary mass-loss rate. The spectral time series show significant, time-dependent absorption in the Hα and He Iλ10833 triplet lines with maximum depths of about 3.3% and 5.3%. The mid-transit absorption signals in the Hα and He Iλ10833 lines are consistent with results from one-dimensional hydrodynamic modeling, which also yields mass-loss rates on the order of 1013 g s−1. We observe an early ingress of a redshifted component of the transmission signal, which extends into a redshifted absorption component, persisting until about the middle of the optical transit. While a super-rotating wind can explain redshifted ingress absorption, we find that an up-orbit stream, transporting planetary mass in the direction of the star, also provides a plausible explanation for the pre-transit signal. This makes HAT-P-32 a benchmark system for exploring atmospheric dynamics via transmission spectroscopy. Title: The CARMENES search for exoplanets around M dwarfs. Diagnostic capabilities of strong K I lines for photosphere and chromosphere Authors: Fuhrmeister, B.; Czesla, S.; Nagel, E.; Reiners, A.; Schmitt, J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Shulyak, D.; Johnson, E. N.; Zechmeister, M.; Montes, D.; López-Gallifa, Á.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Galadí-Enríquez, D.; Hatzes, A. P.; Kürster, M.; Danielski, C.; Béjar, V. J. S.; Kaminski, A.; Morales, J. C.; Zapatero Osorio, M. R. Bibcode: 2022A&A...657A.125F Altcode: 2021arXiv211101552F There are several strong K I lines found in the spectra of M dwarfs, among them the doublet near 7700 Å and another doublet near 12 500 Å. We study these optical and near-infrared doublets in a sample of 324 M dwarfs, observed with CARMENES, the high-resolution optical and near-infrared spectrograph at Calar Alto, and investigate how well the lines can be used as photospheric and chromospheric diagnostics. Both doublets have a dominant photospheric component in inactive stars and can be used as tracers of effective temperature and gravity. For variability studies using the optical doublet, we concentrate on the red line component because this is less prone to artefacts from telluric correction in individual spectra. The optical doublet lines are sensitive to activity, especially for M dwarfs later than M5.0 V where the lines develop an emission core. For earlier type M dwarfs, the red component of the optical doublet lines is also correlated with Hα activity. We usually find positive correlation for stars with Hα in emission, while early-type M stars with Hα in absorption show anti-correlation. During flares, the optical doublet lines can exhibit strong fill-in or emission cores for our latest spectral types. On the other hand, the near-infrared doublet lines very rarely show correlation or anti-correlation to Hα and do not change line shape significantly even during the strongest observed flares. Nevertheless, the near-infrared doublet lines show notable resolved Zeeman splitting for about 20 active stars which allows to estimate the magnetic fields B.

Full Table 2 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/A125 Title: Gaia21fji is indeed a Young Stellar Object Authors: Adami, Ch.; Grosso, N.; Dennefeld, M.; Favard, St.; Schmitt, J.; Huppert, Fr.; Brunel, J. C. Bibcode: 2021ATel15131....1A Altcode: Gaia 21fji (= AT2021aftk) was alerted on Nov. 6, 2021 due to a recent brightening (Hodgkin et al., TNS Astronomical Transient Report 130737) and noted as "Candidate YSO". Title: VizieR Online Data Catalog: KI diagnostic capabilities for M dwarfs (Fuhrmeister+, 2022) Authors: Fuhrmeister, B.; Czesla, S.; Nagel, E.; Reiners, A.; Schmitt, J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Shulyak, D.; Johnson, E. N.; Zechmeister, M.; Montes, D.; Lopez-Gallifa, A.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Galadi-Enriquez, D.; Hatzes, A. P.; Kuerster, M.; Danielski, C.; Bejar, V. J. S.; Kaminski, A.; Morales, J. C.; Zapatero Osorio, M. R. Bibcode: 2021yCat..36570125F Altcode: We measure the pseudo-equivalent width for pEW) of the KI doublet lines in each stellar spectrum. The integration ranges for the lines and the reference bands are found in Table 1 of the paper. For comparison purposes we also measure pEW values of Halpha. From these measurements we compute the mean pEW, the median absolute deviation (MAD) and Pearson's correlation coefficients for the lines.

(1 data file). Title: Using a Holistic Modeling Approach to Simulate Mud-Induced Periodic Stratification in Hyper-Turbid Estuaries Authors: Schmidt, J.; Malcherek, A. Bibcode: 2021GeoRL..4892798S Altcode: This study focuses on a holistic modeling approach, in which water, fluid mud, and immobile mud are all calculated by only one set of equations. To integrate the immobile mud into this concept, a holistic transport equation including sediment transport and consolidation is developed. In some estuaries, extensive deepening and dredging resulted in tidal deformation and sediment import to such extent, that hyper-turbid conditions developed. Recent measurements from the Ems estuary show that the locations of interfaces between water, fluid mud, and consolidated mud vary during a tidal cycle. Conditions are varying from fully mixed to stably stratified. As a suitable case study for the holistic model, a 1D vertical numerical simulation of the Ems has been set up, which is able to qualitatively reproduce the observed vertical velocity, concentration, and velocity shear profile. The simulation shows mud-induced periodic stratification. Title: Current status of PAPYRUS: the pyramid based adaptive optics system at LAM/OHP Authors: Muslimov, E.; Levraud, N.; Chambouleyron, V.; Boudjema, I.; Lau, A.; Caillat, A.; Pedreros, F.; Otten, G.; El Hadi, K.; Joaquina, K.; Maxime, M.; El Morsy, M.; Beltramo-Martin, O.; Fétick, R.; Ke, Z.; Sauvage, J. -F.; Neichel, B.; Fusco, T.; Schmitt, J.; Le Van Suu, A.; Charton, J.; Schimpf, A.; Martin, B.; Dintrono, F.; Esposito, S.; Pina, E. Bibcode: 2021SPIE11876E..0HM Altcode: 2021arXiv211010263M; 2021arXiv211010263E The Provence Adaptive optics Pyramid Run System (PAPYRUS) is a pyramid-based Adaptive Optics (AO) system that will be installed at the Coude focus of the 1.52m telescope (T152) at the Observatoire de Haute Provence (OHP). The project is being developed by PhD students and Postdocs across France with support from staff members consolidating the existing expertise and hardware into an RD testbed. This testbed allows us to run various pyramid wavefront sensing (WFS) control algorithms on-sky and experiment on new concepts for wavefront control with additional benefit from the high number of available nights at this telescope. It will also function as a teaching tool for students during the planned AO summer school at OHP. To our knowledge, this is one of the first pedagogic pyramid-based AO systems on-sky. The key components of PAPYRUS are a 17x17 actuators Alpao deformable mirror with a Alpao RTC, a very low noise camera OCAM2k, and a 4-faces glass pyramid. PAPYRUS is designed in order to be a simple and modular system to explore wavefront control with a pyramid WFS on sky. We present an overview of PAPYRUS, a description of the opto-mechanical design and the current status of the project. Title: VizieR Online Data Catalog: eRASS1 X-ray sources Sco-Cen members (Schmitt+, 2022) Authors: Schmitt, J. H. M. M.; Czesla, S.; Freund, S.; Robrade, J.; Schneider, P. C. Bibcode: 2021yCat..36610040S Altcode: Our Sco-Cen membership list is presented together with the X-ray properties as obtained by a crossmatch with detections from the first eROSITA all-sky survey (eRASS1) and the Gaia Early Data release EDR3. In the catalog we provide a list with the corresponding (preliminary) eROSITA designations, the designations of the matching Gaia EDR3 identifications, the derived X-ray right ascensions and declinations (in degrees), the match distances (in arcsec) between eROSITA and Gaia sources, the eRASS1 count rate (in cts/s) as well as a flag, denoting which part of the Sco-Cen association the entry belongs to (US,UCL,UCC).

(1 data file). Title: Simultaneous eROSITA and TESS observations of the ultra-active star AB Doradus Authors: Schmitt, J. H. M. M.; Ioannidis, P.; Robrade, J.; Predehl, P.; Czesla, S.; Schneider, P. C. Bibcode: 2021A&A...652A.135S Altcode: 2021arXiv210614537S We present simultaneous multiwavelength observations of the ultra-active star AB Doradus obtained in the X-ray range with the eROSITA instrument on board the Russian-German Spectrum-Roentgen-Gamma mission, and in the optical range obtained with the Transiting Exoplanet Survey Satellite (TESS). Thanks to its fortuitous location in the vicinity of the southern ecliptic pole, AB Dor was observed by these missions simultaneously for almost 20 days. With the hitherto obtained data we study the long-term evolution of the X-ray flux from AB Dor and the relation between this observable and the photospheric activity of its spots. Over the 1.5 yr of eROSITA survey observations, the "quiescent" X-ray flux of AB Dor has not changed, and furthermore it appears unrelated to the photospheric modulations observed by TESS. During the simultaneous eROSITA and TESS coverage, an extremely large flare event with a total energy release of at least 4 × 1036 erg in the optical was observed, the largest ever seen on AB Dor. We show that the total X-ray output of this flare was far smaller than this, and discuss whether this maybe a general feature of flares on late-type stars.

Note to the reader: the article was assigned to another Special Issue on 16 December 2021. Title: CARMENES input catalog of M dwarfs. VI. A time-resolved Ca II H&K catalog from archival data Authors: Perdelwitz, V.; Mittag, M.; Tal-Or, L.; Schmitt, J. H. M. M.; Caballero, J. A.; Jeffers, S. V.; Reiners, A.; Schweitzer, A.; Trifonov, T.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Seifert, W.; Cifuentes, C.; Cortés-Contreras, M.; Montes, D.; Revilla, D.; Skrzypinski, S. L. Bibcode: 2021A&A...652A.116P Altcode: 2021arXiv210706376P Context. Radial-velocity (RV) jitter caused by stellar magnetic activity is an important factor in state-of-the-art exoplanet discovery surveys such as CARMENES. Stellar rotation, along with heterogeneities in the photosphere and chromosphere caused by activity, can result in false-positive planet detections. Hence, it is necessary to determine the stellar rotation period and compare it to any putative planetary RV signature. Long-term measurements of activity indicators such as the chromospheric emission in the Ca II H&K lines (RHK') enable the identification of magnetic activity cycles.
Aims: In order to determine stellar rotation periods and study the long-term behavior of magnetic activity of the CARMENES guaranteed time observations (GTO) sample, it is advantageous to extract RHK' time series from archival data, since the CARMENES spectrograph does not cover the blue range of the stellar spectrum containing the Ca II H&K lines.
Methods: We have assembled a catalog of 11 634 archival spectra of 186 M dwarfs acquired by seven different instruments covering the Ca II H&K regime: ESPaDOnS, FEROS, HARPS, HIRES, NARVAL, TIGRE, and UVES. The relative chromospheric flux in these lines, RHK', was directly extracted from the spectra by rectification with PHOENIX synthetic spectra via narrow passbands around the Ca II H&K line cores.
Results: The combination of archival spectra from various instruments results in time series for 186 stars from the CARMENES GTO sample. As an example of the use of the catalog, we report the tentative discovery of three previously unknown activity cycles of M dwarfs.
Conclusions: We conclude that the method of extracting RHK^\prime with the use of model spectra yields consistent results for different instruments and that the compilation of this catalog will enable the analysis of long-term activity time series for a large number of M dwarfs.

Full Table 3 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/652/A116 Title: OHP spectroscopic observations of AT2021, candidate Nova in M31 Authors: Dennefeld, M.; Schmitt, J.; Favard, St.; Hornstein, J.; Adami, C. Bibcode: 2021ATel14760....1D Altcode: We observed at Haute-Provence Observatory (OHP, CNRS, France) the candidate Nova in M31, PNV 00424717 +4118173 = AT 2021scc (Hornoch et al., ATel 14753) on July 6th, 01h50UT, with the new spectro-imager Mistral during its last test runs at the 1.93m telescope. Title: VizieR Online Data Catalog: CARMENES time-resolved CaII H&K catalog (Perdelwitz+, 2021) Authors: Perdelwitz, V.; Mittag, M.; Tal-Or, L.; Schmitt, J. H. M. M.; Caballero, J. A.; Jeffers, S. V.; Reiners, A.; Schweitzer, A.; Trifonov, T.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Seifert, W.; Cifuentes, C.; Cortes-Contreras, M.; Montes, D.; Revilla, D.; Skrzypinski, S. L. Bibcode: 2021yCat..36520116P Altcode: The time-resolved catalog is based on pipeline-reduced spectra from seven different spectrographs:

ESPADONS (Donati et al., 1997MNRAS.291..658D; Petit et al., 2014PASP..126..469P, Cat. J/PASP/126/469) FEROS (Kaufer et al., 1999Msngr..95....8K) HARPS (Mayor et al., 2003Msngr.114...20M) HIRES (Vogt et al. 1994, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 2198, Instrumentation in Astronomy VIII, 362; Vogt 2002, in Astronomical Society of the Pacific Conference Series, Vol. 270, Astronomical Instrumentation and Astrophysics, 5) NARVAL (Petit et al., 2014PASP..126..469P, Cat. J/PASP/126/469; Donati et al. 2006, in Astronomical Society of the Pacific Conference Series, Vol. 358, Solar Polarization 4, 362) TIGRE (Schmitt et al., 2004ANS...325...27W) UVES (Dekker et al. 2000, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4008, Optical and IR Telescope Instrumentation and Detectors, 534-545)

The spectral rectification and flux calibration is based on PHOENIX model atmospheres (Husser et al., 2013A&A...553A...6H).

(2 data files). Title: A cosmic dust detection suite for the deep space Gateway Authors: Wozniakiewicz, P. J.; Bridges, J.; Burchell, M. J.; Carey, W.; Carpenter, J.; Della Corte, V.; Dignam, A.; Genge, M. J.; Hicks, L.; Hilchenbach, M.; Hillier, J.; Kearsley, A. T.; Krüger, H.; Merouane, S.; Palomba, E.; Postberg, F.; Schmidt, J.; Srama, R.; Trieloff, M.; van-Ginneken, M.; Sterken, V. J. Bibcode: 2021AdSpR..68...85W Altcode: The decade of the 2020s promises to be when humanity returns to space beyond Earth orbit, with several nations trying to place astronauts on the Moon, before going further into deep space. As part of such a programme, NASA and partner organisations, propose to build a Deep Space Gateway in lunar orbit by the mid-2020s. This would be visited regularly and offer a platform for science as well as for human activity. Payloads that can be mounted externally on the Gateway offer the chance to, amongst other scientific goals, monitor and observe the dust flux in the vicinity of the Moon. This paper looks at relevant technologies to measure dust which will impact the exposed surface at high speed. Flux estimates and a model payload of detectors are described. It is predicted that the flux is sufficient to permit studies of cometary vs. asteroidal dust and their composition, and to sample interstellar dust streams. This may also be the last opportunity to measure the natural dust flux near the Moon before the current, relatively pristine environment, is contaminated by debris, as humanity's interest in the Moon generates increased activity in that vicinity in coming decades. Title: eROSITA X-ray scan of the eta Chamaeleontis cluster Authors: Robrade, J.; Czesla, S.; Freund, S.; Schmitt, J. H. M. M.; Schneider, P. C. Bibcode: 2021arXiv210614531R Altcode: The nearby young open cluster eta Chamaeleontis has been observed by eROSITA/SRG during its CalPV phase for 150 ks. The eROSITA data were taken in the field-scan mode, an observing mode of Spectrum-Roentgen-Gamma (SRG) that follows a rectangular grid-like pattern, here covering a 5x5 deg field with an exposure depth of about 5 ks. We study the known members in X-rays and search for potential new members of the anticipated dispersed low-mass cluster population. Detected sources were identified by cross-matching X-ray sources with Gaia and 2MASS, and young stars were identified by their X-ray activity, the position in the color-magnitude diagram, and by their astrometric and kinematic properties. X-ray-luminosities, light curves, and spectra of cluster members were obtained and compared with previous X-ray data. Literature results of other member searches were used to verify our new member candidates in the observed field. We determine X-ray properties of virtually all known eta Cha members and identify five additional stellar systems that show basically identical characteristics, but are more dispersed. Four of them were previously proposed as potential members; this status is supported by our X-ray study. Based on their spatial distribution, further members are expected beyond the sky region we surveyed. The identified stellar systems very likely belong to the ejected halo population, which brings the total number of eta Cha cluster members to at least 23. Title: VizieR Online Data Catalog: Corona-chromosphere connection (Fuhrmeister+, 2022) Authors: Fuhrmeister, B.; Czesla, S.; Robrade, J.; Gonzales-Perez, J. N.; Schneider, C.; Mittag, M.; Schmitt, J. H. M. M. Bibcode: 2021yCat..36610024F Altcode: We state here the X-ray luminosities derived from the eROSITA count-rates. The CaII H & K measurements are given as S-index for the TIGRE telescope, which can be converted to SMountWilson by the equation given in Mittag et al. (2016A&A...591A..89M). We list the median value for all CaII H & K measurements and the pseudo-simultaneous data. For the latter we give the time difference between the middle of the eROSITA observation and the TIGRE observation. Rotation period estimates from CaII H & K are computed following Mittag et al. (2018A&A...618A..48M).

(1 data file). Title: Connecting the Formation of Stars and Planets. I - Spectroscopic Characterization of Host Stars with TIGRE Authors: Flor-Torres, L. M.; Coziol, R.; Schröder, K. -P.; Jack, D.; Schmitt, J. H. M. M.; Blanco-Cuaresma, S. Bibcode: 2021RMxAA..57..199F Altcode: 2021arXiv210111666F In search for a connection between the formation of stars and the formation of planets, a new semi-automatic spectral analysis method using iSpec was developed for the TIGRE telescope installed in Guanajuato, Mexico. TIGRE is a 1.2m robotic telescope, equipped with an Echelle spectrograph (HEROS), with a resolution R ≃ 20000. iSpec is a synthetic spectral fitting program for stars that allows to determine in an homogeneous way their fundamental parameters: effective temperature, Teff, surface gravity, log g, metallicities, [M/H] and [Fe/H], and rotational velocity, V sin i. In this first article we test our method by analysing the spectra of 46 stars, hosts of exoplanets, obtained with the TIGRE. Title: Connecting the Formation of Stars and Planets. II: Coupling the Angular Momentum of Stars with the Angular Momentum of Planets Authors: Flor-Torres, L. M.; Coziol, R.; Schröder, K. -P.; Jack, D.; Schmitt, J. H. M. M. Bibcode: 2021RMxAA..57..217F Altcode: 2021arXiv210111676F A sample of 46 stars, host of exoplanets, is used to search for a connection between their formation process and the formation of the planets rotating around them. Separating our sample into two, stars hosting high-mass exoplanets (HMEs) and low-mass exoplanets (LMEs), we found the former to be more massive and to rotate faster than the latter. We also found the HMEs to have higher orbital angular momentum than the LMEs and to have lost more angular momentum through migration. These results are consistent with the view that the more massive the star and the higher its rotation, the more massive was its protoplanetarys disk and rotation, and the more efficient was the extraction of angular momentum from the planets. Title: New 59Fe Stellar Decay Rate with Implications for the 60Fe Radioactivity in Massive Stars Authors: Gao, B.; Giraud, S.; Li, K. A.; Sieverding, A.; Zegers, R. G. T.; Tang, X.; Ash, J.; Ayyad-Limonge, Y.; Bazin, D.; Biswas, S.; Brown, B. A.; Chen, J.; DeNudt, M.; Farris, P.; Gabler, J. M.; Gade, A.; Ginter, T.; Grinder, M.; Heger, A.; Hultquist, C.; Hill, A. M.; Iwasaki, H.; Kwan, E.; Li, J.; Longfellow, B.; Maher, C.; Ndayisabye, F.; Noji, S.; Pereira, J.; Qi, C.; Rebenstock, J.; Revel, A.; Rhodes, D.; Sanchez, A.; Schmitt, J.; Sumithrarachchi, C.; Sun, B. H.; Weisshaar, D. Bibcode: 2021PhRvL.126o2701G Altcode: The discrepancy between observations from γ -ray astronomy of the 60Fe / 26Al γ -ray flux ratio and recent calculations is an unresolved puzzle in nuclear astrophysics. The stellar β -decay rate of 59Fe is one of the major nuclear uncertainties impeding us from a precise prediction. The important Gamow-Teller strengths from the low-lying states in 59Fe to the 59Co ground state are measured for the first time using the exclusive measurement of the 59Co (t ,<SUP<3He+γ )59Fe charge-exchange reaction. The new stellar decay rate of 59Fe is a factor of 3.5 ±1.1 larger than the currently adopted rate at T =1.2 GK . Stellar evolution calculations show that the 60Fe production yield of an 18 solar mass star is decreased significantly by 40% when using the new rate. Our result eliminates one of the major nuclear uncertainties in the predicted yield of 60Fe and alleviates the existing discrepancy of the 60Fe / 26Al ratio. Title: Experimental Study of Chondrule Rim Formation Authors: Hyde, T. W.; Schmidt, J.; Matthews, L. S.; Carballido, A. Bibcode: 2021LPI....52.1128H Altcode: Chondrules found within chondritic meteorites contain fundamental information about the origin of the solar system. This paper examines the development of fine-grained dust rims and the data they provide concerning this question. Title: The eROSITA X-ray telescope on SRG Authors: Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.; Bornemann, W.; Bräuninger, H.; Brüggen, M.; Brunner, H.; Brusa, M.; Bulbul, E.; Buntov, M.; Burwitz, V.; Burkert, W.; Clerc, N.; Churazov, E.; Coutinho, D.; Dauser, T.; Dennerl, K.; Doroshenko, V.; Eder, J.; Emberger, V.; Eraerds, T.; Finoguenov, A.; Freyberg, M.; Friedrich, P.; Friedrich, S.; Fürmetz, M.; Georgakakis, A.; Gilfanov, M.; Granato, S.; Grossberger, C.; Gueguen, A.; Gureev, P.; Haberl, F.; Hälker, O.; Hartner, G.; Hasinger, G.; Huber, H.; Ji, L.; Kienlin, A. v.; Kink, W.; Korotkov, F.; Kreykenbohm, I.; Lamer, G.; Lomakin, I.; Lapshov, I.; Liu, T.; Maitra, C.; Meidinger, N.; Menz, B.; Merloni, A.; Mernik, T.; Mican, B.; Mohr, J.; Müller, S.; Nandra, K.; Nazarov, V.; Pacaud, F.; Pavlinsky, M.; Perinati, E.; Pfeffermann, E.; Pietschner, D.; Ramos-Ceja, M. E.; Rau, A.; Reiffers, J.; Reiprich, T. H.; Robrade, J.; Salvato, M.; Sanders, J.; Santangelo, A.; Sasaki, M.; Scheuerle, H.; Schmid, C.; Schmitt, J.; Schwope, A.; Shirshakov, A.; Steinmetz, M.; Stewart, I.; Strüder, L.; Sunyaev, R.; Tenzer, C.; Tiedemann, L.; Trümper, J.; Voron, V.; Weber, P.; Wilms, J.; Yaroshenko, V. Bibcode: 2021A&A...647A...1P Altcode: 2020arXiv201003477P eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2-2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3-8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements. Title: Life, the Universe and Everything... you ever wanted to know about the Astrophysics Source Code Library Authors: Allen, A.; DuPrie, K.; Gosmeyer, C.; Mavuram, S.; Nemiroff, R.; Ryan, P.; Schmidt, J.; Teuben, P. Bibcode: 2021AAS...23712705A Altcode: Why does the Astrophysics Source Code Library (ASCL, ascl.net) exist? Does it include planetary software? Are the ASCL's data available for download? What changes have occurred in astronomy in the past ten years that make publishing and getting credit for software easier? Does the ASCL mint DOIs for its entries? Do other disciplines have something analogous to the ASCL? What improvements have been added to the ASCL? This presentation answers all of these questions and more, and provides the rationale behind the ASCL's actions. In addition, it provides tips and tricks for using the ASCL and leveraging the information in it to improve the discoverability and citation of your own research software. Title: OHP classification of Atlas21aao (=AT2021fv) as a Ia SN a few days before maximum Authors: Dennefeld, M.; Adami, C.; Schmitt, J.; Troncin, J. P. Bibcode: 2021ATel14304....1D Altcode: During a further test run of the new spectro-imager Mistral attached to the 1.93m telescope at Haute-Provence Observatory (OHP-CNRS), we observed the transient ATLAS21aao (=AT2021fv) on Jan. 06.021 UT. The useful range was 408-812 nm and the slit was opened at 2" (4 pixels of 0.20 nm each). Title: A technique for the study of (p,n) reactions with unstable isotopes at energies relevant to astrophysics Authors: Gastis, P.; Perdikakis, G.; Berg, G. P. A.; Dombos, A. C.; Estrade, A.; Falduto, A.; Horoi, M.; Liddick, S. N.; Lipschutz, S.; Lyons, S.; Montes, F.; Palmisano, A.; Pereira, J.; Randhawa, J. S.; Redpath, T.; Redshaw, M.; Schmitt, J.; Sheehan, J. R.; Smith, M. K.; Tsintari, P.; Villari, A. C. C.; Wang, K.; Zegers, R. G. T. Bibcode: 2021NIMPA.98564603G Altcode: 2020arXiv200413506G We have developed and tested an experimental technique for the measurement of low-energy (p,n) reactions in inverse kinematics relevant to nuclear astrophysics. The proposed setup is located at the ReA3 facility at the National Superconducting Cyclotron Laboratory. In the current approach, we operate the beam-transport line in ReA3 as a recoil separator while tagging the outgoing neutrons from the (p,n) reactions with the low-energy neutron detector array (LENDA). The developed technique was verified by using the 40Ar(p,n)40K reaction as a probe. The results of the proof-of-principle experiment with the 40Ar beam show that cross-section measurements within an uncertainty of ∼25% are feasible with count rates up to 7 counts/mb/pnA/s. In this article, we give a detailed description of the experimental setup, and present the analysis method and results from the test experiment. Future plans on using the technique in experiments with the separator for capture reactions (SECAR) that is currently being commissioned are also discussed. Title: Spectroscopic classification of some transients at Haute-Provence Observatory: Gaia20fnu (=AT2020abcl), ZTF20actskcf (=AT2020abfa), Gaia20fpd (=AT2020aaun), Atlas20bgpi (=AT2020abqq) and Gaia20fcl (=AT2020aazj) Authors: Dennefeld, M.; Adami, C.; Russell, D.; Basa, St.; Schmitt, J.; Brunel, J. C.; Dolon, Fr.; Huppert, Fr.; LeVanSuu, A.; Troncin, J. P. Bibcode: 2020ATel14263....1D Altcode: Observations were made during a test run of the new imaging-spectrograph Mistral mounted at the Cassegrain focus of the 1.93m telescope on Dec. 8 and 9, 2020. Title: The CARMENES M-dwarf planet survey Authors: Quirrenbach, Andreas; CARMENES Consortium; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.; Aceituno, J.; Alacid, J. M.; Alonso-Floriano, F. J.; Anglada-Escudé, G.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Béjar, V. J. S.; Bluhm, P.; Calvo Ortega, R.; Cardona Guillén, C.; Casasayas-Barris, N.; Chaturvedi, P.; Cifuentes, C.; Colomé, J.; Conte, D.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Domínguez Fernández, A. J.; Dreizler, S.; Duque-Arribas, C.; Espinoza, N.; Fuhrmeister, B.; Galadí-Enríquez, D.; Gar´a Quintana, E.; González-Alvare, E.; González Cuesta, z. L.; González Hernández, J. I.; Guenther, E. W.; de Guindos, E.; Hatzes, A. P.; Henning, T.; Herbort, O.; Herrero, E.; Hintz, D.; Iglesias-Pára, J.; Jeffers, S. V.; Johnson, E. N.; de Juan, E.; Kaminski, A.; Kemmer, J.; Khaimova, J.; Khalafinejad, S.; Klahr, H.; Kossakowski, D.; Kreidberg, L.; Kürster, M.; Labarga, F.; Lafarga, M.; Lampón, M.; Lara, L. M.; Lillo-Box, J.; Lodieu, N.; López Gallifa, A.; López González, M. J.; López-Puertas, M.; Luque, R.; Marfil, E.; Martín-Ruiz, S.; Matthé, C.; Molaverdikhani, K.; Montes, D.; Morales, J. C.; Morales-Calderóon, M.; Nagel, E.; Nortmann, L.; Nowak, G.; Ofir, A.; Oshaghi, M.; Pallé, E.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Perdelwitz, V.; Perger, M.; Reffert, S.; Revilla, D.; Rodríguez, E.; Rodríguez López, C.; Sabotta, S.; Sadegi, S.; Sairam, L.; Salz, M.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Schäfer, S.; Schiller, J.; Schlecker, M.; Schmitt, J. H. M. M.; Schöfer, P.; Schweitzer, A.; Seiferta, W.; Shan, Y.; Shulyak, D.; Skrzypinski, S. L.; Solano, E.; Soto, M. G.; Stahl, O.; Stangret, M.; Stock, S. A.; Strachan, J. B. P.; Stuber, T.; Stürmer, J.; Tabernero, H. M.; Tal-Or, L.; Tala-Pinto, M.; Trifonov, T.; Vanaverbeke, S.; Yan, F.; Zapatero Osorio, M. R.; Zechmeister, M. Bibcode: 2020SPIE11447E..3CQ Altcode: The CARMENES instrument consists of two cross-dispersed Échelle spectrographs, which together cover the wavelength range from 5,200 to 17,100 Å. During its first five years of operation at the 3.5 m telescope on Calar Alto, Spain, it has been used for a radial-velocity survey of 365 M dwarfs, for follow-up radial-velocity observations of transiting exoplanets, and for spectroscopic studies of exoplanet atmospheres during transits. The CARMENES data have also yielded a wealth of information on the fundamental parameters and activity of M dwarfs. We provide an overview of the scientific results from the main CARMENES survey in the years 2016 to 2020. Title: Keeping up with the cool stars: one TESS year in the life of AB Doradus Authors: Ioannidis, P.; Schmitt, J. H. M. M. Bibcode: 2020A&A...644A..26I Altcode: 2020arXiv201016273I The long-term, high precision photometry delivered by the Transiting Exoplanet Survey Satellite (TESS) enables us to gain new insight into known and hitherto well-studied stars. In this paper, we present the result of our TESS study of the photospheric activity of the rapid rotator AB Doradus. Due to its favorable position near the southern ecliptic pole, the TESS satellite recorded almost 600 rotations of AB Doradus with high cadence, allowing us to study starspots and flares on this ultra-active star. The observed peak-to-peak variation of the rotational modulations reaches almost 11%, and we find that the starspots on AB Doradus show highly preferred longitudinal positions. Using spot modeling, we measured the positions of the active regions on AB Doradus and we find that preferred spot configurations should include large regions extending from low to high stellar latitudes. We interpret the apparent movement of spots as the result of both differential rotation and spot evolution and argue that the typical spot lifetimes should range between 10 and 20 days. We further find a connection between the flare occurrence on AB Doradus and the visibility of the active regions on its surface, and we finally recalculated the star's rotation period using different methods and we compared it with previous determinations. Title: Spectroscopic confirmation of AT2020aafw as a Nova in M31 Authors: Adami, C.; Dennefeld, M.; Schmitt, J.; Brunel, J. C.; Dolon, Fr.; Huppert, Fr.; LeVanSuu, A.; Moreau, Fr.; Troncin, J. P.; Russeil, D.; Basa, St. Bibcode: 2020ATel14215....1A Altcode: We have obtained spectra of AT2020aafw, a candidate Nova in M31 discovered independently by Hornoch et al. (ATel 14183) and Conjat (TNS report 89872) on Nov. 16 and 17. Observations were made during a test run on Nov. 23.88 UT, with the new, low-dispersion spectro-imager Mistral, attached to the Cassegrain focus of the OHP 1.93m telescope. Title: Proxima Centauri - the nearest planet host observed simultaneously with AstroSat, Chandra, and HST Authors: Lalitha, S.; Schmitt, J. H. M. M.; Singh, K. P.; Schneider, P. C.; Parke Loyd, R. O.; France, K.; Predehl, P.; Burwitz, V.; Robrade, J. Bibcode: 2020MNRAS.498.3658L Altcode: 2020MNRAS.tmp.2492L; 2020arXiv200807175L Our nearest stellar neighbour, Proxima Centauri, is a low-mass star with spectral type dM5.5 and hosting an Earth-like planet orbiting within its habitable zone. However, the habitability of the planet depends on the high-energy radiation of the chromospheric and coronal activity of the host star. We report the AstroSat, Chandra, and HST observation of Proxima Centauri carried out as part of the multiwavelength simultaneous observational campaign. Using the soft X-ray data, we probe the different activity states of the star. We investigate the coronal temperatures, emission measures and abundance. Finally, we compare our results with earlier observations of Proxima Centauri. Title: Time series of optical spectra of Nova V659 Sct Authors: Jack, Dennis; Schröder, Klaus-Peter; Eenens, Philippe; Wolter, Uwe; González-Pérez, José Nicolás.; Schmitt, Jürgen H. M. M.; Hauschildt, Peter H. Bibcode: 2020AN....341..781J Altcode: 2020arXiv200614052J With our robotic 1.2 m TIGRE telescope, we were able to obtain eight optical spectra with intermediate resolution (R ≈ 20,000) of the Nova V659 Sct during different phases of its outburst. We present a list of the lines found in the Nova spectra. The most common features are H I, O I, Na I, Fe II, and Ca II. Studying the spectral evolution of the strong features, we found that the absorption features move to higher expansion velocities before disappearing, and the emission features show (different) asymmetries. Because of the intermediate spectral resolution, we identified and analyzed the interstellar medium absorption features present in the spectra. We detected atomic absorption features of Na I and Ca II. The sodium D lines show more complex substructures with three main absorption features at a velocity of around -10, 30, and 85 km s-1. We identified several diffuse interstellar bands (DIBs) in the Nova V659 Sct spectra and determined their velocities and equivalent widths. Title: An extensive spectroscopic time series of three Wolf-Rayet stars - II. A search for wind asymmetries in the dust-forming WC7 binary WR137 Authors: St-Louis, N.; Piaulet, C.; Richardson, N. D.; Shenar, T.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Sablowski, D. P.; Simón-Díaz, S.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A. Bibcode: 2020MNRAS.497.4448S Altcode: 2020arXiv200709239S; 2020MNRAS.tmp.2293S We present the results of a 4-month, spectroscopic campaign of the Wolf-Rayet dust-making binary, WR137. We detect only small-amplitude random variability in the C III λ5696 emission line and its integrated quantities (radial velocity, equivalent width, skewness, and kurtosis) that can be explained by stochastic clumps in the wind of the WC star. We find no evidence of large-scale periodic variations often associated with Corotating Interaction Regions that could have explained the observed intrinsic continuum polarization of this star. Our moderately high-resolution and high signal-to-noise average Keck spectrum shows narrow double-peak emission profiles in the H α, H β, H γ, He II λ6678, and He II λ5876 lines. These peaks have a stable blue-to-red intensity ratio with a mean of 0.997 and a root mean square of 0.004 commensurate with the noise level; no variability is found during the entire observing period. We suggest that these profiles arise in a decretion disc around the O9 companion, which is thus an O9e star. The characteristics of the profiles are compatible with those of other Be/Oe stars. The presence of this disc can explain the constant component of the continuum polarization of this system, for which the angle is perpendicular to the plane of the orbit, implying that the rotation axis of the O9e star is aligned with that of the orbit. It remains to be explained why the disc is so stable within the strong ultraviolet radiation field of the O star. We present a binary evolutionary scenario that is compatible with the current stellar and system parameters. Title: VizieR Online Data Catalog: Chromospheric activity of SZ Piscium (Cao+, 2020) Authors: Cao, D.; Gu, S.; Wolter, U.; Mittag, M.; Schmitt, J. H. M. M. Bibcode: 2020yCat..51590292C Altcode: High-resolution spectroscopic observations of the SZ Psc system were performed during several observing runs from 2014 to 2018. Most of the spectroscopic observations were carried out with the 2.16m telescope at the Xinglong station of National Astronomical Observatories and the 2.4m telescope at the Lijiang station of Yunnan observatories, Chinese Academy of Sciences, respectively. The same fiber-fed High-Resolution Echelle Spectrograph (HiRES), which has a resolving power of R=λ/Δλ~48000 over the wavelength range from 3900 to 9500Å, was equipped to both telescopes and the 4096x4096pixel CCD detectors were respectively used to record the echelle spectra during our observations.

(2 data files). Title: The corona of GJ 1151 in the context of star-planet interaction Authors: Foster, G.; Poppenhaeger, K.; Alvarado-Gómez, J. D.; Schmitt, J. H. M. M. Bibcode: 2020MNRAS.497.1015F Altcode: 2020arXiv200705317F; 2020MNRAS.tmp.2100F The low-mass star GJ 1151 has been reported to display variable low-frequency radio emission, which has been interpreted as a signpost of coronal star-planet interactions with an unseen exoplanet. Here we report the first X-ray detection of GJ 1151's corona based on the XMM-Newton data. We find that the star displays a small flare during the X-ray observation. Averaged over the observation, we detect the star with a low coronal temperature of 1.6 MK and an X-ray luminosity of LX = 5.5 × 1026 erg s-1. During the quiescent time periods excluding the flare, the star remains undetected with an upper limit of $L_{\mathrm{ X},\, \mathrm{ qui}} \le 3.7\times 10^{26}$ erg s-1. This is compatible with the coronal assumptions used in a recently published model for a star-planet interaction origin of the observed radio signals from this star. Title: The CARMENES search for exoplanets around M dwarfs. Variability of the He I line at 10 830 Å Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.; Schmitt, J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Hintz, D.; Johnson, E. N.; Schöfer, P.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Nortmann, L.; Bauer, F. F.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Galadí-Enríquez, D.; Hatzes, A. P.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D. Bibcode: 2020A&A...640A..52F Altcode: 2020arXiv200609372F The He I infrared (IR) triplet at 10 830 Å is known as an activity indicator in solar-type stars and has become a primary diagnostic in exoplanetary transmission spectroscopy. He I IR lines are a tracer of the stellar extreme-ultraviolet irradiation from the transition region and corona. We study the variability of the He I triplet lines in a spectral time series of 319 M dwarf stars that was obtained with the CARMENES high-resolution optical and near-infrared spectrograph at Calar Alto. We detect He I IR line variability in 18% of our sample stars, all of which show Hα in emission. Therefore, we find detectable He I variability in 78% of the sub-sample of stars with Hα emission. Detectable variability is strongly concentrated in the latest spectral sub-types, where the He I lines during quiescence are typically weak. The fraction of stars with detectable He I variation remains lower than 10% for stars earlier than M3.0 V, while it exceeds 30% for the later spectral sub-types. Flares are accompanied by particularly pronounced line variations, including strongly broadened lines with red and blue asymmetries. However, we also find evidence for enhanced He I absorption, which is potentially associated with increased high-energy irradiation levels at flare onset. Generally, He I and Hα line variations tend to be correlated, with Hα being the most sensitive indicator in terms of pseudo-equivalent width variation. This makes the He I triplet a favourable target for planetary transmission spectroscopy.

Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A52 Title: Updated X-ray view of the Hyades cluster Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2020A&A...640A..66F Altcode: 2020arXiv200605135F
Aims: We revisit the X-ray properties of the main sequence Hyades members and the relation between X-ray emission and stellar rotation.
Methods: As an input catalog for Hyades members, we combined three recent Hyades membership lists derived from Gaia DR2 data that include the Hyades core and its tidal tails. We searched for X-ray detections of the main sequence Hyades members in the ROSAT all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory, and XMM-Newton. Furthermore, we adopted rotation periods derived from Kepler's K2 mission and other resources.
Results: We find an X-ray detection for 281 of 1066 bona fide main sequence Hyades members and provide statistical upper limits for the undetected sources. The majority of the X-ray detected stars are located in the Hyades core because of its generally smaller distance to the Sun. F- and G-type stars have the highest detection fraction (72%), while K- and M-type dwarfs have lower detection rates (22%). The X-ray luminosities of the detected members range from ∼2 × 1027 erg s-1 for late M-type dwarfs to ∼2 × 1030 erg s-1 for active binaries. The X-ray luminosity distribution functions formally differ for the members in the core and tidal tails, which is likely caused by a larger fraction of field stars in our Hyades tails sample. Compared to previous studies, our sample is slightly fainter in X-rays due to differences in the Hyades membership list used; furthermore, we extend the X-ray luminosity distribution to fainter luminosities. The X-ray activity of F- and G-type stars is well defined at FX/Fbol ≈ 10-5. The fractional X-ray luminosity and its spread increases to later spectral types reaching the saturation limit (FX/Fbol ≈ 10-3) for members later than spectral type M3. Confirming previous results, the X-ray flux varies by less than a factor of three between epochs for the 104 Hyades members with multiple epoch data, significantly less than expected from solar-like activity cycles. Rotation periods are found for 204 Hyades members, with about half of them being detected in X-rays. The activity-rotation relation derived for the coeval Hyades members has properties very similar to those obtained by other authors investigating stars of different ages.

Data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A66 Title: The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: The example of the super-Earth CD Cet b Authors: Bauer, F. F.; Zechmeister, M.; Kaminski, A.; Rodríguez López, C.; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D.; Quirrenbach, A.; Becerril Jarque, S.; Rodríguez, E.; Amado, P. J.; Seifert, W.; Reiners, A.; Schäfer, S.; Ribas, I.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A.; Henning, T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Schweitzer, A.; Solano, E. Bibcode: 2020A&A...640A..50B Altcode: 2020arXiv200601684B The high-resolution, dual channel, visible and near-infrared spectrograph CARMENES offers exciting opportunities for stellar and exoplanetary research on M dwarfs. In this work we address the challenge of reaching the highest radial velocity precision possible with a complex, actively cooled, cryogenic instrument, such as the near-infrared channel. We describe the performance of the instrument and the work flow used to derive precise Doppler measurements from the spectra. The capability of both CARMENES channels to detect small exoplanets is demonstrated with the example of the nearby M5.0 V star CD Cet (GJ 1057), around which we announce a super-Earth (4.0 ± 0.4 M) companion on a 2.29 d orbit.

Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, Almería, Spain, operated jointly by the Junta de Andalucía and the Instituto de Astrofísica de Andalucía (CSIC).

Based on observations collected at the European Southern Observatory, Paranal, Chile, under program 0103.C-0152(A), and La Silla, Chile, under programs 072.C-0488(E) and 183.C-0437(A). Title: Atmospheric characterization of the ultra-hot Jupiter MASCARA-2b/KELT-20b. Detection of Ca II, Fe II, Na I, and the Balmer series of H (Hα, Hβ, and Hγ) with high-dispersion transit spectroscopy (Corrigendum) Authors: Casasayas-Barris, N.; Pallé, E.; Yan, F.; Chen, G.; Kohl, S.; Stangret, M.; Parviainen, H.; Helling, Ch.; Watanabe, N.; Czesla, S.; Fukui, A.; Montañés-Rodríguez, P.; Nagel, E.; Narita, N.; Nortmann, L.; Nowak, G.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R. Bibcode: 2020A&A...640C...6C Altcode: No abstract at ADS Title: eRASSt J100130.9-614021: A new bright X-ray source discovered by SRG/eROSITA Authors: Rau, A.; Maitra, C.; Ducci, L.; Schmitt, J.; Wilms, J.; Kreykenbohm, I.; Weber, Ph.; Salvato, M.; Lamer, G.; Schwope, A. Bibcode: 2020ATel13844....1R Altcode: During the second all-sky survey (eRASS:2), the eROSITA instrument on board the Russian/German Spektrum-Roentgen-Gamma (SRG) mission discovered a new X-ray source, eRASSt J100130.9-614021, localized to RA(J2000) = 10:01:30.93 (150.37887 deg) Dec(J2000) = -61:40:21.5 (-61.67265 deg) with an estimated uncertainty of 2.5" radius (incl. Title: Further Investigation on Chromospheric and Prominence Activity of the RS Canum Venaticorum Star SZ Piscium Authors: Cao, Dongtao; Gu, Shenghong; Wolter, U.; Mittag, M.; Schmitt, J. H. M. M. Bibcode: 2020AJ....159..292C Altcode: To continue our study on chromospheric activity and detection for possible prominence events of the very active RS Canum Venaticorum star SZ Piscium (SZ Psc), long-term high-resolution spectroscopic observations were obtained during several observing runs from 2014 to 2018. Based on the spectral subtraction technique, the chromospheric emission of the Ca II IRT (λ8662, λ8542, and λ8498), Hα, Na I D1, D2 doublet, Hβ, and Ca II H & K lines is mainly associated with the K1 IV primary star of the SZ Psc system, in good agreement with the previous studies, and the F8 V secondary star also shows some chromospheric emission, implying its active chromosphere. Moreover, an optical flare characterized by the He I D3 line emission together with stronger emission in the other indicators was detected. Furthermore, two chromospheric active longitudes around the two quadratures of the system were identified for most of the time, and the chromospheric activity shows significant changes during a few orbital cycles. The chromospheric activity level seems to show a long-term variation during our observations. There were some excess absorption features in the subtracted Hα line and the other activity indicators, which would be caused by prominence-like materials associated with the K1 IV primary star of the system. Prominence materials could absorb the chromospheric emission and continuum from the K1 IV primary star and even the F8 V secondary one. Title: The CARMENES search for exoplanets around M dwarfs. Dynamical characterization of the multiple planet system GJ 1148 and prospects of habitable exomoons around GJ 1148 b Authors: Trifonov, T.; Lee, M. H.; Kürster, M.; Henning, Th.; Grishin, E.; Stock, S.; Tjoa, J.; Caballero, J. A.; Wong, K. H.; Bauer, F. F.; Quirrenbach, A.; Zechmeister, M.; Ribas, I.; Reffert, S.; Reiners, A.; Amado, P. J.; Kossakowski, D.; Azzaro, M.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A. P.; Jeffers, S. V.; Kaminski, A.; Lafarga, M.; Montes, D.; Morales, J. C.; Pavlov, A.; Rodríguez-López, C.; Schmitt, J. H. M. M.; Solano, E.; Barnes, R. Bibcode: 2020A&A...638A..16T Altcode: 2020arXiv200200906T Context. GJ 1148 is an M-dwarf star hosting a planetary system composed of two Saturn-mass planets in eccentric orbits with periods of 41.38 and 532.02 days.
Aims: We reanalyze the orbital configuration and dynamics of the GJ 1148 multi-planetary system based on new precise radial velocity measurements taken with CARMENES.
Methods: We combined new and archival precise Doppler measurements from CARMENES with those available from HIRES for GJ 1148 and modeled these data with a self-consistent dynamical model. We studied the orbital dynamics of the system using the secular theory and direct N-body integrations. The prospects of potentially habitable moons around GJ 1148 b were examined.
Results: The refined dynamical analyses show that the GJ 1148 system is long-term stable in a large phase-space of orbital parameters with an orbital configuration suggesting apsidal alignment, but not in any particular high-order mean-motion resonant commensurability. GJ 1148 b orbits inside the optimistic habitable zone (HZ). We find only a narrow stability region around the planet where exomoons can exist. However, in this stable region exomoons exhibit quick orbital decay due to tidal interaction with the planet.
Conclusions: The GJ 1148 planetary system is a very rare M-dwarf planetary system consisting of a pair of gas giants, the inner of which resides in the HZ. We conclude that habitable exomoons around GJ 1148 b are very unlikely to exist. Title: VizieR Online Data Catalog: Updated X-ray view of the Hyades cluster (Freund+, 2020) Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2020yCat..36400066F Altcode: Our Hyades membership list is presented together with the X-ray and rotational properties. The X-ray properties were obtained by a crossmatch with detections from the Second ROSAT all-sky survey (2RXS, Cat. J/A+A/588/A103) source catalog, and pointings from the Second ROSAT PSPC catalog (2RXP, Cat. IX/30),

ROSAT HRI Pointed Observations (1RXH, Cat. IX/28), the Chandra Source Catalog, and XMM-Newton. For sources with multiple detections, the X-ray data derived from XMM-Newton or Chandra data is adopted as best X-ray identification if available, and otherwise the ROSAT observation with the longest exposure time. In addition to the best X-ray identification, all detections from the different instruments are provided. Hyades members with multiple detections of the same source in one catalog have multiple entries in the table. All X-ray fluxes are converted into the XMM-Newton band (0.2-12keV) adopting an APEC thermal plasma model with a temperature of log(T)=6.5 and solar metallicity. For the Hyades members not detected in any catalog, upper limits are provided. The rotation periods are adopted from Douglas et al. (2019ApJ...879..100D) and Lanzafame et al. (2018A&A...616A..16L, Cat. I/345).

(1 data file). Title: Rotation of solar-like stars in the immediate solar neighborhood Authors: Schmitt, Jürgen H. M. M.; Mittag, Marco Bibcode: 2020AN....341..497S Altcode: Although photometric space-based missions such as CoRoT or Kepler have yielded rotation measurements of many thousands of late-type stars during the last decade, the rotational properties of the bulk of the G star population remain undetected by these missions. From the Sun (when viewed as a star), we know that rotation measurements in the ultraviolet are the most promising, or more general, measurements in wavelength regions very sensitive to plage areas on the stars. Therefore, the "classical" S-index, that is, the strength of the Ca II H&K line core emission, is still the most viable activity and rotation indicator, and with robotic spectroscopy telescopes, such monitoring measurements can be carried out efficiently and economically. We define a complete volume-limited sample of solar stars in the immediate solar environment and present period measurements in Ca II H&K, both from archival Mount Wilson data and new data obtained with our robotic TIGRE facility. Title: VizieR Online Data Catalog: M dwarfs HeI infrared triplet variability (Fuhrmeister+, 2020) Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.; Schmitt, J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Hintz, D.; Johnson, E. N.; Schoefer, P.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Nortmann, L.; Bauer, F. F.; Bejar, V. J. S.; Cortes-Contreras, M.; Dreizler, S.; Galadi-Enriquez, D.; Hatzes, A. P.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Montes, D. Bibcode: 2020yCat..36400052F Altcode: The HeI infrared (IR) triplet at 10830Å is known as an activity indicator and has become a primary diagnostic in exoplanetary transmission spectroscopy. The HeI IR lines are a tracer of the stellar extreme-ultraviolet irradiation from the transition region and corona. We study the variability of the HeI IR triplet lines in spectral time series of 319 M dwarf stars, obtained with the CARMENES spectrograph.

We measure the pseudo-equivalent width (pEW) in each stellar spectrum. The integration ranges for the line and the reference bands are found in Table 1 of the paper. For comparison purposes we also measure pEW values of Hα, the bluest CaII IR triplet line, and the HeI D3 line. From these measurements we compute the mean pEW, the median absolute deviation (MAD) and Pearson's correlation coefficients for the lines.

(1 data file). Title: The CARMENES search for exoplanets around M dwarfs. The He I infrared triplet lines in PHOENIX models of M 2-3 V stars Authors: Hintz, D.; Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M.; Schweitzer, A.; Nagel, E.; Johnson, E. N.; Caballero, J. A.; Zechmeister, M.; Jeffers, S. V.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Anglada-Escudé, G.; Bauer, F. F.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Galadí-Enríquez, D.; Guenther, E. W.; Hauschildt, P. H.; Kaminski, A.; Kürster, M.; Lafarga, M.; López del Fresno, M.; Montes, D.; Morales, J. C. Bibcode: 2020A&A...638A.115H Altcode: 2020arXiv200506246H The He I infrared (IR) line at a vacuum wavelength of 10 833 Å is a diagnostic for the investigation of atmospheres of stars and planets orbiting them. For the first time, we study the behavior of the He I IR line in a set of chromospheric models for M-dwarf stars, whose much denser chromospheres may favor collisions for the level population over photoionization and recombination, which are believed to be dominant in solar-type stars. For this purpose, we use published PHOENIX models for stars of spectral types M2 V and M3 V and also compute new series of models with different levels of activity following an ansatz developed for the case of the Sun. We perform a detailed analysis of the behavior of the He I IR line within these models. We evaluate the line in relation to other chromospheric lines and also the influence of the extreme ultraviolet (EUV) radiation field. The analysis of the He I IR line strengths as a function of the respective EUV radiation field strengths suggests that the mechanism of photoionization and recombination is necessary to form the line for inactive models, while collisions start to play a role in our most active models. Moreover, the published model set, which is optimized in the ranges of the Na I D2, Hα, and the bluest Ca II IR triplet line, gives an adequate prediction of the He I IR line for most stars of the stellar sample. Because especially the most inactive stars with weak He I IR lines are fit worst by our models, it seems that our assumption of a 100% filling factor of a single inactive component no longer holds for these stars. Title: The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B) Authors: González-Álvarez, E.; Zapatero Osorio, M. R.; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F.; Rodríguez, E.; Tal-Or, L.; Zechmeister, M.; Montes, D.; López-González, M. J.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Cortés-Contreras, M.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Morales, J. C.; Pallé, E.; Perger, M.; Schmitt, J. H. M. M. Bibcode: 2020A&A...637A..93G Altcode: 2020arXiv200313052G
Aims: We report on radial velocity time series for two M0.0 V stars, GJ 338 B and GJ 338 A, using the CARMENES spectrograph, complemented by ground-telescope photometry from Las Cumbres and Sierra Nevada observatories. We aim to explore the presence of small planets in tight orbits using the spectroscopic radial velocity technique.
Methods: We obtained 159 and 70 radial velocity measurements of GJ 338 B and A, respectively, with the CARMENES visible channel between 2016 January and 2018 October. We also compiled additional relative radial velocity measurements from the literature and a collection of astrometric data that cover 200 a of observations to solve for the binary orbit.
Results: We found dynamical masses of 0.64 ± 0.07 M for GJ 338 B and 0.69 ± 0.07 M for GJ 338 A. The CARMENES radial velocity periodograms show significant peaks at 16.61 ± 0.04 d (GJ 338 B) and 16.3-1.3+3.5 d (GJ 338 A), which have counterparts at the same frequencies in CARMENES activity indicators and photometric light curves. We attribute these to stellar rotation. GJ 338 B shows two additional, significant signals at 8.27 ± 0.01 and 24.45 ± 0.02 d, with no obvious counterparts in the stellar activity indices. The former is likely the first harmonic of the star's rotation, while we ascribe the latter to the existence of a super-Earth planet with a minimum mass of 10.27-1.38+1.47 M orbiting GJ 338 B. We have not detected signals of likely planetary origin around GJ 338 A.
Conclusions: GJ 338 Bb lies inside the inner boundary of the habitable zone around its parent star. It is one of the least massive planets ever found around any member of stellar binaries. The masses, spectral types, brightnesses, and even the rotational periods are very similar for both stars, which are likely coeval and formed from the same molecular cloud, yet they differ in the architecture of their planetary systems.

Full Tables B.1-B.6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/637/A93 Title: The CARMENES search for exoplanets around M dwarfs. Radial velocities and activity indicators from cross-correlation functions with weighted binary masks Authors: Lafarga, M.; Ribas, I.; Lovis, C.; Perger, M.; Zechmeister, M.; Bauer, F. F.; Kürster, M.; Cortés-Contreras, M.; Morales, J. C.; Herrero, E.; Rosich, A.; Baroch, D.; Reiners, A.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Alacid, J. M.; Béjar, V. J. S.; Dreizler, S.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Montes, D.; Pedraz, S.; Rodríguez-López, C.; Schmitt, J. H. M. M. Bibcode: 2020A&A...636A..36L Altcode: 2020arXiv200307471L Context. For years, the standard procedure to measure radial velocities (RVs) of spectral observations consisted in cross-correlating the spectra with a binary mask, that is, a simple stellar template that contains information on the position and strength of stellar absorption lines. The cross-correlation function (CCF) profiles also provide several indicators of stellar activity.
Aims: We present a methodology to first build weighted binary masks and, second, to compute the CCF of spectral observations with these masks from which we derive radial velocities and activity indicators. These methods are implemented in a python code that is publicly available.
Methods: To build the masks, we selected a large number of sharp absorption lines based on the profile of the minima present in high signal-to-noise ratio (S/N) spectrum templates built from observations of reference stars. We computed the CCFs of observed spectra and derived RVs and the following three standard activity indicators: full-width-at-half-maximum as well as contrast and bisector inverse slope.
Results: We applied our methodology to CARMENES high-resolution spectra and obtain RV and activity indicator time series of more than 300 M dwarf stars observed for the main CARMENES survey. Compared with the standard CARMENES template matching pipeline, in general we obtain more precise RVs in the cases where the template used in the standard pipeline did not have enough S/N. We also show the behaviour of the three activity indicators for the active star YZ CMi and estimate the absolute RV of the M dwarfs analysed using the CCF RVs.

Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/636/A36 Title: VizieR Online Data Catalog: Absolute radial velocities of CARMENES M dwarfs (Lafarga+, 2020) Authors: Lafarga, M.; Ribas, I.; Lovis, C.; Perger, M.; Zechmeister, M.; Bauer, F. F.; Kuerster, M.; Cortes-Contreras, M.; Morales, J. C.; Herrero, E.; Rosich, A.; Baroch, D.; Reiners, A.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Alacid, J. M.; Bejar, V. J. S.; Dreizler, S.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Montes, D.; Pedraz, S.; Rodriguez-Lopez, C.; Schmitt, J. H. M. M. Bibcode: 2020yCat..36360036L Altcode: Absolute radial velocities (RVs) of 323 M dwarf stars observed with CARMENES. The RVs were computed using the cross-correlation function (CCF) method with binary masks on CARMENES visual observations. The RV values and uncertainties also take into account the gravitational redshift and the convective blueshift of the stars. The gravitational redshift is computed using mass and radius values from Schweitzer et al., 2019A&A...625A..68S, Cat. J/A+A/625/A68. We consider the convective blueshift to be 0+/-100m/s for all stars.

(1 data file). Title: VizieR Online Data Catalog: HD 79211 CARMENES radial velocities (Gonzalez-Alvarez+, 2020) Authors: Gonzalez-Alvarez, E.; Zapatero Osorio, M. R.; Caballero, J. A.; Sanz-Forcada, J.; Bejar, V. J. S.; Gonzalez-Cuesta, L.; Dreizler, S.; Bauer, F. F.; Rodriguez, E.; Tal-Or, L.; Zechmeister, M.; Montes, D.; Lopez-Gonzalez, M. J.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Anglada-Escude, G.; Azzaro, M.; Cortes-Contreras, M.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Morales, J. C.; Palle, E.; Perger, M.; Schmitt, J. H. M. M. Bibcode: 2020yCat..36370093G Altcode: Detailed CARMENES RV analysis of the M0.0 V stars GJ 338 A (HD 79210) and GJ 338 B (HD 79211), a wide binary system with similar mass stellar components.

New RVs were obtained for each member of the stellar binary using the CARMENES fibre-fed, echelle spectrograph. CARMENES is installed at the 3.5m telescope of the Calar Alto Observatory in Almeria (Spain).

(6 data files). Title: The first Doppler imaging of the active binary prototype RS Canum Venaticorum Authors: Xiang, Yue; Gu, Shenghong; Wolter, U.; Schmitt, J. H. M. M.; Collier Cameron, A.; Barnes, J. R.; Mittag, M.; Perdelwitz, V.; Kohl, S. Bibcode: 2020MNRAS.492.3647X Altcode: 2020arXiv200102572X We present the first Doppler images of the prototypical active binary star RS Canum Venaticorum, derived from high-resolution spectra observed in 2004, 2016 and 2017, using three different telescopes and observing sites. We apply the least-squares deconvolution technique to all observed spectra to obtain high signal-to-noise line profiles, which are used to derive the surface images of the active K-type component. Our images show a complex spot pattern on the K star, distributed widely in longitude. All star-spots revealed by our Doppler images are located below a latitude of about 70°. In accordance with previous light-curve modelling studies, we find no indication of a polar spot on the K star. Using Doppler images derived from two consecutive rotational cycles, we estimate a surface differential rotation rate of ΔΩ = -0.039 ± 0.003 rad d-1 and α = ΔΩ/Ωeq = -0.030 ± 0.002 for the K star. Given the limited phase coverage during those two rotations, the uncertainty of our differential rotation estimate is presumably higher. Title: VizieR Online Data Catalog: GJ 3512 radial velocity and light curves (Morales+, 2019) Authors: Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodriguez, E.; Lopez-Gonzalez, M. J.; Rodriguez-Lopez, C.; Bejar, V. J. S.; Gonzalez-Cuesta, L.; Luque, R.; Palle, E.; Perger, M.; Baroch, D.; Johansen, A.; Klahr, H.; Mordasini, C.; Anglada-Escude, G.; Caballero, J. A.; Cortes-Contreras, M.; Dreizler, S.; Lafarga, M.; Nagel, E.; Passegger, V. M.; Reffert, S.; Rosich, A.; Schweitzer, A.; Tal-Or, L.; Trifonov, T.; Zechmeister, M.; Quirrenbach, A.; Amado, P. J.; Guenther, E. W.; Hagen, H. -J.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kurster, M.; Montes, D.; Seifert, W.; Abellan, F. J.; Abril, M.; Aceituno, J.; Aceituno, F. J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Arroyo-Torres, B.; Azzaro, M.; Barrado, D.; Becerril-Jarque, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Brinkmoller, M.; Del Burgo, C.; Burn, R.; Calvo-Ortega, R.; Cano, J.; Cardenas, M. C.; Cardona Guillen, C.; Carro, J.; Casal, E.; Casanova, V.; Casasayas-Barris, N.; Chaturvedi, P.; Cifuentes, C.; Claret, A.; Colome, J.; Czesla, S.; Diez-Alonso, E.; Dorda, R.; Emsenhuber, A.; Fernandez, M.; Fernandez-Martin, A.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Gallardo Cava, I.; Garcia Vargas, M. L.; Garcia-Piquer, A.; Gesa, L.; Gonzalez-Alvarez, E.; Gonzalez Hernandez, J. I.; Gonzalez-Peinado, R.; Guardia, J.; Guijarro, A.; de Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Hermelo, I.; Hernandez Arabi, R.; Hernandez, Otero F.; Hintz, D.; Holgado, G.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kehr, M.; Kemmer, J.; Kim, M.; Kluter, J.; Klutsch, A.; Labarga, F.; Labiche, N.; Lalitha, S.; Lampon, M.; Lara, L. M.; Launhardt, R.; Lazaro, F. J.; Lizon, J. -L.; Llamas, M.; Lodieu, N.; Lopez Del Fresno, M.; Lopez Salas, J. F.; Lopez-Santiago, J.; Magan Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Martin, E. L.; Martin-Fernandez, P.; Martin-Ruiz, S.; Martinez-Rodriguez, H.; Marvin, C. J.; Mirabet, E.; Moya, A.; Naranjo, V.; Nelson, R. P.; Nortmann, L.; Nowak, G.; Ofir, A.; Pascual, J.; Pavlov, A.; Pedraz, S.; Perez Medialde, A. D.; Perez-Calpena, A.; Perryman, M. A. C.; Rabaza, O.; Ramon Ballesta, A.; Rebolo, R.; Redondo, P.; Rix, H. -W.; Rodler, F.; Rodriguez Trinidad, A.; Sabotta, S.; Sadegi, S.; Salz, M.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schafer, S.; Schlecker, M.; Schmitt, J. H. M. M.; Schofer, P.; Solano, E.; Sota, A.; Stahl, O.; Stock, S.; Stuber, T.; Sturmer, J.; Suarez, J. C.; Tabernero, H. M.; Tulloch, S. M.; Veredas, G.; Vico-Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2020yCatp021036502M Altcode: These tables list the radial velocities measured with the visual (VIS) and near-infrared (NIR) channels of the CARMENES spectrograph (Quirrenbach et al. 2018SPIE10702E..0WQ), and the stellar activity indices computed with SERVAL (Zechmeister et al. 2018A&A...609A..12Z). Photometry obtained from the Montsec, Sierra Nevada, and las Cumbres observatories is also listed here as used in the paper.

(4 data files). Title: Behavior of Dust in an Inductively-Heated Plasma Jet with Application to Planetary Science Authors: Schmidt, J.; Carballido, A.; Laufer, R.; Herdrich, G.; Hyde, T. W. Bibcode: 2020LPI....51.1839S Altcode: Alumina particles have been injected into Argon gas plasma jets created by the inductively-heated plasma generator IPG6-B and interaction has been observed. Title: The CARMENES search for exoplanets around M dwarfs. Photospheric parameters of target stars from high-resolution spectroscopy. II. Simultaneous multi-wavelength range modeling of activity insensitive lines (Corrigendum) Authors: Passegger, V. M.; Schweitzer, A.; Shulyak, D.; Nagel, E.; Hauschildt, P. H.; Reiners, A.; Amado, P. J.; Caballero, J. A.; Cortés-Contreras, M.; Domínguez-Fernández, A. J.; Quirrenbach, A.; Ribas, I.; Azzaro, M.; Anglada-Escudé, G.; Bauer, F. F.; Béjar, V. J. S.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Martín, E. L.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Zechmeister, M. Bibcode: 2020A&A...634C...2P Altcode: No abstract at ADS Title: Magnetic activity and evolution of the four Hyades K giants Authors: Schröder, K. -P.; Mittag, M.; Jack, D.; Rodríguez Jiménez, A.; Schmitt, J. H. M. M. Bibcode: 2020MNRAS.492.1110S Altcode: 2019arXiv191203638S; 2019MNRAS.tmp.3183S We determine the exact physical parameters of the four Hyades cluster K giants, using their parallaxes and atmospheric modelling of our red-channel TIGRE high-resolution spectra. Performing a comparison with well-tested evolutionary tracks, we derive exact masses and evolutionary stages. At an age of 588 (±60) Myr and with a metallicity of Z = 0.03 (consistent with the spectroscopic abundances), we find HD 27371 and HD 28307, the two less bright K giants, at the onset of central helium burning, entering their blue loops with a mass of 2.62 M, while the slightly brighter stars HD 28305 and HD 27697 are already exiting their blue loop. Their more advanced evolution suggests a higher mass of 2.75 M. Notably, this pairing coincides with the different activity levels, which we find for these four stars from chromospheric activity monitoring with TIGRE and archival Mount Wilson data as well as from ROSAT coronal detections. The two less evolved K giants are the far more active pair, and we confidently confirm their rotation with periods of about 142 d. This work therefore provides some first, direct evidence of magnetic braking during the 130 Myr lasting phase of central helium-burning, similar to what has long been known to occur to cool main-sequence stars. Title: Best ways to let others know how to cite your research software Authors: Allen, A.; Nemiroff, R.; Ryan, P.; Schmidt, J.; Teuben, P. Bibcode: 2020AAS...23510912A Altcode: Software citation is good for research transparency and reproducibility, and maybe, if you work it right, for your CV, too. You can get credit and recognition through citations for your code! This presentation highlights several powerful methods for increasing the probability that use of your research software will be cited, and cited correctly. The presentation covers how to create codemeta.json and CITATION.cff automagically from Astrophysics Source Code Library (ASCL ascl.net) entries, edit, and use these files, the value of including such files on your code site(s), and efforts underway in astronomy and other fields to improve software citation and credit. Title: Initial performance of the CUORE detector Authors: Cushman, J. S.; Alduino, C.; Alfonso, K.; Avignone, F. T., III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Ma, Y. G.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Nagorny, S. S.; Napolitano, T.; Nastasi, M.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.; O'Donnell, T.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Reindl, F.; Rosenfeld, C.; Rusconi, C.; Sakai, M.; Sangiorgio, S.; Santone, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Taffarello, L.; Terranova, F.; Tomei, C.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zhang, G. Q.; Zimmermann, S.; Zucchelli, S. Bibcode: 2020JPhCS1342a2114C Altcode: CUORE, the Cryogenic Underground Observatory for Rare Events, is an experiment searching for the neutrinoless double-beta decay of 130Te. The first CUORE dataset was acquired in May and June 2017 and consisted of 10.6 kg-yr of TeO2 exposure, with several days of calibration data before and after the physics dataset. We discuss here the initial performance of the CUORE detector and cryostat in this first dataset. Title: Three-Dimensional Kinematic Reconstruction of the Optically-Emitting, High-Velocity, Oxygen-Rich Ejecta of Supernova Remnant N132D Authors: Milisavljevic, D.; Law, C. J.; Patnaude, D.; Plucinsky, P.; Gladders, M.; Schmidt, J.; Sravan, N.; Banovetz, J.; Sano, H.; McGraw, J.; Takahashi, G. Bibcode: 2020AAS...23530708M Altcode: We present a three-dimensional (3D) kinematic reconstruction of the optically-emitting, oxygen-rich ejecta of supernova remnant N132D in the Large Magellanic Cloud. Data were obtained with the 6.5m Magellan telescope in combination with the IMACS+GISMO instrument and survey [O III] 4959, 5007 line emission in a 3' x 3' region centered on N132D. The spatial and spectral resolution of our data enable detailed examination of structure and the ability to compare and contrast this structure with other remnants. The majority of N132D's optically bright oxygen ejecta are arranged in a torus-like geometry tilted approximately 28 degrees with respect to the plane of the sky. The torus has a radius of 4.36 pc (D = 50 kpc), exhibits a blue-shifted radial velocity asymmetry of -3000 to 2300 km/s, and has a conspicuous break in its circumference. Assuming homologous expansion from the geometric center of O-rich filaments, the average expansion velocity of 1744 km/s translates to an age since explosion of 2445 ± 195 yr. A faint, spatially-separated "runaway knot" (RK) with total space velocity of 3150 km/s is nearly perpendicular to the torus plane and coincident with X-ray emission that is substantially enhanced in Si relative to the LMC and N132D's bulk ejecta. These kinematic and chemical signatures suggest that the RK may have had its origin deep within the progenitor star. Overall, the main shell morphology and high-velocity, Si-enriched components of N132D have remarkable similarity with that of Cassiopeia A, which is known to be the result of a Type IIb supernova explosion. Our results underscore the need for further observations and simulations that can robustly reconcile whether the observed morphology is dominated by explosion dynamics or shaped by interaction with the environment. Title: Gamow-Teller transitions to 93Zr via the 93Nb(t ,3He+γ ) reaction at 115 MeV/u and its application to the stellar electron-capture rates Authors: Gao, B.; Zegers, R. G. T.; Zamora, J. C.; Bazin, D.; Brown, B. A.; Bender, P.; Crawford, H. L.; Engel, J.; Falduto, A.; Gade, A.; Gastis, P.; Ginter, T.; Guess, C. J.; Lipschutz, S.; Macchiavelli, A. O.; Miki, K.; Ney, E. M.; Longfellow, B.; Noji, S.; Pereira, J.; Schmitt, J.; Sullivan, C.; Titus, R.; Weisshaar, D. Bibcode: 2020PhRvC.101a4308G Altcode: Electron-capture reactions play important roles in the late evolution of core-collapse supernovae. The electron-capture rates used in astrophysical simulations rely on theoretical calculations which have to be tested against and guided by experimental data. We report on the measurement of the Gamow-Teller strength distribution of the odd-mass nucleus 93Nb via the (t ,3He + γ ) charge-exchange reaction at a beam energy of 115 MeV/u. The Gamow-Teller strength distributions were extracted up to an excitation energy in 93Zr of 10 MeV. The results were compared with shell-model and quasiparticle random-phase approximation (QRPA) calculations. The theoretical calculations fail to describe the details of the strength distribution, but estimate reasonably well the integrated Gamow-Teller transition strength. Electron-capture rates derived from the measured and theoretical strength distributions match reasonably well, especially at the higher stellar densities of importance for deleptonization during the collapse of the stellar core, since the electron-capture Q value is close to zero and the Fermi energy sufficiently high to ensure that the details of the strength distribution do not have a strong impact on the derived rates. At stellar densities in excess of 109 g/cm3, the electron-capture rate based on a single-state approximation used in astrophysical simulations is slightly higher than the rates based on the data and the shell-model and QRPA calculations, likely due to the fact that the approximation includes temperature-dependent effects, which increase the rates. However, the difference is much smaller than that observed in recent studies of nuclei with Z <40 near N =50 , suggesting that the single-state approximation does not account for Pauli-blocking effects for nuclei with Z <40 that are much stronger than those for 93Nb with Z =41 . Title: SRG/eROSITA detection of the bright, transient X-ray flare SRGt J123822.3-253206 Authors: Wilms, J.; Kreykenbohm, I.; Weber, P.; Falkner, S.; Dauser, T.; Knies, J.; Koenig, O.; Malyali, A.; Rau, A.; Merloni, A.; Bogensberger, D.; Brunner, H.; Buchner, J.; Carpano, S.; Freyberg, M.; Haberl, F.; Maitra, C.; Salvato, M.; Doroshenko, V.; Ducci, L.; Ji, L.; Schmitt, J. H. M. M.; Schwope, A. Bibcode: 2020ATel13416....1W Altcode: On 31 December 2019 at 6:42 UTC (MJD 58848.280), the eROSITA instrument onboard the Russian/German Spektrum-Roentgen-Gamma (SRG) mission detected a bright X-ray flare localized to RA(J2000) = 12:38:22.2 Dec(J2000) = -25:32:06 with an estimated positional uncertainty of 10" radius. Title: First results from the CUORE experiment Authors: Alduino, C.; Alfonso, K.; Avignone, F. T., III; Azzolini, O.; Bari, G.; Bellini, F.; Benato, G.; Bersani, A.; Biassoni, M.; Branca, A.; Brofferio, C.; Bucci, C.; Camacho, A.; Caminata, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Cappelli, L.; Cardani, L.; Carniti, P.; Casali, N.; Cassina, L.; Chiesa, D.; Chott, N.; Clemenza, M.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Davis, C. J.; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Di Vacri, M. L.; Dompe, V.; Drobizhev, A.; Fang, D. Q.; Faverzani, M.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Gorla, P.; Gotti, C.; Gutierrez, T. D.; Han, K.; Heeger, K. M.; Hennings-Yeomans, R.; Huang, H. Z.; Keppel, G.; Kolomensky, Yu. G.; Leder, A.; Ligi, C.; Lim, K. E.; Ma, Y. G.; Marini, L.; Martinez, M.; Maruyama, R. H.; Mei, Y.; Moggi, N.; Morganti, S.; Nagorny, S. S.; Napolitano, T.; Nastasi, M.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.; O'Donnell, T.; Ouellet, J. L.; Pagliarone, C. E.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pessina, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Reindl, F.; Rosenfeld, C.; Rusconi, C.; Sakai, M.; Sangiorgio, S.; Santone, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Singh, V.; Sisti, M.; Taffarello, L.; Terranova, F.; Tomei, C.; Vignati, M.; Wagaarachchi, S. L.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zhang, G. Q.; Zimmermann, S.; Zucchelli, S. Bibcode: 2020JPhCS1342a2002A Altcode: CUORE (Cryogenic Underground Observatory for Rare Events) is a ton-scale experiment aiming to the search of neutrino-less double beta decay in 130Te with a projected sensitivity on the Majorana effective mass close to the inverted hierarchy region. The CUORE detector consists of a segmented array of 988 TeO2 bolometers, organized in 19 towers and operated at a temperature of about 10 mK thanks to a custom cryogenic system which, besides the uncommon scale, observes several constraints from the radio-purity of the materials to the mechanical decoupling of the cooling systems. The successful commissioning of the CUORE cryogenic system has been completed early in 2016 and represents an outstanding achievement by itself. The installation of the detector proceeded along 2016 followed by the cooldown to base temperature at the beginning of 2017. The CUORE detector is now operational and has been taking science data since Spring 2017. With the first ~3 weeks of collected data, we present here the most stringent constraint on the 130Te half-live for the neutrino-less double beta decay. Title: Deriving Impact Ejecta Launch Site Distributions for Mapping the Composition of Europa Authors: Goode, W. R., III; Kempf, S.; Schmidt, J. Bibcode: 2019AGUFM.P53D3480G Altcode: The Surface Dust Analyzer (SUDA) is a time-of-flight mass spectrometer that will fly aboard NASA's Europa Clipper with an expected launch date in 2023. During close flybys of Europa (~25-100 km at closest approach), SUDA will measure the the chemical composition of particles encountered by the instrument via impact ionization. SUDA is expected to collect particles from both ice particle plumes on the surface of Europa and surface ejecta created by hypervelocity impacts of micrometeoroids with the moon. The focus of this study is on associating detected surface ejecta with their site of origin on Europa. This is achieved with probability distributions derived using Monte Carlo simulations. The simulations are designed using established models of impact ejecta dynamics and include the necessary distributions of particle velocities for a given position relative to Europa. The simulated velocities and detection positions are used to backtrack the ejecta particle's trajectory to its launch site on the surface, providing distinct launch site distributions with respect to the sub-spacecraft point.

The spatial resolution of surface chemical composition measurements along the ground track of the spacecraft can be characterized for any flyby. We also show how measuring the grain entry velocity parallel to the boresight of the instrument with a 1% uncertainty further constrains the probable launch site area thereby improving the resolution of compositional mapping performed by SUDA. This method plays a key role in the science planning for the instrument and will enhance the analysis of returned data from Europa Clipper's mission. Title: The SUfarce Dust Analyzer (SUDA ): Compositional Mapping of Europa's Surface. Authors: Kempf, S.; Sternovsky, Z.; Horanyi, M.; Hand, K. P.; Srama, R.; Postberg, F.; Altobelli, N.; Gruen, E.; Gudipati, M. S.; Schmidt, J.; Zolotov, M. Y.; Hsu, S.; Cassidy, T.; Henderson, B. L.; Goode, W. R., III; Tucker, S.; Frank, W.; Lev-Tov, S.; Hoxie, V.; Yehle, A.; Arteaga Garcia, A. Bibcode: 2019AGUFM.P53D3500K Altcode: The Surface Dust Analyzer (SUDA) instrument onboard NASA's Europa Clipper Flagship mission measures the composition of dust particles populating the thin exospheres around the Galilean moons of Jupiter. Since these grains are direct samples from the moon's icy surface, the unique data from SUDA will constrain the composition and geological history of surface and subsurface materials. SUDA will search for and analyze the composition and nature of active and recent plumes, and also identify particles ejected from Io's volcanoes. Our data will constrain the origins of surface non-ice materials, exchange processes involving the entire exosphere-surface-interior system, and help assess the habitability of Europa.

SUDA is a time-of- flight, reflectron-type impact mass spectrometer, optimized for a high mass resolution that only weakly depends on the impact location on its target. The mass spectrometer has a resolution of m/Δm ~ 200 and is capable to detecting either the cations or the anions generated in an impact. The high purity iridium coated impact target enables the detection of trace amounts (< 1 ppm) of salts, amino acids, and fatty acids embedded in the ice matrix of the particles ejected from the surface. The velocity sensor in front of the mass spectrometer measures the velocity component of the incoming grain parallel to the instrument's boresight with 1% uncertainty. This data allows SUDA to constrain the ejecta's origin on Europa's surface with an uncertainty of about half of the spacecraft altitude.

A flight-like engineering model of the SUDA instrument has been built in order to demonstrate its performance through calibration experiments using NASA's SSERVI/IMPACT dust accelerator facility at he University of Colorado, Boulder, with a variety of cosmo-chemically relevant dust analogues. The effective mass resolution of m/Δm of 150-300 is achieved for the mass range of interest m = 1u - 150u. The instrument has recently passed its Critical Design Review and the team is in the process of fabricating the flight instrument. Title: The CARMENES search for exoplanets around M dwarfs. The He I triplet at 10830 Å across the M dwarf sequence Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.; Schmitt, J. H. M. M.; Hintz, D.; Johnson, E. N.; Sanz-Forcada, J.; Schöfer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F. F.; Béjar, V. J. S.; Cortés-Contreras, M.; Díez-Alonso, E.; Dreizler, S.; Galadí-Enríquez, D.; Guenther, E. W.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D. Bibcode: 2019A&A...632A..24F Altcode: 2019arXiv191100246F The He I infrared (IR) triplet at 10 830 Å is an important activity indicator for the Sun and in solar-type stars, however, it has rarely been studied in relation to M dwarfs to date. In this study, we use the time-averaged spectra of 319 single stars with spectral types ranging from M0.0 V to M9.0 V obtained with the CARMENES high resolution optical and near-infrared spectrograph at Calar Alto to study the properties of the He I IR triplet lines. In quiescence, we find the triplet in absorption with a decrease of the measured pseudo equivalent width (pEW) towards later sub-types. For stars later than M5.0 V, the He I triplet becomes undetectable in our study. This dependence on effective temperature may be related to a change in chromospheric conditions along the M dwarf sequence. When an emission in the triplet is observed, we attribute it to flaring. The absence of emission during quiescence is consistent with line formation by photo-ionisation and recombination, while flare emission may be caused by collisions within dense material. The He I triplet tends to increase in depth according to increasing activity levels, ultimately becoming filled in; however, we do not find a correlation between the pEW(He IR) and X-ray properties. This behaviour may be attributed to the absence of very inactive stars (LX/Lbol < -5.5) in our sample or to the complex behaviour with regard to increasing depth and filling in.

Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/632/A24 Title: Water vapor detection in the transmission spectra of HD 209458 b with the CARMENES NIR channel Authors: Sánchez-López, A.; Alonso-Floriano, F. J.; López-Puertas, M.; Snellen, I. A. G.; Funke, B.; Nagel, E.; Bauer, F. F.; Amado, P. J.; Caballero, J. A.; Czesla, S.; Nortmann, L.; Pallé, E.; Salz, M.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Anglada-Escudé, G.; Béjar, V. J. S.; Casasayas-Barris, N.; Galadí-Enríquez, D.; Guenther, E. W.; Henning, Th.; Kaminski, A.; Kürster, M.; Lampón, M.; Lara, L. M.; Montes, D.; Morales, J. C.; Stangret, M.; Tal-Or, L.; Sanz-Forcada, J.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.; Zechmeister, M. Bibcode: 2019A&A...630A..53S Altcode: 2019arXiv190808754S
Aims: We aim at detecting water vapor in the atmosphere of the hot Jupiter HD 209458 b and perform a multi-band study in the near infrared with CARMENES.
Methods: The water vapor absorption lines from the atmosphere of the planet are Doppler-shifted due to the large change in its radial velocity during transit. This shift is of the order of tens of km s-1, whilst the Earth's telluric and the stellar lines can be considered quasi-static. We took advantage of this shift to remove the telluric and stellar lines using SYSREM, which performs a principal component analysis including proper error propagation. The residual spectra contain the signal from thousands of planetary molecular lines well below the noise level. We retrieve the information from those lines by cross-correlating the residual spectra with models of the atmospheric absorption of the planet.
Results: We find a cross-correlation signal with a signal-to-noise ratio (S/N) of 6.4, revealing H2O in HD 209458 b. We obtain a net blueshift of the signal of -5.2 -1.3+2.6 km s-1 that, despite the large error bars, is a firm indication of day- to night-side winds at the terminator of this hot Jupiter. Additionally, we performed a multi-band study for the detection of H2O individually from the three near infrared bands covered by CARMENES. We detect H2O from its 0.96-1.06 μm band with a S/N of 5.8, and also find hints of a detection from the 1.06-1.26 μm band, with a low S/N of 2.8. No clear planetary signal is found from the 1.26-1.62 μm band.
Conclusions: Our significant H2O signal at 0.96-1.06 μm in HD 209458 b represents the first detection of H2O from this band individually, the bluest one to date. The unfavorable observational conditions might be the reason for the inconclusive detection from the stronger 1.15 and 1.4 μm bands. H2O is detected from the 0.96-1.06 μm band in HD 209458 b, but hardly in HD 189733 b, which supports a stronger aerosol extinction in the latter, in line with previous studies. Future data gathered at more stable conditions and with larger S/N at both optical and near-infrared wavelengths could help to characterize the presence of aerosols in HD 209458 b and other planets. Title: VizieR Online Data Catalog: HeI IR triplet measurements for M dwarfs (Fuhrmeister+, 2019) Authors: Fuhrmeister, B.; Czesla, S.; Hildebrandt, L.; Nagel, E.; Schmitt, J. H. M. M.; Hintz, D.; Johnson, E. N.; Sanz-Forcada, J.; Schoefer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F. F.; Bejar, V. J. S.; Cortes-Contreras, M.; Diez-Alonso, E.; Dreizler, S.; Galadi-Enriquez, D.; Guenther, E. W.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Montes, D. Bibcode: 2019yCat..36320024F Altcode: We measure the pseudo-equivalent width (pEW) in the averaged stellar spectra using a Voigt fit with four Voigt components to account for neighbouring lines. The fit does not account for the bluest HeI triplet component and treats the two redder components as one component as they are totally blended for the used resolution of 80400. For comparison purposes we give also pEW values of Hα, the bluest CaII IR triplet line, and the HeI D3 line which were obtained by integration over the line from the same spectra. As a further comparison for the activity level of the star we give LX/Lbol values mostly taken from the ROSAT all-sky survey.

(1 data file). Title: Constraints for stellar electron-capture rates on 86Kr via the 86Kr(t ,3He+γ )86Br reaction and the implications for core-collapse supernovae Authors: Titus, R.; Ney, E. M.; Zegers, R. G. T.; Bazin, D.; Belarge, J.; Bender, P. C.; Brown, B. A.; Campbell, C. M.; Elman, B.; Engel, J.; Gade, A.; Gao, B.; Kwan, E.; Lipschutz, S.; Longfellow, B.; Lunderberg, E.; Mijatović, T.; Noji, S.; Pereira, J.; Schmitt, J.; Sullivan, C.; Weisshaar, D.; Zamora, J. C. Bibcode: 2019PhRvC.100d5805T Altcode: 2019arXiv190803985T Background: In the late stages of stellar core collapse just prior to core bounce, electron captures on medium-heavy nuclei drive deleptonization. Therefore, simulations require the use of accurate reaction rates. Nuclei with neutron number near N =50 above atomic number Z =28 play an important role. Rates presently used in astrophysical simulations rely primarily on a relatively simple single-state approximation. In order to improve the accuracy of the astrophysical simulations, experimental data are needed to test the electron-capture rates and to guide the development of better theoretical models and astrophysical simulations.

Purpose: The purpose of the present work was to measure the Gamow-Teller transition strength from 86Kr to 86Br, to derive the stellar electron-capture rates based on the extracted strengths, and to compare the derived rates with rates based on shell-model and quasiparticle random-phase approximation (QRPA) Gamow-Teller strengths calculations, as well as the single-state approximation. An additional purpose was to test the impact of using improved electron-capture rates on the late evolution of core-collapse supernovae.

Method: The Gamow-Teller strengths from 86Kr were extracted from the 86Kr(t ,3He+γ ) charge-exchange reaction at 115 MeV /u . The electron-capture rates were calculated as a function of stellar density and temperature. Besides the case of 86Kr, the electron-capture rates based on the QRPA calculations were calculated for 78 additional isotopes near N =50 above Z =28 . The impact of using these rates instead of those based on the single-state approximation is studied in a spherically symmetrical simulation of core collapse just prior to bounce.

Results: The derived electron-capture rates on 86Kr from the experimental Gamow-Teller strength distribution are much smaller than the rates estimated based on the single-state approximation. Rates based on Gamow-Teller strengths estimated in shell-model and QRPA calculations are more accurate. The core-collapse supernova simulation with electron-capture rates based on the QRPA calculations indicate a significant reduction in the deleptonization during the collapse phase.

Conclusions: It is important to utilize microscopic theoretical models that are tested by experimental data to constrain and estimate Gamow-Teller strengths and derived electron-capture rates for nuclei near N =50 that are inputs for astrophysical simulations of core-collapse supernovae and their multimessenger signals, such as the emission of neutrinos and gravitational waves. Title: A giant exoplanet orbiting a very-low-mass star challenges planet formation models Authors: Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodríguez, E.; López-González, M. J.; Rodríguez-López, C.; Béjar, V. J. S.; González-Cuesta, L.; Luque, R.; Pallé, E.; Perger, M.; Baroch, D.; Johansen, A.; Klahr, H.; Mordasini, C.; Anglada-Escudé, G.; Caballero, J. A.; Cortés-Contreras, M.; Dreizler, S.; Lafarga, M.; Nagel, E.; Passegger, V. M.; Reffert, S.; Rosich, A.; Schweitzer, A.; Tal-Or, L.; Trifonov, T.; Zechmeister, M.; Quirrenbach, A.; Amado, P. J.; Guenther, E. W.; Hagen, H. -J.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Montes, D.; Seifert, W.; Abellán, F. J.; Abril, M.; Aceituno, J.; Aceituno, F. J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Arroyo-Torres, B.; Azzaro, M.; Barrado, D.; Becerril-Jarque, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Brinkmöller, M.; del Burgo, C.; Burn, R.; Calvo-Ortega, R.; Cano, J.; Cárdenas, M. C.; Cardona Guillén, C.; Carro, J.; Casal, E.; Casanova, V.; Casasayas-Barris, N.; Chaturvedi, P.; Cifuentes, C.; Claret, A.; Colomé, J.; Czesla, S.; Díez-Alonso, E.; Dorda, R.; Emsenhuber, A.; Fernández, M.; Fernández-Martín, A.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Gallardo Cava, I.; García Vargas, M. L.; Garcia-Piquer, A.; Gesa, L.; González-Álvarez, E.; González Hernández, J. I.; González-Peinado, R.; Guàrdia, J.; Guijarro, A.; de Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Hermelo, I.; Hernández Arabi, R.; Hernández Otero, F.; Hintz, D.; Holgado, G.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kehr, M.; Kemmer, J.; Kim, M.; Klüter, J.; Klutsch, A.; Labarga, F.; Labiche, N.; Lalitha, S.; Lampón, M.; Lara, L. M.; Launhardt, R.; Lázaro, F. J.; Lizon, J. -L.; Llamas, M.; Lodieu, N.; López del Fresno, M.; López Salas, J. F.; López-Santiago, J.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Martín, E. L.; Martín-Fernández, P.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mirabet, E.; Moya, A.; Naranjo, V.; Nelson, R. P.; Nortmann, L.; Nowak, G.; Ofir, A.; Pascual, J.; Pavlov, A.; Pedraz, S.; Pérez Medialdea, D.; Pérez-Calpena, A.; Perryman, M. A. C.; Rabaza, O.; Ramón Ballesta, A.; Rebolo, R.; Redondo, P.; Rix, H. -W.; Rodler, F.; Rodríguez Trinidad, A.; Sabotta, S.; Sadegi, S.; Salz, M.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schlecker, M.; Schmitt, J. H. M. M.; Schöfer, P.; Solano, E.; Sota, A.; Stahl, O.; Stock, S.; Stuber, T.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tulloch, S. M.; Veredas, G.; Vico-Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2019Sci...365.1441M Altcode: 2019arXiv190912174M Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts constraints on the planet accretion and migration rates. Disk instabilities may be more efficient in forming planets than previously thought. Title: Transient Discovery Report for 2019-09-25 Authors: Keel, W.; Schmidt, J.; Dalcanton, J. Bibcode: 2019TNSTR1910....1K Altcode: No abstract at ADS Title: He I λ 10 830 Å in the transmission spectrum of HD209458 b Authors: Alonso-Floriano, F. J.; Snellen, I. A. G.; Czesla, S.; Bauer, F. F.; Salz, M.; Lampón, M.; Lara, L. M.; Nagel, E.; López-Puertas, M.; Nortmann, L.; Sánchez-López, A.; Sanz-Forcada, J.; Caballero, J. A.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada-Escudé, G.; Béjar, V. J. S.; Brinkmöller, M.; Hatzes, A. P.; Henning, Th.; Kaminski, A.; Kürster, M.; Labarga, F.; Montes, D.; Pallé, E.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R. Bibcode: 2019A&A...629A.110A Altcode: 2019arXiv190713425A Context. Recently, the He I triplet at 10 830 Å was rediscovered as an excellent probe of the extended and possibly evaporating atmospheres of close-in transiting planets. This has already resulted in detections of this triplet in the atmospheres of a handful of planets, both from space and from the ground. However, while a strong signal is expected for the hot Jupiter HD 209458 b, only upper limits have been obtained so far.
Aims: Our goal is to measure the helium excess absorption from HD 209458 b and assess the extended atmosphere of the planet and possible evaporation.
Methods: We obtained new high-resolution spectral transit time-series of HD 209458 b using CARMENES at the 3.5 m Calar Alto telescope, targeting the He I triplet at 10 830 Å at a spectral resolving power of 80 400. The observed spectra were corrected for stellar absorption lines using out-of-transit data, for telluric absorption using the MOLECFIT software, and for the sky emission lines using simultaneous sky measurements through a second fibre.
Results: We detect He I absorption at a level of 0.91 ± 0.10% (9 σ) at mid-transit. The absorption follows the radial velocity change of the planet during transit, unambiguously identifying the planet as the source of the absorption. The core of the absorption exhibits a net blueshift of 1.8 ± 1.3 km s-1. Possible low-level excess absorption is seen further blueward from the main absorption near the centre of the transit, which could be caused by an extended tail. However, this needs to be confirmed.
Conclusions: Our results further support a close relation between the strength of planetary absorption in the helium triplet lines and the level of ionising, stellar X-ray, and extreme-UV irradiation. Title: X-ray emission in the enigmatic CVSO 30 system Authors: Czesla, S.; Schneider, P. C.; Salz, M.; Klocová, T.; Schmidt, T. O. B.; Schmitt, J. H. M. M. Bibcode: 2019A&A...629A...5C Altcode: 2019arXiv190711551C CVSO 30 is a young, active, weak-line T Tauri star; it possibly hosts the only known planetary system with both a transiting hot-Jupiter and a cold-Jupiter candidate (CVSO 30 b and CVSO 30 c). We analyzed archival ROSAT, Chandra, and XMM-Newton data to study the coronal emission in the system. According to our modeling, CVSO 30 shows a quiescent X-ray luminosity of ≈8 × 1029 erg s-1. The X-ray absorbing column is consistent with interstellar absorption. XMM-Newton observed a flare, during which a transit of the candidate CVSO 30 b was expected, but no significant transit-induced variation in the X-ray flux is detectable. While the hot-Jupiter candidate CVSO 30 b has continuously been undergoing mass loss powered by the high-energy irradiation, we conclude that its evaporation lifetime is considerably longer than the estimated stellar age of 2.6 Myr. Title: Experimental constraint on stellar electron-capture rates from the 88Sr(t ,3He+γ )88Rb reaction at 115 MeV/u Authors: Zamora, J. C.; Zegers, R. G. T.; Austin, Sam M.; Bazin, D.; Brown, B. A.; Bender, P. C.; Crawford, H. L.; Engel, J.; Falduto, A.; Gade, A.; Gastis, P.; Gao, B.; Ginter, T.; Guess, C. J.; Lipschutz, S.; Longfellow, B.; Macchiavelli, A. O.; Miki, K.; Ney, E.; Noji, S.; Pereira, J.; Schmitt, J.; Sullivan, C.; Titus, R.; Weisshaar, D. Bibcode: 2019PhRvC.100c2801Z Altcode: 2019arXiv190605934Z The Gamow-Teller strength distribution from 88Sr was extracted from a (t ,3He+γ ) experiment at 115 MeV /u to constrain estimates for the electron-capture rates on nuclei around N =50 , between and including 78Ni and 88Sr, which are important for the late evolution of core-collapse supernovae. The observed Gamow-Teller strength below an excitation energy of 8 MeV was consistent with zero and below 10 MeV amounted to 0.1 ±0.05 . Except for a very-weak transition that could come from the 2.231-MeV 1+ state, no γ lines that could be associated with the decay of known 1+ states were identified. The derived electron-capture rate from the measured strength distribution is more than an order of magnitude smaller than rates based on the single-state approximation presently used in astrophysical simulations for most nuclei near N =50 . Rates based on shell-model and quasiparticle random-phase approximation calculations that account for Pauli-blocking and core-polarization effects provide better estimates than the single-state approximation, although a relatively strong transition to the first 1+ state in 88Rb is not observed in the data. Pauli-unblocking effects due to high stellar temperatures could partially counter the low electron-capture rates. The new data serve as a zero-temperature benchmark for constraining models used to estimate such effects. Title: Erratum: “Quantifying Feedback from Narrow Line Region Outflows in Nearby Active Galaxies. II. Spatially Resolved Mass Outflow Rates for the QSO2 Markarian 34” (2018, ApJ, 867, 88) Authors: Revalski, M.; Dashtamirova, D.; Crenshaw, D. M.; Kraemer, S. B.; Fischer, T. C.; Schmitt, H. R.; Gnilka, C. L.; Schmidt, J.; Elvis, M.; Fabbiano, G.; Storchi-Bergmann, T.; Maksym, W. P.; Gandhi, P. Bibcode: 2019ApJ...881..167R Altcode: No abstract at ADS Title: Superflares on AB Doradus observed with TESS Authors: Schmitt, J. H. M. M.; Ioannidis, P.; Robrade, J.; Czesla, S.; Schneider, P. C. Bibcode: 2019A&A...628A..79S Altcode: We present short-cadence data of the ultra-active star AB Dor measured by the Transiting Exoplanet Survey Satellite (TESS). In the TESS light curves of AB Dor, we found numerous flare events in addition to time-variable rotational modulation with an amplitude of up to 7%. We identified eight superflares (releasing more than 1034 erg) and studied their morphologies and energetics. We compared these flares to both the most energetic solar flare seen in total solar irradiance measurements as well as to a very energetic flare on AB Dor observed by XMM-Newton, the superflare nature of which we also demonstrate. The total energy of both the solar flare and the event on AB Dor emitted in the optical exceed their respective X-ray outputs possibly by an order of magnitude, suggesting that the dominant energy loss of such flares actually occurs at optical wavelengths. Superflares are found to take place on AB Dor at a rate of about one per week, and due to the star's proximity and brightness can be studied in excruciating detail. Thus the TESS data offer a superb possibility to study the frequency and energetics of superflare events for stars in the solar neighborhood and at large. Title: Magnetic activity of the solar-like star HD 140538 Authors: Mittag, M.; Schmitt, J. H. M. M.; Metcalfe, T. S.; Hempelmann, A.; Schröder, K. -P. Bibcode: 2019A&A...628A.107M Altcode: 2019arXiv190704575M The periods of rotation and activity cycles are among the most important properties of the magnetic dynamo thought to be operating in late-type, main-sequence stars. In this paper, we present a SMWO-index time series composed from different data sources for the solar-like star HD 140538 and derive a period of 3.88 ± 0.02 yr for its activity cycle. Furthermore, we analyse the high-cadence, seasonal SMWO data taken with the TIGRE telescope and find a rotational period of 20.71 ± 0.32 days. In addition, we estimate the stellar age of HD 140538 as 3.7 Gyrs via a matching evolutionary track. This is slightly older than the ages obtained from gyrochronology based on the above rotation period, as well as the activity-age relation. These results, together with its stellar parameters that are very similar to a younger Sun, make HD 140538 a relevant case study for our understanding of solar activity and its evolution with time. Title: Modeling light curves of the multi-transiting system Kepler-20 using Blender Authors: Müller, Holger Matthias; Ioannidis, Panagiotis; Schmitt, Jürgen H. M. M. Bibcode: 2019ESS.....431002M Altcode: Transiting multi-planet systems can hold additional information about their orbital configurations. These systems can show multi-transits where at least two planets are eclipsing the star at the same time. If the orbital alignments are favorable, these systems also provide planet-planet occultations (PPOs). The presence or absence of these events gives constraints on the alignment of the orbits in question. We present a comprehensive study of the multi-transiting planetary system Kepler-20. The solar-like host star is orbited by six planets, while five of them perform transits. Their small sizes range from roughly 1 to 3 Earth radii, clearly detected by Kepler. In our approach we synthesize a grid of multi-transit light curves using the orbital parameters of planets b and c, varying the angle α between their orbits, while keeping their transit impact parameters constant. For that purpose we are the first to utilize the publically available 3D animation software Blender. This allows us to use arbitrary surface brightness distributions of the star like model limb darkening or spots. The resulting light curves show PPOs depending on the angle α, which are then compared to the Kepler data. In this way we are able to statistically exclude orbital geometries, and we can identify which are the most favorable. Besides the Rossiter-McLaughlin effect where spectral data is needed, this method is able to acquire orbital alignment information from the optical light curve alone. Title: Atmospheric characterization of the ultra-hot Jupiter MASCARA-2b/KELT-20b. Detection of CaII, FeII, NaI, and the Balmer series of H (Hα, Hβ, and Hγ) with high-dispersion transit spectroscopy Authors: Casasayas-Barris, N.; Pallé, E.; Yan, F.; Chen, G.; Kohl, S.; Stangret, M.; Parviainen, H.; Helling, Ch.; Watanabe, N.; Czesla, S.; Fukui, A.; Montañés-Rodríguez, P.; Nagel, E.; Narita, N.; Nortmann, L.; Nowak, G.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R. Bibcode: 2019A&A...628A...9C Altcode: 2019arXiv190512491C Ultra-hot Jupiters orbit very close to their host star and consequently receive strong irradiation, causing their atmospheric chemistry to be different from the common gas giants. Here, we have studied the atmosphere of one of these particular hot planets, MASCARA-2b/KELT-20b, using four transit observations with high resolution spectroscopy facilities. Three of these observations were performed with HARPS-N and one with CARMENES. Additionally, we simultaneously observed one of the transits with MuSCAT2 to monitor possible spots in the stellar surface. At high resolution, the transmission residuals show the effects of Rossiter-McLaughlin and centre-to-limb variations from the stellar lines profiles, which we have corrected to finally extract the transmission spectra of the planet. We clearly observe the absorption features of CaII, FeII, NaI, Hα, and Hβ in the atmosphere of MASCARA-2b, and indications of Hγ and MgI at low signal-to-noise ratio. In the case of NaI, the true absorption is difficult to disentangle from the strong telluric and interstellar contamination. The results obtained with CARMENES and HARPS-N are consistent, measuring an Hα absorption depth of 0.68 ± 0.05 and 0.59 ± 0.07%, and NaI absorption of 0.11 ± 0.04 and 0.09 ± 0.05% for a 0.75 Å passband, in the two instruments respectively. The Hα absorption corresponds to 1.2 Rp, which implies an expanded atmosphere, as a result of the gas heating caused by the irradiation received from the host star. For Hβ and Hγ only HARPS-N covers this wavelength range, measuring an absorption depth of 0.28 ± 0.06 and 0.21 ± 0.07%, respectively. For CaII, only CARMENES covers this wavelength range measuring an absorption depth of 0.28 ± 0.05, 0.41 ± 0.05 and 0.27 ± 0.06% for CaII λ8498Å, λ8542Å and λ8662Å lines, respectively. Three additional absorption lines of FeII are observed in the transmission spectrum by HARPS-N (partially covered by CARMENES), measuring an average absorption depth of 0.08 ± 0.04% (0.75 Å passband). The results presented here are consistent with theoretical models of ultra-hot Jupiters atmospheres, suggesting the emergence of an ionised gas on the day-side of such planets. Calcium and iron, together with other elements, are expected to be singly ionised at these temperatures and be more numerous than its neutral state. The Calcium triplet lines are detected here for the first time in transmission in an exoplanet atmosphere.

Reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A9 Title: VizieR Online Data Catalog: MASCARA-2b transmission spectra (Casasayas-Barris+, 2019) Authors: Casasayas-Barris, N.; Palle, E.; Yan, F.; Chen, G.; Kohl, S.; Stangret, H.; Parviainen, M.; Helling, Ch.; Watanabe, N.; Czesla, S.; Montanes-Rodriguez, P.; Nagel, E.; Narita, N.; Nortmann, L.; Nowak, G.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R. Bibcode: 2019yCat..36280009C Altcode: We observed a total of four transits of MASCARA-2b using the HARPS-N and CARMENES high resolution spectrographs. One of these transits was simultaneously observed with the Multicolour Simultaneous Camera for studying Atmospheres of Transiting exoplanets 2 (MuSCAT2), a four-colour simultaneous imager, in order to monitor possible stellar activity. One additional epoch was observed with MuSCAT2 to reproduce the results of the first observation.

(16 data files). Title: The CARMENES search for exoplanets around M dwarfs. Photospheric parameters of target stars from high-resolution spectroscopy. II. Simultaneous multiwavelength range modeling of activity insensitive lines Authors: Passegger, V. M.; Schweitzer, A.; Shulyak, D.; Nagel, E.; Hauschildt, P. H.; Reiners, A.; Amado, P. J.; Caballero, J. A.; Cortés-Contreras, M.; Domínguez-Fernández, A. J.; Quirrenbach, A.; Ribas, I.; Azzaro, M.; Anglada-Escudé, G.; Bauer, F. F.; Béjar, V. J. S.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Martín, E. L.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Zechmeister, M. Bibcode: 2019A&A...627A.161P Altcode: 2019arXiv190700807P We present precise photospheric parameters of 282 M dwarfs determined from fitting the most recent version of PHOENIX models to high-resolution CARMENES spectra in the visible (0.52-0.96 μm) and NIR wavelength range (0.96-1.71 μm). With its aim to search for habitable planets around M dwarfs, several planets of different masses have been detected. The characterization of the target sample is important for the ability to derive and constrain the physical properties of any planetary systems that are detected. As a continuation of previous work in this context, we derived the fundamental stellar parameters effective temperature, surface gravity, and metallicity of the CARMENES M-dwarf targets from PHOENIX model fits using a χ2 method. We calculated updated PHOENIX stellar atmosphere models that include a new equation of state to especially account for spectral features of low-temperature stellar atmospheres as well as new atomic and molecular line lists. We show the importance of selecting magnetically insensitive lines for fitting to avoid effects of stellar activity in the line profiles. For the first time, we directly compare stellar parameters derived from multiwavelength range spectra, simultaneously observed for the same star. In comparison with literature values we show that fundamental parameters derived from visible spectra and visible and NIR spectra combined are in better agreement than those derived from the same spectra in the NIR alone.

Full Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A161 Title: The CARMENES search for exoplanets around M dwarfs. Detection of a mini-Neptune around LSPM J2116+0234 and refinement of orbital parameters of a super-Earth around GJ 686 (BD+18 3421) Authors: Lalitha, S.; Baroch, D.; Morales, J. C.; Passegger, V. M.; Bauer, F. F.; Cardona Guillén, C.; Dreizler, S.; Oshagh, M.; Reiners, A.; Ribas, I.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Béjar, V. J. S.; Colomé, J.; Cortés-Contreras, M.; Galadí-Enríquez, D.; González-Cuesta, L.; Guenther, E. W.; Hagen, H. -J.; Henning, T.; Herrero, E.; Husser, T. -O.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Lodieu, N.; López-González, M. J.; Montes, D.; Perger, M.; Rosich, A.; Rodríguez, E.; Rodríguez-López, C.; Schmitt, J. H. M. M.; Tal-Or, L.; Zechmeister, M. Bibcode: 2019A&A...627A.116L Altcode: 2019arXiv190509075L Although M dwarfs are known for high levels of stellar activity, they are ideal targets for the search of low-mass exoplanets with the radial velocity (RV) method. We report the discovery of a planetary-mass companion around LSPM J2116+0234 (M3.0 V) and confirm the existence of a planet orbiting GJ 686 (BD+18 3421; M1.0 V). The discovery of the planet around LSPM J2116+0234 is based on CARMENES RV observations in the visual and near-infrared channels. We confirm the planet orbiting around GJ 686 by analyzing the RV data spanning over two decades of observationsfrom CARMENES VIS, HARPS-N, HARPS, and HIRES. We find planetary signals at 14.44 and 15.53 d in the RV data for LSPM J2116+0234 and GJ 686, respectively. Additionally, the RV, photometric time series, and various spectroscopic indicators show hints of variations of 42 d for LSPM J2116+0234 and 37 d for GJ 686, which we attribute to the stellar rotation periods. The orbital parameters of the planets are modeled with Keplerian fits together with correlated noise from the stellar activity. A mini-Neptune with a minimum mass of 11.8 M orbits LSPM J2116+0234 producing a RV semi-amplitude of 6.19 m s-1, while a super-Earth of mass 6.6 M orbits GJ 686 and produces a RV semi-amplitude of 3.0 m s-1. Both LSPM J2116+0234 and GJ 686 have planetary companions populating the regime of exoplanets with masses lower than 15 M and orbital periods <20 d.

Table A.1 and A.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A116 Title: The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star Authors: Zechmeister, M.; Dreizler, S.; Ribas, I.; Reiners, A.; Caballero, J. A.; Bauer, F. F.; Béjar, V. J. S.; González-Cuesta, L.; Herrero, E.; Lalitha, S.; López-González, M. J.; Luque, R.; Morales, J. C.; Pallé, E.; Rodríguez, E.; Rodríguez López, C.; Tal-Or, L.; Anglada-Escudé, G.; Quirrenbach, A.; Amado, P. J.; Abril, M.; Aceituno, F. J.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Bluhm, P.; Brinkmöller, M.; del Burgo, C.; Calvo Ortega, R.; Cano, J.; Cardona Guillén, C.; Carro, J.; Cárdenas Vázquez, M. C.; Casal, E.; Casasayas-Barris, N.; Casanova, V.; Chaturvedi, P.; Cifuentes, C.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Dorda, R.; Fernández, M.; Fernández-Martín, A.; Fuhrmeister, B.; Fukui, A.; Galadí-Enríquez, D.; Gallardo Cava, I.; Garcia de la Fuente, J.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Góngora Rueda, J.; González-Álvarez, E.; González Hernández, J. I.; González-Peinado, R.; Grözinger, U.; Guàrdia, J.; Guijarro, A.; de Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, T.; Hermelo, I.; Hernández Arabi, R.; Hernández Castaño, L.; Hernández Otero, F.; Hintz, D.; Huke, P.; Huber, A.; Jeffers, S. V.; Johnson, E. N.; de Juan, E.; Kaminski, A.; Kemmer, J.; Kim, M.; Klahr, H.; Klein, R.; Klüter, J.; Klutsch, A.; Kossakowski, D.; Kürster, M.; Labarga, F.; Lafarga, M.; Llamas, M.; Lampón, M.; Lara, L. M.; Launhardt, R.; Lázaro, F. J.; Lodieu, N.; López del Fresno, M.; López-Puertas, M.; López Salas, J. F.; López-Santiago, J.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Fernández, P.; Martín-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Montañés-Rodríguez, P.; Montes, D.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Narita, N.; Nortmann, L.; Nowak, G.; Ofir, A.; Oshagh, M.; Panduro, J.; Parviainen, H.; Pascual, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Rabaza, O.; Ramón Ballesta, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez Trinidad, A.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt, J. H. M. M.; Schöfer, P.; Schweitzer, A.; Seifert, W.; Shulyak, D.; Solano, E.; Sota, A.; Stahl, O.; Stock, S.; Strachan, J. B. P.; Stuber, T.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tala Pinto, M.; Trifonov, T.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2019A&A...627A..49Z Altcode: 2019arXiv190607196Z Context. Teegarden's Star is the brightest and one of the nearest ultra-cool dwarfs in the solar neighbourhood. For its late spectral type (M7.0 V), the star shows relatively little activity and is a prime target for near-infrared radial velocity surveys such as CARMENES.
Aims: As part of the CARMENES search for exoplanets around M dwarfs, we obtained more than 200 radial-velocity measurements of Teegarden's Star and analysed them for planetary signals.
Methods: We find periodic variability in the radial velocities of Teegarden's Star. We also studied photometric measurements to rule out stellar brightness variations mimicking planetary signals.
Results: We find evidence for two planet candidates, each with 1.1 M minimum mass, orbiting at periods of 4.91 and 11.4 d, respectively. No evidence for planetary transits could be found in archival and follow-up photometry. Small photometric variability is suggestive of slow rotation and old age.
Conclusions: The two planets are among the lowest-mass planets discovered so far, and they are the first Earth-mass planets around an ultra-cool dwarf for which the masses have been determined using radial velocities.

Tables D.1 and D.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/627/A49 Title: Constraining the Neutron Star Compactness: Extraction of the 23Al (p ,γ ) Reaction Rate for the r p Process Authors: Wolf, C.; Langer, C.; Montes, F.; Pereira, J.; Ong, W. -J.; Poxon-Pearson, T.; Ahn, S.; Ayoub, S.; Baumann, T.; Bazin, D.; Bender, P. C.; Brown, B. A.; Browne, J.; Crawford, H.; Cyburt, R. H.; Deleeuw, E.; Elman, B.; Fiebiger, S.; Gade, A.; Gastis, P.; Lipschutz, S.; Longfellow, B.; Meisel, Z.; Nunes, F. M.; Perdikakis, G.; Reifarth, R.; Richter, W. A.; Schatz, H.; Schmidt, K.; Schmitt, J.; Sullivan, C.; Titus, R.; Weisshaar, D.; Woods, P. J.; Zamora, J. C.; Zegers, R. G. T. Bibcode: 2019PhRvL.122w2701W Altcode: 2019arXiv190606091W The 123Al (p ,γ )24Si reaction is among the most important reactions driving the energy generation in type-I x-ray bursts. However, the present reaction-rate uncertainty limits constraints on neutron star properties that can be achieved with burst model-observation comparisons. Here, we present a novel technique for constraining this important reaction by combining the GRETINA array with the neutron detector LENDA coupled to the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The 23Al (d ,n ) reaction was used to populate the astrophysically important states in 24Si. This enables a measurement in complete kinematics for extracting all relevant inputs necessary to calculate the reaction rate. For the first time, a predicted close-lying doublet of a 22+ and (41+,02+ ) state in 24Si was disentangled, finally resolving conflicting results from two previous measurements. Moreover, it was possible to extract spectroscopic factors using GRETINA and LENDA simultaneously. This new technique may be used to constrain other important reaction rates for various astrophysical scenarios. Title: VizieR Online Data Catalog: LSPM J2116+0234 and GJ 686 radial velocities (Lalitha+, 2019) Authors: Lalitha, S.; Baroch, D.; Morales, J. C.; Passegger, V. M.; Bauer, F. F.; Cardona Guillen, C.; Dreizler, S.; Oshagh, M.; Reiners, A.; Ribas, I.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Bejar, V. J. S.; Colome, J.; Cortes-Contreras, M.; Galadi-Enriquez, D.; Gonzalez-Cuesta, L.; Guenther, E. W.; Hagen, H. -J.; Henning, T.; Herrero, E.; Husser, T. -O.; Jeffers, S. V.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Lodieu, N.; Lopez-Gonzalez, M. J.; Montes, D.; Perger, M.; Rosich, A.; Rodriguez, E.; Rodriguez-Lopez, C.; Schmitt, J. H. M. M.; Tal-Or, L.; Zechmeister, M. Bibcode: 2019yCat..36270116L Altcode: We analysed radial velocity data from the CARMENES NIR and VIS channels for LSPM J2116+0234, and from CARMENES VIS channel, HARPS and HIRES for GJ 686. All the RVs are corrected for barycentric motion and secular acceleration. The CARMENES measurements were taken in the context of the CARMENES search for exoplanets around M dwarfs. The CARMENES instrument consists of two channels: the VIS channel obtains spectra at a resolution of R=94600 in the wavelength range 520-960nm, while the NIR channel yields spectra of R=80400 covering 960-1710nm. Both channels are calibrated in wavelength with hollow-cathode lamps and use temperature- and pressure-stabilized Fabry-Perot etalons to interpolate the wavelength solution and simultaneously monitor the spectrograph drift during nightly operations (Bauer et al., 2015A&A...581A.117B).

(2 data files). Title: The CARMENES search for exoplanets around M dwarfs. Different roads to radii and masses of the target stars Authors: Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Béjar, V. J. S.; Cortés-Contreras, M.; Caballero, J. A.; del Burgo, C.; Czesla, S.; Kürster, M.; Montes, D.; Zapatero Osorio, M. R.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada-Escudé, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.; Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil, E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Solano, E.; Tabernero, H. M.; Zechmeister, M. Bibcode: 2019A&A...625A..68S Altcode: 2019arXiv190403231S
Aims: We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R > 80 000) spectroscopic survey has been used to derive these fundamental stellar parameters.
Methods: We derived the radii using Stefan-Boltzmann's law. We obtained the required effective temperatures Teff from a spectral analysis and we obtained the required luminosities L from integrated broadband photometry together with the Gaia DR2 parallaxes. The mass was then determined using a mass-radius relation that we derived from eclipsing binaries known in the literature. We compared this method with three other methods: (1) We calculated the mass from the radius and the surface gravity log g, which was obtained from the same spectral analysis as Teff. (2) We used a widely used infrared mass-magnitude relation. (3) We used a Bayesian approach to infer stellar parameters from the comparison of the absolute magnitudes and colors of our targets with evolutionary models.
Results: Between spectral types M0 V and M7 V our radii cover the range 0.1 R < R < 0.6 R with an error of 2-3% and our masses cover 0.09 ℳ < ℳ< 0.6ℳ with an error of 3-5%. We find good agreement between the masses determined with these different methods for most of our targets. Only the masses of very young objects show discrepancies. This can be well explained with the assumptions that we used for our methods.

Table B.1 (stellar parameters) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/625/A68 Title: VizieR Online Data Catalog: Teegarden's Star RV and Hα curves (Zechmeister+, 2019) Authors: Zechmeister, M.; Dreizler, M.; Ribas, I.; Reiners, A.; Caballero, J. A.; Bauer, F. F.; Bejar, V. J. S.; Gonzalez-Cuesta, L.; Herrero, E.; Lalitha, S.; Lopez-Gonzalez, M. J.; Luque, R.; Morales, J. C.; Palle, E.; Rodriguez, E.; Rodriguez Lopez, C.; Tal-Or, L.; Anglada-Escude, G.; Quirrenbach, A.; Amado, P. J.; Abril, M.; Aceituno, F. J.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jimenez, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluhm, P.; Brinkmoeller, M.; Del Burgo, C.; Calvo Ortega, R.; Cano, J.; Cardona Guillen, C.; Carro, J.; Cardenas Vazquez, M. C.; Casal, E.; Casasayas-Barris, N.; Casanova, V.; Chaturvedi, P.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla, S.; Diez-Alonso, E.; Dorda, R.; Fernandez, M.; Fernandez-Martin, A.; Fuhrmeister, B.; Fukui, A.; Galadi-Enriquez, D.; Gallardo Cava, I.; Garcia de La Fuente, J.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gongora Rueda, J.; Gonzalez-Alvarez, E.; Gonzalez Hernandez, J. I.; Gonzalez-Peinado, R.; Groezinger, U.; Guardia, J.; Guijarro, A.; de Guindos, E.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, T.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez, Otero F.; Hintz, D.; Huke, P.; Huber, A.; Jeffers, S. V.; Johnson, E. N.; de Juan, E.; Kaminski, A.; Kemmer, J.; Kim, M.; Klahr, H.; Klein, R.; Klueter, J.; Klutsch, A.; Kossakowski, D.; Kuerster, M.; Labarga, F.; Lafarga, M.; Llamas, M.; Lampon, M.; Lara, L. M.; Launhardt, R.; Lazaro, F. J.; Lodieu, N.; Lopez Del Fresno, M.; Lopez-Puertas, M.; Lopez Salas, J. F.; Lopez-Santiago, J.; Magan Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Fernandez, P.; Martin-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Montanes-Rodriguez, P.; Montes, D.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Narita, N.; Nortmann, L.; Nowak, G.; Ofir, A.; Oshagh, M.; Panduro, J.; Parviainen, H.; Pascual, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Rabaza, O.; Ramon Ballesta, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodriguez Trinidad, A.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schmitt, J. H. M. M.; Schoefer, P.; Schweitzer, A.; Seifert, W.; Shulyak, D.; Solano, E.; Sota, A.; Stahl, O.; Stock, S.; Strachan, J. B. P.; Stuber, T.; Stuermer, J.; Suarez, J. C.; Tabernero, H. M.; Tala Pinto, M.; Trifonov, T.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2019yCat..36270049Z Altcode: Time series for radial velocities and activity indicators of Teegarden's Star from CARMENES VIS and NIR spectrograph are presented. See Zechmeister et al. (2017A&A...609A..12Z) for a detailed description of the parameters.

(2 data files). Title: VizieR Online Data Catalog: Radii and masses of the CARMENES targets (Schweitzer+, 2019) Authors: Schweitzer, A.; Passegger, V. M.; Cifuentes, C.; Bejar, V. J. S.; Cortes-Contreras, M.; Caballero, J. A.; Del Burgo, C.; Czesla, S.; Kuerster, M.; Montes, D.; Zapatero Osorio, M. R.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Aceituno, J.; Anglada-Escude, G.; Bauer, F. F.; Dreizler, S.; Jeffers, S. V.; Guenther, E. W.; Henning, T.; Kaminski, A.; Lafarga, M.; Marfil, E.; Morales, J. C.; Schmitt, J. H. M. M.; Seifert, W.; Solano, E.; Tabernero, H. M.; Zechmeister, M. Bibcode: 2019yCat..36250068S Altcode: Table B1 contains the stellar parameters of our sample. The sample consists of 293 nearby, bright M dwarfs with no known close companions. Their metallicities spread around solar metallicity. Most stars are inactive or mildly active and older than a few hundred million years. However, known active or young stars are also included although most of the analyses assume inactive main sequence stars. All parameters are determined by us except where noted otherwise.

(1 data file). Title: Gliese 49: activity evolution and detection of a super-Earth. A HADES and CARMENES collaboration Authors: Perger, M.; Scandariato, G.; Ribas, I.; Morales, J. C.; Affer, L.; Azzaro, M.; Amado, P. J.; Anglada-Escudé, G.; Baroch, D.; Barrado, D.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Cortés-Contreras, M.; Damasso, M.; Dreizler, S.; González-Cuesta, L.; González Hernández, J. I.; Guenther, E. W.; Henning, T.; Herrero, E.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Leto, G.; López-González, M. J.; Maldonado, J.; Micela, G.; Montes, D.; Pinamonti, M.; Quirrenbach, A.; Rebolo, R.; Reiners, A.; Rodríguez, E.; Rodríguez-López, C.; Schmitt, J. H. M. M.; Sozzetti, A.; Suárez Mascareño, A.; Toledo-Padrón, B.; Zanmar Sánchez, R.; Zapatero Osorio, M. R.; Zechmeister, M. Bibcode: 2019A&A...624A.123P Altcode: 2019arXiv190304808P Context. Small planets around low-mass stars often show orbital periods in a range that corresponds to the temperate zones of their host stars which are therefore of prime interest for planet searches. Surface phenomena such as spots and faculae create periodic signals in radial velocities and in observational activity tracers in the same range, so they can mimic or hide true planetary signals.
Aims: We aim to detect Doppler signals corresponding to planetary companions, determine their most probable orbital configurations, and understand the stellar activity and its impact on different datasets.
Methods: We analyzed 22 yr of data of the M1.5 V-type star Gl 49 (BD+61 195) including HARPS-N and CARMENES spectrographs, complemented by APT2 and SNO photometry. Activity indices are calculated from the observed spectra, and all datasets are analyzed with periodograms and noise models. We investigated how the variation of stellar activity imprints on our datasets. We further tested the origin of the signals and investigate phase shifts between the different sets. To search for the best-fit model we maximize the likelihood function in a Markov chain Monte Carlo approach.
Results: As a result of this study, we are able to detect the super-Earth Gl 49b with a minimum mass of 5.6 M. It orbits its host star with a period of 13.85 d at a semi-major axis of 0.090 au and we calculate an equilibrium temperature of 350 K and a transit probability of 2.0%. The contribution from the spot-dominated host star to the different datasets is complex, and includes signals from the stellar rotation at 18.86 d, evolutionary timescales of activity phenomena at 40-80 d, and a long-term variation of at least four years.

Based on observations made with the Italian TNG, operated on the island of La Palma, Spain; the CARMENES instrument installed at the 3.5 m telescope of the Calar Alto Observatory, Spain; the robotic APT2 located at Serra La Nave on Mt. Etna, Italy; and the T90 telescope at Sierra Nevada Observatory, Spain.Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A123 Title: Kepler-411: a four-planet system with an active host star Authors: Sun, L.; Ioannidis, P.; Gu, S.; Schmitt, J. H. M. M.; Wang, X.; Kouwenhoven, M. B. N. Bibcode: 2019A&A...624A..15S Altcode: 2019arXiv190209719S We present a detailed characterization of the Kepler-411 system (KOI 1781). This system was previously known to host two transiting planets: one with a period of 3 days (R = 2.4 R; Kepler-411b) and one with a period of 7.8 days (R = 4.4 R; Kepler-411c), as well as a transiting planetary candidate with a 58-day period (R = 3.3 R; KOI 1781.03) from Kepler photometry. Here, we combine Kepler photometry data and new transit timing variation (TTV) measurements from all the Kepler quarters with previous adaptive-optics imaging results, and dynamical simulations, in order to constrain the properties of the Kepler-411 system. From our analysis, we obtain masses of 25.6 ± 2.6 M for Kepler-411b and 26.4 ± 5.9 M for Kepler-411c, and we confirm the planetary nature of KOI 1781.03 with a mass of 15.2 ± 5.1 M, hence the name Kepler-411d. Furthermore, by assuming near-coplanarity of the system (mutual inclination below 30°), we discover a nontransiting planet, Kepler-411e, with a mass of 10.8 ± 1.1 M on a 31.5-day orbit, which has a strong dynamical interaction with Kepler-411d. With densities of 1.71 ± 0.39 g cm-3 and 2.32 ± 0.83 g cm-3, both Kepler-411c and Kepler-411d belong to the group of planets with a massive core and a significant fraction of volatiles. Although Kepler-411b has a sub-Neptune size, it belongs to the group of rocky planets.

Tables 2-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A15 Title: VizieR Online Data Catalog: Gl 49 radial velocities and activity indicators (Perger+, 2019) Authors: Perger, M.; Scandariato, G.; Ribas, I.; Morales, J. C.; Affer, L.; Azzaro, M.; Amado, P. J.; Anglada-Escude, G.; Baroch, D.; Barrado, D.; Bauer, F. F.; Bejar, V. J. S.; Caballero, J. A.; Cortes-Contreras, M.; Damasso, M.; Dreizler, S.; Gonzalez-Cuesta, L.; Gonzalez Hernandez, J. I.; Guenther, E. W.; Henning, T.; Herrero, E.; Jeffers, S. V.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Leto, G.; Lopez-Gonzalez, M. J.; Maldonado, J.; Micela, G.; Montes, D.; Pinamonti, M.; Quirrenbach, A.; Rebolo, R.; Reiners, A.; Rodriguez, E.; Rodriguez-Lopez, C.; Schmitt, J. H. M. M.; Sozzetti, A.; Suarezmascareno, A.; Toledo-Padron, B.; Zanmar Sanchez, R.; Zapatero Osorio, M. R.; Zechmeister, M. Bibcode: 2019yCat..36240123P Altcode: Radial velocity and activity indicator time-series data of Gl 49 from HIRES, HARPS-N, and CARMENES instruments.

We obtained 137 RVs from optical spectra of the HADES program. They were observed over six seasons (S1 to S6) between 3 Sep 2012 and 11 Oct 2017 with HARPS-N.

We obtained spectroscopic observations with the CARMENES instrument, installed since 2015 at the 3.51m telescope of the Calar Alto Observatory in Spain.

Gl 49 was also observed with the HIRES instrument, installed since the late 1990s at the Keck I telescope located in Hawaii, USA.

(1 data file). Title: Concept for an Experimental Study of Dust Rim Formation on Chondrules Authors: Schmidt, J.; Carballido, A.; Matthews, L. S.; Laufer, R.; Herdrich, G.; Hyde, T. W. Bibcode: 2019LPI....50.1910S Altcode: An experiment in the IPG6-B plasma facility is proposed to study the growth of fine-grained dust rims chondrules by electrically neutral and charged dust. Title: The CARMENES search for exoplanets around M dwarfs. Period search in Hα, Na I D, and Ca II IRT lines Authors: Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M.; Johnson, E. N.; Schöfer, P.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Bauer, F.; Béjar, V. J. S.; Cortés-Contreras, M.; Díez Alonso, E.; Dreizler, S.; Galadí-Enríquez, D.; Guenther, E. W.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D. Bibcode: 2019A&A...623A..24F Altcode: 2019arXiv190105173F We use spectra from CARMENES, the Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs, to search for periods in chromospheric indices in 16 M0-M2 dwarfs. We measure spectral indices in the Hα, the Ca II infrared triplet (IRT), and the Na I D lines to study which of these indices are best-suited to finding rotation periods in these stars. Moreover, we test a number of different period-search algorithms, namely the string length method, the phase dispersion minimisation, the generalized Lomb-Scargle periodogram, and the Gaussian process regression with quasi-periodic kernel. We find periods in four stars using Hα and in five stars using the Ca II IRT, two of which have not been found before. Our results show that both Hα and the Ca II IRT lines are well suited for period searches, with the Ca II IRT index performing slightly better than Hα. Unfortunately, the Na I D lines are strongly affected by telluric airglow, and we could not find any rotation period using this index. Further, different definitions of the line indices have no major impact on the results. Comparing the different search methods, the string length method and the phase dispersion minimisation perform worst, while Gaussian process models produce the smallest numbers of false positives and non-detections. Title: Swift UVOT near-UV transit observations of WASP-121 b Authors: Salz, M.; Schneider, P. C.; Fossati, L.; Czesla, S.; France, K.; Schmitt, J. H. M. M. Bibcode: 2019A&A...623A..57S Altcode: 2019arXiv190110223S Close-in gas planets are subject to continuous photoevaporation that can erode their volatile envelopes. Today, ongoing mass loss has been confirmed in a few individual systems via transit observations in the ultraviolet spectral range. We demonstrate that the Ultraviolet/Optical Telescope (UVOT) onboard the Neil Gehrels Swift Observatory enables photometry to a relative accuracy of about 0.5% and present the first near-UV (200-270 nm, NUV) transit observations of WASP-121 b, a hot Jupiter with one of the highest predicted mass-loss rates. The data cover the orbital phases 0.85-1.15 with three visits. We measure a broadband NUV transit depth of 2.10 ± 0.29%. While still consistent with the optical value of 1.55%, the NUV data indicate excess absorption of 0.55% at a 1.9σ level. Such excess absorption is known from the WASP-12 system, and both of these hot Jupiters are expected to undergo mass loss at extremely high rates. With a Cloudy simulation, we show that absorption lines of Fe II in a dense extended atmosphere can cause broadband near-UV absorption at the 0.5% level. Given the numerous lines of low-ionization metals, the NUV range is a promising tracer of photoevaporation in the hottest gas planets.

Light curves shown in Fig. A.1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A57 Title: The CARMENES search for exoplanets around M dwarfs. Chromospheric modeling of M 2-3 V stars with PHOENIX Authors: Hintz, D.; Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M.; Johnson, E. N.; Schweitzer, A.; Caballero, J. A.; Zechmeister, M.; Jeffers, S. V.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Anglada-Escudé, G.; Bauer, F. F.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Galadí-Enríquez, D.; Guenther, E. W.; Hauschildt, P. H.; Kaminski, A.; Kürster, M.; Lafarga, M.; López del Fresno, M.; Montes, D.; Morales, J. C.; Passegger, V. M.; Seifert, W. Bibcode: 2019A&A...623A.136H Altcode: 2019arXiv190203992H Chromospheric modeling of observed differences in stellar activity lines is imperative to fully understand the upper atmospheres of late-type stars. We present one-dimensional parametrized chromosphere models computed with the atmosphere code PHOENIX using an underlying photosphere of 3500 K. The aim of this work is to model chromospheric lines of a sample of 50 M2-3 dwarfs observed in the framework of the CARMENES, the Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs, exoplanet survey. The spectral comparison between observed data and models is performed in the chromospheric lines of Na I D2, Hα, and the bluest Ca II infrared triplet line to obtain best-fit models for each star in the sample. We find that for inactive stars a single model with a VAL C-like temperature structure is sufficient to describe simultaneously all three lines adequately. Active stars are rather modeled by a combination of an inactive and an active model, also giving the filling factors of inactive and active regions. Moreover, the fitting of linear combinations on variable stars yields relationships between filling factors and activity states, indicating that more active phases are coupled to a larger portion of active regions on the surface of the star. Title: Density waves and the viscous overstability in Saturn's rings Authors: Lehmann, M.; Schmidt, J.; Salo, H. Bibcode: 2019A&A...623A.121L Altcode: 2018arXiv180601211L This paper considers resonantly forced spiral density waves in a dense planetary ring that is close to the threshold for viscous overstability. We solved numerically the hydrodynamical equations for a dense thin disk in the vicinity of an inner Lindblad resonance with a perturbing satellite. Our numerical scheme is one-dimensional so that the spiral shape of a density wave is taken into account through a suitable approximation of the advective terms arising from the fluid orbital motion. This paper is a first attempt to model the co-existence of resonantly forced density waves and short-scale free overstable wavetrains as observed in Saturn's rings, by conducting large-scale hydrodynamical integrations. These integrations reveal that the two wave types undergo complex interactions, not taken into account in existing models for the damping of density waves. In particular we found that, depending on the relative magnitude of both wave types, the presence of viscous overstability can lead to the damping of an unstable density wave and vice versa. The damping of the short-scale viscous overstability by a density wave was investigated further by employing a simplified model of an axisymmetric ring perturbed by a nearby Lindblad resonance. A linear hydrodynamic stability analysis as well as local N-body simulations of this model system were performed and support the results of our large-scale hydrodynamical integrations. Title: Spot evolution in the eclipsing binary CoRoT 105895502 Authors: Czesla, S.; Terzenbach, S.; Wichmann, R.; Schmitt, J. H. M. M. Bibcode: 2019A&A...623A.107C Altcode: 2019arXiv190405600C Stellar activity is ubiquitous in late-type stars. The special geometry of eclipsing binary systems is particularly advantageous to study the stellar surfaces and activity. We present a detailed study of the 145 d CoRoT light curve of the short-period (2.17 d) eclipsing binary CoRoT 105895502. By means of light-curve modeling with Nightfall, we determine the orbital period, effective temperature, Roche-lobe filling factors, mass ratio, and orbital inclination of CoRoT 105895502 and analyze the temporal behavior of starspots in the system. Our analysis shows one comparably short-lived (≈40 d) starspot, remaining quasi-stationary in the binary frame, and one starspot showing prograde motion at a rate of 2.3° day-1, whose lifetime exceeds the duration of the observation. In the CoRoT band, starspots account for as much as 0.6% of the quadrature flux of CoRoT 105895502, however we cannot attribute the spots to individual binary components with certainty. Our findings can be explained by differential rotation, asynchronous stellar rotation, or systematic spot evolution. Title: White paper for Chandra cool attitude targets (CAT): Stellar activity with TESS and Chandra Authors: Günther, Hans Moritz; Principe, David A.; Melis, Carl; Monsch, Kristina; Schneider, P. Christian; Czesla, S.; Wright, Nicholas J.; Kashyap, Vinay L.; Schmitt, J. H. M. M.; Newton, E. R.; Drake, Jeremy J.; Huenemoerder, D. P. Bibcode: 2019arXiv190301547G Altcode: All cool stars show magnetic activity, and X-ray emission is the hallmark of this activity. Gaining an understanding of activity aids us in answering fundamental questions about stellar astrophysics and in determining the impact of activity on the exoplanets that orbit these stars. Stellar activity is driven by magnetic fields, which are ultimately powered by convection and stellar rotation. However, the resulting dynamo properties heavily depend on the stellar interior structure and are far from being understood. X-ray radiation can evaporate exoplanet atmospheres and damage organic materials on the planetary surface, reducing the probability that life can form or be sustained, but also provides an important source of energy for prebiotic chemical reactions. Over the next two years, the TESS mission will deliver a catalog of the closest exoplanets, along with rotation periods and activity diagnostics for millions of stars, whether or not they have a planet. We propose to include all cool stars that are TESS targets and bright enough for Chandra observations, as determined by their detection and flux in the ROSAT all-sky survey (RASS), to the list of Chandra Cool Attitude Targets (CATs). For each target, the signal will be sufficient to fit the coronal plasma with at least two temperature components, and compare abundances of groups of elements with low, medium, or high first ionization potential. Similar to the known relation between X-ray luminosity $L_X$ and rotation period, we can correlate stellar properties with coronal temperatures and abundances to constrain models for stellar activity, coronal heating, and stellar dynamos. Detailed X-ray characterization for even a subset of planet-hosting systems would dramatically advance our knowledge of what impact these emissions have on orbiting planets. Title: VizieR Online Data Catalog: Kepler-411 mid-transit times (Sun+, 2019) Authors: Sun, L.; Ioannidis, P.; Gu, S. G.; Schmitt, J. H. M. M.; Wang, X. B.; Kouwenhoven, M. B. N. Bibcode: 2019yCat..36240015S Altcode: The Kepler data of Kepler-411 were downloaded from the MAST archive (https://archive.stsci.edu/kepler), which contains the data recorded in the 17 quarters; we use both long- and short-cadence data (available for quarters Q10 to Q17). We use the PDCSAP data for our analysis.

(3 data files). Title: The CARMENES search for exoplanets around M dwarfs. The enigmatic planetary system GJ 4276: one eccentric planet or two planets in a 2:1 resonance? Authors: Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.; Dreizler, S.; Anglada-Escudé, G.; Rodríguez, E.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Aceituno, J.; Béjar, V. J. S.; Cortés-Contreras, M.; González-Cuesta, L.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; López-González, M. J.; Montes, D.; Morales, J. C.; Passegger, V. M.; Rodríguez-López, C.; Schweitzer, A.; Zechmeister, M. Bibcode: 2019A&A...622A.153N Altcode: 2019arXiv190102367N We report the detection of a Neptune-mass exoplanet around the M4.0 dwarf GJ 4276 (G 232-070) based on radial velocity (RV) observations obtained with the CARMENES spectrograph. The RV variations of GJ 4276 are best explained by the presence of a planetary companion that has a minimum mass of mb sin i ≈ 16 M on a Pb = 13.35 day orbit. The analysis of the activity indicators and spectral diagnostics exclude stellar induced RV perturbations and prove the planetary interpretation of the RV signal. We show that a circular single-planet solution can be excluded by means of a likelihood ratio test. Instead, we find that the RV variations can be explained either by an eccentric orbit or interpreted as a pair of planets on circular orbits near a period ratio of 2:1. Although the eccentric single-planet solution is slightly preferred, our statistical analysis indicates that none of these two scenarios can be rejected with high confidence using the RV time series obtained so far. Based on the eccentric interpretation, we find that GJ 4276 b is the most eccentric (eb = 0.37) exoplanet around an M dwarf with such a short orbital period known today.

Photometric measurements and Table C.1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A153 Title: Multiple water band detections in the CARMENES near-infrared transmission spectrum of HD 189733 b Authors: Alonso-Floriano, F. J.; Sánchez-López, A.; Snellen, I. A. G.; López-Puertas, M.; Nagel, E.; Amado, P. J.; Bauer, F. F.; Caballero, J. A.; Czesla, S.; Nortmann, L.; Pallé, E.; Salz, M.; Reiners, A.; Ribas, I.; Quirrenbach, A.; Aceituno, J.; Anglada-Escudé, G.; Béjar, V. J. S.; Guenther, E. W.; Henning, T.; Kaminski, A.; Kürster, M.; Lampón, M.; Lara, L. M.; Montes, D.; Morales, J. C.; Tal-Or, L.; Schmitt, J. H. M. M.; Zapatero Osorio, M. R.; Zechmeister, M. Bibcode: 2019A&A...621A..74A Altcode: 2018arXiv181108901A
Aims: We explore the capabilities of CARMENES for characterising hot-Jupiter atmospheres by targeting multiple water bands, in particular, those at 1.15 and 1.4 μm. Hubble Space Telescope observations suggest that this wavelength region is relevant for distinguishing between hazy and/or cloudy and clear atmospheres.
Methods: We observed one transit of the hot Jupiter HD 189733 b with CARMENES. Telluric and stellar absorption lines were removed using SYSREM, which performs a principal component analysis including proper error propagation. The residual spectra were analysed for water absorption with cross-correlation techniques using synthetic atmospheric absorption models.
Results: We report a cross-correlation peak at a signal-to-noise ratio (S/N) of 6.6, revealing the presence of water in the transmission spectrum of HD 189733 b. The absorption signal appeared slightly blueshifted at -3.9 ± 1.3 km s-1. We measured the individual cross-correlation signals of the water bands at 1.15 and 1.4 μm, finding cross-correlation peaks at S/N of 4.9 and 4.4, respectively. The 1.4 μm feature is consistent with that observed with the Hubble Space Telescope.
Conclusions: The water bands studied in this work have been mainly observed in a handful of planets from space. Being able also to detect them individually from the ground at higher spectral resolution can provide insightful information to constrain the properties of exoplanet atmospheres. Although the current multi-band detections can not yet constrain atmospheric haze models for HD 189733 b, future observations at higher S/N could provide an alternative way to achieve this aim. Title: Discovery of short-term activity cycles in F-type stars Authors: Mittag, M.; Schmitt, J. H. M. M.; Hempelmann, A.; Schröder, K. -P. Bibcode: 2019A&A...621A.136M Altcode: Previous studies have revealed a 120 day activity cycle in the F-type star τ Boo, which represents the shortest activity cycle discovered until now. The question arises as to whether or not short-term activity cycles are a common phenomenon in F-type stars. To address this question, we analyse S-index time series of F-type stars taken with the TIGRE telescope to search for periodic variations with a maximal length of 2 years using the generalised Lomb-Scargle periodogram method. In our sample, we find four F-type stars showing periodic variations shorter than one year. However, the amplitude of these variations in our sample of F-star type stars appears to be smaller than that of solar-type stars with well-developed cyclic activity, and apparently represents only a part of the total activity. We conclude that among F-stars, the time-behaviour of activity differs from that of the Sun and cooler main sequence stars, as short-term cyclic variations with shallow amplitude of the cycle seem to prevail, rather than cycles with 10+ years periods and a larger cycle amplitude. Title: Prominence activation, optical flare, and post-flare loops on the RS Canum Venaticorum star SZ Piscium Authors: Cao, Dongtao; Gu, Shenghong; Ge, Jian; Wang, Tinggui; Zhou, Jilin; Chang, Liang; Wolter, U.; Mittag, M.; Schmitt, J. H. M. M.; Perdelwitz, V. Bibcode: 2019MNRAS.482..988C Altcode: 2018MNRAS.tmp.2644C We present the results of time-resolved high-resolution spectroscopic observations of the very active RS Canum Venaticorum (RS CVn) star SZ Piscium (SZ Psc), obtained during two consecutive observing nights on 2011 October 24 and 25. Several optical chromospheric activity indicators are analysed using the spectral subtraction technique, which show the remarkably different behaviour between two nights. Gradually blue-shifted and strengthened excess absorption features presented in the series of the subtracted spectra (especially for the Hα, He I D3, and Hβ lines), as a result of active stellar prominence that is rising its height along the line of our sight, was detected in the observations on October 24. This prominence activation event was probably associated with the subsequently occurred optical flare, and part of that flare decay phase was hunted in the observations on October 25. The flare was characterized by the prominent He I D3 line emission, as well as stronger chromospheric emission in the Hα, Hβ, and other active lines. The gradual decay of flare was accompanied by an obviously developmental absorption feature in the blue wing of the Hα and other active lines, which could be explained as cool post-flare loops which projected against the bright flare background. Therefore, a series of possibly associated magnetic activity phenomena, including flare-related prominence activation, optical flare, and post-flare loops, were detected during our observations. Title: The CARMENES survey for M dwarf planets . Authors: Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Aceituno, J.; Béjar, V. J. S.; Hatzes, A. P.; Henning, T.; Kürster, M.; Montes, D.; Schmitt, J. H. M. M.; CARMENES Consortium Bibcode: 2019MmSAI..90..554Q Altcode: CARMENES is a pair of high-resolution spectrographs optimized for measuring radial velocities in the wavelength range from 0.52 to 1.71 mu m; it has been in operation at Calar Alto Observatory since January 2016. The CARMENES survey is targeting 342 M dwarfs; it aims at obtaining at least 50 spectra for each of them. In the first three years of the survey, the signatures of several previously known planets have been detected, and new planets with masses almost down to 1 M_oplus have been discovered. The most remarkable discoveries include a cold super-Earth orbiting Barnard's star and a pair of Earth twins in the habitable zone of Teegarden's star. CARMENES has also been used for observations of evaporating atmospheres of hot Jupiters in the He I lambda 10830 Å line. Title: Dust Emission by Active Moons Authors: Hillier, J. K.; Schmidt, J.; Hsu, H. -W.; Postberg, F. Bibcode: 2018SSRv..214..131H Altcode: In recent decades, volcanic and cryovolcanic activity on moons within the Solar System has been recognised as an important source of cosmic dust. Two moons, Jupiter's satellite Io and Saturn's satellite Enceladus, are known to be actively emitting dust into circumplanetary and interplanetary space. A third moon, Europa, shows tantalising hints of activity. Here we review current observations and theories concerning the generation, emission and evolution of cosmic dust arising from these objects. Title: Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b Authors: Nortmann, Lisa; Pallé, Enric; Salz, Michael; Sanz-Forcada, Jorge; Nagel, Evangelos; Alonso-Floriano, F. Javier; Czesla, Stefan; Yan, Fei; Chen, Guo; Snellen, Ignas A. G.; Zechmeister, Mathias; Schmitt, Jürgen H. M. M.; López-Puertas, Manuel; Casasayas-Barris, Núria; Bauer, Florian F.; Amado, Pedro J.; Caballero, José A.; Dreizler, Stefan; Henning, Thomas; Lampón, Manuel; Montes, David; Molaverdikhani, Karan; Quirrenbach, Andreas; Reiners, Ansgar; Ribas, Ignasi; Sánchez-López, Alejandro; Schneider, P. Christian; Zapatero Osorio, María R. Bibcode: 2018Sci...362.1388N Altcode: 2018arXiv181203119N Hot gas giant exoplanets can lose part of their atmosphere due to strong stellar irradiation, and these losses can affect their physical and chemical evolution. Studies of atmospheric escape from exoplanets have mostly relied on space-based observations of the hydrogen Lyman-α line in the far ultraviolet region, which is strongly affected by interstellar absorption. Using ground-based high-resolution spectroscopy, we detected excess absorption in the helium triplet at 1083 nanometers during the transit of the Saturn-mass exoplanet WASP-69b, at a signal-to-noise ratio of 18. We measured line blueshifts of several kilometers per second and posttransit absorption, which we interpret as the escape of part of the atmosphere trailing behind the planet in comet-like form. Title: Detection of He I λ10830 Å absorption on HD 189733 b with CARMENES high-resolution transmission spectroscopy Authors: Salz, M.; Czesla, S.; Schneider, P. C.; Nagel, E.; Schmitt, J. H. M. M.; Nortmann, L.; Alonso-Floriano, F. J.; López-Puertas, M.; Lampón, M.; Bauer, F. F.; Snellen, I. A. G.; Pallé, E.; Caballero, J. A.; Yan, F.; Chen, G.; Sanz-Forcada, J.; Amado, P. J.; Quirrenbach, A.; Ribas, I.; Reiners, A.; Béjar, V. J. S.; Casasayas-Barris, N.; Cortés-Contreras, M.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Lara, L. M.; Molaverdikhani, K.; Montes, D.; Morales, J. C.; Sánchez-López, A.; Seifert, W.; Zapatero Osorio, M. R.; Zechmeister, M. Bibcode: 2018A&A...620A..97S Altcode: 2018arXiv181202453S We present three transit observations of HD 189733 b obtained with the high-resolution spectrograph CARMENES at Calar Alto. A strong absorption signal is detected in the near-infrared He I triplet at 10830 Å in all three transits. During mid-transit, the mean absorption level is 0.88 ± 0.04% measured in a ±10 km s-1 range at a net blueshift of - 3.5 ± 0.4 km s-1 (10829.84-10830.57 Å). The absorption signal exhibits radial velocities of + 6.5 ± 3.1 km s-1 and - 12.6 ± 1.0 km s-1 during ingress and egress, respectively; all radial velocities are measured in the planetary rest frame. We show that stellar activity related pseudo-signals interfere with the planetary atmospheric absorption signal. They could contribute as much as 80% of the observed signal and might also affect the observed radial velocity signature, but pseudo-signals are very unlikely to explain the entire signal. The observed line ratio between the two unresolved and the third line of the He I triplet is 2.8 ± 0.2, which strongly deviates from the value expected for an optically thin atmospheres. When interpreted in terms of absorption in the planetary atmosphere, this favors a compact helium atmosphere with an extent of only 0.2 planetary radii and a substantial column density on the order of 4 × 1012 cm-2. The observed radial velocities can be understood either in terms of atmospheric circulation with equatorial superrotation or as a sign of an asymmetric atmospheric component of evaporating material. We detect no clear signature of ongoing evaporation, like pre- or post-transit absorption, which could indicate material beyond the planetary Roche lobe, or radial velocities in excess of the escape velocity. These findings do not contradict planetary evaporation, but only show that the detected helium absorption in HD 189733 b does not trace the atmospheric layers that show pronounced escape signatures. Title: The CARMENES search for exoplanets around M dwarfs. The warm super-Earths in twin orbits around the mid-type M dwarfs Ross 1020 (GJ 3779) and LP 819-052 (GJ 1265) Authors: Luque, R.; Nowak, G.; Pallé, E.; Kossakowski, D.; Trifonov, T.; Zechmeister, M.; Béjar, V. J. S.; Cardona Guillén, C.; Tal-Or, L.; Hidalgo, D.; Ribas, I.; Reiners, A.; Caballero, J. A.; Amado, P. J.; Quirrenbach, A.; Aceituno, J.; Cortés-Contreras, M.; Díez-Alonso, E.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Passegger, V. M.; Schmitt, J. H. M. M.; Schweitzer, A. Bibcode: 2018A&A...620A.171L Altcode: 2018arXiv181007572L We announce the discovery of two planetary companions orbiting around the low-mass stars Ross 1020 (GJ 3779, M4.0V) and LP 819-052 (GJ 1265, M4.5V). The discovery is based on the analysis of CARMENES radial velocity (RV) observations in the visual channel as part of its survey for exoplanets around M dwarfs. In the case of GJ 1265, CARMENES observations were complemented with publicly available Doppler measurements from HARPS. The datasets reveal two planetary companions, one for each star, that share very similar properties: minimum masses of 8.0 ± 0.5 M and 7.4 ± 0.5 M in low-eccentricity orbits with periods of 3.023 ± 0.001 d and 3.651 ± 0.001 d for GJ 3779 b and GJ 1265 b, respectively. The periodic signals around 3 d found in the RV data have no counterpart in any spectral activity indicator. Furthermore, we collected available photometric data for the two host stars, which confirm that the additional Doppler variations found at periods of approximately 95 d can be attributed to the rotation of the stars. The addition of these planets to a mass-period diagram of known planets around M dwarfs suggests a bimodal distribution with a lack of short-period low-mass planets in the range of 2-5 M. It also indicates that super-Earths (>5 M) currently detected by RV and transit techniques around M stars are usually found in systems dominated by a single planet.

The RV and formal uncertainties of GJ 3779 and GJ 1265 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/620/A171 Title: The MISTRAL spectrograph at OHP Authors: Adami, C.; Basa, S.; Brunel, J. C.; Buat, V.; Clerc, N.; Dennefeld, M.; Dolon, F.; Le van Suu, A.; Moreau, F.; Perruchot, S.; Schmitt, J. Bibcode: 2018sf2a.conf..357A Altcode: We present in this contribution the expected MISTRAL characteristics and operation modes as well as examples of science applications which can be performed by the instrument, in terms of variable sky and non transient objects. Title: HD 189733 b: bow shock or no shock? Authors: Kohl, S.; Salz, M.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2018A&A...619A..96K Altcode: Context. Hot Jupiters are surrounded by extended atmospheres of neutral hydrogen. Observations have provided evidence for in-transit hydrogen Hα absorption as well as variable pre-transit absorption signals. These have been interpreted in terms of a bow shock or an accretion stream that transits the host star before the planet.
Aims: We test the hypothesis of planetary-related Hα absorption by studying the time variability of the Hα and stellar activity-sensitive calcium lines in high-resolution TIGRE (Telescopio Internacional de Guanajuato Robótico Espectroscópico) spectra of the planet host HD 189733.
Methods: In the framework of an observing campaign spanning several months, the host star was observed several times per week randomly sampling the orbital phases of the planet. We determine the equivalent width in the Hα and Ca IRT(calcium infrared triplet) lines, and subtract stellar rotationally induced activity from the Hα time series via its correlation with the IRT evolution. The residuals are explored for significant differences between the pre-, in-, and out-of-transit phases.
Results: We find strong stellar rotational variation with a lifetime of about 20-30 days in all activity indicators, but the corrected Hα time series exhibits no significant periodic variation. We exclude the presence of more than 6.2 mÅ pre-transit absorption and 5.6 mÅ in-transit absorption in the corrected Hα data at a 99% confidence level.
Conclusions: Previously observed Hα absorption signals exceed our upper limits, but they could be related to excited atmospheric states. The Hα variability in the HD 189733 system is dominated by stellar activity, and observed signals around the planetary transit may well be caused by short-term stellar variability.

Full Table 2 is only available in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A96 Title: VizieR Online Data Catalog: GJ 4276 radial velocity curve (Nagel+, 2019) Authors: Nagel, E.; Czesla, S.; Schmitt, J. H. M. M.; Dreizler, S.; Anglada-Escude, G.; Rodriguez, E.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Aceituno, J.; Bejar, V. J. S.; Cortes-Contreras, M.; Gonzalez-Cuesta, L.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Lopez-Gonzalez, M. J.; Montes, D.; Morales, J. C. Passegger V. M.; Rodriguez-Lopez, C.; Schweitzer, A.; Zechmeister, M. Bibcode: 2018yCat..36220153N Altcode: We analyzed radial velocity data from the CARMENES VIS channel. The RVs are corrected for barycentric motion and secular acceleration. The CARMENES measurements were taken in the context of the CARMENES search for exoplanets around M dwarfs. The CARMENES instrument consists of two channels: the VIS channel obtains spectra at a resolution of R=94600 in the wavelength range 520-960nm, while the NIR channel yields spectra of R=80400 covering 960-1710nm. Both channels are calibrated in wavelength with hollow-cathode lamps and use temperature- and pressure-stabilized Fabry-Perot etalons to interpolate the wavelength solution and simultaneously monitor the spectrograph drift during nightly operations (Bauer et al., 2015A&A...581A.117B).

To determine the stellar rotation period, we obtained V band photometry with the T150 telescope located at the Sierra Nevada Observatory (SNO) in Spain.

(2 data files). Title: Quantifying Feedback from Narrow Line Region Outflows in Nearby Active Galaxies. II. Spatially Resolved Mass Outflow Rates for the QSO2 Markarian 34 Authors: Revalski, M.; Dashtamirova, D.; Crenshaw, D. M.; Kraemer, S. B.; Fischer, T. C.; Schmitt, H. R.; Gnilka, C. L.; Schmidt, J.; Elvis, M.; Fabbiano, G.; Storchi-Bergmann, T.; Maksym, W. P.; Gandhi, P. Bibcode: 2018ApJ...867...88R Altcode: 2018arXiv180909105R We present spatially resolved mass outflow rate measurements ({\dot{M}}out}) for the narrow line region of Markarian 34, the nearest Compton-thick type 2 quasar (QSO2). Spectra obtained with the Hubble Space Telescope and at Apache Point Observatory reveal complex kinematics, with distinct signatures of outflow and rotation within 2 kpc of the nucleus. Using multi-component photoionization models, we find that the outflow contains a total ionized gas mass of M ≈ 1.6 × 106 M . Combining this with the kinematics yields a peak outflow rate of {\dot{M}}out}≈ 2.0+/- 0.4 M yr-1 at a distance of 470 pc from the nucleus, with a spatially integrated kinetic energy of E ≈ 1.4 × 1055 erg. These outflows are more energetic than those observed in Mrk 573 and NGC 4151, supporting a correlation between luminosity and outflow strength even though they have similar peak outflow rates. The mix of rotational and outflowing components suggests that spatially resolved observations are required to determine accurate outflow parameters in systems with complex kinematics. Title: Physics of the Applegate mechanism: Eclipsing time variations from magnetic activity Authors: Völschow, M.; Schleicher, D. R. G.; Banerjee, R.; Schmitt, J. H. M. M. Bibcode: 2018A&A...620A..42V Altcode: 2018arXiv180900910V Since its proposal in 1992, the Applegate mechanism has been discussed as a potential intrinsical mechanism to explain transit-timing variations in various types of close binary systems. Most analytical arguments presented so far focused on the energetic feasibility of the mechanism while applying rather crude one- or two-zone prescriptions to describe the exchange of angular momentum within the star. In this paper, we present the most detailed approach to date to describe the physics giving rise to the modulation period from kinetic and magnetic fluctuations. Assuming moderate levels of stellar parameter fluctuations, we find that the resulting binary period variations are one or two orders of magnitude lower than the observed values in RS-CVn like systems, supporting the conclusion of existing theoretical work that the Applegate mechanism may not suffice to produce the observed variations in these systems. The most promising Applegate candidates are low-mass post-common-envelope binaries with binary separations ≲1 R and secondary masses in the range of 0.30 M and 0.36 M. Title: X-ray and UV emission of the ultrashort-period, low-mass eclipsing binary system BX Trianguli Authors: Perdelwitz, V.; Czesla, S.; Robrade, J.; Pribulla, T.; Schmitt, J. H. M. M. Bibcode: 2018A&A...619A.138P Altcode: 2018arXiv180900971P Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data. Title: Outstanding X-ray emission from the stellar radio pulsar CU Virginis Authors: Robrade, J.; Oskinova, L. M.; Schmitt, J. H. M. M.; Leto, P.; Trigilio, C. Bibcode: 2018A&A...619A..33R Altcode: 2018arXiv180802367R Context. Among the intermediate-mass magnetic chemically peculiar (MCP) stars, CU Vir is one of the most intriguing objects. Its 100% circularly polarized beams of radio emission sweep the Earth as the star rotates, thereby making this strongly magnetic star the prototype of a class of nondegenerate stellar radio pulsars. While CU Vir is well studied in radio, its high-energy properties are not known. Yet, X-ray emission is expected from stellar magnetospheres and confined stellar winds.
Aims: Using X-ray data we aim to test CU Vir for intrinsic X-ray emission and investigate mechanisms responsible for its generation.
Methods: We present X-ray observations performed with XMM-Newton and Chandra and study obtained X-ray images, light curves, and spectra. Basic X-ray properties are derived from spectral modelling and are compared with model predictions. In this context we investigate potential thermal and nonthermal X-ray emission scenarios.
Results: We detect an X-ray source at the position of CU Vir. With LX ≍ 3×1028 erg s-1 it is moderately X-ray bright, but the spectrum is extremely hard compared to other Ap stars. Spectral modelling requires multi-component models with predominant hot plasma at temperatures of about TX = 25 MK or, alternatively, a nonthermal spectral component. Both types of model provide a virtually equivalent description of the X-ray spectra. The Chandra observation was performed six years later than those by XMM-Newton, yet the source has similar X-ray flux and spectrum, suggesting a steady and persistent X-ray emission. This is further confirmed by the X-ray light curves that show only mild X-ray variability.
Conclusions: CU Vir is also an exceptional star at X-ray energies. To explain its full X-ray properties, a generating mechanism beyond standard explanations, like the presence of a low-mass companion or magnetically confined wind-shocks, is required. Magnetospheric activity might be present or, as proposed for fast-rotating strongly magnetic Bp stars, the X-ray emission of CU Vir is predominantly auroral in nature. Title: Revisiting the connection between magnetic activity, rotation period, and convective turnover time for main-sequence stars Authors: Mittag, M.; Schmitt, J. H. M. M.; Schröder, K. -P. Bibcode: 2018A&A...618A..48M Altcode: 2018arXiv180705825M The connection between stellar rotation, stellar activity, and convective turnover time is revisited with a focus on the sole contribution of magnetic activity to the Ca II H&K emission, the so-called excess flux, and its dimensionless indicator R+HK in relation to other stellar parameters and activity indicators. Our study is based on a sample of 169 main-sequence stars with directly measured Mount Wilson S-indices and rotation periods. The R+HK values are derived from the respective S-indices and related to the rotation periods in various B-V-colour intervals. First, we show that stars with vanishing magnetic activity, i.e. stars whose excess flux index R+HK approaches zero, have a well-defined, colour-dependent rotation period distribution; we also show that this rotation period distribution applies to large samples of cool stars for which rotation periods have recently become available. Second, we use empirical arguments to equate this rotation period distribution with the global convective turnover time, which is an approach that allows us to obtain clear relations between the magnetic activity related excess flux index R+HK, rotation periods, and Rossby numbers. Third, we show that the activity versus Rossby number relations are very similar in the different activity indicators. As a consequence of our study, we emphasize that our Rossby number based on the global convective turnover time approaches but does not exceed unity even for entirely inactive stars. Furthermore, the rotation-activity relations might be universal for different activity indicators once the proper scalings are used. Title: VizieR Online Data Catalog: Radial velocities of GJ 3779 and GJ 1265 (Luque+, 2018) Authors: Luque, R.; Nowak, G.; Palle, E.; Kossakowski, D.; Trifonov, T.; Zechmeister, M.; Bejar, V. J. S.; Cardona Guillen, C.; Tal-Or, L.; Hidalgo, D.; Ribas, I.; Reiners, A.; Caballero, J. A.; Amado, P. J.; Quirrenbach, A.; Aceituno, J.; Cortes-Contreras, M.; Diez-Alonso, E.; Dreizler, S.; Guenther, E. W.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kuerster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Passegger, V. M.; Schmitt, J. H. M. M.; Schweitzer, A. Bibcode: 2018yCat..36200171L Altcode: We analyzed radial velocity data from the CARMENES VIS channel for GJ 3779, and from the CARMENES VIS channel and HARPS for GJ 1265. All the RVs are corrected for barycentric motion and secular acceleration. The CARMENES measurements were taken in the context of the CARMENES search for exoplanets around M dwarfs. The CARMENES instrument consists of two channels: the VIS channel obtains spectra at a resolution of R=94600 in the wavelength range 520-960nm, while the NIR channel yields spectra of R=80400 covering 960-1710nm. Both channels are calibrated in wavelength with hollow-cathode lamps and use temperature- and pressure-stabilized Fabry-Perot etalons to interpolate the wavelength solution and simultaneously monitor the spectrograph drift during nightly operations (Bauer et al., 2015A&A...581A.117B).

(2 data files). Title: Multiepoch, multiwavelength study of accretion onto T Tauri. X-ray versus optical and UV accretion tracers Authors: Schneider, P. C.; Günther, H. M.; Robrade, J.; Schmitt, J. H. M. M.; Güdel, M. Bibcode: 2018A&A...618A..55S Altcode: 2018arXiv180606788S Classical T Tauri stars (CTTSs) accrete matter from the inner edge of their surrounding circumstellar disks. The impact of the accretion material on the stellar atmosphere results in a strong shock, which causes emission from the X-ray to the near-infrared (NIR) domain. Shock velocities of several 100 km s-1 imply that the immediate post shock plasma emits mainly in X-rays. Indeed, two X-ray diagnostics, the so-called soft excess and the high densities observed in He-like triplets, differentiate CTTSs from their non-accreting siblings. However, accretion shock properties derived from X-ray diagnostics often contradict established ultraviolet (UV)-NIR accretion tracers and a physical model simultaneously explaining both, X-ray and UV-NIR accretion tracers, is not yet available. We present new XMM-Newton and Chandra grating observations of the CTTS T Tauri combined with UV and optical data. During all epochs, the soft excess is large and the densities derived from the O VII and Ne IX He-like triplets are compatible with coronal densities. This confirms that the soft X-ray emission cannot originate in accretion funnels that carry the bulk of the accretion rate despite T Tauri's large soft excess. Instead, we propose a model of radially density stratified accretion columns to explain the density diagnostics and the soft excess. In addition, accretion rate and X-ray luminosity are inversely correlated in T Tauri over several epochs. Such an anti-correlation has been observed in samples of stars. Hence the process causing it must be intrinsic to the accretion process, and we speculate that the stellar magnetic field configuration on the visible hemisphere affects both the accretion rate and the coronal emission, eventually causing the observed anti-correlation.

Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, and based on observations obtained by the Chandra X-ray observatory. Title: Stellar activity of evolved, cool giants - old questions revisited Authors: Schröder, K. -P.; Schmitt, J. H. M. M.; Mittag, M.; Gómez Trejo, V.; Jack, D. Bibcode: 2018MNRAS.480.2137S Altcode: We present an empirical study of the strength of magnetic stellar activity among cool giant stars on the red and asymptotic giant branches using the Ca II H&K chromospheric emission strength measured in the context of the Mount Wilson project. Because we consider only stars with a parallax error smaller than 10 per cent, the stars can be accurately placed into an empirical Hertzsprung-Russell diagram and their evolutionary status can be reliably assessed from a comparison with calibrated evolutionary tracks. We find that S-index values among evolved giants redder than 1.5 in B - V and with luminosity classes I and II are larger than those found among the progenitor K giants with luminosity class III and B - V < 1.3. Converting the measured S-indices into physical chromospheric surface fluxes, we find that chromospheric heating undergoes a remarkable reversal and revival as giant luminosity increases. We also discuss possible explanations for this new finding. Title: The relation between stellar magnetic field geometry and chromospheric activity cycles - II The rapid 120-day magnetic cycle of τ Bootis Authors: Jeffers, S. V.; Mengel, M.; Moutou, C.; Marsden, S. C.; Barnes, J. R.; Jardine, M. M.; Petit, P.; Schmitt, J. H. M. M.; See, V.; Vidotto, A. A.; BCool Collaboration Bibcode: 2018MNRAS.479.5266J Altcode: 2018arXiv180509769J; 2018MNRAS.tmp.1654J One of the aims of the BCool programme is to search for cycles in other stars and to understand how similar they are to the Sun. In this paper, we aim to monitor the evolution of τ Boo's large-scale magnetic field using high-cadence observations covering its chromospheric activity maximum. For the first time, we detect a polarity switch that is in phase with τ Boo's 120-day chromospheric activity maximum and its inferred X-ray activity cycle maximum. This means that τ Boo has a very fast magnetic cycle of only 240 days. At activity maximum τ Boo's large-scale field geometry is very similar to the Sun at activity maximum: it is complex and there is a weak dipolar component. In contrast, we also see the emergence of a strong toroidal component which has not been observed on the Sun, and a potentially overlapping butterfly pattern where the next cycle begins before the previous one has finished. Title: The atmosphere of WASP-17b: Optical high-resolution transmission spectroscopy Authors: Khalafinejad, Sara; Salz, Michael; Cubillos, Patricio E.; Zhou, George; von Essen, Carolina; Husser, Tim-Oliver; Bayliss, Daniel D. R.; López-Morales, Mercedes; Dreizler, Stefan; Schmitt, Jürgen H. M. M.; Lüftinger, Theresa Bibcode: 2018A&A...618A..98K Altcode: 2018arXiv180710621K High-resolution transmission spectroscopy is a method for understanding the chemical and physical properties of upper exoplanetary atmospheres. Due to large absorption cross-sections, resonance lines of atomic sodium D-lines (at 5889.95 and 5895.92 Å) produce large transmission signals. Our aim is to unveil the physical properties of WASP-17b through an accurate measurement of the sodium absorption in the transmission spectrum. We analyze 37 high-resolution spectra observed during a single transit of WASP-17b with the MIKE instrument on the 6.5 m Magellan Telescopes. We exclude stellar flaring activity during the observations by analyzing the temporal variations of Hα and Ca II infrared triplet (IRT) lines. We then obtain the excess absorption light curves in wavelength bands of 0.75, 1, 1.5, and 3 Å around the center of each sodium line (i.e., the light curve approach). We model the effects of differential limb-darkening, and the changing planetary radial velocity on the light curves. We also analyze the sodium absorption directly in the transmission spectrum, which is obtained by dividing in-transit by out-of-transit spectra (i.e., the division approach). We then compare our measurements with a radiative transfer atmospheric model. Our analysis results in a tentative detection of exoplanetary sodium: we measure the width and amplitude of the exoplanetary sodium feature to be σNa = (0.128 ± 0.078) Å and ANa = (1.7 ± 0.9)% in the excess light curve approach and σNa = (0.850 ± 0.034) Å and ANa = (1.3 ± 0.6)% in the division approach. By comparing our measurements with a simple atmospheric model, we retrieve an atmospheric temperature of 15501550 -200+700 K and radius (at 0.1 bar) of 1.81 ± 0.02 RJup for WASP-17b. Title: VizieR Online Data Catalog: HD189733 spectral variability (Kohl+, 2018) Authors: Kohl, S.; Salz, M.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2018yCat..36190096K Altcode: Table 2 contains the observed excess equivalent width in different lines for each individual observation of HD189733.

This data was used to search for planet-induced absorption signals.

Each single observation has been corrected for telluric absorption. To obtain the excess flux we subtract the template HD 10476 from our HD 189733 observations. The integration bands are centered on the line cores. The widths are 2Å in Hα and 1.5Å in the other lines.

The spectra have been acquired at the 1.2m Tigre telescope located in La Luz, Mexico. The spectral resolution of the HEROS spectrograph is 20000.

A detailed description of the table is given in the paper.

(1 data file). Title: Long-term variations in the X-ray activity of HR 1099 Authors: Perdelwitz, V.; Navarrete, F. H.; Zamponi, J.; Mennickent, R. E.; Völschow, M.; Robrade, J.; Schneider, P. C.; Schleicher, D. R. G.; Schmitt, J. H. M. M. Bibcode: 2018A&A...616A.161P Altcode: 2018arXiv180603033P Context. Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically change the gravitational quadrupole moment of a stellar component, thus causing observable period changes. One of the systems exhibiting such strong orbital variations is the RS CVn binary HR 1099, whose activity cycle has been studied by various authors via photospheric and chromospheric activity indicators, resulting in contradicting periods.
Aims: We aim at independently determining the magnetic activity cycle of HR 1099 using archival X-ray data to allow for a comparison to orbital period variations.
Methods: Archival X-ray data from 80 different observations of HR 1099 acquired with 12 different X-ray facilities and covering almost four decades were used to determine X-ray fluxes in the energy range of 2-10 keV via spectral fitting and flux conversion. Via the Lomb-Scargle periodogram we analyze the resulting long-term X-ray light curve to search for periodicities.
Results: We do not detect any statistically significant periodicities within the X-ray data. An analysis of optical data of HR 1099 shows that the derivation of such periods is strongly dependent on the time coverage of available data, since the observed optical variations strongly deviate from a pure sine wave. We argue that this offers an explanation as to why other authors derive such a wide range of activity cycle periods based on optical data. We furthermore show that X-ray and optical variations are correlated in the sense that the star tends to be optically fainter when it is X-ray bright.
Conclusions: We conclude that our analysis constitutes, to our knowledge, the longest stellar X-ray activity light curve acquired to date, yet the still rather sparse sampling of the X-ray data, along with stochastic flaring activity, does not allow for the independent determination of an X-ray activity cycle. Title: Intriguing X-ray and optical variations of the γ Cassiopeiae analog HD 45314 Authors: Rauw, G.; Nazé, Y.; Smith, M. A.; Miroshnichenko, A. S.; Guarro Fló, J.; Campos, F.; Prendergast, P.; Danford, S.; González-Pérez, J. N.; Hempelmann, A.; Mittag, M.; Schmitt, J. H. M. M.; Schröder, K. -P.; Zharikov, S. V. Bibcode: 2018A&A...615A..44R Altcode: 2018arXiv180205512R Context. A growing number of Be and Oe stars, named the γ Cas stars, are known for their unusually hard and intense X-ray emission. This emission could either trace accretion by a compact companion or magnetic interaction between the star and its decretion disk.
Aims: To test these scenarios, we carried out a detailed optical monitoring of HD 45314, the hottest member of the class of γ Cas stars, along with dedicated X-ray observations on specific dates.
Methods: High-resolution optical spectra were taken to monitor the emission lines formed in the disk, while X-ray spectroscopy was obtained at epochs when the optical spectrum of the Oe star was displaying peculiar properties.
Results: Over the last four years, HD 45314 has entered a phase of spectacular variations. The optical emission lines have undergone important morphology and intensity changes including transitions between single- and multiple-peaked emission lines as well as shell events, and phases of (partial) disk dissipation. Photometric variations are found to be anti-correlated with the equivalent width of the Hα emission. Whilst the star preserved its hard and bright X-ray emission during the shell phase, the X-ray spectrum during the phase of (partial) disk dissipation was significantly softer and weaker.
Conclusions: The observed behaviour of HD 45314 suggests a direct association between the level of X-ray emission and the amount of material simultaneously present in the Oe disk as expected in the magnetic star-disk interaction scenario.

Based on observations collected with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), and with the TIGRE telescope (La Luz, Mexico). Title: CARMENES: high-resolution spectra and precise radial velocities in the red and infrared Authors: Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Aceituno, J.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F.; Becerril, S.; Bèjar, V. J. S.; Benítez, D.; Brinkmöller, M.; Cardona Guillén, C.; Cifuentes, C.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Dreizler, S.; Frölich, K.; Fuhrmeister, B.; Galadí-Enríquez, D.; González Hernández, J. I.; González Peinado, R.; Guenther, E. W.; de Guindos, E.; Hagen, H. -J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, Th.; Herbort, O.; Hernández Castaño, L.; Herrero, E.; Hintz, D.; Jeffers, S. V.; Johnson, E. N.; de Juan, E.; Kaminski, A.; Klahr, H.; Kürster, M.; Lafarga, M.; Sairam, L.; Lampón, M.; Lara, L. M.; Launhardt, R.; López del Fresno, M.; López-Puertas, M.; Luque, R.; Mandel, H.; Marfil, E. G.; Martín, E. L.; Martín-Ruiz, S.; Mathar, R. J.; Montes, D.; Morales, J. C.; Nagel, E.; Nortmann, L.; Nowak, G.; Pallé, E.; Passegger, V. -M.; Pavlov, A.; Pedraz, S.; Pérez-Medialdea, D.; Perger, M.; Rebolo, R.; Reffert, S.; Rodríguez, E.; Rodríguez López, C.; Rosich, A.; Sabotta, S.; Sadegi, S.; Salz, M.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Schäfer, S.; Schiller, J.; Schmitt, J. H. M. M.; Schöfer, P.; Schweitzer, A.; Shulyak, D.; Solano, E.; Stahl, O.; Tala Pinto, M.; Trifonov, T.; Zapatero Osorio, M. R.; Yan, F.; Zechmeister, M.; Abellán, F. J.; Abril, M.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Anglada-Escudé, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Berdiñas, Z. M.; Bergondy, G.; Blümcke, M.; del Burgo, C.; Cano, J.; Carro, J.; Cárdenas, M. C.; Casal, E.; Claret, A.; Díez-Alonso, E.; Doellinger, M.; Dorda, R.; Feiz, C.; Fernández, M.; Ferro, I. M.; Gaisné, G.; Gallardo, I.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González-Álvarez, E.; González-Cuesta, L.; Grohnert, S.; Grözinger, U.; Guàrdia, J.; Guijarro, A.; Hedrosa, R. P.; Hermann, D.; Hermelo, I.; Hernández Arabí, R.; Hernández Hernando, F.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K.; Huke, P.; Kehr, M.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Labarga, F.; Labiche, N.; Lamert, A.; Laun, W.; Lázaro, F. J.; Lemke, U.; Lenzen, R.; Llamas, M.; Lizon, J. -L.; Lodieu, N.; López González, M. J.; López-Morales, M.; López Salas, J. F.; López-Santiago, J.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Marín Molina, J. A.; Martínez-Rodríguez, H.; Maroto Fernández, D.; Marvin, C. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Naranjo, V.; Panduro, J.; Pascual, J.; Pérez-Calpena, A.; Perryman, M. A. C.; Pluto, M.; Ramón, A.; Redondo, P.; Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rohloff, R. -R.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sarmiento, L. F.; Schmidt, C.; Storz, C.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tal-Or, L.; Tulloch, S. M.; Ulbrich, R. -G.; Veredas, G.; Vico Linares, J. L.; Vidal-Dasilva, M.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Zhao, Z. Bibcode: 2018SPIE10702E..0WQ Altcode: The design and construction of CARMENES has been presented at previous SPIE conferences. It is a next-generation radial-velocity instrument at the 3.5m telescope of the Calar Alto Observatory, which was built by a consortium of eleven Spanish and German institutions. CARMENES consists of two separate échelle spectrographs covering the wavelength range from 0.52 to 1.71μm at a spec-tral resolution of R < 80,000, fed by fibers from the Cassegrain focus of the telescope. CARMENES saw "First Light" on Nov 9, 2015. During the commissioning and initial operation phases, we established basic performance data such as throughput and spectral resolution. We found that our hollow-cathode lamps are suitable for precise wavelength calibration, but their spectra contain a number of lines of neon or argon that are so bright that the lamps cannot be used in simultaneous exposures with stars. We have therefore adopted a calibration procedure that uses simultaneous star / Fabry Pérot etalon exposures in combination with a cross-calibration between the etalons and hollow-cathode lamps during daytime. With this strategy it has been possible to achieve 1-2 m/s precision in the visible and 5-10 m/s precision in the near-IR; further improvements are expected from ongoing work on temperature control, calibration procedures and data reduction. Comparing the RV precision achieved in different wavelength bands, we find a "sweet spot" between 0.7 and 0.8μm, where deep TiO bands provide rich RV information in mid-M dwarfs. This is in contrast to our pre-survey models, which predicted comparatively better performance in the near-IR around 1μm, and explains in part why our near-IR RVs do not reach the same precision level as those taken with the visible spectrograph. We are now conducting a large survey of 340 nearby M dwarfs (with an average distance of only 12pc), with the goal of finding terrestrial planets in their habitable zones. We have detected the signatures of several previously known or suspected planets and also discovered several new planets. We find that the radial velocity periodograms of many M dwarfs show several significant peaks. The development of robust methods to distinguish planet signatures from activity-induced radial velocity jitter is therefore among our priorities. Due to its large wavelength coverage, the CARMENES survey is generating a unique data set for studies of M star atmospheres, rotation, and activity. The spectra cover important diagnostic lines for activity (H alpha, Na I D1 and D2, and the Ca II infrared triplet), as well as FeH lines, from which the magnetic field can be inferred. Correlating the time series of these features with each other, and with wavelength-dependent radial velocities, provides excellent handles for the discrimination between planetary companions and stellar radial velocity jitter. These data are also generating new insight into the physical properties of M dwarf atmospheres, and the impact of activity and flares on the habitability of M star planets. Title: The CARMENES search for exoplanets around M dwarfs. Wing asymmetries of Hα, Na I D, and He I lines Authors: Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M.; Jeffers, S. V.; Caballero, J. A.; Zechmeister, M.; Reiners, A.; Ribas, I.; Amado, P. J.; Quirrenbach, A.; Béjar, V. J. S.; Galadí-Enríquez, D.; Guenther, E. W.; Kürster, M.; Montes, D.; Seifert, W. Bibcode: 2018A&A...615A..14F Altcode: 2018arXiv180110372F Stellar activity is ubiquitously encountered in M dwarfs and often characterised by the Hα line. In the most active M dwarfs, Hα is found in emission, sometimes with a complex line profile. Previous studies have reported extended wings and asymmetries in the Hα line during flares. We used a total of 473 high-resolution spectra of 28 active M dwarfs obtained by the CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-Earths with Near-infrared and optical Echelle Spectrographs) spectrograph to study the occurrence of broadened and asymmetric Hα line profiles and their association with flares, and examine possible physical explanations. We detected a total of 41 flares and 67 broad, potentially asymmetric, wings in Hα. The broadened Hα lines display a variety of profiles with symmetric cases and both red and blue asymmetries. Although some of these line profiles are found during flares, the majority are at least not obviously associated with flaring. We propose a mechanism similar to coronal rain or chromospheric downward condensations as a cause for the observed red asymmetries; the symmetric cases may also be caused by Stark broadening. We suggest that blue asymmetries are associated with rising material, and our results are consistent with a prevalence of blue asymmetries during the flare onset. Besides the Hα asymmetries, we find some cases of additional line asymmetries in He I D3, Na I D lines, and the He I line at 10 830 Å taken all simultaneously thanks to the large wavelength coverage of CARMENES. Our study shows that asymmetric Hα lines are a rather common phenomenon in M dwarfs and need to be studied in more detail to obtain a better understanding of the atmospheric dynamics in these objects. Title: The (6Li,*6Li[3.56 MeV ] ) reaction at 100 MeV/u as a probe of Gamow-Teller transition strengths in the inelastic scattering channel Authors: Sullivan, C.; Zegers, R. G. T.; Noji, S.; Austin, Sam M.; Schmitt, J.; Aoi, N.; Bazin, D.; Carpenter, M.; Carroll, J. J.; Fujita, H.; Garg, U.; Gey, G.; Guess, C. J.; Hoang, T. H.; Harakeh, M. N.; Hudson, E.; Ichige, N.; Ideguchi, E.; Inoue, A.; Isaak, J.; Iwamoto, C.; Kacir, C.; Koike, T.; Kobayashi, N.; Lipschutz, S.; Liu, M.; von Neumann-Cosel, P.; Ong, H. J.; Pereira, J.; Raju, M. Kumar; Tamii, A.; Titus, R.; Werner, V.; Yamamoto, Y.; Fang, Y. D.; Zamora, J. C.; Zhu, S.; Zhou, X. Bibcode: 2018PhRvC..98a5804S Altcode: Background: Inelastic neutrino-nucleus scattering is important for understanding core-collapse supernovae and the detection of emitted neutrinos from such events in earth-based detectors. Direct measurement of the cross sections is difficult and has only been performed on a few nuclei. It is, therefore, important to develop indirect techniques from which the inelastic neutrino-nucleus scattering cross sections can be determined.

Purpose: This paper presents a development of the (6Li,*6Li[T =1 ,Tz=0 ,0+,3.56 MeV ] ) reaction at 100 MeV/u as a probe for isolating the isovector spin-transfer response in the inelastic channel (Δ S =1 ,Δ T =1 ,Δ Tz=0 ) from which the Gamow-Teller transition strengths from nuclei of relevance for inelastic neutrino-nucleus scattering cross sections can be extracted.

Method: By measuring the 6Li ejectile in a magnetic spectrometer and selecting events in which the 3.56 MeV γ ray from the decay of the *6Li[3.56 MeV ] state is detected, the isovector spin-transfer selectivity is obtained. High-purity germanium clover detectors served to detect the γ rays. Doppler reconstruction was used to determine the γ energy in the rest frame of 6Li. From the 6Li and 3.56 MeV γ -momentum vectors the excitation energy of the residual nucleus was determined.

Results: In the study of the 12C(6Li,*6Li[3.56 MeV ]) reaction, the isovector spin-transfer excitation-energy spectrum in the inelastic channel was successfully measured. The strong Gamow-Teller state in 12C at 15.1 MeV was observed. Comparisons with the analog 12C(6Li,6He) reaction validate the method of extracting the Gamow-Teller strength. In measurements of the 24Mg,93Nb(6Li,*6Li[3.56 MeV ]) reactions, the 3.56 MeV γ peak could not be isolated from the strong background in the γ spectrum from the decay of the isoscalar excitations. It is argued that by using a γ -ray tracking array instead of a clover array, it is feasible to extend the mass range over which the (6Li,*6Li) reaction can be used for extracting the isovector spin-transfer response up to mass numbers of ∼25 and perhaps higher.

Conclusions: It is demonstrated that the (6Li,*6Li[3.56 MeV ]) reaction probe can be used to isolate the inelastic isovector spin-transfer response in nuclei. Application to nuclei with mass numbers of about 25 or more, however, will require a more efficient γ -ray array with a better tracking capability. Title: VizieR Online Data Catalog: 324 CARMENES M dwarfs velocities (Reiners+, 2018) Authors: Reiners, A.; Zechmeister, M.; Caballero, J. A.; Ribas, I.; Morales, J. C.; Jeffers, S. V.; Schofer, P.; Tal-Or, L.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Anglada-Escude, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Bejar, V. J. S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Blumcke, M.; Brinkmoller, M.; Del Burgo, C.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla, S.; Diez-Alonso, E.; Dreizler, S.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez Hernandez, J. I.; Gonzalez-Peinado, R.; Grozinger, U.; Grohnert, S.; Guardia, J.; Guenther, E. W.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hagen, H. -J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, T.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Kluter, J.; Klutsch, A.; Kurster, M.; Lafarga, M.; Lamert, A.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Lopez-Santiago, J.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodriguez, E.; Rodriguez-Lopez, C.; Rodriguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schafer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Sturmer, J.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Trifonov, T.; Tulloch, S. M.; Ulbrich, R. G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2018yCat..36120049R Altcode: As part of the GTO agreement, we provide early access to one CARMENES spectrum for each of our sample targets (Table B.1). They can be downloaded from the CARMENES GTO Data Archive (Caballero et al., 2016, in Observatory Operations: Strategies, Processes, and Systems VI, Proc. SPIE, 9910, 99100E) (http://carmenes.cab.inta-csic.es)

(1 data file). Title: Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars Authors: Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan Bibcode: 2018MNRAS.477..808L Altcode: 2018MNRAS.tmp..716S; 2018arXiv180308684S Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters. Title: The stellar content of the XMM-Newton slew survey Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2018A&A...614A.125F Altcode: 2017arXiv171207410F
Aims: We present a detailed analysis of the stellar content of the current version of the XMM-Newton slew survey (XMMSL2).
Methods: Since stars emit only a small fraction of their total luminosity in the X-ray band, the stellar XMMSL2 sources ought to have relatively bright optical counterparts. Therefore the stellar identifications were obtained by an automatic crossmatch of the XMMSL2 catalog with the first Gaia data release (Gaia DR1), 2MASS, and Tycho2 catalogs. The reliability of this procedure was verified by a comparison with the individually classified Einstein Observatory medium sensitivity survey X-ray sources and by a crossmatch with the Chandra Source Catalog.
Results: We identify 6815 of the 23 252 unique XMMSL2 sources to be stellar sources, while 893 sources are flagged as unreliable. For every counterpart a matching probability is estimated based upon the distance between the XMMSL2 source and the counterpart. Given this matching probability the sample is expected to be reliable to 96.7 % and complete to 96.3 % . The sample contains stars of all spectral types and luminosity classes, and late-type dwarfs have the largest share. For many stellar sources the fractional contribution of the X-ray band to the total energy output is found above the saturation limit of previous studies (Lx/Lbol = 10-3), because the XMMSL2 sources are more affected by flares owing to their short exposure times of typically 6 s. A comparison with the second ROSAT all-sky survey (2RXS) source catalog shows that about 25 % of the stellar XMMSL2 sources are previously unknown X-ray sources. The results of our identification procedure can be accessed via VizieR.

Catalog of the stellar XMMSL2 sources is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A125 Title: Nanoparticles as a Messenger of Rock-Water Interactions in the Subsurface Ocean of Europa Authors: Hsu, H. -W.; Kempf, S.; Postberg, F.; Schmidt, J.; Horanyi, M. Bibcode: 2018LPICo2085.6035H Altcode: The lesson learned from the Cassini mission will help to probe nanograins carrying the rock-water interaction information from Euorpa from afar. Title: Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2018PhRvL.120t1102A Altcode: 2018arXiv180210194T The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58 ×10-8 , Ω0V<6.35 ×10-8 , and Ω0S<1.08 ×10-7 at a reference frequency f0=25 Hz . Title: Full band all-sky search for periodic gravitational waves in the O1 LIGO data Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H. Y.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E. T.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pisarski, A.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2018PhRvD..97j2003A Altcode: 2018arXiv180205241T We report on a new all-sky search for periodic gravitational waves in the frequency band 475-2000 Hz and with a frequency time derivative in the range of [-1.0 ,+0.1 ] ×1 0-8 Hz /s . Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO's first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20-475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4 ×1 0-25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 ×1 0-24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5 ×1 0-25. Title: Constraints on cosmic strings using data from the first Advanced LIGO observing run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2018PhRvD..97j2002A Altcode: 2017arXiv171201168T Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider. Title: Macromolecular Organic Compounds Emerging from the Enceladus Ocean Authors: Postberg, F.; Khawaja, N.; Glein, C. R.; Hsu, H. -W.; Kempf, S.; Klenner, F.; Noelle, L.; Schmidt, J.; Tobie, G.; Waite, J. H. Bibcode: 2018LPICo2085.6043P Altcode: We report observations of ice grains emitted by Enceladus containing concentrated, complex, macromolecular organic material. The data provides key constraints on the macromolecular structure and eludes Enceladus' organic rock/water chemistry. Title: Covariant conserved currents for scalar-tensor Horndeski theory Authors: Schmidt, J.; Bičák, J. Bibcode: 2018JMP....59d2501S Altcode: 2018arXiv180402298S The scalar-tensor theories have become popular recently in particular in connection with attempts to explain present accelerated expansion of the universe, but they have been considered as a natural extension of general relativity long time ago. The Horndeski scalar-tensor theory involving four invariantly defined Lagrangians is a natural choice since it implies field equations involving at most second derivatives. Following the formalisms of defining covariant global quantities and conservation laws for perturbations of spacetimes in standard general relativity, we extend these methods to the general Horndeski theory and find the covariant conserved currents for all four Lagrangians. The current is also constructed in the case of linear perturbations involving both metric and scalar fields. As a specific illustration, we derive a superpotential that leads to the covariantly conserved current in the Branse-Dicke theory. Title: The CARMENES search for exoplanets around M dwarfs. High-resolution optical and near-infrared spectroscopy of 324 survey stars Authors: Reiners, A.; Zechmeister, M.; Caballero, J. A.; Ribas, I.; Morales, J. C.; Jeffers, S. V.; Schöfer, P.; Tal-Or, L.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Anglada-Escudé, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdinas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; del Burgo, C.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Dreizler, S.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González Hernández, J. I.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guàrdia, J.; Guenther, E. W.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H. -J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, Th.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Kürster, M.; Lafarga, M.; Lamert, A.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; López del Fresno, M.; López-González, J.; López-Puertas, M.; López Salas, J. F.; López-Santiago, J.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Trifonov, T.; Tulloch, S. M.; Ulbrich, R. G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2018A&A...612A..49R Altcode: 2017arXiv171106576R The CARMENES radial velocity (RV) survey is observing 324 M dwarfs to search for any orbiting planets. In this paper, we present the survey sample by publishing one CARMENES spectrum for each M dwarf. These spectra cover the wavelength range 520-1710 nm at a resolution of at least R >80 000, and we measure its RV, Hα emission, and projected rotation velocity. We present an atlas of high-resolution M-dwarf spectra and compare the spectra to atmospheric models. To quantify the RV precision that can be achieved in low-mass stars over the CARMENES wavelength range, we analyze our empirical information on the RV precision from more than 6500 observations. We compare our high-resolution M-dwarf spectra to atmospheric models where we determine the spectroscopic RV information content, Q, and signal-to-noise ratio. We find that for all M-type dwarfs, the highest RV precision can be reached in the wavelength range 700-900 nm. Observations at longer wavelengths are equally precise only at the very latest spectral types (M8 and M9). We demonstrate that in this spectroscopic range, the large amount of absorption features compensates for the intrinsic faintness of an M7 star. To reach an RV precision of 1 m s-1 in very low mass M dwarfs at longer wavelengths likely requires the use of a 10 m class telescope. For spectral types M6 and earlier, the combination of a red visual and a near-infrared spectrograph is ideal to search for low-mass planets and to distinguish between planets and stellar variability. At a 4 m class telescope, an instrument like CARMENES has the potential to push the RV precision well below the typical jitter level of 3-4 m s-1. Title: Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Ando, M.; Appert, S.; Arai, K.; Araya, A.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Asada, H.; Ascenzi, S.; Ashton, G.; Aso, Y.; Ast, M.; Aston, S. M.; Astone, P.; Atsuta, S.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Awai, K.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baiotti, L.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Doctor, Z.; Doi, K.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Eda, K.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fujii, Y.; Fujimoto, M. -K.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hagiwara, A.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Hayama, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hirose, E.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Ioka, K.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Itoh, Y.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kagawa, T.; Kajita, T.; Kakizaki, M.; Kalaghatgi, C. V.; Kalogera, V.; Kamiizumi, M.; Kanda, N.; Kandhasamy, S.; Kanemura, S.; Kaneyama, M.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kataoka, Y.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawai, N.; Kawamura, S.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, H.; Kim, J. C.; Kim, J.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; Kimura, N.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Kojima, Y.; Kokeyama, K.; Koley, S.; Komori, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kotake, K.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuo, L.; Kuroda, K.; Kutynia, A.; Kuwahara, Y.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mano, S.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marchio, M.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Matsumoto, N.; Matsushima, F.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Michimura, Y.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyamoto, A.; Miyamoto, T.; Miyoki, S.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morii, W.; Morisaki, S.; Moriwaki, Y.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Nagano, S.; Nakamura, K.; Nakamura, T.; Nakano, H.; Nakano, Masaya; Nakano, Masayuki; Nakao, K.; Napier, K.; Nardecchia, I.; Narikawa, T.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Ni, W. -T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohme, F.; Okutomi, K.; Oliver, M.; Ono, K.; Ono, Y.; Oohara, K.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Peña Arellano, F. E.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sago, N.; Saijo, M.; Saito, Y.; Sakai, K.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sasaki, Y.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Sato, T.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sekiguchi, T.; Sekiguchi, Y.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shibata, M.; Shikano, Y.; Shimoda, T.; Shoda, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somiya, K.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Sugimoto, Y.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Suzuki, T.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tagoshi, H.; Takada, S.; Takahashi, H.; Takahashi, R.; Takamori, A.; Talukder, D.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tatsumi, D.; Taylor, R.; Telada, S.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomaru, T.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Tsubono, K.; Tsuzuki, T.; Turconi, M.; Tuyenbayev, D.; Uchiyama, T.; Uehara, T.; Ueki, S.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Ushiba, T.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Putten, M. H. P. M.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wakamatsu, T.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yamamoto, K.; Yamamoto, T.; Yancey, C. C.; Yano, K.; Yap, M. J.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yu, Hang; Yu, Haocun; Yuzurihara, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zeidler, S.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Kagra Collaboration, Ligo Scientific Collaboration; VIRGO Collaboration Bibcode: 2018LRR....21....3A Altcode: 2013arXiv1304.0670T; 2013arXiv1304.0670A We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90 % credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. Title: Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2018CQGra..35f5010A Altcode: 2017arXiv171002185T The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr. Title: GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2018PhRvL.120i1101A Altcode: 2017arXiv171005837T The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity. Title: All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2018CQGra..35f5009A Altcode: 2017arXiv171106843T We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between \newcommand{\OOneStart}{12 ~September ~2015} \newcommand{\OOneStartShort}{September ~2015} \OOneStartShort and \newcommand{\OOneStop}{19~ January ~2016} \newcommand{\OOneStopShort}{January~ 2016} \OOneStopShort , with a total observational time of \newcommand{\OOneLivetime}{49~d} \OOneLivetime . The search targets gravitational wave transients of 10-500 s duration in a frequency band of 24-2048 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least  ∼10-8 \newcommand{\msuncd}{M⊙ c^2} \newcommand{\msun}{M} {\msuncd} in gravitational waves. Title: The CARMENES search for exoplanets around M dwarfs . First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems Authors: Trifonov, T.; Kürster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, Th.; Montes, D.; Béjar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodríguez-López, C.; del Burgo, C.; Anglada-Escudé, G.; López-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; González Hernández, J. I.; Mancini, L.; Stürmer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guàrdia, J.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H. -J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Lafarga, M.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, M.; López-González, M. J.; López-Puertas, M.; López Salas, J. F.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schöfer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2018A&A...609A.117T Altcode: 2017arXiv171001595T Context. The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars. Seven M dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ 15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary systems (GJ 581 and GJ 876).
Aims: We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES.
Methods: We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems. Bona-fide single planet systems were fitted with a Keplerian model. The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability.
Results: We confirm or provide supportive arguments for planets around all the investigated stars except for GJ 15 A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 11.4 days. Although we cannot confirm the super-Earth planet GJ 15 Ab, we show evidence for a possible long-period (Pc = 7030-630+970 d) Saturn-mass (mcsini = 51.8M) planet around GJ 15 A. In addition, based on our CARMENES and HIRES data we discover a second planet around GJ 1148, for which we estimate a period Pc = 532.6 days, eccentricity ec = 0.342 and minimum mass mcsini = 68.1M.
Conclusions: The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES. We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars.

Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 072.C-0488, 072.C-0513, 074.C-0012, 074.C-0364, 075.D-0614, 076.C-0878, 077.C-0364, 077.C-0530, 078.C-0044, 078.C-0833, 079.C-0681, 183.C-0437, 60.A-9036, 082.C-0718, 183.C-0972, 085.C-0019, 087.C-0831, 191.C-0873. The appendix tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A117 Title: A posteriori noise estimation in variable data sets. With applications to spectra and light curves Authors: Czesla, S.; Molle, T.; Schmitt, J. H. M. M. Bibcode: 2018A&A...609A..39C Altcode: 2017arXiv171202226C Most physical data sets contain a stochastic contribution produced by measurement noise or other random sources along with the signal. Usually, neither the signal nor the noise are accurately known prior to the measurement so that both have to be estimated a posteriori. We have studied a procedure to estimate the standard deviation of the stochastic contribution assuming normality and independence, requiring a sufficiently well-sampled data set to yield reliable results. This procedure is based on estimating the standard deviation in a sample of weighted sums of arbitrarily sampled data points and is identical to the so-called DER_SNR algorithm for specific parameter settings. To demonstrate the applicability of our procedure, we present applications to synthetic data, high-resolution spectra, and a large sample of space-based light curves and, finally, give guidelines to apply the procedure in situation not explicitly considered here to promote its adoption in data analysis. Title: First Search for Nontensorial Gravitational Waves from Known Pulsars Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2018PhRvL.120c1104A Altcode: 2017arXiv170909203T We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity. Title: Plume Origins and Plumbing: From Ocean to Surface Authors: Spencer, J. R.; Nimmo, F.; Ingersoll, A. P.; Hurford, T. A.; Kite, E. S.; Rhoden, A. R.; Schmidt, J.; Howett, C. J. A. Bibcode: 2018eims.book..163S Altcode: The plume of Enceladus provides a unique window into subsurface processes in the ice shell and ocean of an icy world. Thanks to a decade of observations and modeling, a coherent picture is emerging of a thin ice shell extending across the south polar region, cut through by fractures directly connected to the underlying ocean, and at least partially filled with water. The plume jets emerging from the fractures directly sample this water reservoir. The shell undergoes daily tidal flexing, which modulates plume activity by opening and closing the fractures. Dissipation in the ice and conduit water components due to this flexing is likely to generate the several gigawatts of observed power that are lost from the south pole as infrared radiation and plume latent heat. Title: VizieR Online Data Catalog: Stellar content of the XMM-Newton slew survey (Freund+, 2018) Authors: Freund, S.; Robrade, J.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2018yCat..36140125F Altcode: The stellar content of the current release of the XMM-Newton slew survey (XMMSL2) is presented, which was obtained by an automatic crossmatch with the Gaia DR1, 2MASS, and Tycho2 catalogs. Further informations about the sources were adopted from the BrightStar catalog and the catalog by Lepine & Gaidos (2011, Cat. J/AJ/142/138) of bright M dwarfs. The first 98 columns of the presented catalog were adopted from the XMMSL2 catalog (see IX/53 for details). The catalog contains a matching probability for all stellar associations. Additionally basic properties of the stellar sources (e.g. position, proper motion, parallax, photometry in multiple bands) were adopted from the optical and IR catalogs and additional properties (e.g. effective temperature, bolometric flux and luminosity) were derived. The catalog contains all stellar counterparts with a matching probability higher than 66%, unreliable counterparts due to their properties are flagged.

(1 data file). Title: The CARMENES search for exoplanets around M dwarfs. HD147379 b: A nearby Neptune in the temperate zone of an early-M dwarf Authors: Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.; Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga, M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.; Aceituno, J.; Béjar, V. J. S.; Guàrdia, J.; Guenther, E. W.; Hagen, H. -J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.; Cortés-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Anglada-Escudé, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; del Burgo, C.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González Hernández, J. I.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Henning, Th.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Kürster, M.; Labarga, F.; Lamert, A.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; López del Fresno, M.; López-González, M. J.; López-Puertas, M.; López Salas, J. F.; López-Santiago, J.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Pavlov, A.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schöfer, P.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Ulbrich, R. -G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2018A&A...609L...5R Altcode: 2017arXiv171205797R We report on the first star discovered to host a planet detected by radial velocity (RV) observations obtained within the CARMENES survey for exoplanets around M dwarfs. HD 147379 (V = 8.9 mag, M = 0.58 ± 0.08 M), a bright M0.0 V star at a distance of 10.7 pc, is found to undergo periodic RV variations with a semi-amplitude of K = 5.1 ± 0.4 m s-1 and a period of P = 86.54 ± 0.06 d. The RV signal is found in our CARMENES data, which were taken between 2016 and 2017, and is supported by HIRES/Keck observations that were obtained since 2000. The RV variations are interpreted as resulting from a planet of minimum mass mP sin i = 25 ± 2 M, 1.5 times the mass of Neptune, with an orbital semi-major axis a = 0.32 au and low eccentricity (e < 0.13). HD 147379 b is orbiting inside the temperate zone around the star, where water could exist in liquid form. The RV time-series and various spectroscopic indicators show additional hints of variations at an approximate period of 21.1 d (and its first harmonic), which we attribute to the rotation period of the star.

RV data (Table A.1) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/L5 Title: Detection of radial velocity variability of HD 16673 with TIGRE Authors: Mittag, M.; Hempelmann, A.; Fuhrmeister, B.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2018AN....339...53M Altcode: During our TIGRE activity monitoring of late-type stars, large radial velocity (RV) variations in the F-type star HD 16673 were noticed. An automatic pipeline procedure using data in the wavelength range from 6000 to 7900 Å was developed and telluric lines are used as reference to determine accurate radial velocities. The RV curve demonstrates the binary nature of the HD 16673 system and allows the determination of the orbital parameters of the system. Based on the derived mass function, we obtain inclination-dependent mass estimates for the secondary component, which orbits with a period of 37.09 days in a slightly eccentric orbit and is probably a late-type star. Title: First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvD..96l2004A Altcode: 2017arXiv170702669T; 2017arXiv170702669A We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1 /√{Hz }] . At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 ×1 0-25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 ×1 0-24. At 55 Hz we can exclude sources with ellipticities greater than 1 0-5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 . Title: First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvD..96l2006A Altcode: 2017arXiv171002327T Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO's first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far. Title: Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Flynn, E.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Phukon, K. S.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sarin, N.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Rana, J.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Sowell, E.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. D.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017ApJ...851L..16A Altcode: 2017arXiv171009320T The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is {h}{rss}50 % =2.1× {10}-22 {{Hz}}-1/2 at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is {h}{rss}50 % =8.4× {10}-22 {{Hz}}-1/2 for a millisecond magnetar model, and {h}{rss}50 % =5.9× {10}-22 {{Hz}}-1/2 for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors. Title: Erratum: “First Search for Gravitational Waves from Known Pulsars with Advanced LIGO” (2017, ApJ, 839, 12) Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P. Bibcode: 2017ApJ...851...71A Altcode: No abstract at ADS Title: Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory Authors: Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K. -H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Pranav, D.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene, N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.; García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer, B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd, D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K. -D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino, G.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017ApJ...850L..35A Altcode: 2017arXiv171005839A The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle. Title: On the Progenitor of Binary Neutron Star Merger GW170817 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holgado, A. M.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimball, C.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017ApJ...850L..40A Altcode: 2017arXiv171005838T On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy’s center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy’s star formation history, provided the stellar populations are older than 1 Gyr. Title: Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kawaguchi, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017ApJ...850L..39A Altcode: 2017arXiv171005836T The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between {M}{ej}={10}-3-{10}-2 {M} for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way. Title: GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017ApJ...851L..35A Altcode: 2017arXiv171105578T On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of {12}-2+7 {M} and {7}-2+2 {M} (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is {340}-140+140 {Mpc}, corresponding to redshift {0.07}-0.03+0.03. We verify that the signal waveform is consistent with the predictions of general relativity. Title: A gravitational-wave standard siren measurement of the Hubble constant Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Hernandez, I. Magaña; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.; Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Annis, J.; Soares-Santos, M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen, D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Depoy, D. L.; Desai, S.; Dietrich, J. P.; Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.; Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi, Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, A. J.; Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.; Evans, P. A.; Fynbo, J. P. U.; González-Fernández, C.; Greiner, J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen, B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi, E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.; Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema, K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.; Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.; Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.; Rebolo, R.; Serra-Ricart, M. Bibcode: 2017Natur.551...85A Altcode: 2017arXiv171005835A On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision. Title: Coronal X-ray emission and planetary irradiation in HD 209458 Authors: Czesla, S.; Salz, M.; Schneider, P. C.; Mittag, M.; Schmitt, J. H. M. M. Bibcode: 2017A&A...607A.101C Altcode: 2017arXiv170804537C HD 209458 is one of the benchmark objects in the study of hot Jupiter atmospheres and their evaporation through planetary winds. The expansion of the planetary atmosphere is thought to be driven by high-energy extreme ultraviolet (EUV) and X-ray irradiation. We obtained new Chandra High Resolution Camera (HRC-I) data, which unequivocally show that HD 209458 is an X-ray source. Combining these data with archival XMM-Newton observations, we find that the corona of HD 209458 is characterized by a temperature of about 1 MK and an emission measure of 7 × 1049 cm-3, yielding an X-ray luminosity of 1.6 × 1027 erg s-1 in the 0.124-2.48 keV band. HD 209458 is an inactive star that has a coronal temperature comparable to that of the inactive Sun but that has a larger emission measure. At this level of activity, the planetary high-energy emission is sufficient to support mass loss at a rate of a few times 1010 g s-1. Title: VizieR Online Data Catalog: HD147379 b velocity curve (Reiners+, 2018) Authors: Reiners, A.; Ribas, I.; Zechmeister, M.; Caballero, J. A.; Trifonov, T.; Dreizler, S.; Morales, J. C.; Tal-Or, L.; Lafarga, M.; Quirrenbach, A.; Amado, P. J.; Kaminski, A.; Jeffers, S. V.; Aceituno, J.; Bejar, V. J. S.; Guardia, J.; Guenther, E. W.; Hagen, H. -J.; Montes, D.; Passegger, V. M.; Seifert, W.; Schweitzer, A.; Cortes-Contreras, M.; Abril, M.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona, R.; Anglada-Escude, G.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Barrado, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Del Burgo, C.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez Hernandez, J. I.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hatzes, A. P.; Hauschildt, P. H.; Hedrosa, R. P.; Helml!, Ing J.; H Enning, Th.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E. N.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Kuerster, M.; Labarga, F.; Lamert, A.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Launhardt, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, M. J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Lopez-Santiago, J.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mancini, L.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Moreno-Raya, M. E.; Moya, A.; Mundt, R.; Nagel, E.; Naranjo, V.; Nortmann, L.; Nowak, G.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Pavlov, A.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodriguez, E.; Rodriguez-Lopez, C.; Rodriguez Trinidad, A.; Rohloff, R. -R.; Rosich, A.; ! Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schmitt, J. H. M. M.; Schiller, J.; Schoefer, P.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Stuermer, J.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Ulbrich, R. -G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2017yCat..36099005R Altcode: We analyzed data from the CARMENES VIS channel and HIRES/Keck. The CARMENES measurements were taken in the context of the CARMENES search for exoplanets around M dwarfs. The CARMENES instrument consists of two channels: the VIS channel obtains spectra at a resolution of R=94600 in the wavelength range 520-960nm, while the NIR channel yields spectra of R=80400 covering 960-1710nm. Both channels are calibrated in wavelength with hollow-cathode lamps and use temperature- and pressure-stabilized Fabry-Perot etalons to interpolate the wavelength solution and simultaneously monitor the spectrograph drift during nightly operations (Bauer et al., 2015A&A...581A.117B).

(1 data file). Title: VizieR Online Data Catalog: Gravitational waves search from known PSR with LIGO (Abbott+, 2017) Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnho Ltz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Del Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devenson, J.; Devine R. C, .; Dhurandhar, S.; Diaz, M. C.; di Fiore, L.; di Giovanni M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Alvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernandez Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, A.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J. C.; Kim, W.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kramer, C.; Kringel, V.; Krishnan, B.; Krolak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magana-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGra, Th C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero E. A.; QuitzoW-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schonbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tapai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasuth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Vicere, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P.; Ligo Scientific Collaboration Bibcode: 2017yCat..18390012A Altcode: We have obtained timings for 200 known pulsars. Timing was performed using the 42ft telescope and Lovell telescope at Jodrell Bank (UK), the 26m telescope at Hartebeesthoek (South Africa), the Parkes radio telescope (Australia), the Nancay Decimetric Radio Telescope (France), the Arecibo Observatory (Puerto Rico) and the Fermi Large Area Telescope (LAT). Of these, 122 have been targeted in previous campaigns (Aasi+ 2014, J/ApJ/785/119), while 78 are new to this search.

(1 data file). Title: Time-resolved UVES observations of a stellar flare on the planet host HD 189733 during primary transit Authors: Klocová, T.; Czesla, S.; Khalafinejad, S.; Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2017A&A...607A..66K Altcode: 2017arXiv170709831K Context. HD 189733 is an exoplanetary system consisting of a transiting hot Jupiter and an active K2V-type main sequence star. Rich manifestations of a stellar activity, like photometric spots or chromospheric flares were repeatedly observed in this system in optical, UV and X-rays.
Aims: We aim to use VLT/UVES high resolution (R = 60 000) echelle spectra to study a stellar flare.
Methods: We have performed simultaneous analyses of the temporal evolution in several chromospheric stellar lines, namely, the Ca II H & K lines (3933, 3968 Å), H α (6563 Å), H β (4861 Å), H γ (4341 Å), H δ (4102 Å), H ɛ (3970 Å), the Ca II infrared triplet lines (8498, 8542 and 8662 Å), and He I D3 (5875.6 Å). Observations were carried out with a time resolution of approximately 1 min for a duration of four hours, including a complete planetary transit.
Results: We determine the energy released during the flare in all studied chromospheric lines combined to be about 8.7 × 1031 erg, which puts this event at the upper end of flare energies observed on the Sun. Our analysis does not reveal any significant delay of the flare peak observed in the Balmer and Ca II H & K lines, although we find a clear difference in the temporal evolution of these lines. The He I D3 shows additional absorption possibly related to the flare event. Based on the flux released in Ca II H & K lines during the flare, we estimate the soft X-ray flux emission to be 7 × 1030 erg.
Conclusions: The observed flare can be ranked as a moderate flare on a K-type star and confirms a rather high activity level of HD 189733 host star. The cores of the studied chromospheric lines demonstrate the same behavior and let us study the flare evolution. We demonstrate that the activity of an exoplanet host star can play an important role in the detection of exoplanet atmospheres, since these are frequently discovered as an additional absorption in the line cores. A possible star-planet interaction responsible for a flare occurrence during a transit can neither be confirmed nor ruled out.

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 089.D-0701(A). Title: Stellar rotation periods determined from simultaneously measured Ca II H&K and Ca II IRT lines Authors: Mittag, M.; Hempelmann, A.; Schmitt, J. H. M. M.; Fuhrmeister, B.; González-Pérez, J. N.; Schröder, K. -P. Bibcode: 2017A&A...607A..87M Altcode:
Aims: Previous studies have shown that, for late-type stars, activity indicators derived from the Ca II infrared-triplet (IRT) lines are correlated with the indicators derived from the Ca II H&K lines. Therefore, the Ca II IRT lines are in principle usable for activity studies, but they may be less sensitive when measuring the rotation period. Our goal is to determine whether the Ca II IRT lines are sufficiently sensitive to measure rotation periods and how any Ca II IRT derived rotation periods compare with periods derived from the "classical" Mount Wilson S-index.
Methods: To analyse the Ca II IRT lines' sensitivity and to measure rotation periods, we define an activity index for each of the Ca II IRT lines similar to the Mount Wilson S-index and perform a period analysis for the lines separately and jointly.
Results: For eleven late-type stars we can measure the rotation periods using the Ca II IRT indices similar to those found in the Mount Wilson S-index time series and find that a period derived from all four indices gives the most probable rotation period; we find good agreement for stars with already existing literature values. In a few cases the computed periodograms show a complicated structure with multiple peaks, meaning that formally different periods are derived in different indices. We show that in one case, this is due to data sampling effects and argue that denser cadence sampling is necessary to provide credible evidence for differential rotation. However, our TIGRE data for HD 101501 shows good evidence for the presence of differential rotation. Title: VizieR Online Data Catalog: CARMENES radial velocity curves of 7 M-dwarf (Trifonov+, 2018) Authors: Trifonov, T.; Kuerster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, T.; Montes, D.; Bejar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodriguez-Lopez, C.; Del Burgo, C.; Anglada-Escude, G.; Lopez-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; Gonzalez Hernandez, J. I.; Mancini, L.; Stuermer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benitez, D.; Berdinas, Z. M.; Bergond, G.; Bluemcke, M.; Brinkmoeller, M.; Cano, J.; Cardenas Vazquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colome, J.; Cortes-Contreras, M.; Czesla, S.; Diez-Alonso, E.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi-Enriquez, D.; Garcia-Piquer, A.; Garcia Vargas, M. L.; Gesa, L.; Gomez Galera, V.; Gonzalez-Peinado, R.; Groezinger, U.; Grohnert, S.; Guardia, J.; Guijarro, A.; de Guindos, E.; Gutierrez-Soto, J.; Hagen, H. -J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernandez Arabi, R.; Hernandez Castano, L.; Hernandez Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klueter, J.; Klutsch, A.; Lafarga, M.; Lampon, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; Lopez Del Fresno, M.; Lopez-Gonzalez, J.; Lopez-Puertas, M.; Lopez Salas, J. F.; Luque, R.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marin Molina, J. A.; Maroto Fernandez, D.; Martin, E. L.; Martin-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Palle, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Perez-Calpena, A.; Perez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramon, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodriguez, E.; Rodriguez Trinidad, A.; Rohlo, R. -R.; Rosich, A.; Sadegi, S.; Sanchez-Blanco, E.; Sanchez Carrasco, M. A.; Sanchez-Lopez, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schaefer, S.; Schiller, J.; Schoefer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suarez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardel, F.; Wagner, K.; Winkler, J.; Woltho, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R. Bibcode: 2017yCat..36090117T Altcode: The two CARMENES spectrographs are grism cross-dispersed, white pupil, echelle spectrograph working in quasi-Littrow mode using a two-beam, two-slice image slicer. The visible spectrograph covers the wavelength range from 0.52um to 1.05um with 61 orders, a resolving power of R=94600, and a mean sampling of 2.8 pixels per resolution element.

The data presented in this paper were taken during the early phase of operation of the CARMENES visible-light spectrograph.

(8 data files). Title: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Bailes, M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Carullo, G.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dudi, R.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leon, E.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Molina, I.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Nagar, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvL.119p1101A Altcode: 2017arXiv171005832T On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 ×104 years . We infer the component masses of the binary to be between 0.86 and 2.26 M , in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17 - 1.60 M , with the total mass of the system 2.7 4-0.01+0.04M . The source was localized within a sky region of 28 deg2 (90% probability) and had a luminosity distance of 4 0-14+8 Mpc , the closest and most precisely localized gravitational-wave signal yet. The association with the γ -ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ -ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology. Title: The stellar content of soft all-sky X-ray surveys Authors: Schmitt, J.; Freund, S.; Robrade, J.; Schneider, C. Bibcode: 2017xru..conf..206S Altcode: Wide angle soft X-ray surveys such as the ROSAT all-sky survey, the XMM slew survey, or the upcoming eROSITA all-sky survey(s) produce - more or less homogeneous - data sets with tens and hundreds of thousands of X-ray sources. The counterparts of typically about a third of these X-ray sources are stars, mostly of late spectral type. With the availability of genuine all-sky surveys at optical (GAIA) and infrared wavebands (2MASS) with reliable positions and multiband fluxes and in particular with the (eventual) availability of GAIA parallax information down to v = 15 mag and below, the automatic extraction and identification of the stellar content of soft X-ray surveys becomes feasible and doable. Distance information and hence accurate X-ray luminosities are available for the full data set, the counterparts can be accurately placed in the HR diagram and the local stellar volume X-ray emissivity can be measured. We discuss optimal identification strategies, the potential arising from future GAIA data releases and apply our methods to the XMM slew survey data. Our results suggest that 30.7% of the XMM slew survey entries can be identified with (non-accreting) stars. Title: The coronae of Kepler superflare stars Authors: Czesla, S.; Huber, K.; Schmitt, J. Bibcode: 2017xru..conf..260C Altcode: Kepler has revealed a population of apparently solar-like, slowly rotating G-type stars showing enormous white-light flares, which release energies exceeding that of known solar flares by many orders of magnitude. The existence of such extreme releases of magnetic energy on seemingly innocuous suns raises the question whether also the coronal properties of these stars are somehow exceptional and, ultimately, whether even the Sun itself may produce superflares at some point. We present XMM-Newton X-ray observations of a sample of Kepler superflare stars. These allow us to obtain a snapshot of their coronal properties and to study their relation to the coronae of normal stars and the Sun. Title: Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Aloy, M. A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration; Burns, E.; Veres, P.; Kocevski, D.; Racusin, J.; Goldstein, A.; Connaughton, V.; Briggs, M. S.; Blackburn, L.; Hamburg, R.; Hui, C. M.; von Kienlin, A.; McEnery, J.; Preece, R. D.; Wilson-Hodge, C. A.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Roberts, O. J.; Stanbro, M.; Gamma-ray Burst Monitor, (Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev, R.; Ubertini, P.; (INTEGRAL Bibcode: 2017ApJ...848L..13A Altcode: 2017arXiv171005834L On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0× {10}-8. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74+/- 0.05) {{s}} between GRB 170817A and GW170817 to: (I) constrain the difference between the speed of gravity and the speed of light to be between -3× {10}-15 and +7× {10}-16 times the speed of light, (II) place new bounds on the violation of Lorentz invariance, (III) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity. Title: GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvL.119n1101A Altcode: 2017arXiv170909660T On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30. 5-3.0+5.7M and 25 .3-4.2+2.8M (at the 90% credible level). The luminosity distance of the source is 54 0-210+130 Mpc , corresponding to a redshift of z =0.1 1-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity. Title: Multi-messenger Observations of a Binary Neutron Star Merger Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Griswold, B.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Wilson-Hodge, C. A.; Bissaldi, E.; Blackburn, L.; Briggs, M. S.; Burns, E.; Cleveland, W. H.; Connaughton, V.; Gibby, M. H.; Giles, M. M.; Goldstein, A.; Hamburg, R.; Jenke, P.; Hui, C. M.; Kippen, R. M.; Kocevski, D.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Preece, R. D.; Racusin, J.; Roberts, O. J.; Stanbro, M.; Veres, P.; von Kienlin, A.; GBM, Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev, R.; Ubertini, P.; INTEGRAL; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Balasubramanian, A.; Mate, S.; Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Dewangan, G. C.; Rao, A. R.; Vadawale, S. V.; AstroSat Cadmium Zinc Telluride Imager Team; Svinkin, D. S.; Hurley, K.; Aptekar, R. L.; Frederiks, D. D.; Golenetskii, S. V.; Kozlova, A. V.; Lysenko, A. L.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Cline, T.; IPN Collaboration; Li, T. P.; Xiong, S. L.; Zhang, S. N.; Lu, F. J.; Song, L. M.; Cao, X. L.; Chang, Z.; Chen, G.; Chen, L.; Chen, T. X.; Chen, Y.; Chen, Y. B.; Chen, Y. P.; Cui, W.; Cui, W. W.; Deng, J. K.; Dong, Y. W.; Du, Y. Y.; Fu, M. X.; Gao, G. H.; Gao, H.; Gao, M.; Ge, M. Y.; Gu, Y. D.; Guan, J.; Guo, C. C.; Han, D. W.; Hu, W.; Huang, Y.; Huo, J.; Jia, S. M.; Jiang, L. H.; Jiang, W. C.; Jin, J.; Jin, Y. J.; Li, B.; Li, C. K.; Li, G.; Li, M. S.; Li, W.; Li, X.; Li, X. B.; Li, X. F.; Li, Y. G.; Li, Z. J.; Li, Z. W.; Liang, X. H.; Liao, J. Y.; Liu, C. Z.; Liu, G. Q.; Liu, H. W.; Liu, S. Z.; Liu, X. J.; Liu, Y.; Liu, Y. N.; Lu, B.; Lu, X. F.; Luo, T.; Ma, X.; Meng, B.; Nang, Y.; Nie, J. Y.; Ou, G.; Qu, J. L.; Sai, N.; Sun, L.; Tan, Y.; Tao, L.; Tao, W. H.; Tuo, Y. L.; Wang, G. F.; Wang, H. Y.; Wang, J.; Wang, W. S.; Wang, Y. S.; Wen, X. Y.; Wu, B. B.; Wu, M.; Xiao, G. C.; Xu, H.; Xu, Y. P.; Yan, L. L.; Yang, J. W.; Yang, S.; Yang, Y. J.; Zhang, A. M.; Zhang, C. L.; Zhang, C. M.; Zhang, F.; Zhang, H. M.; Zhang, J.; Zhang, Q.; Zhang, S.; Zhang, T.; Zhang, W.; Zhang, W. C.; Zhang, W. Z.; Zhang, Y.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. J.; Zhang, Z.; Zhang, Z. L.; Zhao, H. S.; Zhao, J. L.; Zhao, X. F.; Zheng, S. J.; Zhu, Y.; Zhu, Y. X.; Zou, C. L.; Insight-HXMT Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz, R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hössl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Beardmore, A. P.; Breeveld, A. A.; Burrows, D. N.; Cenko, S. B.; Cusumano, G.; D'Aì, A.; de Pasquale, M.; Emery, S. W. K.; Evans, P. A.; Giommi, P.; Gronwall, C.; Kennea, J. A.; Krimm, H. A.; Kuin, N. P. M.; Lien, A.; Marshall, F. E.; Melandri, A.; Nousek, J. A.; Oates, S. R.; Osborne, J. P.; Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Siegel, M. H.; Sbarufatti, B.; Tagliaferri, G.; Tohuvavohu, A.; Swift Collaboration; Tavani, M.; Verrecchia, F.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Feroci, M.; Pittori, C.; Giuliani, A.; Del Monte, E.; Donnarumma, I.; Argan, A.; Trois, A.; Ursi, A.; Cardillo, M.; Piano, G.; Longo, F.; Lucarelli, F.; Munar-Adrover, P.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Minervini, G.; Fioretti, V.; Parmiggiani, N.; Gianotti, F.; Trifoglio, M.; Di Persio, G.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Costa, E.; Colafrancesco, S.; D'Amico, F.; Ferrari, A.; Morselli, A.; Paoletti, F.; Picozza, P.; Pilia, M.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; AGILE Team; Foley, R. J.; Coulter, D. A.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; 1M2H Team; Berger, E.; Soares-Santos, M.; Annis, J.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Brout, D.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Diehl, H. T.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Frieman, J. A.; Fryer, C. L.; García-Bellido, J.; Gruendl, R. A.; Hartley, W.; Herner, K.; Kessler, R.; Lin, H.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Scolnic, D.; Secco, L. F.; Smith, N.; Sobreira, F.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Eifler, T. F.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Carlin, J. L.; Gill, M. S. S.; Li, T. S.; Marriner, J.; Neilsen, E.; Dark Energy Camera GW-EM Collaboration; DES Collaboration; Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Sand, D. J.; Tartaglia, L.; Valenti, S.; Yang, S.; DLT40 Collaboration; Benetti, S.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Limatola, L.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Possenti, A.; Rossi, A.; Salafia, O. S.; Tomasella, L.; Amati, L.; Antonelli, L. A.; Bernardini, M. G.; Bufano, F.; Capaccioli, M.; Casella, P.; Dadina, M.; De Cesare, G.; Di Paola, A.; Giuffrida, G.; Giunta, A.; Israel, G. L.; Lisi, M.; Maiorano, E.; Mapelli, M.; Masetti, N.; Pescalli, A.; Pulone, L.; Salvaterra, R.; Schipani, P.; Spera, M.; Stamerra, A.; Stella, L.; Testa, V.; Turatto, M.; Vergani, D.; Aresu, G.; Bachetti, M.; Buffa, F.; Burgay, M.; Buttu, M.; Caria, T.; Carretti, E.; Casasola, V.; Castangia, P.; Carboni, G.; Casu, S.; Concu, R.; Corongiu, A.; Deiana, G. L.; Egron, E.; Fara, A.; Gaudiomonte, F.; Gusai, V.; Ladu, A.; Loru, S.; Leurini, S.; Marongiu, L.; Melis, A.; Melis, G.; Migoni, Carlo; Milia, Sabrina; Navarrini, Alessandro; Orlati, A.; Ortu, P.; Palmas, S.; Pellizzoni, A.; Perrodin, D.; Pisanu, T.; Poppi, S.; Righini, S.; Saba, A.; Serra, G.; Serrau, M.; Stagni, M.; Surcis, G.; Vacca, V.; Vargiu, G. P.; Hunt, L. K.; Jin, Z. P.; Klose, S.; Kouveliotou, C.; Mazzali, P. A.; Møller, P.; Nava, L.; Piran, T.; Selsing, J.; Vergani, S. D.; Wiersema, K.; Toma, K.; Higgins, A. B.; Mundell, C. G.; di Serego Alighieri, S.; Gótz, D.; Gao, W.; Gomboc, A.; Kaper, L.; Kobayashi, S.; Kopac, D.; Mao, J.; Starling, R. L. C.; Steele, I.; van der Horst, A. J.; GRAWITA: GRAvitational Wave Inaf TeAm; Acero, F.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Berenji, B.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Buehler, R.; Buson, S.; Cameron, R. A.; Caputo, R.; Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costantin, D.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Dubois, R.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grondin, M. -H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kuss, M.; La Mura, G.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Palatiello, M.; Paliya, V. S.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Suson, D. J.; Takahashi, M.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Torresi, E.; Troja, E.; Venters, T. M.; Vianello, G.; Zaharijas, G.; Fermi Large Area Telescope Collaboration; Allison, J. R.; Bannister, K. W.; Dobie, D.; Kaplan, D. L.; Lenc, E.; Lynch, C.; Murphy, T.; Sadler, E. M.; Australia Telescope Compact Array, ATCA:; Hotan, A.; James, C. W.; Oslowski, S.; Raja, W.; Shannon, R. M.; Whiting, M.; Australian SKA Pathfinder, ASKAP:; Arcavi, I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Hiramatsu, D.; Poznanski, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; Las Cumbres Observatory Group; Cooke, J.; Bailes, M.; Wolf, C.; Deller, A. T.; Lidman, C.; Wang, L.; Gendre, B.; Andreoni, I.; Ackley, K.; Pritchard, T. A.; Bessell, M. S.; Chang, S. -W.; Möller, A.; Onken, C. A.; Scalzo, R. A.; Ridden-Harper, R.; Sharp, R. G.; Tucker, B. E.; Farrell, T. J.; Elmer, E.; Johnston, S.; Venkatraman Krishnan, V.; Keane, E. F.; Green, J. A.; Jameson, A.; Hu, L.; Ma, B.; Sun, T.; Wu, X.; Wang, X.; Shang, Z.; Hu, Y.; Ashley, M. C. B.; Yuan, X.; Li, X.; Tao, C.; Zhu, Z.; Zhang, H.; Suntzeff, N. B.; Zhou, J.; Yang, J.; Orange, B.; Morris, D.; Cucchiara, A.; Giblin, T.; Klotz, A.; Staff, J.; Thierry, P.; Schmidt, B. P.; OzGrav; (Deeper, DWF; Wider; program, Faster; AST3; CAASTRO Collaborations; Tanvir, N. R.; Levan, A. J.; Cano, Z.; de Ugarte-Postigo, A.; González-Fernández, C.; Greiner, J.; Hjorth, J.; Irwin, M.; Krühler, T.; Mandel, I.; Milvang-Jensen, B.; O'Brien, P.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Bruun, S. H.; Cutter, R.; Figuera Jaimes, R.; Fujii, Y. I.; Fruchter, A. S.; Gompertz, B.; Jakobsson, P.; Hodosan, G.; Jèrgensen, U. G.; Kangas, T.; Kann, D. A.; Rabus, M.; Schrøder, S. L.; Stanway, E. R.; Wijers, R. A. M. J.; VINROUGE Collaboration; Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Tyurina, N. V.; Balanutsa, P. V.; Kuznetsov, A. S.; Vlasenko, D. M.; Podesta, R. C.; Lopez, C.; Podesta, F.; Levato, H. O.; Saffe, C.; Mallamaci, C. C.; Budnev, N. M.; Gress, O. A.; Kuvshinov, D. A.; Gorbunov, I. A.; Vladimirov, V. V.; Zimnukhov, D. S.; Gabovich, A. V.; Yurkov, V. V.; Sergienko, Yu. P.; Rebolo, R.; Serra-Ricart, M.; Tlatov, A. G.; Ishmuhametova, Yu. V.; MASTER Collaboration; Abe, F.; Aoki, K.; Aoki, W.; Asakura, Y.; Baar, S.; Barway, S.; Bond, I. A.; Doi, M.; Finet, F.; Fujiyoshi, T.; Furusawa, H.; Honda, S.; Itoh, R.; Kanda, N.; Kawabata, K. S.; Kawabata, M.; Kim, J. H.; Koshida, S.; Kuroda, D.; Lee, C. -H.; Liu, W.; Matsubayashi, K.; Miyazaki, S.; Morihana, K.; Morokuma, T.; Motohara, K.; Murata, K. L.; Nagai, H.; Nagashima, H.; Nagayama, T.; Nakaoka, T.; Nakata, F.; Ohsawa, R.; Ohshima, T.; Ohta, K.; Okita, H.; Saito, T.; Saito, Y.; Sako, S.; Sekiguchi, Y.; Sumi, T.; Tajitsu, A.; Takahashi, J.; Takayama, M.; Tamura, Y.; Tanaka, I.; Tanaka, M.; Terai, T.; Tominaga, N.; Tristram, P. J.; Uemura, M.; Utsumi, Y.; Yamaguchi, M. S.; Yasuda, N.; Yoshida, M.; Zenko, T.; J-GEM; Adams, S. M.; Anupama, G. C.; Bally, J.; Barway, S.; Bellm, E.; Blagorodnova, N.; Cannella, C.; Chandra, P.; Chatterjee, D.; Clarke, T. E.; Cobb, B. E.; Cook, D. O.; Copperwheat, C.; De, K.; Emery, S. W. K.; Feindt, U.; Foster, K.; Fox, O. D.; Frail, D. A.; Fremling, C.; Frohmaier, C.; Garcia, J. A.; Ghosh, S.; Giacintucci, S.; Goobar, A.; Gottlieb, O.; Grefenstette, B. W.; Hallinan, G.; Harrison, F.; Heida, M.; Helou, G.; Ho, A. Y. Q.; Horesh, A.; Hotokezaka, K.; Ip, W. -H.; Itoh, R.; Jacobs, Bob; Jencson, J. E.; Kasen, D.; Kasliwal, M. M.; Kassim, N. E.; Kim, H.; Kiran, B. S.; Kuin, N. P. M.; Kulkarni, S. R.; Kupfer, T.; Lau, R. M.; Madsen, K.; Mazzali, P. A.; Miller, A. A.; Miyasaka, H.; Mooley, K.; Myers, S. T.; Nakar, E.; Ngeow, C. -C.; Nugent, P.; Ofek, E. O.; Palliyaguru, N.; Pavana, M.; Perley, D. A.; Peters, W. M.; Pike, S.; Piran, T.; Qi, H.; Quimby, R. M.; Rana, J.; Rosswog, S.; Rusu, F.; Sadler, E. M.; Van Sistine, A.; Sollerman, J.; Xu, Y.; Yan, L.; Yatsu, Y.; Yu, P. -C.; Zhang, C.; Zhao, W.; GROWTH; JAGWAR; Caltech-NRAO; TTU-NRAO; NuSTAR Collaborations; Chambers, K. C.; Huber, M. E.; Schultz, A. S. B.; Bulger, J.; Flewelling, H.; Magnier, E. A.; Lowe, T. B.; Wainscoat, R. J.; Waters, C.; Willman, M.; Pan-STARRS; Ebisawa, K.; Hanyu, C.; Harita, S.; Hashimoto, T.; Hidaka, K.; Hori, T.; Ishikawa, M.; Isobe, N.; Iwakiri, W.; Kawai, H.; Kawai, N.; Kawamuro, T.; Kawase, T.; Kitaoka, Y.; Makishima, K.; Matsuoka, M.; Mihara, T.; Morita, T.; Morita, K.; Nakahira, S.; Nakajima, M.; Nakamura, Y.; Negoro, H.; Oda, S.; Sakamaki, A.; Sasaki, R.; Serino, M.; Shidatsu, M.; Shimomukai, R.; Sugawara, Y.; Sugita, S.; Sugizaki, M.; Tachibana, Y.; Takao, Y.; Tanimoto, A.; Tomida, H.; Tsuboi, Y.; Tsunemi, H.; Ueda, Y.; Ueno, S.; Yamada, S.; Yamaoka, K.; Yamauchi, M.; Yatabe, F.; Yoneyama, T.; Yoshii, T.; MAXI Team; Coward, D. M.; Crisp, H.; Macpherson, D.; Andreoni, I.; Laugier, R.; Noysena, K.; Klotz, A.; Gendre, B.; Thierry, P.; Turpin, D.; Consortium, TZAC; Im, M.; Choi, C.; Kim, J.; Yoon, Y.; Lim, G.; Lee, S. -K.; Lee, C. -U.; Kim, S. -L.; Ko, S. -W.; Joe, J.; Kwon, M. -K.; Kim, P. -J.; Lim, S. -K.; Choi, J. -S.; KU Collaboration; Fynbo, J. P. U.; Malesani, D.; Xu, D.; Optical Telescope, Nordic; Smartt, S. J.; Jerkstrand, A.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra, C.; Maguire, K.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith, K. W.; Young, D. R.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan, D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.; Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla, M.; Cannizzaro, G.; Cartier, R.; Cikota, A.; Clark, P.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.; Elias-Rosa, N.; Firth, R. E.; Flörs, A.; Frohmaier, C.; Galbany, L.; González-Gaitán, S.; Gromadzki, M.; Gutiérrez, C. P.; Hamanowicz, A.; Harmanen, J.; Heintz, K. E.; Hernandez, M. -S.; Hodgkin, S. T.; Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.; Kostrzewa-Rutkowska, Z.; Kromer, M.; Kuncarayakti, H.; Lawrence, A.; Manulis, I.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.; O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.; Pignata, G.; Podsiadlowski, P.; Razza, A.; Reynolds, T.; Roy, R.; Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Pumo, M. L.; Prentice, S. J.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Sullivan, M.; Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen, B.; Vos, J.; Walton, N. A.; Wright, D. E.; Wyrzykowski, Ł.; Yaron, O.; pre="(">ePESSTO, 2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

Any correspondence should be addressed to . Title: The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings Authors: Lehmann, M.; Schmidt, J.; Salo, H. Bibcode: 2017EPSC...11..209L Altcode: Observational evidence for the presence of axisymmetric periodic micro-structure on length scales of 100m - 200m in Saturn's A and B rings was revealed by several instruments onboard the Cassini mission to Saturn. The structure was seen in radio occultations performed by the Radio Science Subsystem (RSS) (Thomson et al. (2007)) and stellar occultations carried out with the Ultraviolet Imaging Spectrograph (UVIS) (Colwell et al. (2007)), and the Visual and Infrared Mapping Spectrometer (VIMS) (Hedman et al. (2014)). Up to date, this micro-structure is best explained by the viscous overstability, which arises as a spontaneous oscillatory instability in a dense ring, if certain conditions are met, leading to the formation of axisymmetric density waves with wavelengths on the order of 100m. We investigate the influence of collective self-gravity forces on the nonlinear, large scale evolution of the viscous overstability in Saturn's rings. To this end we numerically solve the nonlinear hydrodynamic model equations for a dense ring, including radial self-gravity and employing values for the transport coefficients (such as the ring's viscosity and heat conductivity) derived by salo et al. (2001). We concentrate on ring optical depths of order unity, which are appropriate to model Saturn's dense rings. Furthermore, local N-body simulations, incorporating vertical and radial collective self-gravity forces are performed. Direct particle-particle forces are omitted, which prevents small scale gravitational instabilities (self-gravity wakes) from forming, an approximation that allows us to study long radial scales of some 10 kilometers and to compare directly the hydrodynamic model and the N-body simulations. Our hydrodynamic model results, in the limit of vanishing self-gravity, compare very well with the studies of Latter & Ogilvie (2010) and Rein & Latter (2013). In contrast, for rings with non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains tend to settle close to the frequency minimum of the nonlinear dispersion relation, i.e. the saturation wavelengths decrease with increasing surface mass density of the ring. Good agreement between hydrodynamics and N-body simulations is found for disks with strong radial self-gravity, while the largest deviations occur in the limit of weak self-gravity. The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (100m-300m) agree reasonably well with the length scale of the axisymmetric periodic micro structure in Saturn's inner A ring and the B ring, as found by Cassini. Title: The Ca II infrared triplet's performance as an activity indicator compared to Ca II H and K. Empirical relations to convert Ca II infrared triplet measurements to common activity indices Authors: Martin, J.; Fuhrmeister, B.; Mittag, M.; Schmidt, T. O. B.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M. Bibcode: 2017A&A...605A.113M Altcode:
Aims: A large number of Calcium infrared triplet (IRT) spectra are expected from the Gaia and CARMENES missions. Conversion of these spectra into known activity indicators will allow analysis of their temporal evolution to a better degree. We set out to find such a conversion formula and to determine its robustness.
Methods: We have compared 2274 Ca II IRT spectra of active main-sequence F to K stars taken by the TIGRE telescope with those of inactive stars of the same spectral type. After normalizing and applying rotational broadening, we subtracted the comparison spectra to find the chromospheric excess flux caused by activity. We obtained the total excess flux, and compared it to established activity indices derived from the Ca II H and K lines, the spectra of which were obtained simultaneously to the infrared spectra.
Results: The excess flux in the Ca II IRT is found to correlate well with R'HK and R+HK, as well as SMWO, if the B - V-dependency is taken into account. We find an empirical conversion formula to calculate the corresponding value of one activity indicator from the measurement of another, by comparing groups of datapoints of stars with similar B - V. Title: Fifteen years in the high-energy life of the solar-type star HD 81809. XMM-Newton observations of a stellar activity cycle Authors: Orlando, S.; Favata, F.; Micela, G.; Sciortino, S.; Maggio, A.; Schmitt, J. H. M. M.; Robrade, J.; Mittag, M. Bibcode: 2017A&A...605A..19O Altcode: 2017arXiv170706437O Context. The modulation of the activity level of solar-like stars is commonly revealed by cyclic variations in their chromospheric indicators, such as the Ca II H&K S-index, similarly to what is observed in our Sun. However, while the variation of solar activity is also reflected in the cyclical modulation of its coronal X-ray emission, similar behavior has only been discovered in a few stars other than the Sun.
Aims: The data set of the long-term XMM-Newton monitoring program of HD 81809 is analyzed to study its X-ray cycle, investigate if the latter is related to the chromospheric cycle, infer the structure of the corona of HD 81809, and explore if the coronal activity of HD 81809 can be ascribed to phenomena similar to solar activity and, therefore, considered an extension of the solar case.
Methods: We analyzed the observations of HD 81809 performed with XMM-Newton with a regular cadence of six months from 2001 to 2016, which represents one of the longest available observational baseline ( 15 yr) for a solar-like star with a well-studied chromospheric cycle (with a period of 8 yr). We investigated the modulation of coronal luminosity and temperature and its relation with the chromospheric cycle. We interpreted the data in terms of a mixture of solar-like coronal regions, adopting a method originally proposed to study the Sun as an X-ray star.
Results: The observations show a well-defined regular cyclic modulation of the X-ray luminosity that reflects the activity level of HD 81809. The data covers approximately two cycles of coronal activity; the modulation has an amplitude of a factor of 5 (excluding evident flares, as in the June 2002 observation) and a period of 7.3 ± 1.5 yr, which is consistent with that of the chromospheric cycle. We demonstrate that the corona of HD 81809 can be interpreted as an extension of the solar case and can be modeled with a mixture of solar-like coronal regions along the whole cycle. The activity level is mainly determined by varying coverage of very bright active regions, similar to cores of active regions observed in the Sun. Evidence of unresolved significant flaring activity is present especially in the proximity of cycle maxima. Title: All-sky search for periodic gravitational waves in the O1 LIGO data Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciecielag, P.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorosh, O.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Liu, W.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pisarski, A.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trembath-Reichert, S.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvD..96f2002A Altcode: 2017arXiv170702667L We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0 ,+0.1 ] ×10-8 Hz /s . Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼4 ×10-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are ∼1.5 ×10-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are ∼2.5 ×10-25. Title: Carrington cycle 24: the solar chromospheric emission in a historical and stellar perspective Authors: Schröder, K. -P.; Mittag, M.; Schmitt, J. H. M. M.; Jack, D.; Hempelmann, A.; González-Pérez, J. N. Bibcode: 2017MNRAS.470..276S Altcode: 2017arXiv170503777S We present the solar S-index record of cycle 24, obtained by the Telescopio Internacional de Guanajuato, Robotico Espectroscopico robotic telescope facility and its high-resolution spectrograph HEROS (R ≈ 20 000), which measures the solar chromospheric Ca II H&K line emission by using moonlight. Our calibration process uses the same set of standard stars as introduced by the Mount Wilson team, thus giving us a direct comparison with their huge body of observations taken between 1966 and 1992, as well as with other cool stars. Carrington cycle 24 activity started from the unusually deep and long minimum 2008/2009, with an S-index average of only 0.154, 0.015 deeper than the one of 1986 (〈S〉 = 0.169). In this respect, the chromospheric radiative losses differ remarkably from the variation of the coronal radio flux F10.7 cm and the sunspot numbers. In addition, the cycle 24 S-amplitude remained small, 0.022 (cycles 21 and 22 averaged: 0.024), and so resulted in a very low 2014 maximum of 〈S〉 = 0.176 (cycles 21 and 22 averaged: 0.193). We argue that this find is significant, since the Ca II H&K line emission is a good proxy for the solar far-ultraviolet (far-UV) flux, which plays an important role in the heating of the Earth's stratosphere, and we further argue that the solar far-UV flux changes with solar activity much more strongly than the total solar output. Title: Dynamics of dust particles in the Jovian gossamer rings Authors: Liu, X.; Schmidt, J.; Krüger, H. Bibcode: 2017EPSC...11..143L Altcode: In this work, we use both analytical methods and numerical simulations to investigate the dynamics of dust particles in the Jovian gossamer rings. Title: Resolving the Mass Production and Surface Structure of the Enceladus Dust Plume Authors: Kempf, S.; Southworth, B.; Schmidt, J.; Postberg, F.; Srama, R. Bibcode: 2017EPSC...11..818K Altcode: Here we report on measurements of the plume dust density during the last close Cassini flyby at Enceladus in October 2015. The data match our numerical model for the Enceladus plume. The model is based on a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce all Enceladus data sets obtained by Cassini's Cosmic Dust Analyzer (CDA). Our model calculations together with the new density data constrain the Enceladus dust source rate to < 5 kg/s. Based on our simulation results we are able to draw conclusions about the emission of plume particles along the fractures in the south polar terrain. Title: Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Galloway, D. K.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Steeghs, D.; Wang, L. Bibcode: 2017ApJ...847...47A Altcode: 2017arXiv170603119T We present the results of a semicoherent search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1, using data from the first Advanced LIGO observing run. The search method uses details of the modeled, parametrized continuous signal to combine coherently data separated by less than a specified coherence time, which can be adjusted to trade off sensitivity against computational cost. A search was conducted over the frequency range 25-2000 {Hz}, spanning the current observationally constrained range of binary orbital parameters. No significant detection candidates were found, and frequency-dependent upper limits were set using a combination of sensitivity estimates and simulated signal injections. The most stringent upper limit was set at 175 {Hz}, with comparable limits set across the most sensitive frequency range from 100 to 200 {Hz}. At this frequency, the 95% upper limit on the signal amplitude h 0 is 2.3× {10}-25 marginalized over the unknown inclination angle of the neutron star’s spin, and 8.0× {10}-26 assuming the best orientation (which results in circularly polarized gravitational waves). These limits are a factor of 3-4 stronger than those set by other analyses of the same data, and a factor of ∼7 stronger than the best upper limits set using data from Initial LIGO science runs. In the vicinity of 100 {Hz}, the limits are a factor of between 1.2 and 3.5 above the predictions of the torque balance model, depending on the inclination angle; if the most likely inclination angle of 44° is assumed, they are within a factor of 1.7. Title: The Ca II infrared triplet's performance as an activity indicator compared to Ca II H and K Authors: Martin, J.; Fuhrmeister, B.; Mittag, M.; Schmidt, T. O. B.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M. Bibcode: 2017arXiv170804895M Altcode: Aims. A large number of Calcium Infrared Triplet (IRT) spectra are expected from the GAIA- and CARMENES missions. Conversion of these spectra into known activity indicators will allow analysis of their temporal evolution to a better degree. We set out to find such a conversion formula and to determine its robustness. Methods. We have compared 2274 Ca II IRT spectra of active main-sequence F to K stars taken by the TIGRE telescope with those of inactive stars of the same spectral type. After normalizing and applying rotational broadening, we subtracted the comparison spectra to find the chromospheric excess flux caused by activity. We obtained the total excess flux, and compared it to established activity indices derived from the Ca II H & K lines, the spectra of which were obtained simultaneously to the infrared spectra. Results. The excess flux in the Ca II IRT is found to correlate well with $R_\mathrm{HK}'$ and $R_\mathrm{HK}^{+}$, as well as $S_\mathrm{MWO}$, if the $B-V$-dependency is taken into account. We find an empirical conversion formula to calculate the corresponding value of one activity indicator from the measurement of another, by comparing groups of datapoints of stars with similar B-V. Title: Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube Authors: Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J. -J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K. -H.; Benzvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bradascio, F.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; de Clercq, C.; Del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; Deyoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C. -C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; in, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de Los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; ANTARES Collaboration Bibcode: 2017PhRvD..96b2005A Altcode: 2017arXiv170306298A The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2 ×1 051- 2 ×1 054 erg . Title: Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvD..96b2001A Altcode: 2017arXiv170404628T During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M , with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits. Title: A sensitive search for unknown spectral emission lines in the diffuse X-ray background with XMM-Newton Authors: Gewering-Peine, A.; Horns, D.; Schmitt, J. H. M. M. Bibcode: 2017JCAP...06..036G Altcode: 2016arXiv161101733G The Standard Model of particle physics can be extended to include sterile (right-handed) neutrinos or axions to solve the dark matter problem. Depending upon the mixing angle between active and sterile neutrinos, the latter have the possibility to decay into monoenergetic active neutrinos and photons in the keV-range while axions can couple to two photons. We have used data taken with the X-ray telescope XMM-Newton for the search of line emissions. We used pointings with high exposures and expected dark matter column densities with respect to the dark matter halo of the Milky Way. The posterior predictive p-value analysis has been applied to locate parameter space regions which favour additional emission lines. In addition, upper limits of the parameter space of the models have been generated such that the preexisting limits have been significantly improved. Title: Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Etienne, Z. B.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; Suvorova, S.; Moran, W.; Evans, R. J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvD..95l2003A Altcode: 2017arXiv170403719T Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F -statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60-650 Hz. Frequentist 95% confidence strain upper limits, h095 %=4.0 ×1 0-25, 8.3 ×1 0-25, and 3.0 ×1 0-25 for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are ≤10 times higher than the theoretical torque-balance limit at 106 Hz. Title: Structure and variability in the corona of the ultrafast rotator LO Pegasi Authors: Lalitha, S.; Schmitt, J. H. M. M.; Singh, K. P. Bibcode: 2017A&A...602A..26L Altcode: 2017arXiv170203158L Context. Low-mass ultrafast rotators show the typical signatures of magnetic activity and are known to produce flares, probably as a result of magnetic reconnection. As a consequence, the coronae of these stars exhibit very large X-ray luminosities and high plasma temperatures, as well as a pronounced inverse FIP effect.
Aims: To probe the relationship between the coronal properties with spectral type of ultra-fast rotators with Prot< 1d, we analyse the K3 rapid-rotator LO Peg in comparison with other low-mass rapid rotators of spectral types G9-M1.
Methods: We report the results of a 42 ks long XMM-Newton observation of LO Peg and investigate the temporal evolution of coronal properties like the temperatures, emission measures, abundances, densities and the morphology of the involved coronal structures. In addition, we also use the XMM-Newton data from a sample of rapid rotators and compare their coronal properties to those of LO Peg.
Results: We find two distinguishable levels of activity in the XMM-Newton observation of LO Peg, which shows significant X-ray variability both in phase and amplitude, implying the presence of an evolving active region on the surface. The X-ray flux varies by 28%, possibly due to rotational modulation. During our observation a large X-ray flare with a peak X-ray luminosity of 2 × 1030 erg/s and a total soft X-ray energy release of 7.3 × 1033 erg was observed. Further, at the onset of the flare we obtain clear signatures for the occurrence of the Neupert effect. During the flare a significant emission measure increase in the hotter plasma component is observed, while the emission measure in the cooler plasma component is only marginally affected, indicating that different coronal structures are involved. The flare plasma also shows an enhancement of iron by a factor of ≈2 during the rise and peak phase of the flare. The electron densities measured using the O vii and Ne ix triplets during the quiescent and flaring state are ≈6 × 1010 cm-3 and 9 × 1011 cm-3, respectively, and the large errors prevent us from finding significant density differences between quiescent and flaring states. Our modeling analysis suggests that the scale size of the flaring X-ray plasma is smaller than 0.5 R. Further, the flare loop length appears to be smaller than the pressure scale height of the flaring plasma. Our studies show that the X-ray properties of the LO Peg are very similar to those of other low-mass ultrafast rotators, I.e., the X-ray luminosity is very close to saturation, its coronal abundances follow a trend of increasing abundance with increasing first ionisation potential, the so-called inverse FIP effect. Title: Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, A.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Szolgyen, A.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Aptekar, R. L.; Frederiks, D. D.; Golenetskii, S. V.; Golovin, D. V.; Hurley, K.; Litvak, M. L.; Mitrofanov, I. G.; Rau, A.; Sanin, A. B.; Svinkin, D. S.; von Kienlin, A.; Zhang, X.; IPN Collaboration Bibcode: 2017ApJ...841...89A Altcode: 2016arXiv161107947L We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of {10}-2{M}{c}2 were emitted within the 16-500 Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star-black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of 54 Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle ≤slant 30^\circ , we exclude a BNS and a neutron star-black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively. Title: GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wald, R. M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y. -F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zimmerman, A.; Zucker, M. E.; Zweizig, J.; LIGO Scientific; Virgo Collaboration Bibcode: 2017PhRvL.118v1101A Altcode: 2017arXiv170601812T We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31. 2-6.0+8.4M and 19. 4-5.9+5.3 M (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.1 2-0.30+0.21 . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 88 0-390+450 Mpc corresponding to a redshift of z =0.1 8-0.07+0.08 . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7 ×10-23 eV /c2 . In all cases, we find that GW170104 is consistent with general relativity. Title: A swirling jet in the quasar 1308+326 Authors: Britzen, S.; Qian, S. -J.; Steffen, W.; Kun, E.; Karouzos, M.; Gergely, L.; Schmidt, J.; Aller, M.; Aller, H.; Krause, M.; Fendt, C.; Böttcher, M.; Witzel, A.; Eckart, A.; Moser, L. Bibcode: 2017A&A...602A..29B Altcode: Context. Despite numerous and detailed studies of the jets of active galactic nuclei (AGN) on pc-scales, many questions are still debated. The physical nature of the jet components is one of the most prominent unsolved problems, as is the launching mechanism of jets in AGN. The quasar 1308+326 (z = 0.997) allows us to study the overall properties of its jet in detail and to derive a more physical understanding of the nature and origin of jets in general. The long-term data provided by the Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array (VLBA) experiments (MOJAVE) survey permit us to trace out the structural changes in 1308+326 that we present here. The long-lived jet features in this source can be followed for about two decades.
Aims: We investigate the very long baseline interferomety (VLBI) morphology and kinematics of the jet of 1308+326 to understand the physical nature of this jet and jets in general, the role of magnetic fields, and the causal connection between jet features and the launching process.
Methods: Fifty VLBA observations performed at 15 GHz from the MOJAVE survey were re-modeled with Gaussian components and re-analyzed (the time covered: 20 Jan. 1995-25 Jan. 2014). The analysis was supplemented by multi-wavelength radio-data (UMRAO, at 4.8, 8.0, and 14.5 GHz) in polarization and total intensity. We fit the apparent motion of the jet features with the help of a model of a precessing nozzle.
Results: The jet features seem to be emitted with varying viewing angles and launched into an ejection cone. Tracing the component paths yields evidence for rotational motion. Radio flux-density variability can be explained as a consequence of enhanced Doppler boosting corresponding to the motion of the jet relative to the line of sight. Based on the presented kinematics and other indicators, such as electric-vector polarization position-angle (EVPA) rotation, we conclude that the jet of 1308+326 has a helical structure, meaning that the components are moving along helical trajectories and the trajectories themselves are also experiencing a precessing motion. A model of a precessing nozzle was applied to the data and a subset of the observed jet feature paths can be modeled successfully within this model. The data till 2012 are consistent with a swing period of 16.9 yr. We discuss several scenarios to explain the observed motion phenomena, including a binary black hole model. It seems unlikely that the accretion disk around the primary black hole, which is disturbed by the tidal forces of the secondary black hole, is able to launch a persistent axisymmetric jet.
Conclusions: We conclude that we are observing a rotating helix. In particular, the observed EVPA swings can be explained by a shock moving through a straight jet that is pervaded by a helical magnetic field. We compare our results for 1308+326 with other astrophysical scenarios where similar, wound-up filamentary structures are found. They are all related to accretion-driven processes. A helically moving or wound up object is often explained by filamentary features moving along magnetic field lines of magnetic flux tubes. It seems that a "component" comprises plasma tracing the magnetic field, which guides the motion of the radiating radio-band plasma. Further investigations and modeling are in preparation.

The reduced Figs. A.1-A.13 (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A29

http://www.physics.purdue.edu/astro/MOJAVE/ http://www.physics.purdue.edu/astro/MOJAVE/ http://www.physics.purdue.edu/astro/MOJAVE/animated/1308+326.I.mpg http://www.physics.purdue.edu/MOJAVE/sourcepages/1308+326.shtml Title: Effects of waveform model systematics on the interpretation of GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A. Bibcode: 2017CQGra..34j4002A Altcode: 2016arXiv161107531T Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ∼0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations. Title: Discovery of the secondary eclipse of HAT-P-11 b (Corrigendum) Authors: Huber, K. F.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2017A&A...600C...1H Altcode: No abstract at ADS Title: Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Sigurdsson, S.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvD..95h2005A Altcode: 2016arXiv160702216A We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of ≈2.7 kpc . The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F -statistic. We found no gravitational-wave signals and set 95% confidence upper limits as stringent as 6.0 ×10-25 on intrinsic strain and 8.5 ×10-6 on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spin-down ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method is used extensively in searches of Advanced LIGO and Virgo detector data. Title: Four-month chromospheric and coronal activity cycle in τ Boötis Authors: Mittag, M.; Robrade, J.; Schmitt, J. H. M. M.; Hempelmann, A.; González-Pérez, J. N.; Schröder, K. -P. Bibcode: 2017A&A...600A.119M Altcode: We have used our robotic TIGRE facility to closely monitor the star τ Boo during the last three observing seasons 2013-2016 and to determine its S-index variability from the strength of its Ca II H and K line cores in order to study its characteristic cyclic chromospheric variations and determine its rotation period. We furthermore reanalyze archival X-ray data of τ Boo taken with the XMM-Newton satellite. Using Lomb-Scargle periodograms, we find a strong periodic signal in our data with a period of about 122 days with extremely high significance, which is also consistent with the observed long-term X-ray variability. Furthermore, the epochs of magnetic field reversals observed in τ Boo with the technique of Zeeman Doppler imaging are consistent with the hypothesis that they are produced at activity maximum. In line with previous studies of τ Boo, we therefore interpret our data as evidence of a very short activity cycle in analogy to the solar cycle, but the cycle period of τ Boo may also show some slight variability and may show substantial phase shifts. The chromospheric signal of τ Boo is found to vary on the rotational timescale of somewhat more than three days only during one out of the available three observing seasons. The available data suggest that persistent cyclic magnetic activity can occur on timescales much shorter than the decadal timescale observed for the Sun and many other late-type stars. Title: Further evidence for a sub-year magnetic chromospheric activity cycle and activity phase jumps in the planet host τ Boötis Authors: Schmitt, J. H. M. M.; Mittag, M. Bibcode: 2017A&A...600A.120S Altcode: We examine the S-index data, obtained in the context of the Mount Wilson H&K project for the nearby F-type star τ Boo, for the presence of possible cyclic variations on timescales below one year and "phase jump" episodes in the observed S-index activity levels, to determine whether such features are persistent properties of the chromospheric activity of τ Boo and possibly other late-type stars. Within the Mount Wilson H&K project τ Boo was observed during 1278 individual nights, albeit with a very inhomogeneous coverage ranging from 2 to 137 observations per year. Our analysis shows that periodical variations with timescales on the order of 110-120 days are a persistent feature of the Mount Wilson data set. Furthermore we provide further examples of "phase jump" episodes, when the observed S-index activity drops from maximum to minimum levels on timescales of one to two weeks, hence such features also appear to occur on a more or less regular basis in τ Boo. Title: First Search for Gravitational Waves from Known Pulsars with Advanced LIGO Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Buchner, S.; Cognard, I.; Corongiu, A.; Freire, P. C. C.; Guillemot, L.; Hobbs, G. B.; Kerr, M.; Lyne, A. G.; Possenti, A.; Ridolfi, A.; Shannon, R. M.; Stappers, B. W.; Weltevrede, P. Bibcode: 2017ApJ...839...12A Altcode: 2017arXiv170107709T We present the result of searches for gravitational waves from 200 pulsars using data from the first observing run of the Advanced LIGO detectors. We find no significant evidence for a gravitational-wave signal from any of these pulsars, but we are able to set the most constraining upper limits yet on their gravitational-wave amplitudes and ellipticities. For eight of these pulsars, our upper limits give bounds that are improvements over the indirect spin-down limit values. For another 32, we are within a factor of 10 of the spin-down limit, and it is likely that some of these will be reachable in future runs of the advanced detector. Taken as a whole, these new results improve on previous limits by more than a factor of two. Title: Surface Composition of Asteroids Measured Using a Dust Analyzer Instrument Authors: Sternovsky, Z.; Hillier, J.; Postberg, F.; Schmidt, J.; Kempf, S.; Horanyi, M.; Rivkin, A. S. Bibcode: 2017LPI....48.2908S Altcode: A laboratory study has been performed to demonstrate the value of dust composition analysis for future missions to asteroids or airless bodies. Title: Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dave, I.; Daveloza, H. P.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Dojcinoski, G.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; George, J.; Gergely, L.; Ghosh, A.; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lormand, M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Mukund, K. N.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nayak, R. K.; Necula, V.; Nedkova, K.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze, D. H.; Rew, H.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration Bibcode: 2017PhRvD..95f2003A Altcode: 2016arXiv160203845T In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz. Title: Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvL.118l1102A Altcode: 2016arXiv161202030T We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα ,Θ(f )<(0.1 - 56 )×10-8 erg cm-2 s-1 Hz-1(f /25 Hz )α -1 depending on the sky location Θ and the spectral power index α . For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω (f ,Θ )<(0.39 - 7.6 )×10-8 sr-1(f /25 Hz )α depending on Θ and α . Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0<(6.7 ,5.5 , and 7.0 )×10-25 , respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case. Title: The Compositional Profile of the Enceladian Ice Plume from the Latest Cassini Flybys Authors: Khawaja, N.; Postberg, F.; Schmidt, J. Bibcode: 2017LPI....48.2005K Altcode: From the latest Cassini's flybys of Enceladus (E17, E18, and E21), the compositional profile of the Enceladian plume is inferred and compared with the E5 data. Title: Resolving the Mass Production and Surface Structure of the Enceladus Dust Plume Authors: Southworth, B. S.; Kempf, S.; Spitale, J.; Srama, R.; Schmidt, J.; Postberg, F. Bibcode: 2017LPI....48.2904S Altcode: CDA and ISS data are used in conjunction with plume simulations to resolve the Enceladus plume mass production, emission structure, and surface deposition. Title: Colors of Enceladus: Plume Redeposition and Lessons for Europa Authors: Schenk, P.; Buratti, B.; Helfenstein, P.; Kempf, S.; Schmidt, J. Bibcode: 2017LPI....48.2601S Altcode: I wonder if the snow loves the craters and cracks, that it kisses them so gently? Perhaps it says, "Go to sleep, darlings, till the plumes erupt again." Title: Extrasolar planets and their hosts: A new X-ray research area Authors: Schmitt, J. H. M. M. Bibcode: 2017AN....338..178S Altcode: The field of extrasolar planets has become one of the most lively and vibrant field of research in astrophysics. As is almost always the case in astrophysics, a multi-wavelength approach is required to fully explore and understand the properties of those planets. Also, X-ray astronomy plays an important role in this process. The host stars of essentially all extrasolar planets are (sometimes very vigorous) X-ray emitters, which can severely impact on the outer atmospheric layers of their planets. Furthermore, the close proximity between host stars and planets in the case of close-in "Hot Jupiters" may lead to magnetic or tidal interactions with observable consequences at X-ray wavelengths. I will address these issues and discuss how XMM-Newton can be used to advance the field. Title: Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvL.118l1101A Altcode: 2016arXiv161202029T A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0<1.7 ×10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background. Title: VizieR Online Data Catalog: QSO 1308+326 at 15GHz modelfit results (Britzen+, 2017) Authors: Britzen, S.; Qian, S. -J.; Steffen, W.; Kun, E.; Karouzos, M.; Gergely, L.; Schmidt, J.; Aller, M.; Aller, H.; Krause, M.; Fendt, C.; Bottcher, M.; Witzel, A.; Eckart, A.; Moser, L. Bibcode: 2017yCat..36020029B Altcode: We re-modeled 50 VLBA observations of 1308+326 obtained at 15GHz (taken from the online MOJAVE archive webpage) between 1995.05 and 2014.07 with Gaussian components within the difmap-modelfit programme (Shepherd 1997). The modelfit programme fits image-plane model components to the visibilities in the uv plane. Every epoch was modeled independently starting from a point source model. The errors were estimated from deviations in all parameters derived by calculating fits to models with ±1 component. All the images with model-fits superimposed are displayed in Figs. 16-28. The parameters and corresponding uncertainties of the model-fits are listed in Tables 2-6 (paper). Components labeled with 'x' denote for features that could not be reliably traced across the epochs.

(2 data files). Title: All-sky search for short gravitational-wave bursts in the first Advanced LIGO run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H. -P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2017PhRvD..95d2003A Altcode: 2016arXiv161102972T We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; the other known gravitational-wave event, GW151226, falls below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-binary-black-hole transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper limits are stricter than those previously published by an order of magnitude. Title: Exoplanetary atmospheric sodium revealed by orbital motion. Narrow-band transmission spectroscopy of HD 189733b with UVES Authors: Khalafinejad, S.; von Essen, C.; Hoeijmakers, H. J.; Zhou, G.; Klocová, T.; Schmitt, J. H. M. M.; Dreizler, S.; Lopez-Morales, M.; Husser, T. -O.; Schmidt, T. O. B.; Collet, R. Bibcode: 2017A&A...598A.131K Altcode: 2016arXiv161001610K Context. During primary transits, the spectral signatures of exoplanet atmospheres can be measured using transmission spectroscopy. We can obtain information on the upper atmosphere of these planets by investigating the exoplanets' excess sodium absorption in the optical region. However, a number of factors can affect the observed sodium absorption signature. We present a detailed model correcting for systematic biases to yield an accurate depth for the sodium absorption in HD 189733b.
Aims: The goal of this work is to accurately measure the atomspheric sodium absorption light curve in HD 189733b, correcting for the effects of stellar differential limb-darkening, stellar activity, and a "bump" caused by the changing radial velocity of the exoplanet. In fact, owing to the high cadence and quality of our data, it is the first time that the last feature can be detected even by visual inspection.
Methods: We use 244 high-resolution optical spectra taken by the UVES instrument mounted at the VLT. Our observations cover a full transit of HD 189733b, with a cadence of 45 s. To probe the transmission spectrum of sodium we produce excess light curves integrating the stellar flux in passbands of 1 Å, 1.5 Å, and 3 Å inside the core of each sodium D-line. We model the effects of external sources on the excess light curves, which correspond to an observed stellar flare beginning close to mid-transit time and the wavelength dependent limb-darkening effects. In addition, by characterizing the effect of the changing radial velocity and Doppler shifts of the planetary sodium lines inside the stellar sodium lines, we estimate the depth and width of the exoplanetary sodium feature.
Results: We estimate the shape of the planetary sodium line by a Gaussian profile with an equivalent width of 0.0023 ± 0.0010Å, thereby confirming the presence of sodium in the atmosphere of HD 189733b with excess absorption levels of 0.72 ± 0.25%, 0.34 ± 0.11%, and 0.20 ± 0.06% for the integration bands of 1 Å, 1.5 Å, and 3 Å, respectively. Using the equivalent width of the planetary sodium line, we produce a first order estimate of the number density of sodium in the exoplanet atmosphere. Title: Exploring the sensitivity of next generation gravitational wave detectors Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bock, O.; Bogan, C.; Bohe, A.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C. B.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dave, I.; Davies, G. S.; Daw, E. J.; De, S.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; Geng, P.; George, J.; Gergely, L.; Ghosh, Abhirup; Ghosh, Archisman; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lormand, M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nayak, R. K.; Nedkova, K.; Nelson, T. J. N.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Poe, M.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; (LIGO Scientific Collaboration; Harms, J. Bibcode: 2017CQGra..34d4001A Altcode: 2016arXiv160708697E; 2016arXiv160708697A The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe. Title: Hamburger Sternwarte plate archives: Historic long-term variability study of active galaxies based on digitized photographic plates Authors: Wertz, M.; Horns, D.; Groote, D.; Tuvikene, T.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2017AN....338..103W Altcode: 2016arXiv160700312W At the Hamburger Sternwarte, an effort was started in 2010 with the aim of digitizing its more than 45,000 photographic plates and films stored in its plate archives. At the time of writing, more than 31,000 plates have already been made available on the Internet for researchers, historians, and the interested public. The digitization process and the Internet presentation of the plates and accompanying handwritten material (plate envelopes, logbooks, observer notes) are presented here. To fully exploit the unique photometric and astrometric data, stored on the plates, further processing steps are required including registering the plate to celestial coordinates, masking of the plates, and a calibration of the photoemulsion darkening curve. To demonstrate the correct functioning of these procedures, historical light curves of two bright BL Lac-type active galactic nuclei are extracted. The resulting light curve of the blazar 1ES 1215+303 exhibits a large decrease in the magnitude from 14.25-0.12+0.07 to 15.94-0.13+0.09 in about 300 days, which proves the variability in the optical region. Furthermore, we compare the measured magnitudes for the quasar 3C 273 with contemporaneous measurements and find good agreement. Title: Discovery of the secondary eclipse of HAT-P-11 b Authors: Huber, K. F.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2017A&A...597A.113H Altcode: 2016arXiv161100153H We report the detection of the secondary eclipse of HAT-P-11 b, a Neptune-sized planet orbiting an active K4 dwarf. Using all available short-cadence data of the Kepler mission, we derive refined planetary ephemeris increasing their precision by more than an order of magnitude. Our simultaneous primary and secondary transit modeling results in improved transit and orbital parameters. In particular, the precise timing of the secondary eclipse allows to pin down the orbital eccentricity to . The secondary eclipse depth of ppm corresponds to a 5.5σ detection and results in a geometric albedo of 0.39 ± 0.07 for HAT-P-11 b, close to Neptune's value, which may indicate further resemblances between these two bodies. Due to the substantial orbital eccentricity, the planetary equilibrium temperature is expected to change significantly with orbital position and ought to vary between 630 K and 950 K, depending on the details of heat redistribution in the atmosphere of HAT-P-11 b. Title: The basic physics of the binary black hole merger GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J. Bibcode: 2017AnP...52900209A Altcode: 2016arXiv160801940T The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves. Title: Study of the variability of Nova V5668 Sgr, based on high-resolution spectroscopic monitoring Authors: Jack, D.; Robles Pérez, J. de J.; De Gennaro Aquino, I.; Schröder, K. -P.; Wolter, U.; Eenens, P.; Schmitt, J. H. M. M.; Mittag, M.; Hempelmann, A.; González-Pérez, J. N.; Rauw, G.; Hauschildt, P. H. Bibcode: 2017AN....338...91J Altcode: 2017arXiv170201171J We present results of our dense spectroscopic monitoring of Nova V5668 Sgr. Starting on March 19, 2015, only a few days after its discovery, we have obtained a series of spectra with the Telescopio Internacional en Guanajuato, Robótico y Espectroscópico telescope and its Heidelberg extended range optical spectrograph échelle spectrograph, which offers a resolution of R = 20,000 and covers the optical wavelength range 3,8008,800 Å. We performed a line identification of the discernible features for four spectra, which are representative of the respective phases in the light curve evolution of that nova. We simultaneously analyzed the variations in the visual light curve and the corresponding spectra of Nova V5668 Sgr. We found that, during the declining phases of the nova, the absorption features in all hydrogen and many other lines had shifted to higher expansion velocities of about -2,000 km s-1. Conversely, during the rise toward the following maximum, these observed absorption features had returned to lower expansion velocities. We found that the absorption features of some Fe II lines displayed the same behavior, but in addition disappeared for a few days during some declining phases. Features of several N I lines also disappeared, while new N II lines appeared in the emission for a few days during some of the declining phases of the light curve of Nova V5668 Sgr. The shape of the emission features is changing during the evolution, and shows a clear double-peak structure after the deep minimum. Thanks to the dense spectral monitoring we could observe several interesting developments of the Nova V5668 Sgr. Title: How Much Dust Does Enceladus eject? Authors: Kempf, S.; Southworth, B.; Srama, R.; Schmidt, J.; Postberg, F. Bibcode: 2016AGUFM.P33A2119K Altcode: There is an ongoing argument how much dust per second the ice volcanoes on Saturn's ice moon eject. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about 􏱱5 kg/s. On the other hand, Ingersoll and Ewald (2005) derived a dust production rate of 51 kg/s from the total plume brightness. Knowledge of the production rate is essential for estimating the dust to gas mass ratio, which in turn is an important constraint for finding the plume source mechanism. Here we report on measurements of the plume dust density during the last close Cassini flyby at Enceladus in October 2015. The data match our numerical model for the Enceladus plume. The model is based on a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated self-consistently. Our numerical simulations reproduce all Enceladus data sets obtained by Cassini's Cosmic Dust Analyzer (CDA). Our model calculations together with the new density data constrain the Enceladus dust source rate to < 5 kg/s. Based on our simulation results we are able to draw conclusions about the emission of plume particles along the fractures in the south polar terrain. Title: Explorer of Enceladus and Titan (E2T): Investigating Ocean Worlds' Evolution and Habitability in the Saturn System Authors: Mitri, G.; Postberg, F.; Soderblom, J. M.; Tobie, G.; Tortora, P.; Wurz, P.; Barnes, J. W.; Carrasco, N.; Coustenis, A.; Ferri, F.; Hayes, A.; Hillier, J.; Kempf, S.; Lebreton, J. P.; Lorenz, R. D.; Orosei, R.; Petropoulos, A. E. E.; Reh, K. R.; Schmidt, J.; Sotin, C.; Srama, R.; Vuitton, V.; Yen, C. W. Bibcode: 2016AGUFM.P33A2129M Altcode: The NASA-ESA-ASI Cassini-Huygens mission has revealed Titan and Enceladus to be two of the most enigmatic worlds in the Solar System. Titan, with its organically rich and dynamic atmosphere and geology, and Enceladus, with its active plume of water vapor and ice including trace amounts of organics, salts, and silica nano-particles, both harboring subsurface oceans, are prime environments to investigate the conditions for the emergence of life and the habitability potential of ocean worlds, as well as the origin and evolution of complex planetary systems. The Explorer of Enceladus and Titan (E2T) is a space mission concept dedicated to investigating the evolution and habitability of these Saturnian satellites and is proposed in response to ESA's M5 Cosmic Vision Call, as a medium-class mission led by ESA in collaboration with NASA. E2T has a focused state-of-the-art payload that will provide in-situ chemical analysis, and high-resolution imaging from multiple flybys of Enceladus and Titan using a solar-electric powered spacecraft in orbit around Saturn. With significant improvements in mass range and resolution, as compared with Cassini instrumentation, the Ion and Neutral Gas Mass Spectrometer (INMS) and the Enceladus Icy Jet Analyzer (ENIJA) time-of-flight mass spectrometers will provide the data needed to decipher the subtle details of the aqueous environment of Enceladus from plume sampling and of the complex pre-biotic chemistry occurring in Titan's atmosphere. The Titan Imaging and Geology, Enceladus Reconnaissance (TIGER) mid-wave infrared camera will map thermal emission from Enceladus' tiger stripes at meter scales and investigate Titan's geology and compositional variability at decameter scales. Title: Supplement: “The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914” (2016, ApJL, 833, L1) Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wesels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016ApJS..227...14A Altcode: 2016arXiv160603939T This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work we reported various rate estimates whose 90% confidence intervals fell in the range 2-600 Gpc-3 yr-1. Here we give details on our method and computations, including information about our search pipelines, a derivation of our likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from merging BBHs, details on our computational methods, a description of the effects and our model for calibration uncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements. Title: Coronal activity cycles in action - X-rays from alpha Centauri A/B Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2016arXiv161206570R Altcode: We report on the coronal activity cycles of our stellar neighbors alpha Centauri A/B. The binary has been monitored with XMM-Newton since 2002 to study the long-term evolution of coronal activity evolution in X-rays. The solar analog alpha Cen A was clearly detected early in the program, but virtually faded away from XMM's detectors view around 2005. After remaining nearly a decade in a state of coronal weakness, we now detect a clear re-brightening of its corona. The secondary alpha Cen B dominates the X-ray emission at most times and more than a full cycle is covered for this star. A new X-ray maximum was observed around 2012 that is again followed by gentle dimming over the recent years. The temporal evolution of the X-ray emission can be well understood, in analogy to the 11 year solar-cycle, by coronal activity cycles with different amplitudes and periods operating in both stars. Title: Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016ApJ...832L..21A Altcode: 2016arXiv160707456T We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \in [1,3] {M} and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \in [2,99] {M}, and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M at a volume-weighted average distance of ∼70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M and black hole masses of at least 5 M , a volume-weighted average distance of at least ∼110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\buildrel{\circ}\over{.} {3}-1.1+1.7 (4\buildrel{\circ}\over{.} {3}-1.9+3.1). Title: On Numerically Reproducing the Enceladus Plume Authors: Southworth, B.; Kempf, S.; Schmidt, J. Bibcode: 2016AGUFM.P33A2120S Altcode: The Enceladus plume was one of the most exciting discoveries of the NASA Cassini mission. However, a number of fundamental features of the plume have yet to be agreed upon. Schmidt et al. (2008) estimated a mass production rate on the order of 5 kg/s based on data from the Cassini dust detector, while Ingersoll and Ewald (2005) estimated a production rate of 51 kg/s based on plume brightness. Porco et al. (2014) produced a set of jet locations and source strength based on imaging; however, simulations of these sources do not reproduce surface deposition patterns of plume particles across Enceladus. We simulate jet sources across the south polar terrain, particularly along the fractures, accounting for gravitational forces and the Lorentz force, to construct a detailed numerical profile of the Enceladus plume. Recent simulations have led to updated surface deposition maps, which are able to constrain jet source locations and strength, and the recent E21 flyby provides detailed, low-altitude data from the dust detector on spacecraft impact rates. Altogether, dust-detector data, surface heat maps of plume fractures, UV surface deposition maps, and photometry are used in conjunction to better resolve both the mass production rate - and thereby dust-to-gas ratio - and source strength and location for the Enceladus plume. Title: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016ApJ...833L...1A Altcode: 2016arXiv160203842A; 2016arXiv160203842T A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 days around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate (FAR) of \lt 4.9× {10}-6 {{yr}}-1, yielding a p-value for GW150914 of \lt 2× {10}-7. Parameter estimation follow-up on this trigger identifies its source as a binary black hole (BBH) merger with component masses ({m}1,{m}2)=({36}-4+5,{29}-4+4) {M} at redshift z={0.09}-0.04+0.03 (median and 90% credible range). Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between 2{--}53 {{Gpc}}-3 {{yr}}-1 (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from 13{--}600 {{Gpc}}-3 {{yr}}-1 depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range 2{--}600 {{Gpc}}-3 {{yr}}-1. Title: Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..94j2002A Altcode: 2016arXiv160609619T We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the S6 LIGO science run. The search was possible thanks to the computing power provided by the volunteers of the Einstein@Home distributed computing project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population. At the frequency of best strain sensitivity, between 170.5 and 171 Hz we set a 90% confidence upper limit of 5.5 ×10-25 , while at the high end of our frequency range, around 505 Hz, we achieve upper limits ≃10-24 . At 230 Hz we can exclude sources with ellipticities greater than 10-6 within 100 pc of Earth with fiducial value of the principal moment of inertia of 1038 kg m2 . If we assume a higher (lower) gravitational wave spin-down we constrain farther (closer) objects to higher (lower) ellipticities. Title: First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corpuz, A.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Loew, K.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaria, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..94j2001A Altcode: 2016arXiv160501785A We present results from a search for gravitational-wave bursts coincident with two core-collapse supernovae observed optically in 2007 and 2011. We employ data from the Laser Interferometer Gravitational-wave Observatory (LIGO), the Virgo gravitational-wave observatory, and the GEO 600 gravitational-wave observatory. The targeted core-collapse supernovae were selected on the basis of (1) proximity (within approximately 15 Mpc), (2) tightness of observational constraints on the time of core collapse that defines the gravitational-wave search window, and (3) coincident operation of at least two interferometers at the time of core collapse. We find no plausible gravitational-wave candidates. We present the probability of detecting signals from both astrophysically well-motivated and more speculative gravitational-wave emission mechanisms as a function of distance from Earth, and discuss the implications for the detection of gravitational waves from core-collapse supernovae by the upgraded Advanced LIGO and Virgo detectors. Title: Glimpses of stellar surfaces. II. Origins of the photometric modulations and timing variations of KOI-1452 Authors: Ioannidis, P.; Schmitt, J. H. M. M. Bibcode: 2016A&A...594A..42I Altcode: 2016arXiv160708080I The deviations of the mid-transit times of an exoplanet from a linear ephemeris are usually the result of gravitational interactions with other bodies in the system. However, these types of transit timing variations (TTV) can also be introduced by the influences of star spots on the shape of the transit profile. Here we use the method of unsharp masking to investigate the photometric light curves of planets with ambiguous TTV to compare the features in their O-C diagram with the occurrence and in-transit positions of spot-crossing events. This method seems to be particularly useful for the examination of transit light curves with only small numbers of in-transit data points, I.e., the long cadence light curves from Kepler satellite. As a proof of concept we apply this method to the light curve and the estimated eclipse timing variations of the eclipsing binary KOI-1452, for which we prove their non-gravitational nature. Furthermore, we use the method to study the rotation properties of the primary star of the system KOI-1452 and show that the spots responsible for the timing variations rotate with different periods than the most prominent periods of the system's light curve. We argue that the main contribution in the measured photometric variability of KOI-1452 originates in g-mode oscillations, which makes the primary star of the system a γ-Dor type variable candidate. Title: Apsidal motion in the massive binary HD 152218 Authors: Rauw, G.; Rosu, S.; Noels, A.; Mahy, L.; Schmitt, J. H. M. M.; Godart, M.; Dupret, M. -A.; Gosset, E. Bibcode: 2016A&A...594A..33R Altcode: 2016arXiv160902735R Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a disentangling code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of (19.8 ± 1.5) and (15.0 ± 1.1) M. Combining radial velocity measurements from over 60 yr, we show that the system displays apsidal motion at a rate of (2.04+ .23-.24)° yr-1. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 ± 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting. Title: Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvX...6d1014A Altcode: 2016arXiv160601210T This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M and 3 0-4+3 M (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted. Title: Glimpses of stellar surfaces. I. Spot evolution and differential rotation of the planet host star Kepler-210 Authors: Ioannidis, P.; Schmitt, J. H. M. M. Bibcode: 2016A&A...594A..41I Altcode: 2016arXiv160708065I We use high accuracy photometric data obtained with the Kepler satellite to monitor the activity modulations of the Kepler-210 planet host star over a time span of more than four years. Following the phenomenology of the star's light curve in combination with a five spot model, we identify six different so-called spot seasons. A characteristic, which is common in the majority of the seasons, is the persistent appearance of spots in a specific range of longitudes on the stellar surface. The most prominent period of the observed activity modulations is different for each season and appears to evolve following a specific pattern, resembling the changes in the sunspot periods during the solar magnetic cycle. Under the hypothesis that the star exhibits solar-like differential rotation, we suggest differential rotation values of Kepler-210 that are similar to or smaller than that of the Sun. Finally, we estimate spot life times between ~60 days and ~90 days, taking into consideration the evolution of the total covered stellar surface computed from our model. Title: Binary Black Hole Mergers in the First Advanced LIGO Observing Run Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvX...6d1015A Altcode: 2016arXiv160604856T The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100 M and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9 - 240 Gpc-3 yr-1 . These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections. Title: Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30 Authors: Schmidt, T. O. B.; Neuhäuser, R.; Briceño, C.; Vogt, N.; Raetz, St.; Seifahrt, A.; Ginski, C.; Mugrauer, M.; Buder, S.; Adam, C.; Hauschildt, P.; Witte, S.; Helling, Ch.; Schmitt, J. H. M. M. Bibcode: 2016A&A...593A..75S Altcode: 2016arXiv160505315S Context. Direct imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can be both followed astrometrically on their orbits and observed spectroscopically and thus provide an essential tool for our understanding of the early solar system.
Aims: We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting planet candidate.
Methods: We report on photometric and spectroscopic high-contrast observations with the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory. They reveal a directly imaged planet candidate close to the young M3 star CVSO 30.
Results: The JHK-band photometry of the newly identified candidate is at better than 1σ consistent with late-type giants, early-T and early-M dwarfs, and free-floating planets. Other hypotheses such as galaxies can be excluded at more than 3.5σ. A lucky imaging z' photometric detection limit z' = 20.5 mag excludes early-M dwarfs and results in less than 10 MJup for CVSO 30 c if bound. We present spectroscopic observations of the wide companion that imply that the only remaining explanation for the object is that it is the first very young (<10 Myr) L - T-type planet bound to a star, meaning that it appears bluer than expected as a result of a decreasing cloud opacity at low effective temperatures. Only a planetary spectral model is consistent with the spectroscopy, and we deduce a best-fit mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses).
Conclusions: This means that CVSO 30 is the first system in which both a close-in and a wide planet candidate are found to have a common host star. The orbits of the two possible planets could not be more different: they have orbital periods of 10.76 h and about 27 000 yr. The two orbits may have formed during a mutual catastrophic event of planet-planet scattering.

Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 090.C-0448(A), 290.C-5018(B), 092.C-0488(A) and at the Centro Astronómico Hispano-Alemán in programme H15-2.2-002. Title: Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Chu, T.; Clark, M.; Fauchon-Jones, E.; Fong, H.; Healy, J.; Hemberger, D.; Hinder, I.; Husa, S.; Kalaghati, C.; Khan, S.; Kidder, L. E.; Kinsey, M.; Laguna, P.; London, L. T.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pannarale, F.; Pfeiffer, H. P.; Scheel, M.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Vinuales, A. Vano; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..94f4035A Altcode: 2016arXiv160601262T We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations—including sources with two independent, precessing spins—we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz∈[64 M-82 M] , mass ratio 1 /q =m2/m1∈[0.6 ,1 ], and effective aligned spin χeff∈[-0.3 ,0.2 ], where χeff=(S1/m1+S2/m2).L ^/M . Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1 ,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf ,z in the range 64.0 M-73.5 M and the final black hole's dimensionless spin parameter is consistent with af=0.62 - 0.73 . As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)]. Title: Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..94d2002A Altcode: 2016arXiv160503233T We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of [-1.18 ,+1.00 ] ×1 0-8 Hz /s . Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7 ×1 0-25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5 ×1 0-24 . Both cases refer to all sky locations and entire range of frequency derivative values. Title: CARMENES: an overview six months after first light Authors: Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Bejar, V. J. S.; Benitez, D.; Berdinas, Z. M.; Brinkmöller, M.; Cardenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortes-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernandez, M.; Ferro, I. M.; Fuhrmeister, B.; Galadi, D.; Gallardo, I.; Gálvez-Ortiz, M. C.; Garcia-Piquer, A.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Hernández, J. I.; Gonzalez Peinado, R.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Hagen, H. -J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Arabi, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huber, K. F.; Huke, P.; Jeffers, S. V.; de Juan, E.; Kaminski, A.; Kehr, M.; Kim, M.; Klein, R.; Klüter, J.; Kürster, M.; Lafarga, M.; Lara, L. M.; Lamert, A.; Laun, W.; Launhardt, R.; Lemke, U.; Lenzen, R.; Llamas, M.; Lopez del Fresno, M.; López-Puertas, M.; López-Santiago, J.; Lopez Salas, J. F.; Magan Madinabeitia, H.; Mall, U.; Mandel, H.; Mancini, L.; Marin Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales, J. C.; Morales Muñoz, R.; Nagel, E.; Naranjo, V.; Nowak, G.; Palle, E.; Panduro, J.; Passegger, V. M.; Pavlov, A.; Pedraz, S.; Perez, E.; Pérez-Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhart, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez López, C.; Rohloff, R. R.; Rosich, A.; Sanchez Carrasco, M. A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Schöfer, P.; Schweitzer, A.; Shulyak, D.; Solano, E.; Stahl, O.; Storz, C.; Tabernero, H. M.; Tala, M.; Tal-Or, L.; Ulbrich, R. -G.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. -R.; Zechmeister, M.; Ammler-von Eiff, M.; Anglada-Escudé, G.; del Burgo, C.; Garcia-Vargas, M. L.; Klutsch, A.; Lizon, J. -L.; Lopez-Morales, M.; Ofir, A.; Pérez-Calpena, A.; Perryman, M. A. C.; Sánchez-Blanco, E.; Strachan, J. B. P.; Stürmer, J.; Suárez, J. C.; Trifonov, T.; Tulloch, S. M.; Xu, W. Bibcode: 2016SPIE.9908E..12Q Altcode: The CARMENES instrument is a pair of high-resolution (R> 80,000) spectrographs covering the wavelength range from 0.52 to 1.71 μm, optimized for precise radial velocity measurements. It was installed and commissioned at the 3.5m telescope of the Calar Alto observatory in Southern Spain in 2015. The first large science program of CARMENES is a survey of 300 M dwarfs, which started on Jan 1, 2016. We present an overview of all subsystems of CARMENES (front end, fiber system, visible-light spectrograph, near-infrared spectrograph, calibration units, etalons, facility control, interlock system, instrument control system, data reduction pipeline, data flow, and archive), and give an overview of the assembly, integration, verification, and commissioning phases of the project. We show initial results and discuss further plans for the scientific use of CARMENES. Title: An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134 Authors: Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.; Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A. Bibcode: 2016MNRAS.460.3407A Altcode: 2016arXiv160504868A; 2016MNRAS.tmp..949A During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He II λ5411 emission line, the previously identified period was refined to P = 2.255 ± 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 ± 6 d, or ∼18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Δφ ≃ 90° was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C IV λλ5802,5812 and He I λ5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He I λ5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist. Title: Supplement: “Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914” (2016, ApJL, 826, L13) Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Carrasco Kind, M.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H. -F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT Collaboration; Zadko Collaboration; Algerian National Observatory, Algerian Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration Bibcode: 2016ApJS..225....8A Altcode: 2016arXiv160407864A This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands. Title: Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016CQGra..33m4001A Altcode: 2016arXiv160203844T On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal. Title: Charging of small grains in a space plasma: Application to Jovian stream particles Authors: Dzhanoev, A. R.; Schmidt, J.; Liu, X.; Spahn, F. Bibcode: 2016A&A...591A.147D Altcode: 2016arXiv160308565D Context. Most theoretical investigations of dust charging processes in space have treated the current balance condition as independent of grain size. However, for small grains, since they are often observed in space environments, a dependence on grain size is expected owing to secondary electron emission (SEE). Here, by the term "small" we mean a particle size comparable to the typical penetration depth for given primary electron energy. The results are relevant for the dynamics of small, charged dust particles emitted by the volcanic moon Io, which forms the Jovian dust streams.
Aims: We revise the theory of charging of small (submicron sized) micrometeoroids to take into account a high production of secondary electrons for small grains immersed in an isotropic flux of electrons. We apply our model to obtain an improved estimate for the charge of the dust streams leaving the Jovian system, detected by several spacecraft.
Methods: We apply a continuum model to describe the penetration of primary electrons in a grain and the emission of secondary electrons along the path. Averaging over an isotropic flux of primaries, we derive a new expression for the secondary electron yield, which can be used to express the secondary electron current on a grain.
Results: For the Jupiter plasma environment we derive the surface potential of grains composed of NaCl (believed to be the major constituent of Jovian dust stream particles) or silicates. For small particles, the potential depends on grain size and the secondary electron current induces a sensitivity to material properties. As a result of the small particle effect, the estimates for the charging times and for the fractional charge fluctuations of NaCl grains obtained using our general approach to SEE give results qualitatively different from the analogous estimates derived from the traditional approach to SEE. We find that for the charging environment considered in this paper field emission does not limit the charging of NaCl grains. Title: Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; Derosa, R. T.; De Rosa, R.; Desalvo, R.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Ligo Scientific Collaboration; VIRGO Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (Askap Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y. -D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez Del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. De J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; Bootes Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W. -F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera Gw-Em Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B. -B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H. -F.; Blackburn, L.; Fermi Gbm Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; di Lalla, N.; di Mauro, M.; di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi Lat Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; Gravitational Wave Inaf Team (Grawita); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J. -L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (Iptf Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; Network, Interplanetary; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-Gem Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-Quest Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (Lofar Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; Master Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; Maxi Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-Field Array (Mwa Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-Starrs Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T. -W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; Pessto Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi Of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; Skymapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; Tarot, Zadko, Algerian National Observatory C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; Depoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; Toros Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; Vista Collaboration Bibcode: 2016ApJ...826L..13A Altcode: 2016arXiv160208492A A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. Title: Observing gravitational-wave transient GW150914 with minimal assumptions Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Haas, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..93l2004A Altcode: 2016arXiv160203843T The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ∼600 Mpc . In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ∼30 M and a total mass before merger of ∼70 M in the detector frame. Title: Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, K. N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stiles, D.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Archibald, A. M.; Banaszak, S.; Berndsen, A.; Boyles, J.; Cardoso, R. F.; Chawla, P.; Cherry, A.; Dartez, L. P.; Day, D.; Epstein, C. R.; Ford, A. J.; Flanigan, J.; Garcia, A.; Hessels, J. W. T.; Hinojosa, J.; Jenet, F. A.; Karako-Argaman, C.; Kaspi, V. M.; Keane, E. F.; Kondratiev, V. I.; Kramer, M.; Leake, S.; Lorimer, D.; Lunsford, G.; Lynch, R. S.; Martinez, J. G.; Mata, A.; McLaughlin, M. A.; McPhee, C. A.; Penucci, T.; Ransom, S.; Roberts, M. S. E.; Rohr, M. D. W.; Stairs, I. H.; Stovall, K.; van Leeuwen, J.; Walker, A. N.; Wells, B. L.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..93l2008A Altcode: 2016arXiv160501707T We present an archival search for transient gravitational-wave bursts in coincidence with 27 single-pulse triggers from Green Bank Telescope pulsar surveys, using the LIGO, Virgo, and GEO interferometer network. We also discuss a check for gravitational-wave signals in coincidence with Parkes fast radio bursts using similar methods. Data analyzed in these searches were collected between 2007 and 2013. Possible sources of emission of both short-duration radio signals and transient gravitational-wave emission include starquakes on neutron stars, binary coalescence of neutron stars, and cosmic string cusps. While no evidence for gravitational-wave emission in coincidence with these radio transients was found, the current analysis serves as a prototype for similar future searches using more sensitive second-generation interferometers. Title: High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube Authors: Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J. -J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K. -H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H. -P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C. -C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H. -G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Antares Collaboration Bibcode: 2016PhRvD..93l2010A Altcode: 2016arXiv160205411A We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event. Title: Chromospheric activity and evolutionary age of the Sun and four solar twins Authors: Mittag, M.; Schröder, K. -P.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M. Bibcode: 2016A&A...591A..89M Altcode: 2016arXiv160701279M
Aims: The activity levels of the solar-twin candidates HD 101364 and HD 197027 are measured and compared with the Sun, the known solar twin 18 Sco, and the solar-like star 51 Peg. Furthermore, the absolute ages of these five objects are estimated from their positions in the HR diagram and the evolutionary (relative) age compared with their activity levels.
Methods: To represent the activity level of these stars, the Mount Wilson S-indices were used. To obtain consistent ages and evolutionary advance on the main sequence, we used evolutionary tracks calculated with the Cambridge Stellar Evolution Code.
Results: From our spectroscopic observations of HD 101364 and HD 197027 and based on the established calibration procedures, the respective Mount Wilson S-indices are determined. We find that the chromospheric activity of both stars is comparable with the present activity level of the Sun and that of 18 Sco, at least for the period in consideration. Furthermore, the absolute age of HD 101364, HD 197027, 51 Peg, and 18 Sco are found to be 7.2, 7.1, 6.1, and 5.1 Gyr, respectively.
Conclusions: With the exception of 51 Peg, which has a significantly higher metallicity and a mass higher by about 10% than the Sun, the present Sun and its twins compare relatively well in their activity levels, even though the other twins are somewhat older. Even though 51 Peg has a similar age of 6.1 Gyr, this star is significantly less active. Only when we compare it on a relative age scale (which is about 20% shorter for 51 Peg than for the Sun in absolute terms) and use the higher-than-present long-term SMWO average of 0.18 for the Sun, does the S-index show a good correlation with evolutionary (relative) age. This shows that in the search for a suitably similar solar twin, the relative main-sequence age matters for obtaining a comparable activity level. Title: On the nature of absorption features toward nearby stars Authors: Kohl, S.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2016A&A...591A..20K Altcode: Context. Diffuse interstellar absorption bands (DIBs) of largely unknown chemical origin are regularly observed primarily in distant early-type stars. More recently, detections in nearby late-type stars have also been claimed. These stars' spectra are dominated by stellar absorption lines. Specifically, strong interstellar atomic and DIB absorption has been reported in τ Boo.
Aims: We test these claims by studying the strength of interstellar absorption in high-resolution TIGRE spectra of the nearby stars τ Boo, HD 33608, and α CrB.
Methods: We focus our analysis on a strong DIB located at 5780.61 Å and on the absorption of interstellar Na. First, we carry out a differential analysis by comparing the spectra of the highly similar F-stars, τ Boo and HD 33608, whose light, however, samples different lines of sight. To obtain absolute values for the DIB absorption, we compare the observed spectra of τ Boo, HD 33608, and α CrB to PHOENIX models and carry out basic spectral modeling based on Voigt line profiles.
Results: The intercomparison between τ Boo and HD 33608 reveals that the difference in the line depth is 6.85 ± 1.48 mÅ at the DIB location which is, however, unlikely to be caused by DIB absorption. The comparison between PHOENIX models and observed spectra yields an upper limit of 34.0 ± 0.3 mÅ for any additional interstellar absorption in τ Boo; similar results are obtained for HD 33608 and α CrB. For all objects we derive unrealistically large values for the radial velocity of any presumed interstellar clouds. In τ Boo we find Na D absorption with an equivalent width of 0.65 ± 0.07 mÅ and 2.3 ± 0.1 mÅ in the D2 and D1 lines. For the other Na, absorption of the same magnitude could only be detected in the D2 line. Our comparisons between model and data show that the interstellar absorption toward τ Boo is not abnormally high.
Conclusions: We find no significant DIB absorption in any of our target stars. Any differences between modeled and observed spectra are instead attributable to inaccuracies in the stellar atmospheric modeling than to DIB absorption.

The spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A20 Title: Exoplanets and their Host Stars Authors: Schmitt, J. Bibcode: 2016xnnd.confE...8S Altcode: Among the most fundamental astrophysical discoveries are clearly the detections of many thousands of ``extrasolar'' planets orbiting their hosts. The majority of these new planetary systems have properties dramatically different from those in our solar system. The large distances to extrasolar planets imply that they can only be observed together with their hosts. Modern observations have shown that stars and planets are not merely accidental celestial neighbors bound by the force of gravity, rather they influence each other in a variety of ways. This also and specifically applies to the X-ray properties of exoplanet systems which I will review in my talk and give some ideas for future work in this area. Title: Properties of the Binary Black Hole Merger GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Carbon Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vañó-Viñuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügamin, B.; Campanelli, M.; Clark, M.; Hamberger, D.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvL.116x1102A Altcode: 2016arXiv160203840T On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 3 6-4+5M and 2 9-4+4M ; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 41 0-180+160 Mpc , corresponding to a redshift 0.0 9-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2 , primarily in the southern hemisphere. The binary merges into a black hole of mass 6 2-4+4M and spin 0.6 7-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. Title: GW150914: First results from the search for binary black hole coalescence with Advanced LIGO Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..93l2003A Altcode: 2016arXiv160203839T On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ . Title: Tests of General Relativity with GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, M. K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Hemberger, D. A.; Kidder, L. E.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific; Virgo Collaborations Bibcode: 2016PhRvL.116v1101A Altcode: 2016arXiv160203841T The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km . In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity. Title: GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; VIRGO Collaboration Bibcode: 2016PhRvL.116x1103A Altcode: 2016arXiv160604855T We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M and 7. 5-2.3+2.3 M, and the final black hole mass is 20.8-1.7+6.1 M. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. Title: Spectral characterization and differential rotation study of active CoRoT stars Authors: Nagel, E.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2016A&A...590A..47N Altcode: 2016arXiv160306502N The CoRoT space telescope observed nearly 160 000 light curves. Among the most outstanding is that of the young, active planet host star CoRoT-2A. In addition to deep planetary transits, the light curve of CoRoT-2A shows strong rotational variability and a superimposed beating pattern. To study the stars that produce such an intriguing pattern of photometric variability, we identified a sample of eight stars with rotation periods between 0.8 and 11 days and photometric variability amplitudes of up to 7.5%, showing a similar CoRoT light curve. We also obtained high-resolution follow-up spectroscopy with TNG/SARG and carried out a spectral analysis with SME and MOOG. We find that the color dependence of the light curves is consistent with rotational modulation due to starspots and that latitudinal differential rotation provides a viable explanation for the light curves, although starspot evolution is also expected to play an important role. Our MOOG and SME spectral analyses provide consistent results, showing that the targets are dwarf stars with spectral types between F and mid-K. Detectable Li I absorption in four of the targets confirms a low age of 100-400 Myr also deduced from gyrochronology. Our study indicates that the photometric beating phenomenon is likely attributable to differential rotation in fast-rotating stars with outer convection zones. Title: VizieR Online Data Catalog: DIB and NaD spectra of 3 nearby stars (Kohl+, 2016) Authors: Kohl, S.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2016yCat..35910020K Altcode: The present data collection contains coadded spectra of tau Boo, HD 33608 and alpha CrB. This data was used to obtain the equivalent widths of interstellar features.

The spectra show the wavelength regions around the Na D lines and around 5780Å. The latter location corresponds to a wavelength range where a strong diffuse interstellar band (DIB) is found in the spectrum of the early-type supergiant HD 183143.

Each single spectrum has been corrected for telluric absorption and the wavelength axis has been shifted to the barycentric reference frame. However, the data has not been corrected for radial velocity of the star.

The spectra have been acquired at the 1.2m Tigre telescope located in La Luz, Mexico. The spectral resolution of the HEROS spectrograph is 20000.

A detailed description of the spectra is given in the aforementioned paper.

(2 data files). Title: Stratospheric age of air variations between 1600 and 2100 Authors: Muthers, S.; Kuchar, A.; Stenke, A.; Schmitt, J.; Anet, J. G.; Raible, C. C.; Stocker, T. F. Bibcode: 2016GeoRL..43.5409M Altcode: The current understanding of preindustrial stratospheric age of air (AoA), its variability, and the potential natural forcing imprint on AoA is very limited. Here we assess the influence of natural and anthropogenic forcings on AoA using ensemble simulations for the period 1600 to 2100 and sensitivity simulations for different forcings. The results show that from 1900 to 2100, CO2 and ozone-depleting substances are the dominant drivers of AoA variability. With respect to natural forcings, volcanic eruptions cause the largest AoA variations on time scales of several years, reducing the age in the middle and upper stratosphere and increasing the age below. The effect of the solar forcing on AoA is small and dominated by multidecadal total solar irradiance variations, which correlate negatively with AoA. Additionally, a very weak positive relationship driven by ultraviolett variations is found, which is dominant for the 11 year cycle of solar variability. Title: Optical microflaring on the nearby flare star binary UV Ceti Authors: Schmitt, J. H. M. M.; Kanbach, G.; Rau, A.; Steinle, H. Bibcode: 2016A&A...589A..48S Altcode: We present extremely high time resolution observations of the visual flare star binary UV Cet obtained with the Optical Pulsar Timing Analyzer (OPTIMA) at the 1.3 m telescope at Skinakas Observatory (SKO) in Crete, Greece. OPTIMA is a fiber-fed optical instrument that uses Single Photon Avalanche Diodes to measure the arrival times of individual optical photons. The time resolution of the observations presented here was 4 μs, allowing to resolve the typical millisecond variability time scales associated with stellar flares. We report the detection of very short impulsive bursts in the blue band with well resolved rise and decay time scales of about 2 s. The overall energetics put these flares at the lower end of the known flare distribution of UV Cet. Title: High spectral resolution monitoring of Nova V339 Delphini with TIGRE (Corrigendum) Authors: De Gennaro Aquino, I.; Schröder, K. -P.; Mittag, M.; Wolter, U.; Jack, D.; Eenens, P.; González-Pérez, J. N.; Hempelmann, A.; Schmitt, J. H. M. M.; Hauschildt, P. H.; Rauw, G. Bibcode: 2016A&A...589C...4D Altcode: No abstract at ADS Title: GW150914: The Advanced LIGO Detectors in the Era of First Discoveries Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvL.116m1103A Altcode: 2016arXiv160203838T Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23/√{Hz } at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914. Title: GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvL.116m1102A Altcode: 2016arXiv160203847T The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity. Title: The α CrB binary system: A new radial velocity curve, apsidal motion, and the alignment of rotation and orbit axes Authors: Schmitt, J. H. M. M.; Schröder, K. -P.; Rauw, G.; Hempelmann, A.; Mittag, M.; González-Pérez, J. N.; Czesla, S.; Wolter, U.; Jack, D. Bibcode: 2016A&A...586A.104S Altcode: We present a new radial velocity curve for the two components of the eclipsing spectroscopic binary α CrB. This binary consists of two main-sequence stars of types A and G in a 17.3599-day orbit, according to the data from our robotic TIGRE facility that is located in Guanajuato, Mexico. We used a high-resolution solar spectrum to determine the radial velocities of the weak secondary component by cross-correlation and wavelength referencing with telluric lines for the strongly rotationally broadened primary lines (v sin(I) = 138 km s-1) to obtain radial velocities with an accuracy of a few hundred m/s. We combined our new RV data with older measurements, dating back to 1908 in the case of the primary, to search for evidence of apsidal motion. We find an apsidal motion period between 6600 and 10 600 yr. This value is consistent with the available data for both the primary and secondary and is also consistent with the assumption that the system has aligned orbit and rotation axes. Title: All-sky search for long-duration gravitational wave transients with initial LIGO Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvD..93d2005A Altcode: 2015arXiv151104398T We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4 ×1 0-5 and 9.4 ×1 0-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. Title: Simulating the escaping atmospheres of hot gas planets in the solar neighborhood Authors: Salz, M.; Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2016A&A...586A..75S Altcode: 2015arXiv151109341S Absorption of high-energy radiation in planetary thermospheres is generally believed to lead to the formation of planetary winds. The resulting mass-loss rates can affect the evolution, particularly of small gas planets. We present 1D, spherically symmetric hydrodynamic simulations of the escaping atmospheres of 18 hot gas planets in the solar neighborhood. Our sample only includes strongly irradiated planets, whose expanded atmospheres may be detectable via transit spectroscopy using current instrumentation. The simulations were performed with the PLUTO-CLOUDY interface, which couples a detailed photoionization and plasma simulation code with a general MHD code. We study the thermospheric escape and derive improved estimates for the planetary mass-loss rates. Our simulations reproduce the temperature-pressure profile measured via sodium D absorption in HD 189733 b, but show still unexplained differences in the case of HD 209458 b. In contrast to general assumptions, we find that the gravitationally more tightly bound thermospheres of massive and compact planets, such as HAT-P-2 b are hydrodynamically stable. Compact planets dispose of the radiative energy input through hydrogen Lyα and free-free emission. Radiative cooling is also important in HD 189733 b, but it decreases toward smaller planets like GJ 436 b. Computing the planetary Lyα absorption and emission signals from the simulations, we find that the strong and cool winds of smaller planets mainly cause strong Lyα absorption but little emission. Compact and massive planets with hot, stable thermospheres cause small absorption signals but are strong Lyα emitters, possibly detectable with the current instrumentation. The absorption and emission signals provide a possible distinction between these two classes of thermospheres in hot gas planets. According to our results, WASP-80 and GJ 3470 are currently the most promising targets for observational follow-up aimed at detecting atmospheric Lyα absorption signals.

Simulated atmospheres are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A75 Title: Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016LRR....19....1A Altcode: We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone. Title: Observation of Gravitational Waves from a Binary Black Hole Merger Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Gleason, J. R.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Greenhalgh, R. J. S.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Healy, J.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heinzel, G.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacobson, M. B.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Keppel, D. G.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Koranda, S.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J. H.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Ramet, C. R.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, G. H.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shaffer, T.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, H.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016PhRvL.116f1102A Altcode: 2016arXiv160203837T On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 ×10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 σ . The source lies at a luminosity distance of 41 0-180+160 Mpc corresponding to a redshift z =0.0 9-0.04+0.03 . In the source frame, the initial black hole masses are 3 6-4+5M and 2 9-4+4M , and the final black hole mass is 6 2-4+4M , with 3. 0-0.5+0.5M c2 radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. Title: Measuring rotation periods of solar-like stars using TIGRE. A study of periodic CaII H+K S-index variability Authors: Hempelmann, A.; Mittag, M.; Gonzalez-Perez, J. N.; Schmitt, J. H. M. M.; Schröder, K. P.; Rauw, G. Bibcode: 2016A&A...586A..14H Altcode: Context. The rotation period of a star is a key parameter both for the stellar dynamo that generates magnetic fields as well as for stellar differential rotation.
Aims: We present the results from the first year of monitoring a sample of solar-like stars by the TIGRE facility in Guanajuato (Mexico), which will study rotation in solar analogs.
Methods: TIGRE is an automatically operating 1.2 m telescope equipped with an Échelle spectrograph with a spectral resolution of 20 000, which covers a spectral range of between 3800 and 8800 Å. A main task is the monitoring the stellar activity of cool stars, mainly in the emission cores of the CaII H and K lines. We observed a number of stars with a sampling between 1-3 days over one year.
Results: A total number of 95 stars were observed between August 1 2013 and July 31 2014, the total number of spectra taken for this program was appoximately 2700. For almost a third of the sample stars the number of observations was rather low (less than 20), mainly because of bad weather. Fifty-four stars show a periodic signal but often with low significance. Only 24 stars exhibit a significant period. We interpret these signals as stellar rotation. For about half of them the rotation periods were already previously known, in which case our period measurements are usually in good agreement with the literature values. Besides the periodic signals, trends are frequently observed in the time series.
Conclusions: TIGRE is obviously able to detect stellar rotation periods in the CaII H+K emission cores when the time series contains a sufficient number of data points. However, this is frequently not achievable during the wet summer season in Guanajuato. Hence, future estimates of rotation periods will concentrate on stars that are observable during the winter season from October until April. Title: Astrophysical Implications of the Binary Black-hole Merger GW150914 Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J. -D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y. -M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration Bibcode: 2016ApJ...818L..22A Altcode: 2016arXiv160203846T The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space. Title: How do starspots influence the transit timing variations of exoplanets? Simulations of individual and consecutive transits Authors: Ioannidis, P.; Huber, K. F.; Schmitt, J. H. M. M. Bibcode: 2016A&A...585A..72I Altcode: 2015arXiv151003276I Transit timing variations (TTVs) of exoplanets are normally interpreted as the consequence of gravitational interaction with additional bodies in the system. However, TTVs can also be caused by deformations of the system transits by starspots, which might thus pose a serious complication in their interpretation. We therefore simulate transit light curves deformed by spot-crossing events for different properties of the stellar surface and the planet, such as starspot position, limb darkening, planetary period, and impact parameter. Mid-transit times determined from these simulations can be significantly shifted with respect to the input values; these shifts cannot be larger than 1% of the transit duration and depend very strongly on the longitudinal position of the spot during the transit and the transit duration. Consequently, TTVs with amplitudes larger than the above limit are very unlikely to be caused by starspots. We also investigate whether TTVs from sequences of consecutive transits with spot-crossing anomalies can be misinterpreted as the result of an additional body in the system. We use the Generalized Lomb-Scargle periodogram to search for periods in TTVs and conclude that low-amplitude TTVs with statistically significant periods around active stars are the most problematic cases. In those cases where the photometric precision is high enough to inspect the transit shapes for deformations it should be possible to identify TTVs caused by starspots; however, especially for cases with low signal-to-noise in transit (TSNR ≲ 15) light curves it becomes quite difficult to reliably decide whether these periods come from starspots, physical companions in the system, or if they are random noise artifacts. Title: Modelling telluric line spectra in the optical and infrared with an application to VLT/X-Shooter spectra Authors: Rudolf, N.; Günther, H. M.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2016A&A...585A.113R Altcode: 2015arXiv151104641R Context. Earth's atmosphere imprints a large number of telluric absorption and emission lines on astronomical spectra, especially in the near infrared, that need to be removed before analysing the affected wavelength regions.
Aims: These lines are typically removed by comparison to A- or B-type stars used as telluric standards that themselves have strong hydrogen lines, which complicates the removal of telluric lines. We have developed a method to circumvent that problem.
Methods: For our IDL software package tellrem we used a recent approach to model telluric absorption features with the line-by-line radiative transfer model (LBLRTM). The broad wavelength coverage of the X-Shooter at VLT allows us to expand their technique by determining the abundances of the most important telluric molecules H2O, O2, CO2, and CH4 from sufficiently isolated line groups. For individual observations we construct a telluric absorption model for most of the spectral range that is used to remove the telluric absorption from the object spectrum.
Results: We remove telluric absorption from both continuum regions and emission lines without systematic residuals for most of the processable spectral range; however, our method increases the statistical errors. The errors of the corrected spectrum typically increase by 10% for S/N ~ 10 and by a factor of two for high-quality data (S/N ~ 100), I.e. the method is accurate on the percent level.
Conclusions: Modelling telluric absorption can be an alternative to the observation of standard stars for removing telluric contamination.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 085.C-0764(A) and 60.A-9022(C).The tellrem package is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A113 Title: Energy-limited escape revised. The transition from strong planetary winds to stable thermospheres Authors: Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2016A&A...585L...2S Altcode: 2015arXiv151109348S Gas planets in close proximity to their host stars experience photoevaporative mass loss. The energy-limited escape concept is generally used to derive estimates for the planetary mass-loss rates. Our photoionization hydrodynamics simulations of the thermospheres of hot gas planets show that the energy-limited escape concept is valid only for planets with a gravitational potential lower than log 10(-ΦG)< 13.11 erg g-1 because in these planets the radiative energy input is efficiently used to drive the planetary wind. Massive and compact planets with log 10(-ΦG) ≳ 13.6 erg g-1 exhibit more tightly bound atmospheres in which the complete radiative energy input is re-emitted through hydrogen Lyα and free-free emission. These planets therefore host hydrodynamically stable thermospheres. Between these two extremes the strength of the planetary winds rapidly declines as a result of a decreasing heating efficiency. Small planets undergo enhanced evaporation because they host expanded atmospheres that expose a larger surface to the stellar irradiation. We present scaling laws for the heating efficiency and the expansion radius that depend on the gravitational potential and irradiation level of the planet. The resulting revised energy-limited escape concept can be used to derive estimates for the mass-loss rates of super-Earth-sized planets as well as massive hot Jupiters with hydrogen-dominated atmospheres. Title: X-ray to NIR emission from AA Tauri during the dim state. Occultation of the inner disk and gas-to-dust ratio of the absorber Authors: Schneider, P. C.; France, K.; Günther, H. M.; Herczeg, G.; Robrade, J.; Bouvier, J.; McJunkin, M.; Schmitt, J. H. M. M. Bibcode: 2015A&A...584A..51S Altcode: 2015arXiv150905007S AA Tau is a well-studied, nearby classical T Tauri star, which is viewed almost edge-on. A warp in its inner disk periodically eclipses the central star, causing a clear modulation of its optical light curve. The system underwent a major dimming event beginning in 2011 caused by an extra absorber, which is most likely associated with additional disk material in the line of sight toward the central source. We present new XMM-Newton X-ray, Hubble Space Telescope FUV, and ground-based optical and near-infrared data of the system obtained in 2013 during the long-lasting dim phase. The line width decrease of the fluorescent H2 disk emission shows that the extra absorber is located at r > 1 au. Comparison of X-ray absorption (NH) with dust extinction (AV), as derived from measurements obtained one inner disk orbit (eight days) after the X-ray measurement, indicates that the gas-to-dust ratio as probed by the NH to AV ratio of the extra absorber is compatible with the ISM ratio. Combining both results suggests that the extra absorber, i.e., material at r > 1 au, has no significant gas excess in contrast to the elevated gas-to-dust ratio previously derived for material in the inner region (≲0.1 au).

Appendices are available in electronic form at http://www.aanda.org Title: Modeling Europa's Dust Plumes Authors: Southworth, B.; Kempf, S.; Schmidt, J. Bibcode: 2015AGUFM.P11C2113S Altcode: The discovery of Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we adjust the ejection model by Schmidt et al. [2008] to the conditions at Europa. In this way, we estimate properties of a possible, yet unobserved dust component of the Europa plume. For a size-dependent speed distribution of emerging ice particles we use the model from Kempf et al. [2010] for grain dynamics, modified to run simulations of plumes on Europa. Specifically, we model emission from the two plume locations determined from observations by Roth et al. [2014] and also from other locations chosen at the closest approach of low-altitude flybys investigated in the Europa Clipper study. This allows us to estimate expected fluxes of ice grains on the spacecraft. We then explore the parameter space of Europa dust plumes with regard to particle speed distribution parameters, plume location, and spacecraft flyby elevation. Each parameter set results in a 3-dimensional particle density structure through which we simulate flybys, and a map of particle fallback ('snowfall') on the surface of Europa. Due to the moon's high escape speed, a Europa plume will eject few to no particles that can escape its gravity, which has several further consequences: (i) For given ejection velocity a Europa plume will have a smaller scale height, with a higher particle number densities than the plume on Enceladus, (ii) plume particles will not feed the diffuse Galilean dust ring, (iii) the snowfall pattern on the surface will be more localized about the plume location, and will not induce a global m = 2 pattern as seen on Enceladus, and (iv) safely observing an active plume will require low altitude flybys, preferably at 50-100 km. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected. The attached image shows example number density profiles for two particle size distributions of slope α ejected from a Roth et al. plume, with the Clipper E35 flyby overlaid. Title: Evidence for survival of the α cluster structure in light nuclei through the fusion process Authors: Vadas, J.; Steinbach, T. K.; Schmidt, J.; Singh, Varinderjit; Haycraft, C.; Hudan, S.; deSouza, R. T.; Baby, L. T.; Kuvin, S. A.; Wiedenhöver, I. Bibcode: 2015PhRvC..92f4610V Altcode: Background: Despite the importance of light-ion fusion in nucleosynthesis, a limited amount of data exist regarding the de-excitation following fusion for such systems.

Purpose: To explore the characteristics of α emission associated with the decay of light fused systems at low excitation energy.

Method: α particles were detected in coincidence with evaporation residues (ER) formed by the fusion of 18O and 12C nuclei. Both α particles and ERs were identified on the basis of their energy and time-of-flight. ERs were characterized by their energy spectra and angular distributions while the α particles were characterized by their energy spectra, angular distributions, and cross sections.

Results: While the energy spectra and angular distributions for the α particles are relatively well reproduced by the statistical model codes, evapor and pace4 the measured cross section is substantially underpredicted by the models. Examination of the relative α emission probability for similar systems reveals that this underprediction is a more general feature of such light-ion reactions.

Conclusion: Comparison of the measured relative α cross section at low Ec .m . for 18O+12C ,16O+12C , and 16O+13C indicates that the α cluster structure of the initial projectile and target nuclei influences the α emission following fusion. The underprediction of the relative α emission by the statistical model codes emphasizes that the failure of these models to account for α cluster structure is significant. Title: Compositional Mapping of Europa's Surface with SUDA Authors: Kempf, S.; Sternovsky, Z.; Horanyi, M.; Hand, K. P.; Srama, R.; Postberg, F.; Altobelli, N.; Gruen, E.; Gudipati, M. S.; Schmidt, J.; Zolotov, M. Y.; Tucker, S.; Hoxie, V. C.; Kohnert, R. Bibcode: 2015AGUFM.P13E..07K Altcode: The Surface Mass Analyzer (SUDA) measures the composition of ballistic dust particles populating the thin exospheres that were detected around each of the Galilean moons. Since these grains are direct samples from the moons' icy surfaces, unique composition data will be obtained that will help to define and constrain the geological activities on and below the moons' surface. SUDA will make a vital contribution to NASA's mission to Europa and provide key answers to its main scientific questions about the surface composition, habitability, the icy crust, and exchange processes with the deeper interior of the Jovian icy moon Europa. SUDA is a time-of- flight, reflectron-type impact mass spectrometer, optimised for a high mass resolution which only weakly depends on the impact location. The small size, low mass and large sensitive area meet the challenging demands of mission to Europa. A full-size prototype SUDA instrument was built in order to demonstrate its performance through calibration experiments at the dust accelerator at NASA's IMPACT institute at Boulder, CO, with a variety of cosmo-chemically relevant dust analogues. The effective mass resolution of m/Δm of 150-300 is achieved for mass range of interest m = 1-150. Title: The nature of the 2014-2015 dim state of RW Aurigae revealed by X-ray, optical, and near-IR observations Authors: Schneider, P. C.; Günther, H. M.; Robrade, J.; Facchini, S.; Hodapp, K. W.; Manara, C. F.; Perdelwitz, V.; Schmitt, J. H. M. M.; Skinner, S.; Wolk, S. J. Bibcode: 2015A&A...584L...9S Altcode: 2015arXiv151101688S The binary system RW Aur consists of two classical T Tauri stars (CTTSs). The primary recently underwent its second observed major dimming event (ΔV ~ 2 mag). We present new, resolved Chandra X-ray and UKIRT near-IR (NIR) data as well as unresolved optical photometry obtained in the dim state to study the gas and dust content of the absorber causing the dimming. The X-ray data show that the absorbing column density increased from NH< 0.1 × 1022cm-2 during the bright state to ≈2 × 1022cm-2 in the dim state. The brightness ratio between dim and bright state at optical to NIR wavelengths shows only a moderate wavelength dependence and the NIR color-color diagram suggests no substantial reddening. Taken together, this indicates gray absorption by large grains (≳1 μm) with a dust mass column density of ≳2 × 10-4 g cm-2. Comparison with NH shows that an absorber responsible for the optical/NIR dimming and the X-ray absorption is compatible with the ISM's gas-to-dust ratio, i.e., that grains grow in the disk surface layers without largely altering the gas-to-dust ratio. Lastly, we discuss a scenario in which a common mechanism can explain the long-lasting dimming in RW Aur and recently in AA Tau.

Appendix A is available in electronic form at http://www.aanda.org Title: Modeling Europa's dust plumes Authors: Southworth, B. S.; Kempf, S.; Schmidt, J. Bibcode: 2015GeoRL..4210541S Altcode: The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected. Title: Correlation between speed and size for ejecta from hypervelocity impacts Authors: Sachse, M.; Schmidt, J.; Kempf, S.; Spahn, F. Bibcode: 2015JGRE..120.1847S Altcode: Ejecta created in hypervelocity impacts of micrometeoroids on atmosphereless bodies are an efficient source for circumplanetary and interplanetary dust. The impact erodes the target surface and releases material into space. The ejecta are typically micron sized and populate a dust cloud around the parent body, whose number density decreases with increasing distance from the target. Unbound particles escape and add to the planetary dust environment. Here we explore the influence of a correlation between the fragment size and the ejection speed, such that larger fragments are (on average) launched with lower speeds. This behavior is suggested by theoretical considerations and impact experiments. We find that such a correlation provides a dynamical filter that removes large ejecta from high altitudes. The effect is stronger for bigger ejecta and for more massive parent bodies. Our results suggest that large particles found in the circumplanetary and interplanetary dust environment either originate from impacts on smaller moons, impacts of unusually large or fast impactors, or an entirely different process of dust production. Title: VizieR Online Data Catalog: Simulations of hot gas planets atmospheres (Salz+, 2016) Authors: Salz, M.; Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2015yCat..35860075S Altcode: The following tables contain the simulation results from the publication. Each table contains a 1D spherically symmetric, hydrodynamically escaping thermosphere of a hot gas planet. The atmospheres contain hydrogen and helium, and no molecules. The simulations were performed with the PLUTO-CLOUDY interface (Salz et al., Cat. J/A+A/576/A21). Each table contains a header, which specifies the system parameters, that where used for the simulations. The simulation region extends to 12/15 planetary radii, but the atmospheres are only approximately valid up to the Roche-lobe height, above which the spherical approximation is invalid. The Roche-lobe height is also given in the header. In the cases of WASP-10 b and WASP-8 b the atmospheres are hydrodynamically stable and the atmospheres extend only up to the exobase defined for proton-proton scattering as given in the publication.

(17 data files). Title: Enceladus Icy Jet Analyzer (ENIJA) : Search for life with a high resolution TOF-MS for in situ characterization of high dust density regions Authors: Srama, R.; Postberg, F.; Henkel, H.; Klopfer, T.; Li, Y.; Simolka, J.; Bugiel, S.; Kempf, S.; Hillier, J.; Khawaja, N.; Trieloff, M.; Abel, B.; Moragas-Klostermeyer, G.; Strack, H.; Schmidt, J.; Soja, R.; Sternovsky, Z.; Spohn, T. Bibcode: 2015EPSC...10..769S Altcode: ENIJA was developed to search for the prebiotic molecules and biogenic key compounds like amino acids in the plumes of Saturn's moon Enceladus. ENIJA records time-of-flight mass spectra in the range between 1 and 2000 u produced by high-velocity impacts of individual grains onto a metal target. The spectrometer has a measurement mode for cations or anions formed upon impact, with concurrent determination of the mass of the detected grains. Detection of elemental and molecular species over such a wide mass range permits clear characterization of particle chemistry, simultaneously covering individual ions like H+, C-, Oand complex organics with masses of many hundred u. ENIJA is sensitive to water ice, minerals, metals, organic particles, and mixtures of these components. The instrument is based on the principle of impact ionization and optimized for the analysis of high dust fluxes and number densities as typically occur during Enceladus plume crossings or in cometary comae. The mass resolution is m/dm > 970 for typical plume particles in the size range 0.01 to 100 μm. The instrument mass and peak power is 3.5 kg and 14.2 W, respectively. The instrument is part of the model payload for the mission "Enceladus Life Finder" (ELF). Title: Energy-limited escape revisited: A transition from strong planetary winds to stable thermospheres Authors: Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2015tyge.conf...80S Altcode: Hot Jupiters are thought to suffer from mass loss through planetary winds powered by strong high-energy irradiation. These photoevaporative winds can affect planetary evolution. We carried out photoionization-hydrodynamics simulations of the thermospheres of hot gas planets in the solar neighborhood using our new interface between the PLUTO and CLOUDY codes called TPCI. These detailed simulations reveal efficient radiative cooling in the atmospheres of massive and compact Jovian planets, whose gravitational potential surpasses the critical limit of log_{10}( -Φ_{G}) > 13.11 erg g^{-1}. In contrast to widely-made assumptions, our modeling shows that planets like HAT-P-2 b host stable thermospheres in radiative equilibrium, whereas smaller gas giants, indeed, show considerable mass-loss rates. Hence, the heating efficiency of the absorption of EUV radiation in the planetary thermospheres depends on the gravitational potential of the planet. We present a scaling law for the heating efficiencies that can be used in the well-known energy-limited escape formula and provides easily accessible mass-loss estimates for a wide range of irradiated planets from super-Earth type planets to the most massive hot Jupiters. The trend of the heating efficiency versus the gravitational potential is reflected in the planetary Lyα absorption and emission signals. These signals can be used to distinguish between two types of thermospheres in hot gas planets: strong, cool planetary winds with Lyα absorption and hot, stable thermospheres with Lyα emission. Title: The center-to-limb variation across the Fraunhofer lines of HD 189733. Sampling the stellar spectrum using a transiting planet Authors: Czesla, S.; Klocová, T.; Khalafinejad, S.; Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2015A&A...582A..51C Altcode: 2015arXiv150905657C The center-to-limb variation (CLV) describes the brightness of the stellar disk as a function of the limb angle. Across strong absorption lines, the CLV can vary quite significantly. We obtained a densely sampled time series of high-resolution transit spectra of the active planet host star HD 189733 with UVES. Using the passing planetary disk of the hot Jupiter HD 189733 b as a probe, we study the CLV in the wings of the Ca ii H and K and Na i D1 and D2 Fraunhofer lines, which are not strongly affected by activity-induced variability. In agreement with model predictions, our analysis shows that the wings of the studied Fraunhofer lines are limb brightened with respect to the (quasi-)continuum. The strength of the CLV-induced effect can be on the same order as signals found for hot Jupiter atmospheres. Therefore, a careful treatment of the wavelength dependence of the stellar CLV in strong absorption lines is highly relevant in the interpretation of planetary transit spectroscopy.

Based on observations made with UVES at the ESO VLT Kueyen telescope under program 089.D-0701(A). Title: High spectral resolution monitoring of Nova V339 Delphini with TIGRE Authors: De Gennaro Aquino, I.; Schröder, K. -P.; Mittag, M.; Wolter, U.; Jack, D.; Eenens, P.; González-Pérez, J. N.; Hempelmann, A.; Schmitt, J. H. M. M.; Hauschildt, P. H.; Rauw, G. Bibcode: 2015A&A...581A.134D Altcode:
Aims: We investigate the early development of the classical nova V339 Del (Nova Delphini 2013) through high-resolution optical spectroscopy. To study the structure of the ejecta, we focus on the evolution of the absorption and emission features and the changes within the line profiles.
Methods: We obtained spectra with the robotic 1.2 m telescope TIGRE equipped with the HEROS spectrograph (R = 20 000, wavelength coverage from 3800 to 8800 Å). Our data set covers the outburst from 3 until 121 days after discovery.
Results: We provide a qualitative analysis of the spectra, describing the line profiles evolution and providing a rich list of identified lines. During the optically thick phase, we detected several blue-shifted absorption features from s-processed elements, whose origin is unclear. The presence of strong lines from C/O and the absence of Neon features confirm that the nature of the central white dwarf is a CO type. The later "nebular" phase spectra show evidence of the non-spherical, inhomogeneous structure of the ejecta. The detailed evolution of the line profiles and appearance of high ionization species (e.g. N III, O III, He II, [Fe VII]) are direct consequences of the re-ionization of the ejecta during the peak of the soft X-ray emission. Title: Astrophysics Source Code Library Enhancements Authors: Hanisch, R. J.; Allen, A.; Berriman, G. B.; DuPrie, K.; Mink, J.; Nemiroff, R. J.; Schmidt, J.; Shamir, L.; Shortridge, K.; Taylor, M.; Teuben, P. J.; Wallin, J. Bibcode: 2015ASPC..495..453H Altcode: 2015adass..24..453H; 2014arXiv1411.2031H The Astrophysics Source Code Library (ASCL)1 is a free online registry of codes used in astronomy research; it currently contains over 900 codes and is indexed by ADS. The ASCL has recently moved a new infrastructure into production. The new site provides a true database for the code entries and integrates the WordPress news and information pages and the discussion forum into one site. Previous capabilities are retained and permalinks to ascl.net continue to work. This improvement offers more functionality and flexibility than the previous site, is easier to maintain, and offers new possibilities for collaboration. This paper covers these recent changes to the ASCL. Title: Time series of high-resolution spectra of SN 2014J observed with the TIGRE telescope Authors: Jack, D.; Mittag, M.; Schröder, K. -P.; Schmitt, J. H. M. M.; Hempelmann, A.; González-Pérez, J. N.; Trinidad, M. A.; Rauw, G.; Cabrera Sixto, J. M. Bibcode: 2015MNRAS.451.4104J Altcode: 2015arXiv150600938J We present a time series of high-resolution spectra of the Type Ia supernova 2014J, which exploded in the nearby galaxy M82. The spectra were obtained with the HEROS échelle spectrograph installed at the 1.2-m TIGRE telescope. We present a series of 33 spectra with a resolution of R ≈ 20 000, which covers the important bright phases in the evolution of SN 2014J during the period from 2014 January 24 to April 1. The spectral evolution of SN 2014J is derived empirically. The expansion velocities of the Si II P-Cygni features were measured and show the expected decreasing behaviour, beginning with a high velocity of 14 000 km s-1 on January 24. The Ca II infrared triplet feature shows a high-velocity component with expansion velocities of >20 000 km s-1 during the early evolution apart from the normal component showing similar velocities as Si II. Further broad P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp Na I D doublet absorption components. Our analysis suggests interesting substructures in the interstellar medium of the host galaxy M82, as well as in our Milky Way, confirming other work on this SN. We were able to identify the interstellar absorption of M82 in the lines of Ca II H & K at 3933 and 3968 Å as well as K I at 7664 and 7698 Å. Furthermore, we confirm several diffuse interstellar bands, at wavelengths of 6196, 6283, 6376, 6379and 6613 Å and give their measured equivalent widths. Title: Simultaneous X-ray and optical spectroscopy of the Oef supergiant λ Cephei Authors: Rauw, G.; Hervé, A.; Nazé, Y.; González-Pérez, J. N.; Hempelmann, A.; Mittag, M.; Schmitt, J. H. M. M.; Schröder, K. -P.; Gosset, E.; Eenens, P.; Uuh-Sonda, J. M. Bibcode: 2015A&A...580A..59R Altcode: 2015arXiv150507714R Context. Probing the structures of stellar winds is of prime importance for the understanding of massive stars. Based on their optical spectral morphology and variability, it has been suggested that the stars in the Oef class feature large-scale structures in their wind.
Aims: High-resolution X-ray spectroscopy and time-series of X-ray observations of presumably single O-type stars can help us understand the physics of their stellar winds.
Methods: We have collected XMM-Newton observations and coordinated optical spectroscopy of the O6 Ief star λ Cep to study its X-ray and optical variability and to analyse its high-resolution X-ray spectrum. We investigate the line profile variability of the He ii λ 4686 and Hα emission lines in our time series of optical spectra, including a search for periodicities. We further discuss the variability of the broadband X-ray flux and analyse the high-resolution spectrum of λ Cep using line-by-line fits as well as a code designed to fit the full high-resolution X-ray spectrum consistently.
Results: During our observing campaign, the He ii λ 4686 line varies on a timescale of ~18 h. On the contrary, the Hα line profile displays a modulation on a timescale of 4.1 days which is likely the rotation period of the star. The X-ray flux varies on timescales of days and could in fact be modulated by the same 4.1-day period as Hα, although both variations are shifted in phase. The high-resolution X-ray spectrum reveals broad and skewed emission lines as expected for the X-ray emission from a distribution of wind-embedded shocks. Most of the X-ray emission arises within less than 2 R above the photosphere.
Conclusions: The properties of the X-ray emission of λ Cep generally agree with the expectations of the wind-embedded shock model. There is mounting evidence for the existence of large-scale structures that modulate the Hα line and about 10% of the X-ray emission of λ Cep.

Based on observations collected with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA), and with the TIGRE telescope (La Luz, Mexico) and the 1.5 m telescope at Observatoire de Haute Provence (France). Title: A permanent, asymmetric dust cloud around the Moon Authors: Horányi, M.; Szalay, J. R.; Kempf, S.; Schmidt, J.; Grün, E.; Srama, R.; Sternovsky, Z. Bibcode: 2015Natur.522..324H Altcode: Interplanetary dust particles hit the surfaces of airless bodies in the Solar System, generating charged and neutral gas clouds, as well as secondary ejecta dust particles. Gravitationally bound ejecta clouds that form dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, but have hitherto not been observed near bodies with refractory regolith surfaces. High-altitude Apollo 15 and 17 observations of a `horizon glow' indicated a putative population of high-density small dust particles near the lunar terminators, although later orbital observations yielded upper limits on the abundance of such particles that were a factor of about 104 lower than that necessary to produce the Apollo results. Here we report observations of a permanent, asymmetric dust cloud around the Moon, caused by impacts of high-speed cometary dust particles on eccentric orbits, as opposed to particles of asteroidal origin following near-circular paths striking the Moon at lower speeds. The density of the lunar ejecta cloud increases during the annual meteor showers, especially the Geminids, because the lunar surface is exposed to the same stream of interplanetary dust particles. We expect all airless planetary objects to be immersed in similar tenuous clouds of dust. Title: TPCI: the PLUTO-CLOUDY Interface . A versatile coupled photoionization hydrodynamics code Authors: Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2015A&A...576A..21S Altcode: 2015arXiv150206517S We present an interface between the (magneto-) hydrodynamics code PLUTO and the plasma simulation and spectral synthesis code CLOUDY. By combining these codes, we constructed a new photoionization hydrodynamics solver: the PLUTO-CLOUDY Interface (TPCI), which is well suited to simulate photoevaporative flows under strong irradiation. The code includes the electromagnetic spectrum from X-rays to the radio range and solves the photoionization and chemical network of the 30 lightest elements. TPCI follows an iterative numerical scheme: first, the equilibrium state of the medium is solved for a given radiation field by CLOUDY, resulting in a net radiative heating or cooling. In the second step, the latter influences the (magneto-) hydrodynamic evolution calculated by PLUTO. Here, we validated the one-dimensional version of the code on the basis of four test problems: photoevaporation of a cool hydrogen cloud, cooling of coronal plasma, formation of a Strömgren sphere, and the evaporating atmosphere of a hot Jupiter. This combination of an equilibrium photoionization solver with a general MHD code provides an advanced simulation tool applicable to a variety of astrophysical problems.

A copy of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A21 Title: High-energy irradiation and mass loss rates of hot Jupiters in the solar neighborhood Authors: Salz, M.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2015A&A...576A..42S Altcode: 2015arXiv150200576S Giant gas planets in close proximity to their host stars experience strong irradiation. In extreme cases photoevaporation causes a transonic, planetary wind and the persistent mass loss can possibly affect the planetary evolution. We have identified nine hot Jupiter systems in the vicinity of the Sun, in which expanded planetary atmospheres should be detectable through Lyα transit spectroscopy according to predictions. We use X-ray observations with Chandra and XMM-Newton of seven of these targets to derive the high-energy irradiation level of the planetary atmospheres and the resulting mass loss rates. We further derive improved Lyα luminosity estimates for the host stars including interstellar absorption. According to our estimates WASP-80 b, WASP-77 b, and WASP-43 b experience the strongest mass loss rates, exceeding the mass loss rate of HD 209458 b, where an expanded atmosphere has been confirmed. Furthermore, seven out of nine targets might be amenable to Lyα transit spectroscopy. Finally, we check the possibility of angular momentum transfer from the hot Jupiters to the host stars in the three binary systems among our sample, but find only weak indications for increased stellar rotation periods of WASP-77 and HAT-P-20. Title: Spectroscopic variability of two Oe stars Authors: Rauw, G.; Morel, T.; Nazé, Y.; Eversberg, T.; Alves, F.; Arnold, W.; Bergmann, T.; Correia Viegas, N. G.; Fahed, R.; Fernando, A.; González-Pérez, J. N.; Gouveia Carreira, L. F.; Hempelmann, A.; Hunger, T.; Knapen, J. H.; Leadbeater, R.; Marques Dias, F.; Mittag, M.; Moffat, A. F. J.; Reinecke, N.; Ribeiro, J.; Romeo, N.; Sánchez Gallego, J.; Dos Santos, E. M.; Schanne, L.; Schmitt, J. H. M. M.; Schröder, K. -P.; Stahl, O.; Stober, Ba.; Stober, Be.; Vollmann, K. Bibcode: 2015A&A...575A..99R Altcode: 2015arXiv150101377R Context. The two Oe stars HD 45 314 and HD 60 848 have recently been found to exhibit very different X-ray properties: whilst HD 60 848 has an X-ray spectrum and the emission level typical of most OB stars, HD 45 314 features a much harder and brighter X-ray emission, making it a so-called γ Cas analogue.
Aims: Monitoring the optical spectra could provide hints towards the origin of these very different behaviours.
Methods: We analyse a large set of spectroscopic observations of HD 45 314 and HD 60 848, extending over 20 years. We further attempt to fit the Hα line profiles of both stars with a simple model of emission line formation in a Keplerian disk.
Results: Strong variations in the strengths of the Hα, Hβ, and He i λ 5876 emission lines are observed for both stars. In the case of HD 60 848, we find a time lag between the variations in the equivalent widths of these lines, which is currently not understood. The emission lines are double peaked with nearly identical strengths of the violet and red peaks. The Hα profile of this star can be successfully reproduced by our model of a disk seen under an inclination of 30°. In the case of HD 45 314, the emission lines are highly asymmetric and display strong line profile variations. We find a major change in behaviour between the 2002 outburst and the one observed in 2013. This concerns both the relationship between the equivalent widths of the various lines and their morphologies at maximum strength (double-peaked in 2002 versus single-peaked in 2013). Our simple disk model fails to reproduce the observed Hα line profiles of HD 45 314.
Conclusions: Our results further support the interpretation that Oe stars do have decretion disks similar to those of Be stars. Whilst the emission lines of HD 60 848 are explained well by a disk with a Keplerian velocity field, the disk of HD 45 314 seems to have a significantly more complex velocity field that could be another signature of the phenomenon that produces its peculiar X-ray emission. Title: Modeling Europa's Dust Plume Authors: Southworth, B.; Kempf, S.; Schmidt, J.; Horanyi, M. Bibcode: 2015LPI....46.2729S Altcode: 2015LPICo1832.2729S We explore the parameter space of potential dust plumes on Europa, simulating active plumes and the results of spacecraft flybys. Title: LDEX Observation of the Dust Environment of the Moon Authors: Horanyi, M.; Szalay, J.; Kempf, S.; Schmidt, J.; Gruen, E.; Srama, R.; Sternovsky, Z. Bibcode: 2015LPI....46.1684H Altcode: 2015LPICo1832.1684H The talk will report on the analysis of the observations of Lunar Dust Experiment (LDEX) onboard the recently completed LADEE mission. Title: How Much Dust Does Enceladus Eject? Authors: Kempf, S.; Horanyi, M.; Schmidt, J.; Southworth, B. Bibcode: 2015LPI....46.1938K Altcode: 2015LPICo1832.1938K We performed numerical simulations of the Enceladus dust plume to constrain the dust production rate and to verify whether the plume constitutes a dusty plasma. Title: VizieR Online Data Catalog: The PLUTO CLOUDY Interface (TPCI) (Salz+, 2015) Authors: Salz, M.; Banerjee, R.; Mignone, A.; Schneider, P. C.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2015yCat..35760021S Altcode: 2015yCat..35769021S The code is publicly available at http://www.hs.uni-hamburg.de/DE/Ins/Per/Salz/ and available here. Please check the quick start document in the docs directory for further information.

(1 data file). Title: Monitoring the Behavior of Star Spots Using Photometric Data Authors: Ioannidis, P.; Schmitt, J. H. M. M. Bibcode: 2015csss...18..429I Altcode: We use high accuracy photometric data to monitor the behavior of star spots . We develop an algorithm to determine the size and longitude of spots or spot groups, using Kepler light curves . Our algorithm separates the light curve in rotational-period sized intervals and calculates the size and longitude of the star spots by using limb darkened spot crossing models. The results can then be used to identify populations of spots, active regions on the stellar surface, mean spot lifetimes or even evidence for activity cycle evidences. To check the efficiency of our code we calculate the spot positions and sizes for the planet host star Kepler-210 . Title: First Results of the TIGRE Chromospheric Activity Survey Authors: Mittag, M.; Hempelmann, A.; Gonzalez-Perez, J. N.; Schmitt, J. H. M. M. Bibcode: 2015csss...18..549M Altcode: We present the first results of the stellar activity survey with TIGRE (Telescopio Internacional de Guanajuato, Robótico-Espectroscópico). This long term program was started in August 2013 with the monitoring of a larger number of stars. We aim at measuring the short- and long-term variability of stellar activity for stars of different spectral types and luminosity classes, using indicators of different spectral lines (mainly Ca II S-Index, Ca II IR triplet, H_α and sodium D). A transformation equation of the TIGRE S-Index into the Mount Wilson S-index was derived in order to compare our results to the vast body of existing S-index measurements. Furthermore, the correlation between the S-index and the lines of the Ca II IR triplet has been studied, based on strictly simultaneous observations. Title: A Tale of Two Exoplanets: the Inflated Atmospheres of the Hot Jupiters HD 189733 b and CoRoT-2 b Authors: Poppenhaeger, K.; Wolk, Scott J.; Schmitt, J. H. M. M. Bibcode: 2015csss...18..733P Altcode: 2014arXiv1408.3385P Planets in close orbits around their host stars are subject to strong irradiation. High-energy irradiation, originating from the stellar corona and chromosphere, is mainly responsible for the evaporation of exoplanetary atmospheres. We have conducted multiple X-ray observations of transiting exoplanets in short orbits to determine the extent and heating of their outer planetary atmospheres. In the case of HD 189733 b, we find a surprisingly deep transit profile in X-rays, indicating an atmosphere extending out to 1.75 optical planetary radii. The X-ray opacity of those high-altitude layers points towards large densities or high metallicity. We preliminarily report on observations of the Hot Jupiter CoRoT-2 b from our Large Program with XMM-Newton, which was conducted recently. In addition, we present results on how exoplanets may alter the evolution of stellar activity through tidal interaction. Title: A Multi-wavelength Study of the Close M-dwarf Eclipsing Binary System BX Tri Authors: Perdelwitz, V.; Czesla, S.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2015csss...18..121P Altcode: We present the first detailed X-ray study of the close dMe binary system BX Tri, whose optical variation has been continously monitored in the frame of the DWARF project (Pribulla et al.(2012)). We observed BX Tri with XMM-Newton for two full orbital periods and confirm that the system is an ultra-active M-dwarf binary showing frequent flares and an X-ray luminosity close to the saturation limit. The strong magnetic activity could have influenced the angular momentum evolution of the system via magnetic braking. Title: Solar Cycle 24 UV Radiation: Lowest in more than 6 Decades Authors: Schroder, Klaus-Peter; Mittag, Marco; Schmitt, J. H. M. M. Bibcode: 2015csss...18..561S Altcode: Using spectra taken by the robotic telescope ``TIGRE'' (see Fig. 1 and the TIGRE-poster presented by Schmitt et al. at this conference) and its mid-resolution (R=20,000) HEROS double-channel echelle spectrograph, we present our measurements of the solar Ca II H&K chromospheric emission. Using moonlight, we applied the calibration and definition of the Mt. Wilson S-index , which allows a direct comparison with historic observations, reaching back to the early 1960's. At the same time, coming from the same EUV emitting plage regions, the Ca II H&K emission is a good proxy for the latter, which is of interest as a forcing factor in climate models. Our measurements probe the weak, asynchronous activity cycle 24 around its 2nd maximum during the past winter. Our S-values suggest that this maximum is the lowest in chromospheric emission since at least 60 years -- following the longest and deepest minimum since a century. Our observations suggest a similarly long-term (on a scale of decades) low of the far-UV radiation, which should be considered by the next generation of climate models. The current, very interesting activity behaviour calls for a concerted effort on long-term solar monitoring. Title: Exoplanetary System HD 189733 - Chromosphere, Transit, Activity Authors: Krejcova, T.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2015csss...18..779K Altcode: We present a study of the temporal evolution of the chromospherically sensitive lines in the transiting exoplanetary system HD 189733 using high-resolution UVES spectra. With its fast temporal cadence of only 45 s and its wide spectral coverage, our time series is ideal to study the influence of the transiting planetary disk on chromospheric lines . We measured the equivalent width and central line depression of the Ca II H and K lines, Hα, and the Ca II infrared triplet. While all these lines show temporal evolution on a scale potentially induced by the occulting planetary disk, strong intrinsic stellar variability prevents us from uniquely ascribing the observed variation to the planetary transit. Title: Compositional Mapping of a Satellite Surface with a Dust Mass Spectrometer Authors: Schmidt, J.; Kempf, S. Bibcode: 2014AGUFM.P43B3978S Altcode: Measuring the composition of cosmic dust in the vicinity of icy satellites provides unique insight into the physical and chemical conditions at its origin as demonstrated by Cassinis dust detector [4, 3]. Information about the geological activities on and below a moons surface is contained in the types and amounts of organic and inorganic components embedded in the dominant surface material. The basic idea of the proposed compositional mapping [2] is that moons without an atmosphere are wrapped in clouds of dust particles (roughly micron sized) ejected by micro-meteroid impacts from the moons surfaces [1]. The composition of these dust particles can be analysed by an orbiter instrument. The ejecta particles move on ballistic trajectories and most of them recollide with the moon. As a consequence, an almost isotropic dust cloud forms around the moon. From the statistics of the particles in the cloud, one can constrain their location of origin on the surface. Thus, from their composition one can conclude, with given probability, on the composition of a certain part of the surface. In this way, recording a large sample of dust grains with an orbiter, it will be possible to resolve compositional variations on the surface and relate them to topological features.[1] Krueger et al., Nature, 399, 1999.[2] Postberg et al., Planetary and Space Science, 59, 2011.[3] Postberg et al., Nature, 459, 2009.[4] Postberg et al., Icarus, 183, 2006. Title: Science goals and mission concept for the future exploration of Titan and Enceladus Authors: Tobie, G.; Teanby, N. A.; Coustenis, A.; Jaumann, R.; Raulin, F.; Schmidt, J.; Carrasco, N.; Coates, A. J.; Cordier, D.; De Kok, R.; Geppert, W. D.; Lebreton, J. -P.; Lefevre, A.; Livengood, T. A.; Mandt, K. E.; Mitri, G.; Nimmo, F.; Nixon, C. A.; Norman, L.; Pappalardo, R. T.; Postberg, F.; Rodriguez, S.; Schulze-Makuch, D.; Soderblom, J. M.; Solomonidou, A.; Stephan, K.; Stofan, E. R.; Turtle, E. P.; Wagner, R. J.; West, R. A.; Westlake, J. H. Bibcode: 2014P&SS..104...59T Altcode: Saturn's moons, Titan and Enceladus, are two of the Solar System's most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus' plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and (C) Chemistry of Titan and Enceladus - clues for the origin of life. The proposed measurements would provide a step change in our understanding of planetary processes and evolution, with many orders of magnitude improvement in temporal, spatial, and chemical resolution over that which is possible with Cassini-Huygens. This mission concept builds upon the successes of Cassini-Huygens and takes advantage of previous mission heritage in both remote sensing and in situ measurement technologies. Title: Estimates for uncharged nanograins in Enceladus' plume Authors: Meier, P.; Kriegel, H.; Motschmann, U. M.; Schmidt, J.; Spahn, F.; Hill, T. W.; Dong, Y.; Jones, G. H. Bibcode: 2014AGUFM.P31B3991M Altcode: Enceladus' plume provides a unique laboratory for dust-plasma interactions. Negatively charged nanograins, which represent the vast majority of grains, have been measured by Cassini Plasma Spectrometer (CAPS). Even a small fraction of positively charged nanograins has been detected by CAPS. However, there is a crucial lack of information on uncharged grains. Thus, no information on the total grain production rate of Enceladus or its total contribution to Saturn's E-ring are available yet. We present an estimation of uncharged grains as well as a total grain production rate by an analytical model and simulations. First, we derive an analytical model from basic equations of grain charging and quasi-neutrality connecting the amount of uncharged grains to negatively and positively charged grains. A first estimate for uncharged grains then results from the ratio of negatively-to-positively charged nanograins. For more accurate estimations we compare results from combined dust and plasma simulations with our analytical ones and CAPS data for charged nanograins to determine Enceladus' total grain production rate and a global profile of uncharged nanograins in the plume. The dust simulations of the plume and the plasma simulations with A.I.K.E.F. for plasma-plume interactions are performed iteratively allowing for the different time scales for dust and plasma dynamics. Title: Plumes and Jets: Constraints on Vents and Eruption Dynamics from Observations and Models Authors: Schmidt, J. Bibcode: 2014AGUFM.P51F..05S Altcode: Plume activity of Enceladus has been monitored by Cassini for nearly one decade after their discovery (see Science, 2006, 311, special issue). Thus, crucial properties of the vapor dust plumes are constrained in a fairly detailed manner. In this paper I discuss implications for vent geometries, gas and grain dynamics and condensation in the vents. Vapor source rates on the order of 100 to 1000kg/s were derived from remote and in-situ data [2, 3, 4, 1, 17] and distortions in the B field [10, 15]). Gas ejection speeds from 500m/s to 1000m/s [18, 4] (escape speed 240m/s) indicate supersonic gas flow. Evidence for supersonic gas jets is directly seen in UVIS data [3]. Dust production rates between 5 to 50kg/s have been inferred [16, 8]. These do not yet include mass in jets of very fine nano-grains [9, 8, 7]. The dust plume exhibits scale heights that suggest ejection speeds on the order of 100m/s [13, 16, 6], i.e. well below the escape velocity. Larger grains have smaller ejection spees populating the lower parts of the plume [6, 16]. Salt has been identified in grains on the percent level [14] so that they cannot form alone by condensation from vapor. The detailed distribution of dust sources and jet orientations on the south polar terrain was derived from images and compared to temperature distributions and to the expected tidal stress pattern from modelling [12]. A recent observations show that plume brightness varies roughly by a factor of three with the orbital period of Enceladus, suggesting that ejection strength is tidally controlled [11, 5]. A similar variation in the gas discharge is expected but has not yet been observed to date. Remarkably, there is no such correlation of orbital phase and the observed scale height of dust jets. [1] Dong et al, JGR, 116, 2011[2] Hansen et al, Science, 311, 2006. [3] Hansen et al, Nature, 456, 2008.[4] Hansen et al, GRL, 38, 2011.[5] Hedman et al, Nature, 2013.[6] Hedman et al, ApJ, 693, 2009.[7] Hill et al, JGR, 117, 2012.[8] Ingersoll and Ewald, Icarus, 216, 2011.[9] Jones et al, GRL, 36, 2009.[10] Meier et al, submitted to PSS, 2014.[11] Nimmo et al, AstronJ, 148, 2014.[12] Porco et al, AstronJ, 148, 2014.[13] Porco et al, Science, 311, 2006.[14] Postberg et al, Nature, 474, 2011.[15] Saur et al, GRL, 35, 2008.[16] Schmidt et al, Nature, 451, 2008.[17] Smith et al, JGR, 115, 2010.[18] Tian et al, Icarus, 188, 2007. Title: Modeling Europa's Dust Plume Authors: Southworth, B.; Schmidt, J.; Horanyi, M.; Kempf, S. Bibcode: 2014AGUFM.P53B4017S Altcode: The discovery of Europa maintaining a probably periodic water plume located at its south polar terrain constitutes a huge scientific opportunity for an upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers an unique scientific opportunity to understand the conditions at Europa's subsurface ocean. Remarkably, the water column density of 1020 m-2 for the Europa plume is similar to the density of Enceladus' water plume of (0.9 +- 0.23)1020m-2. This finding strongly suggests that Europa's plume, similar to Enceladus, also contains a few mass percent of water ice particles which are formed by (i) nucleation within the vapor streaming through fractures in Europa's ice crust and (ii) by mantle growth on shock-frozen droplets on the interface of the moon's subsurface ocean. We adjusted the Enceladus plume model by Schmidt et al. (2008) to the conditions at Europa and derive the size-dependent speed distribution of the emerging ice particles.We furthermore derived the 3-dimensional structure of the ice particle plume and computed the snowfall pattern of the ice particles on Europa's surface. Title: Masses and activity of AB Doradus B a/b. The age of the AB Dor quadruple system revisited Authors: Wolter, U.; Czesla, S.; Fuhrmeister, B.; Robrade, J.; Engels, D.; Wieringa, M.; Schmitt, J. H. M. M. Bibcode: 2014A&A...570A..95W Altcode: We present a multiwavelength study of the close binary AB Dor Ba/b (Rst137B). Our study comprises astrometric orbit measurements, optical spectroscopy, X-ray and radio observations. Using all available adaptive optics images of AB Dor B taken with VLT/NACO from 2004 to 2009, we tightly constrain its orbital period to 360.6 ± 1.5 days. We present the first orbital solution of Rst 137B and estimate the combined mass of AB Dor Ba+b as 0.69+0.02-0.24 M, slightly exceeding previous estimates based on IR photometry. Our determined orbital inclination of Rst 137B is close to the axial inclination of AB Dor A inferred from Doppler imaging. Our VLT/UVES spectra yield high rotational velocities of ≥30 km s-1 for both components Ba and Bb, in accord with previous measurements, which corresponds to rotation periods significantly shorter than one day. Our combined spectral model, using PHOENIX spectra, yields an effective temperature of 3310 ± 50 K for the primary and approximately 60 K less for the secondary. The optical spectra presumably cover a chromospheric flare and show that at least one component of Rst 137B is significantly active. Activity and weak variations are also found in our simultaneous XMM-Newton observations, while our ATCA radio data yield constant fluxes at the level of previous measurements. Using evolutionary models, our newly determined stellar parameters confirm that the age of Rst 137B is between 50 and 100 Myr.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 383.D-1002(A) and the ESO Science Archive Facility. Using data obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and NASA. Using data obtained with the Australia Telescope Compact Array (ATCA) operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Title: TIGRE: A new robotic spectroscopy telescope at Guanajuato, Mexico Authors: Schmitt, J. H. M. M.; Schröder, K. -P.; Rauw, G.; Hempelmann, A.; Mittag, M.; González-Pérez, J. N.; Czesla, S.; Wolter, U.; Jack, D.; Eenens, P.; Trinidad, M. A. Bibcode: 2014AN....335..787S Altcode: TIGRE is a new robotic spectroscopy telescope located in central Mexico at the La Luz Observatory of the University of Guanajuato. The 1.2 m telescope is fiber-coupled to an échelle spectrograph with a spectral resolving power exceeding 20 000 over most of the covered spectral range between 3800 Å and 8800 Å, with a small gap of 130 Å around 5800 Å. TIGRE operates robotically, i.e. it (normally) carries out all observations without any human intervention, including, in particular, the target selection in any given observing night. In this paper we describe the properties of the TIGRE instrumentation and its technical realization, as well as our first operational experience with the performance and efficiency of the overall system. Finally, we present some examples of recent TIGRE observations. Title: A multiwavelength study of the hierarchical triple HD 181068. A test bed for studying star-planet interaction? Authors: Czesla, S.; Huber, K. F.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2014A&A...570A.115C Altcode: 2014arXiv1408.2988C HD 181068 is the only compact, triply eclipsing, hierarchical triple system containing a giant star that is known to date. With its central, highly active G-type giant orbited by a close pair of main-sequence dwarfs, the system is ideal for studying tidal interactions. We carried out a multiwavelength study to characterize the magnetic activity of the HD 181068 system. To this end, we obtained in- and out-of-eclipse X-ray snapshots with XMM-Newton and an optical spectrum, which we analyzed along with the Kepler light curve. The primary giant shows strong quiescent X-ray emission at a level of 2 × 1031 erg s-1, an S-index of 0.41 ± 0.01, and marked white-light flares releasing up to 6 × 1038 erg in the Kepler band. During the second X-ray observation, we found a three-times elevated - yet decaying - level of X-ray emission, which might be due to an X-ray flare. The high level of magnetic activity is compatible with the previously reported absence of solar-like oscillations in the giant, whose atmosphere, however, undergoes tidally induced oscillations imposed by the changing configuration of the dwarf-binary. We found that the driving force exciting these oscillations is comparable to the disturbances produced by a typical hot Jupiter, making the system a potential test bed for studying the effects of tidal interactions also present in planetary systems. Title: Sub-barrier enhancement of fusion as compared to a microscopic method in O18+C12 Authors: Steinbach, T. K.; Vadas, J.; Schmidt, J.; Haycraft, C.; Hudan, S.; deSouza, R. T.; Baby, L. T.; Kuvin, S. A.; Wiedenhöver, I.; Umar, A. S.; Oberacker, V. E. Bibcode: 2014PhRvC..90d1603S Altcode: 2014arXiv1407.6031S Background: Measurement of the energy dependence of the fusion cross section at sub-barrier energies provides an important test for theoretical models of fusion.

Purpose: The aim of the study is to extend the measurement of fusion cross sections in the sub-barrier domain for the O18+C12 system, and to use the new experimental data to confront microscopic calculations of fusion.

Method: Evaporation residues produced in fusion of O18 ions with C12 target nuclei were detected with good geometric efficiency and identified by measuring their energy and time-of-flight. Theoretical calculations with a density-constrained time-dependent Hartree-Fock (DC-TDHF) theory include for the first time the effect of pairing on the fusion cross section.

Results: Comparison of the measured fusion excitation function with the predictions of the DC-TDHF calculations reveal that the experimental data exhibit a smaller decrease in cross section with decreasing energy than is theoretically predicted.

Conclusion: The larger cross sections observed at the lowest energies measured indicate a larger tunneling probability for the fusion process. This larger probability can be associated with a smaller, narrower fusion barrier than presently included in the theoretical calculations. Title: CARMENES instrument overview Authors: Quirrenbach, A.; Amado, P. J.; Caballero, J. A.; Mundt, R.; Reiners, A.; Ribas, I.; Seifert, W.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Ammler-von Eiff, M.; Antona Jiménez, R.; Anwand-Heerwart, H.; Azzaro, M.; Bauer, F.; Barrado, D.; Becerril, S.; Béjar, V. J. S.; Benítez, D.; Berdiñas, Z. M.; Cárdenas, M. C.; Casal, E.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Doellinger, M.; Dreizler, S.; Feiz, C.; Fernández, M.; Galadí, D.; Gálvez-Ortiz, M. C.; García-Piquer, A.; García-Vargas, M. L.; Garrido, R.; Gesa, L.; Gómez Galera, V.; González Álvarez, E.; González Hernández, J. I.; Grözinger, U.; Guàrdia, J.; Guenther, E. W.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H. -J.; Hatzes, A. P.; Hauschildt, P. H.; Helmling, J.; Henning, T.; Hermann, D.; Hernández Castaño, L.; Herrero, E.; Hidalgo, D.; Holgado, G.; Huber, A.; Huber, K. F.; Jeffers, S.; Joergens, V.; de Juan, E.; Kehr, M.; Klein, R.; Kürster, M.; Lamert, A.; Lalitha, S.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, Mauro; López Martí, B.; López-Santiago, J.; Mall, U.; Mandel, H.; Martín, E. L.; Martín-Ruiz, S.; Martínez-Rodríguez, H.; Marvin, C. J.; Mathar, R. J.; Mirabet, E.; Montes, D.; Morales Muñoz, R.; Moya, A.; Naranjo, V.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Passegger, V. -M.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Pluto, M.; Ramón, A.; Rebolo, R.; Redondo, P.; Reffert, S.; Reinhardt, S.; Rhode, P.; Rix, H. -W.; Rodler, F.; Rodríguez, E.; Rodríguez-López, C.; Rodríguez-Pérez, E.; Rohloff, R. -R.; Rosich, A.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sanz-Forcada, J.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schmidt, C.; Schmitt, J. H. M. M.; Solano, E.; Stahl, O.; Storz, C.; Stürmer, J.; Suárez, J. C.; Ulbrich, R. G.; Veredas, G.; Wagner, K.; Winkler, J.; Zapatero Osorio, M. R.; Zechmeister, M.; Abellán de Paco, F. J.; Anglada-Escudé, G.; del Burgo, C.; Klutsch, A.; Lizon, J. L.; López-Morales, M.; Morales, J. C.; Perryman, M. A. C.; Tulloch, S. M.; Xu, W. Bibcode: 2014SPIE.9147E..1FQ Altcode: This paper gives an overview of the CARMENES instrument and of the survey that will be carried out with it during the first years of operation. CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs) is a next-generation radial-velocity instrument under construction for the 3.5m telescope at the Calar Alto Observatory by a consortium of eleven Spanish and German institutions. The scientific goal of the project is conducting a 600-night exoplanet survey targeting ~ 300 M dwarfs with the completed instrument. The CARMENES instrument consists of two separate echelle spectrographs covering the wavelength range from 0.55 to 1.7 μm at a spectral resolution of R = 82,000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in vacuum tanks providing the temperature-stabilized environments necessary to enable a 1 m/s radial velocity precision employing a simultaneous calibration with an emission-line lamp or with a Fabry-Perot etalon. For mid-M to late-M spectral types, the wavelength range around 1.0 μm (Y band) is the most important wavelength region for radial velocity work. Therefore, the efficiency of CARMENES has been optimized in this range. The CARMENES instrument consists of two spectrographs, one equipped with a 4k x 4k pixel CCD for the range 0.55 - 1.05 μm, and one with two 2k x 2k pixel HgCdTe detectors for the range from 0.95 - 1.7μm. Each spectrograph will be coupled to the 3.5m telescope with two optical fibers, one for the target, and one for calibration light. The front end contains a dichroic beam splitter and an atmospheric dispersion corrector, to feed the light into the fibers leading to the spectrographs. Guiding is performed with a separate camera; on-axis as well as off-axis guiding modes are implemented. Fibers with octagonal cross-section are employed to ensure good stability of the output in the presence of residual guiding errors. The fibers are continually actuated to reduce modal noise. The spectrographs are mounted on benches inside vacuum tanks located in the coudé laboratory of the 3.5m dome. Each vacuum tank is equipped with a temperature stabilization system capable of keeping the temperature constant to within +/-0.01°C over 24 hours. The visible-light spectrograph will be operated near room temperature, while the near-IR spectrograph will be cooled to ~ 140 K. The CARMENES instrument passed its final design review in February 2013. The MAIV phase is currently ongoing. First tests at the telescope are scheduled for early 2015. Completion of the full instrument is planned for the fall of 2015. At least 600 useable nights have been allocated at the Calar Alto 3.5m Telescope for the CARMENES survey in the time frame until 2018. A data base of M stars (dubbed CARMENCITA) has been compiled from which the CARMENES sample can be selected. CARMENCITA contains information on all relevant properties of the potential targets. Dedicated imaging, photometric, and spectroscopic observations are underway to provide crucial data on these stars that are not available in the literature. Title: The X-ray properties of lambda Cep, a true twin of zeta Pup? Authors: Rauw, G.; Nazé, Y.; Gonzalez-Perez, N.; Hempelmann, A.; Mittag, M.; Schmitt, J.; Schröder, K.; Hervé, A.; Eenens, P.; Gosset, E. Bibcode: 2014xru..confE.168R Altcode: Oef stars are O-stars that display a double-peaked He II λ 4686 line in their optical spectra, suggesting that the inner part of the stellar wind is co-rotating with the star. This hypothesis is also often used to explain their ubiquitous spectral variability in the optical domain. In this context, the fact that the high-resolution X-ray spectra of ζ Pup (O4Ief) meet the expectations of the wind-embedded shock model, assuming a spherically symmetric wind came as a surprise. To understand what is going on, we have obtained a 300 ksec observation of λ Cephei, the second brightest Oef star. This observation not only allows to collect the RGS high-resolution spectrum of the star, but further enables us to search for X-ray variability. To correlate the potential X-ray variability with that of the optical spectrum of λ Cep, we monitored the optical spectrum simultaneously with the TIGRE telescope. We present here the first results of this campaign, both in terms of the line profiles in the RGS spectrum and the search for X-ray variability in correlation with the optical variations. Title: X-Ray Emission from the Super-Earth Host GJ 1214 Authors: Lalitha, S.; Poppenhaeger, K.; Singh, K. P.; Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2014ApJ...790L..11L Altcode: 2014arXiv1407.2741L Stellar activity can produce large amounts of high-energy radiation, which is absorbed by the planetary atmosphere leading to irradiation-driven mass loss. We present the detection and an investigation of high-energy emission in a transiting super-Earth host system, GJ 1214, based on XMM-Newton observations. We derive an X-ray luminosity of LX = 7.4 × 1025 erg s-1 and a corresponding activity level of log (LX /L bol) ~ -5.3. Further, we determine a coronal temperature of about ~3.5 MK, which is typical for coronal emission of moderately active low-mass stars. We estimate that GJ 1214 b evaporates at a rate of 1.3× 1010 g s-1 and has lost a total of ≈2-5.6 M . Title: X-ray studies of circumstellar material around classical T Tauri stars Authors: Schneider, C.; Robrade, J.; Günther, M.; Schmitt, J. Bibcode: 2014xru..confE.185S Altcode: I will present recent XMM-Newton observations of accreting, young stars. These so-called classical T Tauri stars are surrounded by protoplanetary accretion disks and drive outflows or even powerful jets. Currently, the structure of these two components is not well understood, both observationally and theoretically. X-ray data are particularly useful to study these circumstellar structures as they provide complementary information to classical, longer wavelengths observations. I will show results of our new X-ray programs targeting prototypical young stellar systems and discuss them in the multi-wavelength context. Title: Puzzling fluorescent emission from Orion Authors: Czesla, S.; Schmitt, J. Bibcode: 2014xru..confE..55C Altcode: Fluorescent X-ray emission allows to study cool material surrounding active, young stars. We analyzed fluorescent iron Kalpha-line emission in a sample of 106 young stars in Orion with a special emphasis on its temporal behavior. Along with a total of 23 detections of fluorescent emission, we found a wide variety of temporal behavior: While the fluorescent emission is associated with soft X-ray flares in some cases, it also appears as a (quasi) persistent feature -- sometimes in otherwise quiescent periods. This temporal behavior often challenges photoionization as the sole origin of the fluorescent emission. As alternative formation mechanisms demand, however, immense amounts of energy to explain the observations, we conclude that photoionization in combination with suitable source geometries represents the most plausible configuration to explain the observed fluorescent emission. Title: SCALABLE- Innovative Scalable Large Deployable Antenna Reflector Authors: Ihle, Alexander; Datashvili, L.; Schmidt, J.; Hartmann, D.; Proietti Zolla, P.; Santiago-Prowald, J. Bibcode: 2014ESASP.727E.177I Altcode: Europe is lacking a competitive product for large deployable antenna reflectors to embark on a commercial program. Need is identified to cover antenna applications from 4 up to 18 meter and frequencies from UHF up to Ka band. In particular the need for a scalable design concept, able to cover the small diameter range, but with growth potentials up to 18 m diameter, has been recognised. Up to now, most activities focused on general topics on mission needs and concept level, or specific topics like tensegrity structures or RF reflective surface materials. The INNOVATIVE SCALABLE LARGE DEPLOYABLE ANTENNA REFLECTORS activity is taking into account the reflector dish and the overall reflector assembly including systems engineering related aspects with the goal to identify, design and demonstrate the mechanical feasibility of a European large antenna reflector. Eventually, a deployable demonstrator reflector dish will be developed, manufactured and tested. The paper shall give an overview on the current and upcoming tasks of this activity. Title: Highlights and discoveries of the Cosmic Dust Analyser (CDA) during its 15 years of exploration Authors: Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.; Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton, M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino, M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn, F.; Sterken, V.; Trieloff, M. Bibcode: 2014EPSC....9..506S Altcode: The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis. Title: Excess noise in synthetic stellar occultation data from N-body simulations of Saturn's rings Authors: Salo, H.; Schmidt, J. Bibcode: 2014EPSC....9..744S Altcode: The excess variance in stellar occultation measurements, as compared to that expected from Poisson statistics, provides an useful tool for extracting information of the ring particle size distribution [1] and/or the tendency of particles to form transient aggregates (e.g. [2]). We compare the excess variance calculated from N-body simulations with formulae derived in literature [1]. Besides highlighting some basic dependencies, we illustrate how the destruction of selfgravity wake structures at satellite density waves crests might manifest as a local reduction of effective particle size. Title: Compositional differentiation of Enceladus' plume Authors: Khawaja, N.; Postberg, F.; Schmidt, J. Bibcode: 2014EPSC....9..446K Altcode: The Cosmic Dust Analyser (CDA) on board the Cassini spacecraft sampled Enceladus' plume ice particles emanated directly from Enceladus' fractured south polar terrain (SPT), the so-called "Tiger Stripes", during two consecutive flybys (E17 and E18) in 2012. The spacecraft passed through the dense plume with a moderate velocity of ~7.5km/s, horizontally to the SPT with a closest approach (CA) at an altitude of ~75km almost directly over the south pole. In both flybys, spectra were recorded during a time interval of ~ ±3 minutes with respect to the closest approach achieving an average sampling rate of about 0.6 sec-1. We assume that the spacecraft passed through the plume during an interval of about ±60(sec) from the CA. Particles encountered before and after this period are predominately from the E-ring background in which Enceladus is embedded. Most CDA TOF-mass spectra are identified as one of three compositional types: (i) almost pure water (ii) organic rich and (iii) salt rich [2]. A Boxcar Analysis (BCA) is performed from a count database for compositional mapping of the plume along the space-craft trajectory. In BCA, counts of each spectrum type are integrated for a certain interval of time (box size). The integral of counts represents frequencies of compositional types in absolute abundances, which are converted later into proportions. This technique has been proven to be a suitable for inferring the compositional profiles from an earlier flyby (E5) [1]. The inferred compositional profiles show similar trends on E17 and E18. The abundances of different compositional types in the plume clearly differ from the Ering background and imply a compositional differentiation inside the plume. Following up the work of Schmidt et al, 2008 and Postberg et al, 2011 we can link different compositional types to different origins. The E17/E18 results are compared with the E5 flyby in 2008, which yielded the currently best compositional profile [2] but was executed at much higher velocity (~17.6km/s) and a very different, highly inclined, flyby geometry. Title: Modelling of Resonantly Forced Density Waves in Dense Planetary Rings Authors: Lehmann, M.; Schmidt, J.; Salo, H. Bibcode: 2014EPSC....9..424L Altcode: Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves. Title: Kepler-210: An active star with at least two planets Authors: Ioannidis, P.; Schmitt, J. H. M. M.; Avdellidou, Ch.; von Essen, C.; Agol, E. Bibcode: 2014A&A...564A..33I Altcode: 2014arXiv1403.3238I We report the detection and characterization of two short-period, Neptune-sized planets around the active host star Kepler-210. The host star's parameters derived from those planets are (a) mutually inconsistent and (b) do not conform to the expected host star parameters. We furthermore report the detection of transit timing variations (TTVs) in the O-C diagrams for both planets. We explore various scenarios that explain and resolve those discrepancies. A simple scenario consistent with all data appears to be one that attributes substantial eccentricities to the inner short-period planets and that interprets the TTVs as due to the action of another, somewhat longer period planet. To substantiate our suggestions, we present the results of N-body simulations that modeled the TTVs and that checked the stability of the Kepler-210 system.

Tables 5-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A33 Title: Estimation of aggregation processes for dust in the Enceladus vents Authors: Dzhanoev, A.; Schmidt, J.; Spahn, F. Bibcode: 2014EPSC....9..755D Altcode: We investigate the possibility of dust aggregation processes when icy grains are transported by water vapor streams in the subsurface vents of Saturn's active moon Enceladus to space. Dust aggregates, or non-spherical dust grains, generally establish up to ten times higher equilibrium charges than a spherical grain of the same mass when exposed to equivalent charging conditions. This indicates that dust charging models with spherical grains lead to a net charge underestimation. The effect might be important if one likes to verify if dust charging can account for the misfit between ion and electron densities inferred from data taken by the Cassini-Langmuir probe in the E ring and in the Enceladus plume [1]. Furthermore, an increased charge-to-mass ratio, and a reduced bulk density for dust in Saturn's inner magnetosphere will affect to some degree the dynamics of these grains in the E ring region. This will alter the size-dependent lifetimes of particles, which ultimately determine the steady state size- distribution of E ring grains. Title: SUDA: A Dust Mass Spectrometer for Compositional Surface Mapping for a Mission to Europa Authors: Kempf, S.; Altobelli, N.; Briois, C.; Grün, E.; Horanyi, M.; Postberg, F.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Tobie, G.; Zolotov, M. Bibcode: 2014EPSC....9..229K Altcode: We developed a dust mass spectrometer to measure the composition of ballistic dust particles populating the thin exospheres that were detected around each of the Galilean moons. Since these grains are direct samples from the moons' icy surfaces, unique composition data will be obtained that will help to define and constrain the geological activities on and below the moons? surface. The proposed instrument will make a vital contribution to NASA's planned Europa Clipper mission and provide key answers to its main scientific questions about the surface composition, habitability, the icy crust, and exchange processes with the deeper interior of the Jovian icy moon Europa. The SUrface Dust Aanalyser (SUDA) is a time-offlight, reflectron-type impact mass spectrometer, optimised for a high mass resolution which only weakly depends on the impact location. The small size (268×250×171 mm3), low mass (< 4 kg) and large sensitive area (220 cm2) makes the instrument well suited for the challenging demands of the Europa Clipper mission. A full-size prototype SUDA instrument was built in order to demonstrate its performance through calibration experiments at the dust accelerator at NASA's IMPACT institute at Boulder, CO with a variety of cosmochemically relevant dust analogues. The effective mass resolution of m/∆m of 200-250 is achieved for mass range of interest m = 1-250. Title: Compositional Mapping of Europa's Surface with a Dust Mass Spectrometer Authors: Kempf, S.; Altobelli, N.; Briois, C.; Cassidy, T.; Grün, E.; Horanyi, M.; Postberg, F.; Schmidt, J.; Shasharina, S.; Srama, R.; Sternovsky, Z. Bibcode: 2014LPICo1774.4052K Altcode: We developed a detector to measure the composition Europa's dust exosphere. Because these grains are samples from Europa’s surface, unique information will be obtained about the surface as well as geological activities on and below the surface. Title: VizieR Online Data Catalog: KOI-676 transits for planets b and c (Ioannidis+, 2014) Authors: Ioannidis, P.; Schmitt, J. H. M. M.; Avdellidou, Ch.; von Essen, C.; Agol, E. Bibcode: 2014yCat..35640033I Altcode: 2014yCat..35649033I This is a list of Kepler-210b and Kepler-210c mid-transit times for each epoch of the short and long cadence Kepler data, along with their error, the epoch number and the predicted from the ephemeris value.

(4 data files). Title: Exoplanet transits in X-rays: a new observational window to the exoplanetary atmosphere Authors: Poppenhaeger, Katja; Wolk, S. J.; Schmitt, J. Bibcode: 2014AAS...22320705P Altcode: Exoplanets in short-period orbits are subject to strong irradiation from their host star and can lose mass through evaporation. The main driver for this evaporation is high-energy emission from the host star. However, it is observationally unclear where in the exoplanetary atmosphere the bulk of the high-energy radiation is absorbed, and the energy budget for the evaporation is not well constrained. We have observed seven transits of the Hot Jupiter HD 189733 b in front of its host star, using X-ray observations with Chandra and XMM-Newton. We detect the exoplanetary transit in X-rays for the first time. We find a surprisingly large X-ray transit depth of 6-8%, in stark contrast to an optical transit depth of only 2.4%. We can trace this back to extended outer atmosphere layers of the planet which reach out to 1.75 optical planetary radii in altitude. We are able to derive density and temperature estimates for the outer planetary atmosphere, as well as a revised energy budget for planetary evaporation due to the large X-ray absorbing radius. These observations, together with accepted further programs in the X-ray regime, will allow us to build a comprehensive picture of the atmospheres of strongly irradiated exoplanets. Title: DN Tauri - coronal activity and accretion in a young low-mass CTTS Authors: Robrade, J.; Güdel, M.; Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2014A&A...561A.124R Altcode: 2013arXiv1311.4461R Context. Classical T Tauri stars (CTTSs) are young, accreting low-mass stars; their X-ray emission differs from that of their main-sequence counterparts in a number of aspects.
Aims: We study the specific case of DN Tau, a young M0-type accreting CTTS, to extend the range of young CTTSs studied with high-resolution X-ray spectroscopy at lower masses and to compare its high-energy properties with those of similar objects.
Methods: We use a deep XMM-Newton observation of DN Tau to investigate its X-ray properties and X-ray generating mechanisms. Specifically, we examine the presence of X-ray emission from magnetic activity and accretion shocks. We also compare our new X-ray data with UV data taken simultaneously and with X-ray/UV observations performed before.
Results: We find that the X-ray emission from DN Tau is dominated by coronal plasma generated via magnetic activity, but also clearly detect a contribution of the accretion shocks to the cool plasma component at ≲2 MK as consistently inferred from density and temperature analysis. Typical phenomena of active coronae, such as flaring, the presence of very hot plasma at 30 MK, and an abundance pattern showing the inverse FIP effect, are seen on DN Tau. Strong variations in the emission measure of the cooler plasma components between the 2005 and 2010 data point to accretion related changes; in contrast, the hotter coronal plasma component is virtually unchanged. The UV light curve taken simultaneously is in general not related to the X-ray brightness, but exhibits clear counterparts during the observed X-ray flares.
Conclusions: The X-ray properties of DN Tau are similar to those of more massive CTTSs, but its low mass and large radius associated with its youth shift the accretion shocks to lower temperatures, reducing their imprint in the X-ray regime. DN Tau's overall X-ray properties are dominated by strong magnetic activity. Title: Planet Hunters: Kepler by Eye Authors: Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J. Bibcode: 2014AAS...22310301S Altcode: Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer. Title: Cool, warm and hot outflows from CTTS: The FUV view of DG Tau Authors: Schneider, P. C.; Eislöffel, J.; Güdel, M.; Günther, H. M.; Herczeg, G.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2014EPJWC..6408007S Altcode: Classical T Tauri stars (CTTSs) drive strong outflows with temperatures from about 103 K up to a few 106 K. These outflows regulate the angular momentum balance and are therefore tightly related to the accretion process. However, the outflow driving and heating mechanisms are not well understood. We present new HST data of the "prototypical" jet-driving CTTS DG Tau tracing the low-temperature outflow with fluorescently excited far-UV molecular hydrogen emission and the high-temperature part with C IV emission. We find that the spatial distribution of the low-temperature plasma is V-shaped consistent with molecular disk-wind models. Low-velocity shocks (vshock ~ 30 km s-1) are probably the pumping source for the FUV H2 lines. The hot plasma (T > 105 K) is located close to the jet axis at a distance of 40 AU from the driving source and spatially offset from standard (optical) jet-tracers like [S II] or [O I]. It does not show any hints for proper-motion contrasting typical jet properties. The high-temperature plasma is unlikely caused by a hot stellar wind and we propose that the stationary heating is caused by internal shocks or magnetic reconnection. Title: A multi-wavelength view of AB Doradus outer atmosphere . Simultaneous X-ray and optical spectroscopy at high cadence Authors: Lalitha, S.; Fuhrmeister, B.; Wolter, U.; Schmitt, J. H. M. M.; Engels, D.; Wieringa, M. H. Bibcode: 2013A&A...560A..69L Altcode: 2013arXiv1309.4933L
Aims: We study the chromosphere and corona of the ultra-fast rotator AB Dor A at high temporal and spectral resolution using simultaneous observations with XMM-Newton in the X-rays, VLT/UVES in the optical, and the ATCA in the radio. Our optical spectra have a resolving power of ~50 000 with a time cadence of ~1 min. Our observations continuously cover more than one rotational period and include both quiescent periods and three flaring events of different strengths.
Methods: From the X-ray observations we investigated the variations in coronal temperature, emission measure, densities, and abundance. We interpreted our data in terms of a loop model. From the optical data we characterised the flaring chromospheric material using numerous emission lines that appear in the course of the flares. A detailed analysis of the line shapes and line centres allowed us to infer physical characteristics of the flaring chromosphere and to coarsely localise the flare event on the star.
Results: We specifically used the optical high-cadence spectra to demonstrate that both turbulent and Stark broadening are present during the first ten minutes of the first flare. Also, in the first few minutes of this flare, we find short-lived (one to several minutes) emission subcomponents in the Hα and Ca ii K lines, which we interpret as flare-connected shocks owing to their high intrinsic velocities. Combining the space-based data with the results of our optical spectroscopy, we derive flare-filling factors. Finally, comparing X-ray, optical broadband, and line emission, we find a correlation for two of the three flaring events, while there is no clear correlation for one event. Also, we do not find any correlation of the radio data to any other observed data.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 383.D-1002A and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and NASA.Full Table 6 and reduced data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A69 Title: Observations of ejecta clouds produced by impacts onto Saturn's rings (Invited) Authors: Tiscareno, M. S.; Mitchell, C. J.; Murray, C.; Di Nino, D.; Hedman, M. M.; Schmidt, J.; Burns, J. A.; Cuzzi, J. N.; Porco, C.; Beurle, K.; Evans, M. W. Bibcode: 2013AGUFM.P21E..02T Altcode: We report the first observations of impact ejecta clouds at Saturn's rings by the Cassini spacecraft, making Saturn's rings the second location outside the Earth-Moon system (after Jupiter's atmosphere) at which impacts have been observed in process, and the first with sufficient numbers for population statistics. There is very little previous knowledge of meteoroids in the outer solar system, and no direct knowledge of particles in the size range probed by this work (larger than dust but smaller than moons). The observed dusty clouds are due to impacts onto the rings that occurred between 1 and 50 hours before the clouds were observed. The largest of these clouds was observed twice; its brightness and cant angle evolved in a manner consistent with this hypothesis. Several arguments suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. The responsible interplanetary meteoroids were initially between 1 cm and several meters in size, and their influx rate is consistent with the sparse prior knowledge of smaller meteoroids in the outer solar system. Title: High-precision stellar limb-darkening measurements. A transit study of 38 Kepler planetary candidates Authors: Müller, H. M.; Huber, K. F.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2013A&A...560A.112M Altcode: Context. Planetary transit light curves are influenced by a variety of fundamental parameters, such as the orbital geometry and the surface brightness distribution of the host star. Stellar limb darkening (LD) is therefore among the key parameters of transit modeling. In many applications, LD is presumed to be known and modeled based on synthetic stellar atmospheres.
Aims: We measure LD in a sample of 38 Kepler planetary candidate host stars covering effective temperatures between 3000 K and 8900 K with a range of surface gravities from 3.8 to 4.7. In our study we compare our measurements to widely used theoretically predicted quadratic limb-darkening coefficients (LDCs) to check their validity.
Methods: We carried out a consistent analysis of a unique stellar sample provided by the Kepler satellite. We performed a Markov chain Monte Carlo (MCMC) modeling of low-noise, short-cadence Kepler transit light curves, which yields reliable error estimates for the LD measurements in spite of the highly correlated parameters encountered in transit modeling.
Results: Our study demonstrates that it is impossible to measure accurate LDCs by transit modeling in systems with high impact parameters (b ≳ 0.8). For the majority of the remaining sample objects, our measurements agree with the theoretical predictions, considering measurement errors and mutual discrepancies between the theoretical predictions. Nonetheless, theory systematically overpredicts our measurements of the quadratic LDC u2 by about 0.07. Systematic errors of this order for LDCs would lead to an uncertainty on the order of 1% for the derived planetary parameters.
Conclusions: We find that it is adequate to set the commonly used theoretical LDCs as fixed parameters in transit modeling. Furthermore, it is even indispensable to use theoretical LDCs in the case of transiting systems with a high impact parameter, since the host star's LD cannot be determined from their transit light curves.

Table 3 and appendices are available in electronic form at http://www.aanda.org Title: The impact of Enceladus' plasma environment on the dust plume Authors: Meier, P.; Kriegel, H.; Motschmann, U. M.; Schmidt, J.; Spahn, F.; Hill, T. W.; Dong, Y.; Jones, G. H. Bibcode: 2013AGUFM.P53B1852M Altcode: Enceladus' plume is a unique laboratory to explore plasma-dust interactions. In this work, we combine Monte-Carlo simulations of Enceladus' dust plume with hybrid simulations of its plasma environment. These simulations are performed iteratively with respect to the different time scales for dust and plasma dynamics. On the one hand, the hybrid simulations need a sophisticated dust plume model to explain the magnetometer measurements at Enceladus. On the other hand, the dust simulations need a detailed local plasma environment for generating a realistic dust plume. The plasma densities determine the charging currents of the dust, while the EM-fields are required for the grain dynamics through the Lorentz force. Since our dust size distribution peaks in the nanometer regime, our model focuses on the nanograins. The resulting dust density profiles are in good agreement with nanograin densities obtained by CAPS for the E3 and E5 flyby. Furthermore, we discuss the impact of the individual dust source types (tiger stripes, jets) as well as the location of the maximum charge density and the grain charge time. Title: Ejecta clouds from meteoroid impacts on Saturn's rings: Constraints on the orbital elements and size of the projectiles Authors: Schmidt, J.; Tiscareno, M. S. Bibcode: 2013AGUFM.P23D1820S Altcode: Debris clouds, providing direct evidence for meteoritic ring erosion, were observed for the first time in Cassini images of Saturn's rings (Tiscareno et al., Science (2013), 340, 460). One feature was observed in two images taken about 24 hours apart, allowing to constrain the time evolution of the cloud. The details of the time evolution suggest that these clouds cannot be due to the primary impact of one solid meteoroid onto the rings, but rather are due to the impact of a compact stream of Saturn-orbiting material derived from previous breakup of a meteoroid. In this paper we give new estimates for the orbital elements of this compact stream and the size of the primary meteoroid. Title: X-ray irradiation and mass-loss of the hot Jupiter WASP-43b Authors: Czesla, S.; Salz, M.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2013A&A...560A..17C Altcode: We report the X-ray detection of the low-mass K7V star WASP-43, which is orbited by a hot Jupiter in one of the closest exoplanet orbits known to date. The high mean density of the planet implies a massive core with ≈130 M, yielding a heavy-element mass-fraction of 20%. From an 18 ks long XMM-Newton observation, we derive an X-ray luminosity of 6.7+3.5-3.3 × 1027 ergss-1, which puts WASP-43 among the active K-stars, which is compatible with its relatively young age derived in previous studies. The X-ray luminosity translates into a soft X-ray flux of (10.2 ± 5.4) × 103 erg cm-2 s-1 at the substellar point. According to our modeling, the combined X-ray and extreme ultraviolet flux may trigger mass-loss at a rate of up to ≈1012 gs-1 via energy-limited atmospheric escape. We infer that it is unlikely that the planet has lost more than 2.5% of its current mass through that channel and that activity-induced mass-loss has not substantially altered its evolution. Title: X-ray activity cycle on the active ultra-fast rotator AB Doradus A?. Implication of correlated coronal and photometric variability Authors: Lalitha, S.; Schmitt, J. H. M. M. Bibcode: 2013A&A...559A.119L Altcode: 2013arXiv1311.1380L Context. Although chromospheric activity cycles have been studied in a larger number of late-type stars for quite some time, very little is known about coronal activity-cycles in other stars and their similarities or dissimilarities with the solar activity cycle.
Aims: While it is usually assumed that cyclic activity is present only in stars of low to moderate activity, we investigate whether the ultra-fast rotator AB Dor, a K dwarf exhibiting signs of substantial magnetic activity in essentially all wavelength bands, exhibits an X-ray activity cycle in analogy to its photospheric activity cycle of about 17 years and possible correlations between these bands.
Methods: We analysed the combined optical photometric data of AB Dor A, which span ~35 years. Additionally, we used ROSAT and XMM-Newton X-ray observations of AB Dor A to study the long-term evolution of magnetic activity in this active K dwarf over nearly three decades and searched for X-ray activity cycles and related photometric brightness changes.
Results: AB Dor A exhibits photometric brightness variations ranging between 6.75 < Vmag ≤ 7.15 while the X-ray luminosities range between 29.8 < log LX [erg/s] ≤ 30.2 in the 0.3-2.5 keV. As a very active star, AB Dor A shows frequent X-ray flaring, but in the long XMM-Newton observations a kind of basal state is attained very often. This basal state probably varies with the photospheric activity-cycle of AB Dor A, which has a period of ~17 years, but the X-ray variability amounts at most to a factor of ~2, which is, much lower than the typical cycle amplitudes found on the Sun. Title: KOI-676: An active star with two transiting planets and a third possible candidate detected with TTV Authors: Ioannidis, P.; Schmitt, J.; Avdellidou, C.; von Essen, C.; Eric, A. Bibcode: 2013hell.conf...40I Altcode: We report the detection and characterization of two short period, Neptune sized planets, around the active star KOI-676. The orbital elements of both planets are not the expected ones, as they lead to miscalculation of the stellar parameters. We discuss various scenarios which could cause that discrepancy and we suggest that the reason is most probably the high eccentricities of the orbits. We use the Transit Timing Variations, detected in both planets' O-C diagrams to support our theory, while due to the lack of autocorrelation in their pattern we suggest the existence of a third, more massive, mutual inclined, outer perturber. To clarify our suggestions we use n-body simulations to model the TTVs and check the stability of the system. Title: HST far-ultraviolet imaging of DG Tauri. Fluorescent molecular hydrogen emission from the wide opening-angle outflow Authors: Schneider, P. C.; Eislöffel, J.; Güdel, M.; Günther, H. M.; Herczeg, G.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2013A&A...557A.110S Altcode: 2013arXiv1307.2846S One of the most thoroughly studied jets from all young stellar objects is the jet of DG Tau, which we imaged in the far-ultraviolet with the Hubble Space Telescope for the first time. These high spatial resolution images were obtained with long-pass filters and allow us to construct images tracing mainly H2 and C iv emission. We find that the H2 emission appears as a limb-brightened cone with additional emission close to the jet axis. The length of the rims is about 0.″3 or 42 AU before their brightness strongly drops, and the opening angle is about 90°. Comparing our far-ultraviolet data with near-infrared data we find that the fluorescent H2 emission probably traces the outer, cooler part of the disk wind while an origin of the H2 emission in the surface layers (atmosphere) of the (flared) disk is unlikely. Furthermore, the spatial shape of the H2 emission shows little variation over six years which suggests that the outer part of the disk wind is rather stable and probably not associated with the formation of individual knots. The C iv image shows that the emission is concentrated towards the jet axis. We find no indications for additional C iv emission at larger distances, which strengthens the association with the X-ray emission observed to originate within the DG Tau jet. Title: VizieR Online Data Catalog: Emission lines in a flare of AB Dor A (Lalitha+, 2013) Authors: Lalitha, S.; Fuhrmeister, B.; Wolter, U.; Schmitt, J. H. M. M.; Engels, D.; Wieringa, M. H. Bibcode: 2013yCat..35600069L Altcode: 2013yCat..35609069L We present a identification catalog of chromospheric emission lines in the optical range for two flares on AB Dor A, with event 1 being larger than event 3. An additional flare event 2 is not described here because of its overlap with event 1. All lines are identified in an flare- only spectrum, i.e. with a quiescent spectrum subtracted. The data were obtained with ESO's Kueyen telescope equipped with the UVES spectrograph on November 25/26 in 2009. The instrument was operated in dichroic mode (spectral coverage from 3720 to 4945 and from 5695 to 9465 AA). We tabulate measured wavelength, line flux and FWHM for every line and also provide the rest wavelength from the Moore catalog which was used for identification (Moore, 1972, Nat. Stand. Ref. Data. Ser., 40). Few lines were identified with the NIST database.

(2 data files). Title: The Exogenous Dust Populations in the Saturnian's System: a CDA Inventory Authors: Altobelli, N.; Kempf, S.; Postberg, F.; Schmidt, J.; Sterken, V.; Soja, R.; Fiege, K.; Moragas, G.; Srama, R.; Grün, E. Bibcode: 2013EPSC....8..677A Altcode: The analysis of different CDA subsystems data, acquired since SOI, reveals that the Saturnian system is permanently crossed by dust grains originating from the Interplanetary medium, as well as from the neighboring interstellar medium surrounding the Solar System. We observe two main types of particles: on the one hand, those with low injection velocity with respect to Saturn, and whose flux is significantly enhanced by gravitation focusing. On the other hand, particles with fast injection velocities, essentially unperturbed by gravitation focusing. In the slow category, we use our data to test the hypothesis that the Kuiper Belt or TNOs/Centaurs are sources of the detected dust grains. As for the main component of the 'fast population' our data suggest interstellar dust (ISD), with grains also possibly released by Oort Cloud type comets. Title: Transit Observations of the Hot Jupiter HD 189733b at X-Ray Wavelengths Authors: Poppenhaeger, K.; Schmitt, J. H. M. M.; Wolk, S. J. Bibcode: 2013ApJ...773...62P Altcode: 2013arXiv1306.2311P We present new X-ray observations obtained with Chandra ACIS-S of the HD 189733 system, consisting of a K-type star orbited by a transiting Hot Jupiter and an M-type stellar companion. We report a detection of the planetary transit in soft X-rays with a significantly deeper transit depth than observed in the optical. The X-ray data favor a transit depth of 6%-8%, versus a broadband optical transit depth of 2.41%. While we are able to exclude several possible stellar origins for this deep transit, additional observations will be necessary to fully exclude the possibility that coronal inhomogeneities influence the result. From the available data, we interpret the deep X-ray transit to be caused by a thin outer planetary atmosphere which is transparent at optical wavelengths, but dense enough to be opaque to X-rays. The X-ray radius appears to be larger than the radius observed at far-UV wavelengths, most likely due to high temperatures in the outer atmosphere at which hydrogen is mostly ionized. We furthermore detect the stellar companion HD 189733B in X-rays for the first time with an X-ray luminosity of log LX = 26.67 erg s-1. We show that the magnetic activity level of the companion is at odds with the activity level observed for the planet-hosting primary. The discrepancy may be caused by tidal interaction between the Hot Jupiter and its host star. Title: Exoplanet transits in X-rays - a new observational window to exoplanetary atmospheres Authors: Poppenhaeger, K.; Schmitt, J. H. M. M.; Wolk, S. J. Bibcode: 2013prpl.conf2G010P Altcode: Many exoplanets orbit their host stars at close distances, with orbital periods of only a few days. The incident stellar flux can deposit sufficient energy in those planetary atmosphere to lift parts of it out of the planet's gravitational well, causing substantial mass loss. And indeed, mass loss of atomic hydrogen has been observed in UV spectral lines for several planets. However, at the temperatures thought to be present in the planetary outer atmospheres, hydrogen is mostly ionized, so that these measurements lose their sensitivity at higher planetary altitudes. Here we present the first X-ray detection of an exoplanetary transit in front of its host star; we find a surprisingly deep X-ray transit with three times the optical transit depth. This can be traced back to thin outer atmosphere layers of the planet, which are transparent at optical wavelengths but opaque to X-ray photons. The planetary atmosphere is thus X-ray opaque out to radii of 1.75 times the optical radius. Due to the larger energy input of X-ray photons into the planetary atmosphere, we derive a twice as large planetary mass loss rate than thought before. Further observations will allow us to detect individual element species in the outer planetary atmosphere, using transit profiles in different X-ray energy bands. Title: Qatar-1: indications for possible transit timing variations Authors: von Essen, C.; Schröter, S.; Agol, E.; Schmitt, J. H. M. M. Bibcode: 2013A&A...555A..92V Altcode: 2013arXiv1309.1457V
Aims: Variations in the timing of transiting exoplanets provide a powerful tool for detecting additional planets in the system. Thus, the aim of this paper is to discuss the plausibility of transit timing variations (TTVs) on the Qatar-1 system by means of primary transit light curves analysis. Furthermore, we provide an interpretation of the timing variation.
Methods: We observed Qatar-1 between March 2011 and October 2012 using the 1.2 m OLT telescope in Germany and the 0.6 m PTST telescope in Spain. We present 26 primary transits of the hot Jupiter Qatar-1b. In total, our light curves cover a baseline of 18 months.
Results: We report on indications for possible long-term TTVs. Assuming that these TTVs are true, we present two different scenarios that could explain them. Our reported ~190 days TTV signal can be reproduced by either a weak perturber in resonance with Qatar-1b, or by a massive body in the brown dwarf regime. More observations and radial velocity monitoring are required to better constrain the perturber's characteristics. We also refine the ephemeris of Qatar-1b, which we find to be T0 = 2456157.42204 ± 0.0001 BJDTDB and P = 1.4200246 ± 0.0000007 days, and improve the system orbital parameters.

Tables of the transit observations are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A92 Title: What do the Mt. Wilson stars tell us about solar activity? Authors: Schröder, K. -P.; Mittag, M.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M. Bibcode: 2013A&A...554A..50S Altcode: We relate the evolutionary status and mass of the Mt. Wilson project stars with the type and strength of stellar activity as established in decades of monitoring their chromospheric Ca II K line emission. We specifically derive their positions in the Hertzsprung-Russell-diagram (HRD) from Hipparcos parallaxes and SIMBAD B - V data, considering and correcting for the effects of different individual stellar metallicities, and place different activity groups of the Mt. Wilson stars on a common set of Z = 0.02 evolution tracks to obtain a quantitative picture of their relative evolutionary status and mass distribution. We find that, first, the downturn in stellar activity does not depend on absolute age but instead decreases with the relative age as stars advance on the main sequence and thus confirm theoretical expectations, while the most active of the irregularly variable stars are found to scatter around the zero-age main-sequence (ZAMS). Moderately active stars, both with clear cycles like the Sun and those without a dominant activity period, populate the 2nd quarter of main-sequence (MS) evolution. Almost inactive stars are mostly in their 3rd quarter of MS evolution and seem to represent stellar analogues of the solar Maunder minimum state. Totally inactive stars are all in the final quarter of their MS evolution and make up for over 70% of the Mt. Wilson stars that far evolved (the remainders being only weakly active). Most of these are more massive and younger than the Sun. Accordingly, less massive stars did not have enough time to significantly decrease their activity, since they generally evolve more slowly. We find, second, that the Sun is near an apparent upper mass limit for cyclic activity on the MS, because there are no cyclic MS stars much above one solar mass, at least not in the Mt. Wilson sample. Once put in proper perspective with the other Mt. Wilson stars, the Sun indeed ought to be approaching a gradual transition from moderate cyclic activity to a weak, Maunder-minimum-type state, as historic Maunder-type minima seem to indicate already. In addition, the apparent upper mass limit for MS stars to solar-like cyclic activity, not much above one solar mass, is providing dynamo theory with an interesting new challenge. Title: VizieR Online Data Catalog: Transit timing variations on Qatar-1 (von Essen+, 2013) Authors: von Essen, C.; Schroter, S.; Agol, E.; Schmitt, J. H. M. M. Bibcode: 2013yCat..35550092V Altcode: 2013yCat..35559092V The OLT data were taken between March 2011 and October 2012 using an Apogee Alta U9000 CCD with a 9'x9' field of view.

The PTST data were taken between May and August 2012 using a Santa Barbara CCD with a 30'x30' field of view in a 3x3 binning and a Baade R-band filter setup.

(2 data files). Title: Chromospheric Activity in Cool Stars: Open Questions Authors: Schröder, K. -P.; Schmitt, J. H. M. M. Bibcode: 2013ASPC..472..225S Altcode: Despite a wealth of observational insight into chromospheric physics obtained in the past decades, a number of fundamental questions remain to be answered. On some of them we seem to make progress, others are motivation for ongoing research: is there a well-defined “zero-point” of magnetic stellar activity, and by which heating processes is the basal chromospheric flux created? Or: how did the Sun look like during the Maunder Minimum, and when is the next one due? And are activity cycles of cool giants caused by a solar-type dynamo, despite a very different internal structure? What makes magnetic stellar activity be still (or again?) at work in such very evolved stars — should not all angular momentum have been consumed? To find some answers, the Hamburg Robotic Telescope, equipped with a high-resolution (20,000) spectrograph, will start regular operation at its final site in Guanajuato, central Mexico, this year (2012), in part to resume the legendary Mt. Wilson stellar activity monitoring project. Title: Outer Atmospheres of Low Mass Stars — Flare Characteristics. Authors: Lalitha, S.; Schmitt, J. H. M. M. Bibcode: 2013ASPC..472..231L Altcode: We compare the coronal properties during flares on active low mass stars CN Leonis, AB Doradus A and Proxima Centauri observed with XMM-Newton. From the X-ray data we analyze the temporal evolution of temperature, emission measure and coronal abundance. The nature of these flares are with secondary events following the first flare peak in the light curve, raising the question regarding the involved magnetic structure. We infer from the plasma properties and the geometry of the flaring structure that the flare originates from a compact arcade rather than in a single loop. Title: Dust OrbiTrap Sensor (DOTS) for In-Situ Analysis of Airless Planetary Bodies Authors: Briois, C.; Thissen, R.; Engrand, C.; Altwegg, K.; Bouabdellah, A.; Boukrara, A.; Carrasco, N.; Chapuis, C.; Cottin, H.; Grün, E.; Grand, N.; Henkel, H.; Kempf, S.; Lebreton, J. P.; Makarov, A.; Postberg, F.; Srama, R.; Schmidt, J.; Szopa, C.; Thirkell, L.; Tobie, G.; Wurz, P.; Zolotov, M. E. Bibcode: 2013LPI....44.2888B Altcode: 2013LPICo1719.2888B We are developing a high-resolution Fourier Transform-Orbitrap-based mass spectrometer for in situ analysis of dust from airless solar system bodies. Title: iSAP: Interactive Sparse Astronomical Data Analysis Packages Authors: Starck, J. -L.; Bobin, J.; Sureau, F.; Schmitt, J.; Fourt, O.; Moudden, Y.; Abrial, P. Bibcode: 2013ascl.soft03029S Altcode: 2013ascl.soft03029F iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution. Title: HST FUV C iv observations of the hot DG Tauri jet Authors: Schneider, P. C.; Eislöffel, J.; Güdel, M.; Günther, H. M.; Herczeg, G.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2013A&A...550L...1S Altcode: 2012arXiv1212.6363S Protostellar jets are tightly connected to the accretion process and regulate the angular momentum balance of accreting star-disk systems. The DG Tau jet is one of the best-studied protostellar jets and contains plasma with temperatures ranging over three orders of magnitude within the innermost 50 AU of the jet. We present new Hubble Space Telescope (HST) far-ultraviolet (FUV) long-slit spectra spatially resolving the C iv emission (T ~ 105 K) from the jet for the first time, in addition to quasi-simultaneous HST observations of optical forbidden emission lines ([O i], [N ii], [S ii], and [O iii]) and fluorescent H2 lines. The C iv emission peaks at ≈ 42 AU from the stellar position and has a FWHM of ≈ 52 AU along the jet. Its deprojected velocity of around 200 km s-1 decreases monotonically away from the driving source. In addition, we compare our HST data with the X-ray emission from the DG Tau jet. We investigate the requirements to explain the data by an initially hot jet compared to local heating. Both scenarios indicate a mass loss by the T ~ 105 K jet of ~10-9 M yr-1, i.e., between the values for the lower temperature jet (T ≈ 104 K) and the hotter X-ray emitting part (T ≳ 106 K). However, a simple initially hot wind requires a large launching region (~1 AU), and we therefore favor local heating. Title: Ca II H+K fluxes from S-indices of large samples: a reliable and consistent conversion based on PHOENIX model atmospheres Authors: Mittag, M.; Schmitt, J. H. M. M.; Schröder, K. -P. Bibcode: 2013A&A...549A.117M Altcode: Context. Historic stellar activity data based on chromospheric line emission using O.C. Wilson's S-index reach back to the 1960ies and represent a very valuable data resource both in terms of quantity and time-coverage. However, these data are not flux-calibrated and are therefore difficult to compare with modern spectroscopy and to relate to quantitative physics.
Aims: In order to make use of the rich archives of Mount Wilson and many other S-index measurements of thousands of main sequence stars, subgiants and giants in terms of physical Ca II H+K line chromospheric surface fluxes and the related R-index, we seek a new, simple but reliable conversion method of the S-indices. A first application aims to obtain the (empirical) basal chromospheric surface flux to better characterise stars with minimal activity levels.
Methods: We collect 6024 S-indices from six large catalogues from a total of 2530 stars with well-defined parallaxes (as given by the Hipparcos catalogue) in order to distinguish between main sequence stars (2133), subgiants (252) and giants (145), based on their positions in the Hertzsprung-Russell diagram. We use the spectra of a grid of PHOENIX model atmospheres to obtain the photospheric contributions to the S-index. To convert the latter into absolute Ca II H+K chromospheric line flux, we first derive new, colour-dependent photospheric flux relations for, each, main sequence, subgiant and giant stars, and then obtain the chromospheric flux component. In this process, the PHOENIX models also provide a very reliable scale for the physical surface flux.
Results: For very large samples of main sequence stars, giants and subgiants, we obtain the chromospheric Ca II H+K line surface fluxes in the colour range of 0.44 < B - V < 1.6 and the related R-indices. We determine and parametrize the lower envelopes, which we find to well coincide with historic work on the basal chromospheric flux. There is good agreement in the apparently simpler cases of inactive giants and subgiants, and distinguishing different luminosity classes proves important. Main sequence stars, surprisingly, show a remarkable lack of inactive chromospheres in the B - V range of 1.1 to 1.5. Finally, we intoduce a new, "pure" and universal activity indicator: a derivative of the R-index based on the non-basal, purely activity-related Ca II H+K line surface flux, which puts different luminosity classes on the same scale.
Conclusions: The here presented conversion method can be used to directly compare historical S-indices with modern chromospheric Ca II H+K line flux measurements, in order to derive activity records over long periods of time or to establish the long-term variability of marginally active stars, for example. The numerical simplicity of this conversion allows for its application to very large stellar samples. Title: 50 (38) years of stellar X-ray astronomy . Authors: Schmitt, J. H. M. M. Bibcode: 2013MmSAI..84..532S Altcode: 2013MmSAI..84..531S Hot plasmas emit most of their radiative output at soft X-ray energies. The discovery of soft X-ray emission from our Sun was thus not really surprising, since the high temperature of the solar corona had previously been inferred from the correct interpretation of the observed forbidden line emission from a variety of highly ionized ions. The detection of X-ray emission from thousands of solar-like stars at X-ray luminosities substantially above the emission levels observed from the Sun was not anticipated and came as a real surprise. Systematic surveys of stellar X-ray emission among all stars located in the Hertzsprung-Russell diagram have demonstrated that the appearance of hot coronae is a universal phenomenon occurring in all cool stars with outer convection zones. When put in the stellar context, the Sun turns out to be a relatively inactive star due to its slow rotation and advanced age. Young and more rapidly rotating stars are ubiquitously found to exhibit much increased X-ray luminosities compared to the Sun, and this finding suggests that the high-energy environment of our Sun was quite different when it was young and when our solar system was formed, compared to the high-energy environment we encounter today. Title: SUDA: A Dust Mass Spectrometer for compositional surface mapping for the JUICE mission to the Galilean moons Authors: Kempf, S.; Briois, C.; Cottin, H.; Engrand, C.; Gruen, E.; Hand, K. P.; Henkel, H.; Horanyi, M.; Lankton, M. R.; Lebreton, J.; Postberg, F.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.; Tobie, G.; Szopa, C.; Zolotov, M. Y. Bibcode: 2012AGUFM.P51A2015K Altcode: We developed a dust mass spectrometer to measure the composition of ballistic dust particles populating the thin exospheres that were detected around each of the Galilean moons. Since these grains are direct samples from the moons' icy surfaces, unique composition data will be obtained that will help to define and constrain the geological activities on and below the moons' surface. The proposed instrument will make a vital contribution to ESA's planned JUICE mission and provide key answers to its main scientific questions about the surface composition, habitability, the icy crust, and exchange processes with the deeper interior of the Jovian icy moons Europa, Ganymede, and Callisto. The SUrface Dust Aanalyser (SUDA) is a time-of-flight, reflectron-type impact mass spectrometer, opti-mised for a high mass resolution which only weakly depends on the impact location. The small size (268×250×171 mm3), low mass (< 4 kg) and large sen-sitive area (220 cm2) makes the instrument well suited for the challenging demands of the JUICE mission to the Galilean moons Europa, Ganymede, and Callisto. A full-size prototype SUDA instrument was built in order to demonstrate its performance through calibra-tion experiments at the Heidelberg dust accelerator with a variety of cosmo-chemically relevant dust ana-logues. The effective mass resolution of m/Δm of 150-200 is achieved for mass range of interest m = 1-150. Title: SUDA: A Dust Mass Spectrometer for Surface Mapping for the JUICE Mission to the Galilean Moons Authors: Kempf, S.; Briois, C.; Cottin, H.; Engrand, C.; Grün, E.; Hand, K.; Henkel, H.; Horanyi, M.; Lankton, M.; Lebreton, J. -P.; Postberg, F.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.; Tobie, G.; Szopa, C.; Zolotov, M. Bibcode: 2012LPICo1683.1134K Altcode: We developed a mass spectrometer to measure the composition of the dust exospheres of the Galilean moons. Since the grains are samples from the moons' surfaces, unique information is obtained about the geological activities on and below the crust. Title: Compositional Mapping of the Galilean Moons by Mass Spectrometry of Dust Ejecta Authors: Postberg, F.; Briois, C.; Cottin, H.; Engrand, C.; Grün, E.; Hand, K.; Henkel, H.; Horányi, M.; Kempf, S.; Lankton, M.; Lebreton, J. -P.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R.; Tobie, G.; Szopa, C.; Zolotov, M. Bibcode: 2012LPICo1683.1099P Altcode: In situ detector analyzing the chemistry of rocky/icy dust particles as samples of planetary objects from where they were ejected by micrometeoroid bombardment. As the ballistic grains can be traced back to surface, compositional maps can be achieved. Title: Dust Mass Spectrometer for Compositional Mapping of the Galilean Moons Authors: Sternovsky, Zoltan; Kempf, S.; Briois, C.; Cottin, H.; Engrand, C.; Horanyi, M.; Gruen, E.; Hand, K.; Henkel, H.; Lebreton, J.; Postbert, F.; Schmidt, J.; Srama, R.; Thissen, R.; Tobie, G.; Szopa, C.; Zolotov, M. Bibcode: 2012DPS....4411218S Altcode: We present the SUDA (Surface Dust Analyzer) instrument that will provide detailed answers to the main goals of ESA's JUICE mission about habitability, surface composition and exchange processes with the interior. The surfaces of the icy moons of Jupiter can be analyzed to unprecedented mass resolution and sensitivity down to the ppm level using modern dust analyzer instruments. The measurement method is based on analyzing the chemical composition of dust particles released from the surfaces of the moons. These dust particles populate the exosphere with densities sufficient for obtaining a valuable compositional picture even from a few flybys. The SUDA instrument is well suited for the detection of water ice particles with traces of the expected hydrated minerals such as sodium carbonates and magnesium sulphates, hydrated sodium chloride, and of organic materials. The value of a dust analyzer is well demonstrated by Cassini's Cosmic Dust Analyzer that has analyzed Enceladus's plume particles and E ring grains. SUDA is a time-of-flight, reflectron-type impact mass spectrometer, optimized for high mass resolution. The small size (268×250×171 mm3), low mass (< 4 kg) and large sensitive area (220 cm2) makes the instrument well suited for the challenging demands of the JUICE mission. A full-size prototype was used to demonstrate the performance through calibration experiments with a variety of cosmochemically relevant dust analogues. The effective mass resolution of m/Δm of 150- 200 is achieved for mass range of interest m = 1-150. Title: Multichannel Poisson denoising and deconvolution on the sphere: application to the Fermi Gamma-ray Space Telescope Authors: Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I. Bibcode: 2012A&A...546A.114S Altcode: 2012arXiv1206.2787S A multiscale representation-based denoising method for spherical data contaminated with Poisson noise, the multiscale variance stabilizing transform on the sphere (MS-VSTS), has been previously proposed. This paper first extends this MS-VSTS to spherical two and one dimensions data (2D-1D), where the two first dimensions are longitude and latitude, and the third dimension is a meaningful physical index such as energy or time. We then introduce a novel multichannel deconvolution built upon the 2D-1D MS-VSTS, which allows us to get rid of both the noise and the blur introduced by the point spread function (PSF) in each energy (or time) band. The method is applied to simulated data from the Large Area Telescope (LAT), the main instrument of the Fermi Gamma-ray Space Telescope, which detects high energy gamma-rays in a very wide energy range (from 20 MeV to more than 300 GeV), and whose PSF is strongly energy-dependent (from about 3.5 at 100 MeV to less than 0.1 at 10 GeV). Title: Real-Time Tropical Cyclone Prediction Using Coamps-Tc Authors: Doyle, J. D.; Jin, Y.; Hodur, R. M.; Chen, S.; Jin, H.; Moskaitis, J.; Reinecke, A.; Black, P.; Cummings, J.; Hendricks, E.; Holt, T.; Liou, C. -S.; Peng, M.; Reynolds, C.; Sashegyi, K.; Schmidt, J.; Wang, S. Bibcode: 2012aogs...28...15D Altcode: 2012agos...28...15D A new version of the Coupled Ocean/Atmosphere Mesoscale Prediction System for Tropical Cyclones (COAMPS-TCTM) has been developed specifically for forecasting tropical cyclone track, structure, and intensity. The COAMPS-TC has been tested in real-time in both coupled and uncoupled modes over the past several tropical cyclone seasons in the Pacific and Atlantic basins at a horizontal grid spacing of 5 km. An evaluation of a large sample of real-time forecasts for the 2010 and 2011 seasons in the Atlantic basin reveals that the COAMPS-TC predictions have smaller intensity errors than other real-time dynamical models for forecasts beyond the 30 h time. Real-time forecasts for Hurricane Irene (2011) illustrate the capability of the model to capture both the intensity and the fine-scale features (e.g., eyewall, rainbands), in agreement with observations. The results of this research highlight the promise of highresolution deterministic and ensemble-based approaches for tropical cyclone prediction using COAMPS-TC. Title: Compositional Mapping of the Galilean Moons by Mass Spectrometry of Dust Ejecta Authors: Postberg, Frank; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Lebreton, J.; Schmidt, J.; Srama, R.; Sternovsky, Z.; Thissen, R. Bibcode: 2012DPS....4410107P Altcode: We present a method to measure composition and origin of ballistic dust particles populating the thin exospheres oft he Galilean moons. The presence of such particles, generated by the ambient meteoroid bombardment that erodes the surface has alredy been detected by Galileo spacecraft. As these grains are almost unaltered samples from the moons’ surfaces, unique composition data can be obtained from a dust spectrometer. The ballistic trajectories can be traced back to their region of origin at the surface, which allows in situ compositional mapping at flybys or from an orbiter. The well-established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn’s moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons allow for the qualitative and quantitative analysis of samples from various surface areas, thus combining the advantages of remote sensing and a lander. The detection rates at 200-500 km altitude are on the order of thousand per orbit and hundreds per flyby. Thus an orbiter can create a compositional map of samples taken from a greater part of the surface, whereas flybies allow an investigation of certain areas of interest. The method provides chemical characterization of ice and dust particles encountered at speeds at 1 km/s and above. It measures the bulk composition oft the ice and has ppm-level sensitivity to hydrated salts, most rock forming materials, and organic compounds. Key chemical and isotopic constraints for varying provinces or geological formations on the surfaces lead to better understanding of the body’s geological evolution. Regions which were subject to endogenic or exogenic alteration (resurfacing, radiation, old/new regions) are distinguished and investigated. In particular exchange processes with subsurface oceans on the Galileian moons could be determined with high quantitative precision. Title: A Dust Spectrometer for JUICE Authors: Srama, R.; Kempf, S.; Postberg, F.; Schmidt, J.; Krüger, H.; Thissen, R.; Sternosky, Z.; Engrand, C.; Fiege, K.; Hillier, J. K.; Horanyi, M.; Khalisi, E.; Mocker, A.; Moragas-Klostermeyer, G.; Spahn, F.; Sterken, V.; Grün, E.; Röser, H. P. Bibcode: 2012epsc.conf..839S Altcode: 2012espc.conf..839S The Galileo spacecraft characterised the dust environment in the jovian system. The discoveries included an extended dusty ring system, the nano-metre sized stream particles originating from the moon Io, and the dust exospheres around the Galilean satellites Ganymed, Europa and Callisto. The study of the nanodust-magnetosphere interaction and the compositional analysis of dust particles ejected by the surfaces of Ganymed or Europa offer unique future opportunities. New dust instrumentation is a factor of 10 more sensitive than the former Galileo detector and adds compositional analysis for moon surface studies complementary to neutral gas or ion particle investigations. A dust spectrometer is highly sensitive for organic, salty water ice and mineral particles. This paper focuses on instrumental aspects of this investigation. Title: Geochemistry of Enceladus and the Galilean Moons from in situ Analysis of Ejecta Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Kempf, S.; Srama, R. Bibcode: 2012epsc.conf..693P Altcode: 2012espc.conf..693P The contribution of Cassini's dust detector CDA in revealing subsurface liquid water on Enceladus has demonstrated how questions in planetary science can be addressed by in situ analyses of icy dust particles. As the measurements are particularly sensitive to non-ice compounds embedded in an ice matrix, concentrations of various salts and organic compounds can be identified in different dust populations. This has successfully been demonstrated at Enceladus, giving insights in the moons subsurface geochemistry. This method can be applied to any planetary body that ejects particles to distances suitable for spacecraft sensing. The Galilean moons are of particular relevance since they are believed to steadily emit grains from their surfaces either by active volcanism (Io) or stimulated by micrometeoroid bombardment (Europa, Ganymede, Callisto). Title: The 3-dimensional structure of Saturn's E ring inferred from Cassini CDA observations Authors: Kempf, S.; Horanyi, M.; Juhasz, A.; Cruz, A.; Srama, R.; Postberg, F.; Spahn, F.; Schmidt, J. Bibcode: 2012epsc.conf..701K Altcode: 2012espc.conf..701K Seven years of Cassini observations dramatically changed our understanding of Saturn's diffuse dust ring . Before Cassini's insertion into its orbit around Saturn in 2004, the E ring was thought to extend from 3RS to 7RS (Saturn radius RS = 60 330km) and to be dominantly composed of micron-sized water ice grains. In-situ observations by Cassini's Cosmic Dust Analsyer (CDA) showed, however, that the ring extens at least until Titan's Orbit (≈ 20RS) and that the ring particle population ranges between a few nanometers and few tens of micrometers [15]. Recent observations by the Cassini camera ISS and by CDA revealed a complex ring morphology [3, 7]. The radial density profile of the ring turned out to depend on the longitude relative to Sun. On the morning side the ring's density peak is inside the orbit of the ring's source moon Enceladus, while on the evening side the density peak is exterior of Enceladus's orbit. Title: The vertical structure of the Daphnis wakes Authors: Seiß, M.; Salo, H.; Hoffmann, H.; Spahn, F.; Schmidt, J. Bibcode: 2012epsc.conf..957S Altcode: 2012espc.conf..957S When Saturn approached its equinox in August 2009 the Sun cast long shadows onto the ring-plane. Many shadows are caused by local vertical perturbations of the otherwise thin disk. The shadows at the Keeler gap edge are, for example, caused by Daphnis' gravitational perturbations. It has been proposed that these large vertical structures (more than 1 km) are caused by the inclination of Daphnis' orbit [1]. Here we show the possibility that also the ring-moon Daphnis on a non-inclined orbit is able to produce these vertical structures. We performed N-body particle simulations and found that particle collisions in the wake crests can significantly increase the vertical dispersion velocity and therefore the height of the corresponding structures. In the case of the Keeler gap edges this can lead to vertical excursions of the ring particles larger than 1 km. We compare and discuss the importance of both processes (moon inclination and particle collisions) for the vertical structure of the Keeler gap edges. Title: Dynamics of particles in central Encke ringlet Authors: Sun, K. -L.; Spahn, F.; Schmidt, J. Bibcode: 2012epsc.conf..710S Altcode: 2012espc.conf..710S The Encke gap is a 320 km wide division in the Saturn A ring centered at 133,581 km. There are at least 3 ringlets in Encke gap, and the central one shares the orbit with Pan [1]. Observations suggest that these ringlets are mainly composed of micronsized particles [2]. The lifetime of these particles are restricted, mechanisms must be at work to replenish these ringlets. The kinetic balance of dust production, dynamical evolution, and loss of dust has been investigated in [3]. In this work, we focus on the particle dynamics in the Encke gap. Our results show that in the central Encke ringlet: (1) The solar radiation pressure provides a minimum particle radius of 7μm; (2) The plasma drag force pushes particle outward in a rate of ∼ 1km/yr; (3) Particles are in a 'modified' horseshoe orbit which is the result of horseshoe orbit plus plasma drag, this orbit prevent particles to reach large co-rotational longitudes of Pan. Title: Coronal activity cycles in nearby G and K stars. XMM-Newton monitoring of 61 Cygni and α Centauri Authors: Robrade, J.; Schmitt, J. H. M. M.; Favata, F. Bibcode: 2012A&A...543A..84R Altcode: 2012arXiv1205.3627R Context. While we have ample evidence of stellar analogues to the solar activity cycle for chromospheric activity, very little is known about stellar coronal cycles and their possible similarities to the solar behavior.
Aims: An ongoing X-ray monitoring program of solar-like stars with XMM-Newton is performed to investigate coronal activity cycles.
Methods: We used X-ray observations of the nearby binaries 61 Cyg A/B (K5V and K7V) and α Cen A/B (G2V and K1V) to study the long-term evolution of magnetic activity in weakly to moderately active G + K dwarfs over nearly a decade. Specifically we searched for X-ray activity cycles and related coronal changes and compared them to the solar behavior.
Results: For 61 Cyg A we find a regular coronal activity cycle analog to its 7.3 yr chromospheric cycle. The X-ray brightness variations are with a factor of three significantly lower than on the Sun, yet the changes of coronal properties resemble the solar behavior, with stronger variations occurring in the respective hotter plasma components. 61 Cyg B does not show a clear cyclic coronal trend so far, but the X-ray data match the more irregular chromospheric cycle. The two α Cen stars exhibit significant long-term X-ray variability. α Cen A shows indications for cyclic variability of an order of magnitude with a period of about 12-15 years; the α Cen B data suggest an X-ray cycle with an amplitude of about six to eight and a period of 8-9 years. The sample stars exhibit X-ray luminosities ranging between LX ≲ 1 × 1026 - 3 × 1027 erg s-1 in the 0.2-2.0 keV band and have coronae dominated by cool plasma with variable average temperatures of around 1.0 - 2.5 MK.
Conclusions: Coronal activity cycles are apparently a common phenomenon in older, slowly rotating G and K stars. The spectral changes of the coronal X-ray emission over the cycles are solar-like in all studied targets.

Appendix A is available in electronic form at http://www.aanda.org Title: Magnetic activity of cool stars in the Hertzsprung-Russell diagram Authors: Schmitt, J. H. M. M. Bibcode: 2012IAUS..286..296S Altcode: I review the X-ray emission from cool stars with outer convection zones in comparison to the Sun with a focus on the properties of low-activity stars. I present the recent results of long-term X-ray monitoring which demonstrate the existence of X-ray cycles on stars with known calcium cycles. The evidence of a minimum stellar X-ray flux is presented and arguments are put forward for the view that the Sun in its extended minimum between 2008 - 2009 behaved very much like a Maunder-minimum Sun. Title: Soft X-ray emission as diagnostics for Maunder minimum stars Authors: Poppenhaeger, Katja; Schmitt, Jürgen H. M. M. Bibcode: 2012IAUS..286..346P Altcode: The identification of stars in a Maunder minimum state purely from their chromospheric emission (for example in Ca II lines) has proven to be difficult. Photospheric contributions, metallicities and possible deviations from the main sequence stage may lead to very low values of the traditional chromospheric activity indicators, while no Maunder minimum state may be present. X-ray observations can be a key tool for identifying possible Maunder minimum stars: We have detected very soft X-ray emission from low-temperature coronal plasma, similar to emission from solar coronal holes, in several stars with very low chromospheric activity indicators. The coronal properties inferred from X-ray observations can therefore yield a crucial piece of information to verify Maunder minimum states in stars. Title: The evolution of the X-ray emission of HH 2. Investigating heating and cooling processes Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2012A&A...542A.123S Altcode: 2012arXiv1205.3905S Young stellar objects often drive powerful bipolar outflows, which evolve on timescales of a few years. An increasing number of these outflows has been detected in X-rays implying the existence of million degree plasma almost co-spatial with the lower temperature gas observed in the optical and near-infrared. The details of the heating and cooling processes of the X-ray emitting part of these so-called Herbig-Haro objects are still ambiguous, e.g., whether the cooling is dominated by expansion, radiation, or thermal conduction. We present a second epoch Chandra observation of the first X-ray detected Herbig-Haro object (HH 2) and derive the proper-motion of the X-ray emitting plasma and its cooling history. We argue that the most likely explanation for the constancy of the X-ray luminosity, the alignment with the optical emission and the proper-motion is that the cooling is dominated by radiative losses leading to cooling times exceeding a decade. We explain that a strong shock caused by fast material ramming into slower gas in front of it about ten years ago can explain the X-ray emission while being compatible with the available multi-wavelength data of HH 2. Title: A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei Authors: Chen, W. P.; Hu, S. C. -L.; Errmann, R.; Adam, Ch.; Baar, S.; Berndt, A.; Bukowiecki, L.; Dimitrov, D. P.; Eisenbeiß, T.; Fiedler, S.; Ginski, Ch.; Gräfe, C.; Guo, J. K.; Hohle, M. M.; Hsiao, H. Y.; Janulis, R.; Kitze, M.; Lin, H. C.; Lin, C. S.; Maciejewski, G.; Marka, C.; Marschall, L.; Moualla, M.; Mugrauer, M.; Neuhäuser, R.; Pribulla, T.; Raetz, St.; Röll, T.; Schmidt, E.; Schmidt, J.; Schmidt, T. O. B.; Seeliger, M.; Trepl, L.; Briceño, C.; Chini, R.; Jensen, E. L. N.; Nikogossian, E. H.; Pandey, A. K.; Sperauskas, J.; Takahashi, H.; Walter, F. M.; Wu, Z. -Y.; Zhou, X. Bibcode: 2012ApJ...751..118C Altcode: 2012arXiv1203.5271T GM Cephei (GM Cep), in the young (~4 Myr) open cluster Trumpler 37, has been known to be an abrupt variable and to have a circumstellar disk with a very active accretion. Our monitoring observations in 2009-2011 revealed that the star showed sporadic flare events, each with a brightening of <~ 0.5 mag lasting for days. These brightening events, associated with a color change toward blue, should originate from increased accretion activity. Moreover, the star also underwent a brightness drop of ~1 mag lasting for about a month, during which time the star became bluer when fainter. Such brightness drops seem to have a recurrence timescale of a year, as evidenced in our data and the photometric behavior of GM Cep over a century. Between consecutive drops, the star brightened gradually by about 1 mag and became blue at peak luminosity. We propose that the drop is caused by the obscuration of the central star by an orbiting dust concentration. The UX Orionis type of activity in GM Cep therefore exemplifies the disk inhomogeneity process in transition between the grain coagulation and the planetesimal formation in a young circumstellar disk. Title: The high-energy environment in the super-Earth system CoRoT-7 Authors: Poppenhaeger, K.; Czesla, S.; Schröter, S.; Lalitha, S.; Kashyap, V.; Schmitt, J. H. M. M. Bibcode: 2012A&A...541A..26P Altcode: 2012arXiv1203.4080P High-energy irradiation of exoplanets has been identified to be a key influence on the stability of these planets' atmospheres. So far, irradiation-driven mass-loss has been observed only in two Hot Jupiters, and the observational data remain even more sparse in the super-Earth regime. We present an investigation of the high-energy emission in the CoRoT-7 system, which hosts the first known transiting super-Earth. To characterize the high-energy XUV radiation field into which the rocky planets CoRoT-7b and CoRoT-7c are immersed, we analyzed a 25 ks XMM-Newton observation of the host star. Our analysis yields the first clear (3.5σ) X-ray detection of CoRoT-7. We determine a coronal temperature of ≈ 3 MK and an X-ray luminosity of 3 × 1028 erg s-1. The level of XUV irradiation on CoRoT-7b amounts to ≈37 000 erg cm-2 s-1. Current theories for planetary evaporation can only provide an order-of-magnitude estimate for the planetary mass loss; assuming that CoRoT-7b has formed as a rocky planet, we estimate that CoRoT-7b evaporates at a rate of about 1.3 × 1011 g s-1 and has lost ≈4-10 earth masses in total. Title: Publisher's Note: Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT [Phys. Rev. D 85, 083007 (2012)] Authors: Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grégoire, T.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hayashi, K.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Linden, T.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Reimer, A.; Reimer, O.; Roth, M.; Sbarra, C.; Schmitt, J.; Sgrò, C.; Siegal-Gaskins, J.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.; Komatsu, E. Bibcode: 2012PhRvD..85j9901A Altcode: No abstract at ADS Title: Soft Coronal X-Rays from β Pictoris Authors: Günther, H. M.; Wolk, S. J.; Drake, J. J.; Lisse, C. M.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2012ApJ...750...78G Altcode: 2012arXiv1203.3242G A-type stars are expected to be X-ray dark, yet weak emission has been detected from several objects in this class. We present new Chandra/HRC-I observations of the A5 V star β Pictoris. It is clearly detected with a flux of (9 ± 2) × 10-4 counts s-1. In comparison with previous data this constrains the emission mechanism and we find that the most likely explanation is an optically thin, collisionally dominated, thermal emission component with a temperature around 1.1 MK. We interpret this component as a very cool and dim corona, with log LX /L bol = -8.2 (0.2-2.0 keV). Thus, it seems that β Pictoris shares more characteristics with cool stars than previously thought. Title: Basal chromospheric flux and Maunder Minimum-type stars: the quiet-Sun chromosphere as a universal phenomenon Authors: Schröder, K. -P.; Mittag, M.; Pérez Martínez, M. I.; Cuntz, M.; Schmitt, J. H. M. M. Bibcode: 2012A&A...540A.130S Altcode: 2012arXiv1202.3314S
Aims: We demonstrate the universal character of the quiet-Sun chromosphere among inactive stars (solar-type and giants). By assessing the main physical processes, we shed new light on some common observational phenomena.
Methods: We discuss measurements of the solar Mt. Wilson S-index, obtained by the Hamburg Robotic Telescope around the extreme minimum year 2009, and compare the established chromospheric basal Ca II K line flux to the Mt. Wilson S-index data of inactive ("flat activity") stars, including giants.
Results: During the unusually deep and extended activity minimum of 2009, the Sun reached S-index values considerably lower than in any of its previously observed minima. In several brief periods, the Sun coincided exactly with the S-indices of inactive ("flat", presumed Maunder Minimum-type) solar analogues of the Mt. Wilson sample; at the same time, the solar visible surface was also free of any plages or remaining weak activity regions. The corresponding minimum Ca II K flux of the quiet Sun and of the presumed Maunder Minimum-type stars in the Mt. Wilson sample are found to be identical to the corresponding Ca II K chromospheric basal flux limit.
Conclusions: We conclude that the quiet-Sun chromosphere is a universal phenomenon among inactive stars. Its mixed-polarity magnetic field, generated by a local, "fast" turbulent dynamo finally provides a natural explanation for the minimal soft X-ray emission observed for inactive stars. Given such a local dynamo also works for giant chromospheres, albeit on longer length scales, i.e., l ∝ R/g, with R and g as stellar radius and surface gravity, respectively, the existence of giant spicular phenomena and the guidance of mechanical energy toward the acceleration zone of cool stellar winds along flux-tubes have now become traceable. Title: Light Curves of Planetary Transits: How About Ellipticity? Authors: von Essen, Carolina; Huber, Klaus F.; Schmitt, Jürgen H. M. M. Bibcode: 2012IAUS..282..133V Altcode: The observation of transit light curves has become a key technique in the study of exoplanets, since modeling the resulting transit photometry yields a wealth of information on the planetary systems. Considering that the limited accuracy of ground-based photometry does directly translate into uncertainties in the derived model parameters, simplified spherical planet models were appropriate in the past. With the advent of space-based instrumentation capable of providing photometry of unprecedented accuracy, however, a need for more realistic models has arisen. Title: Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT Authors: Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fortin, P.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grégoire, T.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hayashi, K.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Linden, T.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Reimer, A.; Reimer, O.; Roth, M.; Sbarra, C.; Schmitt, J.; Sgrò, C.; Siegal-Gaskins, J.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.; Komatsu, E. Bibcode: 2012PhRvD..85h3007A Altcode: 2012arXiv1202.2856A The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes |b|>30° in four energy bins spanning 1-50 GeV. At multipoles ℓ≥155, corresponding to angular scales ≲2°, angular power above the photon noise level is detected at >99.99% confidence level in the 1-2 GeV, 2-5 GeV, and 5-10 GeV energy bins, and at >99% confidence level at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ≥155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, CP/⟨I⟩2=9.05±0.84×10-6sr, while the energy dependence of CP is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γs=2.40±0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background. Title: SARIM PLUS—sample return of comet 67P/CG and of interstellar matter Authors: Srama, R.; Krüger, H.; Yamaguchi, T.; Stephan, T.; Burchell, M.; Kearsley, A. T.; Sterken, V.; Postberg, F.; Kempf, S.; Grün, E.; Altobelli, N.; Ehrenfreund, P.; Dikarev, V.; Horanyi, M.; Sternovsky, Z.; Carpenter, J. D.; Westphal, A.; Gainsforth, Z.; Krabbe, A.; Agarwal, J.; Yano, H.; Blum, J.; Henkel, H.; Hillier, J.; Hoppe, P.; Trieloff, M.; Hsu, S.; Mocker, A.; Fiege, K.; Green, S. F.; Bischoff, A.; Esposito, F.; Laufer, R.; Hyde, T. W.; Herdrich, G.; Fasoulas, S.; Jäckel, A.; Jones, G.; Jenniskens, P.; Khalisi, E.; Moragas-Klostermeyer, G.; Spahn, F.; Keller, H. U.; Frisch, P.; Levasseur-Regourd, A. C.; Pailer, N.; Altwegg, K.; Engrand, C.; Auer, S.; Silen, J.; Sasaki, S.; Kobayashi, M.; Schmidt, J.; Kissel, J.; Marty, B.; Michel, P.; Palumbo, P.; Vaisberg, O.; Baggaley, J.; Rotundi, A.; Röser, H. P. Bibcode: 2012ExA....33..723S Altcode: 2012ExA...tmp...12S The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission. Title: Saturn's egg-shaped E ring Authors: Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Schmidt, J.; Spahn, F.; Horanyi, M. Bibcode: 2012EGUGA..1411409K Altcode: Saturn's diffuse E ring is unique in many ways. Not only its enormous size encompassing the icy moons Mimas, Enceladus, Tethys, Dione, Rhea and even Titan is remarkable, but also its unique property to be composed of narrowly size-distributed grains centered in the interval between 0.3 and 3 microns. Cassini measurements revealed that the ring is primarily fed by water ice grains emerging from the geologically active south pole region of the ring moon Enceladus. Recent data acquired by the Cassini Cosmic Dust Analyser (CDA) revealed another unique property of this enigmatic ring: the morphology of the inner dense E ring shows a pronounced dependence on the local time. Towards the Sun (i.e noon) the radial density profile of the ring is compressed inwards, while at local midnight the radial density profile flares out. This implies that the E ring does not have circular, disk-like morphology but has an egg-shaped appearance. Also the particle size distribution seems to depend on the local time. Observations by the Cassini camera ISS are consistent with the CDA conclusion. Title: Dust Spectroscopy of the Jovian Satellites Authors: Sternovsky, Z.; Gruen, E.; Horanyi, M.; Kempf, S.; Postberg, F.; Schmidt, J. Bibcode: 2012LPI....43.2929S Altcode: Dust instruments can be used for surface composition measurements of Europa and Ganymede. Title: A consistent analysis of three years of ground- and space-based photometry of TrES-2 Authors: Schröter, S.; Schmitt, J. H. M. M.; Müller, H. M. Bibcode: 2012A&A...539A..97S Altcode: 2012arXiv1205.0969S The G0V dwarf TrES-2A, which is transited by a hot Jupiter, is one of the main short-cadence targets of the Kepler telescope and, therefore, among the photometrically best-studied planetary systems known today. Given the near-grazing geometry of the planetary orbit, TrES-2 offers an outstanding opportunity to search for changes in its orbital geometry. Our study focuses on the secular change in orbital inclination reported in previous studies. We present a joint analysis of the first four quarters of Kepler photometry together with the publicly available ground-based data obtained since the discovery of TrES-2b in 2006. We use a common approach based on the latest information regarding the visual companion of TrES-2A and stellar limb darkening to further refine the orbital parameters. We find that the Kepler observations rule out a secular inclination change of previously claimed order as well as variations of the transit timing, however, they also show slight indication for further variability in the inclination which remains marginally significant.

Appendix A is available in electronic form at http://www.aanda.org Title: The extended chromosphere of CoRoT-2A. Discovery and analysis of the chromospheric Rossiter-McLaughlin effect Authors: Czesla, S.; Schröter, S.; Wolter, U.; von Essen, C.; Huber, K. F.; Schmitt, J. H. M. M.; Reichart, D. E.; Moore, J. P. Bibcode: 2012A&A...539A.150C Altcode: The young G7V dwarf CoRoT-2A is transited by a hot Jupiter and among the most active planet host-stars known to date. We report on the first detection of a chromospheric Rossiter-McLaughlin effect observed in the Ca ii H and K emission-line cores. In Ca ii H and K, the transit lasts 15% longer than that observed in visual photometry, indicating that chromospheric emission extends 100 000 km beyond the photosphere. Our analysis is based on a time series of high-resolution UVES spectra obtained during a planetary transit and simultaneously obtained photometry observed with one of the PROMPT telescopes. The chromospheric Rossiter-McLaughlin effect provides a new tool to spatially resolve the chromospheres of active planet host-stars.

Based on observations obtained with UVES at the ESO VLT Kueyen telescope (program ID 385.D-0426). Title: Estimating transiting exoplanet masses from precise optical photometry Authors: Mislis, D.; Heller, R.; Schmitt, J. H. M. M.; Hodgkin, S. Bibcode: 2012A&A...538A...4M Altcode: 2011arXiv1112.2008M We present a theoretical analysis of the optical light curves (LCs) for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i) reflected and thermally emitted light by the planet; (ii) the ellipsoidal shape of the star due to the gravitational pull of the planet; and (iii) the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet's albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii) can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet's mass. To detect the ellipsoidal variations, the LC requires a minimum precision of 10-4, which coincides with the precision of the Kepler mission. As a test of our approach, we consider the Kepler LC of the transiting object HAT-P-7. We are able to estimate the mass of the companion, and confirm its planetary nature solely from the LC data. Future space missions, such as PLATO and the James Webb Space Telescope with even higher photometric precision, will be able to reduce the errors in all parameters. Detailed modeling of any out-of-eclipse variations seen in new systems will be a useful diagnostic tool prior to the requisite ground based radial velocity follow-up. Title: Búsqueda de exoplanetas: ?`Cuán confiables son las observaciones obtenidas mediante telescopios terrestres? Authors: von Essen, C.; Páez, R. I.; Schmitt, J. H. M. M. Bibcode: 2012BAAA...55..411V Altcode: The main goal of this work is to present a model that generates synthetic light curves of primary transits, comparable to real observations, to study transit timing variations (TTV). Considering that we can observe the sky from different virtual observatories, we simulated observations of primary transits caused by a hot-Jupiter. We artificially added a perturbation caused by an Earth-like exoplanet in a 3:2 mean motion resonance. These simulations would allow to analyze the degree of distorsion that the light curves admit, in order to recover back the induced signal by the exoplanet. FULL TEXT IN SPANISH Title: The ultracool dwarf DENIS-P J104814.7-395606. Chromospheres and coronae at the low-mass end of the main-sequence Authors: Stelzer, B.; Alcalá, J.; Biazzo, K.; Ercolano, B.; Crespo-Chacón, I.; López-Santiago, J.; Martínez-Arnáiz, R.; Schmitt, J. H. M. M.; Rigliaco, E.; Leone, F.; Cupani, G. Bibcode: 2012A&A...537A..94S Altcode: 2011arXiv1111.6880S Context. Several diagnostics ranging from the radio to the X-ray band are suitable for investigating the magnetic activity of late-type stars. Empirical connections between the emission at different wavelengths place constraints on the nature and efficiency of the emission mechanism and the physical conditions in different atmospheric layers. The activity of ultracool dwarfs, at the low-mass end of the main-sequence, is poorly understood.
Aims: We perform a multi-wavelength study of one of the nearest M9 dwarfs, DENIS-P J104814.7-395606 (4 pc), to examine its position within the group of magnetically active ultracool dwarfs, and, in general, advance our understanding of these objects by comparing them to early-M type dwarf stars and the Sun.
Methods: We obtained an XMM-Newton observation of DENIS-P J104814.7-395606 and a broad-band spectrum from the ultraviolet to the near-infrared with X-Shooter. From this dataset, we derive the X-ray properties, stellar parameters, kinematics, and the emission-line spectrum tracing chromospheric activity. We integrate these data by compiling the activity parameters of ultracool dwarfs from the literature.
Results: Our deep XMM-Newton observation provides the first X-ray detection of DENIS-P J104814.7-395606 (log Lx = 25.1), as well as the first measurement of its V band brightness (V = 17.35 mag). The flux-flux relations between X-ray and chromospheric activity indicators are here for the first time extended into the regime of the ultracool dwarfs. The approximate agreement of DENIS-P J104814.7-395606 and other ultracool dwarfs with flux-flux relations for early-M dwarfs suggests that the same heating mechanisms work in the atmospheres of ultracool dwarfs, albeit weaker as judged from their lower fluxes. The observed Balmer decrements of DENIS 1048-3956 are compatible with optically thick plasma in local thermal equilibrium (LTE) at low, nearly photospheric temperature or optically thin LTE plasma at 20 000 K. Describing the decrements with case B recombination requires different emitting regions for Hα and the higher Balmer lines. The high observed Hα/Hβ flux ratio is also poorly fitted by the optically thin models. We derive a similarly high value for the Hα/Hβ ratio of vB 10 and LHS 2065 and conclude that this may be a characteristic of ultracool dwarfs. We add DENIS-P J104814.7-395606 to the list of ultracool dwarfs detected in both the radio and the X-ray band. The Benz-Güdel relation between radio and X-ray luminosity of late-type stars is well-known to be violated by ultracool dwarfs. We speculate on the presence of two types of ultracool dwarfs with distinct radio and X-ray behaviors. Title: A magnetic cycle of τ Bootis? The coronal and chromospheric view Authors: Poppenhaeger, K.; Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2012AN....333...26P Altcode: 2013arXiv1303.0311P τ Bootis is a late F-type main sequence star orbited by a Hot Jupiter. During the last years spectropolarimetric observations led to the hypothesis that this star may host a global magnetic field that switches its polarity once per year, indicating a very short activity cycle of only one year duration. In our ongoing observational campaign, we have collected several X-ray observations with XMM-Newton and optical spectra with TRES/FLWO in Arizona to characterize τ Boo's corona and chromosphere over the course of the supposed one-year cycle. Contrary to the spectropolarimetric reconstructions, our observations do not show indications for a short activity cycle. Title: X-rays at the End of the Main Sequence Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2011ASPC..448.1231R Altcode: 2011csss...16.1231R We present results from XMM-Newton and Chandra observations of very low-mass stars. These X-ray observations quite frequently detect, besides large flares, also their quasi-quiescent emission. Our analysis shows that stars down to the bottom of the main sequence are able to generate X-ray emission at high activity levels of log LX/Lbol = -3 … -4, similar to more massive stars operating a solar-type dynamo. However, in very low-mass stars the highly active phase may persist over Gyr, significantly longer than for more massive stars or brown dwarfs. We further discuss examples of strong X-ray flares produced by these stars. Altogether, the X-ray properties require the presence of an efficient dynamo mechanism that is capable of generating the igneous coronae of very low-mass stars. Title: Transit and Spectral Studies of CoRoT-2 Authors: Wolter, U.; Czesla, S.; Schröter, S.; Huber, K.; Schmitt, J. H. M. M. Bibcode: 2011ASPC..448.1043W Altcode: 2011csss...16.1043W A transiting planet acts as a sharply defined shutter that scans the surface of its host star. Based on very-low-noise photometry from the CoRoT satellite and high-resolution spectra taken with VLT/UVES we employ this shutter to resolve surface features of the highly active G-type star CoRoT-2a which is transited by the planet CoRoT-2b. We shortly discuss the age of the CoRoT-2 system based on the equivalent width of the Li I λ 6708 Å line of 140 ± 1 mÅ. Title: The Bipolar X-Ray Jet of the Classical T Tauri Star DG Tau Authors: Güdel, M.; Audard, M.; Bacciotti, F.; Bary, J. S.; Briggs, K. R.; Cabrit, S.; Carmona, A.; Codella, C.; Dougados, C.; Eislöffel, J.; Gueth, F.; Günther, H. M.; Herczeg, G.; Kundurthy, P.; Matt, S. P.; Mutel, R. L.; Ray, T.; Schmitt, J. H. M. M.; Schneider, P. C.; Skinner, S. L.; van Boekel, R. Bibcode: 2011ASPC..448..617G Altcode: 2011csss...16..617G; 2011arXiv1101.2780G We report on new X-ray observations of the classical T Tauri star DG Tau. DG Tau drives a collimated bi-polar jet known to be a source of X-ray emission perhaps driven by internal shocks. The rather modest extinction permits study of the jet system to distances very close to the star itself. Our initial results presented here show that the spatially resolved X-ray jet has been moving and fading during the past six years. In contrast, a stationary, very soft source much closer (≍ 0.15-0.2″) to the star but apparently also related to the jet has brightened during the same period. We report accurate temperatures and absorption column densities toward this source, which is probably associated with the jet base or the jet collimation region. Title: Hybrid simulations of Enceladus' plasma interaction: a multi-instrument survey Authors: Kriegel, H.; Simon, S.; Motschmann, U. M.; Saur, J.; Neubauer, F. M.; Schmidt, J.; Teolis, B. D.; Dougherty, M. K. Bibcode: 2011AGUFMSM21B2018K Altcode: We present an improved model of the interaction between Enceladus' plume and Saturn's magnetospheric plasma using the hybrid simulation code A.I.K.E.F. (adaptive ion kinetic electron fluid). For the first time, we combine measurements from multiple instruments of Cassini: we use a Monte-Carlo model to describe the neutral density in the plume in agreement with INMS data. The magnetospheric upstream density is obtained from RPWS measurements. We also compare the density and velocity profiles measured within the interaction region against our simulation results. Moreover, it has recently been shown that the influence of the electron-absorbing dust grains in the plume on the plasma structures and magnetic field perturbations including the Alfvén wings has to be taken into account [Simon et al., 2011, Kriegel et al., 2011]. Therefore, we now include a dust density obtained by modeling of CDA data. By comparing our simulations with magnetometer observations (MAG), we constrain the amount of electrons absorbed by the dust as well as the variability of the plume between the various Enceladus flybys. Furthermore, we discuss initial results for the recent encounters E14 - E16. Title: Results of the First Observations with the Hamburg Robotic Telescope Authors: Mittag, M.; Hempelmann, A.; González-Pérez, J. N.; Schmitt, J. H. M. M.; Hall, J. C. Bibcode: 2011ASPC..448.1187M Altcode: 2011csss...16.1187M The results of the first scientific observations with the Hamburg Robotic Telescope (HRT) are presented. These observations were performed between October 2008 and August 2009. The goals of this program were a test of the observational performance of the telescope and the creation of a transformation equation from the HRT S-index to the Mount Wilson S-index. The mean of the deviations between the transformed HRT S-Indices and the corresponding Mount Wilson S-Indices is ≍4%. These deviations can be -- at least partially -- explained by stellar variability and the non-simultaneity of the observations. Furthermore, the first monitoring of several stars was performed. Title: Star-planet interactions and selection effects from planet detection methods Authors: Poppenhaeger, K.; Schmitt, J. H. M. M. Bibcode: 2011AN....332.1052P Altcode: 2013arXiv1303.0307P Planets may have effects on their host stars by tidal or magnetic interaction. Such star-planet interactions are thought to enhance the activity level of the host star. However, stellar activity also affects the sensitivity of planet detection methods. Samples of planet-hosting stars which are investigated for such star-planet interactions are therefore subject to strong selection effects which need to be taken into account. Title: The cosmic dust analyser onboard cassini: ten years of discoveries Authors: Srama, R.; Kempf, S.; Moragas-Klostermeyer, G.; Altobelli, N.; Auer, S.; Beckmann, U.; Bugiel, S.; Burton, M.; Economomou, T.; Fechtig, H.; Fiege, K.; Green, S. F.; Grande, M.; Havnes, O.; Hillier, J. K.; Helfert, S.; Horanyi, M.; Hsu, S.; Igenbergs, E.; Jessberger, E. K.; Johnson, T. V.; Khalisi, E.; Krüger, H.; Matt, G.; Mocker, A.; Lamy, P.; Linkert, G.; Lura, F.; Möhlmann, D.; Morfill, G. E.; Otto, K.; Postberg, F.; Roy, M.; Schmidt, J.; Schwehm, G. H.; Spahn, F.; Sterken, V.; Svestka, J.; Tschernjawski, V.; Grün, E.; Röser, H. -P. Bibcode: 2011CEAS....2....3S Altcode: 2018arXiv180204772S The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after 7 years of cruise phase. The German cosmic dust analyser (CDA) was developed under the leadership of the Max Planck Institute for Nuclear Physics in Heidelberg under the support of the DLR e.V. This instrument measures the interplanetary, interstellar and planetary dust in our solar system since 1999 and provided unique discoveries. In 1999, CDA detected interstellar dust in the inner solar system followed by the detection of electrical charges of interplanetary dust grains during the cruise phase between Earth and Jupiter. The instrument determined the composition of interplanetary dust and the nanometre-sized dust streams originating from Jupiter's moon Io. During the approach to Saturn in 2004, similar streams of submicron grains with speeds in the order of 100 km/s were detected from Saturn's inner and outer ring system and are released to the interplanetary magnetic field. Since 2004 CDA measured more than one million dust impacts characterising the dust environment of Saturn. The instrument is one of the three experiments which discovered the active ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the water ice grains in Saturn's E ring system led to the discovery of large reservoirs of liquid water (oceans) below the icy crust of Enceladus. Finally, the determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as predicted) allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. This paper summarizes the discoveries of a 10-year story of success based on reliable measurements with the most advanced dust detector flown in space until today. This paper focuses on cruise results and findings achieved at Saturn with a focus on flux and density measurements. CDA discoveries related to the detailed dust stream dynamics, E ring dynamics, its vertical profile and E ring compositional analysis are published elsewhere (see Hus et al. in AIP Conference Proccedings 1216:510-513, 2010; Hsu et al. in Icarus 206:653-661, 2010; Kempf et al. in Icarus 193:420, 2008; 206(2):446, 2010; Postberg et al. in Icarus 193(2):438, 2008; Nature 459:1098, 2009; Nature, 2011, doi: 10.1038/nature10175). Title: Geophysics and Geochemistry of Enceladus and the Galilean Moons from Analysis of Ejected Ice Particles Authors: Postberg, F.; Schmidt, J.; Hillier, J.; Kempf, S.; Srama, R.; Sternovsky, Z.; Horanyi, M.; Gruen, E. Bibcode: 2011AGUFM.P22B..07P Altcode: The contribution of Cassini's dust detector CDA in revealing subsurface liquid water on Enceladus has demonstrated how questions in planetary science can be addressed by in-situ analysis of icy dust particles. Since the measurements are particularly sensitive to compounds embedded in an ice matrix, CDA detected minerals from Enceladus rocky core in ejected ice grains which were previously dissolved in water. The chemical characterisation of ice particles in Saturn's E ring and during traversals through the plume of Enceladus revealed different compositional types. The concentrations of various salts and organic compounds vary between different dust populations. Spatially resolved plume measurements showed that salt-rich ice grains are more abundant close to the surface and are the vast majority of the ejected solid mass. The composition suggests that these grains are frozen spray from subsurface liquid reservoirs which have conserved the liquid's composition. The Galilean satellites are another prime target for this kind of science. Although not active as Enceladus and Io, the Galileo space craft revealed that Europa, Ganymede, and Callisto are enshrouded by icy dust lifted from their surfaces by micro-meteroid bombardment. It is relatively easy to analyze these particles as samples of planetary surfaces at flyby's or from an orbiter. The detected particles can be traced back accurately to the point of ejection at the surface. Thus, information on the elemental and molecular composition can be acquired and linked to specific features on the surface. Especially on Europa and Ganymed resurfacing events and exchange processes with a subsurface ocean could be determined with sensitivity for trace compounds unachievable by remote sensing. As an active satellite distributing its 'volcanic ashes' all over the Jovian system, Io is of course an easy object for geochemistry by dust analysis. The monitoring of Io's dust emission does neither require a specific flyby geometry nor a specific instrument pointing. Already during Cassini's Jupiter flyby in 2001 analysis of tiny grains emitted by Io gave insights into Io's volcanic chemistry. Title: Compositional Mapping of Planetary moons by Mass Spectrometry of Dust Ejecta Authors: Postberg, F.; Gruen, E.; Horanyi, M.; Kempf, S.; Krüger, H.; Schmidt, J.; Spahn, F.; Srama, R.; Sternovsky, Z.; Trieloff, M. Bibcode: 2011AGUFM.P42A..07P Altcode: Classical methods to analyze the surface composition of planetary objects from a space craft are IR and gamma ray spectroscopy and neutron backscatter measurements. We present a complementary method to analyze rocky or icy dust particles as samples of planetary objects from where they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets - they are enshrouded in clouds of ballistic dust particles. In situ mass spectroscopic analysis of these grains impacting on to a detector on a spacecraft reveals their composition as characteristic samples of planetary surfaces at flybys or from an orbiter. The well established approach of dust detection by impact ionization has recently shown its capabilities by analyzing ice particles expelled by subsurface salt water on Saturn's moon Enceladus. Applying the method on micro-meteoroid ejecta of less active moons would allow for the qualitative and quantitative analysis of a huge number of samples from various surface areas, thus combining the advantages of remote sensing and a lander. Utilizing the heritage of the dust detectors onboard Ghiotto, Ulysses, Galileo, and Cassini a variety of improved, low-mass lab-models have been build and tested. They allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since achievable detection rates are on the order of thousand per orbit, an orbiter can create a compositional map of samples taken from a greater part of the surface. Flybies allow an investigation of certain surface areas of interest. Dust impact velocities are in general sufficiently high for impact ionization at orbiters about planetary objects with a radius of at least 1000km and with only a thin or no atmosphere. Thus, this method is ideal on a spacecraft orbiting Earth's Moon or Jupiter's Galilean satellites. The approach has a ppm-level sensitivity to salts and many rock forming materials as well as water and organic compounds. It provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution. Regions which were subject to endogenic or exogenic alteration (resurfacing, radiation, old/new regions) could be distinguished and investigated. In particular exchange processes with subsurface ocean on the Galileian moons could be determined with high quantitative precision. Title: Problems with the equation for viscous damping of density waves Authors: Schmidt, J.; Salo, H.; Spahn, F. Bibcode: 2011AGUFM.P13B1674S Altcode: Numerous resonances with external satellites excite density waves in Saturn's rings. A theoretical expression for the damping of these waves, when they propagate away from the resonance location, is derived from a fluid model (GT78: Goldreich and Tremaine, 1978, Icarus, 34, 240, see also: Shu et al., 1984, in Planetary Rings). The magnitude of the shear viscosity of Saturn's rings is inferred from comparison of this theory to the actual damping length of density waves observed in various data sets (e.g. Esposito et al., 1983, Lissauer et al., 1984, Tiscareno et al., 2007). In the theoretical expression for the damping length the fluid's bulk viscosity enters (in addition to the shear viscosity) as well as the dependence of both viscosities on the density of the ring matter. However, generally the bulk viscosity and the effects of the density dependences are neglected when the shear viscosity is inferred from the data. It has already been pointed out in the original paper (GT78) that this neglect lacks adequate justification. This raises the question in how far the inferred viscosities are representative for the rings. In particular, if one takes into acount the density dependence of the viscosities, the expression for the viscous damping transforms into a relation that is equivalent to the stability criterion for viscous overstability. In this case the theory implies that there might be ring regions where density waves do not damp at all but grow in amplitude (GT78). In this paper we re-derive the expression for the wave damping, including the terms stemming from the density dependence of the viscosities. We discuss their effect in the light of the presence of self-gravity wakes in the rings, contributing to viscosity, the probable detection of viscous overstability in parts of Saturn's ring system, and the behaviour of the Janus/Epimetheus m:m-1 wavetrains. Title: X-rays from HH 154 Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2011ASPC..448..729S Altcode: 2011csss...16..729S Protostellar jets are observed during all stages of early stellar evolution. X-rays originating within these outflows have been observed only from ten such objects and require shock velocities of about 500 km s-1. L1551 IRS 5, the driving source of the Herbig-Haro object 154, is heavily absorbed. Therefore, one can study the outflow close to the launching zone without contaminating light from the power source. We present a new third epoch Chandra observation of HH 154 which shows that the majority of the X-ray emission is concentrated within a small region close to the driving source over a timespan of 8 years. Reheating or replenishment of the plasma is required in order to explain the observations. The evolution of the temperature of the X-ray emitting plasma suggests that the heating occurs within the innermost region (∼150 AU) of the outflow. Title: The Structure of Saturn's E ring as seen by Cassini CDA Authors: Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Postberg, F.; Horanyi, M.; Schmidt, J.; Spahn, F. Bibcode: 2011epsc.conf.1643K Altcode: 2011DPS....43.1643K The Cassini onboard dust detector, CDA, measures the mass, speed, charge, and composition of individual ring particles. Thus, the size and speed distribution of the E ring particles can be derived from CDA measurements obtained during Cassini's ring traversals. Because there is a close connection between the ring particle dynamics and the distribution of ring particle speeds, CDA provides precious information about the processes sculpting the ring. Here we present speed and size distributions measured inside and outside the orbit of the dominating ring particle source, the active ring moon Enceladus. We also present radial density profiles of the inner E ring obtained during equatorial ring traversals, which show a pronounced dependence of the ring structure on the hour angle. Title: The Snows of Enceladus Authors: Schenk, P.; Schmidt, J.; White, O. Bibcode: 2011epsc.conf.1358S Altcode: 2011DPS....43.1358S The icy south polar plumes of Enceladus make for a spectacular effect in the Saturn system (e.g., the Ering), but also profoundly alter the surface of Enceladus itself. Recent models of the plume particle dynamics predict that the heavier particles will reaccrete, effectively "snowing" fine-grained debris back onto the surface in discrete patterns [1], depending on the actual distribution of ejection sites. The densest fallout pattern is dominated by two scytheshaped lobes extending northward from the South-Polar-Terrains along the 40 and 220W longitudes. Recent color mapping of Enceladus demonstrates that IR/UV color asymmetries across the surface match these predicted patterns astonishingly well [2]. Theory and observation therefore confirm the apparent formation of a blanket of very small particles covering most of the surface of Enceladus to different depths, depending on location and plume source changes. Title: The Ballistic Spreading of Debris Clouds over a Planetary Ring Authors: Schmidt, J. Bibcode: 2011epsc.conf.1782S Altcode: 2011DPS....43.1782S I develop a theoretical model for the evolution of a debris cloud, spreading from the location of the impact. For simplicity the details of the disruption are not addressed. I start with an isotropic model, assuming that a 30 km/s hypervelocity projectile, perhaps centimeter to decimeter sized, hits and destroys a ring particle (perhaps meter to tens of meters in size), leading to a cloud of debris spreading uniformly from the point of impact, with power law distributed speeds of ejection. This conceptually simple model allows us to study basic properties of the evolution of the cloud. Effects of anisotropy, arising from the direction of the projectile and the effect of momentum conservation, can be incorporated without principal difficulty in an improved model. Title: Multi-wavelength observations of Proxima Centauri Authors: Fuhrmeister, B.; Lalitha, S.; Poppenhaeger, K.; Rudolf, N.; Liefke, C.; Reiners, A.; Schmitt, J. H. M. M.; Ness, J. -U. Bibcode: 2011A&A...534A.133F Altcode: 2011arXiv1109.1130F
Aims: We report simultaneous observations of the nearby flare star Proxima Centauri with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and X-ray observations cover the star's quiescent state, as well as its flaring activity and allow us to probe the stellar atmospheric conditions from the photosphere into the chromosphere, and then the corona during its different activity stages.
Methods: Using the X-ray data, we investigate variations in coronal densities and abundances and infer loop properties for an intermediate-sized flare. The optical data are used to investigate the magnetic field and its possible variability, to construct an emission line list for the chromosphere, and use certain emission lines to construct physical models of Proxima Centauri's chromosphere.
Results: We report the discovery of a weak optical forbidden Fe xiii line at 3388 Å during the more active states of Proxima Centauri. For the intermediate flare, we find two secondary flare events that may originate in neighbouring loops, and discuss the line asymmetries observed during this flare in H i, He i, and Ca ii lines. The high time-resolution in the Hα line highlights strong temporal variations in the observed line asymmetries, which re-appear during a secondary flare event. We also present theoretical modelling with the stellar atmosphere code PHOENIX to construct flaring chromospheric models.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 082.D-0953A and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and NASA.Full Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A133 Title: Dynamics and kinetics of narrow dusty ringlets Authors: Sun, K. L.; Spahn, F.; Schmidt, J. Bibcode: 2011epsc.conf..864S Altcode: 2011DPS....43..864S Several narrow dusty rings have been discovered in the Saturn system, such as the F ring, ringlets in the C Ring, the Cassini division, and the Encke Gap [1] [2]. The kinky and clumpy structures in the F ring are considered as the result of embedded moonlets which are dynamically dominated by shepherding moons [3]. Similar features are found in Encke ringlets which we hypothesize to be associated with embedded moonlets [4] [5]. On the other hand, these ringlets are believed to be composed of micron-sized particles [6], which are strongly perturbed by solar radiation pressure and their lifetime is restricted. Therefore mechanisms must be at work to replenish these ringlets. We develop a model for the kinetic balance of dust production, dynamical evolution, and sinks by assuming that dust is freed and annihilated by moonlets embedded in the ringlet. The dynamics of particles ejected from these putative moonlets is explored and the contribution of impact-ejecta to the ringlet is estimated [7] [8]. We found that the optical depth sustained by embedded moonlets is too low (orders of magnitude), indicating that other sources or processes should be responsible for supporting the Encke ringlet. Title: How does Saturn's moons influence the velocity dispersion in the A ring Authors: Seiß, M.; Schmidt, J.; Spahn, F. Bibcode: 2011epsc.conf.1408S Altcode: 2011DPS....43.1408S Saturn's moons perturb the rings due to their gravitational interactions with the ring material. Here, we present a model which accounts for the heating of the ring material due to these perturbations. The results emphasize the importance of the moon Prometheus for the velocity dispersion in the outer A ring of Saturn, which is probably 10 times higher than in the innermost A ring. An enhanced velocity dispersion would in turn lead to an enhanced production of smaller debris particles by knocking them off from larger parent bodies. This could lead to an increasing optical depth and brightness and limit the observability of the selfgravity wakes in the outer A ring. Furthermore, the velocity dispersion can be strongly enhanced in the vicinity of the major resonances (e.g. Janus 5:4) explaining the observed halos around them. Title: Dust spectrometry in the Jovian System Authors: Srama, R.; Kempf, S.; Postberg, F.; Schmidt, J.; Krüger, H.; Thissen, R.; Sternovsky, Z.; Engrand, C.; Fiege, K.; Horanyi, M.; Khalisi, E.; Mocker, A.; Moragas-Klostermeyer, G.; Otto, K.; Spahn, F.; Sterken, V.; Grün, E.; Röser, H. P. Bibcode: 2011epsc.conf.1502S Altcode: 2011DPS....43.1502S The Galileo spacecraft characterised the dust environment in the jovian system. The discoveries included an extended dusty ring system, the nano-metre sized stream particles originating from the moon Io, and the dust exospheres around the Galilean satellites Ganymed, Europa and Callisto [2]. The study of the nanodust-magnetosphere interaction and the compositional analysis of dust particles ejected by the surfaces of Ganymed or Europa offer unique future opportunities. New dust instrumentation is a factor of 10 more sensitive then the former Galileo detector and adds compositional analysis for moon surface studies complementary to neutral gas or ion particle investigations. A dust spectrometer performs complementary measurements with respect to neutral gas or ion investigations and is highly sensitive for organic, salty water ice and mineral particles. Title: Dynamics of Enceladus' Plume Particles and the Compositional Profile of the Plume Authors: Schmidt, J.; Postberg, F.; Hillier, J. K.; Kempf, S.; Srama, R. Bibcode: 2011epsc.conf..806S Altcode: 2011DPS....43..806S The Cosmic Dust Analyzer (CDA) onboard the CASSINI spacecraft obtained in-situ compositional measurements of freshly ejected particles in the Enceladus plume. A main result is that the proportion of salt rich particles is significantly enhanced in the plume, relative to the abundance inferred previously in the E ring[1]. We show how this compositional profile in the plume, as well as the relative depletion in the E ring, arises as a consequence of a size-dependent dynamical filtering of particles. The generally larger size of salt rich grains (as compared to salt poor particles) leads to their enhanced concentration in the lower parts of the plume. From our model we infer the proportion of salt rich grains in the total flux of dust produced at Enceladus. We find that the dominant part of the dust mass is salt rich. Title: Adhesion and collisional release of particles in dense planetary rings Authors: Bodrova, A.; Schmidt, J.; Spahn, F.; Brilliantov, N. Bibcode: 2011epsc.conf..964B Altcode: 2011DPS....43..964B We propose a simple theoretical model for aggregative and fragmentative collisions in Saturn's dense rings. In this model the ring matter consists of a bimodal size distribution: large (meter sized) boulders and a population of smaller particles (tens of centimetres down to dust). The small particles can adhesively stick to the boulders and can be released as debris in binary collisions of their carriers. To quantify the adhesion force we use the JKR theory [1]. The rates of release and adsorption of particles are calculated, depending on material parameters, sizes, and plausible velocity dispersions of carriers and debris particles. In steady state we obtain an expression for the amount of free debris relative to the fraction still attached to the carriers. In terms of this conceptually simple model a paucity of subcentimeter particles in Saturn's rings [2] can be understood as a consequence of the increasing strength of adhesion (relative to inertial forces) for decreasing particle size. In this case particles smaller than a certain critical radius rcr remain tightly attached to the surfaces of larger boulders, even when the boulders collide at their typical speed. Furthermore, we find that already a mildly increased velocity dispersion of the carrier-particles may significantly enhance the fraction of free debris particles, in this way increasing the optical depth of the system. Title: The salty spray of Enceladus - Implications for the plume formation Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Kempf, S.; Srama, R. Bibcode: 2011epsc.conf..642P Altcode: 2011DPS....43..642P Here we discuss the consequences of this and other recent results for the processes forming the plume. Previous Cassini observations were compatible with a variety of plume formation scenarios and contributions from "dry" sources (such as ice sublimation or clathrate decomposition) were viable. A plume source dominated by micron sized salt-rich ice grains, as reported here, eliminates significant contributions from dry, sodium poor sources and severely constrains or rules out non-liquid models in their present form. The resent measurements strongly imply that a salt-water reservoir with a large, but probably non-contiguous or porous, evaporating surface1,4,5 injects most of the matter forming the plume. The relatively low abundance of non-soluable gases6,7 in the plume is in agreement with a contribution from warm ice-sublimation to the gas flux. Title: Photometric modeling of viscous overstability in Saturn's rings Authors: Salo, H.; Schmidt, J. Bibcode: 2011epsc.conf.1771S Altcode: 2011DPS....43.1771S The viscous overstability of dense planetary rings offers a plausible mechanism for the generation of observed ~ 150 m radial density variations in the B and the inner A ring of Saturn [1, 12]. Viscous overstability, in the form of spontaneous growth of axisymmetric oscillations, arises naturally in N-body simulations, in the limit of high impact frequency and moderately weak selfgravity [4, 8, 9, 10]. For example, a selfgravitating system of identical particles with internal density ~ half of solid ice, becomes overstable for optical depths τ > 1, forming oscillations on about 100 meter scale. Like self-gravity wakes (with typical ~ 20° trailing pitch angle), overstable oscillations lead to alongitude-dependent brightness of the rings. Due to their axisymmetric nature, the expected longitude of minimum brightness is shifted closer to ring ansae (for small phase angles). Moreover, according to simulations, the axisymmetric oscillations may coexist with the inclined selfgravity wake structures, which can lead to complicated photometric behavior as a function of illumination and viewing geometries, depending on properties of the simulated system. For example, at low viewing elevations, the vertical thickenings associated with the density crests should cast shadows on the nearby ring particles (see Fig. 1 for an example; darker areas are due to shadows, not due to depletion of particles). Though these shadows would be unresolved, they might still affect the integrated brightness at certain geometries. The overstable systems may also exhibit amplitude variations (in km-scales), arising from the mutual beating patterns of the basic sub-km overstable oscillations [3]. Such modulations of oscillation amplitude may lead to associated brightness variations. New results of photometric modeling of viscously overstable dynamical simulations systems are reported, related to the above mentioned topics. The Monte Carlo method of [5] is used, previously applied to modeling of photometric signatures of selfgravity wakes [6, 2], scattering properties of propeller structures [11], and most recently to the interpretation of elevation-angle dependent opposition effect seen in HST data [7]. In particular, the possible observable signatures of amplitude modulations and vertical splashing are explored. Title: Quasi-stable neutralinos at the LHC Authors: Bobrovskyi, S.; Buchmüller, W.; Hajer, J.; Schmidt, J. Bibcode: 2011JHEP...09..119B Altcode: 2011arXiv1107.0926B We study supersymmetric extensions of the Standard Model with small R-parity and lepton number violating couplings which are naturally consistent with primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter. We consider supergravity models where the gravitino is the lightest superparticle followed by a bino-like next-to-lightest superparticle (NLSP). Extending previous work we investigate in detail the sensitivity of LHC experiments to the R-parity breaking parameter ζ for various gluino and squark masses. We perform a simulation of signal and background events for the generic detector <Literal>DELPHES</Literal> for which we implement the finite NLSP decay length. We find that for gluino and squark masses accessible at the LHC, values of ζ can be probed which are one to two orders of magnitude smaller than the present upper bound obtained from astrophysics and cosmology. Title: VizieR Online Data Catalog: Proxima Cen chromospheric emission lines (Fuhrmeister+, 2011) Authors: Fuhrmeister, B.; Lalitha, S.; Poppenhaeger, K.; Rudolf, N.; Liefke, C.; Reiners, A.; Schmitt, J. H. M. M.; Ness, J. -U. Bibcode: 2011yCat..35340133F Altcode: 2011yCat..35349133F We present an extensive identification catalog of chromospheric emission lines in the optical range for a flare on Proxima Centauri. The data were obtained with ESO's Kueyen telescope equipped with the UVES spectrograph on March 9/10, 11/12, 13/14 in 2009. The instrument was operated in dichroic mode (spectral coverage from 3290 to 4500 and from 6400 to 10080Å). We tabulate measured wavelength, line flux and FWHM for every line and also provide the rest wavelength from the Moore catalog which was used for identification (Moore, 1972, Nat. Stand. Ref. Data. Ser., 40). Few lines were identified with the NIST database.

(1 data file). Title: A new flare star member candidate in the Pleiades cluster Authors: Moualla, M.; Schmidt, T. O. B.; Neuhäuser, R.; Hambaryan, V. V.; Errmann, R.; Trepl, L.; Broeg, Ch.; Eisenbeiss, T.; Mugrauer, M.; Marka, C.; Adam, C.; Ginski, C.; Pribulla, T.; Rätz, S.; Schmidt, J.; Berndt, A.; Maciejewski, G.; Röll, T.; Hohle, M. M.; Tetzlaff, N.; Fiedler, S.; Baar, S. Bibcode: 2011AN....332..661M Altcode: 2011arXiv1108.6278M We present a new flare star, which was discovered during our survey on a selected field at the edge of the Pleiades cluster. The field was observed in the period 2007-2010 with three different CCD-cameras at the University Observatory Jena with telescopes from 25 to 90 cm. The flare duration is almost one hour with an amplitude in the R-band of about 1.08 mag. The location of the flare star in a color-magnitude diagram is consistent with age and distance of the Pleiades. In the optical PSF of the flare star there are two 2MASS objects (unresolved in most images in the optical Jena PSF), so it is not yet known which one of them is responsible for this flare. The BV RIJHK colors yield spectral types of M1 and M2 with extinction being AV = 0.231 ± 0.024 mag and AV = 0.266 ± 0.020 for those two stars, consistent with the Pleiades cluster. Title: The corona and companion of CoRoT-2a. Insights from X-rays and optical spectroscopy Authors: Schröter, S.; Czesla, S.; Wolter, U.; Müller, H. M.; Huber, K. F.; Schmitt, J. H. M. M. Bibcode: 2011A&A...532A...3S Altcode: 2011arXiv1106.1522S CoRoT-2 is one of the most unusual planetary systems known to date. Its host star is exceptionally active, showing a pronounced, regular pattern of optical variability caused by magnetic activity. The transiting hot Jupiter, CoRoT-2b, shows one of the largest known radius anomalies. We analyze the properties and activity of CoRoT-2a in the optical and X-ray regime by means of a high-quality UVES spectrum and a 15 ks Chandra exposure both obtained during planetary transits. The UVES data are analyzed using various complementary methods of high-resolution stellar spectroscopy. We characterize the photosphere of the host star by deriving accurate stellar parameters such as effective temperature, surface gravity, and abundances. Signatures of stellar activity, Li abundance, and interstellar absorption are investigated to provide constraints on the age and distance of CoRoT-2. Furthermore, our UVES data confirm the presence of a late-type stellar companion to CoRoT-2a that is gravitationally bound to the system. The Chandra data provide a clear detection of coronal X-ray emission from CoRoT-2a, for which we obtain an X-ray luminosity of 1.9 × 1029 erg s-1. The potential stellar companion remains undetected in X-rays. Our results indicate that the distance to the CoRoT-2 system is ≈270 pc, and the most likely age lies between 100 and 300 Ma. Our X-ray observations show that the planet is immersed in an intense field of high-energy radiation. Surprisingly, CoRoT-2a's likely coeval stellar companion, which we find to be of late-K spectral type, remains X-ray dark. Yet, as a potential third body in the system, the companion could account for CoRoT-2b's slightly eccentric orbit.

Based on observations obtained with UVES at the ESO VLT Kueyen telescope (program ID 385.D-0426) and the Chandra X-ray Observatory (obs. ID 10989). Title: The Young Exoplanet Transit Initiative (YETI) Authors: Neuhäuser, R.; Errmann, R.; Berndt, A.; Maciejewski, G.; Takahashi, H.; Chen, W. P.; Dimitrov, D. P.; Pribulla, T.; Nikogossian, E. H.; Jensen, E. L. N.; Marschall, L.; Wu, Z. -Y.; Kellerer, A.; Walter, F. M.; Briceño, C.; Chini, R.; Fernandez, M.; Raetz, St.; Torres, G.; Latham, D. W.; Quinn, S. N.; Niedzielski, A.; Bukowiecki, Ł.; Nowak, G.; Tomov, T.; Tachihara, K.; Hu, S. C. -L.; Hung, L. W.; Kjurkchieva, D. P.; Radeva, V. S.; Mihov, B. M.; Slavcheva-Mihova, L.; Bozhinova, I. N.; Budaj, J.; Vaňko, M.; Kundra, E.; Hambálek, Ľ.; Krushevska, V.; Movsessian, T.; Harutyunyan, H.; Downes, J. J.; Hernandez, J.; Hoffmeister, V. H.; Cohen, D. H.; Abel, I.; Ahmad, R.; Chapman, S.; Eckert, S.; Goodman, J.; Guerard, A.; Kim, H. M.; Koontharana, A.; Sokol, J.; Trinh, J.; Wang, Y.; Zhou, X.; Redmer, R.; Kramm, U.; Nettelmann, N.; Mugrauer, M.; Schmidt, J.; Moualla, M.; Ginski, C.; Marka, C.; Adam, C.; Seeliger, M.; Baar, S.; Roell, T.; Schmidt, T. O. B.; Trepl, L.; Eisenbeiß, T.; Fiedler, S.; Tetzlaff, N.; Schmidt, E.; Hohle, M. M.; Kitze, M.; Chakrova, N.; Gräfe, C.; Schreyer, K.; Hambaryan, V. V.; Broeg, C. H.; Koppenhoefer, J.; Pandey, A. K. Bibcode: 2011AN....332..547N Altcode: 2011arXiv1106.4244N We present the Young Exoplanet Transit Initiative (YETI), in which we use several 0.2 to 2.6-m telescopes around the world to monitor continuously young (≤100 Myr), nearby (≤1 kpc) stellar clusters mainly to detect young transiting planets (and to study other variability phenomena on time-scales from minutes to years). The telescope network enables us to observe the targets continuously for several days in order not to miss any transit. The runs are typically one to two weeks long, about three runs per year per cluster in two or three subsequent years for about ten clusters. There are thousands of stars detectable in each field with several hundred known cluster members, e.g. in the first cluster observed, Tr-37, a typical cluster for the YETI survey, there are at least 469 known young stars detected in YETI data down to R=16.5 mag with sufficient precision of 50 millimag rms (5 mmag rms down to R=14.5 mag) to detect transits, so that we can expect at least about one young transiting object in this cluster. If we observe ∼10 similar clusters, we can expect to detect ∼10 young transiting planets with radius determinations. The precision given above is for a typical telescope of the YETI network, namely the 60/90-cm Jena telescope (similar brightness limit, namely within ± 1 mag, for the others) so that planetary transits can be detected. For targets with a periodic transit-like light curve, we obtain spectroscopy to ensure that the star is young and that the transiting object can be sub-stellar; then, we obtain Adaptive Optics infrared images and spectra, to exclude other bright eclipsing stars in the (larger) optical PSF; we carry out other observations as needed to rule out other false positive scenarios; finally, we also perform spectroscopy to determine the mass of the transiting companion. For planets with mass and radius determinations, we can calculate the mean density and probe the internal structure. We aim to constrain planet formation models and their time-scales by discovering planets younger than ∼100 Myr and determining not only their orbital parameters, but also measuring their true masses and radii, which is possible so far only by the transit method. Here, we present an overview and first results. Title: A Correlation Between Host Star Activity and Planet Mass for Close-in Extrasolar Planets? Authors: Poppenhaeger, K.; Schmitt, J. H. M. M. Bibcode: 2011ApJ...735...59P Altcode: 2011arXiv1106.0189P The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data. Title: New X-ray observations of IQ Aurigae and α2 Canum Venaticorum. Probing the magnetically channeled wind shock model in A0p stars Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2011A&A...531A..58R Altcode: 2011arXiv1105.3688R
Aims: We re-examine the scenario of X-ray emission from magnetically confined/channeled wind shocks (MCWS) for Ap/Bp stars, a model originally developed to explain the ROSAT detection of the A0p star IQ Aur.
Methods: We present new X-ray observations of the A0p stars α2 CVn (Chandra) and IQ Aur (XMM-Newton) and discuss our findings in the context of X-ray generating mechanisms of magnetic, chemically peculiar intermediate mass stars.
Results: The X-ray luminosities of IQ Aur with log LX = 29.6 erg s-1 and α2 CVn with log LX ≲ 26.0 erg s-1 differ by at least three orders of magnitude, although both are A0p stars. By studying a sample of comparison stars, we find that X-ray emission is preferably generated by more massive objects such as IQ Aur. Besides a strong, cool plasma component, significant amounts of hot (>10 MK) plasma are present during the quasi-quiescent phase of IQ Aur; moreover, diagnostics of the UV sensitive f/i line ratio in He-like O vii triplet point to X-ray emitting regions well above the stellar surface of IQ Aur. In addition we detect a large flare from IQ Aur with temperatures up to ~100 MK and a peak X-ray luminosity of log LX ≈ 31.5 erg s-1. The flare, showing a fast rise and e-folding decay time of less than half an hour, originates in a fairly compact structure and is accompanied by a significant metallicity increase. The X-ray properties of IQ Aur cannot be described by wind shocks only and require the presence of magnetic reconnection. This is most evident in the, to our knowledge, first X-ray flare reported from an A0p star.
Conclusions: Our study indicates that the occurrence the of X-ray emission in A0p stars generated by magnetically channeled wind shocks depends on stellar properties such as luminosity, which promote a high mass loss rate, whereas magnetic field configuration and transient phenomena refine their appearance. While we cannot rule out unknown close companions, the X-ray emission from IQ Aur can be described consistently in the MCWS scenario, in which the very strong magnetic confinement of the stellar wind has led to the build-up of a rigidly rotating disk around the star, where magnetic reconnection and centrifugal breakout events occur. Title: The X-ray puzzle of the L1551 IRS 5 jet Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2011A&A...530A.123S Altcode: 2011arXiv1105.1663S Protostars are actively accreting matter and they drive spectacular, dynamic outflows, which evolve on timescales of years. X-ray emission from these jets has been detected only in a few cases and little is known about its time evolution. We present a new Chandra observation of L1551 IRS 5's jet in the context of all available X-ray data of this object. Specifically, we perform a spatially resolved spectral analysis of the X-ray emission and find that (a) the total X-ray luminosity is constant over almost one decade, (b) the majority of the X-rays appear to be always located close to the driving source, (c) there is a clear trend in the photon energy as a function of the distance to the driving source indicating that the plasma is cooler at larger distances and (d) the X-ray emission is located in a small volume which is unresolved perpendicular to the jet axis by Chandra. A comparison of our X-ray data of the L1551 IRS 5 jet both with models as well as X-ray observations of other protostellar jets shows that a base/standing shock is a likely and plausible explanation for the apparent constancy of the observed X-ray emission. Internal shocks are also consistent with the observed morphology if the supply of jet material by the ejection of new blobs is sufficiently constant. We conclude that the study of the X-ray emission of protostellar jet sources allows us to diagnose the innermost regions close to the acceleration region of the outflows. Title: A salt-water reservoir as the source of a compositionally stratified plume on Enceladus Authors: Postberg, F.; Schmidt, J.; Hillier, J.; Kempf, S.; Srama, R. Bibcode: 2011Natur.474..620P Altcode: The discovery of a plume of water vapour and ice particles emerging from warm fractures (`tiger stripes') in Saturn's small, icy moon Enceladus raised the question of whether the plume emerges from a subsurface liquid source or from the decomposition of ice. Previous compositional analyses of particles injected by the plume into Saturn's diffuse E ring have already indicated the presence of liquid water, but the mechanisms driving the plume emission are still debated. Here we report an analysis of the composition of freshly ejected particles close to the sources. Salt-rich ice particles are found to dominate the total mass flux of ejected solids (more than 99 per cent) but they are depleted in the population escaping into Saturn's E ring. Ice grains containing organic compounds are found to be more abundant in dense parts of the plume. Whereas previous Cassini observations were compatible with a variety of plume formation mechanisms, these data eliminate or severely constrain non-liquid models and strongly imply that a salt-water reservoir with a large evaporating surface provides nearly all of the matter in the plume. Title: Coronal properties of planet-bearing stars (Corrigendum) Authors: Poppenhaeger, K.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2011A&A...529C...1P Altcode: No abstract at ADS Title: A search for star-planet interactions in the υ Andromedae system at X-ray and optical wavelengths Authors: Poppenhaeger, K.; Lenz, L. F.; Reiners, A.; Schmitt, J. H. M. M.; Shkolnik, E. Bibcode: 2011A&A...528A..58P Altcode: 2010arXiv1010.5632P Context. Close-in, giant planets are expected to influence their host stars via tidal or magnetic interaction. But are these effects in X-rays strong enough in suitable targets known so far to be observed with today's instrumentation?
Aims: The υ And system, an F8V star with a Hot Jupiter, was observed to undergo cyclic changes in chromospheric activity indicators with its innermost planet's period. We aim to investigate the stellar chromospheric and coronal activity over several months.
Methods: We therefore monitored the star in X-rays as well as at optical wavelengths to test coronal and chromospheric activity indicators for planet-induced variability, making use of the Chandra X-ray Observatory as well as the echelle spectrographs FOCES and HRS at Calar Alto (Spain) and the Hobby-Eberly Telescope (Texas, US).
Results: The stellar activity level is low, as seen both in X-rays as in Ca ii line fluxes; the chromospheric data show variability with the stellar rotation period. We do not find activity variations in X-rays or in the optical that can be traced back to the planet.
Conclusions: Gaining observational evidence of star-planet interactions in X-rays remains challenging. Title: The Compositional Profile of Enceladus Icy Dust Plume from Cassini In-Situ Measurements Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Kempf, S.; Srama, R. Bibcode: 2011LPI....42.1849P Altcode: Measurements by Cassini’s dust detector during Enceladus plume crossings show strong variations in structure and composition. Salt-rich ice grains clearly dominate Enceladus’ solid emissions strongly favoring an abundant liquid water source close to the icy surface. Title: eROSITA on SRG. A X-ray all-sky survey mission Authors: Cappelluti, N.; Predehl, P.; Böhringer, H.; Brunner, H.; Brusa, M.; Burwitz, V.; Churazov, E.; Dennerl, K.; Finoguenov, A.; Freyberg, M.; Friedrich, P.; Hasinger, G.; Kenziorra, E.; Kreykenbohm, I.; Lamer, G.; Meidinger, N.; Mühlegger, M.; Pavlinsky, M.; Robrade, J.; Santangelo, A.; Schmitt, J.; Schwope, A.; Steinmitz, M.; Strüder, L.; Sunyaev, R.; Tenzer, C. Bibcode: 2011MSAIS..17..159C Altcode: 2010arXiv1004.5219C eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the core instrument on the Russian Spektrum-Roentgen-Gamma (SRG) mission which is scheduled for launch in late 2012. eROSITA is fully approved and funded by the German Space Agency DLR and the Max-Planck-Society. The design driving science is the detection of 50 - 100 thousands Clusters of Galaxies up to redshift z 1.3 in order to study the large scale structure in the Universe and test cosmological models, especially Dark Energy. This will be accomplished by an all-sky survey lasting for four years plus a phase of pointed observations. At the time of writing the instrument development is currently in phase C/D. Title: X-rays, Blue Compact Dwarf Galaxies, and Star Formation Authors: Gorski, Mark; Kaaret, P.; Schmitt, J. Bibcode: 2011AAS...21725830G Altcode: 2011BAAS...4325830G Blue compact dwarf galaxies are analogs to the unevolved galaxies in the early universe, for which the correlation between star formation rate (SFR) and X-ray luminosity are largely unknown. We have selected five blue compact dwarf galaxies (BCD's) with metallicities <0.07 solar and distances less than 15 Mpc. X-ray luminosities are derived from Chandra data, while SFR data was found in the literature. An established correlation exists between the SFR and X-ray luminosity of galaxies with similar metallicities to the Milky Way. Our data suggest that, for a given X-ray luminosity, the correlation indicates an SFR that is 7 to 15 times greater than the SFR found through infrared and Hα calibrations for our metal deficient BCD's. We also fit all sources with an X-ray luminosity function that fits well above a certain luminosity, but below which overestimates the number of sources. Title: Study of optical microvariability in the blazar 1ES1011+496 Authors: Sosa, M. S.; von Essen, C.; Cellone, S. A.; Andruchow, I.; Schmitt, J. H. M. M. Bibcode: 2011BAAA...54..333S Altcode: We carried out a study of photometric variability of the blazar 1ES1011+496 using the 1.20 m Oskar Lühning telescope located at Ham- burger Sternwarte Institute, Germany. This object has been detected at hight energies ( 200 GeV), so it is of interest to characterize its behavior in the optical range. We obtained the light curves in B, V and R bands through dif- ferential photometry, with a time resolution of 15 minutes over 8 nights. We did not detect inter-night variability, but we detected a marginally sig- nificant variability in temporal scales of a few days. Title: Enceladus Dust Production - New Insights from Cassini Authors: Kempf, S.; Schmidt, J.; Srama, R.; Postberg, F.; Spahn, F.; Horanyi, M. Bibcode: 2010AGUFM.P33A1562K Altcode: In the light of the Cassini mission to Saturn, the moon Enceladus turned out to be one of the most intriguing bodies in the solar system. Data returned by several instruments on the spacecraft provide compelling evidence that this moon is unusually active and is capable of maintaining a pronounced ice volcanism. In particular, measurements of the spatial distribution of the plume particles recorded by Cassini's dust detector CDA provided the first evidence for a local source of ice grains in the moon's south polar terrain. However, atmosphere-free bodies like Enceladus are also expected to maintain a dust exosphere populated by ejecta particles produced by meteoroid impacts onto the moon's surface. Surprisingly, close Cassini flybys on the Saturnian moons Rhea, Dione, and Enceladus provided no unambiguous evidence for a dust exosphere around these moons. This is in contrast to the predictions by the standard model for ejecta exospheres, which matches the density profiles of the exospheres of the Galilean satellites measured by the Galileo dust detector. Knowledge of the contribution of ejecta particles to the Enceladus mass production is of great importance for estimating the minimum duration of the Enceladus plume activity as well as the age of Saturn's E ring. To this aim we reanalyzed data obtained during close Cassini flybys at Enceladus and Rhea. We also present new measurements of the radial ring profile, which shows no density enhancements at the orbital distances of the embedded ring moons Tethys, Dione, and Rhea. Our analysis suggests that the vast majority of the ring particles originates from the Enceladus dust plume. Title: Asteroseismology of solar-type stars with Kepler I: Data analysis Authors: Karoff, C.; Chaplin, W. J.; Appourchaux, T.; Elsworth, Y.; Garcia, R. A.; Houdek, G.; Metcalfe, T. S.; Molenda-Żakowicz, J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kjeldsen, H.; Basu, S.; Bedding, T. R.; Campante, T. L.; Eggenberger, P.; Fletcher, S. T.; Gaulme, P.; Handberg, R.; Hekker, S.; Martic, M.; Mathur, S.; Mosser, B.; Regulo, C.; Roxburgh, I. W.; Salabert, D.; Stello, D.; Verner, G. A.; Belkacem, K.; Biazzo, K.; Cunha, M. S.; Gruberbauer, M.; Guzik, J. A.; Kupka, F.; Leroy, B.; Ludwig, H. -G.; Mathis, S.; Noels, A.; Noyes, R. W.; Roca Cortes, T.; Roth, M.; Sato, K. H.; Schmitt, J.; Suran, M. D.; Trampedach, R.; Uytterhoeven, K.; Ventura, R. Bibcode: 2010AN....331..972K Altcode: 2010arXiv1005.0507K We report on the first asteroseismic analysis of solar-type stars observed by Kepler. Observations of three G-type stars, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: About 20 modes of oscillation can clearly be distinguished in each star. We discuss the appearance of the oscillation spectra, including the presence of a possible signature of faculae, and the presence of mixed modes in one of the three stars. Title: Compositional profile of the Enceladian ice plume from in situ measurements Authors: Schmidt, J.; Postberg, F.; Kempf, S.; Hillier, J.; Srama, R. Bibcode: 2010AGUFM.P33A1565S Altcode: Data obtained by the Cassini spacecraft during recent close flybys of Enceladus will be presented. Prior compositional measurements of E ring grains with Cassini's Cosmic Dust Analyser (CDA) suggested salt-rich water as the dominant source of Enceladus' famous plume. Although the E ring dust population is dominated by ice particles stemming from Enceladus it was unclear if their composition might have been altered in comparison to freshly ejected particles. Moreover, it was not clear if the populations ejected into the E ring are not prone to selection effects (e.g. that certain species preferably escape the moon whereas others preferably fall back). During 2008 and 2009 Cassini passed deep into the plumes on several occasions, allowing the CDA team to analyse the compositions of freshly ejected plume particles for the first time. From this information a compositional profile of the plume has been inferred. The compositional grain types found within the E ring also dominate the plume. However, the profile along Cassini’s trajectory shows strong variations, in particular a steep increase of salt rich grains close to Enceladus’ surface. The measurement shows that salt rich particles indeed dominate the mass production of the Enceladian dust plumes. Our refined numerical modelling, including gas and dust dynamics and production, successfully reproduces the measured compositional profile of the plume. The best fit requires supersonic, collimated jets as well as a slow diffuse plume component which is in good agreement with recent UVIS observations. Our results can only be reproduced with a liquid water plume source. Title: Symposium 2010 report Authors: Schmidt, J. Bibcode: 2010MNSSA..69..195S Altcode: Detailed report of biennial ASSA Symposium held in 2010 Title: Follow-on to Charles Affair - NRF Establishes Astronomy Desk Authors: Schmidt, J. Bibcode: 2010MNSSA..69..202. Altcode: No abstract at ADS Title: An algorithm for correcting CoRoT raw light curves Authors: Mislis, D.; Schmitt, J. H. M. M.; Carone, L.; Guenther, E. W.; Pätzold, M. Bibcode: 2010A&A...522A..86M Altcode: 2010arXiv1008.0300M We introduce the CoRoT detrend algorithm (CDA) for detrending CoRoT stellar light curves. The algorithm CDA has the capability to remove random jumps and systematic trends encountered in typical CoRoT data in a fully automatic fashion. Since enormous jumps in flux can destroy the information content of a light curve, such an algorithm is essential. From a study of 1030 light curves in the CoRoT IRa01 field, we developed three simple assumptions upon which CDA is based. We describe the algorithm analytically and provide some examples of how it works. We demonstrate the functionality of the algorithm in the cases of CoRoT0102702789, CoRoT0102874481, CoRoT0102741994, and CoRoT0102729260. Using CDA in the specific case of CoRoT0102729260, we detect a candidate exoplanet around the host star of spectral type G5, which remains undetected in the raw light curve, and estimate the planetary parameters to be Rp = 6.27 RE and P= 1.6986 days.

The code is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/522/A86 Title: The Compositional Profile of the Enceladus' Ice Plume Authors: Postberg, Frank; Schmidt, J.; Hillier, J. K.; Kempf, S.; Srama, R. Bibcode: 2010DPS....42.1608P Altcode: 2010BAAS...42..977P Data obtained by the Cassini spacecraft during recent close flybys of Enceladus will be presented. Prior compositional measurements of E ring grains with Cassini's Cosmic Dust Analyser (CDA) suggested salt-rich water as the dominant source of Enceladus' plume. Although the E ring dust population is dominated by ice particles stemming from Enceladus it was unclear how representative the E ring particles were of the original plume grain ensemble. During 2008 and 2009 Cassini passed deep into the plumes on several occasions, allowing the CDA team to analyse the compositions of freshly ejected plume particles for the first time. From this information a compositional profile of the plume has been inferred, showing that close to Enceladus' surface its composition differs significantly from that of the E ring. The observations can only be reproduced with a dominant liquid water plume source. Title: Dynamical and Photometric Simulations of Propeller Features in Saturn's A Ring Authors: Halme, Veli-Pekka; Salo, H.; Sremcevic, M.; Albers, N.; Schmidt, J.; Seiss, M.; Spahn, F. Bibcode: 2010DPS....42.5002H Altcode: 2010BAAS...42.1007H The size distribution of Saturn's ring particles can be generally described by a power-law size distribution from about 1 cm up to a few meters. The existence of larger particles, often called moonlets, in the rings is proven by the effects they have on the surrounding ring material. If the moonlet is not large enough to clear a gap, it will induce a propeller shaped structure, which were first discovered in the observation by the Cassini spacecraft. We have made dynamical and photometric simulations to get contraints on the properties of the propeller features seen in the outer A ring. We also consider the assumption, that some loose material is released from the particles in fast collisions induced by the moonlet. This debris is the reason for the enhanced optical thickness in the propeller features. We show that the debris model is able to explain the phase angle dependent appearance of the observed propellers on both the lit and the unlit side of the rings.

This work is supported by the Academy of Finland/Graduate School for Astronomy and Space Physics Title: VizieR Online Data Catalog: Algorithm for correcting CoRoT raw light curves (Mislis+, 2010) Authors: Mislis, D.; Schmitt, J. H. M. M.; Carone, L.; Guenther, E. W.; Patzold, M. Bibcode: 2010yCat..35220086M Altcode: 2010yCat..35229086M Requirements : gfortran (or g77, ifort) compiler

Input Files : The input files sould be raw CoRoT txt files (http://idoc-corot.ias.u-psud.fr/index.jsp) with names CoRoT*.txt

Run the cda by typing

C>: ./cda.csh

(code and data sould be in the same directory)

Output files : CDA creates one ascii output file with name - CoRoT*.R.cor for R filter

(2 data files). Title: Puzzling fluorescent emission from Orion Authors: Czesla, S.; Schmitt, J. H. M. M. Bibcode: 2010A&A...520A..38C Altcode: Fluorescent X-ray emission offers a rare possibility for studying cool material surrounding active, young stars in the X-ray regime. In this work, we develop a new method to search for fluorescent emission and analyze its temporal behavior, which we apply to a sample of 106 young, active stars in Orion. Our analysis yields a sample of 23 X-ray sources with fluorescent emission, including 6 objects already reported on in an earlier study. The fluorescent sources show a wide variety of temporal behavior. While the fluorescent emission is associated with soft X-ray flares in some cases, it sometimes appears as a (quasi) persistent feature, or is seen during truly quiescent periods. We conclude that fluorescent X-ray emission can be observed in a much higher fraction of young, active stars than previously believed. Whether photoionization alone is the excitation mechanism of fluorescent X-ray emission or if electronic collisional excitation also contributes remains debatable. The temporal variability is often hard to reconcile with the photoionization model, which remains plausible if we allow for suitable geometries. Photoionization is preferred to electronic, collisional excitation mainly because the energetics of the latter challenge our current physical understanding. Title: The Compositional Profile of the Enceladus Dust Plume II. Modeling Authors: Schmidt, J.; Postberg, F.; Srama, R.; Kempf, S.; Hillier, J. Bibcode: 2010epsc.conf..847S Altcode: No abstract at ADS Title: Large-scale structure of Saturn's E ring and its sources Authors: Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Postberg, F.; Schmidt, J.; Spahn, F. Bibcode: 2010epsc.conf..572K Altcode: No abstract at ADS Title: The disk-bearing young star IM Lupi. X-ray properties and limits on accretion Authors: Günther, H. M.; Matt, S. P.; Schmitt, J. H. M. M.; Güdel, M.; Li, Z. -Y.; Burton, D. M. Bibcode: 2010A&A...519A..97G Altcode: 2010arXiv1005.4459G Context. Classical T Tauri stars (CTTS) differ in their X-ray signatures from older pre-main sequence stars, e.g., weak-lined TTS (WTTS). CTTS exhibit a soft excess and deviations from the low-density coronal limit in the He-like triplets.
Aims: We test whether these features correlate with either accretion or the presence of a disk by observing IM Lup, a disk-bearing object apparently in transition between CTTS and WTTS without obvious accretion.
Methods: We analyse a Chandra grating spectrum and additional XMM-Newton data of IM Lup and accompanying optical spectra, some of which where taken simultaneously with the X-ray observations. We fit the X-ray emission lines and decompose the Hα emission line into different components.
Results: In X-rays, IM Lup has a bright and hot active corona, where elements with low first-ionisation potential are depleted. The He-like Ne ix triplet is in the low-density state, but because of the small number of counts in the data a high-density scenario cannot be excluded at the 90% confidence level. In terms of all its X-ray properties, IM Lup resembles a main-sequence star, but is also compatible with CTTS signatures at the 90% confidence level, thus we cannot decide whether the soft excess and deviations from the low-density coronal limit for the He-like triplets in CTTS are produced by accretion or only the presence of a disk. The star IM Lup is chromospherically active, which accounts for most of its emission in Hα. Despite its low equivalent width, the complexity of the Hα line profile is reminiscent of CTTS. We estimate the mass accretion rate to be 10-11 M yr-1.

Based on observations obtained with XMM-Newton, an ESA science mission, and Chandra, a NASA science mission, both with instruments and contributions directly funded by ESA Member States and NASA. Title: The vertical structure of the Daphnis wakes at the Keeler gap edge Authors: Seiß, M.; Salo, H.; Schmidt, J.; Spahn, F. Bibcode: 2010epsc.conf..701S Altcode: No abstract at ADS Title: The Compositional Profile of the Enceladian Ice Plume Authors: Postberg, F.; Schmidt, J.; Hillier, J. K.; Srama, R.; Kempf, S. Bibcode: 2010epsc.conf..687P Altcode: No abstract at ADS Title: An ingress and a complete transit of HD80606 b Authors: Hidas, M. G.; Tsapras, Y.; Mislis, D.; Ramaprakash, A. N.; Barros, S. C. C.; Street, R. A.; Schmitt, J. H. M. M.; Steele, I.; Pollacco, D.; Ayiomamitis, A.; Antoniadis, J.; Nitsos, A.; Seiradakis, J. H.; Urakawa, S. Bibcode: 2010MNRAS.406.1146H Altcode: 2010MNRAS.tmp..808H; 2010arXiv1002.1052H We have used four telescopes at different longitudes to obtain near-continuous light-curve coverage of the star HD80606 as it was transited by its ~4-MJup planet. The observations were performed during the predicted transit windows around 2008 October 25 and 2009 February 14. Our data set is unique in that it simultaneously constrains the duration of the transit and the planet's period. Our Markov Chain Monte Carlo analysis of the light curves, combined with constraints from radial-velocity data, yields system parameters consistent with previously reported values. We find a planet-to-star radius ratio marginally smaller than previously reported, corresponding to a planet radius of Rp = 0.921 +/- 0.036RJup. Title: Setting up ELP-OA: the polychromatic laser guide star demonstrator Authors: Meilard, N.; Foy, R.; Langlois, M.; Tallon, M.; Thiébaut, E.; Petit, A.; Blazit, A.; Blanc, P. -E.; Chombart, J.; Fouche, O.; Laloge, A.; Le Van Suu, A.; Regal, X.; Schmitt, J.; Bör, M. Bibcode: 2010SPIE.7736E..1WM Altcode: 2010SPIE.7736E..63M ELP-OA ('Etoile Laser Polychromatique pour l'Optique Adaptative) aims at demonstrating the tip-tilt is measurable with a Laser Guide Star (LGS) without any natural guide star. This allows a full sky coverage down to visible wavelengths. ELP-OA is being setup at Observatoire de Haute-Provence (OHP). To create a polychromatic LGS, we use two pulsed dye lasers (at 569nm and 589nm) to produce a two-photons excitation of sodium atoms in the mesosphere. The chromatism of the refractive index of the air yields a difference of the LGS direction at different wavelengths. The position differences is proportionnal to the tip-tilt. Since the LGS isn't sharp enough to give us a small enough error in the differential tip-tilt, we use an interferometric projector to improve the high spatial information in the laser spot. It requires an adaptive optics working down to 330nm. This one is done by post-processing algorithms. Two two aperture projectors are used. Each one creates a fringe-modulated LGS, and a better RMS error in the LGS position is obtained by measuring the information in a normal direction with respect to the fringes. By using a two aperture projector, we also strongly decrease the negative effect of the laser star elongation in the mesosphere, and the Rayleigh contribution near the LGS. We propose a new optimal algorithm to retrieve the tip-tilt from simultaneous images at different wavelengths. To enhance the RMS error of the measurements, we extend this algorithm to exploit the temporal correlation of the turbulence. Title: Poisson denoising on the sphere: application to the Fermi gamma ray space telescope Authors: Schmitt, J.; Starck, J. L.; Casandjian, J. M.; Fadili, J.; Grenier, I. Bibcode: 2010A&A...517A..26S Altcode: 2010arXiv1003.5613S The Large Area Telescope (LAT), the main instrument of the Fermi gamma-ray Space telescope, detects high energy gamma rays with energies from 20 MeV to more than 300 GeV. The two main scientific objectives, the study of the Milky Way diffuse background and the detection of point sources, are complicated by the lack of photons. That is why we need a powerful Poisson noise removal method on the sphere which is efficient on low count Poisson data. This paper presents a new multiscale decomposition on the sphere for data with Poisson noise, called multi-scale variance stabilizing transform on the sphere (MS-VSTS). This method is based on a variance stabilizing transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has a quasi constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. MS-VSTS consists of decomposing the data into a sparse multi-scale dictionary like wavelets or curvelets, and then applying a VST on the coefficients in order to get almost Gaussian stabilized coefficients. In this work, we use the isotropic undecimated wavelet transform (IUWT) and the curvelet transform as spherical multi-scale transforms. Then, binary hypothesis testing is carried out to detect significant coefficients, and the denoised image is reconstructed with an iterative algorithm based on hybrid steepest descent (HSD). To detect point sources, we have to extract the Galactic diffuse background: an extension of the method to background separation is then proposed. In contrary, to study the Milky Way diffuse background, we remove point sources with a binary mask. The gaps have to be interpolated: an extension to inpainting is then proposed. The method, applied on simulated Fermi LAT data, proves to be adaptive, fast and easy to implement. Title: The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany Authors: Ansmann, A.; Tesche, M.; Groß, S.; Freudenthaler, V.; Seifert, P.; Hiebsch, A.; Schmidt, J.; Wandinger, U.; Mattis, I.; Müller, D.; Wiegner, M. Bibcode: 2010GeoRL..3713810A Altcode: The optically thickest volcanic ash plume ever measured over Germany was monitored with multiwavelength Raman lidars and Sun photometer at Leipzig and Munich. When this ash layer, originating from the Eyjafjoll eruptions in southern Iceland, crossed Leipzig between 2.5 and 6 km height on 16 April 2010, the total 500 nm aerosol optical depth reached 1.0, and the ash-related optical depth was about 0.7. Volume light-extinction coefficients (40-75-minute mean values) measured over Leipzig and Munich at 355 and 532 nm reached values of 400-600 Mm-1 and ash mass concentrations were on the order of 1000 ± 350 μg/m3 in the center of the main ash layer. Extinction-to-backscatter ratios ranged from 55 ± 5 sr (Munich) to 60 ± 5 sr (Leipzig) in the main ash layer, and the particle linear depolarization ratio was close to 0.35 at both wavelengths. Rather low photometer-derived Ångström exponents (500-1640 nm wavelength range) indicated the presence of a significant amount of large ash particles with diameters >20 μm. Title: The absence of sub-minute periodicity in classical T Tauri stars Authors: Günther, H. M.; Lewandowska, N.; Hundertmark, M. P. G.; Steinle, H.; Schmitt, J. H. M. M.; Buckley, D.; Crawford, S.; O'Donoghue, D.; Vaisanen, P. Bibcode: 2010A&A...518A..54G Altcode: 2010arXiv1005.1885G Context. Classical T Tauri stars (CTTS) are young, late-type objects, that still accrete matter from a circumstellar disk. Analytical treatments and numerical simulations predict instabilities of the accretion shock on the stellar surface.
Aims: We search for variability on timescales below a few minutes in the CTTS TW Hya and AA Tau.
Methods: TW Hya was observed with SALTICAM on the Southern African Large Telescope (SALT) in narrow-band filters around the Balmer jump. The observations were performed in slit mode, which provides a time resolution of about 0.1 s. For AA Tau we obtained observations with OPTIMA, a single photon-counting device with even better time resolution.
Results: Small-scale variability typically lasts a few seconds, however, no significant periodicity is detected. We place a 99% confidence upper limit on the pulsed fraction of the lightcurves. The relative amplitude is below 0.001 for TW Hya in the frequency range 0.02-3 Hz in the 340 nm filter and 0.1-3 Hz in the 380 nm filter. The corresponding value for AA Tau is an amplitude of 0.005 for 0.02-50 Hz.
Conclusions: The relevant timescales indicate that shock instabilites should not be seen directly in our optical and UV observations, but the predicted oscialltions would induce observable variations in the reddening. We discuss how the magnetic field could stabilise the accretion shock.

Based on observations obtained at the Southern African Large Telescope (SALT) and Skinakas observatory, Greece.

unknown author type, collab unknown author type, collab unknown author type, collab unknown author type, collab unknown author type, collab unknown author type, collab Title: X-raying the AU Microscopii debris disk Authors: Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2010A&A...516A...8S Altcode: 2010arXiv1003.5562S AU Mic is a young, nearby X-ray active M-dwarf with an edge-on debris disk. Debris disk are the successors to the gaseous disks usually surrounding pre-main sequence stars which form after the first few Myrs of their host stars' lifetime, when - presumably - also the planet formation takes place. Since X-ray transmission spectroscopy is sensitive to the chemical composition of the absorber, features in the stellar spectrum of AU Mic caused by its debris disk can in principle be detected. The upper limits we derive from our high resolution Chandra LETGS X-ray spectroscopy are on the same order as those from UV absorption measurements, consistent with the idea that AU Mic's debris disk possesses an inner hole with only a very low density of sub-micron sized grains or gas. Title: X-ray emission from the remarkable A-type star HR 8799 Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2010A&A...516A..38R Altcode: 2010arXiv1004.1318R We investigate a Chandra observation of the remarkable planet-bearing A5 V star HR 8799, more precisely classified as a kA5 hF0 mA5 star. We search for intrinsic X-ray emission, a diagnostic for studying the possible activity of intermediate-mass stars. In the regime of mid/late A-type stars a strong decline in magnetic activity occurs towards hotter stars because of the vanishing of the outer convection zone. We clearly detect HR 8799 at soft X-ray energies with the ACIS-S detector in a 10 ks exposure; minor X-ray brightness variability is present during the observation. The coronal plasma is described well by a model with a temperature of around 3 MK and an X-ray luminosity of about LX = 1.3 × 1028 erg/s in the 0.2-2.0 keV band, corresponding to an activity level of log LX/Lbol ≈ -6.2. Altogether, these findings point to a rather weakly active and given a RASS detection, long-term stable X-ray emitting star. The X-ray emission from HR 8799 resembles those of late A/early F-type stars, in agreement with its classification on the basis of hydrogen lines and its effective temperature determination and thus resolving the apparent discrepancy with the standard picture of magnetic activity that predicts mid A-type stars to be virtually X-ray dark. Title: Coronal properties of planet-bearing stars Authors: Poppenhaeger, K.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2010A&A...515A..98P Altcode: 2010arXiv1003.5802P Context. Do extrasolar planets affect the activity of their host stars? Indications for chromospheric activity enhancement have been found for a handful of targets, but in the X-ray regime, conclusive observational evidence is still missing.
Aims: We want to establish a sound observational basis to confirm or reject major effects of Star-Planet Interactions (SPI) in stellar X-ray emissions.
Methods: We therefore conduct a statistical analysis of stellar X-ray activity of all known planet-bearing stars within 30 pc distance for dependencies on planetary parameters such as mass and semimajor axis.
Results: In our sample, there are no significant correlations of X-ray luminosity or the activity indicator L_X/L_bol with planetary parameters which cannot be explained by selection effects.
Conclusions: Coronal SPI seems to be a phenomenon which might only manifest itself as a strong effect for a few individual targets, but not to have a major effect on planet-bearing stars in general. Title: Surface, Subsurface and Atmosphere Exchanges on the Satellites of the Outer Solar System Authors: Tobie, G.; Giese, B.; Hurford, T. A.; Lopes, R. M.; Nimmo, F.; Postberg, F.; Retherford, K. D.; Schmidt, J.; Spencer, J. R.; Tokano, T.; Turtle, E. P. Bibcode: 2010SSRv..153..375T Altcode: 2010SSRv..tmp...49T The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites’ surfaces. Title: Multiwavelength observations of a giant flare on CN Leonis. III. Temporal evolution of coronal properties Authors: Liefke, C.; Fuhrmeister, B.; Schmitt, J. H. M. M. Bibcode: 2010A&A...514A..94L Altcode: 2010arXiv1003.4128L Context. Stellar flares affect all atmospheric layers from the photosphere over chromosphere and transition region up into the corona. Simultaneous observations in different spectral bands allow to obtain a comprehensive picture of the environmental conditions and the physical processes going on during different phases of the flare.
Aims: We investigate the properties of the coronal plasma during a giant flare on the active M dwarf CN Leo observed simultaneously with the UVES spectrograph at the VLT and XMM-Newton.
Methods: From the X-ray data, we analyze the temporal evolution of the coronal temperature and emission measure, and investigate variations in electron density and coronal abundances during the flare. Optical Fe XIII line emission traces the cooler quiescent corona.
Results: Although of rather short duration (exponential decay time τ_LC < 5 min), the X-ray flux at flare peak exceeds the quiescent level by a factor of ≈100. The electron density averaged over the whole flare is greater than 5 × 1011 cm-3. The flare plasma shows an enhancement of iron by a factor of ≈2 during the rise and peak phase of the flare. We derive a size of <9000 km for the flaring structure from the evolution of the the emitting plasma during flare rise, peak, and decay.
Conclusions: The characteristics of the flare plasma suggest that the flare originates from a compact arcade instead of a single loop. The combined results from X-ray and optical data further confine the plasma properties and the geometry of the flaring structure in different atmospheric layers.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 077.D-0011(A) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Title: Planetary eclipse mapping of CoRoT-2a. Evolution, differential rotation, and spot migration Authors: Huber, K. F.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2010A&A...514A..39H Altcode: 2010arXiv1002.4113H The lightcurve of CoRoT-2 shows substantial rotational modulation and deformations of the planet's transit profiles caused by starspots. We consistently model the entire lightcurve, including both rotational modulation and transits, stretching over approximately 30 stellar rotations and 79 transits. The spot distribution and its evolution on the noneclipsed and eclipsed surface sections are presented and analyzed, making use of the high resolution achievable under the transit path. We measure the average surface brightness on the eclipsed section to be (5±1)% lower than on the noneclipsed section. Adopting a solar spot contrast, the spot coverage on the entire surface reaches up to 19% and a maximum of almost 40% on the eclipsed section. Features under the transit path, i.e. close to the equator, rotate with a period close to 4.55 days. Significantly higher rotation periods are found for features on the noneclipsed section indicating a differential rotation of ΔΩ > 0.1. Spotted and unspotted regions in both surface sections concentrate on preferred longitudes separated by roughly 180°. Title: Three-dimensional MHD Model Of Active Region Loop Oscillations With Background Flow Authors: Ofman, Leon; Schmidt, J.; Wang, T. Bibcode: 2010AAS...21630204O Altcode: Recent observations by Hinode satellite show that oscillating coronal loops with periods of several minutes contain cool flowing material at 100 km/s. The flow may affects significantly the oscillations and the damping of the wave energy. We model the oscillating loops with background flow in 3D MHD model of a bi-polar active region, that includes the effects of loop curvature and chromospheric boundary conditions. The oscillations are excited impulsively by a velocity pulse. We study the effects of flow magnitude, and loop parameters on the excitation and damping of the oscillations. The results of the parametric study have implication for coronal seismology, and for wave heating of active region coronal loops. Title: The Asteroseismic Potential of Kepler: First Results for Solar-Type Stars Authors: Chaplin, W. J.; Appourchaux, T.; Elsworth, Y.; García, R. A.; Houdek, G.; Karoff, C.; Metcalfe, T. S.; Molenda-Żakowicz, J.; Monteiro, M. J. P. F. G.; Thompson, M. J.; Brown, T. M.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Kjeldsen, H.; Borucki, W. J.; Koch, D.; Jenkins, J. M.; Ballot, J.; Basu, S.; Bazot, M.; Bedding, T. R.; Benomar, O.; Bonanno, A.; Brandão, I. M.; Bruntt, H.; Campante, T. L.; Creevey, O. L.; Di Mauro, M. P.; Doǧan, G.; Dreizler, S.; Eggenberger, P.; Esch, L.; Fletcher, S. T.; Frandsen, S.; Gai, N.; Gaulme, P.; Handberg, R.; Hekker, S.; Howe, R.; Huber, D.; Korzennik, S. G.; Lebrun, J. C.; Leccia, S.; Martic, M.; Mathur, S.; Mosser, B.; New, R.; Quirion, P. -O.; Régulo, C.; Roxburgh, I. W.; Salabert, D.; Schou, J.; Sousa, S. G.; Stello, D.; Verner, G. A.; Arentoft, T.; Barban, C.; Belkacem, K.; Benatti, S.; Biazzo, K.; Boumier, P.; Bradley, P. A.; Broomhall, A. -M.; Buzasi, D. L.; Claudi, R. U.; Cunha, M. S.; D'Antona, F.; Deheuvels, S.; Derekas, A.; García Hernández, A.; Giampapa, M. S.; Goupil, M. J.; Gruberbauer, M.; Guzik, J. A.; Hale, S. J.; Ireland, M. J.; Kiss, L. L.; Kitiashvili, I. N.; Kolenberg, K.; Korhonen, H.; Kosovichev, A. G.; Kupka, F.; Lebreton, Y.; Leroy, B.; Ludwig, H. -G.; Mathis, S.; Michel, E.; Miglio, A.; Montalbán, J.; Moya, A.; Noels, A.; Noyes, R. W.; Pallé, P. L.; Piau, L.; Preston, H. L.; Roca Cortés, T.; Roth, M.; Sato, K. H.; Schmitt, J.; Serenelli, A. M.; Silva Aguirre, V.; Stevens, I. R.; Suárez, J. C.; Suran, M. D.; Trampedach, R.; Turck-Chièze, S.; Uytterhoeven, K.; Ventura, R.; Wilson, P. A. Bibcode: 2010ApJ...713L.169C Altcode: 2010arXiv1001.0506C We present preliminary asteroseismic results from Kepler on three G-type stars. The observations, made at one-minute cadence during the first 33.5 days of science operations, reveal high signal-to-noise solar-like oscillation spectra in all three stars: about 20 modes of oscillation may be clearly distinguished in each star. We discuss the appearance of the oscillation spectra, use the frequencies and frequency separations to provide first results on the radii, masses, and ages of the stars, and comment in the light of these results on prospects for inference on other solar-type stars that Kepler will observe. Title: Quiescent and flaring X-ray emission from the nearby M/T dwarf binary SCR 1845-6357 Authors: Robrade, J.; Poppenhaeger, K.; Schmitt, J. H. M. M. Bibcode: 2010A&A...513A..12R Altcode: 2010arXiv1002.2389R
Aims: X-ray emission is an important diagnostics to study magnetic activity in very low mass stars that are presumably fully convective and have an effectively neutral photosphere.
Methods: We investigate an XMM-Newton observation of SCR 1845-6357, a nearby, ultracool M 8.5 / T 5.5 dwarf binary. The binary is unresolved in the XMM detectors, but the X-ray emission is very likely from the M 8.5 dwarf. We compare its flaring emission to those of similar very low mass stars and additionally present an XMM observation of the M 8 dwarf VB 10.
Results: We detect quasi-quiescent X-ray emission from SCR 1845-6357 at soft X-ray energies in the 0.2-2.0 keV band, as well as a strong flare with a count rate increase of a factor of 30 and a duration of only 10 min. The quasi-quiescent X-ray luminosity of log LX = 26.2 erg/s and the corresponding activity level of log LX/Lbol = -3.8 point to a fairly active star. Coronal temperatures of up to 5 MK and frequent minor variability support this picture. During the flare, which is accompanied by a significant brightening in the near-UV, plasma temperatures of 25-30 MK are observed and an X-ray luminosity of LX = 8 × 1027 erg/s is reached.
Conclusions: The source SCR 1845-6357 is a nearby, very low mass star that emits X-rays at detectable levels in quasi-quiescence, implying the existence of a corona. The high activity level, coronal temperatures and the observed large flare point to a rather active star, despite its estimated age of a few Gyr. Title: An Evolving View of Saturn’s Dynamic Rings Authors: Cuzzi, J. N.; Burns, J. A.; Charnoz, S.; Clark, R. N.; Colwell, J. E.; Dones, L.; Esposito, L. W.; Filacchione, G.; French, R. G.; Hedman, M. M.; Kempf, S.; Marouf, E. A.; Murray, C. D.; Nicholson, P. D.; Porco, C. C.; Schmidt, J.; Showalter, M. R.; Spilker, L. J.; Spitale, J. N.; Srama, R.; Sremčević, M.; Tiscareno, M. S.; Weiss, J. Bibcode: 2010Sci...327.1470C Altcode: We review our understanding of Saturn’s rings after nearly 6 years of observations by the Cassini spacecraft. Saturn’s rings are composed mostly of water ice but also contain an undetermined reddish contaminant. The rings exhibit a range of structure across many spatial scales; some of this involves the interplay of the fluid nature and the self-gravity of innumerable orbiting centimeter- to meter-sized particles, and the effects of several peripheral and embedded moonlets, but much remains unexplained. A few aspects of ring structure change on time scales as short as days. It remains unclear whether the vigorous evolutionary processes to which the rings are subject imply a much younger age than that of the solar system. Processes on view at Saturn have parallels in circumstellar disks. Title: Multi-band transit observations of the TrES-2b exoplanet Authors: Mislis, D.; Schröter, S.; Schmitt, J. H. M. M.; Cordes, O.; Reif, K. Bibcode: 2010A&A...510A.107M Altcode: 2009arXiv0912.4428M We present a new data set of transit observations of the TrES-2b exoplanet taken in spring 2009, using the 1.2 m Oskar-Lühning telescope (OLT) of Hamburg Observatory and the 2.2 m telescope at Calar Alto Observatory using BUSCA (Bonn University Simultaneous CAmera). Both the new OLT data, taken with the same instrumental setup as our data taken in 2008, as well as the simultaneously recorded multicolor BUSCA data confirm the low inclination values reported previously, and in fact suggest that the TrES-2b exoplanet has already passed the first inclination threshold (imin,1 = 83.417°) and is not eclipsing the full stellar surface any longer. Using the multi-band BUSCA data we demonstrate that the multicolor light curves can be consistently fitted with a given set of limb darkening coefficients without the need to adjust these coefficients, and further, we can demonstrate that wavelength dependent stellar radius changes must be small as expected from theory. Our new observations provide further evidence for a change of the orbit inclination of the transiting extrasolar planet TrES-2b reported previously. We examine in detail possible causes for this inclination change and argue that the observed change should be interpreted as nodal regression. While the assumption of an oblate host star requires an unreasonably large second harmonic coefficient, the existence of a third body in the form of an additional planet would provide a very natural explanation for the observed secular orbit change. Given the lack of clearly observed short-term variations of transit timing and our observed secular nodal regression rate, we predict a period between approximately 50 and 100 days for a putative perturbing planet of Jovian mass. Such an object should be detectable with present-day radial velocity (RV) techniques, but would escape detection through transit timing variations.

Photometric transit data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A107 Title: VizieR Online Data Catalog: TrES-2b multi-band transit observations (Mislis+, 2010) Authors: Mislis, D.; Schroeter, S.; Schmitt, J. H. M. M.; Cordes, O.; Reif, K. Bibcode: 2010yCat..35100107M Altcode: 2010yCat..35109107M The OLT data were taken on 11 April 2009 using a 3Kx3K CCD with a 1x1 FOV and an I-band filter as in our previous observing run (Paper I, Mislis & Schmitt, 2009, Cat. <J/A+A/500/L45>). The Calar Alto data were taken on 28 May 2009 using BUSCA and the 2.2m telescope.

(1 data file). Title: Multi-wavelength observations of a giant flare on CN Leonis. II. Chromospheric modelling with PHOENIX Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H. Bibcode: 2010A&A...511A..83F Altcode:
Aims: In M dwarfs, optical emission lines and continua are sensitive to changing chromospheric conditions, e.g., during flares. To study flare conditions for an observed spectrum, a comparison to synthesised spectra from model atmospheres is needed.
Methods: Using the stellar atmosphere code PHOENIX, we computed a set of 41 1D NLTE parameterised chromospheric models including the photosphere and parts of the transition region. By comparison of a linear combination of the synthesised spectra and a quiescent (observed) chromosphere to observed UVES/VLT spectra of a giant flare of the M 5.5 dwarf CN Leo (Gl406), we find the best-fitting flare model chromosphere.
Results: Our model spectra give a fairly good overall description of the observed continua and emission lines. In the best-fitting model, the temperature minimum is deep in the atmosphere resulting in high electron pressure for the chromospheric flaring area. The inferred chromospheric filling factor of the flare is about 3 percent, which declines during the flare. The photospheric flare filling factor is about 0.3 percent.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 077.D-0011(A) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Title: Surface, Subsurface and Atmosphere Exchanges on the Satellites of the Outer Solar System Authors: Tobie, G.; Giese, B.; Hurford, T. A.; Lopes, R. M.; Nimmo, F.; Postberg, F.; Retherford, K. D.; Schmidt, J.; Spencer, J. R.; Tokano, T.; Turtle, E. P. Bibcode: 2010soss.book..373T Altcode: No abstract at ADS Title: The Solar-Stellar Connection Authors: Schmitt, J. H. M. M. Bibcode: 2010ASSP...19..332S Altcode: 2010mcia.conf..332S The presence of strong magnetic fields on the solar surface has been known for more than 100 years, ever since Hale (1908) was the first to measure solar magnetic fields through the Zeeman effect. The coronal heating problem was established in the 30s and early 40s of the last century, when Grotrian and Edlén (see the discussion in Edlén (1945) on this issue) realized from the identification of so-called forbidden lines that the very outer layers of the Sun were much hotter than its photosphere. However, the connection between magnetic fields and coronal heating was not firmly made until the 70s, when the hundreds of high-resolution Skylab X-ray images of the Sun (Zombeck et al. 1978) demonstrated the extreme spatial inhomogeneity of its X-ray emission and the close association of X-ray activity with bipolar regions on its surface. Title: Faint dusty rings and streams: In-situ observations with Cassini at Saturn Authors: Srama, Ralf; Ahrens, T.; Altobelli, N.; Burton, M.; Economou, T.; Graps, A.; Grün, E.; Helfert, S.; Horanyi, M.; Hsu, S.; Johnson, T.; Kempf, S.; Krüger, H.; Mocker, A.; Moragas-Klostermeyer, G.; Postberg, F.; Roy, M.; Schmidt, J.; Spahn, F.; Sterken, V.; Strub, P. Bibcode: 2010cosp...38..580S Altcode: 2010cosp.meet..580S Cassini's dust detector CDA investigates Saturn's environment since 2004. The icy moons, primarily Enceladus, release submicron sized dust feeding the outer ring system of Saturn. The dust particles released distribute widely in the saturnian system according to gravitational, poynting-robertson, radiation pressure or plasma drag forces. The grains are electrically charged and sputtering changes the mass distribution with time. The CDA instrument measures the speed, mass, charge, composition and trajectory of individual dust grains in Saturn's ring system. This talk presents a global picture of the dust measurements onboard Cassini. Title: The Data Reduction Pipeline of the Hamburg Robotic Telescope Authors: Mittag, Marco; Hempelmann, Alexander; González-Pérez, José Nicolás; Schmitt, Jürgen H. M. M. Bibcode: 2010AdAst2010E...6M Altcode: No abstract at ADS Title: Fast and transient phenomena in stellar magnetospheres / flare stars Authors: Schmitt, J. Bibcode: 2010htra.confE..22S Altcode: 2010PoS...108E..22S No abstract at ADS Title: Flare star observations with OPTIMA Authors: Schmitt, J. Bibcode: 2010htra.confE..21S Altcode: 2010PoS...108E..21S No abstract at ADS Title: Long-term evolution of Saturn's E ring particles (Invited) Authors: Kempf, S.; Beckmann, U.; Strub, P.; Srama, R.; Moragas-Klostermeyer, G.; Schmidt, J.; Spahn, F.; Roy, M.; Burton, M. E. Bibcode: 2009AGUFM.P54A..01K Altcode: Obviously, there is an intimate connection between the dynamics of the particles and the spatial structure of a diffuse ring. The particle dynamics determines the distribution of their orbital elements, which in turn governs the spatial density of the ring particles. However, the relation between the dynamics of individual particles and the ring properties is neither necessarily simple nor can this relation be derived without prior knowledge directly from in-situ or telescopic observations. Data obtained by "local" in-situ measurements as well as by "global" camera observations only reflect the conditions within the observed volume element, which are the result of a complex superposition of particles of different origin, age, size, and dynamical properties. As a consequence, the interpretation of ring data always requires knowledge of the ring's orbital element distribution, which has to be obtained by other means. Numerical simulations of the ring particle ensemble may provide the missing link between empirical observation and the concealed nature of the ring. The present work attempts to derive the distribution of the orbital elements of Saturn's diffuse E ring from numerical simulations of individual ring particles. The results will then be applied to data recently obtained by the Cassini dust detector. Title: The Chandra X-ray view of the power sources in Cepheus A Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2009A&A...508..321S Altcode: 2009arXiv0909.5592S The central part of the massive star-forming region Cepheus A contains several radio sources which indicates multiple outflow phenomena, yet the driving sources of the individual outflows have not been identified. We present a high-resolution Chandra observation of this region that shows the presence of bright X-ray sources with luminosities of LX ≳ 1030 erg s-1, consistent with active pre-main sequence stars, while the strong absorption hampers the detection of less luminous objects. A new source has been discovered located on the line connecting H2 emission regions at the eastern and western parts of Cepheus A. This source could be the driving source of HH 168. We present a scenario relating the observed X-ray and radio emission. Title: 51 Pegasi - a planet-bearing Maunder minimum candidate Authors: Poppenhäger, K.; Robrade, J.; Schmitt, J. H. M. M.; Hall, J. C. Bibcode: 2009A&A...508.1417P Altcode: 2009arXiv0911.4862P We observed 51 Peg, the first detected planet-bearing star, in a 55 ks XMM-Newton pointing and in 5 ks pointings each with Chandra HRC-I and ACIS-S. The star has a very low count rate in the XMM observation, but is clearly visible in the Chandra images due to the detectors' different sensitivity at low X-ray energies. This allows a temperature estimate for 51 Peg's corona of T⪉ 1 MK; the detected ACIS-S photons can be plausibly explained by emission lines of a very cool plasma near 200 eV. The constantly low X-ray surface flux and the flat-activity profile seen in optical Ca II data suggest that 51 Peg is a Maunder minimum star; an activity enhancement due to a Hot Jupiter, as proposed by recent studies, seems to be absent. The star's X-ray fluxes in different instruments are consistent with the exception of the HRC Imager, which might have a larger effective area below 200 eV than given in the calibration. Title: Chandra observation of Cepheus A: the diffuse emission of HH 168 resolved Authors: Schneider, P. C.; Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2009A&A...508..717S Altcode: 2009arXiv0909.5326S X-ray emission from massive stellar outflows has been detected in several cases. We present a Chandra observation of HH 168 and show that the soft X-ray emission from a plasma of 0.55 keV within HH 168 is diffuse. The X-ray emission is observed on two different scales: Three individual, yet extended, regions are embedded within a complex of low X-ray surface brightness. Compared to the bow shock the emission is displaced against the outflow direction. We show that there is no significant contribution from young stellar objects (YSOs) and discuss several shock scenarios that can produce the observed signatures. We establish that the X-ray emission of HH 168 is excited by internal shocks in contrast to simple models, which expect the bow shock to be the most X-ray luminous. Title: A planetary eclipse map of CoRoT-2a. Comprehensive lightcurve modeling combining rotational-modulation and transits Authors: Huber, K. F.; Czesla, S.; Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2009A&A...508..901H Altcode: 2009arXiv0909.3256H We analyze the surface structure of the planet host star CoRoT-2a using a consistent model for both the “global” (i.e., rotationally modulated) lightcurve and the transit lightcurves, using data provided by the CoRoT mission. After selecting a time interval covering two stellar rotations and six transits of the planetary companion CoRoT-2b, we have adopted a “strip” model of the surface to reproduce the photometric modulation inside and outside the transits simultaneously. Our reconstructions show that it is possible to achieve appropriate fits for the entire subinterval using a low-resolution surface model with 36 strips. The surface reconstructions indicate that the brightness on the eclipsed section of the stellar surface is (6±1)% lower than the average brightness of the remaining surface. This result suggests a concentration of stellar activity in a band around the stellar equator similar to the behavior observed on the Sun. Title: Rings Research in the Next Decade Authors: Tiscareno, Matthew S.; Albers, N.; Brahic, A.; Brooks, S. M.; Burns, J. A.; Chavez, C.; Colwell, J. E.; Cuzzi, J. N.; de Pater, I.; Dones, L.; Durisen, R. H.; Filacchione, G.; Giuliatti Winter, S. M.; Gordon, M. K.; Graps, A.; Hamilton, D. P.; Hedman, M. M.; Horanyi, M.; Kempf, S.; Krueger, H.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Nicholson, P. D.; Olkin, C. B.; Pappalardo, R. T.; Salo, H.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Sremcevic, M.; Stewart, G. R.; Yanamandra-Fisher, P. Bibcode: 2009DPS....41.1632T Altcode: The study of planetary ring systems is a key component of planetary science for several reasons: 1) The evolution and current states of planets and their satellites are affected in many ways by rings, while 2) conversely, properties of planets and moons and other solar system populations are revealed by their effects on rings; 3) highly structured and apparently delicate ring systems may be bellwethers, constraining various theories of the origin and evolution of their entire planetary system; and finally, 4) planetary rings provide an easily observable analogue to other astrophysical disk systems, enabling real "ground truth” results applicable to disks much more remote in space and/or time, including proto-planetary disks, circum-stellar disks, and even galaxies.

Significant advances have been made in rings science in the past decade. The highest-priority rings research recommendations of the last Planetary Science Decadal Survey were to operate and extend the Cassini orbiter mission at Saturn; this has been done with tremendous success, accounting for much of the progress made on key science questions, as we will describe. Important progress in understanding the rings of Saturn and other planets has also come from Earth-based observational and theoretical work, again as prioritized by the last Decadal Survey.

However, much important work remains to be done. At Saturn, the Cassini Solstice Mission must be brought to a successful completion. Priority should also be placed on sending spacecraft to Neptune and/or Uranus, now unvisited for more than 20 years. At Jupiter and Pluto, opportunities afforded by visiting spacecraft capable of studying rings should be exploited. On Earth, the need for continued research and analysis remains strong, including in-depth analysis of rings data already obtained, numerical and theoretical modeling work, laboratory analysis of materials and processes analogous to those found in the outer solar system, and continued Earth-based observations. Title: How stellar activity affects the size estimates of extrasolar planets Authors: Czesla, S.; Huber, K. F.; Wolter, U.; Schröter, S.; Schmitt, J. H. M. M. Bibcode: 2009A&A...505.1277C Altcode: 2009arXiv0906.3604C Light curves have long been used to study stellar activity and have more recently become a major tool in the field of exoplanet research. We discuss the various ways in which stellar activity can influence transit light curves, and study the effects using the outstanding photometric data of the CoRoT-2 exoplanet system. We report a relation between the “global” light curve and the transit profiles, which turn out to be shallower during high spot coverage on the stellar surface. Furthermore, our analysis reveals a color dependence of the transit light curve compatible with a wavelength-dependent limb darkening law as observed on the Sun. Taking into account activity-related effects, we redetermine the orbit inclination and planetary radius and find the planet to be ≈3% larger than reported previously. Our findings also show that exoplanet research cannot generally ignore the effects of stellar activity. Title: Long--term evolution of Saturn's E ring particles Authors: Kempf, S.; Beckmann, U.; Strubb, P.; Schmidt, J.; Spahn, F. Bibcode: 2009epsc.conf..424K Altcode: No abstract at ADS Title: Salt-Ice Grains from Enceladus' Plumes: Frozen Samples of a Subsurface Ocean Authors: Postberg, F.; Kempf, S.; Schmidt, J.; Brilliantov, N.; Beinsen, A.; Abel, B.; Buck, U.; Srama, R. Bibcode: 2009epsc.conf..411P Altcode: No abstract at ADS Title: Ice volcanism on Enceladus: From simulations to observations Authors: Strub, P.; Kempf, S.; Beckmann, U.; Schmidt, J. Bibcode: 2009epsc.conf..493S Altcode: No abstract at ADS Title: Transit mapping of a starspot on CoRoT-2. Probing a stellar surface with planetary transits Authors: Wolter, U.; Schmitt, J. H. M. M.; Huber, K. F.; Czesla, S.; Müller, H. M.; Guenther, E. W.; Hatzes, A. P. Bibcode: 2009A&A...504..561W Altcode: 2009arXiv0906.4140W We analyze variations in the transit lightcurves of CoRoT-2b, a massive hot Jupiter orbiting a highly active G star. We use one transit lightcurve to eclipse-map a photospheric spot occulted by the planet. In this case study we determine the size and longitude of the eclipsed portion of the starspot and systematically study the corresponding uncertainties. We determine a spot radius between 4.5° and 10.5° on the stellar surface and the spot longitude with a precision of about ± 1 degree. Given the well-known transit geometry of the CoRoT-2 system, this implies a reliable detection of spots on latitudes typically covered by sunspots; the size of the modelled spot is comparable to large spot groups on the Sun. We discuss the future potential of eclipse mapping by planetary transits for the high-resolution analysis of stellar surface features. Title: Salt-Ice Grains from Enceladus' Plumes: Frozen Samples of Subsurface Water Authors: Postberg, Frank; Kempf, S.; Schmidt, J.; Brilliantov, N.; Beinsen, A.; Abel, B.; Buck, U.; Srama, R. Bibcode: 2009DPS....41.6402P Altcode: Compositional measurements by Cassini's dust detector (CDA) of ice particles emitted from Saturn's active moon Enceladus into the E ring are presented. Our detection of sodium salts within the grains provides evidence for mineral enriched liquid water deep below the moon's icy surface (Postberg et al., Nature 2009).

In nearly all particles we found sodium (Na) in varying concentrations. Most spectra also show potassium (K) in lower abundance. In particles that are particularly sodium rich, sodium salts (like NaCl and NaHCO3) are identified as Na bearing components. This is only plausible if the plume source is liquid water that is or has been linked to an ocean in contact with the rocky material of Enceladus' core. The abundance of minerals as well as the inferred basic pH of those grains exhibit a compelling similarity with the predicted composition of an Enceladus ocean (Zolotov, GRL 2007). The Na-rich ice particles expelled through the plumes into the E ring are frozen droplets of a salt-water reservoir possibly still in contact with a large ocean.

Together with recent measurement of Enceladian plume vapor by Cassini-INMS (Waite et al., Nature 2009) and Earth bound spectroscopy (Schneider et al., Nature 2009), a detailed compositional picture of both gas and solid phases of the plume is at hand for the first time. The results provide strict constraints for plume models which have to include gas and grain production as well as their subsequent ejection into the E ring. The observations now produce a consistent picture of plume mechanics based on evaporation of liquid water as the main plume driver but also involving other processes. Violently erupting geysers from water in the cracks close to the surface can be ruled out, whereas large evaporating water surfaces deep below the ice crust provide the most plausible scenarios. Title: On the Distribution of Particle Sizes in Saturn's Rings Authors: Brilliantov, N. V.; Krapivsky, P.; Schmidt, J.; Spahn, F. Bibcode: 2009epsc.conf..656B Altcode: No abstract at ADS Title: High-resolution spectroscopy of cool stars Authors: Schmitt, J. Bibcode: 2009hrxs.confE..38S Altcode: I will review main results of high-resolution spectroscopy of cool stars with XMM-Newton and Chandra. Spectroscopic determinations of temperature, density and elemental abundances will be discussed and the results for various classes of stars presented. Specific issues discussed include densities of CTTS, the solar and stellar neon problem, CNO abundances of young and evolved stars and the measurement of flare plasma densities. Title: Fine jet structure of electrically charged grains in Enceladus' plume Authors: Jones, G. H.; Arridge, C. S.; Coates, A. J.; Lewis, G. R.; Kanani, S.; Wellbrock, A.; Young, D. T.; Crary, F. J.; Tokar, R. L.; Wilson, R. J.; Hill, T. W.; Johnson, R. E.; Mitchell, D. G.; Schmidt, J.; Kempf, S.; Beckmann, U.; Russell, C. T.; Jia, Y. D.; Dougherty, M. K.; Waite, J. H.; Magee, B. A. Bibcode: 2009GeoRL..3616204J Altcode: By traversing the plume erupting from high southern latitudes on Saturn's moon Enceladus, Cassini orbiter instruments can directly sample the material therein. Cassini Plasma Spectrometer, CAPS, data show that a major plume component comprises previously-undetected particles of nanometer scales and larger that bridge the mass gap between previously observed gaseous species and solid icy grains. This population is electrically charged both negative and positive, indicating that subsurface triboelectric charging, i.e., contact electrification of condensed plume material may occur through mutual collisions within vents. The electric field of Saturn's magnetosphere controls the jets' morphologies, separating particles according to mass and charge. Fine-scale structuring of these particles' spatial distribution correlates with discrete plume jets' sources, and reveals locations of other possible active regions. The observed plume population likely forms a major component of high velocity nanometer particle streams detected outside Saturn's magnetosphere. Title: Spectrum-RG astrophysical project Authors: Pavlinsky, M.; Sunyaev, R.; Churazov, E.; Vikhlinin, A.; Sazonov, S.; Revnivtsev, M.; Arefiev, V.; Lapshov, I.; Akimov, V.; Levin, V.; Buntov, M.; Semena, N.; Grigorovich, S.; Babyshkin, V.; Predehl, P.; Hasinger, G.; Böhringer, H.; Schmitt, J.; Santangelo, A.; Schwope, A.; Wilms, J. Bibcode: 2009SPIE.7437E..08P Altcode: 2009SPIE.7437E...6P The Spectrum-Roentgen-Gamma mission will be launched in the 2012 year into a L2 orbit with Soyuz launcher and Fregat buster from Baikonur. The mission will conduct all-sky survey with X-ray mirror telescopes eROSITA and ART-XC up to 11 keV. It will allow detection of about 100 thousand clusters of galaxies and discovery large scale Universe structure. It will also discover all obscured accreting Black Holes in nearby galaxies and many (about 3 millions) new distant AGN. Then it is planned to observe dedicated sky regions with high sensitivity and thereafter to perform follow-up pointed observations of selected sources. Title: Long-term stability of spotted regions and the activity-induced Rossiter-McLaughlin effect on V889 Herculis. A synergy of photometry, radial velocity measurements, and Doppler imaging Authors: Huber, K. F.; Wolter, U.; Czesla, S.; Schmitt, J. H. M. M.; Esposito, M.; Ilyin, I.; González-Pérez, J. N. Bibcode: 2009A&A...501..715H Altcode: 2009arXiv0904.1572H Context: The young active G-dwarf star V889 Herculis (HD 171488) shows pronounced spots in Doppler images as well as large variations in photometry and radial velocity (RV) measurements. However, the lifetime and evolution of its active regions are not well known.
Aims: We study the existence and stability of active regions on the star's surface using complementary data and methods. Furthermore, we analyze the correlation of spot-induced RV variations and Doppler images.
Methods: Photometry and high-resolution spectroscopy are used to examine stellar activity. A CLEAN-like Doppler imaging (DI) algorithm is used to derive surface reconstructions. We study high-precision RV curves to determine their modulation due to stellar activity in analogy to the Rossiter-McLaughlin effect. To this end we develop a measure for the shift of a line's center and compare it to RV measurements.
Results: We show that large spotted regions are present on V889 Her for more than one year, remaining similar in their large scale structure and position. This applies to several time periods of our observations, which cover more than a decade. We use DI line profile reconstructions to identify the influence of long-lasting starspots on RV measurements. In this way we verify the RV curve's agreement with our Doppler images. Based on long-term RV data we confirm V889 Her's rotation period of 1.3371 ± 0.0002 days. Title: Detection of orbital parameter changes in the TrES-2 exoplanet? Authors: Mislis, D.; Schmitt, J. H. M. M. Bibcode: 2009A&A...500L..45M Altcode: 2009arXiv0905.4030M We report a possible change in the orbit parameters of the TrES-2 exoplanet. With a period of 2.470621 days, the TrES-2 exoplanet exhibits almost “grazing” transits 110.4 min duration as measured in 2006 by Holman and collaborators. We observed two transits of TrES-2 in 2008 using the 1.2 m Oskar-Lühning telescope (OLT) of Hamburg observatory employing CCD photometry in an i-band and a near to R-band filter. A careful lightcurve analysis including a re-analysis of the 2006 observations shows that the current transit duration has shortened since 2006 by ≈3.16 min. Although the new observations were taken in a different filter we argue that the observed change in transit duration time cannot be attributed to the treatment of limb darkening. If we assume the stellar and planetary radii to be constant, a change in orbit inclination is the most likely cause of this change in transit duration.

Full Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/500/L45 Title: Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus Authors: Postberg, F.; Kempf, S.; Schmidt, J.; Brilliantov, N.; Beinsen, A.; Abel, B.; Buck, U.; Srama, R. Bibcode: 2009Natur.459.1098P Altcode: Saturn's moon Enceladus emits plumes of water vapour and ice particles from fractures near its south pole, suggesting the possibility of a subsurface ocean. These plume particles are the dominant source of Saturn's E ring. A previous in situ analysis of these particles concluded that the minor organic or siliceous components, identified in many ice grains, could be evidence for interaction between Enceladus' rocky core and liquid water. It was not clear, however, whether the liquid is still present today or whether it has frozen. Here we report the identification of a population of E-ring grains that are rich in sodium salts (~0.5-2% by mass), which can arise only if the plumes originate from liquid water. The abundance of various salt components in these particles, as well as the inferred basic pH, exhibit a compelling similarity to the predicted composition of a subsurface Enceladus ocean in contact with its rock core. The plume vapour is expected to be free of atomic sodium. Thus, the absence of sodium from optical spectra is in good agreement with our results. In the E ring the upper limit for spectroscopy is insufficiently sensitive to detect the concentrations we found. Title: Synchronization mechanism of sharp edges in rings of Saturn Authors: Shepelyansky, D. L.; Pikovsky, A. S.; Schmidt, J.; Spahn, F. Bibcode: 2009MNRAS.395.1934S Altcode: 2009MNRAS.tmp..540S; 2008arXiv0812.4372S We propose a new mechanism which explains the existence of enormously sharp edges in the rings of Saturn. This mechanism is based on the synchronization phenomenon due to which the epicycle rotational phases of particles in the ring, under certain conditions, become synchronized with the phase of external satellite, e.g. with the phase of Mimas in the case of the outer B ring edge. This synchronization eliminates collisions between particles and suppresses the diffusion induced by collisions by orders of magnitude. The minimum of the diffusion is reached at the centre of the synchronization regime corresponding to the ratio 2:1 between the orbital frequency at the edge of B ring and the orbital frequency of Mimas. The synchronization theory gives the sharpness of the edge in a few tens of meters that is in agreement with available observations. Title: VizieR Online Data Catalog: Observations of transits of the TrES-2 exoplanet (Mislis+, 2009) Authors: Mislis, D.; Schmitt, J. H. M. M. Bibcode: 2009yCat..35009045M Altcode: We observed two transits of TrES-2 (on UT 2008 May 28 and September 18), corresponding to epochs E=263, 312 of the ephemeris given by O' Donovan et al. (2006ApJ...651L..61O)

(1 data file). Title: How the Enceladus Dust Jets Form Saturn's E Ring Authors: Kempf, S.; Uwe, B.; Schmidt, J.; Postberg, F.; Srama, R. Bibcode: 2009AGUSM.P32A..05K Altcode: Pre--Cassini models of Saturn's E ring failed to reproduce its peculiar vertical structure inferred from earth-bound observations. After the discovery of an active ice- volcanism of Saturn's icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust. Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles' ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. The flux and the size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and the size distribution of the ejected plume particles. Our numerical simulations reproduce the vertical ring profile measured by the Cassini dust instrument CDA. From our simulations we calculate the deposition rates of plume particles hitting Enceladus' surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105 to 106 years. Title: Stellar and galactic environment survey (SAGE) Authors: Barstow, M. A.; Burleigh, M. R.; Bannister, N. J.; Lapington, J. S.; Kowalski, M. P.; Cruddace, R. G.; Wood, K. S.; Auchere, F.; Bode, M. F.; Bromage, G. E.; Gibson, B.; Collier Cameron, A.; Cassatella, A.; Delmotte, F.; Ravet, M. -F.; Doyle, J. G.; Jeffery, C. S.; Gaensicke, B.; Jordan, C.; Kappelmann, N.; Werner, K.; Lallement, R.; de Martino, D.; Matthews, S. A.; Phillips, K. J. H.; Del Zanna, G.; Orio, M.; Pace, E.; Pagano, I.; Schmitt, J. H. M. M.; Welsh, B. Y. Bibcode: 2009Ap&SS.320..231B Altcode: 2008Ap&SS.tmp..161B This paper describes a proposed high resolution soft X-ray and Extreme Ultraviolet (EUV) spectroscopy mission to carry out a survey of Stellar and Galactic Environments (SAGE). The payload is based on novel diffraction grating technology which has already been proven in a sub-orbital space mission and which is ready to fly on a satellite platform with minimal development. Much of the technical detail of the instrumentation has been reported elsewhere and we concentrate our discussion here on the scientific goals of a SAGE base-line mission, demonstrating the scientific importance of high resolution spectroscopy in the Extreme Ultraviolet for the study of stars and the local interstellar medium. Title: Altair - the ``hottest'' magnetically active star in X-rays Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2009A&A...497..511R Altcode: 2009arXiv0903.0966R Context: The onset of stellar magnetic activity is related to the operation of dynamo processes that require the development of an outer convective layer. This transition of stellar interior structure is expected to occur in late A-type stars.
Aims: The A7 star Altair is one of the hottest magnetically active stars. Its proximity to the Sun allows a detailed investigation of a corona in X-rays for a star with a shallow convection zone.
Methods: We used a deep XMM-Newton observation of Altair and analyzed X-ray light curves, spectra, and emission lines. We investigated the temporal behavior and properties of the X-ray emitting plasma and studied the global coronal structure of Altair.
Results: Altair's corona with an X-ray luminosity of L_X=1.4× 1027 erg/s and an activity level of log L_X/L_bol= -7.4 is located predominantly at low latitude regions and exhibits X-ray properties that are overall very similar to those of other weakly active stars. The X-ray emission is dominated by cool plasma (1-4 MK) at low density, and elemental abundances exhibit a solar-like FIP effect and Ne/O ratio. The X-ray brightness varies by 30% over the observation, most likely due to rotational modulation and minor activity; in contrast, no strong flares or significant amounts of hot plasma were detected. The X-ray activity level of Altair is apparently close to the saturation level, which is reduced by roughly four orders of magnitude when compared to late-type stars.
Conclusions: With its fast rotation, Altair provides an inefficient, but very stable dynamo that mainly operates in convective layers below its “cooler” surface areas around the equator. This dynamo mechanism results in magnetic activity and leads to X-ray properties that are similar to those of the quiescent Sun, despite very different underlying stars. Title: X-ray emission from the M9 dwarf 1RXS J115928.5-524717. Quasi-quiescent coronal activity at the end of the main-sequence Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2009A&A...496..229R Altcode: 2009arXiv0901.3027R Aims: X-ray emission is an important diagnostic for studying magnetic activity in presumably fully convective, very low-mass stars with virtually neutral photospheres.
Methods: We analyse an XMM-Newton observation of 1RXS J115928.5-524717, an ultracool dwarf with spectral type M9, and compare its X-ray properties to those of other similar very late-type stars.
Results: We clearly detected 1RXS J115928.5-524717 at soft X-ray energies in all EPIC detectors. Only minor variability was present during the observation and we attribute the X-ray emission to quasi-quiescent activity. The coronal plasma is described well by a two-temperature model at solar metallicity with temperatures of 2 MK and 6 MK and an X-ray luminosity of about LX = 1.0 × 1026 erg/s in the 0.2-2.0 keV band. The corresponding activity level of log L_X/L_bol≈ -4.1 points to a moderately active star. Altogether, X-ray activity from very low-mass stars shows similar trends as more massive stars, despite their different interior structure.
Conclusions: The nearby star 1RXS J115928.5-524717 is, after LHS 2065, the second ultracool M9 dwarf that emits X-rays at detectable levels in quasi-quiescence. While faint in absolute numbers, both stars are relatively X-ray active, implying an efficient dynamo mechanism that is capable of creating magnetic activity and coronal X-ray emission. Title: EDGE: Explorer of diffuse emission and gamma-ray burst explosions Authors: Piro, L.; den Herder, J. W.; Ohashi, T.; Amati, L.; Atteia, J. L.; Barthelmy, S.; Barbera, M.; Barret, D.; Basso, S.; Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensen, C.; Burrows, D.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusumano, G.; de Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in't Zand, J.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P. A. J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazzotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Sato, G.; Schaye, J.; Schmitt, J.; Sciortino, S.; Shaposhnikov, M.; Shinozaki, K.; Spiga, D.; Suto, Y.; Tagliaferri, G.; Takahashi, T.; Takei, Y.; Tawara, Y.; Tozzi, P.; Tsunemi, H.; Tsuru, T.; Ubertini, P.; Ursino, E.; Viel, M.; Vink, J.; White, N.; Willingale, R.; Wijers, R.; Yoshikawa, K.; Yamasaki, N. Bibcode: 2009ExA....23...67P Altcode: 2008ExA...tmp....9P How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE (Piro et al., 2007) will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution. This enables the study of their star-forming and host galaxy environments and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer (0.1-2.2 eV) with excellent energy resolution (3 eV at 0.6 keV), a Wide-Field Imager (0.3-6 keV) with high angular resolution (HPD = 15”) constant over the full 1.4 degree field of view, and a Wide Field Monitor (8-200 keV) with a FOV of ¼ of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will outline the science drivers and describe in more detail the payload of this mission. Title: Stellar And Galactic Environment survey (SAGE) Authors: Barstow, M. A.; Kowalski, M. P.; Cruddace, R. G.; Wood, K. S.; Auchere, F.; Bannister, N. J.; Bode, M. F.; Bromage, G. E.; Burleigh, M. R.; Collier Cameron, A.; Cassatella, A.; Delmotte, F.; Doyle, J. G.; Gaensicke, B.; Gibson, B.; Jeffery, C. S.; Jordan, C.; Kappelmann, N.; Lallement, R.; Lapington, J. S.; de Martino, D.; Matthews, S. A.; Orio, M.; Pace, E.; Pagano, I.; Phillips, K. J. H.; Ravet, M. -F.; Schmitt, J. H. M. M.; Welsh, B. Y.; Werner, K.; Del Zanna, G. Bibcode: 2009ExA....23..169B Altcode: 2008ExA...tmp...25B This paper describes a proposed high resolution soft X-ray and Extreme Ultraviolet spectroscopy mission to carry out a survey of Stellar and Galactic Environments (SAGE). The payload is based on novel diffraction grating technology which has already been proven in a sub-orbital space mission and which is ready to fly on a satellite platform with minimal development. We discuss the goals of a SAGE base-line mission and demonstrate the scientific importance of high resolution spectroscopy in the Extreme Ultraviolet for the study of stars and the local interstellar medium. Title: Erratum: Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission Authors: Marty, B.; Guillot, T.; Coustenis, A.; Achilleos, N.; Alibert, Y.; Asmar, S.; Atkinson, D.; Atreya, S.; Babasides, G.; Baines, K.; Balint, T.; Banfield, D.; Barber, S.; Bézard, B.; Bjoraker, G. L.; Blanc, M.; Bolton, S.; Chanover, N.; Charnoz, S.; Chassefière, E.; Colwell, J. E.; Deangelis, E.; Dougherty, M.; Drossart, P.; Flasar, F. M.; Fouchet, T.; Frampton, R.; Franchi, I.; Gautier, D.; Gurvits, L.; Hueso, R.; Kazeminejad, B.; Krimigis, T.; Jambon, A.; Jones, G.; Langevin, Y.; Leese, M.; Lellouch, E.; Lunine, J.; Milillo, A.; Mahaffy, P.; Mauk, B.; Morse, A.; Moreira, M.; Moussas, X.; Murray, C.; Mueller-Wodarg, I.; Owen, T. C.; Pogrebenko, S.; Prangé, R.; Read, P.; Sanchez-Lavega, A.; Sarda, P.; Stam, D.; Tinetti, G.; Zarka, P.; Zarnecki, J.; Schmidt, J.; Salo, H. Bibcode: 2009ExA....23..977M Altcode: 2008ExA...tmp...34M No abstract at ADS Title: The CN Leo flare census Authors: Liefke, Carolin; Fuhrmeister, Birgit; Schmitt, Jürgen H. M. M. Bibcode: 2009AIPC.1094..608L Altcode: 2009csss...15..608L We investigate the frequency and amplitude distribution of flares on the actice M dwarf CN Leo observed simultaneously in coronal X-rays, chromospheric line emission, and the photospheric optical continuum. We find that most of the larger events are visible in all atmospheric layers, these are equivalent to solar white light flares. Several smaller events are only visible in the chromospheric lines, which corresponds to solar H-alpha flares. One event is very strong in X-rays, but only weak in the chromospheric lines and invisible in the photospheric continuum, indicating a rather large scale height of the flaring loop. We find no obvious correlation of the flare amplitudes and decay times in the different atmospheric layers. We also search for time delays between the different wavelength bands and probe the occurrence of the Neupert effect. Title: The enigmatic X-rays from the Herbig star HD 163296: Jet, accretion, or corona? Authors: Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2009A&A...494.1041G Altcode: 2008arXiv0812.0285G Context: Herbig Ae/Be stars (HAeBe) are pre-main sequence objects in the mass range 2 M < M* < 8 M. Their X-ray properties are uncertain and, as yet, unexplained.
Aims: We want to elucidate the X-ray generating mechanism in HAeBes.
Methods: We present an XMM-Newton observation of the HAeBe HD 163296. We analyse the light curve, the broad band and the grating spectra, fit emission measures and abundances and apply models for accretion and wind shocks.
Results: We find three temperature components ranging from 0.2 keV to 2.7 keV. The O VII He-like triplet indicates an X-ray formation region in a low density environment with a weak UV photon field, i.e. above the stellar surface. This makes an origin in an accretion shock unlikely; instead we suggest a shock at the base of the jet for the soft component and a coronal origin for the hot component. A mass outflow of dot M_shock ≈ 10-10 M yr-1 is sufficient to power the soft X-rays.
Conclusions: HD 163296 is thought to be single, so this data represent genuine HAeBe X-ray emission. HD 163296 might be prototypical for its class.

Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Title: The Jupiter-Io interaction as a model for star-planet-interaction (SPI)? Authors: Schmitt, J. H. M. M. Bibcode: 2009AIPC.1094..473S Altcode: 2009csss...15..473S The magnetic interaction between Jupiter and its Galilean moons is observationally established in quite some detail and theoretically reasonably well understood. In-situ measurements from various spacecraft are available to support the theoretical models. I discuss to what extent the concepts developed to understand these interactions can be transferred to star planet interactions (SPI). Title: Altair-the hottest `cool' star in X-rays Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2009AIPC.1094..620R Altcode: 2009csss...15..620R We present first results from a deep (130 ks) XMM-Newton observation of Altair and study the coronal X-ray properties of a late A-type star for the first time in detail. We find that Altair's thin outer convective layer and its fast rotation generate a corona that resembles those of low activity stars of later spectral type. Cool plasma at low density produces weak X-ray emission that shows moderate variability on timescales of hours to days. We find a neon to oxygen abundance ratio of Ne/O ~0.2, similar to other inactive stars and the Sun. Title: Ca II HK emission in rapidly rotating stars. Evidence for an onset of the solar-type dynamo Authors: Schröder, C.; Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2009A&A...493.1099S Altcode: We present measurements of chromospheric Ca ii H&K activity for 481 solar-like stars. To determine the activity we used the Mount Wilson method and a newly developed method which allows to also measure Ca ii H&K emission features in very rapidly rotating stars. The new technique determines the activity by comparing the line shapes from known inactive slowly rotating template stars that have been artificially broadened to spectra of rapid rotators. We have analyzed solar-like stars ranging from T_eff = 5000 to 7800 K with rotational velocities up to 190 km s-1 in our sample of FOCES and FEROS spectra. The effects of the rotational broadening on the two methods have been quantified. Our method has proven to produce consistent results where S-Index values are available and offers the possibility to measure the chromospheric activity at the onset of the solar-like dynamo.

Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/1099 Title: Analysis of the Central X-ray Source in DG Tau Authors: Schneider, P. Christian; Schmitt, Jürgen H. M. M. Bibcode: 2009ASSP...13..615S Altcode: 2009pjc..book..615S As a stellar X-ray source DG Tau shows two rather unusual features: A resolved X-ray jet [2] and an X-ray spectrum best described by two thermal components with different absorbing column densities, a so called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort to understand the properties of the central X-ray source in DG Tau a detailed position analysis was carried out. Title: New X-ray detections of Herbig stars Authors: Stelzer, B.; Robrade, J.; Schmitt, J. H. M. M.; Bouvier, J. Bibcode: 2009A&A...493.1109S Altcode: 2008arXiv0810.1836S Context: The interpretation of X-ray detections from Herbig Ae/Be stars is disputed as it is not clear whether these intermediate-mass pre-main sequence stars are able to drive a dynamo and ensuing phenomena of magnetic activity. Alternative X-ray production mechanisms, related to stellar winds, star-disk magnetospheres, or unresolved late-type T Tauri star companions have been proposed.
Aims: The companion hypothesis can be tested by resolving Herbig stars in X-rays from their known visual secondaries. Furthermore, their global X-ray properties (such as detection rate, luminosity, temperature, variability) may give clues to the emission mechanism by comparison to other types of stars, e.g. similar-age but lower-mass T Tauri stars, similar-mass but more evolved main-sequence A- and B-type stars, and with respect to model predictions.
Methods: In a series of papers we have been investigating high-resolution X-ray Chandra images of Herbig Ae/Be and main-sequence B-type stars where known close visual companions are spatially separated from the primaries.
Results: Here we report on six as yet unpublished Chandra exposures from our X-ray survey of Herbig stars. The target list comprises six Herbig stars with known cool companions, and three other A/B-type stars that are serendipitously in the Chandra field-of-view. In this sample we record a detection rate of 100%; i.e. all A/B-type stars display X-ray emission at levels of log(L_x/L_bol) ~ -5...-7. The analysis of hardness ratios confirms that HAeBes have hotter and/or more absorbed X-ray emitting plasma than more evolved B-type stars.
Conclusions: Radiative winds are ruled out as an exclusive emission mechanism on the basis of the high X-ray temperatures. Confirming earlier results, the X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known). The diagnostics provided by the presently available data leave it open whether the hard X-ray emission of Herbig stars is due to young age or indicative of further coronally active low-mass companion stars. In the latter case, our detection statistics imply a high fraction of higher order multiple systems among Herbig stars. Title: Sodium Salts in Ice Grains from Enceladus' Plumes: Evidence for an Ocean below the Moon's Surface Authors: Postberg, F.; Kempf, S.; Schmidt, J.; Brillantov, N.; Beinsen, A.; Abel, B.; Buck, U.; Srama, R. Bibcode: 2008AGUFM.P14A..03P Altcode: One key requirement for the formation of life on Enceladus, is liquid water below its icy surface. Although measurements and model calculations for Enceladus plume source suggest temperatures close to the melting point, direct evidence for liquid water has not been produced so far. We present compositional measurements by Cassini's dust detector of ice particles emitted from Saturn's cryo-volcanic moon Enceladus into the E ring. Since sodium is considered as crucial tracer for an Enceladus ocean, our detection of sodium salts within the grains provide the first evidence for mineral enriched liquid water below the moon's icy surface. In nearly all particles detected in situ by the Cosmic Dust Analyser (CDA) aboard the Cassini spacecraft, we found sodium (Na) in varying concentrations. Most spectra also show potassium (K) in lower abundance. In mass spectra that are particularly sodium rich, sodium salts (like NaCl and NaHCO3) are identified as Na bearing components. This is only possible if the plume source is liquid water that is or has been in contact with the rocky material of Enceladus' core. The abundance of minerals as well as the inferred basic pH value of those grains exhibit a compelling similarity with the predicted composition of an Enceladus ocean. As for terrestrial oceans, sodium (Na+) and chloride (Cl-) are expected to be the most abundant components, followed by hydrogen carbonate (HCO3-). From the compositional analysis, models for grain production and ejection can be derived which give new insights into dynamic, subsurface processes. Title: Discovery of X-ray emission from the eclipsing brown-dwarf binary 2MASS J05352184-0546085 Authors: Czesla, S.; Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2008A&A...491..851C Altcode: 2008arXiv0809.4129C The eclipsing brown-dwarf binary system 2MASS J05352184-0546085 is a case sui generis. For the first time, it allows a detailed analysis of the individual properties of young brown dwarfs, in particular, masses, and radii, and the temperature ratio of the system components can be determined accurately. The system shows a “temperature reversal" with the more massive component being the cooler one, and both components are found to be active. We analyze X-ray images obtained by Chandra and XMM-Newton containing 2MASS J05352184-0546085 in their respective field of view. The Chandra observatory data show a clear X-ray source at the position of 2MASS J05352184-0546085, whereas the XMM-Newton data suffer from contamination from other nearby sources, but are consistent with the Chandra detection. No indications of flaring activity are found in either of the observations (together ≈70 ks), and we thus attribute the observed flux to quiescent emission. With an X-ray luminosity of 3×1028 erg/s we find an L_X/L_bol-ratio close to the saturation limit of 10-3 and an L_X/L_Hα-ratio consistent with values obtained from low-mass stars. The X-ray detection of 2MASS J05352184-0546085 reported here provides additional support for the interpretation of the temperature reversal in terms of magnetically suppressed convection, and suggests that the activity phenomena of young brown dwarfs resemble those of their more massive counterparts. Title: On the formation of sodium bearing E ring ice grains on Enceladus. Authors: Schmidt, J.; Brilliantov, N.; Postberg, F.; Kempf, S.; Beinsen, A.; Buck, U.; Abel, B.; Srama, R. Bibcode: 2008AGUFM.P23B1371S Altcode: Small but significant concentrations of sodium have been detected by the Cassini CDA in mass spectra of E ring ice grains. Since Enceladus' plume is the dominant source of the E ring, this sodium must come from the interior of Enceladus. This is consistent with a plume originating from a liquid reservoir that has been, or is, in contact with the rocky core of the satellite, since in this case the liquid is expected to be enriched in minerals (Zolotov, GRL, 2007). However, the physical processes how these minerals find their way into the ice grains of Enceladus' plume are less clear. In this talk we discuss possible scenarios and relate them to the concentrations found in CDA data. Title: Saturn's E ring as seen by the Cassini dust detector Authors: Kempf, S.; Srama, R.; Beckmann, U.; Schmidt, J. Bibcode: 2008AGUFM.P32A..03K Altcode: The data returned by the Cassini spacecraft drastically changed our picture of Saturn's diffuse E ring - the largest known ring in the Solar system. Since Cassini is equipped with a dust detector it became possible for the first time to investigate the evolution cycle of the Saturnian dust. There are two processes feeding the ring with fresh dust: collisions of micrometeoroids with the surfaces of icy moons and dust injection by the recently discovered ice volcanoes on the moon Enceladus. After injection into the ring the particles spend most of their lifespan as ring particles. Finally, the grains get lost by collisions with the main rings or with the moons. More interesting, some of the ring particles interact strongly with Saturn's magnetic field and will finally form fast dust streams, which were discovered by Cassini during her approach to Saturn. We are still at the beginning of our understanding of the physical processes relevant for the dust life cycle. However, Cassini already provided us with some of the major pieces to accomplish a comprehensive picture. Here, on numerical simulations of the long term evolution of ring particles, which are based on most recent Cassini data. We show that most of the ring particles slowly migrate outwards until they get locked in the vicinity of the Rhea orbit. Title: Overstability in Saturn's Rings Authors: Spahn, F.; Schmidt, J.; Salo, H.; Sremcevic, M. Bibcode: 2008AGUFM.P32A..09S Altcode: Overstability was predicted as a spontaneous instability for Saturn's rings about ten years ago (Schmit and Tscharnuter, 1995, Icarus). If the ring is overstabl e, it develops axisymmetric waves of one hundred meters to kilometers in length. Such waves were indeed found in data obtained by the Cassini Radio Science Subsystem (Thomson et al., GRL, 2007) and the Ultraviolet Imaging Spectrograph (Colwell et al., Icarus, 2007). We review theoretical aspects of overstability using simple hydrodynamic models and simulations. In this approach overstable modes are found to form travelling nonlinear wavetrains. Due to the effect of self-gravity, the wavelength assumes a value of roughly one hundred particle diameters. Title: Coronal properties of the EQ Pegasi binary system Authors: Liefke, C.; Ness, J. -U.; Schmitt, J. H. M. M.; Maggio, A. Bibcode: 2008A&A...491..859L Altcode: 2008arXiv0810.0150L Context: The activity indicators of M dwarfs are distinctly different for early and late types. The coronae of early M dwarfs display high X-ray luminosities and temperatures, a pronounced inverse FIP effect, and frequent flaring to the extent that no quiescent level can be defined in many cases. For late M dwarfs, fewer but more violent flares have been observed, and the quiescent X-ray luminosity is much lower.
Aims: To probe the relationship between coronal properties with spectral type of active M dwarfs, we analyze the M3.5 and M4.5 components of the EQ Peg binary system in comparison with other active M dwarfs of spectral types M0.5 to M5.5.
Methods: We investigate the timing behavior of both components of the EQ Peg system, reconstruct their differential emission measure, and investigate the coronal abundance ratios based on emission-measure independent line ratios from their Chandra HETGS spectra. Finally we test for density variations in different states of activity.
Results: The X-ray luminosity of EQ Peg A (M3.5) is by a factor of 6-10 brighter than that of EQ Peg B (M4.5). Like most other active M dwarfs, the EQ Peg system shows an inverse FIP effect. The abundances of both components are consistent within the errors; however, there seems to be a tendency toward the inverse FIP effect being less pronounced in the less active EQ Peg B when comparing the quiescent state of the two stars. This trend is supported by our comparison with other M dwarfs.
Conclusions: As the X-ray luminosity decreases with later spectral type, so do coronal temperatures and flare rate. The amplitude of the observed abundance anomalies, i.e. the inverse FIP effect, declines; however, clear deviations from solar abundances remain. Title: The X-ray cycle in the solar-type star HD 81809. XMM-Newton observations and implications for the coronal structure Authors: Favata, F.; Micela, G.; Orlando, S.; Schmitt, J. H. M. M.; Sciortino, S.; Hall, J. Bibcode: 2008A&A...490.1121F Altcode: 2008arXiv0806.2279F Context: The 11-yr cycle is the best known manifestation of the Sun's activity. While chromospheric cycles have been studied in a number of solar-like stars, very little is known about how these are reflected in the cyclical behavior of the coronal X-ray emission in stars other than the Sun.
Aims: Our long-term XMM-Newton program of long-term monitoring of a solar-like star with a well-studied chromospheric cycle, HD 81809, aims to study whether an X-ray cycle is present, along with studying its characteristics and its relation to the chromospheric cycle.
Methods: Regular observations of HD 81809 were performed with XMM-Newton, spaced by 6 months from 2001 to 2007. We studied the variations in the resulting coronal luminosity and temperature, and compared them with the chromospheric Ca ii variations. We also modeled the observations in terms of a mixture of active regions, using a methodology originally developed to study the solar corona.
Results: Our observations show a well-defined cycle with an amplitude exceeding 1 dex and an average luminosity approximately one order of magnitude higher than in the Sun. The behavior of the corona of HD 81809 can be modeled well in terms of varying coverage of solar-like active regions, with a larger coverage than for the Sun, showing it to be compatible with a simple extension of the solar case. Title: The nature of the soft X-ray source in DG Tauri Authors: Schneider, P. C.; Schmitt, J. H. M. M. Bibcode: 2008A&A...488L..13S Altcode: 2008arXiv0807.2156S The classical T Tauri star DG Tau shows all typical signatures of X-ray activity and, in particular, harbors a resolved X-ray jet. DG Tau's jet is one of the most well studied jets of young stellar objects, having been observed for more than 25 years by a variety of instruments. We demonstrate that its soft and hard X-ray components are separated spatially by approximately 0.2 arcsec by deriving the spatial offset between both components from the event centroids of the soft and hard photons utilizing the intrinsic energy-resolution of the Chandra ACIS-S detector. We also demonstrate that this offset is physical and cannot be attributed to an instrumental origin or to low counting statistics. Furthermore, the location of the derived soft X-ray emission peak coincides with emission peaks observed for optical emission lines, suggesting that both soft X-rays and optical emission have the same physical origin. Title: How the Enceladus dust plume forms Saturn's E ring Authors: Beckmann, U.; Kempf, S.; Schmidt, J. Bibcode: 2008epsc.conf..773B Altcode: Before Cassini, dynamical models of Saturn's E ring [1] failed to reproduce its peculiar vertical structure inferred from earth-bound observations [2]. After the discovery of an active ice-volcanism in the south pole terrain of Saturn's icy moon Enceladus the relevance of these particles for the vertical ring structure was swiftly recognise [3, 4]. However, ad-hoc models for the plume particle injection predict too a small vertical ring thickness and overestimate the amount of the injected dust. Here we report on numerical simulations of the plume particles ejection into the ring. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles' ejection speeds by far. Only a small number of the ejected grains survives against re-collision with the moon during their first orbit. Because of this, the flux as well as the size distribution of the plume particles replenishing the ring particle reservoir differs significantly from the size distribution and flux of the Enceladus dust plumes. Our numerical simulations reproduce the vertical ring profile measured by the Cassini dust instrument CDA [4] and is consistent with edge-on images obtained by the Cassini camera ISS [5] Title: The Origin and Dynamics of Heliotropic Ringlets in Saturnian System Authors: Makuch, Martin; Flassig, R. J.; Schmidt, J.; Seiss, M.; Spahn, F. Bibcode: 2008DPS....40.2104M Altcode: 2008BAAS...40..423M Recently, several faint ringlets in the Saturnian ring system were found to have particular orientation relative to the Sun. The Encke Gap ringlets as well as the ringlet in the outer rift of the Cassini division were found to have distinct spatial displacement of several tens of kilometers away from Saturn toward Sun.

We investigate the dynamics of circumplanetary dust particles with sizes in the range of 1-100 microns. These small particles are strongly perturbed by non-gravitational forces as solar radiation pressure and planetary oblateness on short time-scales. The combined influence of these forces causes periodical evolution of grains' orbital eccentricity and precession of pericenter. We show that this interaction results in a stationary eccentric ringlet oriented with its apocenter toward the Sun, which is consistent with observational findings. In conjunction with this heliotropic dynamics, we can give a limit for the expected smallest grain size in the Encke Gap of about 10 microns.

The results of our analytical theory were compared with numerical simulations. We trace the trajectories of a dust grains created by impact ejecta mechanism from a parent bodies. We estimate lifetimes for the ringlet particles which are mainly limited by collisions with the dense rings and the source bodies. Modeling the equilibrium between particle sources and sinks we find the resulting strength of the source flux which is expected to be observed in the ringlet. Our analytical as well as numerical results indicate, that Pan is a very inefficient source for the main ringlet in the Encke Gap.

We propose the main ringlet to be maintained by embedded moonlets with size of hundreds of meters placed on stable orbits in the central ringlet region. These embedded moonlets might also play a role in forming the azimuthal variations in optical depth of the Encke Gap ringlets. Title: VizieR Online Data Catalog: CaII HK emission in rapidly rotating stars (Schroeder+, 2009) Authors: Schroeder, C.; Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2008yCat..34931099S Altcode: The basic data and chromosperic activity measurements for 480 stars. Given are the S-index and log R(hk) measured with the Mount-Wilson method and with the new template method.

(1 data file). Title: The shadow of Saturn's icy satellites in the E ring Authors: Schmidt, J.; Sremcevic, M. Bibcode: 2008epsc.conf..756S Altcode: We analyze shadows that Saturnian satellites cast in the E ring, a faint, broad dust ring composed of icy grains. The brightness contrast of a moon's shadow relative to the surrounding ring allows to infer local properties of the size distribution of ring particles. We derive the shadow contrast from a large number of Cassini images of Enceladus taken in various filters in a range of phase angles 144 to 164 degrees. For Tethys and Dione we identify a clear shadow in images with phase angles larger than 160 degrees. From the data we obtain the number density of E ring grains at the orbits of Tethys and Dione relative to the one near Enceladus. The latter we constrain from the variation of the shadow contrast with color and phase angle. From the Enceladus data we construct the phase curve of the E ring dust between 144 and 164 degrees. We compare to data obtained from Earth-bound observations by de Pater et al 2004 and in situ measurements by the Cosmic Dust Analyzer onboard Cassini. Title: N-body Survey of Viscous Overstability in Saturn's Rings Authors: Salo, Heikki J.; Schmidt, J.; Sremcevic, M.; Sremcevic, M.; Spahn, F. Bibcode: 2008DPS....40.3003S Altcode: 2008BAAS...40..445S The viscous overstability of dense collisional rings offers a promising explanation for the small scale radial density variations in the B and the inner A ring of Saturn. Viscous overstability, in the form of spontaneous growth of axisymmetric oscillations, was first directly demonstrated in the selfgravitating N-body simulations (Salo etal. 2001). In contrast to previous isothermal hydrodynamical analysis (Schmit & Tscharnuter 1995), which suggested that practically any dense ring should be overstable, our N-body simulations indicated that a steep rise of viscosity with optical depth was required. In particular, a selfgravitating system of identical particles following the Bridges etal. (1984) elasticity formula was found to become overstable for optical depths τ > 1., forming oscillations in about 100 meter scale. In these simulations the axisymmetric oscillations were found to coexist with the inclined selfgravity wake structures. In addition, a basically similar overstability was seen in nongravitating simulations, but shifted to very high optical depths, or in simulations were just the vertical selfgravity was included, leading to an enhanced impact frequency and viscosity. Although an improved non-isothermal hydrodynamical analysis (Spahn et al. 2000, Schmidt et al. 2001) was able to describe quantitatively these non-selfgravitating cases, even in the weakly nonlinear regime (Schmidt & Salo, 2003), a reliable study of realistic selfgravitating rings must rely on numerical experiments.

We report the results of a new N-body survey of viscous overstability. For example, we study the optical depth and gravity strength regimes which lead to the excitation of overstability, co-existence of overstabilities and gravity wakes, or to the suppression of overstability in the case of very strong wakes. Also the effects of various factors (particle elasticity, surface friction and adhesion, size distribution) on the threshold density required for the triggering of overstability are investigated This study is supported by the Academy of Finland Title: LORA, the first in-situ mission into an astrophysical disk: Saturn's rings. Authors: Charnoz, S.; Burns, J.; Christou, A.; Coustenis, A.; Colwell, J.; Cuzzi, J.; Evans, M.; Ferrari, C.; Guillot, T.; Hedman, M.; Leyrat, C.; Marty, B.; Murray, C.; Rodriguez, S.; Salo, H.; Schmidt, J.; Spilker, L.; Tiscareno, M. Bibcode: 2008epsc.conf..619C Altcode: Saturn's rings are a perfect example of an astrophysical disk, exhibiting dynamical processes common to all disks and at all scales. Whereas they are observed since the XVIIth century, they are still poorly understood. What is their origin? What is their total mass? What is their lifetime? What is a ring particle? Is their accretion close to the rings' edge ?. To help answer these fundamental questions, a critical data would be direct in-situ images of the rings'micro-structure, down to 10 cm scale. In addition, direct observation of gravitational instabilities at ~50m scale would help better understand fundamental accretion processes that happened in our protoplanetary disk 4.5 Gy ago. Thus, we introduce the LORA mission (Landers On Rings Array): an array of nano-probes dropped into the rings and with a minimal payload (camera + communication system). The LORA mission could be part of a larger mission to Saturn. By carefully designing the trajectory to the rings, different questions could be easily answered. The nano-probes could explore different regions of the rings simultaneously, thus giving clues on the physics of particulate disks in different density regimes. We present the different options, and technological requirements of this simple mission to the most exotic object of our Solar System. Title: Sodium discovered in Icy E ring Particles - Indicator for an Ocean Below Enceladus' Surface Authors: Postberg, F.; Kempf, S.; Briliantov, N.; Schmidt, J.; Buck, U.; Srama, R. Bibcode: 2008epsc.conf..778P Altcode: The Cassini dust detector CDA has recorded insitu thousands of mass spectra predominantly of submicron sized grains populating Saturn's E ring. In general the spectra exhibit a variety of different compositions, which can be classified into different dust-families. The compositional analysis of E ring particles is of special interest since the ice-volcanoes of the moon Enceladus are the major source replenishing the faint ring. They provide - otherwise inaccessible - information about dynamic and geochemical processes below the moon's icy surface. Here we report on the discovery of a sodium-rich water ice population in the E ring. Sodium chloride (NaCl) is identified as the major Na bearing compound. This finding has strong geological implications since NaCl is expected to be the major component dissolved if liquid water is interacting with the rocky moon-core (Zolotov, Icarus, 2007). The particles' composition inferred from the Na-rich spectra implies that the reservoir which feeds the plumes is or was in contact with Enceladus' rocky core. Besides the Na-rich E ring population, which amounts to about 5% of the detections, most of the other E ring spectra also exhibit traces of Na. They hint at a sodium content several orders of magnitude lower than the Na-rich ice species. This result implies that two populations, Na-rich and Na-poor, reflect different mechanisms of particle creation below Enceladus' surface. The Na content as well as the Na/K ratio identified in Na-rich ice particles is in very good agreement with the predictions for an Enceladus Ocean (Zolotov, Icarus, 2007). Our calculations show that the water vapour above such a liquid phase is depleted in sodium by a factor of about 10-6. The main E ring population likely is created by condensation of plume vapour within the vent channels of the ice crust (Schmidt et al, Nature, 2008). We suggest that the Na-poor particles condense from water vapour that evaporated from water with an ocean like salt concentration. The vapour contains traces of Na which is then found in the particles. Title: The Origin and Dynamics of Heliotropic Ringlets in Saturnian System Authors: Makuch, M.; Flassig, R. J.; Schmidt, J.; Seiß, M.; Spahn, F. Bibcode: 2008epsc.conf..762M Altcode: Recently, several faint ringlets in the Saturnian ring system were found to have particular orientation relative to the Sun. The Encke Gap ringlets as well as the ringlet in the outer rift of the Cassini division were found to have distinct spatial displacement of several tens of kilometers away from Saturn toward Sun [1]. In our study we investigate the dynamics of circumplanetary dust particles with sizes in the range of 1-100 μm. These small particles are strongly perturbed by non-gravitational forces. In particular by solar radiation pressure and planetary oblateness on time-scales in the order of days. The combined influence of these forces causes periodical evolution of grains' orbital eccentricity and precession of pericenter, which can be shown by secular perturbation theory. We show that this interaction results in a stationary eccentric ringlet oriented with its apocenter toward the Sun, which is consistent with observational findings. In conjunction with this heliotropic dynamics, we can give a limit for the expected smallest grain size in the Encke Gap of about 10 microns. The results of our analytical theory were compared with numerical simulations. We trace the trajectories of a dust grains created by impact ejecta mechanism from a parent body. We estimate lifetimes for the ringlet particles which are mainly limited by collisions with the dense rings and the source bodies. Modeling the equilibrium between particle sources and sinks we find the resulting strength of the source flux which is expected to be observed in the ringlet. Our analytical as well as numerical results indicate, that Pan is a very inefficient source for the main ringlet in the Encke Gap. However, Pan possibly serves as the main source for the outer and inner ringlets. The main ringlet is shown to be maintained by embedded moonlets with size of hundreds of meters placed on stable orbits in the central ringlet region, which are cased by Pan in the gravity field of Saturn. These embeddedmoonletsmight also play a role in forming the azimuthal variations in optical depth of the Encke Gap ringlets. Title: Wakes Induced by a Moonlet on an Eccentric Orbit Authors: Seiss, Martin; Salo, H.; Spahn, F.; Schmidt, J. Bibcode: 2008DPS....40.2108S Altcode: 2008BAAS...40R.424S Large moonlets embedded in a planetary ring can create gaps going around the whole circumference almost void of material. Two examples have been identified in Saturn's A-ring to date: Pan in the Encke gap and Daphnis in the Keeler gap. The gravity of the moons induces wavy-like structures (wakes) at the gap edges. Observations by the ISS imaging team revealed deviations of the edge form from the basic sinusoidal model. Gap edges perturbed by resonances, and alternatively, a moonlet on an eccentric orbit are suitable to explain the observations.

Here we present results of N-particle box simulations of a gap edge including collisions where the edge is perturbed by a moonlet on an eccentric orbit. We especially compare the results with analytical predictions and non-collisional streamline kinematics. Further, the resulting streamlines are compared with the corresponding density isolines, showing that both can deviate significantly from each other. Additionally, based on these numerical experiments we investigate the damping behavior at the gap edge and draw conclusions for the analytical modeling of the wakes and for interpretation of Cassini data. Title: Quiescent X-ray emission from the M9 dwarf LHS 2065 Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2008A&A...487.1139R Altcode: 2008arXiv0806.3863R Aims: X-ray emission is an important diagnostics to study magnetic activity in very low mass stars that are presumably fully convective and have an effectively neutral photosphere.
Methods: We investigate an archival XMM-Newton observation of LHS 2065, an ultracool dwarf with spectral type M9.
Results: We clearly detect LHS 2065 at soft X-ray energies in less than 1 h effective exposure time above the 3σ level with the PN and MOS1 detector. No flare signatures are present and we attribute the X-ray detection to quasi-quiescent activity. From the PN data we derived an X-ray luminosity of LX = 2.2 ± 0.7 × 1026 erg/s in the 0.3-0.8 keV band, the corresponding activity level of log L_X/L_bol≈ -3.7 points to a rather active star. Indications for minor variability and possible accompanying spectral changes are present, however the short exposure time and poor data quality prevents a more detailed analysis.
Conclusions: LHS 2065 is one of the coolest and least massive stars that emits X-rays at detectable levels in quasi-quiescence, implying the existence of a corona. Title: Multiwavelength observations of a giant flare on CN Leonis. I. The chromosphere as seen in the optical spectra Authors: Fuhrmeister, B.; Liefke, C.; Schmitt, J. H. M. M.; Reiners, A. Bibcode: 2008A&A...487..293F Altcode: 2008arXiv0807.2025F Aims: Flares on dM stars contain plasmas at very different temperatures and thus affect a wide wavelength range in the electromagnetic spectrum. While the coronal properties of flares are studied best in X-rays, the chromosphere of the star is observed best in the optical and ultraviolet ranges. Therefore, multiwavelength observations are essential to study flare properties throughout the atmosphere of a star.
Methods: We analysed simultaneous observations with UVES/VLT and XMM-Newton of the active M5.5 dwarf CN Leo (Gl 406) exhibiting a major flare. The optical data cover the wavelength range from 3000 to 10 000 Å.
Results: From our optical data, we find an enormous wealth of chromospheric emission lines occurring throughout the spectrum. We identify a total of 1143 emission lines, out of which 154 are located in the red arm, increasing the number of observed emission lines in this red wavelength range by about a factor of 10. Here we present an emission line list and a spectral atlas. We also find line asymmetries for H I, He I, and Ca II lines. For the last, this is the first observation of asymmetries due to a stellar flare. During the flare onset, there is additional flux found in the blue wing, while in the decay phase, additional flux is found in the red wing. We interpret both features as caused by mass motions. In addition to the lines, the flare manifests itself in the enhancement of the continuum throughout the whole spectrum, inverting the normal slope for the net flare spectrum.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 077.D-0011(A) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Full Table [see full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/293 Title: Neon and oxygen in low activity stars: towards a coronal unification with the Sun Authors: Robrade, J.; Schmitt, J. H. M. M.; Favata, F. Bibcode: 2008A&A...486..995R Altcode: 2008arXiv0806.0775R Aims: The disagreement between helioseismology and a recent downward revision of solar abundances has resulted in a controversy about the true neon abundance of the Sun and other stars. We study the coronal Ne/O abundance ratios of nearby stars with modest activity levels and investigate a possible peculiarity of the Sun among the stellar population in the solar neighborhood.
Methods: We used XMM-Newton and Chandra data from a sample of weakly and moderately active stars with log L_X/L_bol ≈ -5...-7 to investigate high-resolution X-ray spectra to determine their coronal Ne/O abundance ratio. We applied two linear combinations of strong emission lines from neon and oxygen, as well as a global-fitting method for each dataset, and crosschecked the derived results.
Results: The sample stars show a correlation between their Ne/O ratio and stellar activity in the sense that stars with a higher activity level show a higher Ne/O ratio. We find that the Ne/O abundance ratio decreases in our sample from values of Ne/O ≈ 0.4 down to Ne/O ≈ 0.2-0.25, suggesting that ratios similar to “classical” solar values, i.e. Ne/O ≈0.2, are rather common for low activity stars. A significantly enhanced neon abundance as the solution to the solar modeling problem seems unlikely.
Conclusions: From the coronal Ne/O abundance ratios, we find no indications of a peculiar position of the Sun among other stars. The solar behavior appears to be rather typical of low activity stars. Title: Vibration measurements at the Large Binocular Telescope (LBT) Authors: Brix, M.; Naranjo, V.; Beckmann, U.; Bertram, R.; Bertram, T.; Brynnel, J.; Egner, S.; Gaessler, W.; Herbst, T. M.; Kuerster, M.; Rohloff, R. R.; Rost, S.; Schmidt, J. Bibcode: 2008SPIE.7012E..2JB Altcode: 2008SPIE.7012E..89B The Large Binocular Telescope (LBT) is an international collaboration, with partners from the United States, Italy, and Germany. The telescope uses two 8.4-meter diameter primary mirrors to produce coherent images with the combined light along with adaptive optics. The correct functioning and optimum performance of the LBT is only achieved through a complex interplay of various optical elements. Each of these elements has its individual vibration behaviour, and therefore it is necessary to characterize the LBT as a distributed vibration system. LINC-NIRVANA is a near-infrared image-plane beam combiner with advanced, multi-conjugated adaptive optics, and one of the interferometric instruments for the Large Binocular Telescope (LBT). Its spectral range goes from 1.0 μm to 2.45 μm, therefore the requirements for the maximum optical path difference (OPD) are very tight (λ/10 ~ 100 nm). 1 During two dedicated campaigns, the vibrations introduced by various actuators were measured using different kinds of sensors. The evaluation of the obtained data allows an estimation of the frequency and amplitude contributions of the individual vibration sources. Until the final state of the LBT is reached, further measurements are necessary to optimize and adapt the equipment and also the investigated elements and configurations (measurement points and directions, number of sensors, etc.). Title: Pinpointing a stellar X-ray flare using XMM-Newton and VLT/UVES Authors: Wolter, Uwe; Ness, J. U.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2008xru..confE..13W Altcode: No abstract at ADS Title: The SOPHIE spectrograph: design and technical key-points for high throughput and high stability Authors: Perruchot, S.; Kohler, D.; Bouchy, F.; Richaud, Y.; Richaud, P.; Moreaux, G.; Merzougui, M.; Sottile, R.; Hill, L.; Knispel, G.; Regal, X.; Meunier, J. -P.; Ilovaisky, S.; Le Coroller, H.; Gillet, D.; Schmitt, J.; Pepe, F.; Fleury, M.; Sosnowska, D.; Vors, P.; Mégevand, D.; Blanc, P. E.; Carol, C.; Point, A.; Laloge, A.; Brunel, J. -C. Bibcode: 2008SPIE.7014E..0JP Altcode: 2008SPIE.7014E..17P SOPHIE is a new fiber-fed echelle spectrograph in operation since October 2006 at the 1.93-m telescope of Observatoire de Haute-Provence. Benefiting from experience acquired on HARPS (3.6-m ESO), SOPHIE was designed to obtain accurate radial velocities (~3 m/s over several months) with much higher optical throughput than ELODIE (by a factor of 10). These enhanced capabilities have actually been achieved and have proved invaluable in asteroseismology and exoplanetology. We present here the optical concept, a double-pass Schmidt echelle spectrograph associated with a high efficiency coupling fiber system, and including simultaneous wavelength calibration. Stability of the projected spectrum has been obtained by the encapsulation of the dispersive components in a constant pressure tank. The main characteristics of the instrument are described. We also give some technical details used in reaching this high level of performance. Title: Magnetic fields in A-type stars associated with X-ray emission Authors: Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M. Bibcode: 2008A&A...484..479S Altcode: A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this assumption can be shown to be correct in some cases, a number of lines of evidence suggests that low-mass companions cannot be the correct cause for the observed activity in all cases. A model explains the X-ray emission for magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. In this paper we test whether this theoretical model is able to explain the observed X-ray emission. We present the observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS1. Although the emission of those objects that possess magnetic fields fits the prediction of the Babel and Montmerle model, not all X-ray detections are connected to the presence of a magnetic field. Additionally, the measured magnetic fields do not correlate with the X-ray luminosity. Accordingly, the magnetically confined wind shock model cannot explain the X-ray emission from all the presented stars. Title: VizieR Online Data Catalog: Emission lines in a giant flare of CN Leo (Fuhrmeister+, 2008) Authors: Fuhrmeister, B.; Liefke, C.; Schmitt, J. H. M. M.; Reiners, A. Bibcode: 2008yCat..34870293F Altcode: We present an extensive identification catalog of chromospheric emission lines in the optical range for a giant flare on CN Leonis. The data were obtained with ESO's Kueyen telescope equipped with the UVES spectrograph on May, 19th/20th, 2006. The instrument was operated in dichroic mode (spectral coverage from 3050 to 3860 and from 6400 to 10080{AA}). We tabulate measured wavelength, line flux and FWHM for every line and also provide the rest wavelength from the Moore catalog which was used for identification (Moore, 1972, Nat. Stand. Ref. Data. Ser., 40). Few lines were identified with the NIST database.

(1 data file). Title: The Fainting of α Centauri A, Resolved Authors: Ayres, Thomas R.; Judge, Philip G.; Saar, Steven H.; Schmitt, Jürgen H. M. M. Bibcode: 2008ApJ...678L.121A Altcode: Beginning in 2003, XMM-Newton snapshot monitoring of α Centauri (HD 128620, 128621: G2 V, K1 V) documented a steady fading of the primary's X-ray corona, which had all but disappeared by early 2005. The steep decline in LX was at odds with the previous two decades of high-energy measurements, which showed only modest variability of the Sun-like star. A Chandra LETGS spectrum in 2007 June, however, fully resolved the source of the curious X-ray darkening: a depletion of plasma above ~2 MK had substantially depressed the line spectrum where the XMM-Newton response peaks (λ lesssim 30 Å), even though the overall coronal luminosity, dominated by longer wavelength emissions, had declined only slightly. This is reminiscent of the Sun's magnetic activity cycle, where the 2-3 MK active regions of sunspot maximum give way to the spatially pervasive, but cycle-independent, 1 MK "quiet corona" at minimum. This emphasizes that any discussion of cyclic coronal variability in low-activity stars will depend crucially on the energy coverage of the measurements. Title: Magnetic fields in X-ray emitting A-type stars Authors: Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M. Bibcode: 2008CoSka..38..447S Altcode: 2007arXiv0712.0173S A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this hypothesis can be shown to be correct in some cases, there is also evidence suggesting that low-mass companions cannot be the proper cause for the observed X-ray activity in all cases. Babel and Montmerle (1997) presented a theoretical framework to explain the X-ray emission from magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. We test whether this theoretical model is capable of explaining the observed X-ray emissions. We present observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS 1. Although the emission of those objects with magnetic fields does fit the prediction of the Babel & Montmerle model, not all X-ray detections are related to the presence of a magnetic field. Additionally, the strengths of magnetic fields do not correlate with the X-ray luminosity and thus the magnetically-confined wind shock model cannot explain the X-ray emission from all investigated stars. Title: The Temperature Dependence of the Pointing Model of the Hamburg Robotic Telescope Authors: Mittag, M.; Hempelmann, A.; Gonzalez-Perez, J. N.; Schmitt, J. H. M. M. Bibcode: 2008PASP..120..425M Altcode: A first pointing model was determined during commissioning of the Hamburg Robotic Telescope in 2005 September. Pointing accuracy better than 3″ was achieved with this model in those days. However, in the course of the rest of 2005, a systematic increase of the telescope mispointing mainly in azimuth was observed having been suggested a strong dependence on ambient air temperature. We therefore checked this relation between temperature and pointing accuracy by systematic observations targeted on temperature. We made 16 pointing-model estimates during the year 2006 and correlated the model parameters with temperature. While most of the parameters are either not correlated or merely weakly correlated with temperature we find a clear temperature dependence of a misalignment of the optical axis with the telescope tube. We suggest that the M3 mounting is responsible for this. Title: Where are the hot ion lines in classical T Tauri stars formed? Authors: Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2008A&A...481..735G Altcode: 2008arXiv0801.2273G Context: Classical T Tauri stars (hereafter CTTS) show a plethora of in- and outflow signatures in a variety of wavelength bands.
Aims: In order to constrain gas velocities and temperatures, we analyse the emission in the hot ion lines.
Methods: We use all available archival FUSE spectra of CTTS to measure the widths, fluxes and shifts of the detected hot ion lines and complement these data with HST/GHRS and HST/STIS data. We present theoretical estimates of the temperatures reached in possible emission models such as jets, winds, disks and accretion funnels and look for correlations with X-ray lines and absorption properties.
Results: We find line shifts in the range from -170 km s-1 to +100 km s-1. Most linewidths exceed the stellar rotational broadening. Those CTTS with blue-shifted lines also show excess absorption in X-rays. CTTS can be distinguished from main sequence (hereafter MS) stars by their large ratio of the O VII to O VI luminosities.
Conclusions: No single emission mechanism can be found for all objects. The properties of those stars with blue-shifted lines are compatible with an origin in a shock-heated dust-depleted outflow. Title: A coronal explosion on the flare star CN Leonis Authors: Schmitt, J. H. M. M.; Reale, F.; Liefke, C.; Wolter, U.; Fuhrmeister, B.; Reiners, A.; Peres, G. Bibcode: 2008A&A...481..799S Altcode: 2008arXiv0801.3752S We present simultaneous high-temporal and high-spectral resolution observations of the nearby flare star CN Leo at optical and soft X-ray wavelengths. During our observing campaign a major flare occurred, raising the star's instantaneous energy output by almost three orders of magnitude. The flare shows the often observed impulsive behavior, with a rapid rise and slow decay in the optical and a broad soft X-ray maximum about 200 seconds after the optical flare peak. In addition to this usually encountered flare phenomenology we find, however, an extremely short (τ _dec ≈ 2 s) soft X-ray peak, which is very likely of thermal, rather than nonthermal nature and coincides temporally with the optical flare peak. While at hard X-ray energies nonthermal bursts are routinely observed on the Sun at flare onset, thermal soft X-ray bursts on time scales of seconds have never been observed in a solar, nor stellar context. Time-dependent, one-dimensional hydrodynamic modeling of this event requires an extremely short energy deposition time scale τ _dep of a few seconds to reconcile theory with observations, thus suggesting that we are witnessing the results of a coronal explosion on CN Leo. Thus the flare on CN Leo provides the opportunity to observationally study the physics of the long-sought “micro-flares” thought to be responsible for coronal heating. Title: XMM-Newton: The next decade for cool star research Authors: Schmitt, J. H. M. M. Bibcode: 2008AN....329..206S Altcode: In this article I will highlight selected results from XMM-Newton observations of stellar coronae, emphasizing the specific XMM-Newton capabilities in terms of high-resolution spectroscopy, its long-look capability and its optical monitor. I will focus on results on ``normal", cool stars and present science areas hitherto largely unexploired by XMM-Newton. Title: The E ring in the vicinity of Enceladus. I. Spatial distribution and properties of the ring particles Authors: Kempf, S.; Beckmann, U.; Moragas-Klostermeyer, G.; Postberg, F.; Srama, R.; Economou, T.; Schmidt, J.; Spahn, F.; Grün, E. Bibcode: 2008Icar..193..420K Altcode: Saturn's diffuse E ring is the largest ring of the Solar System and extends from about 3.1R (Saturn radius R=60,330 km) to at least 8R encompassing the icy moons Mimas, Enceladus, Tethys, Dione, and Rhea. After Cassini's insertion into her saturnian orbit in July 2004, the spacecraft performed a number of equatorial as well as steep traversals through the E ring inside the orbit of the icy moon Dione. Here, we report about dust impact data we obtained during 2 shallow and 6 steep crossings of the orbit of the dominant ring source—the ice moon Enceladus. Based on impact data of grains exceeding 0.9 μm we conclude that Enceladus feeds a torus populated by grains of at least this size along its orbit. The vertical ring structure at 3.95R agrees well with a Gaussian with a full-width-half-maximum (FWHM) of ∼4200 km. We show that the FWHM at 3.95R is due to three-body interactions of dust grains ejected by Enceladus' recently discovered ice volcanoes with the moon during their first orbit. We find that particles with initial speeds between 225 and 235 m s -1 relative to the moon's surface dominate the vertical distribution of dust. Particles with initial velocities exceeding the moon's escape speed of 207 m s -1 but slower than 225 m s -1 re-collide with Enceladus and do not contribute to the ring particle population. We find the peak number density to range between 16×10 m and 21×10 m for grains larger 0.9 μm, and 2.1×10 m and 7.6×10 m for grains larger than 1.6 μm. Our data imply that the densest point is displaced outwards by at least 0.05R with respect of the Enceladus orbit. This finding provides direct evidence for plume particles dragged outwards by the ambient plasma. The differential size distribution n(s)ds∼sd-qds for grains >0.9 μm is described best by a power law with slopes between 4 and 5. We also obtained dust data during ring plane crossings in the vicinity of the orbits of Mimas and Tethys. The vertical distribution of grains >0.8 μm at Mimas orbit is also well described by Gaussian with a FWHM of ∼5400 km and displaced southwards by ∼1200 km with respect to the geometrical equator. The vertical distribution of ring particles in the vicinity of Tethys, however, does not match a Gaussian. We use the FWHM values obtained from the vertical crossings to establish a 2-dimensional model for the ring particle distribution which matches our observations during vertical and equatorial traversals through the E ring. Title: Doppler imaging an X-ray flare on the ultrafast rotator BO Mic. A contemporaneous multiwavelength study using XMM-Newton and VLT Authors: Wolter, U.; Robrade, J.; Schmitt, J. H. M. M.; Ness, J. U. Bibcode: 2008A&A...478L..11W Altcode: 2007arXiv0712.0899W We present an analysis of contemporaneous photospheric, chromospheric and coronal structures on the

highly active K-dwarf star BO Mic (Speedy Mic). We concentrate on a moderate flare that we localize in the stellar

atmosphere and study its energetics, size and thermal behavior.

The analysis is based on strictly

simultaneous X-ray, UV- and optical observations carried out by XMM-Newton and the VLT.

We use Doppler imaging and related methods

for the localization of features.

Based on X-ray spectroscopy we study the

the coronal plasma in and outside the flare.

The flare emits in X-rays and UV, but is not detected in white light;

it is located at intermediate latitude between an extended spot group and

the weakly spotted pole. We estimate its height to be below 0.4 stellar radii, making it

clearly distinct in longitude and height from the prominences found

about two stellar radii above the surface.

In contrast to BO Mic's photospheric brightness,

neither its chromospheric nor its X-ray emission show a pronounced

rotational modulation.

Based on observations obtained at the ESO VLT Obs. No. 078.D-0865(A) and XMM-Newton Obs. Id. 0400460301 and 0400460401. Doppler imaging line profiles are only available in electronic form at http://www.aanda.org Title: A Catalog of Halo Coronal Mass Ejections from SOHO Authors: Gopalswamy, N.; Yashiro, S.; Michalek, G.; Xie, H.; Vourlidas, A.; Howard, R. A.; Schmidt, J. Bibcode: 2007AGUFMSH51A0262G Altcode: Halo coronal mass ejections (CMEs) have become one of the important subsets of CMEs, thanks to the extensive data accumulated by the Solar and Heliospheric Observatory (SOHO) mission. Halo CMEs are inherently more energetic on the average, so they are important for producing geomagnetic storms and solar energetic particle events (Gopalswamy et al., 2007). One of the key aspects halo CMEs is their source location, which decides whether the halo is symmetric or not. When the source is closer to the solar limb, the CMEs tend to become asymmetric halos or partial halos. Halos with their sources nearer to the limb are also the fastest (because of projection effects), but are less geoeffective due to the glancing blow they deliver to Earth's magnetosphere. Thus, providing source information to all halo CMEs in a separate catalog is useful information in selecting candidate geoeffective CMEs. The second important quantity of CMEs is the space speed, which decides the arrival time of CMEs at Earth. Since CMEs change their width during their early evolution, it is not easy to correct for the projection effects from the geometry of eruption. One way of correcting for projection effects is to use a cone model for CMEs. There are at least 3 published cone models, all of them seem to remove the projection effects reasonably well. The geometric parameters of the cone are determined using different methods in each model. Here we use the model by Xie et al. (2004), which has generally less restrictions, and hence can be applied to more number of halos. This paper provides a brief description of the catalog of halo CMEs, which resides at the CDAW Data Center, NASA Goddard Space Flight Center, Greenbelt, MD. The catalog enhances the existing data services at the CDAW Data Center, which participates in the Virtual Solar Observatory. Work supported by NASA's Virtual Observatories for Solar and Space Physics Data Program. References Gopalswamy et al., JGR, 112, A06112, doi:10.1029/2006JA012149, 2007 Xie et al. JGR, 109, A03109, doi: 10.1029/2003JA010226, 2004 Title: The vertical structure of Saturn's E ring as a consequence of the Enceladus plumes Authors: Kempf, S.; Beckmann, U.; Postberg, F.; Srama, R.; Schmidt, J. Bibcode: 2007AGUFM.P21B0543K Altcode: Before Cassini dynamical models of Saturn's E ring failed to reproduce its peculiar vertical vertical structure as seen by earth-bound observations. After the discovery of an active ice-volcanism in the south pole area of Saturn's icy moon Enceladus the relevance of these particles for the vertical ring structure was rapidly realised. However, ad-hoc models for the plume particle injection predict too a small vertical ring thickness and overestimate the amount of the injected dust. Here we report on numerical simulations of the injection of plume particles into the ring. Furthermore, we performed long-term simulations to investigate how the initial dynamical properties of the injected dust determines the vertical ring profile. We show that only plume particles with injection speeds in excess of an effective escape speed larger than the three body escape speed of Enceladus are populating the E ring. The resulting vertical ring profile matches the measurements by the Cassini dust instrument CDA and is consistent with edge-on images obtained by the Cassini camera ISS. Title: VizieR Online Data Catalog: X-ray emission from A-type stars (Schroeder+, 2007) Authors: Schroeder, C.; Schmitt, J. H. M. M. Bibcode: 2007yCat..34750677S Altcode: Being fully radiative, stars of spectral type A are not expected to harbor magnetic dynamos and hence such stars are not expected to produce X-ray emission. Indeed, while the X-ray detection rate of such stars in X-ray surveys is low, it is not zero and some of the brighter A-type stars have been detected on different occasions and with different instruments. To study systematically the puzzle of the X-ray emitting A-type stars, we carried out an X-ray study of all A-type stars listed in the Bright Star Catalogue using the ROSAT public data archive. We found a total of 312 bright A-type stars positionally associated with ROSAT X-ray sources; we analyzed the X-ray light curves as well as searched for evidence of RV variations to identify possible late-type companions producing the X-ray emission. In this paper we present a list of X-ray active A-type stars, including the collected data about multiplicity, X-ray luminosity and spectral peculiarities.

(2 data files). Title: X-ray emission from A-type stars Authors: Schröder, C.; Schmitt, J. H. M. M. Bibcode: 2007A&A...475..677S Altcode: Being fully radiative, stars of spectral type A are not expected to harbor magnetic dynamos and hence such stars are not expected to produce X-ray emission. Indeed, while the X-ray detection rate of such stars in X-ray surveys is low, it is not zero and some of the brighter A-type stars have been detected on different occasions and with different instruments. To study systematically the puzzle of the X-ray emitting A-type stars, we carried out an X-ray study of all A-type stars listed in the Bright Star Catalogue using the ROSAT public data archive. We found a total of 312 bright A-type stars positionally associated with ROSAT X-ray sources; we analyzed the X-ray light curves as well as searched for evidence of RV variations to identify possible late-type companions producing the X-ray emission. In this paper we present a list of X-ray active A-type stars, including the collected data about multiplicity, X-ray luminosity and spectral peculiarities.

Tables 2 et 3 are only available in electronic form at http://www.aanda.org Title: Wakes Induced By Small Moons In A Planetary Ring Authors: Seiss, Martin; Salo, H.; Spahn, F.; Schmidt, J.; Sremcevic, M.; Albers, N. Bibcode: 2007DPS....39.1003S Altcode: 2007BAAS...39Q.426S S-shaped brightness variations, called propellers, have recently been discovered in Saturn's A-ring (Tiscareno et al 2006). These structures were predicted by Spahn and Sremcevic (2000) to be caused by tiny moons (< 500 meter in diameter) embedded in the rings. These features reflect the interplay between moonlet gravity and ring-particle collitions. Since all propellers so far were observed in backlit geometry, it is not completely clear if the enhanced brightness corresponds to the density depleted (gaps) or denser regions (adjacent wakes) of the propeller.

Results of local box simulations are presented. We investigate the azimuthal extent of the moonlet induced wake crests for different model parameters, especially its dependence on the moonlet size. For very small moonlets the wakes start to damp after about two wake cycles near the point of streamline crossing in the non-collisional model. We emphasise the differences in the azimuthal scaling behaviour between the moonlet-wakes and gaps and discuss the results in the context of recent observations. Title: Release of Impact-debris in Perturbed Ring Regions: Dynamical and Photometric Simulations. Authors: Salo, Heikki J.; Schmidt, J. Bibcode: 2007DPS....39.1002S Altcode: 2007BAAS...39..425S The typical impact velocities in Saturn's rings are of the order of a

few mm/sec. In such a small velocity regime the larger ring particles are likely to be covered by a regolith of smaller particles (see Albers & Spahn 2005). However, in the perturbed ring regions (e.g. due to satellite density waves, strong self-gravity wakes, viscous overstabilities) the impact velocities may be sufficiently enhanced to lead to a significant release of free regolith debris. We explore this possibility via local N-body simulations, keeping track of the distribution of debris-producing fast impacts. The potential photometric consequences of such free debris are checked with Monte Carlo simulations. Title: X-rays from RU Lupi: accretion and winds in classical T Tauri stars Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2007A&A...473..229R Altcode: 2007arXiv0706.2879R Context: Low-mass stars are known to exhibit strong X-ray emission during their early evolutionary stages. This also applies to classical T Tauri stars (CTTS), whose X-ray emission differs from that of main-sequence stars in a number of aspects.
Aims: We study the specific case of RU Lup, a well known accreting and wind-driving CTTS. In comparison with other bright CTTS we study possible signatures of accretion and winds in their X-ray emission.
Methods: Using three XMM-Newton observations of RU Lup, we investigate its X-ray properties and their generating mechanisms. High-resolution X-ray spectra of RU Lup and other CTTS are compared to main-sequence stars. We examine the presence of a cool plasma excess and enhanced plasma density in relation to X-rays from accretion shocks and investigate anomalous strong X-ray absorption and its connection to winds or circumstellar material.
Results: We find three distinguishable levels of activity among the observations of RU Lup. While no large flares are present, this variability is clearly of magnetic origin due to the corresponding plasma temperatures of around 30 MK; in contrast the cool plasma component at 2-3 MK is quite stable over a month, resulting in a drop of average plasma temperature from 35 MK down to 10 MK. Density analysis with the O VII triplet indicates high densities in the cool plasma, suggesting accretion shocks to be a significant contributor to the soft X-ray emission. No strong overall metal depletion is observed, with Ne being more abundant than Fe, that is at solar value, and especially O. Excess emission at 6.4 keV during the more active phase suggest the presence of iron fluorescence. Additionally RU Lup exhibits an extraordinary strong X-ray absorption, incompatible with estimates obtained at optical and UV wavelengths. Comparing spectra from a sample of main-sequence stars with those of accreting stars we find an excess of cool plasma as evidenced by lower O VIII/O VII line ratios in all accreting stars. High density plasma appears to be only present in low-mass CTTS, while accreting stars with intermediate masses (≳2~M) have lower densities.
Conclusions: In all investigated CTTS the characteristics of the cooler X-ray emitting plasma are influenced by the accretion process. We suspect different accretion rates and amounts of funnelling, possibly linked to stellar mass and radius, to be mainly responsible for the different properties of their cool plasma component. The exceptional X-ray absorption in RU Lup and other CTTS is probably related to the accretion flows and an optically transparent wind emanating from the star or the disk. Title: Moonlets In Saturn's A Ring: Fragments Of A Shattered Moon? Authors: Sremcevic, Miodrag; Schmidt, J.; Salo, H.; Seiss, M.; Spahn, F.; Albers, N. Bibcode: 2007DPS....39.1004S Altcode: 2007BAAS...39R.426S The question on the origin and evolution of planetary rings is one of the prominent unsolved problems of planetary sciences with direct implications for planet-forming processes in preplanetary disks. The recent detection of four propeller-shaped features in Saturn's A ring (Tiscareno et al., 2006, Nature) proved the presence of large boulder-sized moonlets in the rings. Their very existence favours a ring creation in a catastrophic disruption of an icy satellite rather than a co-genetic origin together with Saturn, since bodies of this size can hardly have accreted inside the rings. Here, we report the detection of eight new propellers in an Cassini ISS NAC image sequence that covers the complete A ring, indicating embedded moonlets with radii between 30m-70m. We show that the moonlets found so far are concentrated in a narrow 3,000km wide annulus at 130,000km distance from Saturn. Compared to the main population of smaller ring particles (s<10m) such embedded moonlets have a short lifetime with respect to meteoroid impacts. Thus, they are likely the remnants of a shattered ring-moon of Pan-size or larger, locally contributing new material to the older ring. This supports the theory of catastrophic ring creation in a collisional cascade. Title: Dynamics of Enceladus South Pole Ejecta Authors: Makuch, Martin; Schmidt, J.; Spahn, F. Bibcode: 2007DPS....39.1010M Altcode: 2007BAAS...39..427M The Saturnian moon Enceladus was recently found to be a potent source of gas and dust particles. There was an active region observed on the south pole of Enceladus with jets spraying material in the space. The ejected dust particles are considered to be the main source of the faint E ring.

In our work we investigate the long-term dynamics of icy particles ejected from the south pole of Enceladus. The motion of the ejected grains, being subject to many perturbation forces, strongly depends on particle properties (e.g. size, charge etc.). We study the resulting spatial distribution of particles in the E ring. Primarily we focus on the structure of the ring in the vicinity of Enceladus.

In our study we also concentrated on processes limiting particle lifetime. These are mainly collisions with Enceladus and other Saturnian satellites or main ring, as well as the sputtering of particles by plasma ions bombardment. Modeling the equilibrium between particle sources and sinks we found the size distribution which is expected to be observed in the E ring. Title: EDGE: explorer of diffuse emission and gamma-ray burst explosions Authors: den Herder, J. W.; Piro, L.; Ohashi, T.; Amati, L.; Atteia, J.; Barthelmy, S.; Barbera, M.; Barret, D.; Basso, S.; Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensenf, C.; Burrows, D.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusamano, G.; de Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; In't Zand, J.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P. A. J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Sato, G.; Schaye, J.; Schmidtt, J.; Scioritino, S.; Shaposhnikov, M.; Shinozaki, K.; Spiga, D.; Suto, Y.; Tagliaferri, G.; Takahashi, T.; Takei, Y.; Tawara, Y.; Tozzi, P.; Tsunemi, H.; Tsuru, T.; Ubertini, P.; Ursino, E.; Viel, M.; Vink, J.; White, N.; Willingale, R.; Wijers, R.; Yoshikawa, K.; Yamasaki, N. Bibcode: 2007SPIE.6688E..05D Altcode: 2007SPIE.6688E...4D How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy cluster formation, down to the very low redshift Universe, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (the so-called warm hot intragalactic medium). In addition EDGE, with its unprecedented capabilities, will provide key results in many important fields. These scientific goals are feasible with a medium class mission using existing technology combined with innovative instrumental and observational capabilities by: (a) observing with fast reaction Gamma-Ray Bursts with a high spectral resolution (R ~ 500). This enables the study of their (star-forming) environment and the use of GRBs as back lights of large scale cosmological structures; (b) observing and surveying extended sources (galaxy clusters, WHIM) with high sensitivity using two wide field of view X-ray telescopes (one with a high angular resolution and the other with a high spectral resolution). The mission concept includes four main instruments: a Wide-field Spectrometer with excellent energy resolution (3 eV at 0.6 keV), a Wide- Field Imager with high angular resolution (HPD 15") constant over the full 1.4 degree field of view, and a Wide Field Monitor with a FOV of 1/ 4 of the sky, which will trigger the fast repointing to the GRB. Extension of its energy response up to 1 MeV will be achieved with a GRB detector with no imaging capability. This mission is proposed to ESA as part of the Cosmic Vision call. We will briefly review the science drivers and describe in more detail the payload of this mission. Title: eROSITA Authors: Predehl, P.; Andritschke, R.; Bornemann, W.; Bräuninger, H.; Briel, U.; Brunner, H.; Burkert, W.; Dennerl, K.; Eder, J.; Freyberg, M.; Friedrich, P.; Fürmetz, M.; Hartmann, R.; Hartner, G.; Hasinger, G.; Herrmann, S.; Holl, P.; Huber, H.; Kendziorra, E.; Kink, W.; Meidinger, N.; Müller, S.; Pavlinsky, M.; Pfeffermann, E.; Rohé, C.; Santangelo, A.; Schmitt, J.; Schwope, A.; Steinmetz, M.; Strüder, L.; Sunyaev, R.; Tiedemann, L.; Vongehr, M.; Wilms, J.; Erhard, M.; Gutruf, S.; Jugler, D.; Kampf, D.; Graue, R.; Citterio, O.; Valsecci, G.; Vernani, D.; Zimmerman, M. Bibcode: 2007SPIE.6686E..17P Altcode: 2007SPIE.6686E..36P eROSITA (extended ROentgen Survey with an Imaging Telescope Array) will be one of three main instruments on the Russian new Spectrum-RG mission which is planned to be launched in 2011. The other two instruments are the wide field X-ray monitor Lobster (Leicester University, UK) and ART-XC (IKI, Russia), an X-ray telescope working at higher energies up to 30 keV. A fourth instrument, a micro-calorimeter built by a Dutch-Japanese-US collaboration is also in discussion. eROSITA is aiming primarily for the detection of 50-100 thousands Clusters of Galaxies up to redshifts z > 1 in order to study the large scale structure in the Universe and to test cosmological models including the Dark Energy. For the detection of clusters, a large effective area is needed at low energies (< 2 keV). Therefore, eROSITA consists of seven Wolter-I telescope modules. Each mirror module contains 54 Wolter-I shells with an outer diameter of 360 mm. In the focus of each mirror module, a framestore pn-CCD with a size of 3cm × 3cm provides a field of view of 1° in diameter. The mission scenario comprises a wide survey of the complete extragalactic area and a deep survey in the neighborhood of the galactic poles. Both are accomplished by an all-sky survey with an appropriate orientation of the rotation axis of the satellite in order to achieve the deepest exposures in the neighborhood of the galactic poles. A critical issue is the cooling of the cameras which need a working temperature of -80°C. This will be achieved passively by a system of two radiators connected to the cameras by variable conductance heat pipes. Title: Enceladus' Plume: Formation and dynamics of icy Grains Authors: Schmidt, J.; Brilliantov, N. V.; Spahn, F.; Kempf, S. Bibcode: 2007epsc.conf..808S Altcode: We investigate scenarios for the condensation of ice grains in water gas vents at Enceladus' south pole. The gas emanating from the polar region escapes from hot subsurface regions to vacuum through a system of cracks. By expansion the gas becomes over-saturated and condensation sets in. We present a thermodynamically consistent model for condensation and particle growth in channels of variable cross section, which couples the hydrodynamic equations for the gas with thermodynamic equations for the phase transition. For the nucleation rates we use relations following from experimental data for water vapor at various temperatures and values of the over-saturation. Averaging over plausible ranges of parameters of the channel geometry our model yields a distribution of particle sizes ranging from a fraction of a micron to a few microns. From a probabilistic model for collisions of the grains with channel walls and ballistic acceleration in the dilute gas stream we derive a speed-size distribution of the grains. Our model predicts that large grains can be considerably slower than the the satellite's escape velocity, which is in turn smaller than the gas speed. Thus, our result can explain why a large fraction of the grains falls back to the surface. The sizedistribution is consistent with particle-sizes of the E-ring inferred from photometry and in-situ measurements. We use the speed-size distribution as input for dynamical models of grains ejected into Enceladus' Hill sphere from the south polar area. In this way we construct an effective model plume and investigate its stratification and brightness. Title: Enceladus' Plume: Formation and dynamics of icy Grains Authors: Schmidt, J.; Brilliantov, N. V.; Spahn, F.; Kempf, S. Bibcode: 2007epsc.conf..809S Altcode: We investigate scenarios for the condensation of ice grains in water gas vents at Enceladus' south pole. The gas emanating from the polar region escapes from hot subsurface regions to vacuum through a system of cracks. By expansion the gas becomes over-saturated and condensation sets in. We present a thermodynamically consistent model for condensation and particle growth in channels of variable cross section, which couples the hydrodynamic equations for the gas with thermodynamic equations for the phase transition. For the nucleation rates we use relations following from experimental data for water vapor at various temperatures and values of the over-saturation. Averaging over plausible ranges of parameters of the channel geometry our model yields a distribution of particle sizes ranging from a fraction of a micron to a few microns. From a probabilistic model for collisions of the grains with channel walls and ballistic acceleration in the dilute gas stream we derive a speed-size distribution of the grains. Our model predicts that large grains can be considerably slower than the the satellite's escape velocity, which is in turn smaller than the gas speed. Thus, our result can explain why a large fraction of the grains falls back to the surface. The sizedistribution is consistent with particle-sizes of the E-ring inferred from photometry and in-situ measurements. We use the speed-size distribution as input for dynamical models of grains ejected into Enceladus' Hill sphere from the south polar area. In this way we construct an effective model plume and investigate its stratification and brightness. Title: Icy dust condensation in random channels: Application to Enceladus' Plume. Authors: Brilliantov, N. V.; Schmidt, J.; Spahn, F. Bibcode: 2007epsc.conf..800B Altcode: We investigate scenarios for the condensation of ice grains in water gas vents at Enceladus' south pole. The gas emanating from the polar region escapes from hot subsurface regions to vacuum through a system of cracks. By expansion the gas becomes over-saturated and condensation sets in. We present a thermodynamically consistent model for condensation and particle growth in channels of variable cross section. It couples the hydrodynamic equations for the gas with thermodynamic equations for the phase transition. For the nucleation rates we use relations following from experimental data for water vapor at various temperatures and degrees of the over-saturation.We consider cracks or channel with random geometry which are characterized by the ratio of the most wide to the most narrow cross section and by the minimal characteristic length at which the channel width alters. This parameters are assumed to be uniformly distributed. Averaging over plausible ranges of parameters of the channel geometry, our model yields a distribution of particle sizes ranging from a fraction of a micron to a few microns. The observed particle size distribution qualitatively corresponds to a power law. Title: Dynamics of Enceladus south pole ejecta Authors: Makuch, M.; Schmidt, J.; Spahn, F. Bibcode: 2007epsc.conf..798M Altcode: The Saturnian moon Enceladus was recently found to be a potent source of gas and dust particles. There was an active region observed on the south pole of Enceladus with jets spraying material in the space. The ejected dust particles are considered to be the main source of the faint E ring. In our work we investigate the long-term dynamics of icy particles ejected from the south pole of Enceladus. The motion of the ejected grains, being subject to many perturbation forces, strongly depends on particle properties (e.g. size, charge etc.).We study the resulting spatial distribution of particles in the E ring. Primarily we focus on the structure of the ring in the vicinity of Enceladus. In our study we also concentrated on processes limiting particle lifetime. These are mainly collisions with Enceladus and other Saturnian satellites or main ring, as well as the sputtering of particles by plasma ions bombardment. Modeling the equilibrium between particle sources and sinks we found the size distribution which is expected to be observed in the E ring. Title: Dynamical and photometric modeling of dense planetary rings Authors: Salo, H.; Schmidt, J. Bibcode: 2007epsc.conf..781S Altcode: Planetary rings, with their extremely rich multi-scale structure, offer an ideal laboratory for studies of gravitational dynamics and collective viscous behavior in nonlinear systems. In addition, their observable photometric characteristics provide stringent constraints for the physical properties of individual, unseen particles. To facilitate such studies, we use a combination of dynamical N-body simulations and photometric Monte Carlo ray tracing. In local scales the ring's energy balance is governed by the collisional dissipation and the viscous gain of energy from systematic orbital rotation. Details of the resulting steady-state (velocity dispersion, geometric thickness, viscosity) depend on the elastic properties and the internal density of particles, as well as on their size distribution. Depending on the implied viscosity versus surface density behavior, the ring can be either stable or unstable against the growth of local perturbations. In particular, if the particles are rather inelastic, as indicated by the Bridges et al. (1984, Nature 309,333) laboratory measurements, then dense rings can be viscously overstable (Salo et al. 2001, Icarus 153, 295, Schmidt et al. 2001, Icarus 153, 316; see also Schmit and Tscharnuter 1995, Icarus 115, 304, Spahn et al. 2000, Icarus 145, 657): this might relate to the axisymmetric structures observed in Saturn's A and B rings (see Schmidt et al. and Marouf, Abstracts presented in this conference; Porco et al. 2005, Science 307, 1226). Another important diagnostic for the local velocity dispersion is provided by the longstudied azimuthal brightness variations in both the A and the inner B ring (French et al. 2007, Icarus in press). The non-axisymmetric gravity wakes (Salo 1992, Nature 359, 619; see also Julian and Toomre 1966, ApJ 146, 810) provide a natural explanation for these observations (Salo et al. 2004, Icarus 170, 70), indicating that the ring is close to threshold of gravitational instability. Such wakes also imply longitude-dependence of ring optical depth, as verified by recent Cassini RSS (Marouf et al. 2005, Eos Trans. AGU, 86, P31D-04), UVIS (Colwell et al. 2006, GRL 33, 7201, Colwell et al. 2007, Icarus in press), and VIMS (Hedman et al. 2007, AJ 133, 2624) occultations. Even in the uniform regions not displaying wakes, the overall photometric properties (dependence of ring brightness on elevation and phase angle) can constrain the local volume filling factor and the relative vertical distributions of different sized particles (Salo and Karjalainen 2003, Icarus 164, 428; see also Dones et al. 1993, Icarus 105, 184). This talk will address two specific topics in detail: 1) the correspondence between the simulated N-body gravity wakes and the idealized geometric models which have been used in interpreting the UVIS and VIMS occultations, and 2) the expected photometric characteristics of overstable ring regions. Title: Viscous Overstability in Saturn's Rings Authors: Schmidt, J.; Salo, H.; Colwell, J. Bibcode: 2007epsc.conf..783S Altcode: Viscous overstability is physically an oscillatory instability of viscous Keplerian shear flow. For given conditions, the interplay of viscous stress and coriolis force leads to the formation of waves in the density and velocity profiles of the disk. Overstability has been suggested to generate small scale structure on the 100m length scale in dense planetary rings, such as Saturn's A and B rings. Now strong hints at such small scale structure are indeed found in recent Cassini data from RSS (Marouf, talk presented in this session) and UVIS (Colwell et al, Icarus 2007), which cannot be attributed to gravitational wakes. Moreover, very regular structure of km length is evident in the high resolution ISS images from the SOI phase in the B ring (Porco et al 2005) and in the A ring. Overstability seems a promising candidate to explain these data. But further analysis and modeling is needed to verify the idea. In this talk we review basic aspects of viscous overstability from theory and simulations. Of principal interest for comparison to observation is the role of self-gravity. On the one hand self-gravity might induce gravitational wakes on top of regular overstable waves. On the other hand self-gravity puts an upper limit on the dominant wavelength of overstability, an effect that was already noted by Schmit and Tscharnuter 1999. Title: VizieR Online Data Catalog: XMM observations of Cha I dark cloud (Robrade+, 2007) Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2007yCat..34610669R Altcode: Low-mass stars are known to exhibit strong X-ray emission during the early stages of evolution. Nearby star forming regions are ideal targets to study the X-ray properties of pre-main sequence stars. Aims. A deep XMM-Newton exposure is used to investigate X-ray properties of the pre-main sequence population of the Chamaeleon I star forming region. The northern-eastern fringe of the Chameleon I dark cloud was observed with XMM-Newton, revisiting a region observed with ROSAT 15 years ago. Centered on the extended X-ray source CHXR 49 we are able to resolve it into three major contributing components and to analyse their spectral properties. Furthermore, the deep exposure allows not only the detection of numerous, previously unknown X-ray sources, but also the investigation of variability and the study of the X-ray properties for the brighter targets in the field. We use EPIC spectra, to determine X-ray brightness, coronal temperatures and emission measures for these sources, compare the properties of classical and weak-line T Tauri stars and make a comparison with results from the ROSAT observation.

(1 data file). Title: Wakes induced by small moons in a planetary ring Authors: Seiß, M.; Salo, H.; Spahn, F.; Schmidt, J.; Sremcevic, M. Bibcode: 2007epsc.conf..778S Altcode: S-shaped density structures, called propellers, have been discoverd recently in Saturn's A-ring by the Cassini-ISS cameras (Tiscareno et al. 2006). These structures have been predicted by Spahn and Sremcevic (2000) to be caused by tiny moons (< 100 meter in diameter) embedded in Saturn's rings. This feature reflects the interplay between moonlet gravity and ring-particle collitions. So far, it is not satisfiable explained if the observed pattern represents the two depleted gaps or their adjacent wakes. Results of local box simulations are presented. We investigate the azimuthal extent of the wake crests for different model parameters, especially its dependence on the moonlet size. The wakes start to damp after around two wake cycles agreeing with the start of streamline crossing in the non-collisional model.We emphasise the differences in the azimuthal scaling behaviour between the wakes and gaps and discuss the results in the context of recent observations. Title: Swift X-Ray Observations of Classical Novae Authors: Ness, J. -U.; Schwarz, G. J.; Retter, A.; Starrfield, S.; Schmitt, J. H. M. M.; Gehrels, N.; Burrows, D.; Osborne, J. P. Bibcode: 2007ApJ...663..505N Altcode: 2007astro.ph..3286N The new γ-ray burst (GRB) mission Swift has obtained pointed observations of several classical novae in outburst. We analyzed all the observations of classical novae from the Swift archive up to 2006 June 30. We analyzed usable observations of 12 classical novae and found 4 nondetections, 3 weak sources, and 5 strong sources. This includes detections of two novae exhibiting spectra resembling those of supersoft X-ray binary source spectra (SSS), implying ongoing nuclear burning on the white dwarf surface. With these new Swift data, we add to the growing statistics of the X-ray duration and characteristics of classical novae. Title: Simultaneous XMM-Newton and VLT/UVES observations of the flare star CN Leonis Authors: Fuhrmeister, B.; Liefke, C.; Schmitt, J. H. M. M. Bibcode: 2007A&A...468..221F Altcode: Aims:We present simultaneous observations with VLT/UVES and XMM-Newton of the active M5.5 dwarf CN Leo (Gl 406). The data were gathered during three half nights in May 2004 and December 2005, and they cover quiescent states, as well as flaring activity. Our main aim is to derive coronal properties from X-ray data and to compare these to results from the optical Fe XIII line.
Methods: We studied simultaneously-measured coronal and chromospheric parameters of CN Leo as determined from the XMM-Newton X-ray data, the forbidden optical coronal Fe XIII line at 3388 Å, and various optical chromospheric emission lines.
Results: We find that different activity levels of CN Leo can be traced as well in X-rays as with the Fe XIII line. Moreover, the Fe XIII line flux is in good agreement with a prediction using the differential emission measure as determined from the X-ray spectrum and Fe atomic data. We also present coronal X-ray properties for the quiescent and flaring states of CN Leo. During a flare two ion{He}{ii} transition region lines are also detected in the optical data.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 076.D-0024(A) and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Title: Rapid magnetic flux variability on the flare star CN Leonis Authors: Reiners, A.; Schmitt, J. H. M. M.; Liefke, C. Bibcode: 2007A&A...466L..13R Altcode: 2007astro.ph..3172R We present UVES/VLT observations of the nearby flare star CN Leo covering the Wing-Ford FeH band near 1 μm with high spectral resolution. Some of the FeH absorption lines in this band are magnetically sensitive and allow a measurement of the mean magnetic flux on CN Leo. Our observations, covering three nights separated by 48 hours each, allow a clear detection of a mean magnetic field of Bf ≈ 2.2 kG. The differential flux measurements show a night-to-night variability with extremely high significance. Finally, our data strongly suggest magnetic flux variability on time scales as low as 6 hours in line with chromospheric variability.

Based on observations

collected at the European Southern Observatory, Paranal, Chile, 077.D-0011. Title: X-ray emission from classical T Tauri stars: accretion shocks and coronae? Authors: Günther, H. M.; Schmitt, J. H. M. M.; Robrade, J.; Liefke, C. Bibcode: 2007A&A...466.1111G Altcode: 2007astro.ph..2579G Context: Classical T Tauri stars (CTTS) are surrounded by actively accreting disks. According to current models material falls along the magnetic field lines from the disk with more or less free-fall velocity onto the star, where the plasma heats up and generates X-rays.
Aims: We want to quantitatively explain the observed high energy emission and measure the infall parameters from the data. Absolute flux measurements allow to calculate the filling factor and the mass accretion rate.
Methods: We use a numerical model of the hot accretion spot and solve the conservation equations.
Results: A comparison to data from XMM-Newton and Chandra shows that our model reproduces the main features very well. It yields for TW Hya a filling factor of 0.3% and a mass accretion rate 2×10-10 M {yr}-1.

Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Title: The Virtual Space Physics Observatory as a Portal to the Heliophysics Great Observatory Authors: Roberts, D. A.; King, J.; Schmidt, J.; Cornwell, C.; McGuire, R. Bibcode: 2007AGUSMSM23A..01R Altcode: NASA's Virtual Space Physics Observatory (VSPO), now sponsored by the Space Physics Data Facility at GSFC, is an operational portal to most of the frequently accessed Space Physics datasets from current and past missions. It includes access to many relevant solar physics data products as well as some services (e.g., SSCWeb-based "quick orbits" and links to CCMC). The Web interface to the underlying gateway allows a user to search for data using criteria such as observation time, measurement type, resolution, observatory/spacecraft, and region of space observed. It is now directly based on the SPASE data model and can harvest new product descriptions and make both the descriptions and the products available immediately. VSPO provides direct links to data services such that plots and data subsets from CDAWeb or files from the Virtual Solar Observatory can be obtained directly through the VSPO interface. Direct machine access to datasets allows other applications to use VSPO to find and load data. Discipline specific VxOs and data center based data systems can provide greater functionality for particular datasets, but VSPO provides a simple route to a broad range of "Heliphysics Great Observatory" products. It is thus useful for a range of tasks, inlcuding browsing data from many missions and geophysical/solar indices, obtaining quick downloads of data and plots, finding the location of spacecraft, and determining what products are available in a given region of space. We will continue to add products, harvesting data descriptions from VxOs and working on obtaining access to as nearly a complete set of Space and Solar Phsyics datasets as possible. Title: Discovery of variable X-ray absorption in the cTTS AA Tauri Authors: Schmitt, J. H. M. M.; Robrade, J. Bibcode: 2007A&A...462L..41S Altcode: We present XMM-Newton X-ray and UV observations of the classical T Tauri star AA Tau covering almost two rotational periods where P_rot ∼ 8.5 days. Clear, but uncorrelated variability is found at both wavebands. The variability observed at ~2100 Å follows the previously known optical period. Spectral analysis of the X-ray data results in significant variability in the X-ray absorption such that the times of maximal X-ray absorption and UV extinction coincide. Placing the coronal emission in regions at low up to moderate magnetic latitudes and attribution of the variable X-ray absorption to accretion curtains and/or the disk warp provides a consistent physical picture. However, the derived X-ray absorption and optical extinction at times of maximal optical/UV brightness, i.e. outside occultation, are difficult to reconcile, requiring additional absorption in a disk wind or a peculiar dust grain distribution. Title: A deep XMM-Newton X-ray observation of the Chamaeleon I dark cloud Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2007A&A...461..669R Altcode: 2006astro.ph.10778R Context: Low-mass stars are known to exhibit strong X-ray emission during the early stages of evolution. Nearby star forming regions are ideal targets to study the X-ray properties of pre-main sequence stars.
Aims: A deep XMM-Newton exposure is used to investigate X-ray properties of the pre-main sequence population of the Chamaeleon I star forming region.
Methods: The northern-eastern fringe of the Chameleon I dark cloud was observed with XMM-Newton, revisiting a region observed with ROSAT 15 years ago. Centered on the extended X-ray source CHXR 49 we are able to resolve it into three major contributing components and to analyse their spectral properties. Furthermore, the deep exposure allows not only the detection of numerous, previously unknown X-ray sources, but also the investigation of variability and the study of the X-ray properties for the brighter targets in the field. We use EPIC spectra, to determine X-ray brightness, coronal temperatures and emission measures for these sources, compare the properties of classical and weak-line T Tauri stars and make a comparison with results from the ROSAT observation.
Results: X-ray properties of T Tauri stars in Cha I are presented. The XMM-Newton images resolve some previously blended X-ray sources, confirm several possible ones and detect many new X-ray targets, resulting in the most comprehensive list with 71 X-ray sources in the northern Cha I dark cloud. The analysis of medium resolution spectra shows an overlapping distribution of spectral properties for classical and weak-line T Tauri stars, with the X-ray brighter stars having hotter coronae and a higher L_X/L_bol ratio. X-ray luminosity correlates with bolometric luminosity, whereas the L_X/L_bol ratio is slightly lower for the classical T Tauri stars. Large flares as well as a low iron and a high neon abundance are found in both types of T Tauri stars. Abundance pattern, plasma temperatures and emission measure distributions during quiescent phases are attributed to a high level of magnetic activity as the dominant source of their X-ray emission. Title: Modelling the X-rays of classical T Tauri stars. The binary CTTS V4046 Sgr Authors: Günther, H. M.; Schmitt, J. H. M. M. Bibcode: 2007MmSAI..78..359G Altcode: Three classical T Tauri stars (CTTS) have so far been observed with high S/N and high resolution X-ray spectroscopy yet: TW Hya, BP Tau and V4046 Sgr. Their spectra indicate high densities and it is still a matter of some debate if they are exceptional objects or representatives of their class. V4046 Sgr is a close binary consisting of two K stars with typical signatures of CTTS. It has been observed with Chandra/HETGS for 150 ks. The helium-like triplets of Si, Ne and O are clearly detected. Using a 1-dim, stationary, non-equilibrium model of the post-shock accretion zone, the emission observed can be decomposed in accretion and coronal components. The accretion with its comparatively high densities explains unusual f/i ratios in the triplets, the coronal component explains the high energy emission at temperatures, which cannot be reached in an accretion shock. Title: Magnetic field variations and a giant flare Multiwavelength observations of CN Leo Authors: Liefke, C.; Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2007MmSAI..78..258L Altcode: The M5.5 dwarf CN Leo has been observed simultaneously with XMM-Newton and VLT/UVES on three nights in May 2006. Nightly variations of its magnetic field are deduced from FeH lines in the UVES spectra. A giant flare occurred and is covered in total by all instruments. Time-resolved spectroscopy in X-rays traces the development of temperature and emission measure of the coronal flaring plasma. Coronal densities log n_e > 12 are derived during the flare from the O VII triplet. The UVES spectra simultaneously trace the behavior of chromospheric and transition region plasmas. Large increases in the fluxes of chromospheric emission lines are accompanied by a strong enhancement of the continuum level. The Balmer lines show strong broadening and lines of the hydrogen Paschen series are observed in emission during the flare. Title: X-ray activity cycles in stellar coronae Authors: Robrade, J.; Schmitt, J. H. M. M.; Hempelmann, A. Bibcode: 2007MmSAI..78..311R Altcode: 2007astro.ph..2520R We present updated results from the ongoing XMM-Newton monitoring program of moderately active, solar-like stars to investigate stellar X-ray activity cycles; here we report on the binary systems alpha Cen A/B and 61 Cyg A/B. For 61 Cyg A we find a coronal X-ray cycle which clearly reflects the chromospheric activity cycle and is in phase with a ROSAT campaign performed in the 1990s. 61 Cyg A is the first example of a persistent coronal cycle observed on a star other than the Sun. The changes of its coronal properties during the cycle resemble the solar behaviour. The coronal activity of 61 Cyg B is more irregular, but also follows the chromospheric activity. Long-term variability is also present on alpha Cen A and B. We find that alpha Cen A, a G2 star very similar to our Sun, fainted in X-rays by at least an order of magnitude during the observation program. This behaviour has never been observed before on alpha Cen A, but is rather similar to the X-ray behaviour of the Sun. The X-ray emission of the alpha Cen system is dominated in our observations by alpha Cen B, which might also have an activity cycle indicated by a significant fainting since 2005. Title: Coronal activity cycles in 61 Cygni Authors: Hempelmann, A.; Robrade, J.; Schmitt, J. H. M. M.; Favata, F.; Baliunas, S. L.; Hall, J. C. Bibcode: 2006A&A...460..261H Altcode: Context: .While the existence of stellar analogues of the 11 years solar activity cycle is proven for dozens of stars from optical observations of chromospheric activity, the observation of clearly cyclical coronal activity is still in its infancy.
Aims: .In this paper, long-term X-ray monitoring of the binary 61 Cygni is used to investigate possible coronal activity cycles in moderately active stars.
Methods: .We are monitoring both stellar components, a K5V (A) and a K7V (B) star, of 61 Cyg with XMM-Newton. The first four years of these observations are combined with ROSAT HRI observations of an earlier monitoring campaign. The X-ray light curves are compared with the long-term monitoring of chromospheric activity, as measured by the Mt.Wilson CaII H+K S-index.
Results: .Besides the observation of variability on short time scales, long-term variations of the X-ray activity are clearly present. For 61 Cyg A we find a coronal cycle which clearly reflects the well-known and distinct chromospheric activity cycle. The changes of coronal properties during the cycle resemble the solar behaviour. The coronal activity of 61 Cyg B also follows the chromospheric variability, although a pronounced sinusoidal chromospheric cycle of large amplitude is not noticeable. This is also reflected in the XMM-Newton observations with a rather complex long-term variability during that time.
Conclusions: .61 Cyg A is the first star where a persistent coronal activity cycle has been observed. Title: Simultaneous optical and X-ray observations of a giant flare on the ultracool dwarf LP 412-31 Authors: Stelzer, B.; Schmitt, J. H. M. M.; Micela, G.; Liefke, C. Bibcode: 2006A&A...460L..35S Altcode: 2006astro.ph.10582S Cool stars are known to produce flares probably as a result of the magnetic reconnection in their outer atmospheres. We present simultaneous XMM-Newton optical V band and X-ray observations of the M8 dwarf LP 412-31. During the observation a giant flare occurred, with an optical amplitude of 6 mag and total energy of 3 × 1032 erg in both the V band and soft X-rays. Both flare onset and flare decay were completely covered in both wavebands with a temporal resolution of 20 s, allowing determination of the flare time scales, as well as a study of the temperature evolution of the flaring plasma. The data are consistent with an impulsive energy release followed by radiative cooling without any further energy release during the decay phase. Our analysis suggests that the optical flare originates from a small fraction of the surface of LP 412-31, while the characteristic scale size of the flaring X-ray plasma is of the order of the stellar radius or larger. The absence of any small-scale variability in the light curve suggests a non-standard flare number energy distribution. Title: X-ray accretion signatures in the close CTTS binary V4046 Sagittarii Authors: Günther, H. M.; Liefke, C.; Schmitt, J. H. M. M.; Robrade, J.; Ness, J. -U. Bibcode: 2006A&A...459L..29G Altcode: 2006astro.ph.10121G We present Chandra HETGS observations of the classical T Tauri star (CTTS) V4046 Sgr. The He-like triplets of O VII, Ni IX, and Si XIII are clearly detected. Similar to the CTTS TW Hya and BP Tau, the forbidden lines of O VII and Ne IX are weak compared to the intercombination line, indicating high plasma densities in the X-ray emitting regions. The Si XIII triplet, however, is within the low-density limit, in agreement with the predictions of the accretion funnel infall model with an additional stellar corona. V4046 Sgr is the first close binary exhibiting these features. Together with previous high-resolution X-ray data on TW Hya and BP Tau, and in contrast to T Tau, now three out of four CTTS show evidence of accretion funnels. Title: On the origin of the X-ray emission from Herbig Ae/Be stars Authors: Stelzer, B.; Micela, G.; Hamaguchi, K.; Schmitt, J. H. M. M. Bibcode: 2006A&A...457..223S Altcode: 2006astro.ph..5590S Context: .Herbig Ae/Be stars are fully radiative and not expected to support dynamo action analogous to their convective lower-mass counterparts, the T Tauri stars. Alternative X-ray production mechanisms, related to stellar winds or star-disk magnetospheres have been proposed, but their X-ray emission has remained a mystery.
Aims: .A study of Herbig Ae/Be stars' global X-ray properties (such as detection rate, luminosity, temperature, variability), helps to constrain the emission mechanism by comparison to other types of stars, e.g. similar-age but lower-mass T Tauri stars, similar-mass but more evolved main-sequence A- and B-type stars, and with respect to model predictions.
Methods: .We performed a systematic search for Chandra archival observations of Herbig Ae/Be stars. The superior spatial resolution of this satellite with respect to previous X-ray instrumentation has allowed us to also examine the possible role of late-type companions in generating the observed X-rays.
Results: .In the total sample of 17 Herbig Ae/Be stars, 8 are resolved from X-ray emitting faint companions or other unrelated X-ray bright objects within 10''. The detection fraction of Herbig Ae/Be stars is 76%, but decreases to 35% if all emission is attributed to further known and unresolved companions. The spectral analysis confirms the high X-ray temperatures (∼ 20 MK) and large range of fractional X-ray luminosities (log{L_x/L_*}) of this class derived from earlier studies of individual objects.
Conclusions: .Radiative winds are ruled out as an emission mechanism on the basis of the high temperatures. The X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known), nor from other young late-type stars used for comparison. Therefore, either a similar kind of process takes place in both classes of objects, or there must be as yet undiscovered companion stars. Title: The coronal Ne/O abundance of α Centauri Authors: Liefke, C.; Schmitt, J. H. M. M. Bibcode: 2006A&A...458L...1L Altcode: 2006astro.ph..9015L Recent improvements in the modeling of solar convection and line formation led to downward revisions of the solar photospheric abundances of the lighter elements, which in turn led to changes in the radiative opacity of the solar interior and hence to conflicts with the solar convection zone depth as inferred from helioseismic oscillation frequencies. An increase of the solar Ne/O abundance to values as observed for nearby stars has been proposed as a solution. Because of the absence of strong neon lines in the optical, neon abundances are difficult to measure and the correct solar and stellar Ne/O abundances are currently hotly debated. Based on X-ray spectra obtained with XMM-Newton, we determine a reference value of Ne/O for the inactive, solar-like star α Cen (primarily α Cen B, which is the dominant component in X-rays), with three independent, line-based methods, using differential emission measure reconstruction and an emission measure-independent method. Our results indicate a value of ≈ 0.28 for A_Ne/AO in α Cen, approximately twice the value measured for the Sun, but still below the average value obtained for other stars. The low Ne/O abundance of the Sun is peculiar when compared to α Cen and other stars; our results emphasize the necessity to obtain more and accurate Ne/O abundance measurements of low activity stars. Title: V723 Cassiopeiae Authors: Ness, J. -U.; Starrfield, S.; Schwarz, G.; Vanlandingham, K.; Wagner, R. M.; Lyke, J.; Woodward, C. E.; Lynch, D. K.; Krautter, J.; Schmitt, J. H. M. M. Bibcode: 2006CBET..598....1N Altcode: J.-U. Ness and S. Starrfield, Arizona State University; G. Schwarz and K. Vanlandingham, West Chester University; R. M. Wagner, LBT Observatory; J. Lyke, Keck Observatory; C. E. Woodward, University of Minnesota; D. K. Lynch, The Aerospace Corporation; J. Krautter, Landessternwarte, Heidelberg-Koenigstuhl; and J. H. M. M. Schmitt, Hamburger Sternwarte, report that four SWIFT XRT observations of V723 Cas (N Cas 1995) were obtained between July 9 and July 14 with a total observing time of 8700 seconds. The count rate was significantly lower than in January 2006 (cf. IAUC 8676), declining from 0.024 counts/s in January to 0.01-0.015 counts/s in July. A Kolmogorov-Smirnov test detected no significant difference in the spectral shape when compared to the super-soft-source spectrum that was seen in January. Preliminary blackbody models reveal the same effective temperature of 312000 K but a smaller radius. The estimated bolometric luminosity is 2 x 10**(36) erg/s. The AAVSO visual light curve over the past year shows no significant long-term variability exceeding about 0.2 mag (V approximately 15.0) although short-term fluctuations appear to be present. This nova has been bright for more than 11 years, and the lower luminosity may indicate that nuclear burning on the white dwarf is turning off. Alternatively, renewed accretion is maintaining a permanent, albeit highly variable, super-soft-source state. Continued monitoring at all wavelengths is urged. Title: Alpha Centauri and the Abundance of Neon in the Local Universe Authors: Schmitt, J. Bibcode: 2006hrxs.confE..36S Altcode: The solar neon abundance has recently become the focal point of some controversy involving photospheric abundance determinations using sophisticated 3D-modelling of the solar photosphere and helioseismology. Lowering the solar oxygen abundance lowers the opacity in the solar interior and destroys the remarkably good agreement between predicted and observed solar oscillations. An ad hoc increase in the solar Ne abundance would save the situation and the - from the point of view of helioseismology - required general enhancement of the cosmic neon abundance has been suggested to actually exist on the basis of high-resolution spectra of (mostly active) stars. I present the XMM-Newton RGS spectrum of the nearby low activity star Alpha Centauri with a specific analysis of its Ne/O abundance ratio, its connection to the solar neon abundance and the neon abundance of the local cosmos. Title: eROSITA Authors: Predehl, P.; Hasinger, G.; Böhringer, H.; Briel, U.; Brunner, H.; Churazov, E.; Freyberg, M.; Friedrich, P.; Kendziorra, E.; Lutz, D.; Meidinger, N.; Pavlinsky, M.; Pfeffermann, E.; Santangelo, A.; Schmitt, J.; Schuecker, P.; Schwope, A.; Steinmetz, M.; Strüder, L.; Sunyaev, R.; Wilms, J. Bibcode: 2006SPIE.6266E..0PP Altcode: 2006SPIE.6266E..19P eROSITA (extended ROentgen Survey with an Imaging Telescope Array) will be one out of three main instruments on the Russian new Spectrum-RG mission which will be launched in the timeframe 2010-2011 into an equatorial Low Earth Orbit. The other two instruments are the wide field X-ray monitor Lobster (Leicester University, UK) and ART (IKI, Russia), an X-ray concentrator based on a Kumakhov optics. eROSITA consists of seven Wolter-I telescope modules similar to the German mission ABRIXAS which failed in 1999 and ROSITA, a telescope which was planned to be installed on the International Space Station ISS. Unlike these, the eROSITA telescope modules will be extended by adding another 27 mirror shells to the already existing ABRIXAS design. This will increase the effective area by a factor of ~5 at low energies. The additional shells do not contribute to the area at higher energies ( > 5 keV) due to the relative large grazing angles. Here we stay with the old ABRIXAS/ROSITA effective area. However, the primary scientific goal has changed since ABRIXAS: we are now aiming primarily for the detection of 50-100 thousands Clusters of Galaxies up to redshifts z > 1 in order to study the large scale structure in the Universe and test cosmological models including the Dark Energy, which was not yet known at ABRIXAS times. For the detection of clusters, a large effective area is needed at low (< 2 kev) energies. The mission scenario comprises a wide survey of the complete extragalactic area and a deep survey in the neighborhood of the Galactic Poles. Both are accomplished by an all-sky survey with a tilt of the rotation axis in order to shift the deepest exposures away from the ecliptic poles towards the galactic poles. Title: XMM-Newton X-ray spectroscopy of classical T Tauri stars Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2006A&A...449..737R Altcode: 2006astro.ph..1234R We present results from a comparative study of XMM-Newton observations of four classical T Tauri stars (CTTS), namely BP Tau, CR Cha, SU Aur and TW Hya. In these objects coronal, i.e. magnetic, activity and as recently shown, magnetically funneled accretion are the processes likely to be responsible for the generation of X-ray emission. Variable X-ray emission with luminosities in the order of 1030 erg/s is observed for all targets. We investigate light curves as well as medium and high-resolution X-ray spectra to determine the plasma properties of the sample CTTS and to study the origin of their X-ray emission and its variability. The emission measure distributions and observed temperatures differ significantly and the targets are dominated either by plasma at high densities as produced by accretion shocks or by predominantly hotter plasma of coronal origin. Likewise the variability of the X-ray luminosity is found to be generated by both mechanisms. Cool plasma at high densities is found in all stars with detected O VII triplet emission, prevented only for SU Aur due to strong absorption. A general trend is present in the abundance pattern, with neon being at solar value or enhanced while oxygen, iron and most other metals are depleted, pointing to the presence of the inverse FIP effect in active coronae and possibly grain formation in evolved disks. We find that both accretion shocks and coronal activity contribute to the observed X-ray emission of the targets. While coronal activity is the dominant source of X-ray activity in the majority of the CTTS, the fraction for each process differs significantly between the individual objects. Title: X-ray Activity Cycles in Stellar Coronae Authors: Robrade, J.; Schmitt, J. H. M. M.; Hempelmann, A.; Favata, F. Bibcode: 2006ESASP.604..105R Altcode: 2006xru..conf..105R No abstract at ADS Title: "Propellers" in Saturns Rings? The missing Link? Authors: Spahn, F.; Salo, H.; Schmidt, J.; Seiss, M.; Sremcevic, M. Bibcode: 2006epsc.conf..298S Altcode: To date it is not clear how planetary rings have formed. Have they either accreted cogenetically with their central planet and its satellite system or has a catastrophic disruption of a parent body (satellite, comet) created these magnificent cosmic structures? Based upon dynamical arguments the former scenario would ab initio exclude the existence of boulders larger than a few 10 meters in diameter because they cannot stand the planet's tides and collisions. Consequently, if there were such moonlets with sizes between 50 meters up to few kilometers in diameter in the rings a strong argument pro the hypothesis of a "violent birth" of these cosmic disks would have been found! In order to improve or even enable the detectability of such moonlets, we have modeled structures created by such larger ring boulders. We derived a hydrodynamical model describing the combination of counteracting processes of gravitational scattering and nonlinear viscous diffusion. A formation of a "propeller-shaped" structure (Spahn & Sremcevic; A&A 358 (2000), 368) interfered with density wakes have been obtained which scale in radial direction with the Hill radius and azimuthally with the ratio of mass to viscosity of the ring material (Sremcevic et al.; MNRAS 337 (2002), 1139). The formation of the "propellers" flanked by density wakes have been confirmed by numerical particle simulations (Seiss et al. GRL 32 (2005)). These results have been used to search for small embedded satellites in Saturn's rings in the Cassini imaging data (ISS). Two kilometer sized moonlets have already been detected in Saturn's A ring - Pan and Daphnis - which both show all essential density features and scalings. However, these two isolated,large ring-boulders cannot serve yet as a proof for an extended size-distribution which is expected to result from a catastrophic disruption of an icy satellite. The detection of four "Propellers" pointing to moonlets of ca. 40 - 120 metres in size by Tiscareno et al. (Nature 440 (2006), 648; Spahn & Schmidt, ibid, p. 614) seems to close the gap in the knowledge - providing a strong argument in favour of the "catastrophic disruption" origin scenario. Title: Dust Sources of Saturn's E Ring Authors: Spahn, F.; Schmidt, J.; Albers, N.; Kempf, S.; Krivov, A. V.; Sremcevic, M. Bibcode: 2006epsc.conf..533S Altcode: The recent detection of a dust plume at Enceladus' south pole sheds new light on the origin of the E ring of Saturn. The particles probably condense from gas vents escaping from a system of cracks covering the south pole that appears unusually hot in the Cassini infrared experiments. The main fraction of the E ring dust is created in these gas vents. Still, significant amounts of dust should originate from grains ejected by hypervelocity impacts of E ring particles (ERPs), or alternatively, of interplanetary dust grains (IDPs) on the Saturnian moons embedded in the E ring. We estimate the contributions of impactor -ejecta created dust at these various satellites in the ring, relative to the production rate of grains in the plume at Enceladus. Furthermore, we compare the amount of dust created by both projectile families - ERPs and IDPs - and predict that one can clearly discriminate between the ejecta raised by either projectile families in the data of the Cassini dust detector (CDA) collected at close flybys with the moons embedded in the E ring. Title: Dust Emission from Enceladus' South Pole: Cassini CDA Measurements and Modeling Authors: Schmidt, J.; Brilliantov, N.; Spahn, F.; Kempf, S. Bibcode: 2006epsc.conf..606S Altcode: Dust measurements with the Cassini Cosmic Dust Analyzer (CDA) during the flyby E11 with Enceladus in 2005 indicated a strongly enhanced dust production at the satellite's south pole. Moreover, in the south polar region other Cassini experiments identified an unusually hot surface temperature and water gas expanding from the satellite. It is believed, that this dust plume is the dominant source of Saturn's E-ring. Using the CDA data, our dynamic models of dust ejection from Enceladus can constrain the mass production rate of dust, the plume structure, and properties of the ejection mechanism. In particular, in our integrations we use distributions of particle sizes and velocities as starting conditions, which derive from a model of condensation of dust particles in a gas vent, which is presented in a talk given by N. Brilliantov in this session. Title: Quantitative model for the Enceladus plume Authors: Brilliantov, N. V.; Schmidt, J.; Spahn, F. Bibcode: 2006epsc.conf..293B Altcode: According to recent observations by the Cassini mission the anomalously hot south pole region of Enceladus is an abundant source of the water vapor and dust plumes seen by the spacecraft instruments. It is also believed that the fast particles of the plumes give the major contribution to the E-ring. We develop a quantitative model of the vapor and dust vent, which predicts the velocity of the gas, the size distribution of ice particles and their velocity distribution. The model allows to describe the structure of the plume, particle density in the plume and the size distribution of particles, contributing to the E-ring. The model uses a thermodynamic approach and is based on the following main presumptions: First, we postulate that the ice particles originate in a vapor stream which flows through cracks (channels) in the ice shield that covers Enceladus surface. The gas accelerating in the cracks expands into vacuum and becomes undercooled (oversaturated). Moving in a channel the gas achieves a constant velocity and density, corresponding to expansion of an ideal gas into vacuum. Second, we postulate that the gas stream may be considered as stationary, at least on the time scale of the plume observation. Moreover, we assume that at the bottom of the cracks, from where the vapor starts to expand it is in equilibrium with ice and water, that is, at the triple point. This fixes the density and speed of the vapor flux in the channels. The Reynolds number, estimated for a crack width ∼ 0.1 - 10 m, indicates that the flux might be turbulent. Third, we assume that the growth rate of grains condensed from the gas does not depend on their velocities, but only on the density and temperature of the vapor. Finally, we assume that particles hit the channel walls (due to the turbulent diffusion in the stream, or varying tilt of the channel walls) and loose their velocity upon collisions. These collisions with the walls are modeled as a random Poissonian process, parametrized by the mean time between the successive collisions. We solve the equation of motion for a growing particle in a stream for this model and average over all possible collision sequences of the particle with the walls. As a result we obtain analytical expressions for the particle size and velocity distributions. From these we numerically calculate the density distribution in the plume and the size distribution of particles escaping the satellite and feeding the E-ring. Title: X-ray Emission from Classical T Tauri Stars Authors: Schmitt, J. H. M. M. Bibcode: 2006ESASP.604E...1S Altcode: No abstract at ADS Title: Anomalous X-ray line ratios in the cTTS TW Hydrae Authors: Ness, J. -U.; Schmitt, J. H. M. M. Bibcode: 2005A&A...444L..41N Altcode: 2005astro.ph.10749N The cTTS TW Hya has been observed with high-resolution X-ray spectrometers. Previously found high densities inferred from He-like f/i triplets strongly suggested the detected X-ray emission to be dominated by an accretion shock. Because of their radiation field dependence He-like f/i ratios do not provide unambiguous density diagnostics. Here we present additional evidence for high densities from ratios of Fe xvii lines. Key Fe xvii line ratios in TW Hya deviate from theoretical expectations at low densities as well as from the same measurements in a large sample of stellar coronae. However, a quantitative assessment of densities is difficult because of atomic physics uncertainties. In addition, estimates of low optical depth in line ratios sensitive to resonance scattering effects also support a high-density emission scenario in the X-ray emitting regions of cTTS. Title: An X-ray emission-line spectrum of Nova V382Velorum 1999 Authors: Ness, J. -U.; Starrfield, S.; Jordan, C.; Krautter, J.; Schmitt, J. H. M. M. Bibcode: 2005MNRAS.364.1015N Altcode: 2005astro.ph.10039N; 2005MNRAS.tmp..988N We report on the analysis of an X-ray grating spectrum of the Classical Nova V382Vel (1999), obtained with the Low Energy Transmission Grating (LETG)+HRC-S instrument onboard Chandra, which shows emission lines dominating over any continuum. Lines of Si, Mg, Ne, O, N and C are identified, but no Fe lines are detected. The total luminosity in the lines is ~4 × 1027ergs-1 (corrected for NH= 1.2 × 1021cm-2). The lines have broad profiles with full width at half-maximum corresponding to a velocity ~2900 +/-200kms-1. Some structure is identified in the profiles, but for different elements we find different profile structures. While lines of O show a broadened Gaussian profile, those of Ne are double-peaked, suggesting a fragmented emitting plasma. Using the emission measure distribution, we derive relative element abundances and find abundances of Ne and N that are significantly enhanced relative to that of O, while Fe is not overabundant. The lack of any source emission longwards of 50Åand the OVIII Lyα/Lyβ line ratio supports previous values of the hydrogen column density. We find weak continuum emission from the white dwarf, consistent with a blackbody spectrum with an upper limit to the temperature of T= 3 × 105K, assuming a source radius of 6000km. The upper limit for the integrated blackbody luminosity is 2 × 1036ergs-1. The BeppoSAX and Chandra ACIS observations of V382Vel show that the nova was bright and in the Super-Soft phase as late as 1999 December 30. Our LETG observation obtained 6 weeks later, as well as all subsequent X-ray observations, showed a remarkable fading to a nearly pure emission line phase which suggests that nuclear burning on the white dwarf had turned off by February. In the absence of a photoionizing source, the emission lines were formed in a collisionally ionized and excited expanding shell. Title: X-rays from α Centauri - The darkening of the solar twin Authors: Robrade, J.; Schmitt, J. H. M. M.; Favata, F. Bibcode: 2005A&A...442..315R Altcode: 2005astro.ph..8260R We present first results from five XMM-Newton observations of the binary system α Centauri, which has been observed in snapshot like exposures of roughly two hours each during the last two years. In all our observations the X-ray emission of the system is dominated by α Cen B, a K1 star. The derived light curves of the individual components reveal variability on short timescales and a flare was discovered on α Cen B during one observation. A PSF fitting algorithm is applied to the event distribution to determine the brightness of each component during the observations. We perform a spectral analysis with multi-temperature models to calculate the X-ray luminosities. We investigate long term variability and possible activity cycles of both stars and find the optically brighter component α Cen A, a G2 star very similar to our Sun, to have fainted in X-rays by at least an order of magnitude during the observation program, a behaviour never observed before on α Cen A, but rather similar to the X-ray behaviour observed with XMM-Newton on HD 81809. We also compare our data with earlier spatially resolved observations performed over the last 25 years. Title: E Ring Sources - Cassini Flybys with Enceladus Authors: Spahn, F.; Albers, N.; Dikarev, V.; Economu, T.; Grün, E.; Hoerning, M.; Kempf, S.; Krivov, A. V.; Makuch, M.; Schmidt, J.; Seiss, M.; Srama, R.; Sremcevic, M. Bibcode: 2005LPICo1280..132S Altcode: No abstract at ADS Title: PHOENIX model chromospheres of mid- to late-type M dwarfs Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H. Bibcode: 2005A&A...439.1137F Altcode: 2005astro.ph..5375F We present semi-empirical model chromospheres computed with the atmosphere code PHOENIX. The models are designed to fit the observed spectra of five mid- to late-type M dwarfs. Next to hydrogen lines from the Balmer series we used various metal lines, e.g. from Fe i, for the comparison between data and models. Our computations show that an NLTE treatment of C, N, O impacts on the hydrogen line formation, while NLTE treatment of less abundant metals such as nickel influences the lines of the considered species itself. For our coolest models we investigated also the influence of dust on the chromospheres and found that dust increases the emission line flux. Moreover we present an (electronically published) emission line list for the spectral range of 3100 to 3900 and 4700 to 6800 Å for a set of 21 M dwarfs and brown dwarfs. The line list includes the detection of the Na i D lines in emission for a L3 dwarf. Title: Detection of X-ray emission from β Pictoris with XMM-Newton: a cool corona, a boundary layer or what? Authors: Hempel, M.; Robrade, J.; Ness, J. -U.; Schmitt, J. H. M. M. Bibcode: 2005A&A...440..727H Altcode: β Pictoris (HR 2020) is the most prominent prototype of stars with circumstellar disks and has generated particular interest in the framework of young planetary systems. Given its spectral type A5, stellar activity is not expected. Nevertheless, resonance lines of C iii and O vi typical for a chromosphere and transition region have been unambiguously detected with FUSE. We present results from an XMM-Newton observation of β Pic and find evidence for X-ray emission. In particular, we detected an emission of O vii at 21.6 Å with the MOS detectors. These findings present a challenge for the development of both stellar activity and disk models. We discuss and investigate various models to explain the observed emission including the presence of a cool corona and a boundary layer. Title: Density Structures Induced by Small Moonlets in Saturn's Dense Rings Authors: Seiss, M.; Schmidt, J.; Salo, H.; Spahn, F.; Sremcevic, M. Bibcode: 2005DPS....37.6404S Altcode: 2005BAAS...37..767S We used the method of local box simulations to investigate the density perturbationsin a planetary ring as a consequence of the presence of an embedded small moonlet.We verified the formation of a S-shaped density structure (propeller interfered with wakes) predicted by Spahn and Sremcevic, Astron. Astrophys. 358 (2000), 368, and Sremcevic et al. MNRAS 337 (2002), 1139, which scales in radial direction with the Hill radius and in azimuthal direction with the mass of the satellite over the viscosity of the ring material. The "propeller" is adorned with density wakes leading as well as trailing the moonlet.

The results may be used to detect small embedded satellites in Saturn's rings in the Cassini imaging data (ISS) and in the occultations carried out by the ultra-violet-spectrometer Cassini (UVIS). Some density features described with our modeling have recently been confirmed with the Cassini-ISS cameras which uncovered a satellite of about 7 kilometer in diameter (S/2005 S1) revolving in the Keeler gap. Additionally, this example affirms fairly well the radial scaling of the Keeler gap predicted by the theory.

In case of a detection of further embedded bodies the theoretical scalings enable estimates for their mass as well as for the viscosity of the surrounding ring material. Further detections of moonlets might provide implications for an origin of Saturn's rings by a catastrophic disruption of parent bodies. Title: On the nature of the X-ray source in GK Persei Authors: Vrielmann, S.; Ness, J. -U.; Schmitt, J. H. M. M. Bibcode: 2005A&A...439..287V Altcode: 2005astro.ph..5070V We report XMM-Newton observations of the intermediate polar (IP) GK Per on the rise to the 2002 outburst and compare them to Chandra observations during quiescence. The asymmetric spin light curve implies an asymmetric shape of a semi-transparent accretion curtain and we propose a model for its shape. A low Fe xvii (λλ15.01/15.26 Å) line flux ratio confirms the need for an asymmetric geometry and significant effects of resonant line scattering. Medium resolution PN spectra in outburst and ACIS-S spectra in quiescence can both be fitted with a leaky absorber model for the post shock hard X-ray emission, a black body (outburst) for the thermalized X-ray emission from the white dwarf and an optically thin spectrum. The difference in the leaky absorber emission between high and low spin as well as quasi-periodic oscillation (QPO) or flares states can be fully explained by a variation in the absorbing column density. For the explanation of the difference between outburst and quiescence a combination of the variation of the column density and the electron and ion densities is necessary. The Fe fluorescence at 6.4 keV with an equivalent width of 447 eV and a possible Compton scattering contribution in the red wing of the line is not significantly variable during spin cycle or on QPO periods, i.e. a significant portion of the line originates in the wide accretion curtains. High-resolution RGS spectra reveal a number of emission lines from H-like and He-like elements. The lines are broader than the instrumental response with a roughly constant velocity dispersion for different lines, indicating identical origin. He-like emission lines are used to give values for the electron densities of log ne ∼ 12. We do not detect any variation in the emission lines during the spin cycle, implying that the lines are not noticeably obscured or absorbed. We conclude that they originate in the accretion curtains and that accretion might take place from all azimuths. Title: The Magnetic Properties of an L Dwarf Derived from Simultaneous Radio, X-Ray, and Hα Observations Authors: Berger, E.; Rutledge, R. E.; Reid, I. N.; Bildsten, L.; Gizis, J. E.; Liebert, J.; Martín, E.; Basri, G.; Jayawardhana, R.; Brandeker, A.; Fleming, T. A.; Johns-Krull, C. M.; Giampapa, M. S.; Hawley, S. L.; Schmitt, J. H. M. M. Bibcode: 2005ApJ...627..960B Altcode: 2005astro.ph..2384B We present the first simultaneous, multiwavelength observations of an L dwarf, the L3.5 candidate brown dwarf 2MASS J00361617+1821104, conducted with the Very Large Array, the Chandra X-Ray Observatory, and the Kitt Peak 4 m telescope. We detect strongly variable and periodic radio emission (P=3 hr) with a fraction of about 60% circular polarization. No X-ray emission is detected to a limit of LX/Lbol<~2×10-5, several hundred times below the saturation level observed in early M dwarfs. Similarly, we do not detect Hα emission to a limit of L/Lbol<~2×10-7, the deepest for any L dwarf observed to date. The ratio of radio to X-ray luminosity is at least 4 orders of magnitude in excess of that observed in a wide range of active stars (including M dwarfs), providing the first direct confirmation that late-M and L dwarfs violate the radio/X-ray correlation. The radio emission is due to gyrosynchrotron radiation in a large-scale magnetic field of about 175 G, which is maintained on timescales longer than 3 yr. The detected 3 hr period may be due to (1) the orbital motion of a companion at a separation of about 5 stellar radii, similar to the configuration of RS CVn systems, (2) an equatorial rotation velocity of about 37 km s-1 and an anchored, long-lived magnetic field, or (3) periodic release of magnetic stresses in the form of weak flares. In the case of orbital motion, the magnetic activity may be induced by the companion, possibly explaining the unusual pattern of activity and the long-lived signal. We conclude that fully convective stars can maintain a large-scale and stable magnetic field, but the lack of X-ray and Hα emission indicates that the atmospheric conditions are markedly different than in early-type stars and even M dwarfs. Similar observations are therefore invaluable for probing both the internal and external structure of low-mass stars and substellar objects, and for providing constraints on dynamo models. Title: X-ray properties of active M dwarfs as observed by XMM-Newton Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2005A&A...435.1073R Altcode: 2005astro.ph..4145R We present a comparative study of X-ray emission from a sample of active M dwarfs with spectral types using XMM-Newton observations of two single stars, AD Leonis and EV Lacertae, and two unresolved binary systems, AT Microscopii and EQ Pegasi. The light curves reveal frequent flaring during all four observations. We perform a uniform spectral analysis and determine plasma temperatures, abundances and emission measures in different states of activity. Applying multi-temperature models with variable abundances separately to data obtained with the EPIC and RGS detectors we are able to investigate the consistency of the results obtained by the different instruments onboard XMM-Newton. We find that the X-ray properties of the sample M dwarfs are very similar, with the coronal abundances of all sample stars following a trend of increasing abundance with increasing first ionization potential, the inverse FIP effect. The overall metallicities are below solar photospheric ones but appear consistent with the measured photospheric abundances of M dwarfs like these. A significant increase in the prominence of the hotter plasma components is observed during flares while the cool plasma component is only marginally affected by flaring, pointing to different coronal structures. AT Mic, probably a young pre-main-sequence system, has the highest X-ray luminosity and exhibits also the hottest corona. While results of EQ Peg and EV Lac are presented here for the first time, AT Mic and AD Leo have been investigated before with different analysis approaches, allowing a comparison of the results. Title: Detection of red line asymmetries in LHS 2034 Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H. Bibcode: 2005A&A...436..677F Altcode: We report very pronounced line asymmetries during a long duration flare on the dM6 star LHS 2034 (AZ Cnc). While all lines of the Balmer series and all strong He i lines show these asymmetries, the metal lines do not. This can be explained with the help of PHOENIX model chromospheres considering the formation depth of the lines involved. Moreover, the asymmetries persist over about one hour changing shape and amplitude. Fitting the asymmetries with an additional broad Gaussian component leads us to the scenario of a series of downward propagating condensations that decelerate due to the higher density of the lower chromosphere. In addition, similar but weaker line asymmetries were found in LHS 2397a. Title: Localizing plages on BO Mic. Rapid variability and rotational modulation of stellar Ca H&K core emission Authors: Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2005A&A...435L..21W Altcode: We have obtained a densely sampled time series of Ca ii H&K line profiles of the ultrafast rotating K-dwarf star BO Mic. Taken at high resolution, the spectra reveal pronounced variations of the emission core profiles. We interpret these variations as signs of concentrated chromospherically active regions, in analogy to solar plages. We further interpret the variations as partly due to the rapid growth and decay of plages, while other variations appear to be caused by plages moved over the visible stellar disk by rotation. The equivalent width of the Ca K core emission changes approximately in anti-phase to the photospheric brightness, suggesting an association of the chromospheric plage regions with pronounced dark photospheric spots. We believe that further analysis of the presented spectral time series will lead to a chromospheric Doppler image of BO mic. Title: VizieR Online Data Catalog: PHOENIX model chromospheres of M dwarfs (Fuhrmeister+, 2005) Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H. Bibcode: 2005yCat..34391137F Altcode: We present an extensive identification catalog of chromospheric emission lines in the optical range. The data were obtained with ESO's Kueyen telescope equipped with the UVES spectrograph from March, 13th to 16th in 2002. The instrument was operated in dichroic mode (spectral coverage from 3030 to 3880 and from 4580 to 6680{AA}). The data for the stars Prox Cen, UV Ceti and LHS 292 were obtained with the same instrument in winter 2000/2001 with a monochroic setup providing only the blue part of the spectrum. We tabulated measured wavelength, equivalent width (EW) and FWHM for every line and star and also provide the rest wavelength from the Moore catalog which was used for identification (Moore 1972). Few lines were identified with the NIST database. The spectra were all corrected for radial velocity besides Kelu-1, DENIS-P J1058.7-1548 and 2MASSI J1315309-264951. DENIS-P J1058.7-1548 has no detected lines, and therefore no data in the table.

(2 data files). Title: Doppler imaging of Speedy Mic using the VLT. Fast spot evolution on a young K-dwarf star Authors: Wolter, U.; Schmitt, J. H. M. M.; van Wyk, F. Bibcode: 2005A&A...435..261W Altcode: 2005astro.ph..4104W We study the short-term evolution of starspots on the ultrafast-rotating star HD 197890 (“Speedy Mic” = BO Mic, K 0-2 V, Prot=0.380 d) based on two Doppler images taken about 13 stellar rotations apart. Each image is based on spectra densely sampling a single stellar rotation. The images were reconstructed by our Doppler imaging code CLDI (Clean-like Doppler imaging) from line profiles extracted by spectrum deconvolution. Our Doppler images constructed from two independent wavelength ranges agree well on scales down to 10° on the stellar surface. In conjunction with nearly parallel V-band photometry our observations reveal a significant evolution of the spot pattern during as little as two stellar rotations. We suggest that such a fast spot evolution demands care when constructing Doppler images of highly active stars based on spectral time series extending over several stellar rotations. The fast intrinsic spot evolution on BO Mic impedes the determination of a surface differential rotation; in agreement with earlier results by other authors we determine an upper limit of | α | < 0.004 ± 0.002. Title: Localizing Plages on BO Mic, First steps towards chromospheric Doppler imaging Authors: Wolter, U.; Schmitt, J. H. M. M. Bibcode: 2005astro.ph..4107W Altcode: We have obtained a densely sampled time series of CaII H&K line profiles of the ultrafast rotating K-dwarf star BO Mic. Taken at high resolution, the spectra reveal pronounced variations of the emission core profiles. We interpret these variations as signs of concentrated chromospherically active regions, in analogy to solar plages. We further interpret the variations as partly due to the rapid growth and decay of plages, while other variations appear to be caused by plages moved over the visible stellar disk by rotation. The equivalent width of the Ca K core emission changes approximately in anti-phase to the photospheric brightness, suggesting an association of the chromospheric plage regions with pronounced dark photospheric spots. We believe that further analysis of the presented spectral time series will lead to a chromospheric Doppler image of BO mic. Title: Modeling M-dwarf chromospheres with PHOENIX Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Hauschildt, P. H. Bibcode: 2005ESASP.560..559F Altcode: 2005csss...13..559F No abstract at ADS Title: X-ray emission from A-type stars Authors: Schröder, C.; Schmitt, J. H. M. M.; Hempel, M.; Ness, J. -U. Bibcode: 2005ESASP.560..955S Altcode: 2005csss...13..955S No abstract at ADS Title: The NEXXUS database - X-ray properties of nearby stars Authors: Liefke, C.; Schmitt, J. H. M. M. Bibcode: 2005ESASP.560..755L Altcode: 2005csss...13..755L No abstract at ADS Title: Analysis of Ca II emission lines in active stars Authors: Kaiser, C.; Hempel, M.; Schmitt, J. H. M. M.; Reiners, A. Bibcode: 2005ESASP.560..693K Altcode: 2005csss...13..693K No abstract at ADS Title: Magnetic activity in early-type stars? Authors: Schmitt, J. H. M. M.; Groote, D.; Czesla, S. Bibcode: 2005ESASP.560..943S Altcode: 2005csss...13..943S No abstract at ADS Title: β Pictoris, far-UV emission lines, and a boundary layer Authors: Hempel, M.; Ness, J. -U.; Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2005ESASP.560..639H Altcode: 2005csss...13..639H No abstract at ADS Title: X-ray spectroscopy of M dwarfs Authors: Robrade, J.; Schmitt, J. H. M. M. Bibcode: 2005ESASP.560..921R Altcode: 2005csss...13..921R No abstract at ADS Title: X-rays from accretion shocks in T Tauri stars: The case of BP Tau Authors: Schmitt, J. H. M. M.; Robrade, J.; Ness, J. -U.; Favata, F.; Stelzer, B. Bibcode: 2005A&A...432L..35S Altcode: 2005astro.ph..3144S We present an XMM-Newton observation of the classical T Tauri star BP Tau. In the XMM-Newton RGS spectrum the O vii triplet is clearly detected with a very weak forbidden line indicating high plasma densities and/or a high UV flux environment. At the same time concurrent UV data point to a small hot spot filling factor suggesting an accretion funnel shock as the site of the X-ray and UV emission. Together with the X-ray data on TW Hya these new observations suggest such funnels to be a general feature in classical T Tauri stars. Title: The Hamburg Robotic Telescope: a test report Authors: Hempelmann, A.; Gonzalezperez, J. N.; Schmitt, J. H. M. M.; Hagen, H. J. Bibcode: 2005ESASP.560..643H Altcode: 2005csss...13..643H No abstract at ADS Title: Strong latitudinal shear in the shallow convection zone of a rapidly rotating A-star Authors: Reiners, A.; Hünsch, M.; Hempel, M.; Schmitt, J. H. M. M. Bibcode: 2005A&A...430L..17R Altcode: 2004astro.ph.12225R We have derived the mean broadening profile of the star V 102 in the region of the open cluster IC 4665 from high resolution spectroscopy. At a projected equatorial rotation velocity of v sin i = (105 ± 12) km s-1 we find strong deviation from classical rotation. We discuss several scenarios, the most plausible being strong differential rotation in latitudinal direction. For this scenario we find a difference in angular velocity of ΔΩ = 3.6 ± 0.8 rad d-1 (ΔΩ/Ω = 0.42 ± 0.09). From the Hα line we derive a spectral type of A9 and support photometric measurements classifying IC 4665 V 102 as a non-member of IC 4665. At such early spectral type this is the strongest case of differential rotation observed so far. Together with three similar stars, IC 4665 V 102 seems to form a new class of objects that exhibit extreme latitudinal shear in a very shallow convective envelope.

Based on observations carried out at the European Southern Observatory, Paranal, 71.D-0127(A). Title: On the sizes of stellar X-ray coronae Authors: Ness, J. -U.; Güdel, M.; Schmitt, J. H. M. M.; Audard, M.; Telleschi, A. Bibcode: 2004A&A...427..667N Altcode: 2004astro.ph..7231N Spatial information from stellar X-ray coronae cannot be assessed directly, but scaling laws from the solar corona make it possible to estimate sizes of stellar coronae from the physical parameters temperature and density. While coronal plasma temperatures have long been available, we concentrate on the newly available density measurements from line fluxes of X-ray lines measured for a large sample of stellar coronae with the Chandra and XMM-Newton gratings. We compiled a set of 64 grating spectra of 42 stellar coronae. Line counts of strong H-like and He-like ions and Fe XXI lines were measured with the CORA single-purpose line fitting tool by \cite{newi02}. Densities are estimated from He-like f/i flux ratios of O VII and Ne IX representing the cooler (1-6 MK) plasma components. The densities scatter between log ne ≈ 9.5-11 from the O VII triplet and between log ne ≈ 10.5-12 from the Ne IX triplet, but we caution that the latter triplet may be biased by contamination from Fe XIX and Fe XXI lines. We find that low-activity stars (as parameterized by the characteristic temperature derived from H- and He-like line flux ratios) tend to show densities derived from O VII of no more than a few times 1010 cm-3, whereas no definitive trend is found for the more active stars. Investigating the densities of the hotter plasma with various Fe XXI line ratios, we found that none of the spectra consistently indicates the presence of very high densities. We argue that our measurements are compatible with the low-density limit for the respective ratios (≈ 5× 1012 cm-3). These upper limits are in line with constant pressure in the emitting active regions. We focus on the commonly used \cite{rtv} scaling law to derive loop lengths from temperatures and densities assuming loop-like structures as identical building blocks. We derive the emitting volumes from direct measurements of ion-specific emission measures and densities. Available volumes are calculated from the loop-lengths and stellar radii, and are compared with the emitting volumes to infer filling factors. For all stages of activity we find similar filling factors up to 0.1.

Appendix A is only available in electronic form at http://www.edpsciences.org Title: a Radial Velocity Search for P-Modes in VIR Authors: Martic, M.; Lebrun, J. C.; Appourchaux, T.; Schmitt, J. Bibcode: 2004ESASP.559..563M Altcode: 2004astro.ph..9126M; 2004soho...14..563M Spectroscopic high-resolution observations were performed with fiber-fed cross-dispersed echelle spectrographs in order to measure the fluctuations in radial velocities of a sample of bright stars that are likely to undergo solar-like oscillations. Here we report the results for beta Vir (HR4540) from two observing runs carried out in February 2002 with FEROS at the ESO 1.52 m telescope in La Silla (Chile) and ELODIE spectrograph at 1.93 OHP telescope (Observatoire de Haute Provence, France). The analysis of the time series of Doppler shifts from both sites has revealed the presence of an excess power around 1.7 mHz. We discuss the interpretation of this data set in terms of possible p-mode oscillations. Title: Stars: Twisting Exteriors - Turbulent Interiors Authors: Wolter, Uwe; Schmitt, J. H. M. M. Bibcode: 2004ANS...325...27W Altcode: 2004ANS...325..D11W No abstract at ADS Title: A numerical study of two interacting coronal mass ejections Authors: Schmidt, J.; Cargill, P. Bibcode: 2004AnGeo..22.2245S Altcode: The interaction in the solar wind between two coronal mass ejections (CMEs) is investigated using numerical simulations. We show that the nature of the interaction depends on whether the CME magnetic structures interact, but in all cases the result is an equilisation of the speed of the two CMEs. In the absence of magnetic interaction, the forward shock of the faster trailing CME interacts with the slow leading CME, and accelerates it. When the two CMEs have magnetic fields with the same sense of rotation, magnetic reconnection occurs between the two CMEs, leading to the formation of a single magnetic structure: in the most extreme cases, one CME "eats" the other. When the senses of rotation are opposite, reconnection does not occur, but the CMEs collide in a highly non-elastic manner, again forming a single structure. The possibility of enhanced particle acceleration in such processes is assessed. The presence of strong magnetic reconnection provides excellent opportunities for the acceleration of thermal particles, which then form a seed population for further acceleration at the CME shocks. The presence of a large population of seed particles will thus lead to an overall increase in energetic particle fluxes, as suggested by some observations. Title: Detection and high-resolution spectroscopy of a huge flare on the old M 9 dwarf DENIS 104814.7-395606.1 Authors: Fuhrmeister, B.; Schmitt, J. H. M. M. Bibcode: 2004A&A...420.1079F Altcode: 2004astro.ph..3617F We report a flare on the M 9 dwarf DENIS 104814.7-395606.1, whose mass places it directly at the hydrogen burning limit. The event was observed in a spectral sequence during 1.3 h. Line shifts to bluer wavelengths were detected in Hα, Hβ, and in the Na I D lines, indicating mass motions. In addition we detect a flux enhancement on the blue side of the two Balmer lines in the last spectrum of our series. We interpret this as rising gas cloud with a projected velocity of about 100 km s-1 which may lead to mass ejection. The higher Balmer lines Hγ to H8 are not seen due to our instrumental setup, but in the last spectrum there is strong evidence for H9 being in emission.

Based on observations collected at the European Southern Observatory, Paranal, 68.D-0166A, Chile. Title: Measurements of Differential Rotation in Cool Stars Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2004IAUS..215..138R Altcode: No abstract at ADS Title: Membership, rotation, and lithium abundances in the open clusters NGC 2451 A and B Authors: Hünsch, M.; Randich, S.; Hempel, M.; Weidner, C.; Schmitt, J. H. M. M. Bibcode: 2004A&A...418..539H Altcode: High-resolution spectra of 30 late-type and 9 early-type candidate members of the young (∼50-80 Myr) open clusters NGC 2451 A and B have been analyzed in order to complement our previous photometric and X-ray study. Cluster membership of these X-ray selected stars has been confirmed or rejected on the basis of radial velocity and Hα chromospheric emission. The metallicity of both clusters seems to be about solar - contrary to previous investigations. Lithium abundances have been determined by two different methods, namely curve-of-growth techniques and spectrum synthesis, yielding quite consistent results. The pattern of Li abundances versus effective temperature resembles that of the equally-old Alpha Per cluster, i.e., little Li depletion is seen for solar-type and earlier-type stars, while towards cooler stars Li is more and more depleted, possibly showing a star-to-star scatter below ∼ 5200 K. The hottest star in our sample shows a Li abundance ∼0.5 dex higher than the meteoritic value. Rotational velocities have been determined in order to investigate the supposed dependence of activity and Li depletion on rotation.

Based on observations performed at the European Southern Observatory, La Silla/Chile. Title: X-ray emission from a metal depleted accretion shock onto the classical T Tauri star TW Hya Authors: Stelzer, B.; Schmitt, J. H. M. M. Bibcode: 2004A&A...418..687S Altcode: 2004astro.ph..2108S We present the X-ray spectrum of TW Hya observed at high and intermediate spectral resolution with the Reflection Grating Spectrometer (RGS) and the European Photon Imaging Camera (EPIC) onboard the XMM-Newton satellite. TW Hya is the first classical T Tauri star for which simultaneous X-ray data with both high spectral resolution and high sensitivity were obtained, thus allowing to probe the X-ray emission properties of stars in the early pre-main sequence phase. Despite TW Hya's high X-ray luminosity in excess of 1030 erg/s its X-ray spectrum is dominated by emission lines from rather cool plasma (T ≈ 3 MK), and only little emission measure is present at high temperatures (T ≈ 10 MK). We determine photon fluxes for the emission lines in the high resolution spectrum, confirming the earlier result from Chandra that the predominant emission is from neon and oxygen, with comparatively weak iron lines. Further, the line ratios of He-like triplets of nitrogen, oxygen and neon require densities of n_e ∼ 1013 cm-3, about two orders of magnitude higher than for any other star observed so far at high spectral resolution. Finally, we find that nearly all metals are underabundant with respect to solar abundances, while the abundances of nitrogen and neon are enhanced. The high plasma density, the (comparatively) low temperature, and peculiar chemical abundances in the X-ray emitting region on TW Hya are untypical for stellar coronae. An alternative X-ray production mechanism is therefore called for and a natural explanation is an accretion column depleted of grain forming elements. The metal depletion could be either due to the original molecular cloud that formed TW Hya or due to a settling of dust in the circumstellar disk of TW Hya. Title: Is T Leonis a superoutbursting intermediate polar? Authors: Vrielmann, S.; Ness, J. -U.; Schmitt, J. H. M. M. Bibcode: 2004A&A...419..673V Altcode: 2004astro.ph..2565V We present an XMM-Newton analysis of the cataclysmic variable T Leo. The X-ray light curve shows sinusoidal variation on a period Px equal to 0.89+0.14-0.10 times the previously spectroscopically determined orbital period. Furthermore, we find a signal in the power spectrum at 414 s that could be attributed to the spin period of the white dwarf. If true, T Leo would be the first confirmed superoutbursting intermediate polar (IP). The spin profile is double-peaked with a peak separation of about 1/3 spin phases. This appears to be a typical feature for IPs with a small magnetic field and fast white dwarf rotation.

An alternative explanation is that the 414 s signal is a Quasi-periodic Oscillation (QPO) that is caused by mass transfer variation from the secondary, a bright region (``blob'') rotating in the disc at a radius of approximately 9Rwd or - more likely - a travelling wave close to the inner disc edge of a dwarf nova with a low field white dwarf.

The XMM-Newton RGS spectra reveal double peaked emission for the O VIII Ly α line. Scenarios in the IP and dwarf nova model are discussed (an emitting ring in the disc, bright X-ray spot on disc edge, or emitting accretion funnels), but the intermediate polar model is favoured. Supported is this idea by the finding that only the red peak appears to be shifted and the ``blue'' peak is compatible with the rest wavelength. The red peak thus is caused by emission from the northern accretion spot when it faces the observer. Instead, the peak at the rest wavelength is caused when the southern accretion funnel is visible just on the lower edge of the white dwarf - with the velocity of the accreting material being perpendicular to the line of sight. Title: Solar and Stellar Plasmas Authors: Schmitt, J. H. M. M. Bibcode: 2004AIPC..703..184S Altcode: Stellar X-ray astronomy is a new branch of X-ray astronomy that emerged over the last few decades. With the advent of soft X-ray imagery X-ray emission was found from many thousands of solar-like stars, thus showing the presence of very hot plasma with temperatures far above the stellar photospheric temperatures. With the new generation of X-ray telescopes the physical properties of these plasmas can be diagnosed and analyzed. This talk provides a review of the occurrence of X-ray emission in the HR-diagram and an overview of the physical properties of stellar coronae as diagnosed from high-resolution spectroscopy. Title: Discovery of X-ray flaring on the magnetic Bp-star σ Ori E Authors: Groote, D.; Schmitt, J. H. M. M. Bibcode: 2004A&A...418..235G Altcode: 2004astro.ph..2437G We report the detection of an X-ray flare on the Bp star σ Ori E with the ROSAT high resolution imager (HRI). The flare is shown to have likely occurred on the early-type star, rather than on an hypothesized late-type companion. We derive flare parameters such as total energy release, coarse estimates of size and density, and also present arguments for a magnetic origin of the flare. We place our observations in the context of a magnetic character of Bp-type stars and speculate on a common physical basis and connection between Bp and Be stars. Title: High-amplitude, long-term X-ray variability in the solar-type star HD 81809: The beginning of an X-ray activity cycle? Authors: Favata, F.; Micela, G.; Baliunas, S. L.; Schmitt, J. H. M. M.; Güdel, M.; Harnden, F. R., Jr.; Sciortino, S.; Stern, R. A. Bibcode: 2004A&A...418L..13F Altcode: 2004astro.ph..3142F We present the initial results from our XMM-Newton program aimed at searching for X-ray activity cycles in solar-type stars. HD 81809 is a G2-type star (somewhat more evolved than the Sun, and with a less massive companion) with a pronounced 8.2 yr chromospheric cycle, as evident from from the Mt. Wilson program data. We present here the results from the initial 2.5 years of XMM-Newton observations, showing that large amplitude (a factor of ≃10) modulation is present in the X-ray luminosity, with a clearly defined maximum in mid 2002 and a steady decrease since then. The maximum of the chromospheric cycle took place in 2001; if the observed X-ray variability is the initial part of an X-ray cycle, this could imply a phase shift between chromospheric and coronal activity, although the current descent into chromospheric cycle minimum is well reflected into the star's X-ray luminosity. The observations presented here provide clear evidence for the presence of large amplitude X-ray variability coherent with the activity cycle in the chromosphere in a star other than the Sun. Title: X-ray emission from Saturn Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Wolk, S. J.; Dennerl, K.; Burwitz, V. Bibcode: 2004A&A...418..337N Altcode: 2004astro.ph..1270N We report the first unambiguous detection of X-ray emission originating from Saturn with a Chandra observation, duration 65.5 ks with ACIS-S3. Beyond the pure detection we analyze the spatial distribution of X-rays on the planetary surface, the light curve, and some spectral properties. The detection is based on 162 cts extracted from the ACIS-S3 chip within the optical disk of Saturn. We found no evidence for smaller or larger angular extent. The expected background level is 56 cts, i.e., the count rate is (1.6 ± 0.2)× 10-3 cts/s. The extracted photons are rather concentrated towards the equator of the apparent disk, while both polar caps have a relative photon deficit. The inclination angle of Saturn during the observation was ∼-27o, so that the northern hemisphere was not visible during the complete observation. In addition, it was occulted by the ring system. We found a small but significant photon excess at one edge of the ring system. The light curve shows a small dip twice at identical phases, but rotational modulation cannot be claimed at a significant level. Spectral modeling results in a number of statistically, but not necessarily physically, acceptable models. The X-ray flux level we calculate from the best-fit spectral models is ∼6.8× 10-15 erg cm-2 s-1 (in the energy interval 0.1-2 keV), which corresponds to an X-ray luminosity of ∼8.7× 1014 erg s-1. A combination of scatter processes of solar X-rays require a relatively high albedo favoring internal processes, but a definitive explanation remains an open issue. Title: NEXXUS: A comprehensive ROSAT survey of coronal X-ray emission among nearby solar-like stars Authors: Schmitt, J. H. M. M.; Liefke, C. Bibcode: 2004A&A...417..651S Altcode: 2003astro.ph..8510S We present a final summary of all ROSAT X-ray observations of nearby stars. All available ROSAT observations with the ROSAT PSPC, HRI and WFC have been matched with the CNS4 catalog of nearby stars and the results gathered in the Nearby X-ray and XUV-emitting Stars data base, available via www from the Home Page of the Hamburger Sternwarte at the URL http://www.hs.uni-hamburg.de/DE/For/Gal/Xgroup/nexxus. New volume-limited samples of F/G-stars (dlim = 14 pc), K-stars (dlim = 12 pc), and M-stars (dlim = 6 pc) are constructed within which detection rates of more than 90% are obtained; only one star (GJ 1002) remains undetected in a pointed follow-up observation. F/G-stars, K-stars and M-stars have indistinguishable surface X-ray flux distributions, and the lower envelope of the observed distribution at FX ≈ 104 erg/cm2/s is the X-ray flux level observed in solar coronal holes. Large amplitude variations in X-ray flux are uncommon for solar-like stars, but maybe more common for stars near the bottom of the main sequence; a large amplitude flare is reported for the M star LHS 288. Long term X-ray light curves are presented for α Cen A/B and Gl 86, showing variations on time scales of weeks and demonstrating that α Cen B is a flare star.

Tables 1-3 are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/651 Title: Fe XIII coronal line emission in cool M dwarfs Authors: Fuhrmeister, B.; Schmitt, J. H. M. M.; Wichmann, R. Bibcode: 2004A&A...417..701F Altcode: 2004astro.ph..1102F We report on a search for the Fe XIII forbidden coronal line at 3388.1 Å in a sample of 15 M-type dwarf stars covering the whole spectral class as well as different levels of activity. A clear detection was achieved for LHS 2076 during a major flare and for CN Leo, where the line had been discovered before. For some other stars the situation is not quite clear. For CN Leo we investigated the timing behaviour of the Fe XIII line and report a high level of variability on a timescale of hours which we ascribe to microflare heating.

Based on observations collected at the European Southern Observatory, Paranal, Chile, 68.D-0166A. Title: VizieR Online Data Catalog: NEXXUS ROSAT survey of coronal X-ray (Schmitt+, 2004) Authors: Schmitt, J. H. M. M.; Liefke, C. Bibcode: 2004yCat..34170651S Altcode: We present a final summary of all ROSAT X-ray observations of nearby stars. All available ROSAT observations with the ROSAT PSPC, HRI and WFC have been matched with the CNS4 catalog of nearby stars and the results gathered in the NEarby X-ray and XUV-emitting Stars (NEXXUS) data base. New volume-limited samples of F/G-stars (table 1), K-stars (table 2), and M-stars (table 3) are constructed within which detection rates of more than 90% are obtained.

(3 data files). Title: Coronal abundances from high-resolution X-ray data: The case of Algol Authors: Schmitt, J. H. M. M.; Ness, J. -U. Bibcode: 2004A&A...415.1099S Altcode: 2003astro.ph.10594S We discuss the determination of elemental abundances from high resolution X-ray data. We emphasize the need for an accurate determination of the underlying temperature structure and advocate the use of a line ratio method which allows us to utilize, first, the strongest lines observed in the X-ray spectra, and second, lines that span a rather wide temperature range. We point out the need to use continuous emission measure distributions and show via example that modeling in terms of individual temperature components yields errors of more than 50%. We stress the need to derive differential emission measure distributions based on physical assumptions and considerations. We apply our methods to the Chandra LETGS spectrum of Algol and show that nitrogen is considerably enhanced compared to cosmic abundances by a factor of 2 while carbon is depleted by at least a factor of 25. Iron, silicon, and magnesium, are all depleted compared to cosmic abundances, while the noble gas neon has the relatively highest abundance. Title: The crustal structure of the Dead Sea Transform Authors: Weber, M.; Abu-Ayyash, K.; Abueladas, A.; Agnon, A.; Al-Amoush, H.; Babeyko, A.; Bartov, Y.; Baumann, M.; Ben-Avraham, Z.; Bock, G.; Bribach, J.; El-Kelani, R.; Förster, A.; Förster, H. -J.; Frieslander, U.; Garfunkel, Z.; Grunewald, S.; Götze, H. J.; Haak, V.; Haberland, Ch.; Hassouneh, M.; Helwig, S.; Hofstetter, A.; Jäckel, K. -H.; Kesten, D.; Kind, R.; Maercklin, N.; Mechie, J.; Mohsen, A.; Neubauer, F. M.; Oberhänsli, R.; Qabbani, I.; Ritter, O.; Rümpker, G.; Rybakov, M.; Ryberg, T.; Scherbaum, F.; Schmidt, J.; Schulze, A.; Sobolev, S.; Stiller, M.; Thoss, H.; Weckmann, U.; Wylegalla, K. Bibcode: 2004GeoJI.156..655W Altcode: To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from ~26 km at the Mediterranean to ~39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries. Title: Spatially resolved X-ray emission of EQ Pegasi Authors: Robrade, J.; Ness, J. -U.; Schmitt, J. H. M. M. Bibcode: 2004A&A...413..317R Altcode: 2003astro.ph.10600R We present an analysis of an XMM-Newton observation of the M dwarf binary EQ Pegasi with a special focus on the spatial structure of the X-ray emission and the analysis of light curves. Making use of data obtained with EPIC (European Photon Imaging Camera) we were for the first time able to spatially resolve the two components in X-rays and to study the light curves of the individual components of the EQ Peg system. During the observation a series of moderate flares was detected, where it was possible to identify the respective flaring component. Title: Studying the evolution of the hot universe with the X-ray evolving universe spectroscopy mission - XEUS Authors: Parmar, A. N.; Hasinger, G.; Arnaud, M.; Barcons, X.; Barret, D.; Böhringer, H.; Blanchard, A.; Cappi, M.; Comastri, A.; Courvoisier, T.; Fabian, A. C.; Fiore, F.; Georgantopoulos, I.; Grandi, P.; Griffiths, R.; Hornstrup, A.; Kawai, N.; Koyama, K.; Makishima, K.; Malaguti, G.; Mason, K. O.; Motch, C.; Mendez, M.; Ohashi, T.; Paerels, F.; Piro, L.; Ponman, T.; Schmitt, J.; Sciortino, S.; Trinchieri, G.; van der Klis, M.; Ward, M. Bibcode: 2004AdSpR..34.2623P Altcode: Europe is one of the major partners building the International Space Station (ISS) and European industry, together with ESA, is responsible for many station components including the Columbus Orbital Facility, the Automated Transport Vehicle, two connecting modules and the European Robotic Arm. Together with this impressive list of contributions there is a strong desire within the ESA Member States to benefit from this investment by utilizing the unique capabilities of the ISS to perform world-class science. XEUS is one of the astronomical applications being studied by ESA to utilize the capabilities of the ISS. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m 2 at 1 keV that will be expanded to 30 m 2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2-5″ half-energy-width. XEUS will consist of separate detector and mirror spacecraft (MSC) aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting 0.1-2.5 keV sensitivity will then be 4 × 10 -18 erg cm -2 s -1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift. Title: Analysis of Ca II Emission Lines Authors: Hempel, M.; Reiners, A.; Schmitt, J. H. M. M.; Kaiser, C. Bibcode: 2004IAUS..219..878H Altcode: 2003IAUS..219E.187H Stellar activity is closely connected to time-variable emission in Ca H & K lines. Since these lines are easily accessible with high sensitivity from ground-based telescopes they provide the means to most easily investigate activity cycles for a large number of stars. The analysis of suchlike profiles using the S-index is a well-known method to monitor stellar activity. Alternatively one can trace the signatures of chromospheric emission lines differentially using sophisticated theoretical line profiles. We have analysed Ca H and K spectra of a sample of G stars obtained with the ESO 3.6m CES system and present results from our analysis of chromospheric activity using PHOENIX models. Title: Detection of Saturnian X-ray emission with XMM-Newton Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Robrade, J. Bibcode: 2004A&A...414L..49N Altcode: 2003astro.ph.12479N The giant planet Saturn was observed by XMM-Newton in September 2002. We present and analyse these XMM-Newton observations and compare our findings to the Chandra observations of Saturn. Contamination of the XMM-Newton data by optical light is found to be severe in the medium and thin filters, but with the thick filter all optical light is sufficiently blocked and the signal observed in this filter is interpreted as genuine X-ray emission, which is found to qualitatively and quantitatively resemble Saturn's Chandra spectrum very well. Title: X-rays from M-type Giants-Signs of Late Stellar Activity? Authors: Hünsch, M.; Konstantinova-Antova, R.; Schmitt, J. H. M. M.; Schröder, K. -P.; Kolev, D.; de Medeiros, J. -R.; Lèbre, A.; Udry, S. Bibcode: 2004IAUS..219..223H Altcode: 2003IAUS..219E.273H M-type giants -- either on the RGB or the AGB -- are generally not known to exhibit significant stellar activity. Yet in the course of the ROSAT All-Sky survey a few such stars have been detected as luminous X-ray sources. We report recent Chandra observations that have ruled out the possibility of spurious identifications. First results from our optical spectroscopic follow-up study indicate variability in H-alpha and Ca I 6572 A lines that may be related to chromospheric activity. CORAVEL and ELODIE observations reveal faster rotation than usual and small-amplitude radial-velocity variations indicating binary nature for some of these stars. Chromospheric and coronal emission seems to be variable on rather short timescales. There are no hints for the stars being symbiotic systems up to now. Title: X-ray Emission from Single Stars Authors: Schmitt, J. H. M. M. Bibcode: 2004IAUS..219..187S Altcode: 2003IAUS..219E.206S I will present the results of extensive surveys for X-ray emission from solar-like stars in the solar vicinity. The main results of these studies are: (a) All stars main sequence stars with outer convection zones are surrounded by hot coronae; (b) There exists a minimal X-ray surface flux similar to the surface flux from coronal holes; (c) Large variations in X-ray flux are uncommon at least for stars of spectral type earlier than M. The X-ray properties of stars will be compared to those of the Sun and it will be explored to what extent the magnetic activity paradigm holds for stars of type A and earlier and for stars below the MS cut off. Title: Search of extra-solar planets with the spectrograph EMILIE and AAA system Authors: Bouchy, F.; Schmitt, J.; Bertaux, J. L.; Connes, P. Bibcode: 2004IAUS..202...63B Altcode: No abstract at ADS Title: New Results on Age, Activity and Chemical Composition of the Open Clusters NGC 2451 A and B Authors: Hünsch, M.; Randich, S.; Weidner, C.; Hempel, M.; Schmitt, J. H. M. M. Bibcode: 2004IAUS..219..980H Altcode: 2003IAUS..219E.144H We have conducted a detailed study of the open clusters NGC 2451 A and B which are located along the same line of sight at 206pc and 370pc distance respectively. Although belonging to the nearest clusters they have not been much investigated until present due to strong contamination by field stars. ROSAT X-ray observations and optical UBVR photometry are used to identify cluster members by means of X-ray emission and colour-magnitude diagrams. For the first time the range of known probable cluster members has been extended to main sequence stars of spectral class M. Isochrone fitting yields an age of 50 to 80 Myrs for NGC 2451 A and about 50 Myrs for NGC 2451 B consistent with the X-ray luminosity distribution functions. Except from the occurence of four flares the stars of both clusters do not show strong long-term X-ray variability exceeding a factor 5 over a time span of 1 to 3 years. High-resolution spectra obtained with FEROS confirmed membershipof most of the X-ray selected cluster member candidates by means of radial velocity and allowed to obtain rotational velocities as well as metallicities and lithium abundances. Title: A spatially resolved limb flare on Algol B observed with XMM-Newton Authors: Schmitt, J. H. M. M.; Ness, J. -U.; Franco, G. Bibcode: 2003A&A...412..849S Altcode: 2003astro.ph..8394S We report XMM-Newton observations of the eclipsing binary Algol A (B8V) and B (K2III). The XMM-Newton data cover the phase interval 0.35-0.58, i.e., specifically the time of optical secondary minimum, when the X-ray dark B-type star occults a major fraction of the X-ray bright K-type star. During the eclipse a flare was observed with complete light curve coverage. The decay part of the flare can be well described with an exponential decay law allowing a rectification of the light curve and a reconstruction of the flaring plasma region. The flare occurred near the limb of Algol B at a height of about 0.1 R* with plasma densities of a few times 1011 cm-3 consistent with spectroscopic density estimates. No eclipse of the quiescent X-ray emission is observed leading us to the conclusion that the overall coronal filling factor of Algol B is small. Title: Differential rotation in rapidly rotating F-stars Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2003A&A...412..813R Altcode: 2003astro.ph..9616R We obtained high quality spectra of 135 stars of spectral types F and later and derived ``overall'' broadening functions in selected wavelength regions utilizing a Least Squares Deconvolution (LSD) procedure. Precision values of the projected rotational velocity v \sini were derived from the first zero of the Fourier transformed profiles and the shapes of the profiles were analyzed for effects of differential rotation. The broadening profiles of 70 stars rotating faster than v \sini = 45 km s-1 show no indications of multiplicity nor of spottedness. In those profiles we used the ratio of the first two zeros of the Fourier transform q_2/q_1 to search for deviations from rigid rotation. In the vast majority the profiles were found to be consistent with rigid rotation. Five stars were found to have flat profiles probably due to cool polar caps, in three stars cuspy profiles were found. Two out of those three cases may be due to extremely rapid rotation seen pole on, only in one case (v \sini = 52 km s-1) is solar-like differential rotation the most plausible explanation for the observed profile. These results indicate that the strength of differential rotation diminishes in stars rotating as rapidly as v \sini >~ 50 km s-1.

Table A.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/813

Based on observations collected at the European Southern Observatory, La Silla, 69.D-0015(B). Title: Detection of Differential Rotation in ψ Cap with Profile Analysis Authors: Reiners, A.; Schmitt, J. H. M. M.; Kürster, M. Bibcode: 2003csss...12..275R Altcode: Differential rotation has been detected on the fast rotator ψ Cap (F5 V) using line profile analysis. The Fourier transforms of both Fe I λ5775 and Si I λ5772 are used to obtain a projected rotational velocity of v sin{i} = 42 ± 1 km s-1. Modelling of the Fourier transformed profiles shows that the combined effects of equatorial velocity, inclination and differential rotation dominate the line profile while limb darkening and turbulence velocities have only minor effects. Rigid rotation is shown to be inconsistent with the measured profiles. Modelling the line profiles analogous to solar differential rotation we find a differential rotation parameter of α = 0.15 ± 0.1 comparable to the solar case. To our knowledge this is the first successful measurement of differential rotation through line profile analysis. A check with an observable directly obtained from the Fourier transform shows the internal consistency of our results. Title: Influence of UV Radiation Fields on Density Diagnostics with He-like Triplets Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen, A. J. J. Bibcode: 2003csss...12..265N Altcode: Spectroscopic density diagnostics based on He-like triplets are routinely used to investigate the solar corona. With the new instrumentation onboard Chandra and XMM this method of analysis can also be applied to stellar coronae. In collision-dominated plasmas the forbidden line f (1s2s 3S1 rightarrow 1s2 1S0), disappears at high densities, and the intercombination line i (1s2p 3P2,1 rightarrow 1s21S0) increases at higher densities at the expense of the forbidden line. Therefore, the ratio f/i is used as a sensitive indicator of electron density. However, depopulation of the forbidden line compared to the intercombination line, is not always an indicator for high densities, it might also indicate that the depopulation of the forbidden line level (1s2s 3S1 rightarrow 1s2p 3P2,1) is due to a UV radiation field instead of the collisions in a high-density plasma. We illustrate this effect with IUE measurements of Capella, Procyon, Algol and α Cen A and α Cen B and a simulation showing the trend of the radiation fields when regarding stars with different surface temperatures. Focusing on the triplets of C V, N VI, O VII and Ne IX, we show that the radiation fields can have significant influence on the density analysis of the low-Z He-like ions of C, N and O. We present Chandra LETGS measurements and calculate the densities accounting for the measured radiation fields and neglecting them. The sources of the UV radiation are assumed to be the respective stellar surfaces, but in the case of Algol the radiation is supplied by the companion B star. A detailed investigation of whether the observed part of Algol's corona is actually illuminated by the radiation field of the B star, is necessary. Title: STELLA: Status Report Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Hagen, H.; Strassmeier, K.; Arlt, K.; Granzer, T.; Hildebrandt, G.; Weber, M.; Woche, M. Bibcode: 2003csss...12.1085H Altcode: STELLA is a joint project between the Hamburger Sternwarte and the Astrophysical Institute Potsdam for an automatically operating spectroscopic telescope. The scientific goals are observation and monitoring of stellar activity. By agreement with the Astrophysical Institute of the Canary Islands, STELLA will be installed at the Teide Observatory on the island of Tenerife. The actual progress in design and construction of the telescope, the instruments and the control software is presented in this report. Title: VizieR Online Data Catalog: Rotation in F-stars (Reiners+, 2003) Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2003yCat..34120813R Altcode: We obtained high quality spectra of 135 stars of spectral types F and later and derived "overall" broadening functions in selected wavelength regions utilizing a Least Squares Deconvolution (LSD) procedure. Precision values of the projected rotational velocity vsini were derived from the first zero of the Fourier transformed profiles and the shapes of the profiles were analyzed for effects of differential rotation. The broadening profiles of 70 stars rotating faster than vsini=45km/s show no indications of multiplicity nor of spottedness. In those profiles we used the ratio of the first two zeros of the Fourier transform q2/q1 to search for deviations from rigid rotation. In the vast majority the profiles were found to be consistent with rigid rotation. Five stars were found to have flat profiles probably due to cool polar caps, in three stars cuspy profiles were found. Two out of those three cases may be due to extremely rapid rotation seen pole on, only in one case (vsini=52km/s) solar-like differential rotation is the most plausible explanation for the observed profile. These results indicate that the strength of differential rotation diminishes in stars rotating as rapidly as vsini>50km/s.

(1 data file). Title: Stellar Activity in the Gould Belt Authors: Hempel, M.; Berghöfer, T. W.; Schmitt, J. H. M. M. Bibcode: 2003csss...12..805H Altcode: We have used the database of X-ray sources detected in the ROSAT PSPC pointed observations to search for active late-type stars associated with the Gould Belt. Our cross-correlation with the Tycho-2 catalogue shows an enhancement of X-ray sources positionally coincident with the Gould Belt. Compared to an other study based on the ROSAT all-sky survey we find a substantially larger stellar surface density at the position of the Gould Belt, which is consistent with the higher sensitivity of this data. Furthermore, we find an anticorrelation of longitudinal stellar surface density with intervening ISM. Title: High resolution spectroscopy of circumstellar material around A stars Authors: Hempel, M.; Schmitt, J. H. M. M. Bibcode: 2003A&A...408..971H Altcode: We have analysed a time series of high resolution spectra (R=217 000) of the CaII K line of 9 stars which are candidates for the presence of circumstellar material from our previous studies. We have searched for variable narrow absorption components similar to those extensively studied in the case of beta Pictoris. Our data show long-term variations in the spectra of HR 2550 and HR 3685 which can be attributed to the dynamics of circumstellar gas. About one third of the sample stars show variable line absorption but only beta Pictoris seems to exhibit uniquely strong variations on short (nightly) timescales. In order to examine possible interstellar contributions we compared our results with interstellar data from the literature. The column densities of our absorption features are up to three orders of magnitude higher than those found for the Local Interstellar Cloud.

Based on observations collected at the European Southern Observatory, La Silla, Chile. Title: Interaction Of Magnetic Clouds In The Inner Heliosphere Authors: Romashets, E.; Cargill, P.; Schmidt, J. Bibcode: 2003AIPC..679..794R Altcode: A method of potentials has been used in the past for the calculation of the force acting on isolated magnetic bodies in solar corona and inner heliosphere, where large gradients of magnetic pressure exist. Since recent observations showed that coronal mass ejections (CME) can leave the Sun more frequently than was expected before 1995, it is clear that interactions between CMEs can play important role in the formation of geo-effective structures near the Earth's orbit. We present here an evaluation of two interacting CMEs and the field distribution around them, using potential solution in bi-cylindrical coordinates. Title: Coronal densities and temperatures for cool stars in different stages of activity Authors: Ness, J. -U.; Audard, M.; Schmitt, J. H. M. M.; Güdel, M. Bibcode: 2003AdSpR..32..937N Altcode: With the advent of the new X-ray missions Chandra and XMM-Newton, high-resolution spectroscopy has become available for studies of stellar coronae. Individual lines can be used as diagnostic tools for measuring densities and temperatures in coronal plasma. In addition to the overall X-ray luminosity, spectroscopic properties can be used for a classification of coronal X-ray emitters. In this paper we focus on density diagnostics measured with the He-like triplets and measurements from ratios of H-like and He-like lines yielding a characteristic plasma temperature. We test the assumption of optically thin plasma emission using the Fe xvil emission lines at 15.03 and 15.27 Å. We find that tha assumption of optically thin plasma is valid for all targets in our sample. Deviations from theoretical ratios can be explained by unidentified blending of the 15.27 Å line. From the results of our analysis we conclude that the stars with low activity are all quite similar with low temperatures and low densities. The plasma with a low overall emission measure is not connected with high density regions but occupies larger volumes. For the active stars we measure higher temperatures but two scenarios for the densities. We measure relatively low densities for all active RS CVn systems and higher densities for all the other active stars except for β Ceti. We conclude that large available volumes (as in RS CVn stars and β Ceti) are completely filled with emitting plasma and only limited volumes in combination with high emission measures require mechanisms producing plasma with higher densities. Title: VizieR Online Data Catalog: X-ray study of NGC 2451 A and B. (Huensch+ 2003) Authors: Huensch, M.; Weidner, C.; Schmitt, J. H. M. M. Bibcode: 2003yCat..34020571H Altcode: The ROSAT X-ray observations were carried out at three different epochs between 1992 and 1996. Two PSPC (called "A" and "B") and one HRI ("H") observations were scheduled on NGC 2451.

(3 data files). Title: Are stellar coronae optically thin in X-rays?. A systematic investigation of opacity effects Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Audard, M.; Güdel, M.; Mewe, R. Bibcode: 2003A&A...407..347N Altcode: 2003astro.ph..6308N The relevance of resonant scattering in the solar corona has always been discussed controversially. Ratios of emission lines from identical ions but different oscillator strengths have been used in order to estimate damping of resonance lines due to possible resonant scattering, i.e., absorption by photo-excitation and re-emission out of the line of sight. The analysis of stellar spectra in analogy to previous works for the Sun is possible now with XMM-Newton and Chandra grating spectra and requires this issue to be considered again. In this work we present a sample of 45 X-ray spectra obtained for 26 stellar coronae with the RGS on board XMM-Newton and the LETGS and HETGS on board Chandra. We use ratios of the Fe XVII lines at 15.27 Å and 16.78 Å lines to the resonance line at 15.03 Å as well as the He-like f/r ratio of O VII and Ne IX to measure optical depth effects and compare them with ratios obtained from optically thin plasma atomic databases such as MEKAL, Chianti, and APEC. From the Fe XVII line ratios we find no convincing proof for resonance line scattering. Optical depths are basically identical for all kinds of stellar coronae and we conclude that identical optical depths are more probable when effects from resonant scattering are generally negligible. The 15.27/15.03 Åratio shows a regular trend suggesting blending of the 15.27 Åline by a cooler Fe line, possibly Fe XVI. The He-like f/r ratios for O and Ne show no indication for significant damping of the resonance lines. We mainly attribute deviations from the atomic databases to still uncertain emissivities which do not agree well with laboratory measurements and which come out with differing results when accounting for one or the other side effect. We attribute the discrepancies in the solar data to geometrical effects from observing individual emitting regions in the solar corona but only overall emission for stellar coronae including photons eventually scattered into the line of sight. Title: Field zero-age main-sequence stars in the solar neighbourhood: where have they come from? Authors: Wichmann, R.; Schmitt, J. H. M. M. Bibcode: 2003MNRAS.342.1021W Altcode: 2003astro.ph..3326W In the course of an all-sky survey for young stars in the solar neighbourhood, we have found a tight kinematic group of 10 F-G type zero-age main-sequence stars in the field. Here we discuss the origin of these stars. Backtracking the space motions of these stars, we argue that likely candidates for the parent association are the Perseus OB3 (Per OB3), Upper Centaurus-Lupus (UCL) and Lower Centaurus-Crux (LCC) associations, and that we are witnessing the ongoing diffusion of (at least one of) these associations into the field. Title: Two-site simultaneous observations of solar-like stellar oscillations in radial velocities with a Fabry-Pérot calibration system Authors: Bertaux, J. -L.; Schmitt, J.; Lebrun, J. -C.; Bouchy, F.; Guibert, S. Bibcode: 2003A&A...405..367B Altcode: We report simultaneous measurements of the radial velocity Vr of a star, zeta Herculis, with two different telescopes and spectrometer systems, both located at Observatoire de Haute Provence, France. We believe that we detected for the first time in a solar type star a correlated signal in the time series of Vr observed simultaneously with the two different instruments, due to the stellar oscillations. The objective of our observations was to compare the performance of the two systems, for the detection of stellar oscillations (astero-seismology). Both systems use a large portion of the visible spectrum of the star to increase the number of spectral lines on which to compute variations of Vr, and a white-light channelled spectrum produced by a Fabry-Pérot as a calibration of spectrometer drifts. The two calibration systems that we designed and implemented are however different. With the 193 cm telescope, we calibrated the ELODIE spectrometer with a fixed Fabry-Pérot, while for the EMILIE spectrometer, we use the full AAA (Astronomical Absolute Accelerometer) system of Pierre Connes, with a tunable Fabry-Pérot and various servo-controls. We first show, with three stars observed with ELODIE (Procyon, eta Cas and zeta Her), that the auto-correlation function on a single-night time series is clearly significant when the periodogram shows significant peaks (Procyon and zeta Her), while for eta Cas, nothing significant is seen in the periodogram nor in the auto-correlation function. Then we show evidence of the correlation of the two simultaneous, but independent, time-series obtained on a single night on zeta Her, that we believe is the first reported clear case of simultaneous detection of stellar oscillations (solar type), which paves the way to future multi-site observations with a network of longitude spread telescopes. Finally, the observed fluctuations are compared, yielding an estimate of the instrumental (plus atmospheric effects) short term random error: <2.1 m s-1 for EMILIE + AAA system, and <2.9 m s-1 for ELODIE + fixed Fabry-Pérot system.

Based on observations obtained at the Observatoire de Haute-Provence (CNRS, France). Title: Delayed onset of the 2002 Indian monsoon Authors: Flatau, M. K.; Flatau, P. J.; Schmidt, J.; Kiladis, G. N. Bibcode: 2003GeoRL..30.1768F Altcode: 2003GeoRL..30ASC13F We show that there is a set of dynamical predictors, which facilitate forecasting of a delayed monsoon onset. The main dynamical contributor is the early May propagation of the ``bogus onset Intraseasonal Oscillation'' which triggers a set of events precluding the climatological monsoon onset. We analyze in detail the 2002 monsoon onset and show that it followed a pattern described in our previous study. We notice that the 2003 monsoon onset followed very similar pattern and was delayed. Title: First X-ray Detection from Saturn with Chandra Authors: Ness, Jan-Use; Schmitt, Jürgen H. M. M.; Wolk, Scott J.; Dennerl, Konrad; Burwitz, Vadim Bibcode: 2003ANS...324....6N Altcode: 2003ANS...324..A06N No abstract at ADS Title: Evidence for coronal activity cycles on 61 Cygni A and B Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Baliunas, S. L.; Donahue, R. A. Bibcode: 2003A&A...406L..39H Altcode: We investigate a four-and-one-half year time-series of ROSAT HRI pointed observations of 61 Cyg A and B and compare the X-ray light curves with the chromospheric Ca HK variability. The ROSAT sampling rate was two pointings per year and typical errors lie in the range of 5-10%. The chromospheric cycles are well-known for both stars from the Mt. Wilson Ca HK survey. Although the time basis of our ROSAT observations is shorter than the 7-and 12-year cycles of components A and B, respectively, we find the long-term trend of coronal activity in close correlation with the chromospheric activity during the observation period, between 1993 and 1998. The chromospheric activity increased through maximum activity down to a minimum for component A, and from maximum to minimum activity for component B. The same behaviour is observed for the X-ray light curves but with much higher amplitudes by factors 2.5-3. The remaining scatter observed around low-order regression curves of coronal activity is small. We conclude that both stars do show coronal cycles and that coronal cycles are the dominant source of variability for 61 Cygni. Title: Ultra-high-resolution Spectroscopy of Circum-stellar Disks around A-type Stars Authors: Hempel, M.; Schmitt, J. H. M. M. Bibcode: 2003ANS...324R...9H Altcode: 2003ANS...324..A21H No abstract at ADS Title: Analysis of Ca II Emission Lines Authors: Hempel, Marc; Schmitt, Jürgen H. M. M.; Kaiser, Clarissa Bibcode: 2003ANS...324..134H Altcode: 2003ANS...324..P47H No abstract at ADS Title: X-ray Variability in the ROSAT All-Sky Survey Authors: Fuhrmeister, B.; Schmitt, J. H. M. M. Bibcode: 2003ANS...324...32F Altcode: 2003ANS...324b..32F; 2003ANS...324..F14F No abstract at ADS Title: Spatially Resolved Quiescent and Flaring X-ray Emission from EQ Peg A/B Authors: Robrade, Jan; Ness, Jan-Uwe; Schmitt, J. H. M. M. Bibcode: 2003ANS...324R..17R Altcode: 2003ANS...324c..17R; 2003ANS...324..B15R No abstract at ADS Title: An X-ray study of the open clusters NGC 2451 A and B Authors: Hünsch, M.; Weidner, C.; Schmitt, J. H. M. M. Bibcode: 2003A&A...402..571H Altcode: We have conducted a detailed study of the object NGC 2451, which actually consists of two different open clusters A and B along the same line of sight at 206 pc and 370 pc distance, respectively. Although belonging to the nearest clusters, they have not been much investigated until present due to strong contamination by field stars. ROSAT X-ray observations and optical UBVR photometry are used to identify cluster members by means of X-ray emission and colour-magnitude diagrams. The identified stars concentrate nicely around the expected main sequences in the colour-magnitude diagram at the distances derived from astrometric investigations. Altogether, 39 stars are identified as member candidates of the nearer cluster A, 49 stars as member candidates of the more distant cluster B, and 22 faint stars are probably members of either of the two clusters, but due to large errors it is not clear to which one they belong. Further 40 stars identified with X-ray sources are probably non-members. For the first time, the range of known probable cluster members of NGC 2451 A and B has been extended downwards the main sequence to stars of spectral class M. Isochrone fitting yields an age of 50 to 80 Myrs for NGC 2451 A and ~50 Myrs for NGC 2451 B, consistent with the X-ray luminosity distribution functions, which are comparable to other clusters in the same age range. Except from the occurence of four flares, the stars of both clusters do not show strong long-term X-ray variability exceeding a factor 5 over a time span of 1 to 3 years.

Based on observations performed by the ROSAT X-ray observatory and the European Southern Observatory.

Tables 3-6 are only available in electronic form at http://www.edpsciences.org Title: A systematic study of X-ray variability in the ROSAT all-sky survey Authors: Fuhrmeister, B.; Schmitt, J. H. M. M. Bibcode: 2003A&A...403..247F Altcode: 2003astro.ph..3106F We present a systematic search for variability among the ROSAT All-Sky Survey (RASS) X-ray sources. We generated lightcurves for about 30 000 X-ray point sources detected sufficiently high above background. For our variability study different search algorithms were developed in order to recognize flares, periods and trends, respectively. The variable X-ray sources were optically identified with counterparts in the SIMBAD, the USNO-A2.0 and NED data bases, but a significant part of the X-ray sources remains without cataloged optical counterparts. Out of the 1207 sources classified as variable 767 (63.5%) were identified with stars, 118 (9.8%) are of extragalactic origin, 10 (0.8%) are identified with other sources and 312 (25.8%) could not uniquely be identified with entries in optical catalogs. We give a statistical analysis of the variable X-ray population and present some outstanding examples of X-ray variability detected in the ROSAT all-sky survey. Most prominent among these sources are white dwarfs, apparently single, yet nevertheless showing periodic variability. Many flares from hitherto unrecognised flare stars have been detected as well as long term variability in the BL Lac 1E1757.7+7034.

The complete version of Table 7 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/247 Title: Imaging capabilities of hypertelescopes with a pair of micro-lens arrays Authors: Gillet, S.; Riaud, P.; Lardière, O.; Dejonghe, J.; Schmitt, J.; Arnold, L.; Boccaletti, A.; Horville, D.; Labeyrie, A. Bibcode: 2003A&A...400..393G Altcode: We verify the imaging performance of hypertelescopes on the sky, using a new scheme for pupil densification. To avoid seeing limitations, we used a miniature version with a 10 cm aperture containing 78 sub-apertures of 1 mm size, arrayed periodically as a square grid. The pupil densification is achieved with a pair of micro-lens arrays, where each pair of facing lenses behaves like a tiny demagnifying telescope. We have tested the direct snapshot performance with laboratory-simulated multiple stars and observed the binary star Castor (alpha Gem). We measured a separation of 3.8 arcsec and a magnitude difference of 0.85 which is in agreement with current orbital data. This verified the theoretical expectations for hypertelescopes in terms of field of view and fluxes and qualified the new optical implementation for future arrays at the scale of meters and beyond. Title: VizieR Online Data Catalog: Variability in the ROSAT All-Sky Survey (Fuhrmeister+, 2003) Authors: Fuhrmeister, B.; Schmitt, J. H. M. M. Bibcode: 2003yCat..34030247F Altcode: We present a systematic search for variability among the ROSAT All-Sky Survey (RASS) X-ray sources. We generated lightcurves for about 30000 X-ray point sources detected sufficiently high above background. For our variability study different search algorithms were developed in order to recognize flares, periods and trends, respectively. The variable X-ray sources were optically identified with counterparts in the SIMBAD, the USNO-A2.0 and NED data bases, but a significant part of the X-ray sources remains without cataloged optical counterparts. A complete list of the 1207 variable sources we found is presented here.

(1 data file). Title: XEUS: the x-ray evolving universe spectroscopy mission Authors: Parmar, Arvind N.; Hasinger, G.; Arnaud, Monique; Barcons, X.; Barret, D.; Blanchard, A.; Boehringer, H.; Cappi, M.; Comastri, A.; Courvoisier, T.; Fabian, A. C.; Georgantopoulos, I.; Griffiths, R.; Kawai, Nobuyuki; Koyama, K.; Makishima, K.; Malaguti, P.; Mason, K. O.; Motch, C.; Mendez, Mariano; Ohashi, T.; Paerels, F.; Piro, L.; Schmitt, J.; van der Klis, M.; Ward, M. Bibcode: 2003SPIE.4851..304P Altcode: XEUS is under study by ESA as part of the Horizon 2000+ program to utilize the International Space Station (ISS) for astronomical applications. XEUS will be a long-term x-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be expanded to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2-5" half-energy-width. XEUS will consist of separate detector and mirror spacecraft aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting sensitivity will then be 4×10-18 erg cm-2s-1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift. Title: Nearby young stars Authors: Wichmann, R.; Schmitt, J. H. M. M.; Hubrig, S. Bibcode: 2003A&A...399..983W Altcode: We present the results of an extensive all-sky survey of nearby stars of spectral type F8 or later in a systematic search of young (zero-age main sequence) objects. Our sample has been derived by cross-correlating the ROSAT All-Sky Survey and the TYCHO catalogue, yielding a total of 754 candidates distributed more or less randomly over the sky. Follow-up spectroscopy of these candidate objects has been performed on 748 of them. We have discovered a tight kinematic group of ten stars with extremely high lithium equivalent widths that are presumably younger than the Pleiades, but again distributed rather uniformly over the sky. Furthermore, about 43 per cent of our candidates have detectable levels of lithium, thus indicating that these are relatively young objects with ages not significantly above the Pleiades age.

Based on observations collected at the European Southern Observatory, Chile (ESO No. 62.I-0650, 66.D-0159(A), 67.D-0236(A)). Title: New spectroscopic binaries among nearby stars Authors: Wichmann, R.; Schmitt, J. H. M. M.; Hubrig, S. Bibcode: 2003A&A...400..293W Altcode: In the course of surveying a large number of nearby (~50 pc or less) stars for indicators of youth, we have discovered a number of hitherto unknown spectroscopic binaries. Here we present a list of these new binaries with pertinent data. Two of these (HD 143705 and HD 89959) have been observed six times each, and their respective radial velocity curves are discussed.

Based on observations collected at the European Southern Observatory, Chile (ESO No. 62.I-0650, 66.D-0159(A), 67.D-0236(A)). Title: Rotation and differential rotation in field F- and G-type stars Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2003A&A...398..647R Altcode: We present a detailed study of rotation and differential rotation analyzing high resolution high S/N spectra of 142 F-, G- and early K-type field stars. Using Least Squares Deconvolution we obtain broadening profiles for our sample stars and use the Fourier transform method to determine projected rotational velocities v sin i. Distributions of rotational velocities and periods are studied in the HR-diagram. For a subsample of 32 stars of spectral type F0-G0 we derive the amount of differential rotation in terms of alpha = (Omega_Equator - Omega_Pole )/Omega_Equator . We find evidence for differential rotation in ten of the 32 stars. Differential rotation seems to be more common in slower rotators, but deviations from rigid rotation are also found in some fast rotators. We search for correlations between differential rotation and parameters relevant for stellar activity and show indications against strong differential rotation in very active stars. We derive values of Delta P and Delta Omega , which support a period dependence of differential rotation. Derived lap times 2pi /Delta Omega are of the order of 20 d and contradict the assumption that constant lap times of the order of the solar one ( ~ 130 d) are the rule in stars that are thought to harbour magnetic dynamos.

Based on observations collected at the European Southern Observatory, La Silla.

Tables 3 and A1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/647 Title: Differential Rotation in a Larger Sample of Cool Stars Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2003IAUS..210P.E23R Altcode: No abstract at ADS Title: High Resolution Spectra of Circumstellar Disks of a Stars Authors: Hempel, Marc; Schmitt, Jürgen H. M. M. Bibcode: 2003IAUS..221P.136H Altcode: IRAS observations have shown that about 20% of all A stars are surrounded by dust. Detailed abundance studies of IRAS sources revealed A stars with narrow absorption features in the Ca II K line which are attributed to the presence of circumstellar gas. This is of particular interest in the framework of the formation of planetary systems. In the case of the prototype with circumstellar material -Beta Pictoris- these narrow absorption features are a well-studied phenomenon. Their variability on short timescales corresponds with the scenario of falling evaporating bodies (FEB) approaching the star. Information on the variability of prominent narrow absorptions in Ca K of other A stars is scarce. Investigation of column densities and spectral variations using high-resolution spectroscopy provides an excellent tool to tackle the question whether these features are of circumstellar or rather interstellar origin. Furthermore it allows to both investigate the FEB scenario and the dynamics of the circumstellar gas. We present results from a time series of Ca K observations carried out with the ESO 3.6-m telescope equipped with the CES at a resolution of 217000 and report the detection of spectral variation in some stars attributable to infalling gas. Title: Accretion signatures in the X-ray spectrum of TW Hya Authors: Stelzer, Beate; Schmitt, Jürgen H. M. M. Bibcode: 2003ASSL..299..177S Altcode: 2003oils.conf..177S No abstract at ADS Title: Coronal density diagnostics with Helium-like triplets: Chandra-LETG observations of Algol, Capella, Procyon, ∈ Eri, α Cen A&B, and UX Ari Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen, A. J. J.; van der Meer, R. L. J.; Burwitz, V.; Predehl, P.; Brinkman, A. C. Bibcode: 2002ASPC..277..127N Altcode: 2002sccx.conf..127N No abstract at ADS Title: A Large Flare on EQ Peg Simultaneously Observed in the X-Ray and Optical Wavebands Authors: Katsova, M. M.; Livshits, M. A.; Schmitt, J. H. M. M. Bibcode: 2002ASPC..277..515K Altcode: 2002sccx.conf..515K No abstract at ADS Title: The joint XMM-Newton and Chandra view of YY Gem Authors: Stelzer, B.; Burwitz, V.; Neuhäuser, R.; Audard, M.; Schmitt, J. H. M. M. Bibcode: 2002ASPC..277..215S Altcode: 2001astro.ph..9413S; 2002sccx.conf..215S We have observed the flare star YY Gem simultaneously with XMM-Newton and Chandra as part of a multi-wavelength campaign aiming at a study of variability related to magnetic activity in this short-period eclipsing binary. Here we report on the first results from the analysis of the X-ray spectrum. The vicinity of the star provides high enough S/N in the CCD cameras onboard XMM-Newton to allow for time-resolved spectroscopy. Since the data are acquired simultaneously they allow for a cross-calibration check of the performance of the XMM-Newton RGS and the LETGS on Chandra. Title: Influence of radiation fields on the density diagnostics Chandra-LETGS observations of Algol and Procyon Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen, A. J. J. Bibcode: 2002ASPC..277..545N Altcode: 2002sccx.conf..545N No abstract at ADS Title: VizieR Online Data Catalog: Rotational velocities of F and G stars (Reiners+, 2003) Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2002yCat..33980647R Altcode: We present a detailed study of rotation and differential rotation analyzing high resolution high S/N spectra of 142 F-, G- and early K-type field stars. Using Least Squares Deconvolution we obtain broadening profiles for our sample stars and use the Fourier transform method to determine projected rotational velocities vsini. Distributions of rotational velocities and periods are studied in the HR-diagram. For a subsample of 32 stars of spectral type F0-G0 we derive the amount of differential rotation. We find evidence for differential rotation in ten of the 32 stars.

The observations were done with the ESO 3.6m telescope at La Silla, Chile, in October 2000, October 2001 and April 2002. The CES instrument (resolution 235000) was used, in the wavelength regions 577-581nm and 322.5-627nm.

(2 data files). Title: Coronal density diagnostics with Helium-like triplets: CHANDRA-LETGS observations of Algol, Capella, Procyon, epsilon Eri, alpha Cen A&B, UX Ari, AD Leo, YY Gem, and HR 1099 Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Burwitz, V.; Mewe, R.; Raassen, A. J. J.; van der Meer, R. L. J.; Predehl, P.; Brinkman, A. C. Bibcode: 2002A&A...394..911N Altcode: 2002astro.ph..9033N We present an analysis of ten cool stars (Algol, Capella, Procyon, epsilon Eri, alpha Cen A&B, UX Ari, AD Leo, YY Gem, and HR 1099) observed with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra X-ray Observatory. This sample contains all cools stars observed with the LETGS presently available to us with integration times sufficiently long to warrant a meaningful spectral analysis. Our sample comprises inactive, moderately active, and hyperactive stars and samples the bulk part of activity levels encountered in coronal X-ray sources. We use the LETGS spectra to carry out density and temperature diagnostics with an emphasis on the H-like and the He-like ions. We find a correlation between line flux ratios of the Lyalpha and He-like resonance lines with the mean X-ray surface flux. We determine densities using the He-like triplets. For all stars we find no significant deviations from the low-density limit for the ions of Ne, Mg, and Si, while the measured line ratios for the ions of C, N, and O do show evidence for departures from the low-density limit in the active stars, but not in the inactive stars. Best measurements can be made for the O VII triplet where we find significant deviations from the low-density limit for the stars Algol, Procyon, YY Gem, epsilon Eri, and HR 1099. We discuss the influence of radiation fields on the interpretation of the He-like triplet line ratios in the low-Z ions, which is relevant for Algol, and the influence of dielectronic satellite lines, which is relevant for Procyon. For the active stars YY Gem, epsilon Eri, and HR 1099 the low f/i ratios can unambiguously be attributed to high densties in the range 1-3*E10 cm-3 at O VII temperatures. We find our LETGS spectra to be an extremely useful tool for plasma diagnostics of stellar coronae. Title: Evidence for strong differential rotation in Li-depleted fast rotating F-stars Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2002A&A...393L..77R Altcode: We report the detection of strong differential rotation on ten fast rotating (v sin i > 10 km s-1) stars of spectral types F0-G0 using the Fourier Transform Method, in three cases we find alpha > 20%. Among the six differential rotators with v sin i > 15 km s-1, five have Li abundances of log epsilon (Li) < 1.5, for one object no Li abundance is available to our knowledge. No differentially rotating star with high Li abundance was found, although the average Li abundance of fast rotators in the literature is log epsilon (Li) > 2.0. Our results suggest that Li-depleted fast rotators tend to show differential rotation. Interpreting high rotational velocity as indicator of youth, this finding supports the idea of the connection between mixing processes and differential rotation during magnetic breaking in F-stars. Based on observations collected at the European Southern Observatory, La Silla. Title: Simultaneous X-ray spectroscopy of YY Gem with Chandra and XMM-Newton Authors: Stelzer, B.; Burwitz, V.; Audard, M.; Güdel, M.; Ness, J. -U.; Grosso, N.; Neuhäuser, R.; Schmitt, J. H. M. M.; Predehl, P.; Aschenbach, B. Bibcode: 2002A&A...392..585S Altcode: 2002astro.ph..6429S We report on a detailed study of the X-ray spectrum of the nearby eclipsing spectroscopic binary YY Gem. Observations were obtained simultaneously with both large X-ray observatories, XMM-Newton and Chandra. We compare the high-resolution spectra acquired with the Reflection Grating Spectrometer onboard XMM-Newton and with the Low Energy Transmission Grating Spectrometer onboard Chandra, and evidence in direct comparison the good performance of both instruments in terms of wavelength and flux calibration. The strongest lines in the X-ray spectrum of YY Gem are from oxygen. Oxygen line ratios indicate the presence of a low-temperature component (1-4 MK) with density n_e <= 2x 1010 cm-3. The X-ray lightcurve reveals two flares and a dip corresponding to the secondary eclipse. An increase of the density during phases of high activity is suggested from time-resolved spectroscopy. Time-resolved global fitting of the European Photon Imaging Camera CCD spectrum traces the evolution of temperature and emission measure during the flares. These medium-resolution spectra show that temperatures > 107 K are relevant in the corona of YY Gem although not as dominant as the lower temperatures represented by the strongest lines in the high-resolution spectrum. Magnetic loops with length on the order of 109 cm, i.e., about 5% of the radius of each star, are inferred from a comparison with a one-dimensional hydrodynamic model. This suggests that the flares did not erupt in the (presumably more extended) inter-binary magnetosphere but are related to one of the components of the binary. Title: Planetary Rings Authors: Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P. Bibcode: 2002ASPC..272..263G Altcode: 2002fsse.conf..263G The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science. Title: Can star spots mimic differential rotation? Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2002A&A...388.1120R Altcode: The search for stellar differential rotation in Fourier-transformed profiles utilizes subtle deviations from the standard rotation profile. We investigate the influence of stellar spots on the results obtained with the Fourier Transform Method. Different spot configurations, especially polar spots, are examined, and their influence on Fourier-transformed line profiles studied. We found that polar spots cannot mimic solar-like differential rotation and are thus not critical for the use of the Fourier Transform Method. Although not indicated by Doppler imaging, other configurations may occur on stellar surfaces and their influence on the analysis is discussed. A symmetric distribution of spots in an activity belt leads - in a small region of the parameter space - to line profiles that are very similar to the signatures produced by differential rotation. Title: Carbon and nitrogen abundances in the coronae of Algol B and other evolved stars: Evidence for CNO-cycle processed material Authors: Schmitt, J. H. M. M.; Ness, J. -U. Bibcode: 2002A&A...388L..13S Altcode: Using the Lyalpha -lines of carbon and nitrogen measured in Chandra Low Energy Transmission Grating Spectrometer (LETGS) spectra we study the coronal abundances of these elements in a sample of late-type stars including dwarf stars, the prototypical eclipsing binary Algol, the single giant beta Cet, and three RS CVn binaries. In the main sequence stars of our sample the flux ratio RNC between the Lyalpha -lines of nitrogen and carbon is below unity, while RNC is found to be ~8.5 for beta Cet and >23.3 for Algol. These values are more than an order of magnitude larger than expected from a solar abundance plasma in collisional equilibrium regardless of the chosen temperature structure. We therefore interpret the anomalously large RNC-ratios as being due to the exposure of CNO-cycle processed material at the surfaces and in the coronae of Algol and beta Cet. Title: Chandra LETGS observation of the active binary Algol Authors: Ness, J. -U.; Schmitt, J. H. M. M.; Burwitz, V.; Mewe, R.; Predehl, P. Bibcode: 2002A&A...387.1032N Altcode: 2002astro.ph..3431N A high-resolution spectrum obtained with the low-energy transmission grating onboard the Chandra observatory is presented and analyzed. Our analysis indicates very hot plasma with temperatures up to T~ 15-20 MK from the continuum and from ratios of hydrogen-like and helium-like ions of Si, Mg, and Ne. In addition lower temperature material is present since O VII and N VI are detected. Two methods for density diagnostics are applied. The He-like triplets from N VII to Si XIII are used and densities around 1011 cm-3 are found for the low temperature ions. Taking the UV radiation field from the B star companion into account, we find that the low-Z ions can be affected by the radiation field quite strongly, such that densities of 3x 1010 cm-3 are also possible, but only assuming that the emitting plasma is immersed in the radiation field. For the high temperature He-like ions only low density limits are found. Using ratios of Fe XXI lines produced at similar temperatures are sensitive to lower densities but again yield only low density limits. We thus conclude that the hot plasma has densities below 1012 cm-3. Assuming a constant pressure corona we show that the characteristic loop sizes must be small compared to the stellar radius and that filling factors below 0.1 are unlikely. Title: On the feasibility of the detection of differential rotation in stellar absorption profiles Authors: Reiners, A.; Schmitt, J. H. M. M. Bibcode: 2002A&A...384..155R Altcode: Stellar differential rotation invokes subtle effects on line absorption profiles which can be best studied in the Fourier domain. Detailed calculations of the behavior of Fourier transformed profiles with respect to varying differential rotation, limb darkening and inclination angles are presented. The zero positions of the Fourier transform are found to be very good tracers of differential rotation. The ratio of the first two zero positions sigma 2/sigma 1 can be easily measured and is a reliable parameter to deduce the amount of differential rotation. It is shown that solar-like differential rotation (equatorial regions have larger angular velocity then polar regions) has an unambigious signature in the Fourier domain and that in certain cases it can easily be distinguished from limb darkening effects. A simple procedure is given allowing the determination of the amount of differential rotation by the knowledge of the first two zero positions of a line profile's Fourier transform alone (i.e., without the need for thorough atmospheric modelling), under the assumption of a linear limb darkening law with a limb darkening coefficient of epsilon = 0.6. Title: Development of 300 g scintillating calorimeters Authors: Frank, T.; Angloher, G.; Bruckmayer, M.; Cozzini, C.; di Stefano, P.; Hauff, D.; Pröbst, F.; Schmidt, J.; Seidel, W. Bibcode: 2002AIPC..605..501F Altcode: The sensitivity for WIMP detection can be improved by an ability to efficiently discriminate the γ and β backgrounds from the nuclear recoil signals. The CRESST phase II detectors will achieve this discrimination by means of simultaneous measurement of phonons and scintillation light. We report on the development of a 300 g detector module consisting of two separate calorimeters fitted with tungsten phase transition thermometers. A 300 g CaWO4 crystal serves as the target material in which a recoiling WIMP creates both phonons and scintillation light. Phonons are detected by a thermometer on the CaWO4 crystal. A second smaller detector in close proximity detects the scintillation light. Measurements with this setup will be presented. . Title: Results of Spectrograph EMILIE with the AAA System on Solar-Like Oscillations Authors: Bouchy, F.; Schmitt, J.; Bertaux, J. -L.; Connes, P. Bibcode: 2002ASPC..259..472B Altcode: 2002rnpp.conf..472B; 2002IAUCo.185..472B No abstract at ADS Title: Determination of The Cometary Mass Flux Onto The Rosetta Spacecraft When In Orbit About Wirtanen Authors: Pätzold, M.; Häusler, B.; Schmitt, J.; Wennmacher, A. Bibcode: 2002EGSGA..27.2485P Altcode: One of the science objectives of the Rosetta Radio Science Investigation (RSI) ex- periment is the determination of the total cometary mass flux (gas and dust) onto the Rosetta spacecraft when in orbit about the nucleus of comet Wirtanen starting in 2012. The RSI experiment will use the spacecrafts radio carrier frequencies at X-band (8.4 GHz) and S-band (2.3 GHz) in order to measure slight changes in the relative velocity between the spacecraft and the ground station on Earth (Doppler effect) induced by the perturbing force of the cometary gas and dust flow onto the spacecraft. These per- turbing force is estimated based on the observed gas and dust production rates (3 AU to perihelion) from the last Wirtanen apparition. The gas flow will be the dominant perturber of the spacecraft orbit, the force will exceed even the gravity attraction of the nucleus if the comet is within two astronomical units heliocentric distance. Title: X-ray emission from the ultracool dwarf LHS 2065 Authors: Schmitt, J. H. M. M.; Liefke, C. Bibcode: 2002A&A...382L...9S Altcode: We report the results of a 68 ks long X-ray observation of the M9V ultracool dwarf star LHS 2065 with the ROSAT high resolution imager (HRI). During the observations a major X-ray flare occurred with a peak X-ray luminosity of 4 x 1027 erg/s and a total soft energy release of 2 x 1031 erg. In addition, another flare with smaller peak X-ray luminosity and energy release occurred. The X-ray observations were carried out half a year apart. In the first half of the observations no significant X-ray emission from LHS 2065 could be detected, while in the second half in addition to flares also quiescent X-ray emission at a level of 2.3 x 1026 erg/s was seen. LHS 2065 belongs to the coolest hydrogen burning stars known. The ROSAT observations show that coronal emission may be quite common even among such very late-type stars. Title: Coronal densities and temperatures for cool stars in different stages of activity Authors: Ness, J.; Audard, M.; Schmitt, J.; Güdel, M. Bibcode: 2002cosp...34E.463N Altcode: 2002cosp.meetE.463N Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany Paul Scherer Institut, Würenlingen &Villigen, 5232 Villigen PSI, SwitzerlandWith the advent of the new X-ray missions Chandra and XMM-Newton, highresolution spectroscopy has become available for studies of stellar coronae. Individual lines can be used as diagnostics tools for measuring densities and temperatures in coronal plasmas. In addition to the X-ray luminosity, spectroscopic properties can be used as tracers for the classification of coronal X-ray emitters. In this presentation we will focus on density diagnostics measured with the He-like triplets and temperature measurements from ratios of H-like and He-like lines. Our findings are that the cool stars with low activity are all quite similar with low temperatures and low densities. For the active stars we measure both low and high densities. The temperatures measured with the line ratios of H-like and He-like ions are higher for the more active stars in general, but low-temperature lines are also identified in those stars. From our findings we conclude that inactive stars are generally very similar to the Sun, but a variety of coronal structure must be assumed for the active stars. Title: Determination of the cometary mass flux onto the Rosetta spacecraft when in orbit about comet Wirtanen Authors: Paetzold, M.; Eidel, W.; Haeusler, B.; Schmitt, J. Bibcode: 2002cosp...34E2379P Altcode: 2002cosp.meetE2379P One of the science objectives of the Rosetta Radio Science Investigations (RSI) experiment is the determination of the total cometary mass flux (gas and dust) onto the Rosetta spacecraft when in orbit about the nucleus of comet Wirtanen, starting in 2012. The RSI experiment will use the spacecrafts radio carrier frequencies at X-band (8.4 GHz) and S-band (2.3 GHz) in order to measure slight changes in the relative velocity between the spacecraft and the ground station on Earth (Doppler effect) induced by perturbing forces, mainly the gas and dust flow onto the spacecraft. The cometary mass flux is estimated based on the gas and dust production rates (3 AU to perihelion) observed at the last Wirtanen apparition. The gas flow will be the dominant perturber of the Rosetta orbit and the force acting on the spacecraft will exceed the gravity attraction of the nucleus if the nucleus is within two astronomical units heliocentric distance. Title: Ultra-high-resolution spectroscopy of circumstellar disks around A-type stars. Authors: Hempel, M.; Schmitt, J. H. M. M. Bibcode: 2002AGAb...19R..15H Altcode: No abstract at ADS Title: XEUS-the X-ray evolving universe spectroscopy mission Authors: Parmar, A. N.; Peacock, T.; Bavdaz, M.; Hasinger, G.; Arnaud, M.; Barcons, X.; Barret, D.; Blanchard, A.; Böhringer, H.; Cappi, M.; Comastri, A.; Courvoisier, T.; Fabian, A. C.; Griffiths, R.; Malaguti, P.; Mason, K. O.; Ohashi, T.; Paerels, F.; Piro, L.; Schmitt, J.; van der Klis, M.; Ward, M. Bibcode: 2001AIPC..599..842P Altcode: 2001xase.conf..842P XEUS is under study by ESA as part of the Horizon 2000+ program to utilize the International Space Station (ISS) for astronomical applications. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be grown to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2-5'' HEW. XEUS will consist of separate detector and mirror spacecraft aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting sensitivity will then be ~4×10-18 erg cm-2 s-1 around 250 times better than XMM. The properties of a 350 eV (rest-frame) equivalent width Fe line from a 1044 erg s-1 AGN will be measurable out to z=10, paving the way for detailed spectroscopic X-ray studies of some of the earliest known objects. . Title: First spectroscopically confirmed discovery of an extragalactic T Tauri star Authors: Wichmann, R.; Schmitt, J. H. M. M.; Krautter, J. Bibcode: 2001A&A...380L...9W Altcode: We report the first spectroscopic discovery of an extragalactic bona-fide T Tauri star. The object, LTS J054427-692659, is a low-mass, late-type star located within the LMC dark cloud Hodge II 139. It shows Hα emission with an equivalent width of 78 Å, in line with galactic T Tauri stars, but in excess of any main-sequence dwarf star. The only known plausible interpretation of LTS J054427-692659 is a LMC T Tauri star. Based on observations collected at the European Southern Observatory, Chile (ESO No. 62.I-0607, 64.P-0150(C), 66.C-0196(A)). Title: Numerical simulations of interplanetary magnetic clouds Authors: Cargill, P. J.; Schmidt, J. Bibcode: 2001AGUFMSH11D..08C Altcode: We have carried out MHD simulations of the evolution of the class of CMEs known as magnetic clouds. It has been shown that such CMEs survive as flux ropes during their interaction with the solar wind. However, their shape at 1 AU depends on both their initial density and relative velocity with respect to the solar wind, and in no cases does cylindrical symmetry survive the interaction of the flux rope with the solar wind. We have investigated magentic reconnection between a CME and the solar wind, for the case of propagation in a uni-directional field and along a current sheet. Reconnection happens asymmetrically in the former case, and either on both or neither side in the latter. Finally, we have carried out a systematic study of the effective drag force operating on a CME. The drag coefficient is of order unity, but the actual motion is also influenced by the virtual mass effect. Title: The STELLA project: two 1.2m robotic telescopes for simultaneous high-resolution Echelle spectroscopy and imaging photometry Authors: Strassmeier, K. G.; Granzer, T.; Weber, M.; Woche, M.; Hildebrandt, G.; Bauer, S. -M.; Paschke, J.; Roth, M. M.; Washuettl, A.; Arlt, K.; Stolz, P. A.; Schmitt, J. H. M. M.; Hempelmann, A.; Hagen, H. -J.; Ruder, H.; Palle, P. L.; Arnay, R. Bibcode: 2001AN....322..287S Altcode: We present an overview and a brief report on the status of the STELLA project (abbreviation for STELLar Activity). The STELLA-I telescope will be the first robotic telescope that feeds a bench-mounted high-resolution Echelle spectrograph with a set of 50 and 100 μm fibres and provides spectral resolutions of up to 47,000 with a 1 arcsec slit. The spectrograph is a white-pupil design located in a separated temperature-controlled room to guarantee long-term stability. The building will have a roll-off roof and is capable to host two telescopes. First light for STELLA-I is planned for summer 2002. STELLA-II is foreseen to be a photometric imaging telescope for the optical and near-infrared wavelengths and will follow in 2003. Title: Determination of the cometary mass flux on the Rosetta spacecraft Authors: Paetzold, M.; Wennmacher, A.; Schmitt, J.; Haeusler, B.; Bird, Michael K.; Neubauer, F. M.; Aksnes, K. Bibcode: 2001DPS....33.5723P Altcode: 2001BAAS...33Q1148P One of the science objectives of the Rosetta Radio Science Investigations (RSI) experiment is the determination of the cometary mass flux (gas and dust) onto the Rosetta spacecraft intended to orbit the nucleus of comet P/Wirtanen starting in 2012. The RSI experiment will use the spacecraft's radio carrier frequencies at X-band and S-band in order to measure slight changes of the orbit velocity via the Doppler effect induced by the perturbation forces of gas and dust flow. These forces are estimated along the comet orbit from 4 AU to perihelion based on observed or estimated values of the gas and dust production rates for comet P/Wirtanen. It turns out that the gas flow might be the dominant perturber. Limits and sensitivities will be given. Title: Decadal Survey: Planetary Rings Panel Authors: Gordon, M. K.; Cuzzi, J. N.; Lissauer, J. J.; Poulet, F.; Brahic, A.; Charnoz, S.; Ferrari, C.; Burns, J. A.; Nicholson, P. D.; Durisen, R. H.; Rappaport, N. J.; Spilker, L. J.; Yanamandra-Fisher, P.; Bosh, A. S.; Olkin, C.; Larson, S. M.; Graps, A. L.; Krueger, H.; Black, G. J.; Festou, M.; Karjalainen, R.; Salo, H. J.; Murray, C. D.; Showalter, M. R.; Dones, L.; Levison, H. F.; Namouni, F.; Araki, S.; Lewis, M. C.; Brooks, S.; Colwell, J. E.; Esposito, L. W.; Horanyi, M.; Stewart, G. R.; Krivov, A.; Schmidt, J.; Spahn, F.; Hamilton, D. P.; Giuliatti-Winter, S.; French, R. G. Bibcode: 2001DPS....33.1420G Altcode: 2001BAAS...33Q1057G The National Research Council's Committee on Planetary and Lunar Exploration(COMPLEX) met earlier this year to begin the organization of a major activity, "A New Strategy for Solar System Exploration." Several members of the planetary rings community formed an ad hoc panel to discuss the current state and future prospects for the study of planetary rings. In this paper we summarize fundamental questions of ring science, list the key science questions expected to occupy the planetary rings community for the decade 2003-2013, outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities. Title: Detection of differential rotation in psi Cap with profile analysis Authors: Reiners, A.; Schmitt, J. H. M. M.; Kürster, M. Bibcode: 2001A&A...376L..13R Altcode: 2001astro.ph..7332R We report detection of differential rotation on the F5 dwarf psi Cap using line profile analysis. The Fourier transform of both Fe I lambda 5775 and Si I lambda 5772 are used to obtain a projected rotational velocity of v sin i=42+/-1 km s-1. Modelling of the Fourier transformed profiles shows that the combined effects of equatorial velocity, inclination and differential rotation dominate the line profile while limb darkening and turbulence velocities have only minor effects. Rigid rotation is shown to be inconsistent with the measured profiles. Modelling the line profiles analogous to solar differential rotation we find a differential rotation parameter of alpha =0.15+/-0.1 (15+/-10%) comparable to the solar case. To our knowledge this is the first successful measurement of differential rotation through line profile analysis. Based on observations collected at the European Southern Observatory, La Silla (65.L-0101). Title: Microwave plasma emission of a flare on AD Leo Authors: Stepanov, A. V.; Kliem, B.; Zaitsev, V. V.; Fürst, E.; Jessner, A.; Krüger, A.; Hildebrandt, J.; Schmitt, J. H. M. M. Bibcode: 2001A&A...374.1072S Altcode: 2001astro.ph..6369S An intense radio flare on the dMe star AD Leo, observed with the Effelsberg radio telescope and spectrally resolved in a band of 480 MHz centred at 4.85 GHz is analysed. A lower limit of the brightness temperature of the totally right handed polarized emission is estimated as T_b ~ 5*E10 K (with values T_bga3 *E13 K considered to be more probable), which requires a coherent radio emission process. In the interpretation we favour fundamental plasma radiation by mildly relativistic electrons trapped in a hot and dense coronal loop above electron cyclotron maser emission. This leads to densities and magnetic field strengths in the radio source of n ~ 2*E11 cm-3 and B ~ 800 G. Quasi-periodic pulsations during the decay phase of the event suggest a loop radius of r ~ 7*E8 cm. A filamentary corona is implied in which the dense radio source is embedded in hot thin plasma with temperature T>=2*E7 K and density n_ext<=10-2n. Runaway acceleration by sub-Dreicer electric fields in a magnetic loop is found to supply a sufficient number of energetic electrons. Title: Ground-based observation of emission lines from the corona of a red-dwarf star Authors: Schmitt, J. H. M. M.; Wichmann, R. Bibcode: 2001Natur.412..508S Altcode: All `solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar `surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1Å) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4kms-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened. Title: Gravity field determination of a Comet Nucleus: Rosetta at P/Wirtanen Authors: Pätzold, M.; Häusler, B.; Wennmacher, A.; Aksnes, K.; Anderson, J. D.; Asmar, S. W.; Barriot, J. -P.; Boehnhardt, H.; Eidel, W.; Neubauer, F. M.; Olsen, O.; Schmitt, J.; Schwinger, J.; Thomas, N. Bibcode: 2001A&A...375..651P Altcode: One of the prime objectives of the Rosetta Radio Science Investigations (RSI) experiment is the determination of the mass, the bulk density and the low degree and order gravity of the nucleus of comet P/Wirtanen, the target object of the international Rosetta mission. The RSI experiment will use the spacecraft's radio carrier frequencies at X-band (8.4 GHz) and S-band (2.3 GHz) in order to measure slight changes of the orbit velocity via the classical Doppler effect induced by the gravity attraction of the comet nucleus. Based on an estimate of the background Doppler noise, it is expected that a mass determination (assuming a representative radius of 700 m and a bulk density of 500 kg/m3) at an accuracy of 0.1% can be achieved if the spacecraft's orbit is iteratively reduced below 7 km altitude. The gravity field of degree and order two can be detected for reasonable tracking times below 5 km altitude. The major competing forces acting on the spacecraft are the radiation pressure and the gas mass flux from cometary activity. While the radiation pressure may be predicted, it is recommended to begin a gravity mapping campaign well before the onset of outgassing activity (>3.25 AU heliocentric distance). Radial acceleration by water outgassing is larger by orders of magnitude than the accelerations from the low degree and order gravity field and will mask the contributions from the gravity field. Title: Röntgenemission und Koronen kühler Sterne Authors: Schmitt, Jürgen H. M. M. Bibcode: 2001S&W....40..544S Altcode: No abstract at ADS Title: Observing solar-like oscillations with ELODIE spectrograph Authors: Martić, M.; Lebrun, J. C.; Schmitt, J.; Bertaux, J. L.; Appourchaux, T. Bibcode: 2001sf2a.conf..219M Altcode: We have used ELODIE fiber-fed cross-dispersed echelle spectrograph and the 1.93m-telescope of Observatoire de Haute Provence to obtain precise Doppler measurements of a sample of bright stars that are likely to undergo solar-like oscillations. Here we report the results for Procyon from three observing runs (5, 10 and 15 nights) in Decembre 1997, Novembre 1998, and January 1999. The individual frequencies of p-modes were searched in the interval of excess power around 1 mHz found in the frequency spectra of each time series. The echelle diagram of the observed and predicted p-mode frequencies from the standard model (Chaboyer et al., 1999) for Procyon A is presented. We show also some preliminary results for two other solar-like stars (eta Cas and z Her). Title: ROSAT all-sky survey of W Ursae Majoris stars and the problem of supersaturation Authors: Stȩpień, K.; Schmitt, J. H. M. M.; Voges, W. Bibcode: 2001A&A...370..157S Altcode: From ROSAT all-sky survey (RASS) data we obtained X-ray fluxes for 57 W UMa type contact systems. In our sample we detected three stars which are the shortest period main sequence binaries ever found as X-ray sources. For stars with (B-V)_0 < 0.6 the normalized X-ray flux decreases with a decreasing color index but for (B-V)_0 > 0.6 a plateau is reached, similar to the saturation level observed for single, rapidly rotating stars. The X-ray flux of W UMa stars is about 4-5 times weaker than that of the fastest rotating single stars. Because early type, low activity variables have longer periods, an apparent period-activity relation is seen among our stars, while cool stars with (B-V)_0 > 0.6 and rotation periods between 0.23 and 0.45 days do not show any such relation. The lower X-ray emission of the single, ultra fast rotators (UFRs) and W UMa stars is interpreted as the result of a decreased coronal filling factor. The physical mechanisms responsible for the decreased surface coverage differs for UFRs and W UMa systems. For UFRs we propose strong polar updrafts within a convection zone, driven by nonuniform heating from below. The updrafts should be accompanied by large scale poleward flows near the bottom of the convective layer and equatorward flows in the surface layers. The flows drag dynamo generated fields toward the poles and create a field-free equatorial region with a width depending on the stellar rotation rate. For W UMa stars we propose that a large scale horizontal flow embracing both stars will prevent the magnetic field from producing long-lived structures filled with hot X-ray emitting plasma. The decreased activity of the fastest rotating UFRs increases the angular momentum loss time scale of stars in a supersaturated state. Thus the existence of a period cutoff and a limiting mass of W UMa stars can be naturally explained. Title: Helium-like triplet density diagnostics. Applications to CHANDRA-LETGS X-ray observations of Capella and Procyon Authors: Ness, J. -U.; Mewe, R.; Schmitt, J. H. M. M.; Raassen, A. J. J.; Porquet, D.; Kaastra, J. S.; van der Meer, R. L. J.; Burwitz, V.; Predehl, P. Bibcode: 2001A&A...367..282N Altcode: 2000astro.ph.12223N Electron density diagnostics based on the triplets of helium-like C v, N vi, and O vii are applied to the X-ray spectra of Capella and Procyon measured with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra X-ray Observatory. New theoretical models for the calculation of the line ratios between the forbidden (f), intercombination (i), and the resonance (r) lines of the helium-like triplets are used. The (logarithmic) electron densities (in cgs units) derived from the f/i ratios for Capella are <9.38 cm-3 for O vii (2sigma upper limit) (f/i=4.0+/- 0.25), 9.86+/-0.12 cm-3 for N vi (f/i=1.78+/- 0.25), and 9.42+/- 0.21 cm-3 for C v (f/i=1.48+/- 0.34), while for Procyon we obtain 9.28+0.4-9.28 cm-3 for O vii (f/i=3.28+/- 0.3), 9.96+/- 0.23 cm-3 for N vi (f/i=1.33+/- 0.28), and <8.92 cm-3 for C v (f/i=0.48+/- 0.12). These densities are quite typical of densities found in the solar active regions, and also pressures and temperatures in Procyon's and Capella's corona at a level of T ~ 106 K are quite similar. We find no evidence for densities as high as measured in solar flares. Comparison of our Capella and Procyon measurements with the Sun shows little difference in the physical properties of the layers producing the C v, N vi, and O vii emission. Assuming the X-ray emitting plasma to be confined in magnetic loops, we obtain typical loop length scales of {L_Capella} >= 8 {L_Procyon} from the loop scaling laws, implying that the magnetic structures in Procyon and Capella are quite different. The total mean surface fluxes emitted in the helium- and hydrogen-like ions are quite similar for Capella and Procyon, but exceed typical solar values by one order of magnitude. We thus conclude that Procyon's and Capella's coronal filling factors are larger than corresponding solar values. Title: XEUS - The X-ray evolving universe spectroscopy mission * Authors: Parmar, A. N.; Peacock, T.; Bavdaz, M.; Hasinger, G.; Arnaud, M.; Barcons, X.; Barret, D.; Blanchard, A.; Böhringer, H.; Cappi, M.; Comastri, A.; Courvoisier, T.; Fabian, A. C.; Griffiths, R.; Kawai, N.; Koyama, K.; Makishima, K.; Malaguti, P.; Mason, K. O.; Ohashi, T.; Paerels, F.; Piro, L.; Schmitt, J.; van der Klis, M.; Ward, M. Bibcode: 2001cghr.confE..70P Altcode: No abstract at ADS Title: Stellar Activity in the Gould Belt Authors: Hempel, M.; Berghöfer, T.; Schmitt, J. H. M. M. Bibcode: 2001AGM....18.P191H Altcode: 2001AGAb...18R.230H The Gould Belt is a disk-like structure with an inclination i = 27o and an ascending node lΩ = 282o with respect to the galactic plane where an enhancement of young stars and associated interstellar matter can be found. The existence of the Gould Belt as a physical entity is controversial and its formation is as yet puzzling. A cross-correlation of the ROSAT All-Sky Survey sources with the Tycho catalog has shown that a concentration of active stars seems to be associated with the Gould Belt system. On the basis of the Second ROSAT Source Catalog of Pointed Observations we investigate variations of the distribution of X-ray emitting stars along the Gould Belt. Due to the high sensitivity of the data our in-depth analysis allows to examine the properties of the stars in more detail than in previous studies. We present our results which serve as the basis for forthcoming photometric and spectroscopic observations. Title: Magnetic Activity in Cool Non-degenerate Dwarf Stars Authors: Schmitt, J. H. M. M. Bibcode: 2001ASPC..248..199S Altcode: 2001mfah.conf..199S No abstract at ADS Title: Observing solar-like oscillations: α CMi, η Cas A and ζ Her A Authors: Martić, M.; Lebrun, J. C.; Schmitt, J.; Appourchaux, T.; Bertaux, J. L. Bibcode: 2001ESASP.464..431M Altcode: 2001soho...10..431M We have used ELODIE fiber-fed cross-dispersed echelle spectrograph and the 1.93m-telescope of Observatoire de Haute Provence to obtain precise Doppler measurements of a sample of bright stars that are likely to undergo solar-like oscillations. Here we report the results for Procyon from three observing runs carried out in December 1997, November 1998, and January 1999. We show also some preliminary results for two other solar-like stars (η Cas A and ζ Her A). Title: A Long BeppoSAX Observation of YY Gem (CD-ROM Directory: contribs/tagliaf) Authors: Tagliaferri, G.; Covino, S.; Panzera, M. R.; Pallavicini, R.; Schmitt, J. H. M. M. Bibcode: 2001ASPC..223.1177T Altcode: 2001csss...11.1177T No abstract at ADS Title: Stellar Coronae Authors: Schmitt, J. H. M. M. Bibcode: 2001IAUS..203..475S Altcode: The last two decades have seen the emergence of a new field in stellar astrophysics: Stellar X-ray astronomy. With soft X-ray imagery X-ray emission was found from many thousands of solar-like stars. I will summarize the most important findings of X-ray surveys of late type stars and put those into the context of the solar-stellar connection. Similarities and difference between solar and stellar X-ray emission will be discussed. The results of eclipse observations to determine stellar structure will be reviewed, and recent results of X-ray spectroscopy (with Chandra and XMM-Newton) will be discussed mostly from the point of view of density diagnostics. Title: Detection of Differential Rotation in the Fast Rotator ψ Cap through Line Profile Analysis Authors: Reiners, A.; Schmitt, J. H. M. M.; Kürster, M. Bibcode: 2001AGM....18S0706R Altcode: 2001AGAb...18Q..78R Detection of differential rotation on the F5 dwarf ψ Cap using line profile analysis is reported. Fourier transforms of the two absorption lines Si I λ5772 and Fe I λ5775 were used independently to obtain a projected rotational velocity of 42 ± 1km s-1. A parameter study on the transformed profile showed that limb darkening and turbulence velocities only yield small effects. Combination of equatorial velocity and differential rotation dominates the line profiles' shape. Rigid rotation is shown to be inconsistent with the used profile, a differential effect of α = 0.15 ± 0.1 (15 ± 10%) was found; it appears that the differential rotation law is similar to the solar case. This finding contradicts the expectation that differential rotation in general is weaker in fast rotators. Title: Nearby young stars: First results (CD-ROM Directory: contribs/wichmann) Authors: Wichmann, R.; Schmitt, J. H. M. M. Bibcode: 2001ASPC..223..552W Altcode: 2001csss...11..552W No abstract at ADS Title: The STELLA Project: a 1.2m Robotic Telescope for High-resolution Echelle Spectroscopy Authors: Strassmeier, K. G.; Granzer, T.; Weber, M.; Woche, M.; Hildebrandt, J.; Arlt, K.; Washuettl, A.; Bauer, S. -M.; Paschke, J.; Roth, M.; Schmitt, J. H. M. M.; Hempelmann, A.; Hagen, A. Bibcode: 2001AGM....18.P232S Altcode: In this poster, we present a brief overview and report on the status of the STELLA project (abbreviation for STELLar Activity; see also poster by Weber et al.). The STELLA telescope at the Teide Observatory on the Island of Tenerife will be the first robotic telescope that feeds a bench-mounted echelle spectrograph with a set of 50 and 100μm fibres and provides resolutions of between 50,000 and 25,000. The spectrograph is a FEROS-like design and will be located in a separated temperature-controlled room within the STELLA building to guarantee long-term stability. The building will be a roll-off roof building capable of hosting two telescopes. First light for STELLA-1 is planned for fall 2002. Title: Solar-like Oscillations on Procyon (CD-ROM Directory: contribs/martic) Authors: Martic, M.; Lebrun, J. -C.; Schmitt, J.; Bertaux, J. L.; Barban, C.; Michel, E.; Baglin, A. Bibcode: 2001ASPC..223..703M Altcode: 2001csss...11..703M No abstract at ADS Title: Analysis of Large Stellar Flares: Generalized Evidence for Compact Loops with Sustained Heating (CD-ROM Directory: contribs/favata) Authors: Favata, F.; Reale, F.; Micela, G.; Sciortino, S.; Maggio, A.; Schmitt, J. H. M. M. Bibcode: 2001ASPC..223.1133F Altcode: 2001csss...11.1133F No abstract at ADS Title: X-Ray Emission from the Ursa Major Group Detected in the ROSAT All Sky Survey (CD-ROM Directory: contribs/stern) Authors: Stern, R. A.; Schmitt, J. H. M. M.; Voges, W. Bibcode: 2001ASPC..223.1497S Altcode: 2001csss...11.1497S No abstract at ADS Title: MOSAIC Observations of Active Late-Type Stars in the Rosette Nebula (CD-ROM Directory: contribs/berghof) Authors: Berghöfer, T. W.; Christian, D. J.; Schmitt, J. H. M. M. Bibcode: 2001ASPC..223.1380B Altcode: 2001csss...11.1380B No abstract at ADS Title: STELLA: An Automatic Spectroscopic Telescope for Monitoring Stellar Activity (CD-ROM Directory: contribs/hempelma) Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Rüdiger, G.; Rebolo, R. Bibcode: 2001ASPC..223.1651H Altcode: 2001csss...11.1651H No abstract at ADS Title: Search for p-mode Frequencies on Procyon A Authors: Martic, M.; Lebrun, J. C.; Schmitt, J.; Bertaux, J. L. Bibcode: 2001IAUS..203..121M Altcode: Following the recent evidence for the presence of an excess of power around 1 mHz in the frequency spectrum of the Doppler shift measurements for Procyon (Martic et al., 1999), we searched for individual frequencies of p-modes from three independent observing runs (5, 10 and 15 nights). All observations (Decembre 1997, Novembre 1998, January 1999) were made with the ELODIE fibre-fed cross-dispersed echelle spectrograph on the 1.93 m telescope at Observatoire de Haute Provence. The individual peaks in clean spectra of each time series in the interval of excess power are compared with the predicted p-mode frequencies from stellar models (Chaboyer et al., 1999) for Procyon A. Title: Simultaneous ROSAT XRT and WFC observations of a sample of active dwarf stars Authors: Tsikoudi, V.; Kellett, B. J.; Schmitt, J. H. M. M. Bibcode: 2000MNRAS.319.1136T Altcode: The X-ray observations of the ROSAT-PSPC All-Sky Survey have revealed bright and energetic coronae for a number of late-type main-sequence stars, many of them flare stars. We have detected 31 X-ray flares on 14 stars. A search for simultaneous X-ray and EUV (extreme ultraviolet) flares using ROSAT Wide Field Camera survey data revealed a large number of simultaneous flares. These results indicate that the heating mechanisms of the X-ray and EUV-emitting regions of the stellar coronae are similar. We find X-ray quiescent variability for nine of the 14 stars and simultaneous X-ray and EUV quiescent variability for seven of these nine stars. These results imply that the stellar coronae are in a continuous state of low-level activity. There are tight linear correlations of X-ray flare luminosity with the `quiescent' X-ray as well as with the stellar bolometric luminosity. The similarity between the X-ray-to-EUV quiescent and flare luminosity ratios suggests that the two underlying spectra are also similar. Both are indeed consistent with the previously determined Einstein two-temperature models. We suggest that both the variability and spectral results could indicate that the quiescent emission is composed of a multitude of unresolved flares. Title: Origins, Structure, and Evolution of Magnetic Activity in the Cool Half of the H--R Diagram: Progress Report on a Major HST STIS Stellar Survey Authors: Ayres, T. R.; Brown, A.; Drake, S. A.; Dupree, A. K.; Guedel, M.; Guinan, E.; Harper, G. M.; Jordan, C.; Linsky, J. L.; Reimers, D.; Schmitt, J. H. M. M.; Simon, T. Bibcode: 2000AAS...197.4407A Altcode: 2000BAAS...32.1472A In early October 2000, HST completed a year and a half long ultraviolet spectral survey of late-type stars with its Space Telescope Imaging Spectrograph (STIS). Thirteen stars were observed, ranging over spectral types F7--K0 on the main sequence, F8--G8 in the giant branch, and G0--G8 in the supergiants. A total of 72 observation sequences were executed, some consisting of several independent exposures (up to 13: in the case of HR 1099, recorded during a long grating observation by Chandra ). Spectra were taken in the medium resolution echelle modes (E140M, E230M: R ~ 30--40,000) below about 2500 Å, and in the high-resolution echelle mode (E230H: R ~ 105) between 2500--3000 Å. For each target, about 70% of the exposure time was devoted to the key E140M interval (1150--1700 Å). Although the observations were collected primarily to study the magnetically disturbed outer atmospheres of late-type stars, they also are valuable for investigating the local interstellar medium through UV absorptions in H 1, O 1, Fe 2, and Mg 2, and for measuring the cosmologically significant D/H ratio. We present examples of the superb spectra resulting from the program, and discuss some of the new insights we have gained concerning plasma dynamics in the 105 K layers of the stellar ``transition zone;'' the super-rotational broadening of the Si 4, C 4, and N 5 emissions in Hertzsprung gap giants; and the spectral peculiarities of the ``hybrid chromosphere'' supergiants. This work was supported by grant GO-08280.01-97A from STScI. Observations were from the NASA/ESA HST, collected at the STScI, operated by AURA, under contract NAS5-26555. Title: The structure of Algol's corona: a consistent scenario for the X-ray and radio emission Authors: Favata, F.; Micela, G.; Reale, F.; Sciortino, S.; Schmitt, J. H. M. M. Bibcode: 2000A&A...362..628F Altcode: We present a systematic analysis of the four known large X-ray flares detected to date on the eclipsing binary system Algol, using an approach based on hydrodynamic simulations of decaying flaring loops including sustained heating. This method yields, for the large BeppoSAX Algol flare of Aug. 1997 (where a geometrical estimate of the size of the flaring region is available) a more reliable size than approaches based on the free decay of the flaring loop. For the three flares analyzed here (one observed by EXOSAT, one by GINGA and one by ROSAT) we show that indeed sustained heating is present in all cases, so that the size of the flaring region is always smaller than previously derived. No evidence for the very long loops previously found through quasi-static analysis methods (extending out to several stellar radii) is found. Instead, the flaring corona of Algol is found to be rather compact. By comparing the imaging VLBI observations of the radio corona of Algol with the recent location of the Algol flare seen by BeppoSAX and with with present results, a consistent model of the Algol corona is deduced: the corona is essentially concentrated onto the polar regions of the K star in Algol, with a more compact (smaller than the star) flaring component and a perhaps somewhat more extended (comparable {in size} to the star) quiescent corona. Title: Viscous overstability in Saturn's B-ring: selfgravitating simulations. Authors: Salo, H.; Schmidt, J.; Spahn, F. Bibcode: 2000DPS....32.4909S Altcode: 2000BAAS...32R1089S Local simulations with up to 60 \ 000 selfgravitating dissipatively colliding particles indicate that dense rings with τ > 1 can be overstable, with parameter values appropriate for Saturn's B ring. These axisymmetric oscillations, with scale ~ 100 meters generally coexist with inclined Julian-Toomre type wakes. Similar oscillatory behavior is also obtained in an approximation where the particle-particle gravity is replaced by an enhanced frequency of vertical oscillations, Ω z/Ω >1. These systems can be more easily studied analytically, as in the absence of wakes they possess a spatially uniform ground state. To facilitate quantitative hydrodynamical studies of overstability we have measured the transport coefficients (shear viscosity ν , bulk viscosity ζ and kinetic heat conductivity κ ) for systems with Ω z/Ω =3.6, \ 2.0, \ 1.0. Both local and nonlocal contributions to momentum and energy flux are taken into account, the latter being dominant in dense systems with large impact frequency. In this limit we find ζ /ν ≈ 2, κ /ν ≈ 4. The dependency of pressure, viscosity and dissipation on density and kinetic temperature changes is also estimated. Simulations indicate that the condition for overstability is β > β cr ~ 1, where β =dlog(ν )/dlog(τ ). This condition is more stringent than the β cr ~ 0 suggested by the linear stability analysis in Schmit and Tscharnuter (1995, Icarus 115: 304), where the system was assumed to stay isothermal even when perturbed. However, it agrees with the non-isothermal analysis in Spahn et al. (2000, Icarus 145: 657). The increased stability is partially due to the inclusion of temperature oscillations in the analysis, and partially to bulk viscosity exceeding shear viscosity. A detailed comparison between simulations and hydrodynamical analysis is given in an accompanying presentation by Schmidt et al. Title: First Results of the Chandra-LETGS Authors: Predehl, P.; Aschenbach, B.; Braeuninger, H.; Burkert, W.; Burwitz, V.; Hartner, G.; Truemper, J.; Schmitt, J. H. M. M.; Brinkman, A. C.; Gunsing, C. J. T. Bibcode: 2000adnx.conf...11P Altcode: We present the first results obtained with the Low Energy Transmission Grating Spectrometer (LETGS) onboard the Chandra X-ray Observatory. The LETGS covers the wavelength range between 5 and 175 A (2.5-0.07 keV) with a spectral resolution of about 0.06 A. A number of calibration measurements were carried out in order to determine the instrument's performance, i.e., spectral resolution, the wavelength scale accuracy, and the effective area. The spectral resolution of the instrument, dominated by the angular resolution of the mirror, is as specified and predicted on the basis of preflight measurements. The calibration of the effective area is still an ongoing process. A serious problem for the LETGS is the high background of the HRC-S detector which serves as readout of the grating spectra. The 'First Light' observation of the star Capella shows a beautiful line-rich spectrum. He-like triplet diagnostics could be applied for the first time to a star other than the Sun. Title: Viscous Overstability in the B-ring: Hydrodynamic Modeling and Local Simulation Authors: Schmidt, J.; Salo, H.; Spahn, F. Bibcode: 2000DPS....32.4908S Altcode: 2000BAAS...32Q1089S Viscous overstability was suggested to cause radial structure in an opaque planetary ring (Schmit and Tscharnuter, Icarus, 1995, 115, p304). We extended that model by the hydrodynamic heat flow equation (Spahn et al., Icarus, 2000, 145, p657) and used expressions for the transport coefficients determined in direct N-particle simulations of a dense ring (see the accompanying poster by Salo et al.). The overstable modes of the extended model are in good quantitative agreement with the overstability observed in simulations where the disk's self-gravity is included via an enhancement of the frequency of vertical oscillations. In the model ring (meter sized smooth spherical particles, Bridges' velocity dependent inelasticity law for ice spheres) overstability sets in for optical depths larger than about one. In particular, the growth rates in the linear regime are predicted correctly by the hydrodynamic model, as well as the critical wavelength (wavelengths larger than about 100m are unstable), and the phase--shifts between the perturbations of density and radial and tangential velocities. A weakly nonlinear stability analysis of the isothermal hydrodynamic model yields a nonlinear saturation of the growth of the overstable modes and predicts standing waves to be unstable with respect to traveling waves. This is also observed in our simulations. Title: Rosat All-Sky Survey Faint Source Catalogue Authors: Voges, W.; Aschenbach, B.; Boller, T.; Brauninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; Hartner, G.; Hasinger, G.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Schmitt, J.; Trumper, J.; Zimmermann, U. Bibcode: 2000IAUC.7432....3V Altcode: 2000IAUC.7432C...1V; 2000IAUC.7432R...1V; 2000IAUC.7432S...1V W. Voges, B. Aschenbach, T. Boller, H. Brauninger, U. Briel, W. Burkert, K. Dennerl, J. Englhauser, R. Gruber, F. Haberl, G. Hartner, G. Hasinger, E. Pfeffermann, W. Pietsch, P. Predehl, J. Schmitt, J. Trumper, and U. Zimmermann, Max-Planck-Institut fur Extraterrestrische Physik, Garching, report: "The ROSAT All-Sky Survey Faint Source Catalogue (RASS-FSC) has been released and is available through the World Wide Web (at http://wave.xray.mpe.mpg.de/rosat/catalogues/rass-fsc/) and via anonymous ftp (host ftp.xray.mpe.mpg.de, directory rosat/catalogues/rass-fsc). This catalogue is derived from the all-sky survey performed during the ROSAT mission in the energy band 0.1-2.4 keV, and 105 924 sources are catalogued, representing the faint extension to the RASS bright-source catalogue (RASS-BSC; cf. IAUC 6420; Voges et al. 1999, A.Ap. 349, 389). The sources contain at least six source photons and have a detection likelihood, -ln (1-P), of at least 7, where P is the probability of source detection. For each source we provide the ROSAT name, the position in equatorial coordinates, the positional error, the source countrate and error, the background countrate, exposure time, date of observation, two hardness ratios and errors, extent and likelihood of extent, and likelihood of detection. Questions or comments may be directed to survey@xray.mpe.mpg.de." Title: VizieR Online Data Catalog: ROSAT All-Sky Survey Faint Source Catalog (Voges+ 2000) Authors: Voges, W.; Aschenbach, B.; Boller, Th.; Brauninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; Hartner, G.; Hasinger, G.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Schmitt, J.; Trumper, J.; Zimmermann, U. Bibcode: 2000yCat.9029....0V Altcode: The ROSAT All-Sky Survey Faint Source Catalogue (RASS-FSC) is derived from the all-sky survey performed during the ROSAT mission in the energy band 0.1-2.4 keV. 105,924 sources are catalogued and represent the faint extension to the RASS bright source catalogue (RASS-BSC, 1999A&A...349..389V, See Cat. ). The sources have a detection likelihood of at least 7 and contain at least 6 source photons. (The likelihood of source detection is defined as L = -ln(1-P), with P = probability of source detection).

For each source we provide the ROSAT name, the position in equatorial coordinates, the positional error, the source countrate and error, the background countrate, exposure time, date of observation, hardness-ratios HR1 and HR2 and errors, extent and likelihood of extent, and likelihood of detection.

Questions or comments may be directed to xray-info(at)mpe.mpg.de

(1 data file). Title: Erratum: "A calibration of the ROSAT HRI UV leak" [Astron. Astrophys., Vol. 342, No. 1, p. L17 - L20 (Feb 1999)]. Authors: Berghöfer, T. W.; Schmitt, J. H. M. M.; Hünsch, M. Bibcode: 2000A&A...357..387B Altcode: No abstract at ADS Title: An X-Ray Flare Detected on the M8 Dwarf VB 10 Authors: Fleming, Thomas A.; Giampapa, Mark S.; Schmitt, Jürgen H. M. M. Bibcode: 2000ApJ...533..372F Altcode: 2000astro.ph..2065F We have detected an X-ray flare on the very low mass star VB 10 (GL 752 B; M8V) using the ROSAT High Resolution Imager. VB 10 is the latest type (lowest mass) main-sequence star known to exhibit coronal activity. X-rays were detected from the star during a single 1.1 ks segment of an observation that lasted 22 ks in total. The energy released by this flare is on the order of 1027 ergs s-1. This is at least 2 orders of magnitude greater than the quiescent X-ray luminosity of VB 10, which has yet to be measured. This X-ray flare is very similar in nature to the far-ultraviolet flare that was observed by Linsky et al. using the Goddard High Resolution Spectrograph onboard the Hubble Space Telescope. We discuss reasons for the extreme difference between the flare and quiescent X-ray luminosities, including the possibility that VB 10 has no quiescent (106 K) coronal plasma at all. Title: Ausgrabungen am Sternenhimmel. Zeitbegriff und Tierkreis der Maya. Authors: Schmidt, J. Bibcode: 2000S&WSp...5...70S Altcode: No abstract at ADS Title: A ROSAT pointed observation of the Chamaeleon II dark cloud Authors: Alcalá, J. M.; Covino, E.; Sterzik, M. F.; Schmitt, J. H. M. M.; Krautter, J.; Neuhäuser, R. Bibcode: 2000A&A...355..629A Altcode: A deep 13.5 ksec ROSAT PSPC pointed observation in the Chamaeleon II (Cha II) cloud is reported. 40 X-ray sources are detected of which 14 can be identified with previously known young stellar objects (YSOs), namely IRAS sources, classical T Tauri stars and weak T Tauri stars. From spectroscopic follow-up observations, four new weak T Tauri candidates have been found. The X-ray sources are mainly located on the north-east of the cloud and their spatial distribution follows the lanes of the 100mu m dust emission. Their X-ray properties are similar to those of low-mass PMS stars. None of the protostar candidates in Cha II has been detected in the ROSAT pointed observation, in agreement with the ASCA observations results. The X-ray detection rates indicate that the weak T Tauri stars (WTTS) are less numerous than the classical T Tauri stars (CTTS), contrarily to the findings in Chamaeleon I (Cha I) and other star forming regions where the WTTS may outnumber the CTTS. The latter result could be a consequence of the fact that Cha II is in an earlier evolutionary stage as compared to Cha I, as conjectured by previous studies. The Cha II young stellar objects (YSOs) are, on the average, slightly less X-ray luminous than those in Cha I, but the normalised X-ray luminosity distribution functions of the two regions are not significantly different. Based on observations with the European Southern Observatory, La Silla, Chile under proposal number 55.E-0792 Title: XEUS - The X-ray Evolving Universe Spectroscopy Mission Authors: Parmar, A. N.; Peacock, T.; Bavdaz, M.; Hasinger, G.; Arnaud, M.; Barcons, X.; Barret, D.; Blanchard, A.; Bohringer, H.; Cappi, M.; Comastri, A.; Courvousier, T.; Fabian, A. C.; Griffiths, R.; Malaguti, P.; Mason, K. O.; Ohashi, T.; Paerels, F.; Piro, L.; Schmitt, J.; van der Klis, M.; Ward, M. Bibcode: 2000lssx.proc..295P Altcode: 1999astro.ph.11494P XEUS is under study by ESA as part of the Horizon 2000+ program to utilize the International Space Station (ISS) for astronomical applications. XEUS will be a long-term X-ray observatory with an initial mirror area of 6m2 at 1 keV that will be grown to 30m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2-5'' HEW. XEUS will consist of separate detector and mirror spacecraft aligned by active control to provide a focal length of 50m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting sensitivity will then be ~4 10-18 erg/cm2/s - around 250 times better than XMM, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift. Title: A search for X-ray emission from Saturn, Uranus and Neptune Authors: Ness, J. -U.; Schmitt, J. H. M. M. Bibcode: 2000A&A...355..394N Altcode: 2000astro.ph..1131N We present an analysis of X-ray observations of the trans-Jovian planets Saturn, Uranus and Neptune with the ROSAT PSPC in comparison with X-ray observations of Jupiter. For the first time a marginal X-ray detection of Saturn was found and 95% confidence upper limits for Uranus and Neptune were obtained. These upper limits show that Jupiter-like X-ray luminosities can be excluded for all three planets, while they are consistent assuming intrinsic Saturn-like X-ray luminosities. Similar X-ray production mechanisms on all trans-Jovian planets can therefore not be ruled out, and spectral shape and total luminosity observed from Saturn are consistent with thick-target bremsstrahlung caused by electron precipitation as occurring in auroral emission from the Earth. Title: First Light Measurements of Capella with the Low-Energy Transmission Grating Spectrometer aboard the Chandra X-Ray Observatory Authors: Brinkman, A. C.; Gunsing, C. J. T.; Kaastra, J. S.; van der Meer, R. L. J.; Mewe, R.; Paerels, F.; Raassen, A. J. J.; van Rooijen, J. J.; Bräuninger, H.; Burkert, W.; Burwitz, V.; Hartner, G.; Predehl, P.; Ness, J. -U.; Schmitt, J. H. M. M.; Drake, J. J.; Johnson, O.; Juda, M.; Kashyap, V.; Murray, S. S.; Pease, D.; Ratzlaff, P.; Wargelin, B. J. Bibcode: 2000ApJ...530L.111B Altcode: 2000astro.ph..1034B We present the first X-ray spectrum obtained by the Low-Energy Transmission Grating Spectrometer (LETGS) aboard the Chandra X-Ray Observatory. The spectrum is of Capella and covers a wavelength range of 5-175 Å (2.5-0.07 keV). The measured wavelength resolution, which is in good agreement with ground calibration, is Δλ~=0.06 Å (FWHM). Although in-flight calibration of the LETGS is in progress, the high spectral resolution and unique wavelength coverage of the LETGS are well demonstrated by the results from Capella, a coronal source rich in spectral emission lines. While the primary purpose of this Letter is to demonstrate the spectroscopic potential of the LETGS, we also briefly present some preliminary astrophysical results. We discuss plasma parameters derived from line ratios in narrow spectral bands, such as the electron density diagnostics of the He-like triplets of carbon, nitrogen, and oxygen, as well as resonance scattering of the strong Fe XVII line at 15.014 Å. Title: Stellar X-Ray Astronomy: Perspectives for the New Millenium Authors: Schmitt, Jürgen H. M. M. Bibcode: 2000RvMA...13..115S Altcode: No abstract at ADS Title: Structures in Planetary Rings Stability and Gravitational Stattering Authors: Spahn, F.; Schmidt, J.; Sremcevic, M. Bibcode: 2000LNP...557..507S Altcode: 2000sppc.conf..507S Two alternative theoretical approaches for the explanation of the irregular structure in the A and B ring of Saturn are presented: An oscillatory viscous instability and a model for gravitational stattering of the ring-matter at large (> 100m) ring- boulders. The former effect is based on a certain property of the transport of momentum in presence of Keplerian shear. The second process, in principle, represents a "fingerprint" of the size-distribution of the largest particles in the ring, caused by their gravitational action onto the population of smaller ring-particles. Title: First Results of the EMILIE Spectrograph with the AAA System on Extrasolar Planets Authors: Schmitt, J.; Bouchy, F.; Bestaux, J. L. Bibcode: 2000ASPC..219..607S Altcode: 2000dpp..conf..607S No abstract at ADS Title: Solar-Like Oscillations of Procyon A: Stellar Models and Time Series Simulations versus Observations Authors: Barban, C.; Michel, E.; Martic, M.; Schmitt, J.; Lebrun, J. C.; Baglin, A.; Bertaux, J. L. Bibcode: 2000ASPC..203..461B Altcode: 2000ilss.conf..461B; 2000IAUCo.176..461B The aim of this paper (further developed in Barban et al. 1999) is to present new evidence of the possible stellar origin of the observed excess power in the power spectrum of Procyon A presented in Martic et al. (1999) by comparing these observational data with theoretical predictions and numerical simulations. Title: Stellar X-ray Astronomy with Xeus Authors: Schmitt, J. H. M. M. Bibcode: 2000ASPC..198..537S Altcode: 2000scac.conf..537S No abstract at ADS Title: Origins, Structure, and Evolution of Magnetic Activity in the Cool Half of the H--R Diagram: an HST STIS Survey Authors: Ayres, T. R.; Brown, A.; Drake, S. A.; Dupree, A. K.; Guedel, M.; Guinan, E.; Harper, G. M.; Jordan, C.; Linsky, J. L.; Reimers, D.; Schmitt, J. H. M. M.; Simon, T. Bibcode: 1999AAS...195.5013A Altcode: 1999BAAS...31Q1449A In HST's cycle 8, we are carrying out a major ultraviolet spectral survey of late-type stars using the powerful capabilities of the Space Telescope Imaging Spectrograph (STIS). The origin of the hot UV emissions of otherwise cool stars is a fundamental puzzle in astrophysics. Magnetic phenomena---at the heart of chromospheric and coronal activity, and perhaps wind driving as well---play a central role in many cosmic settings. Our objective is to obtain high-quality ultraviolet spectra of a diverse collection of F--K stars, of all luminosity classes. Such a major project was unthinkable before STIS, but now is practical given the high resolution, broad spectral coverage, and sensitivity of the second generation spectrograph. Here, we discuss our choice of the thirteen targets; the observing strategy (which captures the entire UV spectrum between 1150--3000 Angstroms at resolutions λ /δ λ 30--100*E3 with good S/N); and preliminary results for the several targets observed to date (ζ Dor, F7 V, 1 May 1999, 2 CVZ orbits; V711 Tau, K1 IV+G5 IV, 15 September 1999, 5 orbits; β Cam, G0 I, 19 September 1999, 4 CVZ orbits). The observation of V711 Tau (HR 1099) was carried out during a long transmission grating pointing by the Chandra X-ray Observatory, in support of its ``Emission Line Project.'' This work was supported by grant GO-08280.01-97A from STScI. Observations were from the NASA/ESA HST, collected at the STScI, operated by AURA, under contract NAS5-26555. Title: X-Ray Emission from the Ursa Major Group Detected in the ROSAT All Sky Survey Authors: Stern, R. A.; Schmitt, J. H. M. M.; Voges, W.; Stauffer, J. R. Bibcode: 1999AAS...195.4710S Altcode: 1999BAAS...31.1442S We discuss the X-ray properties of members of the Ursa Major Moving Group detected in the ROSAT All Sky Survey (RASS). More than 80% of the solar-type (F8-G8) UMa Group members or candidates listed by Montes et al. are seen in the RASS data. We will compare the X-ray luminosities of the UMa Group (age 300 Myr) with those of other young clusters, and examine the issues of group membership and possible contamination by young field stars in the detected sample. This work was supported in part by the Lockheed Martin Indepedent Research program Title: VizieR Online Data Catalog: ROSAT All-Sky Bright Source Catalogue (1RXS) (Voges+ 1999) Authors: Voges, W.; Aschenbach, B.; Boller, T.; Braeuninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; Hartner, G.; Hasinger, G.; Kuerster, M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Truemper, J.; Zimmermann, H. U. Bibcode: 1999yCat.9010....0V Altcode: The ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision 1RXS) is derived from the all-sky survey performed during the first half year (1990/91) of the ROSAT mission. 18,806 sources are catalogued (five sources were removed compared to the 18,811 sources of the 1996 version), down to a limiting ROSAT PSPC count-rate of 0.05cts/s in the 0.1-2.4keV energy band, with a detection likelihood of at least 15 and with at least 15 source photons. For 94% of the sources visual inspection confirmed the results of the standard processing with respect to existence and position; the remaining 6% were re-analysed and appropriately flagged. At a brightness limit of 0.1cts/s (8,547 sources) the catalogue represents a sky coverage of 92%. Broad band images are available for a subset of the flagged sources from http://www.rosat.mpe-garching.mpg.de/survey/rass-bsc .

Questions or comments may be directed to <xray-info(at)mpe.mpg.de>

(14 data files). Title: Evidence for global pressure oscillations on Procyon Authors: Martić, M.; Schmitt, J.; Lebrun, J. -C.; Barban, C.; Connes, P.; Bouchy, F.; Michel, E.; Baglin, A.; Appourchaux, T.; Bertaux, J. -L. Bibcode: 1999A&A...351..993M Altcode: Precise Doppler measurements of the star Procyon (alpha CMi, HR 2943) have been obtained with the ELODIE fiber-fed cross-dispersed echelle spectrograph on the 1.93 m telescope at Observatoire de Haute Provence. Here, we present the analysis of data from 10 days observing run carried out in November 1998. We detect significant excess in the power between 0.5-1.5 mHz in the periodograms of the time series of mean Doppler shifts. Observations of eta Cas made with the same instrument during the same time interval and in almost identical night conditions show a flat spectrum in this frequency range, indicating that the excess of Doppler signal seen on Procyon is of stellar origin. When data from the whole run are jointly analyzed, a period analysis places an upper limit of 0.50-0.60 ms-1 for the amplitude of oscillations, while the frequency cutoff is around 1.5 mHz. The power evidently drops near 0.55 and 1.5 mHz on the average of unfiltered power spectra of individual nights, which is consistent with the expected p-mode oscillation properties for Procyon. Several equispaced peaks in frequency are recurrent in the power spectra of two independent segments of 4 and 3 contiguous nights; the most probable frequency spacing seems to be 55 mu Hz. In conclusion, we now have an instrument set-up which is sufficiently stable and fast to be used for a multi-site campaign involving instruments with comparable velocity precisions, to detect the oscillation modes of sun-like stars. Based on observations obtained at the Observatoire de Haute-Provence (CNRS, France) Title: The stellar content of soft X-ray surveys. II. Cross-correlation of the ROSAT All-Sky Survey with the Tycho and Hipparcos catalogs Authors: Guillout, P.; Schmitt, J. H. M. M.; Egret, D.; Voges, W.; Motch, C.; Sterzik, M. F. Bibcode: 1999A&A...351.1003G Altcode: We present the result of the cross-correlation of the ROSAT All-Sky Survey with the Tycho and Hipparcos catalogs. The constructed RASS - Tycho (RasTyc) and RASS - Hipparcos (RasHip) samples respectively consist of 13 875 and 6 200 matches and represent the largest and most comprehensive samples of stellar X-ray sources constructed so far. The X-ray horizon allows to probe distances up to about 200 pc for F - G RasTyc - RasHip stars younger than 100 Myr but only to 80 pc or less for older ones. The magnitude limit of the optical catalogs determine the horizon for K - M RasTyc - RasHip stars which are sampled only within about 50 pc (or less) of the Sun whatever their ages are. We compare the Hipparcos and RasHip HR-diagrams and discuss the differences. X-ray selection strengthens the Zero Age Main Sequence but evolved stars are detected as well. We compute detection rate, mean Fx/Fopt and X-ray luminosity with an unprecedented color bin resolution for on (between the Zero and Terminal Age Main Sequence i.e. class V) and off (above the Terminal Age Main Sequence i.e. class III) main sequence regions. Once corrected for Fx/Fopt bias, the detection rate is remarkably constant for G-M on main sequence stars but reveals a peak of detection for F-type stars. Detection rate in the A-type stars region is compatible with those computed for F-M stars, as expected if a late type companion is responsible for the X-ray emission. High mass stars evolving along the post-main sequence evolutionary tracks are clearly detected in the main sequence turnoff and blue part of the ``clump" while no significant detection arises on the cool side. Theoretical considerations naturally explain these observations. We address the question of the presence of very young stars in the solar neighborhood and derive an upper limit on the number of ``possible" isolated pre-main sequence stars in the RasTyc-RasHip samples. Finally we discuss briefly the pending questions for which the RasTyc and RasHip samples are likely to give new insight. Title: Solar-like oscillations of Procyon A: stellar models and time series simulations versus observations Authors: Barban, C.; Michel, E.; Martic, M.; Schmitt, J.; Lebrun, J. C.; Baglin, A.; Bertaux, J. L. Bibcode: 1999A&A...350..617B Altcode: The aim of this paper is to discuss the possible stellar origin of the observed excess power presented in Martic et al. (\cite{martic}) by comparing these observational data with theoretical predictions and numerical simulations. Stellar models are calculated for Procyon A with appropriate physics for this star and with the revised astrometric mass (1.46 +/- 0.04) Msun found by Girard (\cite{girard98}). For these models, we compute the expected oscillation spectra for l=0,1,2 modes including mnot =0 according to theoretical amplitude predictions. Time-series are then simulated, in the same conditions as the observations, and compared by Fourier analysis with the observed ones. We show that the characteristics of the signal are in good agreement with what should be expected for such observing runs and we emphasize the importance of obtaining multi-site observations for this star. We confirm the presence of a periodic pattern in the Fourier spectrum, this pattern being interpreted as the so-called large separation. Based on observations collected at the Observatoire de Haute-Provence (CNRS, France). Title: Spectroscopic analysis of a super-hot giant flare observed on Algol by BeppoSAX on 30 August 1997 Authors: Favata, F.; Schmitt, J. H. M. M. Bibcode: 1999A&A...350..900F Altcode: 1999astro.ph..9041F We present an X-ray observation of the eclipsing binary Algol, obtained with the BeppoSAX observatory. During the observation a huge flare was observed, exceptional both in duration as well as in peak plasma temperature and total energy release. The wide spectral response of the different BeppoSAX instruments, together with the long decay time scale of the flare, allowed us to perform a detailed time-resolved X-ray spectroscopic analysis of the flare. We derive the physical parameters of the emitting region together with the plasma density applying different methods to the observed flare decay. The X-ray emission from the flare is totally eclipsed during the secondary optical eclipse, so that the size of the emitting region is strongly constrained (as described in a companion paper) on purely geometrical arguments. The size of the flare thus derived is much smaller than the size derived from the analysis of the evolution of the spectral parameters using the quasi-static cooling formalism, showing that the time evolution of the flare is determined essentially from the temporal profile of the heating, with the intrinsic decay of the flaring loop having little relevance. The analysis of the decay with the technique recently developed for solar flares by \cite*{rbp+97} on the other hand is in much better agreement with the eclipse-derived constraints. The very high signal-to-noise of the individual spectra strongly constrains some of the derived physical parameters. In particular, very significant evidence for a three-fold increase in coronal abundance and for a large increase in absorbing column density during the initial phases of the flare evolution is present. Title: Influence of the initial motion of ejecta and of plasma drag on the shape of Saturn's E ring. Authors: Thiessenhusen, K. U.; Spahn, F.; Schmidt, J.; Krivov, A. V. Bibcode: 1999BAAS...31.1141T Altcode: No abstract at ADS Title: Influence of the Initial Motion of Ejecta and of Plasma Drag on the Shape of Saturn's E Ring Authors: Thiessenhusen, K. U.; Spahn, F.; Schmidt, J.; Krivov, A. Bibcode: 1999DPS....31.4409T Altcode: Saturn's E ring consists mostly of micron sized particles ejected from the surface of the moon Enceladus. Their long-term evolution is mainly determined by Saturn's gravity, electromagnetic forces and radiation pressure. We studied the influence of additional forces, e.g., plasma drag as well as the influence of the initial motion of the particles on their long--term evolution. The most of the observed E ring features can be explained by the inclusion of these two effects in the existing models for the dynamics of the ring particles. The initial motion of particles ejected from Enceladus causes a vertical ring extension in good accordance with the observed ring height profile. Plasma drag and an ejection of dust preferentially in the direction of Enceladus' motion lead to a radially asymmetric density profile of the ring, also in qualitative agreement with the observations. This work has been supported by Deutsches Zentrum fur Luft-- und Raumfahrt (DLR). Title: Effects of heat flux and nonlocal transport on the viscous overstability in Saturns B ring Authors: Schmidt, J.; Salo, H.; Spahn, F.; Petzschmann, O. Bibcode: 1999DPS....31.4407S Altcode: We investigate the viscous overstability in the hydrodynamical approximation of a thin, dense, and self gravitating planetary ring. We generalize existing models in two ways. First, in addition to the balance equations for mass and momentum we take into account the balance law for the energy of the random motion, i.e. we allow for a thermal mode in a stability analysis of the stationary state. Second, we incorporate the effects of nonlocal transport of momentum and heat, and include the nonlocal pressure in the stress tensor. We compare the growth rates of harmonic perturbations of the linearized balance equations to growth rates obtained from event driven, local N-body simulations. Title: Continuous heating of a giant X-ray flare on Algol Authors: Schmitt, J. H. M. M.; Favata, F. Bibcode: 1999Natur.401...44S Altcode: 1999astro.ph..9040S Giant stellar flares can release large amounts of energy within a few days: X-ray emission alone can be up to ten per cent of the star's bolometric luminosity. These flares exceed the luminosities of the largest solar flares by many orders of magnitude, which suggests that the underlying physical mechanisms supplying the energy are different from those on the Sun. Magnetic coupling between the components in a binary system or between a young star and an accretion disk has been proposed as a prerequisite for giant flares. Here we report X-ray observations of a giant flare on Algol B, a giant star in an eclipsing binary system. We observed a total X-ray eclipse of the flare, which demonstrates that the plasma was confined to Algol B, and reached a maximum height of 0.6 stellar radii above its surface. The flare occurred around the south pole of Algol B, and energy must have been released continuously throughout its life. We conclude that a specific extrastellar environment is not required for the presence of a flare, and that the processes at work are therefore similar to those on the Sun. Title: The ROSAT all-sky survey bright source catalogue Authors: Voges, W.; Aschenbach, B.; Boller, Th.; Bräuninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; Hartner, G.; Hasinger, G.; Kürster, M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Trümper, J.; Zimmermann, H. U. Bibcode: 1999A&A...349..389V Altcode: 1999astro.ph..9315V; 2009A&A...500..563V We present the ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision 1RXS) derived from the all-sky survey performed during the first half year (1990/91) of the ROSAT mission. 18,811 sources are catalogued (i) down to a limiting ROSAT PSPC count-rate of 0.05 cts s(-1) in the 0.1-2.4 keV energy band, (ii) with a detection likelihood of at least 15 and (iii) at least 15 source counts. The 18,811 sources underwent both an automatic validation and an interactive visual verification process in which for 94% of the sources the results of the standard processing were confirmed. The remaining 6% have been analyzed using interactive methods and these sources have been flagged. Flags are given for (i) nearby sources; (ii) sources with positional errors; (iii) extended sources; (iv) sources showing complex emission structures; and (v) sources which are missed by the standard analysis software. Broad band (0.1-2.4 keV) images are available for sources flagged by (ii), (iii) and (iv). For each source the ROSAT name, position in equatorial coordinates, positional error, source count-rate and error, background count-rate, exposure time, two hardness-ratios and errors, extent and likelihood of extent, likelihood of detection, and the source extraction radius are provided. At a brightness limit of 0.1 cts s(-1) (8,547 sources) the catalogue represents a sky coverage of 92%. The RASS-BSC, the table of possible identification candidates, and the broad band images are available in electronic form (Voges et al. 1996a) via http://wave.xray.mpe.mpg.de/rosat/catalogues/rass-bsc. The RASS-BSC and the identification table are also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html Title: Coordinated radio continuum observations of comets Hyakutake and Hale-Bopp from 22 to 860 GHz Authors: Altenhoff, W. J.; Bieging, J. H.; Butler, B.; Butner, H. M.; Chini, R.; Haslam, C. G. T.; Kreysa, E.; Martin, R. N.; Mauersberger, R.; McMullin, J.; Muders, D.; Peters, W. L.; Schmidt, J.; Schraml, J. B.; Sievers, A.; Stumpff, P.; Thum, C.; von Kap-Herr, A.; Wiesemeyer, H.; Wink, J. E.; Zylka, R. Bibcode: 1999A&A...348.1020A Altcode: We have observed both Comets Hyakutake and Hale-Bopp close to perigee with several telescopes at frequencies between 30 and 860 GHz for an extended period of time. The observed ``light" curves can be described as a simple function of heliocentric and geocentric distances without any outburst or noticeable variability with time. Our most sensitive diameter estimate for C/Hyakutake resulted in an upper limit of 2.1 km. The nuclear diameter of C/Hale-Bopp was determined to 44.2 km after separation from the halo emission. The central part of both halos can be represented by a Gaussian with a linear size at half power points of 1870 and 11080 km for Hyakutake and Hale-Bopp, respectively. The spectral index for both comets is alpha = 2.8, indicating a similar particle size distributions in the halo of these comets. For Hale-Bopp the extended emission could be traced to more than 10(5) km from its nucleus. The derived masses, contained in the halo depend strongly on the assumed physical properties of the halo particles. With kappa (1mm) = 75 cm(2) /g, possibly more appropriate for comets, a halo mass of 6 10(10) g is derived for Hyakutake and of 8 10(12) g for Hale-Bopp. Title: VizieR Online Data Catalog: ROSAT all-sky survey catalogue of OB stars (Berghoefer+ 1996) Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Cassinelli, J. P. Bibcode: 1999yCat..41180481B Altcode: For the detailed statistical analysis of the X-ray emission of hot stars we selected all stars of spectral type O and B listed in the Yale Bright Star Catalogue and searched for them in the ROSAT All-Sky Survey. In this paper we describe the selection and preparation of the data and present a compilation of the derived X-ray data for a complete sample of bright OB stars.

(2 data files). Title: The ROSAT all-sky survey catalogue of the nearby stars Authors: Hünsch, M.; Schmitt, J. H. M. M.; Sterzik, M. F.; Voges, W. Bibcode: 1999A&AS..135..319H Altcode: We present X-ray data for all entries of the Third Catalogue of Nearby Stars \cite[(Gliese & Jahreiss 1991)]{gli91} that have been detected as X-ray sources in the ROSAT all-sky survey. The catalogue contains 1252 entries yielding an average detection rate of 32.9 percent. In addition to count rates, source detection parameters, hardness ratios, and X-ray fluxes we also list X-ray luminosities derived from Hipparcos parallaxes. Catalogue also available at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html Title: Search for X-ray emission from bona-fide and candidate brown dwarfs Authors: Neuhäuser, R.; Briceño, C.; Comerón, F.; Hearty, T.; Martín, E. L.; Schmitt, J. H. M. M.; Stelzer, B.; Supper, R.; Voges, W.; Zinnecker, H. Bibcode: 1999A&A...343..883N Altcode: 1998astro.ph.12436N Following the recent classification of the X-ray detected object V410 x-ray 3 with a young brown dwarf candidate (Briceño et al. 1998) and the identification of an X-ray source in Chamaeleon as young bona-fide brown dwarf (Neuhäuser & Comerón 1998), we investigate all ROSAT All-Sky Survey and archived ROSAT PSPC and HRI pointed observations with bona-fide or candidate brown dwarfs in the field of view with exposure times ranging from 0.13 to 221 ks, including dedicated 64 ks and 42 ks deep ROSAT HRI pointed observations on the low-mass star BRI 0021-0214 and the brown dwarf Calar 3, respectively. Out of 26 bona-fide brown dwarfs, one is newly detected in X-rays, namely rho Oph GY 202. Also, four out of 57 brown dwarf candidates studied here are detected in X-rays, namely the young Taurus brown dwarf candidates MHO-4, MHO-5, V410 Anon 13, and V410 x-ray 3. The M9.5-type star BRI 0021-0214 is not detected. In the appendix, we also present catalogued, but as yet unnoticed B- and R-band data for some of the objects studied here. Title: A calibration of the ROSAT HRI UV leak Authors: Berghöfer, T. W.; Schmitt, J. H. M. M.; Hünsch, M. Bibcode: 1999A&A...342L..17B Altcode: The purpose of this paper is to present a detailed investigation of the Ultraviolet and visible sensitivity of the high-resolution imager (HRI) onboard the ROSAT X-ray satellite. We provide observational evidence that a recently published model (Zombeck et al. 1997) of the out-of-band quantum efficiency of the HRI overpredicts the detector response longward of approximately 4000 Angstroms. The contamination of the HRI is limited to the UV bandpass below approximately 4000 Angstroms. Based on the optical properties of our target stars, our ROSAT HRI and PSPC observations, and UV fluxes measured with the TD1 satellite, we provide an accurate calibration for the UV leak flux and present formulae to estimate UV leak count rates based on UV (1965 Angstroms) fluxes or stellar U magnitudes. Title: Very young stars in the solar vicinity Authors: Wichmann, R.; Schmitt, J. H. M. M. Bibcode: 1999noao.prop...76W Altcode: New surveys and catalogues like the ROSAT All-Sky Survey (RASS) and the TYCHO/HIPPARCOS catalogues have opened the unprecedented opportunity to search for new stellar populations. We are interested in the population of very young (ZAMS/PMS) stars in the solar vicinity. We propose to use the Coude Feed telescope with the Coude spectrograph to obtain high-resolution spectroscopy on a sample of x-ray active, nearby stars (obtained by cross-correlating the TYCHO-catalogue with the RASS), in order to identify very young stars among them. The proposed spectroscopic observations - together with TYCHO/HIPPARCOS parallaxes and TYCHO photometry -, will allow us to determine the evolutionary status of these stars, investigate the galactic star forming history in the solar vicinity, and to cast light on the still controversial issue of the nature of the numerous weak-line T Tauri stars found recently around nearby star forming regions. Title: Resolving X-ray Spectral Variations in η Carinae Authors: Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Damineli, A.; Viotti, R.; Schmitt, J. H. M. M. Bibcode: 1999ASPC..179...46C Altcode: 1999ecm..conf...46C No abstract at ADS Title: ROSAT All-Sky Survey observations of IRAS selected T Tauri star candidates Authors: Hearty, T.; Neuhäuser, R.; Schmitt, J. H. M. M.; Voges, W. Bibcode: 1999hxra.conf..395H Altcode: No abstract at ADS Title: A Search for X-ray emission from Saturn, Uranus and Neptune Authors: Ness, J. U.; Schmitt, J. H. M. M. Bibcode: 1999AGAb...15...18N Altcode: 1999AGM....15..B07N We present an analysis of X-ray observations of the trans-Jovian planets Saturn, Uranus and Neptune with the ROSAT PSPC in comparison with X-ray observations of Jupiter. For the first time a marginal X-ray detection of Saturn was found and 95 % confidence upper limits for Uranus and Neptune were obtained. From these upper limits we argue that Jupiter-like X-ray emission can be excluded for all three planets while they are consistent assuming intrinsic Saturn-like X-ray brightnesses. Similar X-ray production mechanisms on all trans-Jovian planets can therefore not be ruled out, and spectral shape and total luminosity are consistent with thick-target bremsstrahlung caused by electron precipitation as occurring in auroral emission from the Earth. Title: Diffuse X-ray Background Maps from the ROSAT All-Sky Survey Authors: McCammon, D.; Egger, R.; Freyberg, M. J.; Plucinsky, P. P.; Sanders, W. T.; Schmitt, J. H. M. M.; Snowden, S. L.; Trümper, J.; Voges, W. Bibcode: 1999hxra.conf..274M Altcode: No abstract at ADS Title: X-ray Emission from Normal Stars Authors: Schmitt, J. H. M. M. Bibcode: 1999hxra.conf..371S Altcode: No abstract at ADS Title: Possible Detection of P-Mode Oscillations on Procyon Authors: Barban, C.; Michel, E.; Martic, M.; Schmitt, J.; Bouchy, F.; Lebrun, J. C.; Connes, P.; Bertaux, J. L.; Baglin, A. Bibcode: 1999ASPC..185..177B Altcode: 1999psrv.conf..177B; 1999IAUCo.170..177B Absolute accelerometry is a technique developed by P. Connes (1985) to detect small radial-velocity changes. We observed Procyon with a preliminary version of the Absolute Astronomical Accelerometer (AAA) coupled with the spectrograph ELODIE at the 193 cm telescope of the Observatoire de Haute Provence (France) during 8 nights December 97-January 98. Here, we present results of a search for solar-like oscillations in Procyon and the performance of the AAA for asteroseismology. Title: A search for star formation in the translucent clouds MBM7 and MBM55 Authors: Hearty, T.; Magnani, L.; Caillault, J. -P.; Neuhäuser, R.; Schmitt, J. H. M. M.; Stauffer, J. Bibcode: 1999A&A...341..163H Altcode: The star formation capability of two molecular clouds at high galactic latitude ( | b | > 30(deg) ) is investigated. Possible pre-main sequence stars in and around the translucent clouds MBM7 and MBM55 have been identified via their X-ray emission by inspecting ROSAT All-Sky Survey observations of the clouds and environs and ROSAT pointed observations of the high-density cores within the clouds. Follow-up optical spectroscopy of the stellar X-ray sources with V <= 15.5 mag was conducted with the 1.5-m Fred Lawrence Whipple Observatory telescope to identify standard signatures of pre-main sequence stars (LiI <~mbda6708 Angstroms absorption and Hα emission). We found 11 stars which have lithium equivalent widths, W(Li), above our detection threshold. Three of the stars with lithium also have weak Hα emission. Relative ages for the stars with lithium are estimated by their position on an W(Li) vs. T_eff diagram. A calibration derived from data for several clusters with known ages indicates the stars are older than the translucent high-latitude clouds. This conclusion is supported by a comparison with theoretical evolutionary tracks of the stars from our sample for which we have distance measurements from Hipparcos. We find it is unlikely that any of the X-ray active, lithium-rich stars we identified have formed in the clouds in question. Theoretical and observational arguments support this conclusion and render unlikely the possibility that low-extinction translucent clouds are the sites of star formation. Table~3 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html. Title: Rossi-XTE long-term monitoring of Eta Carinae Authors: Corcoran, M. F.; Ishibashi, K.; Swank, J. H.; Davidson, K.; Petre, R.; Viotti, R.; Schmitt, J. H. M. M. Bibcode: 1999NuPhS..69...33C Altcode: The unstable star η Carinae is arguably the Galaxy's most massive known star or an extremely peculiar massive binary. We report first results of ~weekly RXTE monitoring of η Car during the 1996 Feb - 1997 Jun interval, with daily coverage in 1997 Jun-Jul this represents the most detailed description of the X-ray emission of this or any other massive star. Our RXTE results show a progressive increase in the average 2-10keV flux through the observing interval. Most surprisingly, we find peaks in the X-ray lightcurve which occur every 85+/-1.2 days. We consider possible causes of the X-ray variations. Title: Probing the large-scale distribution of X-ray active stars with the RASS-Tycho/Hipparcos samples Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch, C.; Neuhäuser, R. Bibcode: 1999hxra.conf..382G Altcode: No abstract at ADS Title: Late-type stars in the ROSAT all-sky survey Authors: Hünsch, M.; Schmitt, J. H. M. M.; Sterzik, M. F.; Voges, W. Bibcode: 1999hxra.conf..387H Altcode: No abstract at ADS Title: Effects of heat flux and nonlocal transport on the viscous overstability in Saturn's B ring. Authors: Schmidt, J.; Salo, H.; Spahn, F.; Petzschmann, O. Bibcode: 1999BAAS...31S1141S Altcode: No abstract at ADS Title: Catalogues from ROSAT All-Sky Survey and Pointed Observations Authors: Voges, W.; Boller, Th.; Dennerl, K.; Englhauser, J.; Aschenbach, B.; Bräuninger, H.; Briel, U.; Burkert, W.; Gruber, R.; Haberl, F.; Hartner, G.; Hasinger, G.; Hasinger, G.; Kürster, M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Siebert, J.; Šimić, D.; Trümper, J.; Zimmermann, H. -U. Bibcode: 1999hxra.conf..282V Altcode: No abstract at ADS Title: VizieR Online Data Catalog: MBM 7 and MBM 55 X-ray sources (Hearty+ 1999) Authors: Hearty, T.; Magnani, L.; Caillault, J. -P.; Neuhaeuser, R.; Schmitt, J. H. M. M.; Stauffer, J. Bibcode: 1998yCat..33410163H Altcode: The star formation capability of two molecular clouds at high galactic latitude (|b|>30°) is investigated. Possible pre-main sequence stars in and around the translucent clouds MBM7 and MBM55 have been identified via their X-ray emission by inspecting ROSAT All-Sky Survey observations of the clouds and environs and ROSAT pointed observations of the high-density cores within the clouds. Follow-up optical spectroscopy of the stellar X-ray sources with V<=15.5mag was conducted with the 1.5-m Fred Lawrence Whipple Observatory telescope to identify standard signatures of pre-main sequence stars (LiI λ6708Å absorption and Hα emission). We found 11 stars which have lithium equivalent widths, W(Li), above our detection threshold. Three of the stars with lithium also have weak Hα emission. Relative ages for the stars with lithium are estimated by their position on an W(Li) vs. Teff diagram. A calibration derived from data for several clusters with known ages indicates that the stars are older than the translucent high-latitude clouds. This conclusion is supported by a comparison with theoretical evolutionary tracks of the stars from our sample for which we have distance measurements from Hipparcos. We find it is unlikely that any of the X-ray active, lithium-rich stars we identified have formed in the clouds in question. Theoretical and observational arguments support this conclusion and render unlikely the possibility that low-extinction translucent clouds are the sites of star formation.

(4 data files). Title: Alpha Centauri: coronal temperature structure and abundances from ASCA observations Authors: Mewe, R.; Drake, S. A.; Kaastra, J. S.; Schrijver, C. J.; Drake, J. J.; Guedel, M.; Schmitt, J. H. M. M.; Singh, K. P.; White, N. E. Bibcode: 1998A&A...339..545M Altcode: We have analyzed the X-ray spectrum of the nearby binary alpha Cen AB (G2V + K1V) that has been obtained from observations with ASCA. The coronal temperature structure and abundances have been derived from multi-temperature fitting and confirmed by a differential emission measure analysis. The corona as seen by ASCA is essentially isothermal with a temperature around 0.3 keV, consistent with the evolutionary picture of coronae of aging solar-type stars. A comparison between the measurements from various instruments indicates a source variability in the coronal flux (which precludes the joint fitting of data from different instruments taken at different epochs) and temperature structure consistent with that discovered in a series of ROSAT observations. The elemental abundances agree with solar photospheric abundances for Ne, Si, and Fe at 1hbox {\sigma^2 CrB}ma level, while O appears to be underabundant by a factor of about 3 relative to solar photospheric values, and Mg overabundant by a factor of a few. The abundance ratios with respect to Fe are better determined: [O/Fe] = 0.4+/-0.14 (x solar, etc.), [Mg/Fe] = 4+/-1, [Ne/Fe] = 1+/-0.3, and [Si/Fe] = 6+/-4. Title: The ROSAT all-sky survey catalogue of optically bright main-sequence stars and subgiant stars Authors: Huensch, M.; Schmitt, J. H. M. M.; Voges, W. Bibcode: 1998A&AS..132..155H Altcode: We present X-ray data for all main-sequence and subgiant stars of spectral types A, F, G, and K and luminosity classes IV and V listed in the Bright Star Catalogue that have been detected as X-ray sources in the ROSAT all-sky survey; several stars without luminosity class are also included. The catalogue contains 980 entries yielding an average detection rate of 32 percent. In addition to count rates, source detection parameters, hardness ratios, and X-ray fluxes we also list X-ray luminosities derived from Hipparcos parallaxes. The catalogue is also available in electronic form via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html Title: ROSAT HRI observations of the intermediate-age open cluster IC 4756 Authors: Randich, S.; Singh, K. P.; Simon, T.; Drake, S. A.; Schmitt, J. H. M. M. Bibcode: 1998A&A...337..372R Altcode: We have obtained an 88 kilosecond ROSAT HRI exposure of the intermediate-age open cluster IC 4756 with the purpose of detecting stars in the high luminosity tail (log L_X >= 10(29) erg s(-1) ) of its X-ray luminosity distribution. However, only 1 cluster member (HSS 201) out of the 60 members inside the central high-sensitivity region of the HRI field of view (FOV) was detected. This star has spectral type A8, suggesting a close binary system with a low mass X-ray emitting companion. We compare the distribution of upper limits for F and G-type dwarfs in IC 4756 with the X-ray distribution functions of the similarly aged Hyades and Praesepe clusters. The results of this statistical analysis are inconclusive for G-type stars, but suggest that at least F-type stars in IC 4756 are not as X-ray luminous as their Hyades counterparts, thus indicating intrinsic differences between the two clusters. Finally, our data indicate a deficit of very active binaries with respect to both Hyades and Praesepe, and older open clusters. Title: Measurements of transport coefficients of granular gases using computer simulations Authors: Petzschmann, O.; Sremcevic, M.; Schmidt, J.; Spahn, F. Bibcode: 1998BAAS...30.1044P Altcode: It is well known that the equilibrium state of a planetary ring is determined by a balance of viscous heating and collisional cooling. The ring material consists of granular particles, i.e. the inter-particle collisions are dissipative. Therefore, the knowledge of the transport coefficients of granular gases is of crucial interest for the understanding of the ring dynamics. As a first step, we concentrate our work on a granular gas of smooth spheres of unique size and with a constant coefficient of restitution. We investigate the transport coefficients of granular gases by using N-body simulations and compare the results with analytic expressions derived by Jenkins and Richman (1985) in the framework of kinetic theory. We find a good agreement with the results of Jenkins and Richman that are restricted to nearly elastic collisions and purely Newtonian fluids. Using our simulations, we check the limitations of their theory. Furthermore, we investigate a sheared granular gas with variable restitution, in order to get a more realistic expression for the viscosity of the material of a planetry ring. Title: About the optical depth profile of Saturns E ring Authors: Spahn, F.; Thiessenhusen, K. -U.; Schmidt, J. Bibcode: 1998DPS....30.1704S Altcode: 1998BAAS...30Q1044S The dynamics of dust particles launched from the surface of the Saturnian satellite Enceladus is studied. They move influenced by Saturn's magnetic field, Sun's radiation and the gravitational fields of Enceladus and Saturn. In the latter case also the higher harmonics (up to J_2) of gravitational field caused by the oblateness of Saturn have been considered. In a first step we have chosen the equilibrium gain potential according to Horanyi et al. ( Icarus 97 (1992), 248) whereas the size of the dust is a free parameter. A few million particles have been simulated according to the ejecta distributions caused by interplanetary as well as E ring impactors onto Enceladus (Colwell, Icarus 106 (1993), 536). Shortly after launch from Enceladus, we found two major streams departing the satellite in almost all cases of the ejecta velocity distributions. Most of the material is migrating into the E ring in a direction away from Saturn. In this way an asymmetry in the radial optical depth profile of the E ring around the orbit of Enceladus is initially injected. Long term simulations, which have to be run for several seasons of Saturn, should clear whether this initially injected radial asymmetry is wiped out by the effects of radiation, magnetic field, and oblateness or whether it is kept but spread over the whole range of the E ring. Analytically estimates of the Gaussian equations for the dynamics of the orbital elements point to the latter. The specific shape of the optical depth profile of the E ring is then determined by certain sources and sinks (all moons and rings) of E ring dust. This is going to be modeled by solving numerically a balance equation of Master-type. Title: Discovery of a late-type stellar population associated with the Gould Belt Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch, C.; Neuhaeuser, R. Bibcode: 1998A&A...337..113G Altcode: We report the detection of a late-type stellar population in the direction of the Gould Belt among stars found by cross-correlating the ROSAT All-Sky Survey with the Tycho catalog. Regions of the Gould Belt located between l = 195°\ and l = 15°\ exhibit a strong density enhancement of X-ray active stars with associated X-ray luminosities LX = 10(30.0+/-0.5) erg s(-1) , typical for very young coronae. In contrast, other regions show average galactic plane characteristics. Stars accounting for the excess appear to extend from the solar vicinity up to about 300 pc towards a quadrant centered on l = 240°, but their distance distribution only extends to 180 pc from the Sun towards l = 330°. The structure can be understood as a disk-like arrangement of stars having the same inclination towards the galactic plane as the Gould Belt and extending to its outer boundary. We suggest that these stars are the residuals of original associations and interpret them as the late-type stellar population of the Gould Belt. Title: Coronal Metallicities of Active Binaries Authors: Kashyap, V.; Drake, J. J.; Pease, D. O.; Schmitt, J. H. M. M. Bibcode: 1998AAS...192.8201K Altcode: 1998BAAS...30.1155K We analyze EUV and X-ray data on a sample of X-ray active binary stars to determine coronal abundances. EUVE spectrometer data are used to obtain line fluxes, which are then used to determine Differential Emission Measures (DEMs). The continuum emission predicted for these DEMs (constrained at high temperatures by measurements in the X-ray regime where available) are then compared with EUVE/DS counts to derive coronal metallicities. These measurements indicate whether the coronae on these stars are metal deficient (the ``MAD Syndrome'') or subject to the FIP-effect (low First Ionization Potential elements have enhanced abundances relative to the photospheres). Title: Vertical Distribution of Temperature and Density in a Planetary Ring Authors: Schmidt, J.; Spahn, F.; Petzschmann, O.; Salo, Heikki Bibcode: 1998BAAS...30.1045S Altcode: We model temperature and density profiles for a dilute planetary ring, based on the hydrodynamic balance equations for momentum and energy of granular flows. Within our approximation the ring consists of inelastic smooth spheres of unique size and mass, while the fluxes of mass, momentum and energy are linear functions of the gradients of density, velocity and temperature. The phase space distribution function is an isotropic Gaussian with additive corrections that are first order in these gradients (Jenkins and Richman, Arch. Ration. Mech. Anal., 87 (1985)). The resulting system of coupled differential equations leads to temperature and density profiles, which depend on the coefficient of restitution, a measure for the inelasticity of the particle collisions, the optical depth and the shear rate. We compare the results to those of the kinetic approach to ring dynamics (Simon and Jenkins, Icarus, 110 (1994)) , where the non-isotropic nature of the ring system is taken into account by use of a triaxial Gaussian velocity distribution. Furthermore we present event driven N-particle simulations that confirm the numerical results. Title: X-ray activity and evolutionary status of late-type giants Authors: Schroeder, K. -P.; Huensch, M.; Schmitt, J. H. M. M. Bibcode: 1998A&A...335..591S Altcode: We study the evolution of stellar activity in a volume-limited sample of single giants within 35 pc distance from the Sun as measured by the amount of soft X-ray emission. This sample of 36 stars is assumed to be complete for absolute magnitude M_V la 3.0 and for X-ray luminosities L_x ga 1.5 x 10(28) erg s(-1) . We use ROSAT data to determine stellar activity, Hipparcos parallaxes to place stars into the HRD, and the empirically well tested evolutionary code by P. Eggleton (see Pols et al. 1998) together with Kurucz colour tables to derive individual masses and ages. Based on more X-ray data and much improved HR diagram positions, we confirm the suggestion by Huensch & Schroeder (1996), that stellar activity evolution is strongly coupled to stellar mass and that it is a very common feature among giants with M ga 1.3 Msun. Most pointed ROSAT observations on the giant branch (GB) and also in the ``K giant clump'' (with masses betweeen about 1.3 and 2.3 M_⊙) resulted in detections at typically solar levels. This indicates that magnetic activity mostly (for M ga 1.3 Msun) even survives the He-flash and, possibly, also persists on the asymptotic giant branch. The more massive stars (ga 3 M_⊙) show even a larger amount of activity in their advanced evolutionary stages (blue loop giants). Title: Structural and temporal behavior of biofilms investigated by FTIR-ATR spectroscopy Authors: Schmitt, J.; Fringeli, U. P.; Flemming, H. -C. Bibcode: 1998AIPC..430..312S Altcode: 1998fts..conf..312S The temporal and physiological behavior of bacteria forming biofilms on a surface was investigated by FT-IR ATR spectroscopy. Time dependent spectra could be attributed to changes in biofilm properties. H-D exchange experiments offered insights in structural changes of biofilms after chemical treatment with chlorine, used as a desinfectant. Title: Phase-resolved Simultaneous ORFEUS Far-Ultraviolet and ROSAT X-Ray Observations of the Active Star AB Doradus Authors: Schmitt, J. H. M. M.; Cutispoto, G.; Krautter, J. Bibcode: 1998ApJ...500L..25S Altcode: We report phase-resolved simultaneous ORFEUS far-ultraviolet (FUV) and ROSAT soft X-ray observations of the rapidly rotating young star AB Doradus (HD 36705), obtained with the FUV spectrometer flown on board ORFEUS II and the High Resolution Imager (HRI) on board ROSAT. The lines of C III at 977 and 1176 Å , O V at 1218 Å, and O VI at 1032 and 1038 Å, as well as N II at 1085 Å and Si III at 1206 Å, are clearly detected in the ORFEUS spectra. The X-ray flux intrinsically varied during the observation and FUV and X-ray fluxes are found to correlate. No changes in the line profiles are detectable, but the line profiles of C III λ977 and O VI λ1032 are definitely broadened with respect to the instrumental line profile. The observed broadening does not exceed the photospheric v sin i value, suggesting that the observed C III and O VI emission, formed at a characteristic temperature of ~80,000-300,000 K, is produced close to the star's surface. The C III λ1176/λ977 line ratio is found to be larger than that in the Sun, indicating electron densities (at ~80,000 K) of ne ~ 1011 cm-3 or higher. Title: The large-scale distribution of X-ray active stars Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch, C.; Egret, D.; Voges, W.; Neuhaeuser, R. Bibcode: 1998A&A...334..540G Altcode: We analyse the large-scale sky distribution of 8593 X-ray emitting stars from the cross-correlation of the ROSAT All-Sky Survey sources with the Tycho catalog. We detect a density gradient from the galactic plane to the galactic pole which is attributed to the scale height of the young late type star population of the galactic disc. The data also show a low galactic latitude enhanced feature with respect to mean plane density. We fit the observed X-ray stellar surface density with a model consisting of a constant background component plus an exponential disc and derive for the best fit an inclination i = 27.5(deg) +/- 1(deg) and an ascending node l_Ω = 282(deg) +/- 3(deg) with respect to the galactic plane. We discuss the Gould belt as a possible explanation to account for the observed enhancement. Based on observations made with the ESA Hipparcos astrometry satellite Title: Artificial neural networks applied to FTIR and FT-Raman spectra in biomedical applications Authors: Schmitt, J.; Udelhoven, T.; Löchte, T.; Flemming, H. -C.; Naumann, D. Bibcode: 1998AIPC..430..260S Altcode: 1998fts..conf..260S Biomedical applications of vibrational spectroscopy developed for routine analysis require reliable methods for data evaluation. Artificial neural networks open a new perspective for the spectra differentiation and identification of biologic samples with their small spectral variance. Spectral libraries based on different combined neural networks have been developed using FT-IR and FT-Raman spectra for bacteria and yeast identification. Title: Discovery of apsidal motion in alpha Coronae Borealis by means of ROSAT X-ray eclipse timing Authors: Schmitt, Juergen H. M. M. Bibcode: 1998A&A...333..199S Altcode: Four ROSAT X-ray observations of the secondary optical minimum of the eclipsing binary system alpha CrB taken in 1992, 1993 and 1997 are presented. Because of the totality of the X-ray eclipse, the times of mid eclipse can be accurately determined from the ROSAT data. The period between secondary minima P_s is found to be significantly different from the optically well determined period between primary minima P_p, thus indicating apsidal motion. The observed value P_s - P_p = 4.8 +/- 2.1 seconds is, first, shown to be almost exclusively due to the primary component, and second, consistent with our current knowledge of alpha CrB A. The relativistic contribution to the observed value is 0.95 seconds or 17 % of the total effect. Title: An Argument for Zeolites in Mars Rocks and an Earth Analog Authors: Basu, A.; Schmitt, J.; Crossey, L. J. Bibcode: 1998LPI....29.1041B Altcode: No abstract at ADS Title: X-ray/optical observations of stars with shallow convection zones (A8-G2 V) Authors: Piters, A. J. M.; van Paradijs, J.; Schmitt, J. H. M. M. Bibcode: 1998A&AS..128...29P Altcode: We present Walraven photometry and ROSAT All-Sky Survey data for a sample of 173 bright main-sequence stars with spectral types between A8V and G2V\@. These observations are part of a study of the onset of magnetic surface activity along the main sequence. Values for the effective temperature, surface gravity and interstellar reddening have been obtained from a comparison of the observed Walraven colours with theoretical values. These parameters have been used to derive accurate X-ray\ surface flux densities. Title: Modeling the Galactic 3/4 keV X-ray Background Authors: Freyberg, M. J.; Schmitt, J. H. M. M. Bibcode: 1998LNP...506..311F Altcode: 1998IAUCo.166..311F; 1998lbb..coll..311F We have analyzed the ROSAT PSPC all-sky survey maps of the soft X-ray background (SXRB) in the 3/4 keV band. One approach was to study the large-scale distribution of the X-ray emission with a multipole analysis. Here a significant dipole toward the galactic center region was found. This is interpreted in terms of variation of distant X-ray emission, e.g. galactic halo. Also a small-scale structure analysis of the 3/4 keV X-ray sky has been performed and a new analytic fluctuation probability distribution has been derived. No significant excess over the expected extragalactic point source contribution has been found. Finally, X-ray colours have been used to investigate spectral variations of the SXRB. Title: Inference of Stellar Coronal Structure Authors: Schmitt, J. H. M. M. Bibcode: 1998ASPC..154..463S Altcode: 1998csss...10..463S Unlike the solar corona, stellar coronae cannot be --- directly --- spatially resolved at X-ray wavelengths. Yet stellar coronae are likely to exhibit similar amounts of structure as the solar corona. Currently structural information from such spatially unresolved data can be inferred from rotational modulation of the X-ray emission for single stars and/or eclipses in the case of binary systems as well as from coronal density measurements, which can be obtained from suitably chosen density sensitive line ratios. The most powerful information on structure is contained in Doppler data, however, the spectral resolution of currently X-ray available instrumentation does not permit such measurements. I will discuss some of the observations obtained, and review the methods used to infer structure from these data. Particular emphasis will be placed on the ill-conditioned nature of the inversion problem, that makes it rather difficult to infer the possibly three-dimensional structure of stellar coronae. Finally I will address the prospects of obtaining structural information on other stars with the next generation of X-ray telescopes. Title: Catalogues of stellar X-ray emission from the ROSAT all-sky survey Authors: Huensch, M.; Schmitt, J. H. M. M.; Sterzik, M. F.; Voges, W. Bibcode: 1998AGAb...14..123H Altcode: 1998AGM....14..P49H Late-type stars are among the most frequent X-ray sources. Their X-ray emission is believed to be thermal emission from hot (>= 10^6 K) coronal plasma. It is estimated that about one third of the X-ray sources detected in the course of the ROSAT all-sky survey (RASS) are late-type stars. Since a close correlation between the solar soft X-ray emission and various other solar activity indicators is well established, coronal X-ray emission is a very powerful tool for the study of stellar activity in general. We have systematically searched for X-ray emission from late-type stars of the Bright Star (BSC) and Gliese catalogues in the ROSAT all-sky survey. We used positional coincidence as criterion for identification of X-ray sources with catalogue stars. Based on Monte-Carlo simulations of equal numbers of randomly distributed sky positions, we determined the maximum offset for a reliable identification to 90 arcseconds. The numbers of X-ray detected stars of spectral classes A to M are 450 for BSC giants and supergiants, 980 for BSC main-sequence and subgiant stars, and 1242 for the Gliese stars, corresponding to detection rates of 32%, 12%, and 33%, respectively. The resulting catalogues (Huensch et al., 1998, A&AS 127, 251 / in press / submitted) form the most comprehensive data basis yet available for the study of coronal X-ray emission. Title: ROSAT Catalogues from All-Sky Survey and Pointed Observations Authors: Voges, W.; Boller, Th.; Dennerl, K.; Englhauser, J.; Aschenbach, B.; Bräuninger, H.; Briel, U.; Burkert, W.; Gruber, R.; Freyberg, M.; Haberl, F.; Hartner, G.; Hasinger, G.; Kürster, M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Siebert, J.; Šimić, D.; Trümper, J.; Zimmermann, H. -U. Bibcode: 1998sxmm.confE..38V Altcode: No abstract at ADS Title: The ROSAT All-Survey Bright Source Catalog Authors: Voges, W.; Aschenbach, B.; Boller, Th.; Brauninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; Hartner, G.; Hasinger, G.; Kurster, M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Trumper, J.; Zimmermann, U. Bibcode: 1998IAUS..179..433V Altcode: No abstract at ADS Title: Extremely Active Cool Stars in the Young Open Cluster NGC 2362 Authors: Berghofer, T. W.; Schmitt, J. H. M. M. Bibcode: 1998ASPC..154.2091B Altcode: 1998csss...10.2091B NGC 2362 is one of the youngest open stellar clusters in our Galaxy and is centered around the massive O-type star tau CMa. This cluster exhibits several hundred cool stars in the pre-main sequence phase. We used the ROSAT PSPC and HRI to obtain deep X-ray images of NGC 2362. Here we present first results of an in-depth study of the X-ray properties of the cool star cluster members. Title: The ROSAT all-sky survey catalogue of optically bright late-type giants and supergiants Authors: Hunsch, M.; Schmitt, J. H. M. M.; Voges, W. Bibcode: 1998A&AS..127..251H Altcode: We present X-ray data for all late-type (A, F, G, K, M) giants and supergiants (luminosity classes I to III-IV) listed in the Bright Star Catalogue that have been detected in the ROSAT all-sky survey. Altogether, our catalogue contains 450 entries of X-ray emitting evolved late-type stars, which corresponds to an average detection rate of about 11.7 percent. The selection of the sample stars, the data analysis, the criteria for an accepted match between star and X-ray source, and the determination of X-ray fluxes are described. Catalogue only available at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html Title: Modeling the galactic 3/4 keV X-ray background Authors: Freyberg, M. J.; Schmitt, J. H. M. M. Bibcode: 1998LNP...506..309F Altcode: We have analyzed the ROSAT PSPC all-sky survey maps of the soft X-ray background (SXRB) in the 3/4 keV band. One approach was to study the large-scale distribution of the X-ray emission with a multipole analysis. Here a significant dipole toward the galactic center region was found. This is interpreted in terms of variation of distant X-ray emission, e.g. galactic halo. Also a smallscale structure analysis of the 3/4 keV X-ray sky has been performed and a new analytic fluctuation probability distribution has been derived. No significant excess over the expected extragalactic point source contribution has been found. Finally, X-ray colours have been used to investigate spectral variations of the SXRB. Title: Asteroseismology with the Absolute Astronomical Accelerometer (AAA): Preliminary Results Authors: Barban, C.; Martic, M.; Schmitt, J.; Connes, P.; Michel, E.; Baglin, A.; Bertaux, J. L. Bibcode: 1998ASPC..135..366B Altcode: 1998hcsp.conf..366B Absolute accelerometry is a technique developed by P. Connes (1985), to detect small radial-velocity changes, involving a CCD spectrograph, two lasers and a Fabry-Perot. The final output is a beat frequency similar to that from a Doppler radar. To estimate the performance of the Absolute Astronomical Accelerometer (AAA) for asteroseismology, we made specific observations, i.e. long continuous observing runs, with a preliminary version of the AAA coupled with the spectrograph Elodie at the T193 (OHP). The reachable accuracy is estimated from observations and simulations. It is shown that AAA is a well-suited instrument to detect solar-like oscillations in stars. References: Connes P.:1985, Astrophys. Sp. Sc., 110, 211. Title: Evolved Stars: What Happens to Activity Off the Main Sequence Authors: Strassmeier, K. G.; Fekel, F. C.; Gray, D. F.; Hatzes, A. P.; Schmitt, J. H. M. M.; Solanki, S. K. Bibcode: 1998ASPC..154..257S Altcode: 1998csss...10..257S Magnetic activity on the main sequence has been well studied, in contrast to researches on sub-giants, giants, and supergiant stars. In this discussion we will address three main topics associated with activity in evolved stars: (1) rotation regimes for evolved stars; (2) rotation-activity relations in the H-R diagram; (3) polar spots. Title: The large-scale distribution of X-ray active stars Authors: Guillout, P.; Sterzik, M. F.; Schmitt, J. H. M. M.; Motch, C.; Neuhaeuser, R. Bibcode: 1998AGAb...14..102G Altcode: 1998AGM....14..P06G One of the major finding of X-ray astronomy is the discovery of so-called "active stars". We decided to cross-correlate stellar catalogs with the ROSAT All-Sky Suvey (RASS) in order to construct samples of objects with known X-ray and optical properties. The cross correlation of the RASS and Tycho-Hipparcos catalogs provided us with the largest samples (RasTyc and RasHip) of stellar X-ray sources with accurate position, magnitude, colors, distance and proper motions constructed so far. We present the large-scale sky distribution of the brightest RasTyc stars. We detect a density gradient from the galactic plane to the galactic pole attributed to the ambient young late type star population of the galactic disc. The data also show up an enhanced feature with respect to mean plane density. We derive an inclination i = 27.5^{\circ} and an ascending node l_{\Omega} = 282^{\circ} for the exponential disc fitted to the observed X-ray stellar surface density. We discuss the Gould belt as a possible explanation and show that stars accounting for the observed enhancement display X-ray luminosities LX = 10^{30.0+/-0.5} erg s^{-1}, typical for very young coronae. Moreover they appear to extend from the solar vicinity up to 300 pc or further towards l = 240^\circ but their distance distribution only reach 155 pc from the Sun towards l = 330^\circ. The structure can be understood as a disk-like distribution of stars having the same inclination on the galactic plane as the Gould belt and extending to its outer boundary. We suggest that these stars are the residuals of associations now diluted. Title: Star-Formation at High Galactic Latitude Authors: Hearty, Thomas; Magnani, Loris; Caillault, Jean-Pierre; Neuhauser, Ralph; Schmitt, J. H. M. M.; Stauffer, John Bibcode: 1998ASPC..154.1716H Altcode: 1998csss...10.1716H The star-formation capability of molecular clouds at high galactic latitude (|b| > 30 deg) is investigated. Possible pre-main sequence stars in and around translucent and dark high-latitude clouds have been identified via their X-ray emission by inspecting ROSAT All-Sky Survey and ROSAT pointed observations of the cores and surrounding regions of the clouds. Follow-up optical spectroscopy of the stellar X-ray sources with m_v <~ 15.5 mag was conducted with the 1.5-m Fred Lawrence Whipple Observatory telescope to identify standard signatures of pre-main sequence stars (i.e., Li 1 lambda6708 AA absorption and Hα emission). We found 16 stars near several of the molecular clouds which have lithium equivalent widths above our detection threshold. Three stars also have weak Hα emission. Relative ages for the stars with lithium are estimated by their position on a W(Li) vs. T_eff diagram. A calibration derived from data for several clusters with known ages indicates the stars are older than the translucent high-latitude clouds. We find it is unlikely that most of the X-ray active, lithium-rich stars we identified have formed in the clouds in question. Theoretical and observational arguments support this conclusion and render unlikely the possibility that low-extinction, low column density clouds, such as most of the high-latitude clouds can support star-formation. Title: Development of an Absolute Accelerometer for Extra-Solar Planet Detection Authors: Schmitt, J.; Connes, P.; Bertaux, J. L. Bibcode: 1998EM&P...81...83S Altcode: 2000EM&P...81...83S The method of stellar radial velocity variations has recently shown its capability by the first discovery of several extra-solar planets. Accuracies achieved today are in the range 3-10 m/s. The AAA (absolute astronomical accelerometer) is an instrument which aims to reach the photon noise limit for the measurement of velocity changes, with systematic errors of about 1 m/s, long term. The principle is to use a servo-controlled CCD spectrograph as a null detector, and to register always the lines of the star on the same CCD pixels. Thus, systematic errors linked to the Earth-induced large variations are cancelled. A tunable Fabry-Perot channelled spectrum is also following the star spectrum, while the FP thickness is measured by heterodyne detection of the beats between a tunable laser diode and a stabilized laser diode. A complete prototype of the instrument is operating with laboratory sources and the first results are presented. It is planned to use this system with a new spectrograph, to be coupled to the 152 cm telescope at Observatoire de Haute Provence. Title: Coordinated Observations of Comet Hale-Bopp between 32 and 860 GHz Authors: Bieging, J. H.; Mauersberger, R.; Altenhoff, W. J.; Haslam, C. G. T.; Kreysa, E.; Schmidt, J.; Schraml, J. B.; Stumpff, P.; von Kap-Herr, A.; Butler, B.; McMullin, J.; Butner, H. M.; Martin, R. N.; Muders, D.; Peters, W. L.; Sievers, A.; Thum, C.; Wink, J.; Zylka, R. Bibcode: 1997AAS...191.7202B Altcode: 1997BAAS...29.1319B The concept of simultaneous multifrequency continuum observations, successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp, using the Heinrich Hertz Submillimeter Telescope (HHT) with the four color bolometer between 250 and 870 GHz; the IRAM 30m telescope at 250 GHz; the IRAM Plateau de Bure Interferometer near 90 and 240 GHz; and the MPIfR 100m telescope at 32 GHz. Near-simultaneous measurements were done between 1997 February 15 and 1997 April 26, mainly concentrated in mid-March shortly before perigee of the comet. The measurements gave the following preliminary results: (a) interferometer detection of the nuclear continuum emission. The derived mean diameter is of the order of 50 km. (b) a radio halo with a gaussian HPW of ~ 11 arcsec , corresponding to a diameter of 11000 km at geocentric distance of 1.2 A.U. (c) a spectral index (SI) of ~ 3.0 of the total signal, indicating a particle size distribution in the radio halo between 0.1 and 3 mm. Assuming an average cometary density of 0.5 g cm(-3) , the mass contained in the nucleus is about 3x 10(19) g and 10(12) g in the particle halo, inferred from the SI. A more detailed analysis is under way, which includes corrections for the various calibration scales at the different telescopes and the possible contamination of the observed bolometer signal by molecular line emission. We will report on the results of this analysis and the implications for the mm -- submm wavelength radio spectrum of Comet Hale-Bopp. Title: VizieR Online Data Catalog: X-ray/optical observations of A8-G2V stars (Piters+ 1998) Authors: Piters, A. J. M.; van Paradijs, J.; Schmitt, J. H. M. M. Bibcode: 1997yCat..41280029P Altcode: Table 1 lists the sample of 173 stars observed for this study. They are selected from the Bright Star Catalogue (Cat. <V/50>), with the following selection criteria: - Spectral type between A8 and G2; no spectral peculiarities noted; not double in spectral type classification (e.g., HR 32 with spectral type F2V+F6V is excluded); - Luminosity class V; - Right ascension between 0h and 2h, or between 14h and 24 h, declination south of +10 degrees (defining the region on the sky visible during the appointed observation times); - Binaries for which both components occurred in the BSC are excluded, if the separation is less than 10". Not listed are five stars for which no (Walraven photometric and ROSAT X-ray) data are available. These are HR 591, HR 5542, HR 6593, HR 8245 and HR 8735. Table 2 lists the Walraven photometric (VBLUW) data for all but four stars from Table 1. Also listed in Table 2 are the effective temperature, surface gravity and the reddening, as derived from comparison with theoretical colours. Table 5 lists the ROSAT All Sky Survey data for all but 11 stars from Table 1. For a description of the Walraven photometric system, see e.g. <GCPD/11> (3 data files). Title: Coronal and chromospheric emission from cool stars in near-simultaneous ROSAT all-sky survey and Mount Wilson data. Authors: Piters, A. J. M.; Schrijver, C. J.; Schmitt, J. H. M. M.; Rosso, C.; Baliunas, S. L.; van Paradijs, J.; Zwaan, C. Bibcode: 1997A&A...325.1115P Altcode: Mt. Wilson Ca II H&K line-core emission fluxes for 215 F-, G- and K-type stars were obtained within at most a few days of the corresponding ROSAT All-Sky Survey observations. These stars cover wide ranges of stellar activity, spectral type and luminosity class. In this paper we study the well-known relationship between the Ca II H&K line-core emission in excess of the minimum emission and the soft X-ray emission. We find that flux densities normalised with the bolometric flux densities are the best quantity in which to express activity when comparing radiative emission in different temperature regimes. We find a power-law relationship, in which the X-ray normalised emission varies approximately quadratically with the normalised excess Ca II H&K line-core emission. This relationship does not depend on luminosity class at least up to luminosity class III, and it does not depend on effective temperature. The scatter around this relationship is consistent with the measurement errors. The X-ray spectral hardness ratios of main-sequence stars increase with the X-ray flux densities; a similar trend, but with substantially larger scatter, is also present for evolved stars. A comparison between values from different passbands of the Mt. Wilson HK spectrophotometer shows that relatively hot stars ((B-V)<=0.50) appear to have a Ca II line core emission peak about a factor 2 to 3 wider than cooler stars. Title: Simultaneous ORFEUS FUV and ROSAT X-ray observations of the young rapid rotator AB Doradus. Authors: Schmitt, J. H. M. M.; Krautter, J.; Appenzeller, I.; Mandel, H.; Wichmann, R.; Barnstedt, J.; Goelz, M.; Grewing, M.; Gringel, W.; Haas, C.; Hopfensitz, W.; Kappelmann, N.; Kraemer, G. Bibcode: 1997A&A...325..249S Altcode: We present simultaneous soft X-ray and FUV observations of the rapidly rotating young star AB Doradus (HD 36705), obtained with the position sensitive proportional counter (PSPC) on board ROSAT and the FUV/EUV spectrometer on board ORFEUS. The X-ray data show that AB Dor was in a high state, possibly in a flare, during the FUV observations. The lines of CIII at 977Å and OVI at 1032 and 1038Å are clearly detected in the ORFEUS spectrum. The overall emission measure distribution of the combined FUV and X-ray data is steeply rising. The OVI 1032Å line is definitely broadened with respect to the instrumental line profile, however, the observed broadening does not exceed the photospheric vsin(i)-value. This strongly suggests that the observed OVI emission, formed at a characteristic temperature of =~300000K, is produced almost exclusively relatively close to the star's surface, and not in an extended corotating emission region with scale sizes of a few stellar radii. Title: ROSAT Survey Diffuse X-Ray Background Maps. II. Authors: Snowden, S. L.; Egger, R.; Freyberg, M. J.; McCammon, D.; Plucinsky, P. P.; Sanders, W. T.; Schmitt, J. H. M. M.; Trümper, J.; Voges, W. Bibcode: 1997ApJ...485..125S Altcode: This paper presents new maps of the soft X-ray background from the ROSAT all-sky survey. These maps represent a significant improvement over the previous version in that (1) the position resolution of the PSPC has been used to improve the angular resolution from ~2° to 12', (2) there are six energy bands that divide each of the previous three into two parts, and (3) the contributions of point sources have been removed to a uniform source flux level over most of the sky. These new maps will be available in electronic format later in 1997.

In this paper we also consider the bright emission in the general direction of the Galactic center in the 0.5-2.0 keV band, and the apparent absorption trough that runs through it along the Galactic plane. We find that while the northern hemisphere data are confused by emission from Loop I, the emission seen south of the plane is consistent with a bulge of hot gas surrounding the Galactic center (in our simple model, a cylinder with an exponential fall-off of density with height above the plane). The cylinder has a radial extent of ~5.6 kpc. The X-ray emitting gas has a scale height of 1.9 kpc, an in-plane electron density of ~0.0035 cm-3, a temperature of ~106.6 K, a thermal pressure of ~28,000 cm-3 K, and a total luminosity of ~2 × 1039 ergs s-1 using a collisional ionization equilibrium (CIE) plasma emission model. Title: Simultaneous optical and ROSAT X-ray observations of the classical T Tauri star BP Tauri. Authors: Gullbring, E.; Barwig, H.; Schmitt, J. H. M. M. Bibcode: 1997A&A...324..155G Altcode: The classical T Tauri star BP Tauri has been simultaneously observed with UBVRI high-speed photometry at a time resolution of 2sec and with the ROSAT PSPC detector during five nights. BP Tauri showed brightness variations on time scales ranging from nights to hours both in the optical and in the X-ray band, however, the night-to-night variations in the optical and X-ray spectral regions were not correlated. On one occasion, a short term optical event with an amplitude in U of ~0.05mag and a time duration of 1.2-hours occurred, with no corresponding increase in the X-ray count rate during the decay of the event. In conclusion, the observations show that there are no detectable correlations between the optical and X-ray variability of BP Tau on time scales ranging from 1-hour to days. We discuss the possibility that the optical variability of BP Tau is related to accretion of circumstellar material onto the central star, while the X-ray emission presumably comes from magnetically active regions. Title: VizieR Online Data Catalog: Near-simultaneous ROSAT and Mt Wilson data (Piters+ 1997) Authors: Piters, A. J. M.; Schrijver, C. J.; Schmitt, J. H. M. M.; Rosso, C.; Baliunas, S. L.; van Paradijs, J.; Zwaan, C. Bibcode: 1997yCat..33251115P Altcode: Table 1 lists near-simultaneous X-ray data and Ca II H&K line-core emission data from the ROSAT All-Sky Survey and from the Mt. Wilson H&K spectrometer, respectively. The stars in this sample are 215 bright F-, G-, and K-type stars. Table 2 lists the derived excess Ca II H&K line-core and the X-ray flux densities for the same stars. (2 data files). Title: X-ray properties of bright OB-type stars detected in the ROSAT all-sky survey. Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Danner, R.; Cassinelli, J. P. Bibcode: 1997A&A...322..167B Altcode: The ROSAT all-sky survey has been used to study the X-ray properties for all OB-type stars listed in the Yale Bright Star Catalogue. Here we present a detailed astrophysical discussion of our analysis of the X-ray properties of our complete sample of OB-type stars; a compilation of the X-ray data is provided in an accompanying paper (Berghoefer, Schmitt & Cassinelli 1996A&AS..118..481B). We demonstrate that the ``canonical'' relation between X-ray and total luminosity of L_x_/L_Bol_=~10^-7^ valid for O-type stars extends among the early B-type stars down to a spectral type B1-B1.5; for stars of luminosity classes I and II the spectral type B1 defines a dividing line for early-type star X-ray emission. We discuss the X-ray properties of X-ray detected B2-B9 stars (LC III-V) in the context of possible companions. We also compare our results to the results obtained from Einstein Observatory data and ROSAT pointed observations. We show for our sample of stars that X-ray variability is generally not common for O-type stars as well as early B-type stars. Title: New "weak-line"--T Tauri stars in Lupus Authors: Krautter, J.; Wichmann, R.; Schmitt, J. H. M. M.; Alcala, J. M.; Neuhauser, R.; Terranegra, L. Bibcode: 1997A&AS..123..329K Altcode: We present first results obtained by a survey of the Lupus star forming region in search of new T Tauri stars. This study has been performed on the basis of deep pointed ROSAT observations in the Lupus dark clouds as well as data from the ROSAT All-Sky-Survey in the surrounding, less obscured regions. Our survey covers an area of about 230 square degrees, located between 15^h,6^m and 16^h,24^m$ in right ascension and between -47^\circ and -32^\circ in declination. Identification of ROSAT All-Sky-Survey sources in this area by means of optical spectroscopy revealed 89 T Tauri stars, 86 of them "weak-line" T Tauri stars (WTTS) not known from previous studies of this region. Our pointed ROSAT observations led to the identification of 47 more T Tauri stars, giving a total of 136 new T Tauri stars. The large area of our study, as compared with previous works, allows us to study the spatial distribution of WTTS in this star forming region on a large scale. We find the new WTTS to be distributed over the whole area of our survey, indicating that their spatial distribution might extend well beyond our study area. Contrary to the Lupus T Tauri stars known prior to this study, the WTTS discovered by the ROSAT All-Sky-Survey are not clustered in the regions of highest extinction, i.e. the dark clouds. Based on observations collected at European Southern Observatory, La Silla, Chile (observing proposals ESO Nos. 49.7-0010, 50.7-0109, 51.7-0106, 51.7-0029). Tables 5--12 are only available in electronic form at the CDS via anonymous ftp 130.79.128.5 or on www at http://cdsweb.u-strasbg.fr/abstract.html. Title: Coordinated Observations of Comet Hale-Bopp between 32 and 860 GHz Authors: Wink, J. E.; Altenhoff, W. J.; Bieging, J.; Butler, B.; Butner, H.; Haslam, C. G. T.; Kreysa, E.; Martin, R.; Mauersberger, R.; McMullin, J.; Muders, D.; Peters, W.; Schmidt, J.; Schraml, J. B.; Sievers, A.; Stumpff, P.; von Kapp-Herr, A.; Thum, C.; Zylka, R. Bibcode: 1997EM&P...77..165W Altcode: The concept of simultaneous multifrequency continuum observations, successfully tested on Comet Hyakutake, was applied to Comet Hale-Bopp, using the Heinrich Hertz Submillimeter Telescope (HHT) with the four color bolometer between 250 and 870 GHz, the IRAM 30m telescope at 240 Ghz, the MPIfR 100-m telescope at 32 GHz, and the IRAM interferometer near 90 and 240 GHz. Near-simultaneous measurements were done between February 15 and April 26, 1997, mainly concentrated in mid March shortly before perigee of the comet. The measurements gave the following preliminary results: Interferometer detection of the nuclear thermal emission. If the signal at the longest interferometer spacing of 170 m is due to thermal emission from the nucleus only, its equivalent diameter is ~49 km. If, however, this signal contains a contribution from a strongly centrally peaked halo distribution (e.g., r^-2 density variation) the diameter may be as low as 35 km. The emission found interferometrically was always 5arcsec north and 0.1 sec east from the position predicted by Yeoman's solution 55. The comparison of the interferometric continuum emission with the simultanously obtained molecular line observations (reported on this conference) shows the origin of the strongest line emission concentrated on the nucleus. The 30-m observations show a radio halo with a gaussian FWHP of ~11, corresponding to a diameter of 11000 km at geocentric distance of 1.2 a.u. A spectral index of ~3.0 for the total signal, which may indicate a smaller mean particle size than for Hyakutake. Assuming an average cometary density of 0.5 gcm^-3, the mass contained in the nucleus is ~1-3 10^19 g and 10^12 g in the particle halo. Title: ROSAT and AB Doradus: the first five years. Authors: Kuerster, M.; Schmitt, J. H. M. M.; Cutispoto, G.; Dennerl, K. Bibcode: 1997A&A...320..831K Altcode: Five and a half years of data from an extensive ROSAT X-ray monitoring program devoted to the young K-star AB Dor are presented. Begun in mid-1990, this program is aimed at the study of the long-term behaviour of coronal flux levels in this very active star. We compare the X-ray data with 17 years of V-band brightness monitoring that shows a 10-year decline between 1978 and 1989 and a subsequent rise phase. In contrast, the X-ray flux, which is very variable on time scales of minutes to weeks, exhibits no pronounced long-term trend over the 5 1/2-years of the program. This supports the concept of a saturated corona. Making use of the ROSAT all-sky survey data and data from the most extensive among the available pointed observations we also discuss the short-term variablity in relation to the rotational time scale. We find evidence for a partial rotational modulation of the X-ray flux implying structural inhomogeneities in this saturated corona. Title: The T Tauri star population in the Lupus star forming region. Authors: Wichmann, R.; Krautter, J.; Covino, E.; Alcala, J. M.; Neuhaeuser, R.; Schmitt, J. H. M. M. Bibcode: 1997A&A...320..185W Altcode: In a recent study, some 130 new weak-line T Tauri stars (WTTS) have been discovered in the Lupus star forming region (SFR). Some of these stars are seen projected onto regions of high obscuration, while others are located far from the Lupus dark clouds. In this paper we present photometric observations of a large sample of these WTTS. We estimate effective temperatures and luminosities for the stars observed, and derive masses and ages by comparison with theoretical evolutionary tracks. The mean age of WTTS seen in projection against the dark clouds is found to be lower than the mean age of WTTS discovered far from regions of high obscuration, and yet higher than the mean age of the classical T Tauri stars (CTTS) in Lupus. Moreover, while the CTTS in Lupus show an unusual predominance of very low-mass stars, the WTTS population in Lupus contains many stars with comparatively higher masses. Correlations between the X-ray emission and other stellar parameters, like bolometric luminosity, radius, mass, and age, are studied, and the results are discussed. Title: The ROSAT All-Sky Survey of Active Binary Coronae. III. Quiescent Coronal Properties for the BY Draconis-Type Binaries Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.; Schmitt, J. H. M. M. Bibcode: 1997ApJ...478..358D Altcode: We present X-ray observations of 35 active late-type BY Draconis dwarf binary systems and 28 evolved binary systems, similar in nature to the RS Canum Venaticorum systems, obtained with the Position Sensitive Proportional Counter (PSPC) during the ROSAT All-Sky Survey phase of the mission. Of this sample, 52 targets were detected in exposures of roughly 600 s or less. When these new data are combined with the earlier results from Dempsey et al. (1993b), this survey represents the largest sample of active binary systems observed to date at any wavelength, including X-rays. We expand our investigation of how coronal properties (e.g., surface flux, luminosity, etc.) correlate with stellar parameters (e.g., rotation period, color, etc.) and confirm the conclusions of Dempsey et al. (1993b). Rotation period provides the best correlation with X-ray surface flux with FX~P-0.59+/-0.10rot for the entire sample. We find no evidence for a ``basal'' or nonmagnetic X-ray flux component. We model the low-resolution pulse-height spectra for 12 systems with two-temperature thermal plasmas. The derived temperatures for the BY Dra systems are identical to those previously derived for active evolved giants and subgiants in close binaries (Dempsey et al. 1993c). We also show that the dependence of temperature and emission measures on rotation period is the same for the dwarf, subgiant, and giant binaries. Title: A study of the Chamaeleon star-forming region from the ROSAT All-Sky Survey. II. The pre-main sequence population. Authors: Alcala, J. M.; Krautter, J.; Covino, E.; Neuhaeuser, R.; Schmitt, J. H. M. M.; Wichmann, R. Bibcode: 1997A&A...319..184A Altcode: We analyse the nature of the optical counterparts of the ROSAT all-sky survey (RASS) X-ray sources identified with new weak-line T Tauri (WTTS) stars in the Chamaeleon star forming region (SFR). The new WTTS are distributed throughout the whole SFR, while the classical T Tauri stars (CTTS) are found only in the cloud cores. Adopting a distance of 150pc we derive the stellar parameters and place the new WTTS in the HR diagram. By comparison with theoretical pre-main sequence (PMS) evolutionary tracks, we find masses in the range of 0.2-2.5Msun_ and ages from a few 10^5^yr to 5x10^7^yr. Many of the youngest WTTS are located far away from the main Chamaeleon dark clouds. By comparing the properties of the new WTTS with those of the previously known Chamaeleon members, we obtain the following results: i) the new WTTS are, on average, the more massive and luminous PMS stars in Chamaeleon, while the Cha II population contains the lower-mass PMS stars; ii) for stellar masses between 2.5 and 0.5Msun_, the combined mass distribution of the PMS stars is consistent with the initial mass function (IMF) for field stars, but declines rapidly for masses between 0.5 and 0.1Msun_, where the strongest selection effects are expected; iii) a weak trend for increasing age with increasing angular distance from the cloud cores is observed but we cannot establish an age segregation since very young WTTS are also found far away from the molecular clouds; iv) the age distributions of the new WTTS and the Cha I population are nearly identical, while that of the Cha II population is shifted towards younger stars indicating that Cha II is probably in an earlier evolutionary phase as compared with Cha I and the new WTTS; v) no decrease of the number density of WTTS is observed with increasing distance to the clouds; vi) the level of X-ray emission of the new WTTS is higher than that of the previously known Chamaeleon members, and the fraction of energy released as X-ray emission, is higher in the new WTTS than in the Cha I TTS. The latter is similar to the X-ray emission level found in open clusters. Finally, we discuss possible mechanisms which may give rise to the observed spatial distribution of the PMS stars in Chamaeleon. Title: Perspectives of single-molecule magnetic-resonance spectroscopy Authors: Kohler, J.; Schmidt, J. Bibcode: 1997CRASB.324..373K Altcode: It has been demonstrated recently that it is possible to observe the magnetic-resonance signal of a single molecular spin. This achievement represents the ultimate sensitivity in electron-spin resonance spectroscopy. In this contribution it will be explained how a single molecule in a molecular crystal can be selected using a cw, narrowband laser and how the magnetic-resonance transition in the photo-excited triplet state can be detected as a change in the fluorescence intensity. This experiment allows us to check whether or not the time-averaged signal of a single molecule is equal to the ensemble average, i.e. if the Ergodic Theorem applies. In experiments on molecules containing one 13C atom in natural abundance the presence of the single 13C nuclear spin ( I= 1/2) is visible by the hyperfine splitting. This experiment opens the possibility to study the properties of a tingle nuclear spin. Title: Star formation in translucent clouds Authors: Hearty, Thomas; Magnani, Loris; Caillault, Jean-Pierre; Neuhäuser, Ralph; Schmitt, J. H. M. M.; Stauffer, John Bibcode: 1997AIPC..393..461H Altcode: 1997sfnf.conf..461H The star-formation capability of three low-extinction translucent molecular clouds (TMCs) at high Galactic latitude is investigated. In an attempt to identify possible PMS stars in and around the clouds we have analyzed ROSAT All-Sky Survey and PSPC pointed observations of these TMCs. Follow-up optical spectroscopy (conducted with the 1.5-m Fred Lawrence Whipple Observatory telescope) of the stellar candidates with mV<15.5 was performed in order to identify standard signatures of pre-main-sequence (PMS) stars. We have found one dozen X-ray bright, lithium rich stars near clouds MBM7 and MBM55. However, all of these may be part of a slightly older stellar population that has retained its lithium. The X-ray sources projected onto cloud MBM40 show no signs of youth and are likely part of the X-ray field-star population. Title: An All-Sky Catalog of Faint Extreme Ultraviolet Sources Authors: Lampton, M.; Lieu, R.; Schmitt, J. H. M. M.; Bowyer, S.; Voges, W.; Lewis, J.; Wu, X. Bibcode: 1997ApJS..108..545L Altcode: We present a list of 534 objects detected jointly in the Extreme Ultraviolet Explorer (EUVE) 100 Å all-sky survey and in the ROSAT X-Ray Telescope 0.25 keV band. The joint selection criterion permits use of a low count rate threshold in each survey. This low threshold is roughly 60% of the threshold used in the previous EUVE all-sky surveys, and 166 of the objects listed here are new EUV sources, appearing in neither the Second EUVE Source Catalog nor the ROSAT Wide Field Camera Second Catalog. The spatial distribution of this all-sky catalog shows three features: an enhanced concentration of objects in Ursa Major, where the Galactic integrated H I column reaches its global minimum; an enhanced concentration in the third quadrant of the Galaxy (lII from 180° to 270°) including the Canis Major tunnel, where particularly low H I columns are found to distances beyond 200 pc; and a particularly low number of faint objects in the direction of the fourth quadrant of the Galaxy, where nearby intervening H I columns are appreciable. Of particular interest is the composition of the 166 detections not previously reported in any EUV catalog. We offer preliminary identifications for 105 of these sources. By far the most numerous (81) of the identifications are late-type stars (F, G, K, M), while 18 are other stellar types, only five are white dwarfs (WDs), and none are extragalactic. The paucity of WDs and extragalactic objects may be explained by a strong horizon effect wherein interstellar absorption strongly limits the effective new-source search volume and, thereby, selectively favors low-luminosity nearby sources over more luminous but distant objects. Title: Coronae on solar-like stars. Authors: Schmitt, J. H. M. M. Bibcode: 1997A&A...318..215S Altcode: The results of a complete and sensitive X-ray survey of all known stars of spectral type A, F, and G in the immediate solar vicinity with distances less than 13pc are presented. The X-ray data were obtained primarily from the ROSAT all-sky survey (RASS); those program stars not detected in the RASS data, were subsequently studied in the ROSAT pointed observation program. The detection rate among the F stars in the sample is 95%, that of the G stars 83%, the non-detections being due to survey observations. On the other hand, none of the A-stars with spectral type earlier than A7 could be detected even in sensitive pointings. I conclude from this that coronal formation in stars with surface convection zones is universal. The X-ray luminosities range over about four orders of magnitude, and can be well described with a log-normal distribution. Large X-ray outputs are correlated with kinematic age as assessed from space motions. I show the existence of a correlation between the total emitted X-ray surface flux and spectral hardness, such that more luminous objects tend to have larger spectral hardness, thus implying higher coronal temperatures. The mean X-ray surface fluxes span the same range as is observed for various solar coronal features, with a rather well-defined minimum X-ray flux being present; this minimum X-ray surface flux agrees very well with the X-ray surface flux of solar coronal holes. It therefore appears that a coronal hole represents the minimum state of "activity" not only for the Sun but also for other stars. I discuss a few implications of this finding especially with regard to properties of stars in Maunder minima states. Title: Discovery of the sigma Orionis Cluster. Authors: Walter, F. M.; Wolk, S. J.; Freyberg, M.; Schmitt, J. H. M. M. Bibcode: 1997MmSAI..68.1081W Altcode: No abstract at ADS Title: Time and Energy Dependence of 26-Day Recurrent Decreases of >100 MeV Protons in the Inner Southern Heliosphere and its Correlation to Latitudinal Gradients: Ulysses COSPIN/KET Results Authors: Kunow, H.; Heber, B.; Raviart, A.; Paizis, C.; Bothmer, V.; Droege, W.; Schmidt, J. Bibcode: 1997ICRC....1..381K Altcode: 1997ICRC...25a.381K No abstract at ADS Title: (Erratum) The ROSAT all-sky survey catalogue of optically bright OB-type stars. Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Cassinelli, J. P. Bibcode: 1997A&AS..121..212B Altcode: Erratum to Astron. Astrophys. Suppl. Ser. 118 (1996) 481-494. Title: Étude et réalisation en laboratoire d'un accéléromètre astronomique absolu Authors: Schmitt, J. Bibcode: 1997PhDT........36S Altcode: No abstract at ADS Title: The Neupert Effect in Active Stellar Coronae: Chromospheric Evaporation and Coronal Heating in the dMe Flare Star Binary UV Ceti Authors: Guedel, Manuel; Benz, Arnold O.; Schmitt, Juergen H. M. M.; Skinner, Stephen L. Bibcode: 1996ApJ...471.1002G Altcode: Evidence for coronal heating by chromospheric evaporation in flares of active dMe stars is presented through observations of the Neupert effect in high-frequency microwaves and soft X-rays. The Neupert effect, as originally found in solar flares, manifests itself in a close similarity between the soft X-ray light curve and the time integral of the simultaneous microwave light curve. It is interpreted as the signature of the accumulation of hot plasma due to heating by accelerated electrons in the chromosphere.

We used the ROSAT and ASCA soft X-ray observatories and the Very Large Array (VLA) radio telescope (at 6 cm and 3.6 cm wavelengths) to monitor simultaneously the nearby dMe flare star binary Gliese 65 A + B = UV Ceti during 9 hours on each of two consecutive days. We find several weakly polarized radio events that start contemporaneously (within a few minutes) with X-ray flares and then peak and decay as the X-ray flares develop gradually. A striking similarity to the temporal evolution of solar gradual events is found. We argue that the Neupert effect is best observed in relatively hard bands of the soft X-ray emission, but that its presence can be inferred from the much softer bands commonly used for stellar observations by use of the solar analogy. Together with spectral hardness observations of soft X-rays, the data suggest the operation of chromospheric evaporation on UV Cet. The observations thus indicate a causal relation between the nonthermal and thermal energies of the underlying electron populations.

We find that stellar flares are, relative to solar flares, X-ray-weak. The ratio between the total energy radiated into the radio and the soft X-ray bands closely matches the corresponding ratio between the quiescent luminosities of active stars, perhaps implying similar mechanisms and similar efficiencies for the quiescent emission and for larger, single flares. Estimating the total kinetic energy in the electrons from the radio flux, we find that only a part is observed in soft X-rays, a discrepancy well known from solar flares. Title: ROSAT Pointed Observations of the Alpha Persei Cluster Authors: Prosser, Charles F.; Randich, Sofia; Stauffer, Joh R.; Schmitt, J. H. M. M.; Simon, Theodore Bibcode: 1996AJ....112.1570P Altcode: We extend the results of a previous ROSAT x-ray raster survey of the open cluster α Persei by the analysis of three 22-25 ksec ROSAT PSPC pointings in this relatively nearby (d∼170 pc) and young (age ∼50 Myr) open cluster. The present study reports on those catalogued stars in the cluster region which are found to be associated, or possibly associated, with an x-ray source. Out of a total of 222 sources, approximately 80 sources are identified with a catalogued star. We detect all previously known K dwarfs, and a majority of M dwarfs within the higher sensitivity, inner PSPC regions. The results from the deep pointings are consistent with those from the previous raster survey of this cluster in terms of the x-ray luminosities measured for sources in common, the detection frequencies among cluster members as a function of spectral type, and the distribution of Lx as a function of color. The x-ray detections and upper limits provided by the PSPC observations have been combined with the raster survey results to create a merged raster/PSPC dataset reflecting the x-ray properties of the a Per cluster. The V sin i activity relation among G/K members is reviewed using the combined dataset. The α Per members with υ sin i> 30 km/s all show saturated levels of coronal activity, with the saturation level decreasing slowly from log(LX/Lbol)∼-3 at 50 km/s to log(LX/Lbol)∼ 3.4 at 200 km/s. The stars with υ sin i <15 km/s, most with only υ sin i upper limits, show a wide range in coronal activity (-4.3<LX/L bol<-2.9) -2.9); we assume that coronal activity in α Per increases with increasing rotation rate for υ sin i<15 km/s, but the functional form of the relation cannot be determined from existing data. The x-ray luminosity distribution functions among F-M α Per stars have been recomputed using the merged raster/PSPC dataset and compared to the Pleiades. The findings of the raster survey are confirmed, with F and G α Per dwarfs clearly exhibiting higher average emission than their Pleiades counterparts, while α Per K dwarfs show only slightly higher activity. The revised α Per M dwarf XLDF is in closer agreement with the Pleiades M dwarf distribution. We discuss the apparent detection in x rays of the one evolving blue supergiant member of this cluster, α Per itself. In addition, the sensitive PSPC observations may have detected x-ray sources associated with very low mass candidate cluster members at spectral type ∼MS. We also provide a summary of the x-ray flare characteristics (peak ∼1031 ergs/s) for three a Per members. Title: Discovery of X-ray and Extreme Ultraviolet Emission from Comet C/Hyakutake 1996 B2 Authors: Lisse, C. M.; Dennerl, K.; Englhauser, J.; Harden, M.; Marshall, F. E.; Mumma, M. J.; Petre, R.; Pye, J. P.; Ricketts, M. J.; Schmitt, J.; Trumper, J.; West, R. G. Bibcode: 1996Sci...274..205L Altcode: During its close approach to Earth, comet C/Hyakutake 1996 B2 was observed at extreme ultraviolet and x-ray wavelengths with the Rontgen X-ray Satellite and Rossi X-ray Timing Explorer. The emission morphology was symmetric with respect to a vector from the comet's nucleus toward the sun, but not symmetric around the direction of motion of the comet with respect to interplanetary dust. A slowly varying emission and a large impulsive event that varied on time scales of 1 to 2 hours were observed. An interaction between the comet and the solar wind/solar magnetic field seems to be the most likely mechanism for the observed emission. Title: VizieR Online Data Catalog: UBVRIcJHKL photometry in Lup (Wichmann+ 1997) Authors: Wichmann, R.; Krautter, J.; Covino, E.; Alcala, J. M.; Neuhaeuser, R.; Schmitt, J. H. M. M. Bibcode: 1996yCat..33200185W Altcode: In a recent study, some 130 new weak-line T Tauri stars (WTTS) have been discovered in the Lupus star forming region (SFR). Some of these stars are seen projected onto regions of high obscuration, while others are located far from the Lupus dark clouds. In this paper we present photometric observations of a large sample of these WTTS. We estimate effective temperatures and luminosities for the stars observed, and derive masses and ages by comparison with theoretical evolutionary tracks. The photometric observations were performed at the ESO 1 m-Telescope during two observing runs in 1993 (March 10-12) and 1994 (May 1-6) at ESO, La Silla. The typical standard deviations are 0.01mag in V, 0.02mag in B-V, 0.04mag in U-B, 0.01 in V-R and V-I. For a description of the UBV, (RI)c and JHKL photometric systems, see e.g. <GCPD/01>, <GCPD/54> and <GCPD/09> (2 data files). Title: VizieR Online Data Catalog: Cha X-ray sources & optical identifications (Alcala+ 1995) Authors: Alcala, J. M.; Krautter, J.; Schmitt, J. H. M. M.; Covino, E.; Wichmann, R.; Mundt, R. Bibcode: 1996yCat..41140109A Altcode: We present the observations of the ROSAT all-sky survey (RASS) in the direction of the Chamaeleon cloud complex, as well as the spectroscopic identifications of the detected X-ray sources. The main purpose of this identification program was the search for low mass pre-main sequence stars. Sixteen previously known PMS stars were detected with high confidence by ROSAT. Eight are classical T Tauri stars and eight are weak-line T Tauri stars. Seventy-seven new weak-line T Tauri stars were identified on the basis of the presence of strong Li λ6707 absorption, spectral type later than F0 and chromospheric emission. We give coordinates and count rates of the X-ray sources, and present optical spectra and finding charts for the sources identified optically as new pre-main sequence stars. Optical UBV(RI)c and near-infrared JHKLM photometry for this sample of stars is also provided. In addition, 6 new dKe-dMe candidates are found among the RASS sources. (1 data file). Title: New weak-line T Tauri stars in Orion from the ROSAT all-sky survey. Authors: Alcala, J. M.; Terranegra, L.; Wichmann, R.; Chavarria-K., C.; Krautter, J.; Schmitt, J. H. M. M.; Moreno-Corral, M. A.; de Lara, E.; Wagner, R. M. Bibcode: 1996A&AS..119....7A Altcode: We present results of the spectroscopic and photometric follow-up observations of the ROSAT all-sky survey in the direction of the Orion cloud complex. The main goal of these observations is the search for X-ray emitting pre-main sequence stars. 820 X-ray sources were detected with high confidence in about 450 square degrees. The mean density of X-ray sources in this region is a factor of about two higher than that of the whole RASS. 5% of the RASS sources in this region are identified with previously known and likely pre-main sequence stars. We have investigated spectroscopically 181 new RASS sources widely distributed over the entire cloud complex. On the basis of the presence of strong Li I λ6707 absorption, spectral type later than F0 and chromospheric emission, 112 new weak-line T Tauri stars could be found. We present coordinates, X-ray count-rates and finding charts of the new PMS. Optical UBV(RI)_KC_, near-infrared JHKLM and uvby-β photometry for the new WTTS is also provided. In addition 24 dKe-dMe stars were also found on the basis of the RASS data. Title: VizieR Online Data Catalog: New weak-line T Tauri stars in Lupus (Krautter+ 1997) Authors: Krautter, J.; Wichmann, R.; Schmitt, J. H. M. M.; Alcala, J. M.; Neuhaeuser, R.; Terranegra, L. Bibcode: 1996yCat..41230329K Altcode: We present first results obtained by a survey of the Lupus star forming region in search of new T Tauri stars. This study has been performed on the basis of deep pointed ROSAT observations in the Lupus dark clouds as well as data from the ROSAT All-Sky-Survey in the surrounding, less obscured regions. Our survey covers an area of about 230 square degrees, located between 15h6m and 16h24m in right ascension and between -47° and -32° in declination. Identification of ROSAT All-Sky-Survey sources in this area by means of optical spectroscopy revealed 89 T Tauri stars, 86 of them "weak-line" T Tauri stars (WTTS not known from previous studies of this region. Our pointed ROSAT observations led to the identification of 47 more T Tauri stars, giving a total of 136 new T Tauri stars. The large area of our study, as compared with previous works, allows us to study the spatial distribution of WTTS in this star forming region on alarge scale. We find the new WTTS to be distributed over the whole area of our survey, indicating that their spatial distribution might extend well beyond our study area. Contrary to the Lupus T Tauri stars known prior to this study, the WTTS discovered by the ROSAT All-Sky-Survey are not clustered in the regions of highest extinction, i.e. the dark clouds.

(8 data files). Title: The ROSAT all-sky survey catalogue of optically bright OB-type stars. Authors: Berghoefer, T. W.; Schmitt, J. H. M. M.; Cassinelli, J. P. Bibcode: 1996A&AS..118..481B Altcode: For the detailed statistical analysis of the X-ray emission of hot stars we selected all stars of spectral type O and B listed in the Yale Bright Star Catalogue and searched for them in the ROSAT All-Sky Survey. In this paper we describe the selection and preparation of the data and present a compilation of the derived X-ray data for a complete sample of bright OB stars. Title: Coronal activity in the Coma Berenices open cluster. Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. Bibcode: 1996A&A...313..815R Altcode: We present ROSAT PSPC observations of the ~500Myr old Coma Berenices cluster. The X-ray survey in Coma consists of a) a raster scan of short duration PSPC pointings, b) ROSAT All-Sky Survey data, and c) a 16ksec deep PSPC pointing. The raster scan and the survey data were merged together covering an area of about 36 square degrees, while the deep pointing was analyzed separately. No major differences were found between the two datasets. Our ROSAT observations indicate that Coma is much more similar in its X-ray properties to the coeval Hyades than to the also coeval Praesepe cluster. As in the Hyades, almost all late-F and G stars were detected, also showing a comparable range in X-ray luminosity. X-ray luminosity distribution functions (XLDFs) for solar-type members are in close agreement with those of the Hyades, confirming that the majority of Praesepe's members are less luminous than what one would expect for stars of their age. The Coma Berenices cluster is known for its apparent deficit of low mass stars of spectral type K and later. We present 12 new possible low-mass Coma candidates, identified through this X-ray survey. Title: HR 4289 - an X-ray luminous galaxy close to the bright star. Authors: Huensch, M.; Reimers, D.; Schmitt, J. H. M. M. Bibcode: 1996A&A...313..755H Altcode: Using new optical, UV and X-ray observations we show that the K5 III star HR 4289, formerly believed to be the only ROSAT All-Sky survey detection to the right of the coronal diving line, should not be identified with the X-ray source. Pointed ROSAT PSPC observations demonstrate that the X-ray source is slightly extended, and locate the X-ray source 30" northwest of HR 4289 at the position of a hitherto unknown 15nag galaxy. The X-ray spectrum can well be fitted with a Raymond-Smith model for a thermal plasma at 6(+/-2)x10^6^K and a hydrogen column density of N_H_=3(+/-2)x10^21^cm^-2^. At a distance of z=0.016 (96 h_50_^-1^Mpc), the galaxy has an X-ray luminosity of L_x_=1.4x10^42^h_50_^-2^erg/s between 0.1 and 2.4keV. Title: VizieR Online Data Catalog: New WTTS in the Chamaeleon complex (Alcala+ 1997) Authors: Alcala, J. M.; Krautter, J.; Covino, E.; Neuhaeuser, R.; Schmitt, J. H. M. M.; Wichmann, R. Bibcode: 1996yCat..33190184A Altcode: We analyse the nature of the optical counterparts of the ROSAT all-sky survey (RASS) X-ray sources identified with new weak-line T Tauri (WTTS) stars in the Chamaeleon star forming region (SFR). The new WTTS are distributed throughout the whole SFR, while the classical T Tauri stars (CTTS) are found only in the cloud cores. Adopting a distance of 150pc we derive the stellar parameters and place the new WTTS in the HR diagram. By comparison with theoretical pre-main sequence (PMS) evolutionary tracks, we find masses in the range of 0.2-2.5M and ages from a few 105yr to 5x107yr. Many of the youngest WTTS are located far away from the main Chamaeleon dark clouds. (2 data files). Title: New weak-line T Tauri stars in Taurus-Auriga. Authors: Wichmann, R.; Krautter, J.; Schmitt, J. H. M. M.; Neuhaeuser, R.; Alcala, J. M.; Zinnecker, H.; Wagner, R. M.; Mundt, R.; Sterzik, M. F. Bibcode: 1996A&A...312..439W Altcode: On the basis of the ROSAT All-Sky-Survey, a study of the Taurus-Auriga star forming region has been performed in order to search for hitherto undiscovered TTauri stars. Our study covers an area of about 280 square degrees, located between 4^h^ and 5^h^ in right ascension and between 15deg and 34deg in declination. Identification of ROSAT All-Sky Survey sources in this area by means of optical spectroscopy revealed 2 new classical T Tauri stars (CTTS) and 66 new weak-line-T Tauri stars (WTTS) with Wlambda_(Hα)<=10A. Additional pointed ROSAT observations led to the identification of 6 more WTTS and 2 CTTS, giving a total of 76 new T Tauri stars. The large area of our study, as compared with previous works, allows us to study the spatial distribution of WTTS in this star forming region. We find the WTTS of our survey to be distributed over the whole region investigated. There is a noticeable decline of the surface density from south to north within our study area, but the spatial distribution extends most probably beyond our study region. No clustering towards the population of TTauri stars known prior to ROSAT in Taurus-Auriga could be observed. We suggest that the WTTS found in our study might in part be somewhat older than the previously known TTauri stars in Taurus-Auriga, and that their broad spatial distribution is due to the typical velocity dispersion of a few km/s measured for Taurus TTauri stars, in which case for some of our WTTS an age on the order of 10^7^years would be required for reaching the observed distances from the Taurus dark clouds. We estimate a WTTS/CTTS ratio of about 6 within our study area, but conclude that because of the different spatial distribution of WTTS and CTTS this ratio will be most probably significantly larger for a more extended area. Title: VizieR Online Data Catalog: Optical Identifications of ROSAT EUV Sources (Mason+ 1995) Authors: Mason, K. O.; Hassall, B. J. M.; Bromage, G. E.; Buckley, D. A. H.; Naylor, T.; O'Donoghue, D.; Watson, M. G.; Bertram, D.; Branduardi-Raymont, G.; Charles, P. A.; Cooke, B.; Elliott, K. H.; Hawkins, M. R. S.; Hodgkin, S. T.; Jewell, S. J.; Jomaron, C. M.; Sekiguchi, K.; Kellett, B. J.; Lawrence, A.; McHardy, I.; Mittaz, J. P. D.; Pike, C. D.; Ponman, T. J.; Schmitt, J.; Voges, W.; Wargau, W.; Wonnacott, D. Bibcode: 1996yCat..82741194M Altcode: Optical identifications for 195 EUV sources located in the ROSAT Wide Field Camera all-Sky survey are presented. We list 69 previous unknown EUV-emitting white dwarfs, 114 active stars, 7 new magnetic cataclysmic variables and 5 active galaxies. Several of the white dwarfs have resolved M-type companions, while five are unresolved white dwarf/M-star pairs. Finding charts are given for the optical counterparts.

(4 data files). Title: VizieR Online Data Catalog: Optical Identifications of ROSAT EUV Sources (Mason+ 1995) Authors: Mason, K. O.; Hassall, B. J. M.; Bromage, G. E.; Buckley, D. A. H.; Naylor, T.; O'Donoghue, D.; Watson, M. G.; Bertram, D.; Branduardi-Raymont, G.; Charles, P. A.; Cooke, B.; Elliott, K. H.; Hawkins, M. R. S.; Hodgkin, S. T.; Jewell, S. J.; Jomaron, C. M.; Sekiguchi, K.; Kellett, B. J.; Lawrence, A.; McHardy, I.; Mittaz, J. P. D.; Pike, C. D.; Ponman, T. J.; Schmitt, J.; Voges, W.; Wargau, W.; Wonnacott, D. Bibcode: 1996yCat..72741194M Altcode: Optical identifications for 195 EUV sources located in the ROSAT Wide Field Camera all-Sky survey are presented. We list 69 previous unknown EUV-emitting white dwarfs, 114 active stars, 7 new magnetic cataclysmic variables and 5 active galaxies. Several of the white dwarfs have resolved M-type companions, while five are unresolved white dwarf/M-star pairs. Finding charts are given for the optical counterparts. (1 data file). Title: A Close Look at the Coronal Density of Procyon Authors: Schmitt, J. H. M. M.; Drake, J. J.; Haisch, B. M.; Stern, R. A. Bibcode: 1996ApJ...467..841S Altcode: We derive the coronal density of the nearby star Procyon, using an observation with the short- and medium-wavelength spectrometers on board the Extreme-Ultraviolet Explorer satellite (EUVE). Specifically, we have identified density-sensitive ratios in lines due to iron in ionization stages Fe X to Fe XIV, which have been detected in our EUVE spectra. We present these observations and analyze these line ratios, paying careful attention to line blends or contamination from other extreme-ultraviolet (EUV) lines. We show that all the available density-sensitive iron line diagnostics are consistent with the interpretation that the overall coronal output of Procyon is dominated by regions with a coronal density very much resembling densities typically found in active regions on the Sun. We estimate that the corona of Procyon is dominated by material at a temperature Tcor ∼ 106.2 K, with no significant amount of material above T ∼ 106.8 K; the characteristic density is ne ∼ 3 x 109 cm-3 the emission measure is EM ∼ 4.5 × 1050 cm-3. We infer a (visible) volume of Vtot ∼ 5 x 1031 cm-3 assuming the X-ray emission to arise from plasma magnetically confined in loops, we deduce that such loops have an average height of h ∼ 2 x 109 cm and cover about 20% of the stellar surface. Because of the high coronal density and the lack of emission measure substantially below T ∼ 106 K, we conclude also that it is unlikely that there exists a cooler, acoustically heated subcorona. Title: VizieR Online Data Catalog: T Tauri stars ROSAT survey (Neuhaeuser+, 1995) Authors: Neuhaeuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.; Wichmann, R.; Krautter, J. Bibcode: 1996yCat..32970391N Altcode: We study the X-ray emission of T Tauri stars (TTS) in Taurus-Auriga as observed with the spatially unbiased flux-limited ROSAT All-Sky Survey. (8 data files). Title: Forty days in the life of CF Tucanae (=HD 5303). The longest stellar X-ray flare observed with ROSAT. Authors: Kuerster, M.; Schmitt, J. H. M. M. Bibcode: 1996A&A...311..211K Altcode: A ROSAT PSPC observation of an exceptional long-duration flare on the partially eclipsing RS CVn-type binary CF Tuc (=HD 5303) is presented. With a total duration of 9days this flare is the longest coherent stellar X-ray flare ever observed. Also the rise time of =~1.5days is exceptional. The event released 1.4x10^37^erg in the PCPC bandpass (0.1-2.4keV), thereby making this giant outburst one of the most energetic stellar flare events known. The measured e-folding decay time of 0.9day implies either a very extended flaring volume with low densities or the occurence of reheating. Neither modulation on the 2.8day rotation time scale nor eclipses are seen, with the immediate implication that either the size of the flaring volume was at least comparable to the size of the active star (most likely as large as the larger binary component) or that the flare occurred within the circumpolar region of its visible pole. Both scenarios point at an event whose morphology is quite different from that of solar flares. Results from spectral analysis performed with a variety of thermal plasma models demonstrate that one-temperature models with an unusually low metal abundance of z=0.1 are at least as good as the canonical two-temperature models with solar abundances. We present flare modelling using two different approaches, i.e. the quasi-static cooling loop model by van den Oord & Mewe (1989) describing only the flare decay phase and the two-ribbon flare model by Kopp & Poletto (1984). Title: Extreme Ultraviolet Line Emission from Cool Stars: Resonantly Scattered or Not---That Is the Question! Authors: Schmitt, J. H. M. M.; Drake, J. J.; Stern, R. A. Bibcode: 1996ApJ...465L..51S Altcode: A challenge to the classical assumption that the radiative losses from stellar coronae are optically thin has been raised by Schrijver, van den Oord, & Mewe, who argued that some of the stronger emission lines detected in the high-resolution spectra of cool stars observed with the Extreme Ultraviolet Explorer (EUVE) satellite are optically thick. If they assume all radiation optically thin, an explanation of the short-wavelength (SW) part of the EUVE spectrum requires large amounts of emission measure at very high temperatures (T ~ 108 K), which is unlikely the case for rather inactive stars. We show that the soft X-ray pulse height spectrum obtained with the Position Sensitive Proportional Counter (PSPC) on board ROSAT is inconsistent with such high-temperature emission and inconsistent with the assumption that the EUV line emission is optically thick. We further demonstrate via an analysis of fit residuals that the observed count fluctuations in the EUVE SW spectrum are inconsistent with the hypothesis that the bulk of the observed flux arises from a continuum. Therefore, resonance scattering does not appear to be required for the interpretation of the EUV and X-ray spectra of inactive cool stars. Title: Comet C/1996 B2 (Hyakutake) Authors: Lisse, C.; Mumma, M.; Petre, R.; Dennerl, K.; Englhauser, J.; Schmitt, J.; Truemper, J. Bibcode: 1996IAUC.6433....2L Altcode: C. Lisse, M. Mumma, and R. Petre, NASA Goddard Space Flight Center; and K. Dennerl, J. Englhauser, J. Schmitt, and J. Truemper, Max-Planck-Institut fur Extraterrestrische Physik, Garching, communicate: "Comet C/1996 B2 was observed after its perihelion passage with the ROSAT High Resolution Imager from June 22.10 to 23.77 UT (when Delta = 1.16 AU, r = 1.35 AU, and visual m1 = 7.1) for 8900 s. The image, corrected for the proper motion of the comet, shows an extended source with a radial extent of at least 8' (400 000 km). The peak surface brightness was at 0.002 count sE-1 arcminE-2, approximately a factor of 5 lower than during the previous ROSAT observations in March (IAUC 6373). The reacquisition of C/1996 B2 after perihelion confirms the continuous behavior of x-ray emission in the comet. ROSAT will continue to observe the comet until Sept. 8. The scheduled observation times will be posted at URL http://www.rosat.mpe-garching.mpg.de/~jer/comets/; simultaneous observations at other wavelengths (especially extreme ultraviolet and radio) are encouraged." Title: A Search for Star Formation in the Translucent Cloud MBM 40 Authors: Magnani, Loris; Caillault, Jean-Pierre; Hearty, Thomas; Stauffer, John; Schmitt, J. H. M. M.; Neuhaeuser, Ralph; Verter, Frances; Dwek, Eli Bibcode: 1996ApJ...465..825M Altcode: The star formation status of the translucent high-latitude molecular cloud, MBM 40, is explored through analysis of radio, infrared, optical, and X-ray data. With a peak visual extinction of 1 to 2 mag, MBM 40 is an example of a high-latitude cloud near the diffuse/translucent demarcation. However, unlike most translucent clouds, MBM 40 exhibits a compact morphology and a kinetic energy-to- gravitational potential energy ratio near unity. Our radio data, encompassing the CO (J = 1-0), CS (J = 2-1), and H2CO 111-110 spectral line transitions, reveal that the cloud contains a ridge of molecular gas with n ≥ 103 cm-3. In addition, the molecular data, together with IRAS data, indicate that the mass of MBM 40 is ∼40 Msun. In light of the ever-increasing number of recently formed stars far from any dense molecular clouds or cores, we searched the environs of MBM 40 for any trace of recent star formation.

We used the ROSAT All-Sky Survey X-ray data and a ROSAT PSPC pointed observation toward MBM 40 to identify 33 stellar candidates with properties consistent with pre-main-sequence (PMS) stars. Follow-up optical spectroscopy of the candidates with V < 15.5 was conducted with the 1.5 m Fred Lawrence Whipple Observatory telescope in order to identify signatures of T Tauri or pre-mainsequence stars (such as the Li 6708 Å resonance line).

Since none of our optically observed candidates display standard PMS signatures, we conclude that MBM 40 displays no evidence of recent or ongoing star formation. The absence of high-density molecular cores in the cloud and the relatively low column density compared to star-forming interstellar clouds may be the principal reasons that MBM 40 is devoid of star formation. More detailed comparison between this cloud and other, higher extinction translucent and dark clouds may elucidate the necessary initial conditions for the onset of low-mass star formation. Title: ROSAT All-Sky Survey Bright Source Catalogue Authors: Voges, W.; Aschenbach, B.; Boller, T.; Brauninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; Hartner, G.; Hasinger, G.; Kurster, M.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Rosso, C.; Schmitt, J. H. M. M.; Trumper, J.; Zimmermann, H. -U. Bibcode: 1996IAUC.6420....2V Altcode: 1996IAUC.6420R...1V W. Voges, B. Aschenbach, T. Boller, H. Brauninger, U. Briel, W. Burkert, K. Dennerl, J. Englhauser, R. Gruber, F. Haberl, G. Hartner, G. Hasinger, M. Kurster, E. Pfeffermann, W. Pietsch, P. Predehl, C. Rosso, J. H. M. M. Schmitt, J. Trumper, and H.-U. Zimmermann, Max-Planck-Institut fur Extraterrestrische Physik, Garching, report: "The ROSAT All-Sky Survey Bright Source Catalogue (RASS-BSC, revision 1RXS) has been released and is available through the World Wide Web (URL http://www.rosat.mpe-garching.mpg.de/survey/rass-bsc/) and via anonymous ftp (host ftp.rosat.mpe-garching.mpg.de, directory archive/survey/rass-bsc). This catalogue is derived from the all- sky survey performed during the first half year of the ROSAT mission in 1990-1991; 18 811 sources are catalogued, with a limiting ROSAT PSPC countrate of 0.05 cts/s in the energy band 0.1- 2.4 keV. The sources have a detection likelihood of at least 15 and contain at least 15 source photons. At a brightness limit of 0.1 cts/s (8547 sources) the catalogue represents a sky coverage of 92 percent. For each source are provided the ROSAT name, the position in equatorial coordinates, the positional error, the source countrate and error, the background countrate, exposure time, hardness-ratios HR1 and HR2 and errors, extent and likelihood of extent, and likelihood of detection. For 94 percent of the sources, visual inspection confirmed the results of the standard processing with respect to existence and position; the remaining 6 percent were reanalyzed and appropriately flagged. Broadband images are available for a subset of the flagged sources. A list containing correlations with other catalogues and identifications will follow soon. Questions or comments may be directed to survey@rosat.mpe-garching.mpg.de." Title: ROSAT X-ray observations of a complete, volume-limited sample of late-type giants. Authors: Huensch, M.; Schmitt, J. H. M. M.; Schroeder, K. -P.; Reimers, D. Bibcode: 1996A&A...310..801H Altcode: We have investigated a complete sample of the nearest 39 late type giants (d<=25pc) for which we have probed the X-ray luminosity function with unprecedented sensitivity by deep (3...18ksec) ROSAT PSPC-observations in the pointed mode, together with ROSAT All-Sky survey (RASS) data. We confirm the X-ray dividing line for luminosity class III giants as proposed by Haisch et al. (1991, 1992) and we find evidence, that essentially all luminosity class III giants with B-V<1.2 or spectral type <K3, that is to the hot side of the X-ray dividing line in the HR diagram, show X-ray emission with typical luminosities of about 10^27^erg/s. A few stars like β Cet have considerably higher X-ray luminosities. On the right, cool side of the X-ray dividing line, we find only one X-ray emitting star in our sample, while the other stars have upper limits for their ratios of X-ray to bolometric luminosities as low as logL_x_/L_bol_<=-10. We find observational evidence for a minimum X-ray surface flux to the left of the dividing line of the order of =~100erg/cm^2^/s, which seems to be independent of B-V colour. The data and their implications for our understanding of coronae of late-type giants, in particular the questions concerning the dividing lines and possible acousting heating of the coronae are discussed in some detail. Title: CF Tucanae: Another Case of Coronal MAD Syndrome? Authors: Schmitt, J. H. M. M.; Stern, R. A.; Drake, J. J.; Kuerster, M. Bibcode: 1996ApJ...464..898S Altcode: We present and discuss an extreme-ultraviolet spectrum of the RS CVn binary CF Tuc obtained with the short-wavelength (5W) spectrometer on board the Extreme-Ultraviolet Explorer (EUVE) satellite. In addition to a continuum, only two spectral lines attributed to Fe XXII and Fe XXIII are detected. We show that the EUVE data can be reconciled with a solar abundance plasma only if most of CF Tuc's emission measure is located at temperatures of ≍108 K; alternatively, the plasma must be iron depleted with most of the emission measure located at the peak temperature of the observed line contribution functions. A comparison with previously obtained ROSAT PSPC spectra argues strongly in favor of the latter situation. As a consequence, we are forced to the conclusion that the iron abundance in the corona of CF Tuc is reduced with respect to solar values by factors between 5 and 10. The reasons for the occurrence of this metal abundance deficiency syndrome (MADS) are unclear at present; however, for the specific case of CF Tuc, the extremely low coronal iron abundance might possibly result from an anomalously low photo spheric iron abundance. Title: ROSAT Soft-X-ray Maps Authors: Snowden, S. L.; Freyberg, M. J.; Plucinsky, P. P.; Schmitt, J. H. M. M.; Trumper, J.; Voges, W.; Edgar, R. J.; McCammon, D.; Sanders, W. T. Bibcode: 1996IAUC.6419....2S Altcode: S. L. Snowden, M. J. Freyberg, P. P. Plucinsky, J. H. M. M. Schmitt, J. Trumper, and W. Voges, Max-Planck-Institut fur Extraterrestrische Physik, Garching; R. J. Edgar, D. McCammon, and W. T. Sanders, University of Wisconsin, Madison, report: "The first maps of the soft x-ray diffuse background (SXRB) from the ROSAT XRT/PSPC All-Sky Survey have been released and are available through the World Wide Web (URL http://www.rosat.mpe- garching.mpg.de/survey/sxrb/) and via anonymous ftp (host ftp.rosat.mpe-garching.mpg.de, directory archive/survey/sxrb). A detailed description of the data and maps has appeared in Ap.J. 454, 643 (1995). The maps cover about 98 percent of the sky in the bands 0.25, 0.75, and 1.5 keV, with about 2-degree angular resolution and high sensitivity for low-surface-brightness, extended features. The effects of non-x-ray contamination and x- rays of solar-system origin have been eliminated to the greatest possible extent, but discrete x-ray sources have not been removed. The much-improved angular resolution, statistical precision, and completeness of coverage of these maps reveal considerable structure over the entire energy range 0.1-2.0 keV that was not observed previously. The data compare well with previous all-sky surveys in terms of absolute normalization and zero point. For each energy band, an intensity map, as well as an exposure map, is available in FITS format. All maps were constructed using a Hammer-Aitoff equal-area projection in zero-centered galactic coordinates with longitude increasing to the left. Questions or comments may be directed to sxrb@rosat.mpe-garching.mpg.de." Title: The Coronae of Low-Mass Dwarf Stars Authors: Giampapa, M. S.; Rosner, R.; Kashyap, V.; Fleming, T. A.; Schmitt, J. H. M. M.; Bookbinder, J. A. Bibcode: 1996ApJ...463..707G Altcode: We report the results of our analysis of pointed X-ray observations of nearby dMe and dM stars using the position sensitive proportional counter (PSPC) on board the ROSA T satellite (Roentgensatellit). In the cases of those M dwarf stars where PSPC pulse-height distributions of sufficient quality for spectral fitting were obtained, we derive key coronal plasma parameters in order to investigate stellar coronal structure in more detail. In particular, we utilize temperatures and emission measures inferred for one or more distinct components as constraints for the development of semiempirical magnetic loop models as representations of the coronae of low-mass stars. The consistency of these static models as adequate descriptions of the coronae of M dwarfs is then examined.

We find that the coronae of low-mass dwarfs consist of two distinct thermal components: a "soft" component with T ∼ 2-4 x 106 K and a "hard" component with T ∼ 107 K. We find that the pulse- height spectra are systematically fitted better with "depleted" abundances compared to solar; the high- temperature emission component on dMe stars appears to contribute a systematically larger fraction of the total flux than the corresponding component in dM stars; and the high-temperature emission component on dMe stars is responsible for most of the observed variation in the count rate.

We have modeled the observed temperature components with hydrostatic coronal loop models, and find that: the low-temperature components can be modeled with loops of small size (l ≪ R*) and high pressure (Po ); and the high-temperature components require solutions with either small filling factors ( 0.1), large loops (1 > R*), and high base pressure (P0 &#8819 P0sun), or very small filling factors (∼0.1), small loops (1 &#8819 R*), and very high pressure (P0 ≫ P0sun)). Based on these observational and model results, we conclude that coronal emission in dMe stars can be interpreted as arising from quiescent active regions (a quiescent, low-temperature component) and compact flaring structures (variable, high- temperature component).

Our conclusion that the coronal geometry for low-mass dwarf stars is dominated by a combination of relatively compact, quiescent loop configurations and an unstable flaring component has implications for both stellar dynamo theory and for our understanding of stellar angular momentum evolution. With regard to rotation in late-type stars, which has a direct bearing on dynamo action, we know from observations that the lowest mass stars spin down (via magnetic braking) more slowly than the more nearly solar-type stars. The compact loops we find for the low-temperature component suggests a natural explanation for the observed mass dependence of angular momentum evolution in late-type, main-sequence stars. Title: Hybrid stars and the reality of "dividing lines" among G to K bright giants and supergiants. Authors: Reimers, D.; Huensch, M.; Schmitt, J. H. M. M.; Toussaint, F. Bibcode: 1996A&A...310..813R Altcode: We present results of pointed ROSAT PSPC observations of 15 hybrid stars/candidates, which have been analyzed in a homogenous way. 7 of these stars were observed in X-rays for the first time. 12 out of 15 hybrid stars have been detected as X-ray sources, some of them close to the detection limit. We conclude that essentially all hybrid stars as defined by the simultaneous presence of transition region line emission and cool stellar winds are X-ray sources if exposed sufficiently deep. The X-ray luminosities of hybrid stars cover a range between 2x10^27^ and ~10^30^erg/s. Their X-ray surface fluxes can be as low as =~20 erg/cm^2^/s and thus considerably lower than those of normal luminosity class (LC) III giants. X-ray spectra of hybrid stars tend to be harder than that of normal LC III giants, moreover, the X-ray brightest stars have the hardest spectra. We find that for K II giants the normalized X-ray flux versus C IV flux obeys a power law with an exponent a=2.9, steeper than among normal giants (1.5). Hybrid K II stars are X-ray underluminous by a factor of 5 to 20 compared to LC III giants at the same level of normalized CIV flux f_CIV_/f_bol_; hybrid G supergiants are even more X-ray deficient. We reanalyze the CaII wind dividing line and find it vertical at B-V=1.45 for LC III giants. It is nearly horizontal between B-V=1.45 and 1.0 (at M_bol_=~-2...-3), and not well defined for supergiants with B-V<1.0. We therefore suggest that possibly all LC II and Ib G and K giants are hybrid stars and that the "dividing line" concept in its simplest form is not valid for G/K giants brighter than M_bol_=~-2. Hybrid stars are supposed to be evolved intermediate mass stars and their coronal activity may in principle be determined by the individual history of each star. Title: Comet C/1996 B2 (Hyakutake) Authors: Pye, J. P.; West, R. G.; Harden, M.; Ricketts, M.; Dennerl, K.; Englhauser, J.; Schmitt, J.; Trumper, J.; Lisse, C.; Mumma, M.; Petre, R. Bibcode: 1996IAUC.6394....2P Altcode: J. P. Pye and R. G. West, Leicester University; M. Harden and M. Ricketts, Rutherford Appleton Laboratory; K. Dennerl, J. Englhauser, J. Schmitt, and J. Trumper, Max-Planck-Institut fur Extraterrestrische Physik, Garching; and C. Lisse, M. Mumma, and R. Petre, NASA Goddard Space Flight Center, report the discovery of extreme-ultraviolet (EUV) emission from comet C/1996 B2 with the ROSAT Wide Field Camera (WFC), simultaneously with the x-ray measurements reported by Lisse et al. on IAUC 6373: "The WFC measurements were made with the S1A filter, nominal bandpass 90-206 eV (14-6 nm). An image can be found at http://ledas-www.star.le.ac.uk/rosat-goc/comet/. Bright, diffuse emission is seen, roughly coincident with the x-rays and sunward of the nucleus, and strongly time-variable in a similar manner. The peak EUV surface brightness is of order 0.0004 count sE-1 arcminE-2 as measured, or of order 0.003 count sE-1 arcminE-2 when corrected to WFC 'at launch' efficiency. The WFC images also show fainter diffuse emission extending beyond the edge of the HRI field-of-view (i.e., at about 15'-40' from the center of the comet nucleus), forming an arc around the bright central region. The ratio of WFC to HRI countrates shows that the spectrum in the EUV/x-ray band is rather 'soft' and steeply increasing towards low photon energies. This would appear to rule out soft-x-ray line-fluorescence as the dominant emission mechanism. For assumed spectral shapes of a power law or thermal bremsstrahlung emission, the ratio indicates a photon index in the approximate range 2.0-3.0, or a temperature of about 0.1-0.4 keV." Title: Coordinated EUVE/ASCA/XTE/VLA Observations of Algol Authors: Stern, R. A.; Lemen, J. R.; Antunes, S.; Drake, S. A.; Nagase, F.; Schmitt, J. H. M. M.; Singh, K. P.; White, N. E. Bibcode: 1996AAS...188.6012S Altcode: 1996BAAS...28S.921S EUVE, ASCA, and XTE observed the eclipsing binary Algol (beta Per) from 1--7 Feb 96. EUVE was continuously pointing at Algol (with the exception of earth block, SAA passages, etc.) for ~ 2 binary orbits, with a net exposure time of 160 ksec, ASCA for ~ 40 ksec net exposure in 4 separate pointings, and XTE for ~ 90 ksec in 45 pointings. The objective of the combined EUV/X-ray observations is to definitively determine the temperature distribution and Fe abundance in the quiescent spectrum, and, with luck, catch a flare or two. In addition, ~ 24 hours of coordinated VLA time were scheduled, with the primary goal of comparing the microwave data with the XTE spectrum to search for evidence of hard X-ray emission characteristic of microflares. The EUVE quicklook lightcurve data in the 70-170 Angstroms \ band show evidence of continual variability, most likely from a combination of geometric effects (i.e. eclipses and rotational modulation) and flaring. One moderate (~ x2) flare is evident in the EUVE data: the flare decay should be visible in the (as yet unreduced) XTE data. The ASCA data were taken largely during quiescent periods, which will be helpful in a combined emission measure and Fe abundance analysis. We will discuss preliminary results from this coordinated campaign, including first attempts at modeling the combined spectra. Title: Comet C/1996 B2 (Hyakutake) Authors: Lisse, C.; Mumma, M.; Petre, R.; Dennerl, K.; Schmitt, J.; Englhauser, J.; Truemper, J. Bibcode: 1996IAUC.6373....1L Altcode: C. Lisse, M. Mumma, and R. Petre, NASA Goddard Space Flight Center; and K. Dennerl, J. Schmitt, J. Englhauser, and J. Truemper, Max-Planck-Institut fur Extraterrestrische Physik, Garching, report the discovery of x-rays from comet C/1996 B2 with ROSAT -- the first such detections from any comet: "The observations took place on nine different occasions during Mar. 26-28 (see IAUC 6350). The brightest parts of the comet's x-ray image are diffuse but crescent shaped, offset sunward by about 6' from the nucleus (projected distance about 30 000 km), and extend to about +/- 8' (+/- 40 000 km) in the direction perpendicular to the sun-comet direction. The observed radiation shows a clear x-ray (rather than ultraviolet) signature and is strongly time variable on the order of hours. An image can be found under http://www.rosat.mpe-garching.mpg.de/~jer/rda/comet/hyakutake.html. Preliminary estimates yield peak surface brightness countrates of about 0.01 count sE-1 arcminE-2, with the comet being at Delta = 0.13 AU. A probable mechanism for the observed radiation is scattering of solar x-rays by material in the comet's coma. Another possibility is that the radiation is derived from energy deposition by the solar wind." Title: VizieR Online Data Catalog: New T Tauri stars in Taurus-Auriga (Wichmann+, 1996) Authors: Wichmann, R.; Krautter, J.; Schmitt, J. H. M. M.; Neuhauser, R.; Alcala, J. M.; Zinnecker, H.; Wagner, R. M.; Mundt, R.; Sterzik, M. F. Bibcode: 1996yCat..33120439W Altcode: On the basis of the ROSAT All-Sky-Survey, a study of the Taurus-Auriga star forming region has been performed in order to search for hitherto undiscovered T Tauri stars. Our study covers an area of about 280 square degrees, located between 4h and 5h in right ascension and between 15deg and 34deg in declination. Identification of ROSAT All-Sky Survey sources in this area by means of optical spectroscopy revealed 2 new classical T Tauri stars (CTTS) and 66 new weak-line-T Tauri stars (WTTS) with Wλ(Hα)<=10A. Additional pointed ROSAT observations led to the identification of 6 more WTTS and 2 CTTS, giving a total of 76 new T Tauri stars. The large area of our study, as compared with previous works, allows us to study the spatial distribution of WTTS in this star forming region. We find the WTTS of our survey to be distributed over the whole region investigated. There is a noticeable decline of the surface density from south to north within our study area, but the spatial distribution extends most probably beyond our study region. No clustering towards the population of T Tauri stars known prior to ROSAT in Taurus-Auriga could be observed. We suggest that the WTTS found in our study might in part be somewhat older than the previously known T Tauri stars in Taurus-Auriga, and that their broad spatial distribution is due to the typical velocity dispersion of a few km/s measured for Taurus T Tauri stars, in which case for some of our WTTS an age on the order of 107years would be required for reaching the observed distances from the Taurus dark clouds. We estimate a WTTS/CTTS ratio of about 6 within our study area, but conclude that because of the different spatial distribution of WTTS and CTTS this ratio will be most probably significantly larger for a more extended area.

(13 data files). Title: Near-Contact Binary Systems in the ROSAT All-Sky Survey Authors: Shaw, J. Scott; Caillault, Jean-Pierre; Schmitt, J. H. M. M. Bibcode: 1996ApJ...461..951S Altcode: We have conducted a survey of near-contact binary systems observed during the ROSAT All-Sky Survey (RASS). The near-contact binaries (NCBs) have an A- or F-type primary, with a companion which is one to two spectral types cooler, The systems have periods less than 1 day and display strong tidal interaction, but they are not in contact like the W UMa systems, There are more than 150 such systems known to exist. We have analyzed the RASS data for all (58) of those known to lie within 400 pc. We report the detection of 14 systems with X-ray count rates >0.01 counts s-1. The X-ray luminosity function for the NCBs derived from this sample is very similar to that for A-type W UMa systems (derived, admittedly, from only a handful of Einstein observations) but appears to be significantly different from those of W-type W UMa systems and RS CVn binaries. This is consistent with the proposed scenario that the NCBs are evolutionary precursors to the A-type W UMa binaries. The mean X-ray luminosity of the NCBs is log LX = 29.3±0.1 ergs s-1, less than that of the RS CVns, but greater than that of normal late-type main-sequence stars. The LX/Lbol values for the handful of stars for which bolometric luminosities could be determined are consistent with their being near saturation. The detection of these systems may help to explain why many presumably single A-type stars were detected in the RASS; i.e., the "single" A stars may, in fact, be binaries, like the NCBs, with late-type companions. Title: Demonstration of Photon-Noise Limit in Stellar Radial Velocities Authors: Connes, P.; Martic, M.; Schmitt, J. Bibcode: 1996Ap&SS.241...61C Altcode: We have measured apparent fluctuations in stellar radial velocities with the ELODIE fiber-fed crossed-dispersion spectrograph and the 193-cm telescope of Observatoire de Haute-Provence. Within one given night, the fluctuations consist of two terms which may be sorted out. The first comes from imperfect scrambling of the stellar beam; the second arises from photon noise and agrees closely with our published calculations. So far, scrambler noise dominates for bright stars, but a perfect scrambler could be built by combining adatative optics and a single-mode fiber. The photon-noise results confirm that extrasolar planetary searching by the radial-velocity technique may be implemented with relatively small telescopes for a large number of stars. Consequences for the detection of ‘astrophysical noise” are discussed. Title: ROSAT observation of a giant X-ray flare on Algol: evidence for abundance variations? Authors: Ottmann, R.; Schmitt, J. H. M. M. Bibcode: 1996A&A...307..813O Altcode: Algol was observed with the PSPC detector onboard ROSAT in August 1992 for 2.4 binary orbits. In the middle of the observation a giant X-ray flare occurred, lasting about half the orbital period. Spectral fits with a one-temperature thermal model indicate significant variations of the metal abundance Z over the flare. The abundance increases from Z=~0.2 to 0.8 during the rise phase, and decreases to Z=~0.4 during the decay. Thus, the abundance variation is similar to that recently observed by ASCA for a flare on AB Dor. Two-temperature models with the abundance fixed at Z=0.3 and 1.0, respectively, cannot fit all phases of the flare. During the early flare rise, the plasma temperature and density are maximal (T=~10^8^K, n_e_=~5x10^11^cm^-3^), and there is evidence for a large temperature gradient. During the flare decay, an N_H_ increase by a factor 2 may be present. The flare has a thermal energy of 7x10^36^erg, a peak luminosity of 2x10^32^erg/s and is classified as two-ribbon. Because of re-heating the flare plasma does not cool quasistatically; nevertheless, applying the quasistatic cooling method, a loop length of 5x10^11^cm corresponding to a height of 0.65R_K_ is derived. From the unique sample of three major flares detected in six X-ray observations, the frequency of large X-ray flares on Algol is determined as 0.6/P_orb_. Title: VizieR Online Data Catalog: X-ray flare of CF Tuc (=HD 5303) (Kuerster+ 1996) Authors: Kuerster, M.; Schmitt, J. H. M. M. Bibcode: 1996yCat..33110211K Altcode: Solar abundance fits to the quiescent spectra 1-3 and 20-35 were made with a two-component thermal plasma (model 1a) whereas sub-solar abundance fits to the quiescent spectra were made with a one-component thermal plasma (model 2a). Modifications of these models were used for the flare spectra 4-19 in order to account for the `quiescent background'. Thus solar abundance fits to the flare spectra were made with a thermal plasma of two variable components plus two components kept constant at the average quiescent values T_qu,cool=2.46*106K, EMqu,cool=0.49*1053cm-3, Tqu,hot=17.8* 106K, EMqu,hot=1.95*1053cm-3, and z=1.00 (model 1b). Sub-solar abundance fits to the flare spectra were made with a plasma of one variable component plus one component kept constant at the average quiescent values Tqu=13.0*106K, EMqu=5.20*1053cm-3, and z=0.10 (model 2b). In both cases the mean values of spectra 3, and 20-35 were used to account for the quiescent emission. (1 data file). Title: Comet C/1996 B2 (Hyakutake) Authors: Lisse, C.; Dennerl, K.; Schmitt, J.; Cernis, K.; Keen, R.; O'Meara, S. J.; Camilleri, P.; Green, D. W. E.; Carver, S.; Morris, C. S. Bibcode: 1996IAUC.6350....2L Altcode: C. Lisse, Goddard Space Flight Center; and K. Dennerl and J. Schmitt, Max-Planck-Institut fur Extraterrestrische Physik, Garching, communicate: "Comet C/1996 B2 will be observed with the x-ray satellite ROSAT. The scheduled observing intervals are as follows: Mar. 26.493-26.529 UT, 26.626-26.634, 26.638-26.662, 26.708-26.729, 26.89-26.902, 27.554-27.591, 27.687-27.695, 27.703- 27.724, 27.772-27.789, 27.841-27.856, 28.417-28.44. Simultaneous observations at other wavelengths are encouraged." Naked-eye m1, coma-diameter, and tail-length estimates: Mar. 21.93 UT, 0.8, 67', -- (K. Cernis, Rukainiai, Lithuania); 22.41, 0.9, 1.5 deg, 31 deg (R. Keen, Mt. Thorodin, CO); 22.60, 1.0, 90', 30 deg (S. J. O'Meara, Volcano, HI); 22.68, 0.3, 70', 40 deg (P. Camilleri, Cobram, Vic., Australia); 23.30, 0.5, 2 deg, 30 deg (D. W. E. Green, near S. Carver, MA); 23.45, 0.2, --, 45 deg (C. S. Morris, Whitaker Peak, CA). Title: A Search for Dust Devils on Mars Authors: Wennmacher, A.; Neubauer, F. M.; Patzold, M.; Schmitt, J.; Schulte, K. Bibcode: 1996LPI....27.1417W Altcode: A thorough search through the Viking orbiter images (PDS CD-ROM archive) of Mars for dust devils was conducted in support for the High Resolution Stereo Camera-Surface Atmosphere Interaction (HRSC-SAI) experiment on the Russian Mars-96 spacecraft. So far we focussed on the martian areas Arcadia Planitia and the two Viking lander sites where the occurence of dust devils has already been reported (by imaging or from meteorological data, respectively). Additional events were found which were not yet reported elsewhere. The prime parameters (e. g. height, diameter etc.) confirm the theoretically predicted trends. Title: Hybrid stars - a new class of X-ray sources. Authors: Reimers, D.; Hünsch, M.; Schmitt, J. H. M. M.; Toussaint, F. Bibcode: 1996rftu.proc...65R Altcode: The authors present results of pointed ROSAT PSPC observations of 15 hybrid stars/candidates, which have been analyzed in a homogeneous way. A total of 12 stars have been detected in X-rays with apparent fluxes as low as 5×10-15erg cm-2s-1. The authors conclude that essentially all hybrid stars are X-ray sources if exposed sufficiently deeply. They have re-analyzed the Ca II wind dividing line and find a somewhat different shape and location. Title: Spectral study of a giant X-ray flare on Algol. Authors: Ottmann, R.; Schmitt, J. H. M. M. Bibcode: 1996rftu.proc...57O Altcode: During the long ROSAT PSPC observation of Algol in August 1992, a giant, long-duration X-ray flare has been detected. Spectral fits with a one-temperature thermal model indicate significant variations of the metal abundance Z over the flare. Thereby, the abundance increases from Z ≅ 0.2 to 0.8 during the rise phase, and again decreases to Z ≅ 0.4 during the decay. Further, during the early flare rise, the plasma temperature and density are maximal (T ≅ 108K, ne ≅ 5×1011cm-3). The flare has a thermal energy of 7×1036erg, a peak luminosity of 2×1032erg/s and is classified as two-ribbon. Because of re-heating the flare plasma does not cool quasistatically; nevertheless, applying the quasistatic cooling method, a loop length of 5×1011cm and a flaring volume of 1×1034cm3 are derived. Title: New X-ray sources detected among mild barium and S stars. Authors: Jorissen, A.; Schmitt, J. H. M. M.; Carquillat, J. M.; Ginestet, N.; Bickert, K. F. Bibcode: 1996A&A...306..467J Altcode: We report on the detection by ROSAT of X-rays from the mild barium star HD 165141 (K0III/IIBa1) and from the S stars HD 35155 (S4,1) and HR 363 (S3/2). For the S stars, the X-ray flux is attributed to the accretion of the red-giant wind by the white dwarf companion. The strong variability observed in the X- and UV fluxes on time scales of both hours and months may be due to irregularities in the accretion rate, or to variable obscuration by cool gas present in the system. In the case of HD 35155, the absence of ROSAT detection at the phase where eclipses are observed in the UV and optical domains suggests that part of the X-ray variability may be associated with eclipses of the compact companion. HD 165141 is more puzzling since this star seems to share the properties of RS CVn and barium systems. The properties of the X-rays emitted by this system are typical of RS CVn systems, as is the photometric period of 35d and the rapid rotation. However, the rapid rotation does not seem to be due to synchronism with the orbital period, as is usually the case for RS CVn systems. The companion appears to be a hot white dwarf rather than a main sequence star, with a long orbital period (~5200d), more typical of barium than of RS CVn systems. These conflicting properties could be explained if this particular barium star formed on the giant branch, accreting not only mass but also spin angular momentum. The two giants HR 5692 (G8IIIBa0.3) and HR 6468 (G8IIIBa0.6) appear to be coronal X-ray sources. The barium nature of these stars is questioned, given their small Ba indices and their normal DDO photometric indices. Moreover, since HR 6468 is a radial-velocity standard star, it is likely not a binary star as required for barium stars. Title: Coronal densities from X-ray rotational modulation. Authors: Güdel, M.; Schmitt, J. H. M. M. Bibcode: 1996rftu.proc...35G Altcode: The authors present a geometric method for estimating lower limits of coronal densities based on X-ray rotational modulation of single stars. Application to two young, very active solar-like stars yields electron densities of several times 1010cm-3 or more. Title: η Carinae: variability in a new light. Authors: Corcoran, M. F.; Rawley, G. L.; Swank, J. H.; Petre, R.; Schmitt, J. H. M. M. Bibcode: 1996rftu.proc...25C Altcode: ROSAT Position Sensitive Proportional Counter (PSPC) observations for the first time unequivocally reveal the presence of a compact source of hard X-ray emission centered on the peculiar star η Car. These observations also show a dramatic change in the hard-band (≥1.6 keV) counting rate by a factor of ≡2 in a 4-month interval. ROSAT High Resolution Imager (HRI) observations which span the PSPC observations also reveal a variable source of X-ray emission centered on η Car. Thus strong variability which is a characteristic of η Car in radio through IR and visible-band wavelengths is also observed at X-ray energies. The authors examine the X-ray lightcurve of η Car using available Einstein, ROSAT and ASCA data. Title: An X-ray survey of all nearby late-type giants. Authors: Hünsch, M.; Schmitt, J. H. M. M.; Schröder, K. -P.; Reimers, D. Bibcode: 1996rftu.proc...49H Altcode: The authors have investigated the X-ray luminosity distribution function for late-type giants from ROSAT observations of all nearby (d < 25 pc) G-M giants. Essentially all giants with B-V < 1.2 are X-ray sources with luminosities of some 1027erg s-1, few giants are more X-ray luminous. There is evidence for a minimum X-ray surface flux of the order of ≡100 erg cm-2s-1, which seems to be independent of B-V and is probably not related to pure acoustic heating. Title: The Extreme-Ultraviolet Spectrum of the Nearby K Dwarf ɛ Eridani Authors: Schmitt, J. H. M. M.; Drake, J. J.; Stern, R. A.; Haisch, B. M. Bibcode: 1996ApJ...457..882S Altcode: We present and discuss the extreme-ultraviolet spectrum of the nearby K2 dwarf ɛ Eri obtained with the spectrometers onboard the Extreme-Ultraviolet Explorer satellite (EUVE). In the EUVE spectrum of ɛ Eri we detect emission lines attributable to iron in the ionization stages Fe IX to Fe XXI, thus covering a rather large temperature range from less than 106 K to 107 K. While the lines in the lowest and highest ionization stages are relatively weak, the strongest lines detected are from Fe XV and Fe XVI, from which we infer a peak in the differential emission measure distribution at coronal temperatures of log Tc ∼ 6.4; significant emission measure is, however, also present at both higher and lower temperatures. This is in contrast to both lower activity stars whose EUV spectra are dominated by cooler Fe lines in the range 170-180 Å as well as the more active stars whose EUV spectra are dominated by hotter Fe lines in the range 110-135 Å. Finally, a density determination using line ratios of Fe XIII and Fe XIV results in coronal densities for ɛ Eri which are similar to solar active region densities. Title: Discovery of 0.5 million K gas in the center of galaxy clusters. Authors: Lieu, R.; Mittaz, J. P. D.; Bowyer, S.; Lockman, F. J.; Hwang, C. -Y.; Schmitt, J. H. M. M. Bibcode: 1996rftu.proc..557L Altcode: An observation of M87, the central galaxy of the Virgo cluster, was performed in the 0.065-0.245 keV energy band by the deep survey (DS) telescope aboard the Extreme Ultraviolet Explorer (EUVE). A central source and an extended emission halo of radius ≡120 kpc are clearly visible in the data and represent the first detection of cluster gas emission in the EUV. The emission cannot be explained by the well-known cluster gas at X-ray temperatures. Instead, it is necessary to introduce a second gas component, with temperature between 5×105 and 106K. The rapid cooling of plasmas at such temperatures implies a mass accretion rate of >300 Msun/yr. It is unlikely that the phenomenon is directly related to a cooling flow, which involves a much lower rate of ≡10 Msun/yr. More recently, the authors examined ROSAT PSPC data of other galaxy clusters located in directions of low galactic absorption, and found that all of them show evidence of extended central emission at T ≍ 106K. In particular, the Coma cluster, which was also detected by the EUVE sky survey, exhibits soft emission out to a radius of ≡1 Mpc from the X-ray centroid, with an estimated gas cooling (accretion) rate of ≡2×105Msun/yr. This result is a major surprise, since Coma does not have a cooling flow. Title: Correlated variability in the X-ray and Hα emission from the O4If supergiant ζ Puppis. Authors: Berghoefer, T. W.; Baade, D.; Schmitt, J. H. M. M.; Kudritzki, R. -P.; Puls, J.; Hillier, D. J.; Pauldrach, A. W. A. Bibcode: 1996A&A...306..899B Altcode: The Position Sensitive Proportional Counter (PSPC) onboard the ROSAT satellite was used to monitor ζ Pup for 56651seconds spread over 11days in 1991 October. During the first 8days, 592 high-resolution Hα profiles were also obtained simultaneously. In a detailed time series analysis we investigate the X-ray observations and the Hα line profiles for variability. We find a 1.44c/d (cycles/day) modulation both in the Hα line profiles as well as in the X-ray band pass between 0.9 and 2.0keV; the amplitude of the X-ray variability amounts to +/-6%. Thus, our observations provide evidence for periodic variations in the wind density at the base of the wind of ζ Pup. Title: ROSAT observations of NGC 2023 and NGC 2024. Authors: Freyberg, M. J.; Schmitt, J. H. M. M. Bibcode: 1996rftu.proc...31F Altcode: The authors have observed the embedded stellar clusters of NGC 2024 (H II region) and NGC 2023 (reflection nebula) in soft X-rays (0.1-2.0 keV) both with the ROSAT PSPC and HRI. They analyzed the X-ray properties of the numerous detected sources such as luminosities and spectral parameters. The overall picture is different for the two star-forming regions. While in NGC 2023 only one out of 16 infrared sources was found with significance of at least 4σ, a fair fraction of the infrared cluster of NGC 2024 is X-ray bright. The authors cross-correlated their X-ray sources with sources previously detected at other wavelengths (e.g., infrared, Hα). In addition to a high positional correlation of the detected sources with K band sources there is no obvious correlation of individual infrared and X-ray properties. The authors conclude that the X-ray sources are low-mass young stellar objects, deeply embedded in the molecular cloud. In NGC 2024 they may contribute significantly to the observed ionization. Title: Coronal X-ray emission of late-type MS stars in relation to chromospheric activity and magnetic cycles. Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Stepień, K. Bibcode: 1996rftu.proc...45H Altcode: The authors study the relationship between the coronal X-ray emission of single, main-sequence F-K stars and the characteristics of their magnetic cycles. They use X-ray data primarily from the ROSAT all-sky survey as well as data acquired by them in the ROSAT pointed program, and the published data of the Mt. Wilson Ca II H+K monitoring program. According to the Ca II H+K long-term variability characteristics, the authors divide the stars into three groups: constant stars, regular variable and irregular (chaotic) variable stars. They show that the regular and the irregular stars differ mainly in their Rossby-numbers (Ro): regular stars have almost always Ro < 1 whereas the irregular group is characterised by Ro > 1; further, the X-ray surface flux distributions differ significantly between these three groups. The authors discuss to what extent stars exhibiting constant Ca II fluxes can be considered Maunder minimum stars, and demonstrate - in a statistical sense - that cyclic chromospheric activity also implies cyclic coronal activity. Title: Young open stellar clusters. Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F. Bibcode: 1996rftu.proc...61R Altcode: The authors discuss about the identification of candidate members of young open clusters by means of ROSAT observations. Specifically, the results for the IC 2602 and α Persei clusters are presented. In the first case, 86 X-ray sources were detected not associated with previously known cluster members: photometry and spectroscopy have confirmed membership for most of them. In the second case, a PSPC raster scan survey in the α Persei region yielded 84 sources which could not be identified with known optical counterparts. CCD photometry indicated that half of them have colors/magnitudes consistent with membership. Title: Advances in Solar-Stellar Astrophysics Authors: Haisch, Bernhard; Schmitt, J. H. M. M. Bibcode: 1996PASP..108..113H Altcode: The discovery on stars of coronae and of X-ray emission from flares in the 1970's opened up the investigation of stellar activity. Solar-stellar astrophysics has now become a two-way street. The rich detail of the Sun provides a close-up view of physical phenomena, while the stellar observations provide a way to, in effect, vary the otherwise fixed solar parameters. In this way we can study the evolution of the Sun, the dependence of activity on rotation, and the degree of autonomy between magnetic fields and such fundamental parameters as mass and age. We present an overview of the Sun as a star, stellar coronae along the main sequence, the dividing line for evolved stars, rotation-activity relations, activity cycles, flux-flux relations, basal acoustic heating, evidence for coronal heating by microflaring, and a few facts about flares. (SECTION: Invited Review) Title: Lithium abundance in the open cluster IC 2602 Authors: Randich, S.; Aharpour, N.; Pallavicini, R.; Prosser, C. F.; Stauffer, J. R.; Schmitt, J. H. M. M. Bibcode: 1996ASPC..109..379R Altcode: 1996csss....9..379R No abstract at ADS Title: ROSAT observations of open clusters: recent results Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.; Stauffer, J. R. Bibcode: 1996ASPC..109..381R Altcode: 1996csss....9..381R No abstract at ADS Title: ROSAT observations of a complete volume-limited sample of late-type giants Authors: Hunsch, M.; Reimers, D.; Schmitt, J. H. M. M.; Schroder, K. -P. Bibcode: 1996ASPC..109..531H Altcode: 1996csss....9..531H No abstract at ADS Title: ORFEUS FUV spectra of late-type stars Authors: Schmitt, J. H. M. M.; Krautter, J.; Appenzeller, I.; Mandel, H.; Barnstedt, J.; Golz, M.; Grewing, M.; Gringel, W.; Haas, C.; Hopfensitz, W.; Kappelmann, N.; Kramer, G.; Wichmann, R. Bibcode: 1996ASPC..109..287S Altcode: 1996csss....9..287S No abstract at ADS Title: Coordinated EUVE/ASCA/XTE/VLA observations of Algol. Authors: Stern, R. A.; Lemen, J. R.; Antunes, S.; Drake, S. A.; Nagase, F.; Schmitt, J. H. M. M.; Singh, K. P.; White, N. E. Bibcode: 1996BAAS...28..921S Altcode: No abstract at ADS Title: Nonthermal Microwave Emission from F Dwarfs: 71 Tau; alpha For; and Open Cluster/Moving Group Membership Authors: Gudel, M.; Benz, A. O.; Guinan, E. F.; Schmitt, J. H. M. M. Bibcode: 1996ASPC...93..306G Altcode: 1996ress.conf..306G No abstract at ADS Title: ROSAT observation of a giant X-ray flare on Algol Authors: Ottmann, R.; Schmitt, J. H. M. M. Bibcode: 1996ASPC..109..281O Altcode: 1996csss....9..281O No abstract at ADS Title: The Enigmatic FOV Star 47 CAS Authors: Gudel, M.; Benz, A. O.; Guinan, E. F.; Schmitt, J. H. M. M. Bibcode: 1996ASPC...93..309G Altcode: 1996ress.conf..309G No abstract at ADS Title: Variability of UV Ceti in Radio and Soft X-ray Emission Authors: Benz, A. O.; Gudel, M.; Schmitt, J. H. M. M. Bibcode: 1996ASPC...93..291B Altcode: 1996ress.conf..291B No abstract at ADS Title: The ROSAT Users' Handbook Authors: Briel, U. G.; Aschenbach, B.; Hasinger, G.; Hippmann, H.; Pfeffermann, E.; Predehl, P.; Schmitt, J. H. M. M.; Voges, W.; Zimmermann, U.; David, L.; Harnden, F. R.; Kearns, K. E.; Zomback, M. V.; Barstow, M. A.; Osborne, J. P.; Pye, J. P.; Watson, M.; West, R. G.; Willingdale, R. Bibcode: 1996rouh.book.....B Altcode: No abstract at ADS Title: ROSAT observations of hybrid stars Authors: Reimers, D.; Hunsch, M.; Toussaint, F.; Schmitt, J. H. M. M. Bibcode: 1996ASPC..109..537R Altcode: 1996csss....9..537R No abstract at ADS Title: Coronal X-ray emission of cool stars in relation to chromospheric activity and magnetic cycles. Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Stȩpień, K. Bibcode: 1996A&A...305..284H Altcode: We study the relationship between the coronal X-ray emission of single, main-sequence F-K stars and the characteristics of their magnetic cycles. We use X-ray data primarily from the ROSAT all-sky survey (RASS) as well as data acquired by us in the ROSAT pointed program, and the published data of the Mt. Wilson CaII H+K monitoring program. According to their CaII H+K long-term variability characteristics, we divide the stars into three groups: non-variable, regular variable and irregular (chaotic) variable stars. We show that the regular and the irregular stars differ mainly in their Rossby-numbers (Ro): regular stars have almost always Ro<1 whereas the irregular group is characterized by Ro>1 further, the X-ray surface flux distributions differ significantly between these three groups. We discuss to what extent stars exhibiting constant Ca II fluxes can be considered "Maunder minimum" stars, and demonstrate - in a statistical sense - that cyclic chromospheric activity also implies cyclic coronal activity. From a reanalysis of the flux-flux relation between the calcium excess flux density ({DELTA}F_Ca_) and F_X_, we find different relations between the regular and the constant stars on one hand and the irregular stars on the other hand. Performing regression analysis in the form of a power law, the coefficient κ is derived to be κ=~1 for constant and regular stars whereas κ=~2 for the more active irregular stars. We discuss our findings in the context of a transition from a nonlinear to a linear dynamo regime when going from irregular to regular stars. Title: Eclipse mapping at X-ray wavelengths Authors: Schmitt, J. H. M. M. Bibcode: 1996IAUS..176...85S Altcode: No abstract at ADS Title: Pointed ROSAT observations in the Lupus dark clouds Authors: Wichmann, R.; Krautter, J.; Alcala, J. M.; Schmitt, J. H. M. M.; Neuhauser, R.; Covino, E.; Terranegra, L. Bibcode: 1996ASPC..109..443W Altcode: 1996csss....9..443W No abstract at ADS Title: Coronal Structwre in M Dwarf Stars Authors: Giampapa, M. S.; Rosner, R.; Kashyap, V.; Fleming, T. A.; Schmitt, J. H. M. M.; Bookbinder, J. A. Bibcode: 1996mpsa.conf...81G Altcode: 1996IAUCo.153...81G No abstract at ADS Title: X-ray observations of comet Hyakutake (C/1996 B2). Authors: Lisse, C. M.; Mumma, M. J.; Petre, R.; Schmitt, J.; Englhauser, J.; Truemper, J. Bibcode: 1996BAAS...28.1196L Altcode: No abstract at ADS Title: X0ray Emission and Rotation of T Tauri Stars Authors: Neuhäuser, Ralph; Sterzik, Michael F.; Schmitt, Jürgen H. M. M. Bibcode: 1996LNP...465E.363N Altcode: No abstract at ADS Title: Discovery of Warm Gas in the Virgo Cluster Authors: Lieu, R.; Mittaz, J. P. D.; Bowyer, S.; Schmitt, J. H. M. M.; Lewis, J. Bibcode: 1996aeu..conf...37L Altcode: 1996IAUCo.152...37L No abstract at ADS Title: EUVE spectroscopy of Algol. Authors: Stern, R. A.; Schmitt, J. H. M. M.; Lemen, J. R.; Pye, J. P. Bibcode: 1996uxsa.conf...97S Altcode: 1996uxsa.coll...97S The authors discuss results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (β Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). EUVE observed Algol over nearly 1.5 orbital periods (≡4 d). The Algol spectrum in the 80 - 350 Å range is dominated by emission lines of Fe XV-XXIV, and the He II 304 Å line. Title: The X-ray properties of the young open cluster around α Persei. Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.; Stauffer, J. R. Bibcode: 1996A&A...305..785R Altcode: We present ROSAT PSPC pointed observations of the 50Myr old α Per open cluster. The X-ray observations, which were carried out as a raster scan, cover an area of about 10deg^2^. In total, we detect about 160 X-ray sources, 88 of which have an optical counterpart (within 30arcsec) associated with α Per cluster candidates. Within the central region of our field of view, which is characterized by a limiting sensitivity L_X_~10^28.8-29^erg/sec, we detect basically all late-F, G and K stars, while the detection rate among the M dwarfs is on the order of 60%. Given the sensitivity of our X-ray observations, the lower detection rate among the very low mass objects is consistent with the ROSAT results obtained for the Pleiades cluster. Although stars in each color range show a large spread in X-ray luminosity, the maximal X-ray luminosities appear to decrease from the range of late-F - G type stars to the M-type dwarfs. We interpret this as due to the fact that the maximum X-ray luminosity cannot exceed the saturation level L_X_/L_bol_~10^-3^, and is hence a function of the bolometric luminosity. The availability of rotational velocities for many of the X-ray detected objects permits us to study correlations between rotation and X-ray activity. For B-V_o_>0.6, at a given mass, the weakest X-ray sources are slow rotators, while the strongest X-ray sources are rapid rotators. The relation between L_X_/L_bol_ and rotation we find for the α Per low mass stars is the same as previously determined for low mass stars in the Pleiades, and a similar relation is found on correlating L_X_/L_bol_ with rotation period. Using directly measured periods as well as periods estimated from rotational velocities, we derive Rossby numbers (R_0_) for stars with B-V_o_>0.3 finding that a well-defined relationship between L_X_/L_bol_ and R_0_ is present both for early (i.e., F) and late-type stars. A comparison of the X-ray luminosity distribution functions (XLDF) for our α Per sample and the Pleiades indicates that F and G-type stars in α Per are, as a whole, more X-ray luminous than their older counterparts in the Pleiades. On the other hand, no significant difference is found between the distributions of the K and M-type dwarfs in the two clusters. We argue that this finding is a consequence of the longer spin-down timescales of later-type objects, and hence of the fact that there are more rapid rotators among G stars in α Per than in the Pleiades, while this is not the case for K and M dwarfs. Title: First Maps of the Soft X-Ray Diffuse Background from the ROSAT XRT/PSPC All-Sky Survey Authors: Snowden, S. L.; Freyberg, M. J.; Plucinsky, P. P.; Schmitt, J. H. M. M.; Truemper, J.; Voges, W.; Edgar, R. J.; McCammon, D.; Sanders, W. T. Bibcode: 1995ApJ...454..643S Altcode: This paper presents an initial version of the diffuse background results from the ROSA T soft X-ray all-sky survey. These maps cover ∼98% of the sky in the ¼ keV, ¾ keV, and 1.5 keV bands, with ∼2° angular resolution and high sensitivity for low surface brightness extended features. The effects of non-X-ray contamination and X-rays of solar system origin have been eliminated to the greatest possible extent, but discrete X-ray sources have not been removed. The much improved angular resolution, statistical precision, and completeness of coverage of these maps reveal considerable structure over the entire 0.1-2.0 keV energy range that was not observed previously. The data agree well with previous all-sky surveys in terms of absolute normalization and zero point. Title: A study of the Chamaeleon star forming region from the ROSAT all-sky survey. I. X-ray observations and optical identifications. Authors: Alcala, J. M.; Krautter, J.; Schmitt, J. H. M. M.; Covino, E.; Wichmann, R.; Mundt, R. Bibcode: 1995A&AS..114..109A Altcode: We present the observations of the ROSAT all-sky survey (RASS) in the direction of the Chamaeleon cloud complex, as well as the spectroscopic identifications of the detected X-ray sources. The main purpose of this identification program was the search for low mass pre-main sequence stars. Sixteen previously known PMS stars were detected with high confidence by ROSAT. Eight are classical T Tauri stars and eight are weak-line T Tauri stars, Seventy-seven new weak-line T Tauri stars were identified on the basis of the presence of strong Li λ 6707 absorption, spectral type later than F0 and chromospheric emission. We give coordinates and count rates of the X-ray sources, and present optical spectra and finding charts for the sources identified optically as new pre-main sequence stars. Optical UBV(RI)_c_ and near-infrared JHKLM photometry for this sample of stars is also provided. In addition, 6 new dKe-dMe candidates are found among the RASS sources. Title: Erratum - a ROSAT X-Ray Study of the Praesepe Cluster Authors: Randich, S.; Schmitt, J. H. M. M. Bibcode: 1995A&A...303..322R Altcode: No abstract at ADS Title: Microwave emission from X-ray bright solar-like stars: the F-G main sequence and beyond. Authors: Guedel, M.; Schmitt, J. H. M. M.; Benz, A. O. Bibcode: 1995A&A...302..775G Altcode: A sample of F and G main sequence stars and slightly evolved F and G stars, selected as the apparently strongest X-ray sources in their class as detected in the ROSAT All-Sky Survey (RASS), has been observed in microwaves to search for coronae with strong heating and populations of nonthermal particles. The microwave flux densities were observed with the VLA at 8.4GHz. Radio emission has been detected from nine targets, in both luminosity classes V and IV. Since known or unknown cool companions in binary systems may cause spurious results, we have checked the available spectroscopic and astrometric data, including unpublished CORAVEL observations. There is at least one detected object in each of the four spectral and luminosity classes of stars, FIV, FV, GIV, and GV for which no known companion can be made responsible for the observed emission. A very luminous X-ray and radio source is identified with the F0 V star HD 12230, a member of the Pleiades Moving Group with an age of the order of 50-70Myr. HD 129333 (EK Dra), a G0 V target presumably of the same age, is detected also, and the X-ray and radio modulations agree with the optically measured rotation. On the other hand, three very old stars that are leaving the main sequence and are moving towards the subgiant luminosity class are found to be strong X-ray and radio emitters; in the case of HD 20010, an F8 IV star, the hypothetical existence of an unknown spectroscopic companion would contradict astrometric data. These stars appear to define a new class of radio-luminous coronal stars. The observed microwave flux densities agree with the ratio of radio to X-ray fluxes of other active coronal stars. We report sensitive upper limits for all non-detections, up to an order of magnitude lower than in previous surveys. These observations yield first systematic evidence that stars close to the solar spectral type can maintain considerable nonthermal electron populations in their coronae, possibly due to a mechanism that involves coronal heating. They provide the crucial link between the study of the solar corona and of active coronal stars (the "solar-stellar connection"), and bridge the remaining gaps on the radio main sequence between the cooler stars and chemically peculiar Ap stars. Further, they support the view that young, near-Zero-Age Main-Sequence (ZAMS) stars are able to continually produce luminous radio emission after their arrival on the ZAMS. The strong activity resurgence in the sample of old stars moving off the main sequence may be related to an increase in convective turnover time as the internal structuring of the stars changes; this is of potential interest for the study of the stellar interior of evolved stars. Title: The corona of the young solar analog EK Draconis. Authors: Guedel, M.; Schmitt, J. H. M. M.; Benz, A. O.; Elias, N. M., II Bibcode: 1995A&A...301..201G Altcode: First coronal microwave and new soft X-ray observations of the very active, near-Zero-Age Main-Sequence (ZAMS) dG0e star EK Dra = HD 129333 show that this analog of the young Sun is more luminous in both emissions than most single M-dwarf flare stars. Variations in the 8.4GHz flux include modulation with the optically determined rotation period of 2.7 days. This result points to a non-uniform filling of the corona with energetic electrons due to an incomplete coverage of the surface with active regions and a source volume that is not concentric with the star. The radio luminosity varying between logL_R_=13.6 and 14.6 (L_R_ in erg/s/Hz) shows evidence for unpolarized gyrosynchrotron flares, while strongly polarized flares were absent during the observations. This star is the first young, truly solar-like main sequence G star discovered in microwaves. Having just arrived on the main sequence, it conclusively proves that young, solar-like G stars can maintain very high levels of radio emission after their T Tau phase. The X-ray observations were obtained from the ROSAT All-Sky Survey (RASS). The average X-ray luminosity amounts to logL_X_=29.9 (L_X_ in erg/s). A Raymond-Smith type plasma model fit yields two plasma components at temperatures of 1.9 and 10MK, with volume emission measures of 1.2 and 2.5.10^52^cm^-3^, respectively. The X-ray light curve is significantly variable, with the photon count rate from the cooler plasma being strongly modulated by the rotation period; the emission from the hotter plasma is only weakly variable. Modeling of the source distribution in the stellar corona yields electron densities of the order of 4.10^10^cm^-3^ or higher for the cool plasma component. It indicates that a considerable portion of EK Dra's high X-ray luminosity is due to high-density plasma rather than large emission volume. Parameters for an X-ray flare indicate an electron density of 1.75.10^11^cm^-3^ and a source height of (1-2).10^10^cm, compatible with a few times the scale height of the cooler plasma component. Title: The X-Ray View of the Low-Mass Stars in the Solar Neighborhood Authors: Schmitt, Juergen H. M. M.; Fleming, Thomas A.; Giampapa, Mark S. Bibcode: 1995ApJ...450..392S Altcode: We present the results of a complete and sensitive X-ray survey of all known stars of spectral type K and M in the immediate solar vicinity with distances less than 7 pc. The X-ray data were obtained primarily from the ROSA T all-sky survey (RASS); those program stars not detected in the RASS data were subsequently studied with the ROSAT pointed observation program. These new X-ray observations resulted in a detection rate of almost 94% for all K and M stars within 6 pc around the Sun, and 87% for K and M dwarfs within 7 pc around the Sun. The resulting X-ray luminosity distribution function can be well described by a log-normal distribution; the largest and smallest X-ray luminosities from our sample stars differ by almost four orders of magnitude. We show the existence of a correlation between total emitted X-ray luminosity and spectral hardness, such that more luminous objects tend to have larger spectral hardness, thus implying higher coronal temperatures. A comparison with Einstein data shows the lack of significant variability in excess of a factor of 2 in our sample stars. Title: Correlations of Coronal X-Ray Emission with Activity, Mass, and Age of the Nearby K and M Dwarfs Authors: Fleming, Thomas A.; Schmitt, Juergen H. M. M.; Giampapa, Mark S. Bibcode: 1995ApJ...450..401F Altcode: Using the ROSAT telescope, we have detected X-ray emission from 87% of all known K and M dwarfs within 7 pc of the Sun. Analysis of this volume-limited sample of K and M dwarfs reveals no evidence for a decrease in coronal heating efficiency (as measured by Lx/L bol) among the lowest mass, presumably fully convective, late-M dwarfs. Furthermore, our results indicate that those stars which exhibit little chromospheric activity (i.e., dM and dK stars) do indeed have cooler and weaker coronae than the more active dMe stars. While we also see a correlation between coronal temperature/strength and metallicity (and presumably age), no such correlation is seen with kinematic class. The latter result leads us to suggest that kinematic class is a poor age indicator for the nearby stars. Title: An X-ray study of the young open cluster IC 2602. Authors: Randich, S.; Schmitt, J. H. M. M.; Prosser, C. F.; Stauffer, J. R. Bibcode: 1995A&A...300..134R Altcode: We present the results of ROSAT PSPC observations of the 30Myr old IC 2602 cluster; for the X-ray detected objects the results of a CCD photometric survey are also given. In X-rays, we detect a total of 110 objects within a 11deg^2^ area, above a threshold of typically 3-5x10^28^erg/sec. 68 of the detected objects have been identified with at least one optical counterpart; 44 of these are new optical candidates for cluster membership provided by our CCD photometry. Stars of all spectral types have been detected, from the very early- types to the late-M dwarfs. Soft X-ray luminosities range between about 10^29^erg/sec to a few 10^30^erg/sec, with the maximum and average L_X_ decreasing with spectral type for B-V larger than ~0.8. Many of the stars redder than B-V~0.8 show a L_X_/L_bol_ ratio at about the saturation level of 10^-3^. We construct X-ray luminosity distribution functions for objects in different color ranges and we compare them with those for the Pleiades. F, G, and early-K type candidates in IC 2602 appear to be more X-ray luminous than in the Pleiades, while no significant difference is seen among late-K and M dwarfs. Under the assumption that our IC 2602 sample is not severely affected by incompleteness, we argue that the above finding is related to the distribution of rotational velocities in the two clusters, with most of the late-type stars being fast rotators in both clusters, while, due to different spin-down timescales, the earlier type stars in IC 2602 are likely to rotate more rapidly than their counterparts in the Pleiades. Title: Long term X-ray variability studies of OB-type stars Authors: Berghoefer, T. W.; Schmitt, J. H. M. M. Bibcode: 1995AdSpR..16c.163B Altcode: 1995AdSpR..16R.163B In order to search for X-ray time variability among early-type stars we have investigated ROSAT X-ray data of OB-type stars. Here we present typical examples for ROSAT PSPC X-ray light curves of OB-type stars covering time scales of 24 hours up to 2.5 years. We show that X-ray variability is not common among these stars and discuss our result in the context of the model for the X-ray production by shock-heated gas present in the winds of these stars. Title: ROSAT All-Sky Survey Observations of the Hyades Cluster Authors: Stern, Robert A.; Schmitt, Juergen H. M. M.; Kahabka, Peter T. Bibcode: 1995ApJ...448..683S Altcode: We report the results of a complete X-ray survey of the Hyades cluster region using the ROSAT All-Sky Survey (RASS). Our survey covers over 900 deg2 of the sky. Over 185 optically identified Hyads were detected down to a limiting X-ray luminosity of ≍1-2 × 1028 ergs s-1 (0.1-1.8 keV); among solar-like stars, i.e., mainsequence stars of spectral type G, the RASS detection rate is ≍90%. The presence of many binary systems in the cluster is a key factor influencing the X-ray luminosity function. Short-period (∼ a few days or less) binaries are anomalously X-ray bright, as might be expected; however, the X-ray luminosity functions of K and possibly M binaries of all types are significantly different from their single counterparts, confirming the results of Pye et al. for a smaller K star sample drawn from deep ROSAT pointings. Comparison with Einstein Observatory studies of a subset of Hyades stars demonstrates a general lack of significant (> a factor of 2) long-term X-ray variability. This may be the result of the dominance of a small-scale, turbulent dynamo in the younger Hyades stars compared to the large-scale, cyclic dynamo observed in the Sun. Title: Multifrequency observations of a flare on UV Ceti. Authors: Stepanov, A. V.; Fuerst, E.; Krueger, A.; Hildebrandt, J.; Barwig, H.; Schmitt, J. Bibcode: 1995A&A...299..739S Altcode: Multifrequency observations of the flare of December 31, 1991 on UV Ceti are presented. The radio observations were carried out with the Effelsberg 100-m radio telescope at 4750MHz, whereas optical photometry was performed using the 0.8-m telescope of the Wendelstein Observatory in the five UBVRI colors. The radio burst started ~5min after the maximum of an optical flare. X-ray emission observed with the ROSAT PSPC before and after the optical flare conclusively demonstrates that an X-ray flare has occured. Several narrow-bandwidth radio spikes with duration of about 0.1s, peak flux density of 250mJy, and >=75% LH polarization were recorded. An interpretation of the spikes in terms of electron-cyclotron maser emission (ECME) and, alternatively, coherent plasma emission is proposed. The flare plasma parameters obtained from radio and soft X-ray data are as follows: n_e_=~10^11^/cm-3, T_e_=~10^7^K, B=~(200-800)G. Using these values, the escape windows for ECME have been calculated at ν=4.75GHz. It has been shown that there is actually no "perpendicular" window for the ordinary mode at the second and third harmonics of the electron gyrofrequency. The optical flare's cross-section area and the temperature of the "cool" plasma were found to be 4x10^16^cm^2^ and 16000K, respectively. Possible reasons for the time delay between the optical and radio flares as well as stellar flare models are discussed. Title: Optical identification of EUV sources from the ROSAT Wide Field Camera all-sky survey Authors: Mason, K. O.; Hassall, B. J. M.; Bromage, G. E.; Buckley, D. A. H.; Naylor, T.; O'Donoghue, D.; Watson, M. G.; Bertram, D.; Branduardi-Raymont, G.; Charles, P. A.; Cooke, B.; Elliott, K. H.; Hawkins, M. R. S.; Hodgkin, S. T.; Jewell, S. J.; Jomaron, C. M.; Sekiguchi, K.; Kellett, B. J.; Lawrence, A.; McHardy, I.; Mittaz, J. P. D.; Pike, C. D.; Ponman, T. J.; Schmitt, J.; Voges, W.; Wargau, W.; Wonnacott, D. Bibcode: 1995MNRAS.274.1194M Altcode: Optical identifications for 195 EUV sources located in the ROSAT Wide Field Camera all-sky survey are presented. We list 69 previously unknown EUV-emitting white dwarfs, 114 active stars, 7 new magnetic cataclysmic variables and 5 active galaxies. Several of the white dwarfs have resolved M-type companions, while five are unresolved white dwarf/M-star pairs. Finding charts are given for the optical counterparts. Title: Solar-Like M-Class X-Ray Flares on Proxima Centauri Observed by the ASCA Satellite Authors: Haisch, Bernhard; Antunes, A.; Schmitt, J. H. M. M. Bibcode: 1995Sci...268.1327H Altcode: Because of instrumental sensitivity limits and stellar distances, the types of x-ray flares observable on stars have been intrinsically much more energetic than those on the sun. Such enormous events are a useful extrapolation of the solar phenomenon if the underlying assumption is correct that they form a continuous sequence involving similar physical processes as on the sun. The Advanced Satellite for Cosmology and Astrophysics (ASCA), with its greater sensitivity and high-energy response, is now able to test this hypothesis. Direct comparison with solar flares measured by the x-ray-monitoring Geostationary Operational Environmental Satellites (GOES) is possible. The detection of flares on Proxima Centauri that correspond to GOES M-class events on the sun are reported. Title: The Carina Nebula in - (Invited Paper) Authors: Corcoran, M. F.; Swank, J.; Rawley, G.; Petre, R.; Schmitt, J.; Day, C. Bibcode: 1995RMxAC...2...97C Altcode: No abstract at ADS Title: ROSAT Observations of Open Clusters: Recent Results Authors: Prosser, C.; Stauffer, J.; Randich, S.; Schmitt, J.; Caillault, J. -P.; Stern, R.; Balachandran, S. Bibcode: 1995AAS...186.4913P Altcode: 1995BAAS...27.1210P No abstract at ADS Title: A ROSAT X-ray study of the Praesepe cluster. Authors: Randich, S.; Schmitt, J. H. M. M. Bibcode: 1995A&A...298..115R Altcode: We present the results of ROSAT PSPC observations of the Praesepe cluster. 68 Praesepe candidates have been detected, above a threshold of =~2x10^28^erg/s, in the ~4x4deg area of the cluster covered by the observations. 56 out of the 68 detected objects are cataloged as high probability Praesepe members. Praesepe members of all spectral types have been detected with X-ray luminosities ranging from the sensitivity limit to approximately 10^30^erg/s in the ROSAT broad band. The highest X-ray luminosity has been measured for a very short period W UMa type SB2 binary. 2 out of the 4 Praesepe late-type giants have also been detected. X-ray luminosity distribution functions have been derived for late-type stars in the sample, taking into account both detections and upper limits. The main and most surprising finding are the low detection rates derived for Praesepe low mass dwarfs. We detected about 30% of the F and G stars, and the detection rate among K and M dwarfs is even lower. Correspondingly, the luminosity distribution functions for stars in selected color intervals are dominated by the contribution of upper limits, with the medians below the sensitivity threshold. The comparison with the Hyades all-sky survey results shows an evident discrepancy between the average X-ray properties of late-type dwarfs in the two apparently coeval clusters; such a discrepancy must be an intrinsic one, since the observations are characterized by similar sensitivities. Title: ROSAT survey observation of T Tauri stars in Taurus. Authors: Neuhaeuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.; Wichmann, R.; Krautter, J. Bibcode: 1995A&A...297..391N Altcode: We study the X-ray emission of T Tauri stars (TTS) in Taurus-Auriga as observed with the spatially unbiased flux-limited ROSAT All-Sky Survey. Our detection rates are comparable with Einstein Observatory results: 43 out of 65 (66%) weak-line TTS (WTTS) and 9 out of 79 (11%) classical TTS (CTTS) exhibit X-ray emission above the ROSAT survey detection limit. Spectral fits give results consistent with Raymond-Smith spectra and emission temperatures of ~1keV for both CTTS and WTTS. However, we find that CTTS and WTTS have significantly different X-ray luminosity functions, even when correcting luminosities for individual X-ray spectra (absorption and emission energy). Medians of X-ray luminosities log (L_X_/erg/sec) are 29.701+/-0.045 for WTTS and 29.091+/-0.032 for CTTS, all in 140pc distance. A strong correlation between X-ray surface flux and stellar rotation indicates that WTTS are intrinsically more X-ray active than CTTS because WTTS rotate faster. However, rotation is not the only parameter that determines X-ray activity, we find that X-ray luminosity is correlated with stellar mass, bolometric luminosity, effective temperature, and stellar age. Furthermore, X-ray emission of CTTS appears to be harder than that of WTTS. Title: The spatial distribution of X-ray selected T-Tauri stars. I. Orion. Authors: Sterzik, M. F.; Alcala, J. M.; Neuhaeuser, R.; Schmitt, J. H. M. M. Bibcode: 1995A&A...297..418S Altcode: We establish a criterion for selecting low-mass, pre-main sequence star candidates from X-ray sources discovered in the ROSAT All-Sky Survey. X-ray properties and non-spectroscopic data (hardness ratios and X-ray to optical flux ratio) of 187 optically identified X-ray sources in the Orion star forming region are used as a training set for a non-parametric discrimination analysis. We show that high selection reliabilities of weak-line T-Tauri stars (wTTS) can be obtained with this method. We utilize the selection procedure to predict the large scale spatial distribution of TTS candidates in a 710deg^2^ field around the Orion SFR. Five significant surface density enhancements are identified, four of them are well matched with OB subgroup associations (OB1a, λ-Ori, OB1b, OB1c). A dispersion time of 2-10Myr can be derived from their spatial extent, consistent with the ages of the stellar component in these regions. We suspect a young stellar cluster in the vicinity of NGC 1788, where a high concentration of TTS candidates resides. The largest fraction of the predicted wTTS population is distributed widely over an area many times greater than that of the molecular gas. If these sources really are wTTS, they must be either much older than usually assumed or have a high velocity dispersion. Title: ROSAT X-ray observations of the stellar clusters in NGC 2023 and NGC 2024. Authors: Freyberg, M. J.; Schmitt, J. H. M. M. Bibcode: 1995A&A...296L..21F Altcode: Soft X-ray emission (0.5-2.0keV) from the star forming regions of NGC 2023 and NGC 2024 was detected during pointed ROSAT PSPC observations. Nearly all emission from NGC 2024 can be resolved into numerous point sources, with a number density (>103 per square degree) close to the confusion limit. An X-ray catalog of the central region of NGC 2024 is presented. Most of the sources appear to be highly absorbed (log(N_H_)~22[cm-2]) low-mass young stellar objects(log(L_X_)~29-31[erg/s), deeply embedded in the parent molecular cloud. In contrast to NGC 2024, the stellar cluster in NGC 2023 could not be detected in X-rays except for its most eastern member (NGC 2023/S105), especially, the B1.5Vstar HD 37903 appeared much fainter than 'generic' early-type stars. Title: Stellar M-Flares Observed by ASCA on Proxima Centauri Authors: Haisch, B.; Antunes, M.; Schmitt, J. H. M. M. Bibcode: 1995SPD....26.1307H Altcode: 1995BAAS...27..988H No abstract at ADS Title: Discovering new weak-line T Tauri stars in Taurus-Auriga with the ROSAT All-Sky Survey. Authors: Neuhaeuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M.; Wichmann, R.; Krautter, J. Bibcode: 1995A&A...295L...5N Altcode: We analyse ROSAT All-Sky Survey (RASS) observations of a ~10^3^deg2 area including the Taurus-Auriga star forming region and its surroundings. The sample of low-mass pre-main sequence stars detected with the spatially complete flux-limited RASS consists mainly of weak-emission line T Tauri stars (WTTS). Two thirds of all RASS X-ray sources cannot be identified with known stellar or extragalactic counterparts. Based on the fraction of spectroscopically identified WTTS among a sample of previously unidentified RASS sources, we extrapolate a lower limit for the total number of WTTS in and around Taurus-Auriga: WTTS outnumber classical TTS by at least a factor of 8. A selection criterion for WTTS candidates is established based on the low-resolution X-ray spectra of identified WTTS. We achive a selection reliability of 54%. Title: ASCA observations of X-ray flares on Proxima Centauri Authors: Antunes, Alex; Haisch, B.; Schmitt, J. H. M. M. Bibcode: 1995AAS...186.2102A Altcode: 1995BAAS...27..838A We present the ASCA observation of several flare events on Proxima Centauri during March 18-20 1994. Although the quiescent count rate of 0.23 cts/sec was too low to unambiguously spot line features, flares were clearly distinguished with a higher count rate of approximately 0.9 cts/sec. These are the first stellar flares observed to overlap with ordinary solar flares of class M on the GOES scale (Haisch, Antunes and Schmitt, 1995, Science, in press). We compared the quiescent data with the flare data, and fit the X-ray emission using two-temperature and differential emission measure plasma models. Unlike several coronal sources (for example, Algol, AR Lac), the models did not require sub-solar abundances. However, abundance determinations in the absence of clearly distinguishable lines were uncertain. The current results support the premise that the coronal X-ray emission is a result of the superposition of many flares. Title: First Detection of X-ray Variability of eta Carinae Authors: Corcoran, M. F.; Rawley, G. L.; Swank, J. H.; Petre, R.; Schmitt, J. H. M. M. Bibcode: 1995AAS...186.2104C Altcode: 1995BAAS...27..838C Recent ROSAT Position Sensitive Proportional Counter (PSPC) observations for the first time unequivocally reveal the presence of a compact source of hard X-ray emission centered on the peculiar star eta Carinae. These observations also show a dramatic change in the hard-band (E >= 1.6 keV) counting rate by ~ a factor of 2 in a 4-month interval. ROSAT High Resolution Imager (HRI) observations which span the PSPC observations also reveal a variable source of X-ray emission centered on eta Carinae. Thus strong variability which is a characteristic of eta Carinae in radio through IR and visible-band wavelengths is also observed at X-ray energies. The increase in hard X-ray emission could be the result of a tripling of the mass-loss rate in less than 4 months. Title: Coronal X-ray emission and rotation of cool main-sequence stars. Authors: Hempelmann, A.; Schmitt, J. H. M. M.; Schultz, M.; Ruediger, G.; Stepien, K. Bibcode: 1995A&A...294..515H Altcode: We analyse the coronal X-ray emission of single main sequence stars of spectral type F through M with photometrically (CaII H+K or broad-band photometry) determined rotation periods, using X-ray data from the ROSAT all-sky survey. Our sample contains both field stars in the solar neighbourhood and members of the Pleiades and Hyades open clusters. Field stars and members of the two young open clusters follow the same rotation-activity relation, i.e., we find no intrinsic dependence of coronal activity on age. Assuming a power law relationship between coronal X-ray emission and stellar rotation, we estimate a power law index close to unity. With a high level of confidence (α=0.99), we find a qualitative change in behaviour around Rossby number values Ro=~1. For Ro>1, coronal activity drops more rapidly with increasing Rossby number as for Ro<1. Assuming an exponential relation between the L_X_/L_bol_ ratios and Rossby number, Ro=~1/3 is the characteristic Rossby number for a drop of X-ray activity. Title: Absorption of X-ray Emission of T Tauri Stars by Circumstellar Material Authors: Neuhäuser, Ralph; Sterzik, Michael F.; Schmitt, Jürgen H. M. M. Bibcode: 1995Ap&SS.224...93N Altcode: The study of star forming regions (SFR) allows us to observe many young stellar objects with both the same metallicities and distances but with different masses. Because of its close distance (∼ 140pc) Taurus-Auriga is one of the best studied SFR with more than 100 well-studied, low-mass, pre-main sequence stars, T Tauri stars (TTS). A motivation for studying X-ray emission of T associations is to understand the origin of X-rays and coronal activity. The large sample observed with the ROSAT All-Sky Survey (RASS) also enables us to compare different types of young stars. Other primary goals include star formation efficiency and the interaction of young stars with their intermediate environment (probed by absorption of X-rays). RASS detection rates are comparable withEinstein Observatory results: 43 out of 65 (66%) weak-lined TTS (WTTS) and 9 out of 79 (11%) classical TTS (CTTS) exhibit X-ray emission above RASS detection limit. A strong correlation between X-ray surface flux and stellar rotation indicates that WTTS are intrinsically more X-ray active than CTTS, because WTTS rotate faster. However, rotation is not the only parameter that determines X-ray activity. Also, we compare Taurus-Auriga TTS with TTS of southern SFR like ScoCen, Lupus, Chamaeleon, and CrA. A new result is that CTTS and WTTS can be discriminated reliably by their X-ray spectral hardness ratios. X-ray emission of CTTS appears to be harder, partly because of circumstellar absorption. Spectral fits give results consistent with Raymond-Smith spectra and emission temperatures of ∼ 1.0 keV for both WTTS and CTTS. However, we find that CTTS and WTTS have significantly different X-ray luminosity functions. Medians of absorption corrected X-ray luminosities (logL X in cgs units) are 29.701 ± 0.045 for WTTS and 29.091 ± 0.032 for CTTS. WTTS are intrinsically more luminous than CTTS, most likely because WTTS rotate on average faster than CTTS and are less absorbed. This paper concentrates on differences between CTTS and WTTS and indirect clues to be drawn from X-ray absorption and hardness ratios about circumstellar material around TTS. Title: X-ray emission of T Tauri stars in Taurus from ROSAT survey observations. Authors: Neuhäuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M. Bibcode: 1995Ap&SS.223..178N Altcode: No abstract at ADS Title: Multifrequency Analysis of a UV Ceti Flare on 1991 December 31 Authors: Stepanov, A. V.; Fürst, E.; Krüger, A.; Hildebrandt, J.; Barwig, H.; Schmitt, J. H. M. M. Bibcode: 1995LNP...454...89S Altcode: 1995flfl.conf...89S; 1995IAUCo.151...89S An analysis of optical, radio and X-ray observations of the flare of December 31, 1991 on UV Ceti is presented. Radio spikes at 4750 GHz are interpreted in terms of both ECM and plasma emission. Resulting parameters of the flare plasma are discussed. Title: A bright X-ray and radio corona on the F0V star 47 Cas? Authors: Guedel, M.; Schmitt, J. H. M. M.; Benz, A. O. Bibcode: 1995A&A...293L..49G Altcode: X-ray and microwave observations of the nearby A7-F0V star 47 Cas reveal indications for extraordinarily strong coronal activity, characterised by X-ray and radio luminosities of L_X_=2.9x10^30^erg/s and L_R_=1.1x10^15^erg/s/Hz, respectively, and the presence of very strong X-ray flares. The rapidly rotating star is not known to possess a spectroscopic companion that may be held responsible for the observed emissions. Interpreting the X-ray modulation as rotational modulation and combining the value of the rotation period with the optically determined vsini, the stellar radius is found to be consistent with the photometrically determined radius. This may be the first non-interacting, early F V star discovered as a strong, nonthermal radio source. From kinematic arguments, 47 Cas is a likely member of the Pleiades Moving Group, and may thus be very young. Title: The ROSAT view of the massive eclipsing 0-type binary system 29 UW Canis Majoris Authors: Berghofer, T. W.; Schmitt, J. H. M. M. Bibcode: 1995IAUS..163..382B Altcode: No abstract at ADS Title: Rotationally modulated X-ray emission on the young star P 1724? Authors: Neuhäuser, R.; Preibisch, Th.; Alcalá, J. M.; Schmitt, J. H. M. M. Bibcode: 1995IAUS..176P.197N Altcode: No abstract at ADS Title: The RIASS Coronathon: Joint X-Ray and Ultraviolet Observations of Normal F--K Stars Authors: Ayres, Thomas R.; Fleming, T. A.; Simon, T.; Haisch, B. M.; Brown, A.; Lenz, D.; Wamsteker, W.; de Martino, D.; Gonzalez, C.; Bonnell, J.; Mas-Hesse, J. M.; Rosso, C.; Schmitt, J. H. M. M.; Truemper, J.; Voges, W.; Pye, J.; Dempsey, R. C.; Linsky, J. L.; Guinan, E. F.; Harper, G. M.; Jordan, C.; Montesinos, B. M.; Pagano, I.; Rodono, M. Bibcode: 1995ApJS...96..223A Altcode: Between 1990 August and 1991 January the ROSAT/IUE All Sky Survey (RIASS) coordinated pointings by the International Ultraviolet Explorer (IUE) with the continuous X-ray/EUV mapping by the Roentgensatellit (ROSAT). The campaign provided an unprecedented multiwavelength view of a wide variety of cosmic sources. We report findings for F-K stars, a large proportion of the RIASS targets. Forty-eight of our 91 'Coronathon' candidates were observed by the IUE during the campaign. For stars missed by the IUE, we supplemented the ROSAT survey fluxes with archival UV spectra and/or follow-on observations. Title: X-raying the interstellar medium: ROSAT observations of dust scattering halos. Authors: Predehl, P.; Schmitt, J. H. M. M. Bibcode: 1995A&A...293..889P Altcode: 2009A&A...500..459P We have studied X-ray halos around 25 point sources and four supernova remnants using ROSAT observations. All sources were observed during the ROSAT all-sky survey, 8 point-like sources and 2 supernovae remnants have been studied additionally using ROSAT pointed observations. The shapes of the X-ray halos were fitted with commonly used dust models (e.g., the Mathis-Rumpl-Nordsiek grain size distribution), resulting in a determination of the fractional halo intensity, which in turn can be converted into a dust column density. From the simultaneously obtained X-ray spectra, the cold gas absorption and hence an equivalent hydrogen column was determined. A surprisingly good correlation exists between the simultaneously measured dust and hydrogen column densities, indicating that gas and dust must be to a large extent cospatial. For the X-ray sources with known optical counterparts, the visual extinction correlates well with the X-ray derived dust scattering optical depth τ_sca_: τ_sca_=0.087xA_v_(mag)xE(keV)^-2^ and N_H_[cm^-2^/A_v_]=1.79x10^21^. The strong correlation between both quantities indicates that, with only few exceptions, intrinsic absorption by the X-ray source itself does not affect the derived absorption column densities. This method offers also the interesting possibility of verifying the optical identification of an X-ray source by using an X-ray property itself. In particular we find that for Cas A the optical extinction and the derived X-ray scattering are on the regression line but are too low for the observed absorption. Since Cas A's supernova was not observed optically, this supernova event must have been obscured by a local dust cloud. Finally, we have found a high degree of azimuthal symmetry in all the dust scattering halos of our sample, indicating, that the majority of dust grains responsible for the halo formation cannot be highly clumped in clouds. Title: The X-ray Universe Authors: Schmitt, J. H. M. M. Bibcode: 1995fras.conf...69S Altcode: No abstract at ADS Title: Röntgenemission und Aktivität kühler Sterne: Problemstellung und ROSAT Ergebnisse. Authors: Schmitt, J. H. M. M. Bibcode: 1995Stern..71..323S Altcode: No abstract at ADS Title: Coronal structure in CF Tuc Authors: Kürster, M.; Schmitt, J. H. M. M. Bibcode: 1995IAUS..176P.200K Altcode: No abstract at ADS Title: A dividing line between dM and dMe stars: X-ray surface fluxes Authors: Mullan, D. J.; Fleming, T. A.; Schmitt, J. H. M. M. Bibcode: 1995IAUS..176P.210M Altcode: No abstract at ADS Title: EUVE Observations of Algol Authors: Stern, R. A.; Lemen, J. R.; Schmitt, J. H. M. M.; Pye, J. P. Bibcode: 1994AAS...185.8516S Altcode: 1994BAAS...26.1462S The EUVE satellite spectrometers observed the prototype eclipsing binary Algol over nearly 1.5 orbital periods. Effective exposure times were 100 ksec and 89 ksec in the short wave (70-180 Angstroms) and medium wave (140-370 Angstroms) channels. High temperature (up to 20 MK) Fe XVI-XXIV emission lines are clearly detected in the overall spectrum. In addition, a quiescent continuum is present which increases towards shorter wavelengths. Using synthesized spectra of optically thin line and continuum emission folded through the instrumental response, we have examined constraints on the [Fe/H] coronal abundance in Algol. We find that the coronal Fe is underabundant by factors of ~2--4 relative to solar photospheric values, unless an unreasonably large quantity of coronal plasma at T > 30 MK is present in the quiescent spectrum. The latter possibility is, however, inconsistent with available X-ray data. Lightcurves of the high temperature EUV lines compared to line emission at He II 304 A show considerable differences, with much deeper minima present in the He II line during both primary and secondary eclipses. Toward the end of the observation a moderate flare lasting ~ 6 hours was detected in the high temperature Fe emission lines. This work was supported in part by NASA Contract NAS5-32492 and by the Lockheed Independent Research Program. Title: Coronal Loop Model Atmospheres for Low Mass Stars Authors: Giampapa, M.; Rosner, R.; Kashyap, V.; Fleming, T.; Schmitt, J.; Bookbinder, J. Bibcode: 1994AAS...185.9807G Altcode: 1994BAAS...26Q1480G We have constructed semi-empirical loop models that best fit key coronal parameters derived from ROSAT PSPC observations of selected low mass stars. The X-ray pulse-height distributions are represented by two dominant components. These include a soft component that is characterized by compact loop configurations with loop lengths that are one or more orders of magnitude smaller than the stellar radius. By contrast, two types of stable solutions can be found for the hard component, namely very long loops (much larger than a pressure scale height) with large filling factors, and very compact loops with very small filling factors. The ``long" solutions are physically excluded since they violate stability criteria. We identify the ``small" solutions with compact loop flares. The implications of these results for coronal structure and angular momentum evolution in low mass dwarfs will be discussed. Title: ASCA Observations of Solar-like M-flares on Proxima Centauri Authors: Haisch, B.; Antunes, A.; Schmitt, J. H. M. M. Bibcode: 1994AAS...185.4505H Altcode: 1994BAAS...26.1380H Stellar flares have been observed in the X-ray for twenty years, but the events must be much larger --- by as much as a factor of 10(4) --- than even the most energetic on the Sun in order to be detected across the enormous distances. While stellar ``superflares'' are of considerable interest, it is equally important to ascertain whether and with what frequency commonplace solar-like events occur on stars. This is an important test of the working hypothesis that we are dealing with scaled-up versions of the same physical phenomenon. The new Japanese ASCA satellite has now succeeded in this, observing very typical M-class solar-like flares on the next nearest star, Proxima Centauri. Title: A ROSAT Survey of Near-Contact Binary Systems Authors: Shaw, J. S.; Caillault, J. -P.; Schmitt, J. H. M. M. Bibcode: 1994AAS...185.8506S Altcode: 1994BAAS...26Q1460S We have conducted a survey of near-contact binary systems observed during the ROSAT All-Sky Survey (RASS). The near-contact binaries (NCBs) have an A- or F-type primary, with a companion which is one to two spectral types cooler. The systems have periods less than one day and display strong tidal interaction, but are not in contact like the W UMa systems. There are more than 150 such systems known to exist. We have analyzed the RASS data for all of those (58) within 400 pc. We report the detection of 14 systems with X-ray count rates > 0.01 cts s(-1) . The X-ray luminosity function for the NCBs is very similar to that for A-type W UMa systems (derived, admittedly, from only a handful of EINSTEIN observations), but appears to be significantly different from those of W-type W UMa systems and RS CVn binaries. This is consistent with the proposed scenario that the NCBs are evolutionary precursors to the A-type W UMa binaries. The mean X-ray luminosity of the NCBs is log L_x = 29.3+/-0.1 ergs s(-1) , less than that of the RS CVns, but greater than that of normal late-type main sequence star s. The detection of these systems may help to explain why many presumably single A-type stars were detected in the RASS; i.e., the ``single" A-stars may, in fact, be binaries, like the NCBs, with late-type companions. This research was supported in part by NASA Grants NAG 5-1610 and NAG 5-2095 to the University of Georgia. Title: Are late B-type stars intrinsic X-ray emitters? Authors: Berghofer, T. W.; Schmitt, J. H. M. M. Bibcode: 1994A&A...292L...5B Altcode: In the ROSAT all-sky survey close to one hundred X-ray sources have been identified with late B-type stars of spectral type B7-B9. Previous X-ray observations have suggested that stars in this spectral range are devoid of X-ray emission. In order to study whether late B-type stars represent a new class of X-ray sources or whether the detected X-ray emission originates from a companion star we have selected a sample of known visual binaries, with a late B-type star as the primary and detected in the ROSAT all-sky survey, for follow-up observations with the ROSAT High Resolution Imager (HRI). In the first 8 systems studied with the HRI we could identify 6 late B-type stars and an Ap star as the X-ray source. Our observations cast doubts on the usual argument that in the case of an X-ray emitting late B-type star with a late-type companion, the X-ray emission always comes from the companion star. Title: Detection of EUV emission from the low activity dwarf HD 4628: evidence for a cool corona. Authors: Mathioudakis, M.; Drake, J. J.; Vedder, P. W.; Schmitt, J. H. M. M.; Bowyer, S. Bibcode: 1994A&A...291..517M Altcode: We present observations of low activity late-type stars obtained with the Extreme Ultraviolet Explorer (EUVE). These stars are the slowest rotators, and acoustic heating may dominate their outer atmospheric heating process. We report detection of EUV emission from the low activity K dwarf HD 4628 during the EUVE Deep Survey in the Lexan/boran band. This detection, in conjunction with the non-detection of this object in the ROSAT PSPC all-sky survey, suggests the existence of a cool corona with a characteristic temperature of less than 10^6^K. The flux and spectral signature are consistent with current theories of acoustic heating. Title: ROSAT X-Ray Light Curves of Early-Type Stars. A Search for X-Ray Time Variability of OB Stars Authors: Berghoefer, Thomas W.; Schmitt, Juergen H. M. M. Bibcode: 1994Ap&SS.221..309B Altcode: We have investigated ROSAT X-ray data of OB stars to search for evidence of time variability in the X-ray emission from early-type stars. As an example for such studies we present a detailed variability analysis for our two program starsσ Ori andζ Ori which have been multiply observed with ROSAT. The long-term analysis of both stars now covers a time range of 2.5 years and includes six pointed PSPC observations, an additional pointed HRI observation ofσ Ori and the ROSAT all-sky survey data of both stars. Over a long time range the X-ray light curves ofσ Ori andζ Ori show no evidence for variability. In the case ofζ Ori we detected a moderate increase in X-ray count rate during a period of 2 days which can be explained as a strong shock propagating in the wind of an O-type star. Title: VizieR Online Data Catalog: ROSAT study of Praesepe (Randish+, 1995) Authors: Randich, S.; Schmitt, J. H. M. M. Bibcode: 1994yCat..32980115R Altcode: We present the results of the ROSAT PSC observations of the Praesepe cluster. 68 Praesepe candidates have been detected, above a threshold of ~2x10+28erg/s (2x1021W), in the ~4degx4deg area of the cluster covered by the observations. 56 out of the 68 detected objects are cataloged as high probability Praesepe members. (3 data files). Title: A long-term X-ray variability study of the O-type stars σ Orionis and ζ Orionis. Authors: Berghoefer, T. W.; Schmitt, J. H. M. M. Bibcode: 1994A&A...290..435B Altcode: X-ray emission in early-type OB stars is thought to be generated by shock-heated gas in the radiatively driven wind of these stars. Calculations of the X-ray production for such a scenario depend on the underlying shock structures, especially the occurrence rate of shocks, cooling length and cooling time which directly influence the source location of the X-rays in the stellar wind. We present a detailed variability analysis of the available ROSAT data for our two program stars σ Ori and ζ Ori. The long-term analysis of both stars covers a time range of 3 years and includes seven pointed PSPC observations, an additional pointed HRI observation for σ Ori and the ROSAT all-sky survey data of both stars. In the case of σ Ori we find no evidence for variability on all analysed time scales. Over a long time range the timing analysis of the X-ray light curve of ζ Ori provides also no evidence for variability. Only during a period of 2 days (September 23-25 1992) did we detect a moderate increase in X-ray count rate by ~ 15%. Title: The ROSAT All-Sky Survey of Active Binary Coronae. I. Quiescent Fluxes for the RS Canum Venaticorum Systems: Erratum Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.; Schmitt, J. H. M. M. Bibcode: 1994ApJS...94..829D Altcode: No abstract at ADS Title: A Spectroscopic Measurement of the Coronal Density of Procyon Authors: Schmitt, J. H. M. M.; Haisch, B. M.; Drake, J. J. Bibcode: 1994Sci...265.1420S Altcode: One of the open key issues in the astrophysics of stellar coronae is the determination of their spatial structure and density. From almost all previous measurements, one can infer merely the presence of a corona, which for the most energetic stellar coronae may exceed the solar x-ray output by as much as five orders of magnitude, but no information can be obtained on the densities and hence volumes and sizes of the hot x-ray emitting material. A direct spectroscopic measurement of the coronal density was obtained for the star Procyon with the spectrometer on board the Extreme Ultraviolet Explorer satellite; the ratio of two Fe XIV lines at 211.32 and 264.79 angstroms was used to determine a density of ~4 x 10^9 to 7 x 10^9 electrons per cubic centimeter, which is a factor of 2 to 3 higher than typical solar active region densities. From this value, we estimate that ~6 percent of the stellar surface is covered with ~7 x 10^4 coronal loops. Title: Doppler imaging with a CLEAN-like approach II. A photospheric image of AB Doradus (=HD 36705). Authors: Kuerster, M.; Schmitt, J. H. M. M.; Cutispoto, G. Bibcode: 1994A&A...289..899K Altcode: In an application of a new CLEAN-like algorithm for the Doppler imaging of late-type stars we present the first in our series of surface images of the young K0V star AB Dor (=HD 36705). This Doppler image results from our discovery of profile variations in photospheric CaI and FeI absorption lines. We find star spots concentrated near an active latitude of +25deg; one feature also extends towards higher latitudes. The reconstructed photospheric features appear as groups of small spots rather than as large individual spots. We discuss the reality of these groups on the basis of tests carried out on simulated data. We compare the two-temperature CLEAN image with a maximum entropy reconstruction of AB Dor's surface performed on the same data set. As an important test for the derived Doppler image we demonstrate its ability to predict the observed light curve which we have obtained from contemporaneous photometry. Furthermore, we demonstrate how Doppler imaging can be used to determine the stellar inclination. Title: ROSAT observations of star forming regions. Authors: Krautter, J.; Alcalá, J. M.; Wichmann, R.; Neuhäuser, R.; Schmitt, J. H. M. M. Bibcode: 1994RMxAA..29...41K Altcode: X-ray observations of star forming regions carried out by satellite observatories have provided us with new insights into the process of star formation. llere we summarize the main results obtained by the pioneering work with the Einstein satellite, followed by a presentation of new achievements by ROSAT, the German X-ray satellite. Although the evaluation of the ROSAT data is not completed yet, the ongoing ROSAT projects already have yielded some very interesting and new results which will be discussed here. Title: Spatially resolved X-ray and radio observations of Castor A+B+C Authors: Schmitt, J. H. M. M.; Guedel, M.; Predehl, P. Bibcode: 1994A&A...287..843S Altcode: We report on non-simultaneous X-ray (with the ROSAT HRI and PSPC) and radio observations (with the VLA) of the visual binary α Gem (= Castor A+B). Each component of this visual binary system is itself spectroscopic, with an A-type star as primary component. In our radio maps we clearly detect a source at the position of Castor A, but not at Castor B. Our X-ray observations confirm the previous detection of X-ray emission from the Castor A+B system, and indicate that Castor A, i.e., the radio source, is also the likely site of the X-ray emission. We examine in detail the hypothesis that both the X-ray and radio emission from Castor A come from the presumably late-type secondary, and show that this hypothesis encounters difficulties. If radio and X-ray emission came from the A-type primary, α Gem A would be one of the nearest X-ray and radio emitting A-type stars. Title: ROSAT X-Ray Sources in Orion Star Forming Region Authors: Alcala, J. M.; Krautter, J.; Terranegra, L.; Schmitt, J. H. M. M.; Chavarria, C. K.; Covino, E. Bibcode: 1994RMxAA..29..209A Altcode: No abstract at ADS Title: Röntgenemission und Aktivität kühler Sterne: Problemstellung und ROSAT-Ergebnisse. Authors: Schmitt, J. H. M. M. Bibcode: 1994PhyBl..50..454S Altcode: 1994PhB....50..454S No abstract at ADS Title: The First Measurement of Stellar Coronal Abundances: The Absence of the FIP Effect in the Corona of Procyon Authors: Drake, J. J.; Laming, J. M.; Widing, K. G.; Schmitt, J. H. M. M.; Haisch, B.; Bowyer, S. Bibcode: 1994AAS...184.0522D Altcode: 1994BAAS...26..866D The unique spectroscopic capabilities of the Extreme Ultraviolet Explorer satellite (EUVE), with wavelength coverage from 70--760 Angstroms at a resolution of ~ 1 Angstroms, permit for the first time the scrutiny in the extreme ultraviolet wavelength regime of individual spectral lines emitted by the coronae of stars other than the Sun. We have performed a detailed analysis of the first EUVE spectroscopic observation of the nearby F5 IV star Procyon and have identified lines of the elements O, Ne, Mg, Si, S, Fe, and Ni. The emission measure distribution, derived from line intensities measured from the EUVE spectra and based on the most recent atomic data, has yielded estimates of the relative abundances of these elements in the corona of Procyon. The results indicate a total absence of a fractionation of elements by first ionization potential (FIP), contrary to such as is observed in the solar corona (the ``FIP Effect''). These results are discussed, and the potential for future EUVE spectroscopic investigation into the new field of stellar coronal abundances is highlighted. This work has been supported by NASA contract NAS5-30180. Title: ROSAT All-Sky Survey Observations of X-Ray Variability in Cool Giant Stars Authors: Haisch, Bernhard; Schmitt, J. H. M. M. Bibcode: 1994ApJ...426..716H Altcode: We have identified 24 active late-type giant stars, including 11 RS CVn systems, with soft X-ray count rates high enough to allow the detection of statistically significant variability on a Roentgen Satellite (ROSAT) orbital timescale (96 minutes) as observed by the Position Sensitive Proportional Counter (PSPC) during the all-sky survey. Our sensitivity typically lies in the range of 10% - 25%, depending on the source count rate. Comparison is made to the daily, nonflare solar soft X-ray variability as observed by the Solrad satellites during solar minimum in 1969 and solar maximum in 1975. Seven of the 24 stars show significant variability; in two of these cases (HR 3922 and HR 8448) major flares were observed in which the peak count rate is enhanced by at least a factor of 3 above quiescent. While HR 3922 (G5 III) is not (yet) classified as an RS CVn star, its flare is more energetic (3 x 1031 ergs/s) than previously observed RS CVn flares. The apparently single giant HR 8167 (G8 III) also shows two flares. While one might expect to find an anticorrelation between saturated coronae and variability, we find no evidence of this: the two stars in our sample with the highest ratio of fx/fv both show variability. We also point out that Capella (G6 III + F9 III) is one of the stars manifesting variability. Title: Rotational modulation and flares on RS Canum Venaticorum and BY Draconis stars. XVIII. Coordinated VLA, ROSAT, and IUE observations of RS CVn binaries . Authors: Fox, D. C.; Linsky, J. L.; Veale, A.; Dempsey, R. C.; Brown, A.; Neff, J. E.; Pagano, I.; Rodono, M.; Bromage, G. E.; Kuerster, M.; Schmitt, J. H. M. M. Bibcode: 1994A&A...284...91F Altcode: As part of a coordinated program of multi-wavelength observations of RS CVn close binary systems, we observed 15 systems with the VLA and 10 systems with IUE, simultaneously or nearly simultaneously with the ROSAT All Sky Survey observations of these stars. Of the 22 systems observed with ROSAT, three were observed both by IUE and the VLA. The principal aim of this program was to check the validity of the existing empirical correlations between the radio and soft X-ray emissions of their coronae, and between the chromospheric/transition region and coronal emissions. Previous studies of these correlations were usually based on nonsimultaneous observations and thus might be biased by source variability. Radio observations were made at 3.6, 6 and 20 cm. Of the 15 observed RS CVn systems, we detected 11 with >= 4 σ confidence at one or more wavelengths. The IUE observations were made within the RIASS (ROSAT-IUE All Sky Survey) program. We present the results of the VLA observations, along with the corresponding subsets of the ROSAT PSPC X-ray and WFC XUV survey, and RIASS IUE observations. We obtained an extended VLA/IUE/ROSAT simultaneous coverage of one system, TY Pyx, covering more than one orbital period. These observations reveal that the quiescent radio flux of TY Pyx is relatively constant over time scales of up to 7 hours, but that it did change by a factor of 3 over 24 hours, probably due to a flare on 1990 Nov 12. The UV, XUV and X-ray fluxes do not show large day-to-day or phase-related variability. The observation of the decay phase of a radio flare on EI Eri, with no accompanying X-ray or XUV flare, suggests that the lack of a strong correlation between X-ray and radio flares previously noted for dMe flare stars holds for RS CVn systems as well. We suggest that the radio flare may have been due to a coherent emission process such as electron cyclotron emission. The simultaneous measurements presented here provide a unique test of the general correlation between radio and soft X-ray luminosities, L_radio_~L^m^_x_ (Drake et al. 1989) with a power-law slope close to unity, which was previously derived using data obtained years apart. Our derived slopes are consistent with and thus support the general correlations between coronal and chromospheric/transition region emissions previously derived from nonsimultaneous measurements of a much larger sample of these variable sources. However, the importance of simultaneous measurements for accurate energy balance calculations is stressed. Title: A long-duration X-ray flare on the RS Canum Venaticorum binary AR Lacertae observed with ROSAT. Authors: Ottmann, R.; Schmitt, J. H. M. M. Bibcode: 1994A&A...283..871O Altcode: The ROSAT X-ray satellite observed AR Lac with the proportional counter (PSPC; 0.1-2.4 keV) for 4 d in June 1990, covering the orbital phases 0.9-2.9. At phase 1.6 a large flare event occurred, followed by two smaller events and an enhanced emission lasting at least over one orbital period at twice the preflare level. The large flare clearly exhibited two distinct rise phases, with the temperature as well as the derived electron density and gas pressure being maximal during a first, impulsive rise phase (T 88 MK, ne = 1.7 1011 cm-3, p = 4.1 103 dyn cm-3). An increase of the hydrogen column density is not present during the whole rise phase. The large flare classified as two-ribbon represents one of the most energetic X-ray flares ever observed, showing a peak luminosity Ltot = 2 1032 erg s-1 and a thermal energy Etot = 1.0 1037 erg. Quasistatic modeling of the decay phase of the large flare results in a loop length of L = 2.5 1011 cm, which corresponds to a loop height H = 8.0 1010 cm. On the basis of the Alfvén travel time, the two smaller flares and the long-duration enhanced emission are expected not be triggered by the large flare. The long-duration enhancement may be associated with a large amount of emerging magnetic flux at the leading hemisphere of the G star. Title: ROSAT Observations of Stellar Flares Authors: Schmitt, J. H. M. M. Bibcode: 1994ApJS...90..735S Altcode: 1994IAUCo.142..735S X-ray observations of stellar flares obtained during the ROSAT all-sky survey as well as in the ROSAT pointing program are discussed. The ROSAT all-sky survey allowed -- for the first time -- an unbiased search for stellar flares among all types of stars. A fundamentally new result obtained is that flares can occur on all types of late-type stars, thus supporting the view that the X-ray emission from these stars is controlled by magnetic processes. Long-duration flares can be studied with the all-sky survey data particularly well, and an especially well-observed long-duration flare event on the flare star EV Lacertae is presented and discussed in detail. Finally, the issue of time variability on the shortest detectable timescales and the question of microflaring is discussed using ROSAT data from a pointed observation of UV Ceti. Title: ROSAT Observations of the Praesepe Cluster Authors: Randich, S.; Schmitt, J. H. M. M. Bibcode: 1994ASPC...64..131R Altcode: 1994csss....8..131R No abstract at ADS Title: ROSAT All-Sky Survey Observations of MBM 40 & MBM 55 Authors: Hearty, Thomas; Caillault, J. -P.; Magnani, Loris; Schmitt, J. H. M. M. Bibcode: 1994ASPC...64...92H Altcode: 1994csss....8...92H No abstract at ADS Title: ROSAT Results on Hot and Cool Stars (I) Authors: Schmitt, J. H. M. M. Bibcode: 1994AIPC..313...24S Altcode: 1994sxrc.conf...24S I will present selected highlights from ROSAT observations of stellar X-ray emission. Specifically I will discuss the dearth of X-ray emission among white dwarfs and new evidence for the occurrence of X-ray emitting shocks in the winds of early-type stars. Last I will focus on ROSAT observations of the eclipsing cool star binary systems AR Lac, Algol, YY Gem and α CrB and the resulting implications for coronal structure on these stars. Title: The Extreme Ultraviolet Coronal Spectrum of the Solar-Type Star chi 1 Orionis Authors: Haisch, Bernhard; Drake, Jeremy J.; Schmitt, J. H. M. M. Bibcode: 1994ApJ...421L..39H Altcode: We present an extreme ultraviolet coronal spectrum of the solar-type star chi1 Ori (G0 V), one of the first spectra obtained as a guest observation using the Extreme Ultraviolet Explorer (EUVE). This star is younger and more active than the Sun. Since no large-scale flare activity was evident in the simultaneous deep-survey EUV photometry, we simulated the spectrum using a solar active region differential emission measure (DEM) together with the plasma emissivity code of Mewe, Gronenschild, & van den Oord (1985). The spectral simulation was normalized to the soft X-ray flux (0.1-2.4 keV) observed during the ROSAT all-sky survey and also the EUVE all-sky survey Lexan/B filter count rate to generate predicted counts in spectral bins in order to identify lines and line blends in the observed spectrum. The difference between these two normalizations was found to be less than 20%. We also compare both the observed and simulated spectra to the Capella observations of Dupree et al. (1993). The accuracy of the emission code and of this spectral simulation is demonstrated by its excellent fit to the high signal-to-noise ratio data in the short-wavelength spectrum of Capella. For chi1 Ori we conclude the following: (1) apart from the He II lines, we do not see many of the expected lines forming at log T less than or equal to 6.2; (2) in the range log T = 6.3-6.8 we find reasonable agreement with a spectrum simulating the DEM of a solar active region; and (3) material appears to be present at temperature as hot as log T = 7.2 (Fe XXIV). Title: A Search for Radio Emission in the Alpha Persei Cluster. Authors: White, S. M.; Prosser, C. F.; Schmitt, J. H. M. M. Bibcode: 1994ASPC...64..504W Altcode: 1994csss....8..504W No abstract at ADS Title: X-Ray Emission from Chemically Peculiar Stars Authors: Drake, S. A.; Linsky, J. L.; Schmitt, J. H. M. M.; Rosso, C. Bibcode: 1994ApJ...420..387D Altcode: We have searched the Roentgen Satellite (ROSAT) All-Sky Survey (RASS) database at the positions of about 100 magnetic Bp-Ap stars of the helium-strong, helium-weak, silicon, and strontium-chromium subclasses. We detect X-ray sources at the positions of 10 of these stars; in four cases the X-ray emission presumably arises from an early-type companion with a radiatively driven wind, while we believe that the magnetic chemically peculiar (CP) star is the most likely X-ray source (as opposed to a binary companion) in at least three and at most five of the six remaining cases. The helium-strong stars have X-ray emission levels that are characteristic of the luminous OB stars with massive winds (log Lx/Lbol is about -7), whereas the He-weak and Si stars (which generally show no evidence for significant mass loss) have log Lx/Lbol values that can reach as high as about -6. In contrast, we find no convincing evidence that the cooler SrCrEu-type CP stars are intrinsic X-ray sources. We discuss the X-ray and radio emission properties of our sample of CP stars, and argue that both types of emission may be magnetospheric in origin; however, there is clearly not a simple one-to-one correspondence between them, since many of the magnetic stars that are detected radio sources were not detected as X-ray sources in the present survey. Title: X-ray properties of early-type stars Authors: Berghofer, T. W.; Schmitt, J. H. M. M. Bibcode: 1994IAUS..162..200B Altcode: No abstract at ADS Title: The X-Ray Luminosity Function of the Nearby K and M Dwarfs: Results from ROSAT Authors: Fleming, Thomas A.; Schmitt, J. H. M. M.; Giampapa, Mark S. Bibcode: 1994ASPC...64...77F Altcode: 1994csss....8...77F No abstract at ADS Title: ROSAT All-Sky Survey Observations of the Hyades Authors: Schmitt, J. H. M. M.; Stern, R. A. Bibcode: 1994ASPC...64..134S Altcode: 1994csss....8..134S No abstract at ADS Title: ROSAT Survey Observation of T Tauri Stars in Taurus Authors: Neuhauser, R.; Sterzik, M. F.; Schmitt, J. H. M. M. Bibcode: 1994ASPC...64..113N Altcode: 1994csss....8..113N No abstract at ADS Title: ROSAT survey sources in star formation regions Authors: Alcalál, J. M.; Krautter, J.; Wichmann, R.; Schmitt, J. H. M. M.; Wagner, R. M. Bibcode: 1994LNP...431..285A Altcode: No abstract at ADS Title: Time variability studies of the X-ray emission from hot stars. Authors: Berghöfer, T. W.; Schmitt, J. H. M. M. Bibcode: 1994AGAb...10...44B Altcode: No abstract at ADS Title: The Eclipsing X-Ray Binary alpha CrB Authors: Schmitt, J. H. M. M.; Kurster, M. Bibcode: 1994ASPC...64..137S Altcode: 1994csss....8..137S No abstract at ADS Title: The ROSAT All-Sky Survey of BY Draconis Coronae Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.; Schmitt, J. H. M. M. Bibcode: 1994ASPC...64...74D Altcode: 1994csss....8...74D No abstract at ADS Title: The High-Energy View of the Nearby Star Procyon Authors: Schmitt, J. H. M. M.; Haisch, B. M.; Drake, J. J. Bibcode: 1994HEAD...26...13S Altcode: No abstract at ADS Title: What is the origin of the X-ray emission from late B stars? Authors: Berghöfer, T. W.; Schmitt, J. H. M. M. Bibcode: 1994AGAb...10...74B Altcode: No abstract at ADS Title: X-Ray Emission of T Tauri stars Authors: Neuhäuser, R.; Sterzik, M. F.; Schmitt, J. H. M. M. Bibcode: 1994cddp.conf..159N Altcode: No abstract at ADS Title: The Carina Nebula in X-rays Authors: Corcoran, M. F.; Swank, J.; Rawley, G.; Petre, R.; Schmitt, J.; Day, C. Bibcode: 1994AIPC..313..159C Altcode: 1994sxrc.conf..159C New ROSAT PSPC and HRI observations of the Carina Nebula region are used to examine the X-ray emission from the discrete sources as well as the diffuse hot gas in the Carina Nebula near Eta Carina. The spectral and spatial response of the PSPC allow analysis of the 0.1-2.4 keV spectra of all the bright point sources in the region and an examination of the spectral variation of the diffuse X-rays. Analysis of the diffuse emission shows that most of the emission comes from gas at a temperature of a few million degrees, but also indicates the presence of hot (4E7 K) diffuse gas in an 11 pc region around Eta Car. Eta Car shows a 3 component spectrum with temperatures of 1E6 and 4E7 K. A 0.1×0.2 pc shell of X-ray emitting gas around Eta Car has been resolved by the HRI, and comparison of the Einstein HRI and ROSAT HRI images supports the suggestion that the soft components originate in the shell (which is unresolved by the PSPC) while the hottest gas is produced less than an arcsec from the optical star. Spectra of the bright O stars are characterized by 2 temperature components (1E7 K and 2E6 K) and generally show absorption columns larger than the interstellar column. PSPC and ROSAT HRI observations are used to examine the LX/Lbol relation for hot stars in the field through the early-B spectral class. Title: X-Ray Emission vs. Rotation for Solar-Type Stars Authors: Hempelmann, A.; Rudiger, C.; Schultz, M.; Schmitt, J. H. M. M.; Stepien, K. Bibcode: 1994ASPC...64...95H Altcode: 1994csss....8...95H No abstract at ADS Title: Simultaneous Optical and ROSAT Soft X-Ray Observations of Impulsive Bursts on the Flare Star UV Ceti Authors: Schmitt, J. H. M. M.; Haisch, Bernhard; Barwig, H. Bibcode: 1993ApJ...419L..81S Altcode: No abstract at ADS Title: Impulsive Soft X-ray Bursts on the Flare Star UV Ceti Authors: Haisch, B.; Schmitt, J. H. M. M.; Barwig, H. Bibcode: 1993AAS...18312303H Altcode: 1993BAAS...25R1475H We report on a new and unexpected impulsive phenomenon during two stellar flares simultaneously observed in soft X-rays by the ROSAT Observatory and using ground-based, high-speed optical photometry at the Wendelstein Observatory in Bavaria, Germany. SXR bursts follow the U- and B-band events by approximately 30 s. We concentrate on the correlation of the optical and initial SXR bursts. Statistical analysis verifies the significance of these events. They may offer an unexpected window on the impulsive phase of stellar flares. This would be especially timely since the ASCA Observatory has just begun its mission and should be capable of observing stellar flares in some detail. While the precise physical implications of our observations remain unclear, we argue that our data show the signature of X-ray emission from the impulsive phase of a stellar flare rather than that of a microflare or a compact loop flare. The curious time relationship between the optical and SXR bursts may lend support to a gas-dynamic model proposed by Katsova and Livshits. Title: ROSAT PSPC Observations of MBM 40 and MBM 55 Authors: Hearty, T. J.; Caillault, J. -. P.; Magnani, L.; Schmitt, J. H. M. M.; Burrows, D. N.; Sanders, W. T. Bibcode: 1993AAS...183.1607H Altcode: 1993BAAS...25.1315H We have analyzed ROSAT PSPC data in the regions of the translucent high latitude molecular clouds MBM 40 and MBM 55 in the hope of finding X-ray sources which might be tracers of recently formed pre-main sequence stars. Since small high density molecular cores have been found in these clouds, the possibility that these clouds may be forming low-mass stars is enhanced over those translucent molecular clouds without dense condensations. We have detected 18 X-ray sources from the ROSAT All-Sky Survey within a 15 square degree area centered on the IRAS 100microns contours of MBM 40 and 154 sources within a 112 square degree area on those of MBM 55. Deeper PSPC pointed observations ( ~ 7-9 ksec) of the high density cores in these clouds reveal 16 additional X-ray sources in MBM 40 and 16 additional X-ray sources in MBM 55. Our preliminary investigation indicates that 82 of these X-ray sources are either extragalactic or background or foreground stars. The remaining 122 may be viable PMS candidates but follow-up optical spectroscopy is required to identify their true nature. Title: The Structure of the Coronae of dMe and dM Stars Authors: Giampapa, M. S.; Schmitt, J. H. M. M.; Fleming, T. A. Bibcode: 1993AAS...183.1507G Altcode: 1993BAAS...25.1314G We discuss results obtained from preliminary coronal loop model atmospheres developed on the basis of x-ray pulse-height spectra obtained with the ROSAT PSPC. The limited sample is comprised of both active dMe stars and quiescent dM stars. An intercomparison of the inferred coronal loop parameters for the active and the relatively quiet objects will be presented. As reported earlier (Giampapa et al. 1993; BAAS, 25, 824), two-temperature fits are required to adequately represent the x-ray properties of the dMe stars. In the case of the non-dMe stars, the coronal emission measure is dominated by a single, relatively soft component. Preliminary estimates of densities, filling factors and loop lengths that characterize these separate components which define the coronae of low mass dwarf stars will be discussed. Title: Surveying the Hyades with ROSAT Authors: Stern, R. A.; Schmitt, J. H. M. M.; Kahabka, P. T. Bibcode: 1993AAS...18311001S Altcode: 1993BAAS...25R1454S During the course of the ROSAT All Sky Survey (RASS), the ROSAT PSPC surveyed the entire Hyades cluster region, over 30(deg) times 30(deg) of the sky. Analysis of the RASS deta reveals over 180 probable or possible cluster members which are detected as X-ray sources with an X-ray luminosity L_x ga 1--2times 10(28) erg s(-1) . The detection rate for the F8-G8 (solar-type) stars is over 90%. All four Hyades giants are also detected in X-rays, two of which are among the X-ray brightest Hyads, and two are among the faintest. Many objects that are anomalously X-ray bright for their spectral type turn out to be close binaries, including some BY Dra systems. A comparison of 56 Hyades members detected in both the present study and in the Einstein Observatory surveys over a decade ago indicates little evidence for long term variability beyond counting rate statistics, with the giant stars being notable exceptions. The main sequence variation in the X-ray luminosity function and its increasing dispersion for later spectral types will be discussed in the context of angular momentum evolution in open stellar clusters. R.A.S. was supported in part by NASA Contract NAS5-32070 and the Lockheed Independent Research Program. Title: ROSAT-detection of a giant X-ray flare on LkH-alpha 92. Authors: Preibisch, Th.; Zinnecker, H.; Schmitt, J. H. M. M. Bibcode: 1993A&A...279L..33P Altcode: We report the detection of a giant X-ray flare on the classical T Tauri star LkH-alpha 92 with the ROSAT Position Sensitive Proportional Counter (PSPC). In this flare the PSPC count rate rose by a factor of more than 100 in a time interval of about 2000 sec. Our X-ray observations cover most of the rise phase as well as part of the decay phase of the flare. We model the X-ray spectra obtained at different flare phases to determine temperature and emission measure of the flaring plasma. Combining the thus derived X-ray luminosity with the observed decay time scale of approximately = 7800 sec, we estimate the total energy release of the flare in the ROSAT PSPC band (0.1 - 2.4 keV) to be approximately = 4 x 1036 erg, which is more than a factor of 104 greater than the energy release in the strongest solar flares and still more than a factor of 100 greater than that in typical fares on T Tauri stars. Title: A Spatially Resolved X-ray Image of a Star Like the Sun Authors: Schmitt, J. H. M. M.; Kurster, M. Bibcode: 1993Sci...262..215S Altcode: Observations made with the x-ray satellite ROSAT (Roentgen Satellite) have produced the first spatially resolved x-ray image of a corona around a star like our sun. The star is the secondary in the eclipsing binary system α Coronae Borealis (CrB), which consists of one star of spectral type A0V and one of type G5V. The x-ray light curve of α CrB shows a total x-ray eclipse during secondary optical minimum, with the G star behind the A star. The totality of the eclipse demonstrates that the A-type component in α CrB is x-ray dark and that the x-ray flux arises exclusively from the later-type companion. The x-ray eclipse ingress and egress are highly asymmetric compared with the optical eclipse, indicating a highly asymmetric x-ray intensity distribution on the surface of the G star. From a detailed modeling of the ingress and egress of the x-ray light curve, an eclipse map of the G star was constructed by a method based on an optimization by simulated annealing. Title: ROSAT all-sky X-ray survey of the core region of the Pleiades cluster. Authors: Schmitt, J. H. M. M.; Kahabka, P.; Stauffer, J.; Piters, A. J. M. Bibcode: 1993A&A...277..114S Altcode: We present the ROSAT all-sky survey observations of the core region of the Pleiades cluster. A total of 24 X-ray sources are detected and identified with known Pleiades members; 20 X-ray sources had already previously been detected as X-ray emitters with the Einstein Observatory, 3 objects represent new detections, the status of one object is unclear. We show that the Pleiades when viewed as a statistical ensemble of X-ray sources look identical in both the Einstein and ROSAT observations. However, inspection of the activity levels of individual stars shows that changes of more than one order of magnitude have occurred in some stars over a time scale of ten years; we present a statistical method to properly construct the distribution function for the data set consisting of the measured Einstein IPC and ROSAT PSPC count rate ratios, which contains detections and upper and lower limits simultaneously. We argue that the observed large-scale variations in X-ray flux are in general not due to rotational modulation or flare events, but may be signatures of cyclic activity. We also report the detection of an X-ray super flare on the rapidly rotating Pleiades star HII2O34. Title: The 0.1-2.5 keV X-ray spectrum of the O4f star dzeta Puppis. Authors: Hillier, D. J.; Kudritzki, R. P.; Pauldrach, A. W.; Baade, D.; Cassinelli, J. P.; Puls, J.; Schmitt, J. H. M. M. Bibcode: 1993A&A...276..117H Altcode: We have obtained a high quality ROSAT PSPC spectrum of the bright O4f star ζ Pup. Allowing for the wind X-ray opacity, as computed from detailed non-LTE stellar wind models of ζ Pup, and under the assumption that the X-rays arise from shocks distributed throughout the wind, we have been able to match the observed X-ray spectrum (0.1 to 2.5keV).

The best model fit is obtained when He++ recombines to He+ in the outer regions of the stellar wind, as predicted by recent detailed cool wind model calculations. With a single temperature plasma, the best model fit indicates a temperature of log Ts(K) = 6.5 to 6.6 corresponding to shock velocities of around 500 km s-1. A 2 temperature plasma yields a significantly improved fit, and indicates temperatures of log Ts(K) = 6.2 and 6.7 for the 2 components. The hotter component accounts for 55% of the intrinsic (75% of the observed) X-ray flux. Due to absorption by the stellar wind, and to a minor extent stellar occultation, less than 5% of the total emitted X-ray flux escapes the star. The models require significant X-ray emission (particularly at energies less than 0.5 keV) from large radii (r > 100R*).

In models without recombination, the fits, even with a 2 temperature plasma, are unacceptable. A significant K shell absorption is predicted by these models, but is definitely not present in the observational data. The analysis suggests that the X-ray flux provides an invaluable diagnostic of the ionization of helium in the stellar wind of stars with low reddening. Title: A Tight Correlation between Radio and X-Ray Luminosities of M Dwarfs Authors: Gudel, Manuel; Schmitt, Juergen H. M. M.; Bookbinder, Jay A.; Fleming, Thomas A. Bibcode: 1993ApJ...415..236G Altcode: We present results of a survey of nonflare radio and X-ray properties of dM/dMe stars. This survey was obtained during the ROSAT All-Sky Survey and is accompanied by mostly simultaneous VLA observations. We find that the X-ray and radio luminosities are correlated over three orders of magnitude, L(R) is proportional to L(X), irrespective of spectral type. This result improves if strictly simultaneous observations are considered. This correlation points to a physical relation between the particle populations responsible for the two emissions. Title: The ROSAT All-Sky Survey of Active Binary Coronae. II. Coronal Temperatures of the RS Canum Venaticorum Systems Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Schmitt, J. H. M. M.; Fleming, T. A. Bibcode: 1993ApJ...413..333D Altcode: We present the results from an analysis of X-ray spectra of 44 RS CVn systems obtained during the ROSAT All-Sky Survey with the Position Sensitive Proportional Counter (PSPC). Thermal plasma models with two temperature components are found to reproduce the observations better than single or continuous temperature models. We typically find that a bimodal distribution of temperatures centered near 2 x 10 exp 6 and 1.6 x 10 exp 7 K fit the data best. We show that the PSPC temperatures agree well with those from similar low-resolution measurements, although differences exist, primarily due to differing detector bandpasses. After comparing coronal (either temperature or emission measure) characteristics with stellar parameters including rotation period and dynamo number, we find no compelling relationship. The height-integrated emission measures of the components in the two-temperature models, including a gravity term, are found to be well correlated with temperature. Title: A Study of the Spatial and Spectral Characteristics of the Corona of AR Lacertae Authors: Ottmann, R.; Schmitt, J. H. M. M.; Kuerster, M. Bibcode: 1993ApJ...413..710O Altcode: X-ray observations of the eclipsing RS CVn binary AR Lac covering both primary and secondary minimum, obtained with the position sensitive proportional counter (PSPC) on-board ROSAT, are presented. The X-ray light curves clearly show a deep primary eclipse in all three PSPC spectral bandpasses covering the bands 0.1-0.28 keV, 0.4-1.1 keV, and 1.1-2.4 keV. A shallow secondary minimum occurring before phase 0.5 is seen in the total light curve. Phase-dependent spectral analysis is performed both with a two-temperature model as well as a hydrostatic loop model. During primary eclipse the emission measures of the low- and the high-temperature component drop, while the derived coronal temperatures show no orbital variation. The mean temperature values are 3 x 10 exp 6 K and 14 x 10 exp 6 K, respectively; in the context of the hydrostatic loop model, we find peak loop temperatures of 3.5 x 10 exp 7 K. In order to localize the X-ray emitting regions on the stellar surfaces, a coronal emission region modeling is performed. Two best-fit models are obtained; both models require one prominent coronal feature on each star, a compact structure on the G star, and a more extended structure associated with the K star. Title: Stellar Coronae at the End of the Main Sequence: A ROSAT Survey of the Late M Dwarfs Authors: Fleming, Thomas A.; Giampapa, Mark S.; Schmitt, J. H. M. M.; Bookbinder, Jay A. Bibcode: 1993ApJ...410..387F Altcode: We present X-ray data, both detections and upper limits, from the ROSAT all-sky survey for most known M dwarfs later than type M5, as well as from selected ROSAT pointed observations of some of these stars. We compare these data with similar data for early M dwarfs in an attempt to probe the nature of the magnetic dynamo and coronal heating mechanism for the very late M dwarfs, which are presumably totally convective. Our results indicate that late M dwarfs can have coronae which are just as active as those for the early M dwarfs and that coronal heating efficiency for 'saturated' stars does not drop at spectral type M6. Title: The ROSAT All-Sky Survey of Active Binary Coronae. I. Quiescent Fluxes for the RS Canum Venaticorum Systems Authors: Dempsey, Robert C.; Linsky, Jeffrey L.; Fleming, Thomas A.; Schmitt, J. H. M. M. Bibcode: 1993ApJS...86..599D Altcode: One hundred and thirty-six RS CV(n) active binary systems were observed with the ROSAT Position Sensitive Proportional Counter (PSPC) during the All-Sky Survey component of the mission. The entire sky was surveyed, which represents the largest sample of RS CV(n) systems observed to date at any wavelength, including X-rays. X-ray surface fluxes for the RS CV(n) systems are found to lie in the range 10 exp 4 to 10 exp 8 ergs/sq cm seconds. Surface flux as a function of (B - V) color is reported. A decrease in surface flux with increasing rotation period for the entire sample is observed. The rotation period provides the best stellar or orbital parameter to predict the X-ray surface flux level. The absence of correlation of F(x) or L(x) with Gamma is noted due to the fact that the coronal heating mechanism for these active stars must be magnetic in character, and the magnetic field depends on the interaction between convection and differential rotation inside the star. X-ray properties of the RS CV(n) systems with 6 cm radio and C IV UV emission systems is compared. Title: The EUV Coronal Spectrum of chi (1) ORI (HR 2047, G0 V) Authors: Haisch, B.; Drake, J.; Schmitt, J. H. M. M. Bibcode: 1993AAS...182.4115H Altcode: 1993BAAS...25..862H We have carried out an 80 ks extreme ultraviolet observation of the active solar-like star chi (1) Ori using the Extreme Ultraviolet Explorer (EUVE) spectrograph. Based on its chromospheric activity level, this star appears to be quite young (see Haisch and Basri, 1985, Ap. J. Suppl., 58, 179). Its X-ray luminosity as measured by the Einstein IPC (log L_x = 28.8) and the ROSAT PSPC (log L_x = 29.1) makes it a factor of ten more active than the Sun at solar maximum. We present the first EUV spectrum of an active solar-like star. Title: Coronal Structure of Late M Dwarf Stars Authors: Giampapa, M. S.; Fleming, T. A.; Schmitt, J. H. M. M. Bibcode: 1993AAS...182.2205G Altcode: 1993BAAS...25R.824G We present preliminary results of the analysis of x-ray pulse-height spectra of very late dwarf M stars as obtained with the ROSAT PSPC. The majority of the data are derived from a program of pointed observations. The limited sample is comprised of both active dMe stars and quiescent dM stars. The basic cornal properties are derived and compared among the dMe and dM stars in the sample. We find that two-temperature fits are required to account for the x-ray emission of dMe stars while single-temperature fits appear to adequately represent the x-ray properties of the non-dMe objects. In addition, we estimate emission measures and coronal loop parameters. The implications for coronal structure will be discussed. In particular, we suggest on the basis of these preliminary results that the coronae of low mass dwarfs are highly geometrically extended relative to the stellar radius. This may account for both the high absolute values of L_x and the high relative values, i.e., L_x /Lbol , that characterize the x-ray emission levels of the dMe stars as compared to that of more nearly solar-type stars. Title: Strong Microwave Radiation from ``Solar-Twin'' GV Stars Authors: Gudel, M.; Schmitt, J. H. M. M.; Benz, A. O. Bibcode: 1993AAS...182.4607G Altcode: 1993BAAS...25..874G We report the detection of four solar-type main-sequence G stars as strong, steady 8.5 GHz VLA microwave sources. The targets were X-ray selected based on a previously reported relation between quiescent X-ray and microwave luminosities (L_X and L_R) of active stars. L_X was obtained from the ROSAT All-Sky Survey. The fluxes of the radio detections (6<= sigma <= 13) match our predictions within ~ 0.05 -- 0.2 dex (for age estimates, see references below): \begin{tabular}{lllllll} star & spect. & d(pc) & flux (mJy) & logL_R & logL_X & age (yrs) & & & & & & Gl 97 & G1V & 13 & 0.28+/-0.035 & 13.8 & 28.9 & ~ 2* 10(9) Gl 755 & G5V & 19 & 0.19+/-0.031 & 13.9 & 29.4 & ... Gl 559.1 & dG0e & 21 & 0.34+/-0.025 & 14.3 & 29.6 & ~ 0.07* 10(9) HR 9107 & G2V & 29 & 0.19+/-0.030 & 14.3 & 29.5 & ~ 10* 10(9) Gl 97 (see, e.g., Soderblom ApJS 53,1) and Gl 755 are single MS stars. Gl 559.1 is a very rapidly rotating, chromospherically extremely active young star probably just settling on the main sequence (Soderblom & Clements AJ 93, 920; Elias & Dorren AJ 100, 818). A widely separated companion has been suspected (Duquennoy & Mayor A&A 248, 485), but we reason that the radio emission comes from the G star. The surprise detection is HR 9107, a metal-deficient, high space velocity, old-disk population star just leaving the MS (see Deliyannis et al. ApJS 73, 21). Brightness temperature estimates based on an optically thin plasma likely suggest nonthermal emission, probably gyrosynchrotron as on other active stars. These detections extend the dichotomy between active and inactive stars into the range of solar-type stars. We are currently proposing detailed investigations of these stars. This research is supported by the Swiss National Science Foundation, NASA, CU, and NIST; the NRAO VLA is supported by Associated Universities, Inc. and the US NSF. Title: ROSAT detection of stellar X-ray sources in the old open cluster M 67. Authors: Belloni, T.; Verbunt, F.; Schmitt, J. H. M. M. Bibcode: 1993A&A...269..175B Altcode: We have obtained a deep pointing on the old open cluster M 67 with the ROSAT PSPC. The detected X-ray sources show a strong concentration towards the optical cluster which leads us to believe that most of the sources are actually associated with M 67. In particular, our observation shows an X-ray counterpart for the cataclysmic variable recently discovered in M 67. Further, a larger fraction of the X-ray sources identified with M 67 cluster members are binaries as determined from optical studies, and we show that the X-ray properties of these stars make them good candidates for RS CVn systems in M 67. Title: ROSAT Observations of Late-Type Stars Authors: Schmitt, J. H. M. M. Bibcode: 1993ASSL..183..327S Altcode: 1993pssc.symp..327S No abstract at ADS Title: ROSAT observations in the Lupus star forming region. Authors: Wichmann, R.; Krautter, J.; Alcalá, J. M.; Schmitt, J. H. M. M.; Covino, E.; Terranegra, L.; Mundt, R.; Sterzik, M.; Zinnecker, H. Bibcode: 1993AGAb....9..175W Altcode: No abstract at ADS Title: Stellar coronae at the end of the main sequence: A ROSAT survey of the late M dwarfs Authors: Fleming, T. A.; Giampapa, M. S.; Schmitt, J. H. M. M.; Bookbinder, J. A. Bibcode: 1993STIN...9419794F Altcode: X-ray data, both detections and upper limits, from the Rosat all sky survey for most known M dwarfs later than type M5 are presented. Selected Rosat pointed observations of some of these stars are included. These data are compared to similar data for early M dwarfs in an attempt to probe the nature of the magnetic dynamo and coronal heating mechanism for the very late M dwarfs, which are presumably totally convective. The results indicate that late M dwarfs can have coronae which are just as active as those for the early M dwarfs and that coronal heating efficiency for 'saturated' stars does not drop at spectral type M6. Title: ROSAT Detections of X-Ray Emission from Young B-Type Stars Authors: Schmitt, J. H. M. M.; Zinnecker, H.; Cruddace, R.; Harnden, F. R., Jr. Bibcode: 1993ApJ...402L..13S Altcode: We present first results of a series of pointings of the Rosat HRI at visual binaries consisting of a B-star with a later-type companion. The binaries selected for this study are very likely physical pairs. Dating of the B-type stars with respect to the zero-age main sequence, as well as spectroscopic observations of the late-type stars, provides evidence for the extreme youth of these systems with ages typically near or below 10 exp 8 yr. Surprisingly, the late-B component was in many cases detected as an X-ray source, in contrast to previous findings that X-ray emission among late-B field stars is rather uncommon. Title: Coronal Activity in Relation to Chromospheric Cycles and Stellar Rotation Authors: Hempelmann, A.; Rüdiger, G.; Hildebrandt, G.; Schmitt, J. H. M. M. Bibcode: 1993ASSL..183..381H Altcode: 1993pssc.symp..381H No abstract at ADS Title: The ROSAT All-Sky Survey of Active Binary Coronae: The RS CVn Systems Authors: Dempsey, R. C.; Linsky, J. L.; Fleming, T. A.; Schmitt, J. H. M. M.; Kürster, M. Bibcode: 1993ASSL..183..361D Altcode: 1993pssc.symp..361D No abstract at ADS Title: Correlation between Radio and X-ray Luminosities among Late-Type Stars: A ROSAT-VLA Survey of M Dwarfs Authors: Güdel, M.; Bookbinder, J. A.; Schmitt, J. H. M. M.; Fleming, T. A. Bibcode: 1993ASSL..183..383G Altcode: 1993pssc.symp..383G No abstract at ADS Title: X-ray/Optical Survey of Late-Type Stars Authors: Piters, A. J. M.; Schmitt, J. H. M. M.; Schrijver, C. J.; Baliunas, S.; Zwaan, C.; van Paradijs, J. Bibcode: 1993ASSL..183..377P Altcode: 1993pssc.symp..377P No abstract at ADS Title: ROSAT Observations of the Hyades Authors: Pye, J. P.; Hodgkin, S. T.; Stern, R. A.; Schmitt, J. H. M. M.; Rosso, C. Bibcode: 1993ASSL..183..345P Altcode: 1993pssc.symp..345P No abstract at ADS Title: X-ray emission of T Tauri Stars in Taurus. Authors: Neuhäuser, Ralph; Sterzik, Michael F.; Schmitt, Jürgen H. M. M.; Morfill, Gregor E. Bibcode: 1993AGAb....9..102N Altcode: No abstract at ADS Title: ROSAT observations of the stellar coronal dividing line. Authors: Haisch, B.; Schmitt, J. H. M. M. Bibcode: 1993uxrs.conf..547H Altcode: 1993uxsa.conf..547H The authors present an update on the results of the ROSAT X-ray All-Sky Survey observations of stellar sources presented by Haisch, Schmitt and Rosso (1991). In that paper the presence of a coronal dividing line in the H-R diagram at approximately spectral type K3 II to K3 IV was established by the clear difference in distribution of the 65 ROSAT detections vs. the 868 non-detections of BSC stars in the 70 percent-complete survey. The remaining 30 percent of the survey has now been processed resulting in 31 additional detections of stellar coronae, all of which lie to the left of the dividing line. Title: Stellar Coronal EUV Emission Observed with the ROSAT Wide Field Camera Authors: Brown, A.; Bromage, G.; Schmitt, J.; Ambruster, C.; Linsky, J. L. Bibcode: 1992AAS...181.8012B Altcode: 1992BAAS...24.1251B The Wide Field Camera (WFC) on the ROSAT satellite conducted the first all-sky survey in the extreme ultraviolet (EUV) over the six month period beginning on 1990 July 30. Two survey filters were used peaking at 95 and 120 Angstroms . Many of the sources detected are coronal stars. We present detailed results from WFC survey data for a range of coronal stars, including a complete survey of the RS CVn systems in the Strassmeier catalog (40% detection rate), the EUV variability of the flare star EV Lac (including the largest flare seen by the WFC from a coronal source), the EUV rotation-activity relation for a homogeneous sample of single early K dwarfs, and WFC results forming part of the RIASS (ROSAT-IUE-All-Sky-Survey) campaign. This work is supported by NASA grant NAG 5-1792 to the University of Colorado. Title: Disappearance of coronal X-ray emission in stars with cool dense winds Authors: Haisch, Bernhard; Schmitt, J. H. M. M.; Fabian, A. C. Bibcode: 1992Natur.360..239H Altcode: THE Einstein Observatory survey of cosmic X-ray sources a decade ago showed that coronae were common among diverse types of star, and were in many cases more energetic than the Sun's corona. Such coronae seemed, however, to disappear abruptly across a 'dividing line' in the Hertzsprung-Russell (H-R) diagram describing the evolution of intermediate-mass stars towards the red giant phase1-5. Here we use results from the Rosat all-sky survey, which increases by an order of magnitude the number of X-ray stars, to show that the dividing line is not an artefact of poor sampling. Optical and ultraviolet observations show that the dividing line in the H-R diagram coincides approximately with the onset of cool, massive stellar winds6-15, but we show that these winds are not sufficiently dense for simple X-ray absorption to be the cause of the disappearance of coronal emission. We conclude, therefore, that the dividing line represents a true evolutionary transition in these stars, at which the hot coronae are replaced by cool winds. Title: First Results from ROSAT All-Sky Survey Observations of the Hyades Cluster Authors: Stern, Robert A.; Schmitt, Juergen H. M. M.; Rosso, Cristina; Pye, John P.; Hodgkin, Simon T.; Stauffer, John R. Bibcode: 1992ApJ...399L.159S Altcode: We present preliminary ROSAT all-sky survey results for the Hyades cluster. We detected 108 Hyades cluster members as X-ray sources with L(y) greater than about 3 x 10 exp 28 ergs/s. A number of short-period, chromospherically active binary systems and the giants Theta1 Tau and Gamma Tau are among the most X-ray-luminous objects in the cluster. The second brightest X-ray source, HR 1394 = 71 Tau = VB 141, is a long-period lunar occultation binary. Seven cluster members were also seen in the Wide Field Camera EUV all-sky survey. Among the stars detected in both X-rays and EUV is the Hyades white dwarf EG 37 (= VR 16), confirming an earlier serendipitous EXOSAT detection. We also report the first X-ray detection of the Hyades K0 giant Epsilon Tau, at roughly the survey limit. This new result establishes all four Hyades giants as X-ray emitters, although with an about 50:1 range in L(x). A comparison of Einstein and ROSAT data for three of the giants suggests that long-term X-ray variability, perhaps due to activity cycles, may be partly responsible for the wide dispersion in L(x). Title: The Stellar Coronal Dividing Line Authors: Haisch, B.; Schmitt, J. H. M. M. Bibcode: 1992AAS...181.2308H Altcode: 1992BAAS...24.1159H No abstract at ADS Title: A Lunar Occultation of the Dust-Scattering Halo Around GX 5-1 Observed with ROSAT Authors: Predehl, Peter; Schmitt, Juergen H. M. M.; Snowden, Steven L.; Truemper, Joachim Bibcode: 1992Sci...257..935P Altcode: The x-ray source GX 5-1 in the galactic bulge has been observed with the position-sensitive proportional counter onboard the Rontgen satellite (ROSAT) during and after a lunar occultation. Extended emission around the source was unambiguously discovered while the central source was behind the lunar rim. This emission is interpreted as a dust-scattering halo around GX 5-1 that has a fractional intensity of 28 percent, implying a grain column density between GX 5-1 and Earth of ~3 x 1010 per square centimeter. The halo derived from imaging during the ROSAT all-sky survey is identical to that obtained from the lunar occultation, thus demonstrating that the ROSAT x-ray mirror scattering has not changed as compared with the mirror properties as measured in preflight calibrations. Title: ROSAT detection of stellar X ray sources in the old open cluster M67 Authors: Belloni, T.; Verbunt, F.; Schmitt, J. H. M. M. Bibcode: 1992STIN...9330578B Altcode: The observations of M67 with the Rosat satellite are discussed. The detected x-ray sources show a strong concentration towards the optical cluster which leads to the belief that most of the sources are actually associated with M67. In particular, the observation shows an x-ray counterpart for the cataclysmic variable recently discovered in M67. A larger fraction of the x-ray sources identified with M67 cluster members are binaries. It is shown that the x-ray properties of these stars make them good candidates for RS CVn systems in M67. Title: ROSAT observations in star forming regions. Authors: Krautter, J.; Alcala, J. M.; Schmitt, J. H. M. M.; Wichmann, R.; Zinnecker, H.; Predehl, P.; Sterzig, M.; Wagner, R. M.; Mundt, R. Bibcode: 1992eocm.rept..187K Altcode: An investigation to determine the number of WTTS (Weak line T Tauri Stars) and their spatial distribution, to study their physical properties, and to find possible differences between these parameters and the individual star forming regions is presented. An algorithm was used to cross correlate positions in the Simbad database with Rosat PSPC (Position Sensitive Proportional Counter). To identify the x ray sources without known optical counterparts, extensive spectroscopic observations were carried out. Results show that the WTTS are distributed over a much larger area than classical TTS, which tend to be concentrated near the cloud cores. This indicates that the WTTS may be useful in tracing the history of star formation in star forming regions, although the sample of WTTS is as yet too small to draw any further conclusion. Title: ROSAT X-Ray Observations of Hybrid Stars Authors: Reimers, D.; Schmitt, J. H. M. M. Bibcode: 1992ApJ...392L..55R Altcode: The paper reports on X-ray observations of four hybrid stars with the position-sensitive proportional counter (PSPC) on the Roentgensatellit. Three of the stars, Beta Ind, Mu UMa, and Gamma Aql were detected as X-ray sources for the first time. For one star, Gamma Aql, the detection is of low significance, while for the other two stars, Beta Ind and Mu UMa, enough counts were collected to accumulate for the first time for a hybrid star, a pulse height spectrum and perform a spectral analysis of the pulse height distribution. The dominant emission feature component for both stars is located at temperatures of log T about 6.4. The data are, however, of insufficient signal-to-noise ratio to assess the presence of even hotter temperature components or the possible self-absorption by the also present cool winds in these stars. For the remaining star in the sample, Iota Aur, a sensitive upper limit is reported. Title: ROSAT Images of the Pleiades and Alpha Persei Open Clusters Authors: Stauffer, J.; Schmitt, J.; Caillault, J. -P.; Gagne, M.; Prosser, C. Bibcode: 1992AAS...180.2907S Altcode: 1992BAAS...24..773S No abstract at ADS Title: ROSAT sky survey observations of the eclipsing binary V 471 Tauri. Authors: Barstow, M. A.; Schmitt, J. H. M. M.; Clemens, J. C.; Pye, J. P.; Denby, M.; Harris, A. W.; Pankiewicz, G. S. Bibcode: 1992MNRAS.255..369B Altcode: Rosat observations of the DA white dwarf + K2V binary system V471 Tauri, obtained during the sky survey phase of the mission, are presented. A lower amplitude shorter time-scale variability is seen in both the soft X-ray and EUV bands. This is associated with the white dwarf pulsations previously discovered by Exosat and also observed at optical wavelengths. The minimum in the EUV light curve is found to coincide with the maximum in the optical. This direct comparison of the phases of the optical and EUV pulses confirms the prediction made by an earlier indirect comparison and shows conclusively that the V471 Tau oscillations cannot arise from nonradial g-mode pulsations in the white dwarf. They are argued to be caused by rotation of the white dwarf with accretion-darkened magnetic poles. On the basis of the EUV and optical pulse shapes, the accretion geometry is studied, and it is estimated that the rate of accretion onto the white dwarf is about (4-11) x 10 exp -13 solar mass/yr. Title: ROSAT X-Ray All-Sky Survey Observations of Hybrid Stars Authors: Haisch, Bernhard; Schmitt, J. H. M. M.; Rosso, C. Bibcode: 1992ApJ...388L..61H Altcode: Data from the Rosat All-Sky Survey for nine hybrid stars, objects showing spectroscopic evidence for cool massive winds and 500,000-K material, are presented. Two of the nine stars were detected above a limiting flux threshold of 2 x 10 exp -13 ergs/sq cm s. The K3 III star Delta And was detected just at this threshold. The K4 III star Alpha TrA was measured at 8 x 10 exp -13 ergs/sq cm s. Since these detections were made in both low- and high-energy bands of the Rosat 0.1-2.4-keV passband, it is suggested that the emissions originate in coronae of about 10 exp 7 K. Title: The contributions of RS CVn systems to the diffuse X-ray background. Authors: Ottmann, R.; Schmitt, J. H. M. M. Bibcode: 1992A&A...256..421O Altcode: We present comprehensive calculations of the contribution of RSCVn binaries to the diffuse X-ray background. We consider luminosity distribution functions derived from both optically selected volume-limited and X-ray selected flux-limited samples, use the Bahcall-Soneira galaxy model to describe the spatial distribution of stars in the Galaxy, and take into account anisotropic absorption by the interstellar medium. Our principal results are that RSCVn binaries provide approximately 16 percent to the observed low-latitude background at intermediate X-ray energies, while in the 2-6 keV band their contribution to the total background amounts to about 6 percent, which however represents about a 27 percent contribution to the Galactic ridge excess emission. This additional stellar component thus helps to fill up the absorption dip in the extragalactic background produced by absorption in the Galaxy and to isotropize the total M band background. However, our models of RSCVn systems are unable to account for the iron line observed in the Galactic ridge. Title: X-ray detection of Nova Herculis 1991 five days after optical outburst Authors: Lloyd, H. M.; O'Brien, T. J.; Bode, M. F.; Predehl, P.; Schmitt, J. H. M. M.; Truemper, J.; Watson, M. G.; Pounds, K. A. Bibcode: 1992Natur.356..222L Altcode: CLASSICAL nova outbursts are thought to occur in binary systems in which a white dwarf accretes material from a main-sequence dwarf. The outburst is due to thermonuclear runaway in the accreted material, and results in the ejection of about 10-5-10-4 solar masses of material at velocities of up to several thousand kilometres per second (ref. 1). Previous X-ray observations of classical novae in the early stages of outburst have resulted only in upper limits to the X-ray flux2-4. Here we report a positive detection by the Rosat satellite of X-ray emission from Nova Herculis 1991 five days after its optical discovery. Standard nova models predict X-ray emission to arise directly from nuclear burning on the surface of the white dwarf, and suggest that X-rays should not be seen until later in the outburst5. We argue that the emission from Nova Her 1991 comes from hot, shocked circuin-stellar material, which may be the ejected material itself or preexisting circumstellar matter. In either case, however, the required density of material is higher than models of nova binary systems would suggest. Title: First ROSAT All-Sky Survey X-Ray Light Curves of Active Stars Authors: Kurster, M.; Schmitt, J. H. M. M.; Fleming, T. A. Bibcode: 1992ASPC...26..109K Altcode: 1992csss....7..109K No abstract at ADS Title: Stellar X-Ray Variability as Observed with the ROSAT XRT. Authors: Schmitt, J. H. M. M. Bibcode: 1992RvMA....5..188S Altcode: No abstract at ADS Title: First stellar results from the ROSAT XRT. Authors: Schmitt, J. H. M. M. Bibcode: 1992MmSAI..63..563S Altcode: The paper presents first results of the Rosat XRT observations of late-type stars. The main properties of the all-sky survey made with the Rosat XRT are examined, and its stellar content is discussed in the context of the overall X-ray source population. Particular attention is given to the coronal dividing line, the problem of local absorption of the X-ray emission in O-type stars, and the Rosat X-ray observations of the RS CVn system AR Lac. Title: First Results from a Coordinated ROSAT; lUE; VLA Study of RS CVn Systems Authors: Linsky, J. L.; Fox, D.; Brown, A.; Dempsey, R.; Schmitt, C.; Schmitt, J. H. M. M.; Fleming, T.; Rodono, M.; Pagano, I.; Neff, J. E.; Bromage, G. Bibcode: 1992ASPC...26..106L Altcode: 1992csss....7..106L No abstract at ADS Title: ROSAT Observations of Late-Type Stars (Invited Review) Authors: Schmitt, J. H. M. M. Bibcode: 1992ASPC...26...83S Altcode: 1992csss....7...83S No abstract at ADS Title: LUE; ROSAT Survey Observations of Symbiotic Stars Authors: Stencel, R. E.; Brugel, E. W.; Kenyon, S. J.; Bickert, K. F.; Fleming, T. A.; Schmitt, J. H. M. M. Bibcode: 1992ASPC...26...46S Altcode: 1992csss....7...46S No abstract at ADS Title: The Moon in the ROSAT all-sky survey: a monitor of the solar X-ray flux. Authors: Freyberg, M. J.; Schmitt, J. H. M. M.; Snowden, S. L. Bibcode: 1992AGAb....7..154F Altcode: During the ROSAT All-Sky Survey (July 1990 to January 1991) the Moon was observed approximately every 14 days with the Position Sensitive Proportional Counter PSPC in two or three consecutive orbits, alternating as waning and waxing half moons. This is due to the observation geometry, with the look direction pointing perpendicular to the direction of the Sun. In general, these observations were taken under almost night time conditions. The X-ray flux observed from the Moon is mainly due to solar X-rays scattered off the lunar surface and therefore monitors the solar X-ray flux in the ROSAT energy band (0.07 - 2.4 keV). Since the solar X-ray flux is not known a priori, a solar monitor is required for calibrating the incident solar X-ray flux and to compute the amount of solar X-rays scattered in the Earth's atmosphere.

We present lunar X-ray lightcurves in three energy bands (I: 0.08 - 0.4 keV, II: 0.4 - 0.9 keV, III: 0.9 - 2.0 keV). In band I we clearly see the effect of the solar rotation by comparing the measured X-ray flux with the solar radio flux at 10.7 cm. The data of band II and band III differ in that these are affected by single events like solar flares which is indicated the the GOES hard X-ray data (1.5 - 25 keV). Besides these events the data is compatible with a constant or slowly increasing solar flux. The obtained solar flux fits quite well with the calibration done at scan reversals (daytime - nightime observations of nearly the same part of the sky). Title: X-ray emission from age-dated post-T Tauri stars. Authors: Zinnecker, H.; Kunkel, M.; Schmitt, J. H. M. M. Bibcode: 1992AGAb....7..102Z Altcode: No abstract at ADS Title: The ROSAT all-sky survey maps of the cosmic X-ray background. Authors: Freyberg, M. J.; Snowden, S. L.; Plucinsky, P. P.; Schmitt, J. H. M. M. Bibcode: 1992AGAb....7...26F Altcode: We present here the maps of the Cosmic X-ray Background (CXRB) as observed with the Position Sensitive Proportional Counter (PSPC) aboard the Roentgensatellite ROSAT. The ROSAT ALl-Sky Survey was perfomed from 30 July 1990 to 23 January 1991 and from 3 August 1991 to 12 August 1991 in great circles across the ecliptic poles. In generak, the exposure is higher at higher ecliptic latitudes; it is a strongly varying function of the sky coordinates due to detector turn-offs at the radiation belts and the South Atlantic Anomaly. For our analysis the energy range of the PSPC was divided into three bands (0.12 - 0.5 keV, 0.5 - 0.9 keV, 0.9 - 2.0 keV, respectively) to study spectral features of the CXRB. The spatial resolution element of the final maps was chosen as 1.6' x 1.6', the maps presented here have 40' x 40', in order to avoid confusion by unresolved point sources. Contaminations were identified mainly to originate from solar X-rays scattered off the Earth's atmosphere and from charged particles. Additionally, there are enhancements of the measured X-ray flux on different timescales, from one minute to one day (e.g., auroral enhancements close to the radiation belts, long-term enhancements lasting for several full orbits). In the data reduction process the contribution of each background component is modeled separately to allow a study of these components and to allow an easy change in case of improved models or data. With its present spectral and spatial resolution the maps of the CXRB are an ideal tool to study X-ray shadows by foreground clouds cast onto background emission volumes. Another application is to search for interstellar bubbles (~ 10°), made by stellar hot winds and shocks. Examples are presented. Title: Stars in the ROSAT all-sky survey Authors: Schmitt, J. H. M. M. Bibcode: 1992HiA.....9..235S Altcode: No abstract at ADS Title: Stars in the ROSAT all-sky survey Authors: Schmitt, J. H. M. M. Bibcode: 1992rrgo.conf...18S Altcode: The stellar content of the ROSAT all sky survey and the analysis of the data are addressed. The total number of X-ray sources is expected to be around 60,000. Preliminary results are discussed. The X-ray emitting late type stars are commonly referred to as 'active' stars, and the ROSAT catalog will comprise the most extensive list of such objects. The scatter of active and inactive stars, X-ray observations of young galactic clusters, PSPC (Position Sensitive Proportional Counter) pulse height spectra of active stars, and all sky survey lightcurves of stellar coronae, are discussed. Title: ROSAT observations in star forming regions. Authors: Krautter, J.; Alcalá, J. M.; Schmitt, J. H. M. M.; Wichmann, R.; Mundt, R.; Predehl, P.; Sterzig, M.; Wagner, R. M.; Zinnecker, H. Bibcode: 1992AGAb....7..113K Altcode: No abstract at ADS Title: X-ray observations of stars: first results from ROSAT Authors: Schmitt, J. H. M. M. Bibcode: 1992HiA.....9..655S Altcode: No abstract at ADS Title: A New Approach to Doppler Imaging of Late-type Stars Authors: Kürster, M.; Schmitt, J. H. M. M. Bibcode: 1992LNP...397...69K Altcode: 1992sils.conf...69K No abstract at ADS Title: The Nature of the Dynamo at the End of the Main Sequence: A ROSAT Survey of the Late M Dwarfs Authors: Fleming, T. A.; Giampapa, M. S.; Schmitt, J. H. M. M.; Bookbinder, J. A. Bibcode: 1992ASPC...26...93F Altcode: 1992csss....7...93F No abstract at ADS Title: Mission planning with ROSAT. Authors: Snowden, S. L.; Schmitt, J. H. M. M. Bibcode: 1992daia.conf..121S Altcode: The mission planning activities for the satellite bourne X-ray observatory ROSAT are discussed. Responsibility is shared between the Max Planck Institute for Extraterrestrial Physics (MPE), which provides the sientific and calibration program input, and the German Space Operations Center (GSOC), whose responsibility it is to generate a mission timeline satisfying all operational constraints. An optimum solution for the mission timeline is achieved using an efficient networking procedure. Title: The Coronal Dividing Line in the ROSAT X-Ray All-Sky Survey Authors: Haisch, Bernhard; Schmitt, J. H. M. M.; Rosso, C. Bibcode: 1991ApJ...383L..15H Altcode: Rosat All-Sky Survey soft X-ray observations of nearly 1000 bright single evolved stars of spectral types G, K, and M in the vicinity of the dividing line proposed by Linsky and Haisch (1979) are reported. Most observations consist of upper limits in the 0.1-2.0-keV band distributed between 604 stellar targes of spectral type K3 or earlier and 264 stellar targets of spectral type K4 or later. Of the 65 Rosat detections, only one involves an apparently single star of spectral type later than K3: HR 4289 (K5 III). A clear dichotomy exists between coronal and noncoronal stars of luminosity classes II, III, and IV at approximately spectral type Ke. The extremely low upper limit for the archetypal 'noncoronal' red giant, Arcturus, less than 3 x 24 exp 25 ergs/s achieved by Rosat during an 18.6-ks targeted observations by Ayres et al. (1991) indicates a very steep decline at the coronal dividing line. Title: A Preliminary Look at the Soft X-Ray Diffuse Background from the ROSAT All-Sky Survey Authors: Snowden, S. L.; Plucinsky, P. P.; McCammon, D.; Freyberg, M. J.; Schmitt, J. H. M. M.; Trüumper, J. Bibcode: 1991BAAS...23.1400S Altcode: No abstract at ADS Title: Digging in the Coronal Graveyard: A ROSAT Observation of the Red Giant Arcturus Authors: Ayres, Thomas R.; Fleming, Thomas A.; Schmitt, Juergen H. M. M. Bibcode: 1991ApJ...376L..45A Altcode: A deep exposure of the bright star Arcturus (Alpha Bootis: K1 III) with the Roentgensatellit (Rosat) failed to detect soft X-ray emission from the archetype 'noncoronal' red giant. The 3-sigma upper limit in the energy band 0.1-2.4 keV corresponds to an X-ray luminosity of less than 3 x 10 to the 25th erg/s, equivalent to a coronal surface flux density of less than 0.0001 solar. The nondetection safely eliminates coronal irradiation as a possible mechanism to produce the highly variable He I 10830 feature and emphasizes the sharp decline in solarlike coronal activity that accompanies the evolution of low-mass single stars away from the main sequence. While the most conspicuous object in the Rosat field of view was not visible in X-rays, at least one fainter star is among the about 60 sources recorded: the Sigma Sct variable CN Boo, an A8 giant in the UMa Stream. Title: ROSAT observations of the X-ray halo around GX 339-4. Authors: Predehl, P.; Braeuninger, H.; Burkert, W.; Schmitt, J. H. M. M. Bibcode: 1991A&A...246L..40P Altcode: A systematic investigation is discussed of X-ray haloes around bright galactic sources observed during the Rosat All-Sky Survey. The halo around the galactic center source GX339 - 4 is discussed. Both the Mathis-Rumpl-Nordsiek (MRN) as well as the Oort-van der Hulst (OHV) grain-size distributions allow acceptable fits to the data but only under the assumption of an inhomogeneous grain distribution along the line of sight. The spatial dust concentration found is in excellent agreement with galactic dust-cloud models derived from optical extinction measurements. Grains with sizes between 0.04 micron and 0.25 micron (MRN) or 0.04 micron and 0.6 micron (OHV), respectively, produce the correct halo shape. The fractional halo intensity of 9.9 percent at 1.1 keV is consistent with that found in previous investigations and leads to grain column density of about 4.8 x 10 to the 9th/sq cm. Title: Beta Crateris : another Sirius system in the solar neighborhood. Authors: Fleming, T. A.; Schmitt, J. H. M. M.; Barstow, M. A.; Mittaz, J. P. D. Bibcode: 1991A&A...246L..47F Altcode: The star Beta Crt (A2 IV; mv = 4.48) has been detected in the Rosat all-sky survey. The Rosat X-ray and EUV data in conjunction with already published optical data suggest that the source of the X-ray emission is not the A star Beta Crt A, but rather a hitherto unknown white dwarf companion Beta Crt B, just like the well-known case of Sirius A and B. However, unlike Sirius B, Beta Crt B is too close to its primary to be resolved and/or studied optically. The temperature and atmospheric composition of the white dwarf companion are estimated and the similarities between this system and Sirius is discussed. Title: A ROSAT glance at the galactic plane. Authors: Motch, C.; Belloni, T.; Buckley, D.; Gottwald, M.; Hasinger, G.; Pakull, M. W.; Pietsch, W.; Reinsch, K.; Remillard, R. A.; Schmitt, J. H. M. M.; Trumpler, J.; Zimmermann, H. -U. Bibcode: 1991A&A...246L..24M Altcode: As part of the all-sky survey, the Rosat satellite has carried out the first complete scan of the galactic plane. Results obtained from sample areas located in the direction of the Perseus arm of the Galaxy are reported and amount to about 200 sq deg, a surface comparable to that of the entire Einstein galactic plane survey. A total of 225 X-ray sources are detected. Based on cross-correlations with large astronomical catalogs and optical observations of a subset of the sources preliminary conclusions are given regarding the X-ray content of the Milky Way and illustrate the different kinds of emitters contributing to the galactic emission. The discovery of a new Be/X-ray system in the open cluster NGC 663 is also reported. Title: The boron filter for the ROSAT X-ray telescope Authors: Stephan, K. -H.; Schmitt, J. H. M. M.; Snowden, S. L.; Maier, H. J.; Frischke, D. Bibcode: 1991NIMPA.303..196S Altcode: We have developed multilayered films composed of boron carbide and carbon, which serve as spectral filters in the focal plane of the Wolter type I X-ray telescope on board the X-ray astronomy satellite ROSAT (Röntgensatellit). We describe the manufacturing process and qualification measurements of the filters and present the resulting performance data. Finally the pulse height spectrum of the active star AR Lac observed by ROSAT with and without boron filter will be shown. Title: Nova Herculis 1991 Authors: Predehl, P.; Schmitt, J. H. M. M.; Trumper, J.; O'Brien, T. J.; Lloyd, H. M.; Bode, M. F.; Watson, M. G.; Pounds, K. A. Bibcode: 1991IAUC.5278....1P Altcode: P. Predehl, J. H. M. M. Schmitt and J. Trumper, Max-Planck- Institut fur Extraterrestrische Physik; T. J. O'Brien, H. M. Lloyd and M. F. Bode, Lancashire Polytechnic; and M. G. Watson and K. A. Pounds, Leicester University, communicate: "This nova was observed with the XRT/PSPC of ROSAT on Mar. 30.46 UT, five days after discovery (IAUC 5222). A total of 194 counts were detected within the observation time of 1235 s, yielding a countrate of 0.16 +/- 0.01 cts/s. According to its spectrum, the source seems to be highly absorbed with a low-energy cutoff at approximately 1 keV. This constitutes the first x-ray detection of a classical nova at or near maximum. Previous observations of classical novae at this stage with SAS 3, Ariel V and EXOSAT have only resulted in upper limits on their x-ray flux. The region of the nova was already observed in the ROSAT all-sky survey during 1990 Sept. 25-28. The data indicate that there was no source present at this position with an upper limit of approximately 0.01 cts/s." Title: A soft X-ray image of the Moon Authors: Schmitt, J. H. M. M.; Snowden, S. L.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Trumper, J. Bibcode: 1991Natur.349..583S Altcode: A soft X-ray image of the Moon obtained by the Röntgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent of that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. Title: X-ray survey of the Large Magellanic Cloud by ROSAT Authors: Trümper, J.; Hasinger, G.; Aschenbach, B.; Bräuninger, H.; Briel, U. G.; Burkert, W.; Fink, H.; Pfeffermann, E.; Pietsch, W.; Predehl, P.; Schmitt, J. H. M. M.; Voges, W.; Zimmermann, U.; Beuermann, K. Bibcode: 1991Natur.349..579T Altcode: 1991Nat...349..579T The central region of the Large Magellanic Cloud (LMC) contains a variety of astrophysical objects including supernova remnants, X-ray binary systems, the 30 Doradus complex of hot stars, as well as supernova 1987A. A survey in X-rays of this region, taken as the 'first light' observations with the Röntgen Observatory Satellite (ROSAT), reveals 45 individual sources. Fifteen of these are new; the brightest is probably a new and strongly variable low-mass X-ray binary. Title: Search for weak-line T Tauri stars with ROSAT. Authors: Alcalá, J. M.; Krautter, J.; Predehl, P.; Schmitt, J. H. M. M.; Wagner, R. M. Bibcode: 1991AGAb....6...45A Altcode: No abstract at ADS Title: Hot Stars - what can BE Learned from Extreme Ultraviolet Spectroscopy Authors: Kudritzki, R. P.; Puls, J.; Gabler, R.; Schmitt, J. H. M. M. Bibcode: 1991eua..coll..130K Altcode: No abstract at ADS Title: First spatio-temporal results from the LDEF interplanetary dust experiment Authors: Schmitt, J. H. M. M. Bibcode: 1991AdSpR..11k.115S Altcode: 1991AdSpR..11..115S The LDEF Interplanetary Dust Experiment was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of the vehicle over a span of nearly a full year. Over 15000 hits were recorded, representing a mix of zodiacal dust, meteor stream grains, orbital debris, perhaps beta-meteoroids, and possibly interstellar matter. Although the total number was higher than predicted, the relative panel activity distribution was near expectations. Detailed deconvolution of the impact record with orbital data is underway, to examine each of these populations. Very preliminary results of the fairly crude ``first look'' analysis suggest that debris is the major particle component at 500 km. The data show clear evidence of some known meteor streams as sharp, tightly-focused events, unlike their visible counterparts. Some apparent debris events show similar signatures. Data from the leading and trailing edges suggest a detection of beta-meteoroids, but the analysis is not yet conclusive. Absolute fluxes and flux ratios are not yet known, since the detector status analysis is yet incomplete. Title: Einstein Observatory Coronal Temperatures of Late-Type Stars Authors: Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R. Bibcode: 1990ApJ...365..704S Altcode: The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material. Title: An extension of Lynden-Bell's C-method to samples with arbitrary flux limits Authors: Schmitt, J. H. M. M. Bibcode: 1990A&A...240..556S Altcode: Lynden-Bell's (1971) C-method for simultaneously deriving luminosity and space density distribution functions is extended to samples with arbitrary flux limits. The basic equations are rigorously derived and presented in a form easily amenable to numerical computation; these equations contain as special cases both Lynden-Bell's C-method for single flux-limit samples and Schmidt's V/V(max)-method for samples with homogeneous space density. Two examples for the use of the method are presented. Title: A Color Gradient in the Soft X-Ray Diffuse Background Authors: Snowden, S. L.; Schmitt, J. H. M. M.; Edwards, B. C. Bibcode: 1990ApJ...364..118S Altcode: It is shown that the deviations of the soft X-ray diffuse background B band to C band intensity ratio from a constant value can be described as a simple dipole-like variation across the sky. In terms of the observed Wisconsin B/C band intensity ratio, the mean value is 0.355, the dipole magnitude is 0.106, and the positive dipole axis points toward l = 168.7 deg, b = 11.2 deg, almost in the galactic anticenter direction. This gradient in the spectral hardness can be due to several causes; the simplest is a temperature gradient in the X-ray emitting plasma of the local cavity from about 10 exp 6.2 K toward the galactic center to about 10 exp 5.9 K in the anticenter direction. While the physical origin of such a temperature gradient is uncertain, the alignment of the dipole with the higher temperature (and absorbed) Loop I region may be significant. Title: Relationship between Optical and X-Ray Properties of O-Type Stars Surveyed with the Einstein Observatory Authors: Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Ramella, M.; Morossi, C.; Rosner, R.; Schmitt, J. H. M. M. Bibcode: 1990ApJ...361..621S Altcode: An X-ray luminosity function is derived for a representative volume-limited sample of O-type stars selected from the catalog of Galactic O stars surveyed with the Einstein Observatory. It was found that, for the stars of this sample which is ten times larger than any previously analyzed, the level of X-ray emission is strongly correlated with bolometric luminosity, confirming previous findings of an Lx-L(bol) relationship (e.g., Harnden et al., 1979; Pallavicini et al., 1981). Correlations between the Lx and the mass loss rate with the wind terminal velocity or with the rotation rate were weak. However, there was a strong correlation with wind momentum flux as well as with the wind kinetic energy flux. Title: Contributions of Late-Type Dwarf Stars to the Soft X-Ray Diffuse Background Authors: Schmitt, J. H. M. M.; Snowden, S. L. Bibcode: 1990ApJ...361..207S Altcode: Comprehensive calculations of the contribution of late-type dwarf stars to the soft X-ray diffuse background are presented. The mean X-ray luminosity as derived from optically and X-ray selected samples is examined, using the Bahcall-Soneira Galaxy model to describe the spatial distribution of stars and recent results on the X-ray spectra. The model calculations are compared with the Wisconsin sky maps in the C, M1, M2, I and J bands to assess the uncertainties of the calculations. Contributions of up to 10 percent to the M2 and I band background at high Galactic latitudes are found, while at low Galactic latitudes late-type stars contribute up to 40 percent of the background. However, a Galactic ridge as well as a relatively isotropic component still remains unexplained, even with the added contribution of the extrapolated high-energy power law. Title: Is LHS 2924 an X-Ray Source? Authors: Fleming, T. A.; Schmitt, J. H. M. M. Bibcode: 1990BAAS...22.1273F Altcode: No abstract at ADS Title: The ROSAT Diffuse X-Ray Background Survey Authors: Snowden, S. L.; Schmitt, J. H. M. M. Bibcode: 1990Ap&SS.171..207S Altcode: The quality and capabilities of the ROSAT survey (0.1 2.0 keV) for the study of the diffuse X-ray background and the interstellar medium are discussed. All-sky maps created from data collected during the survey phase of ROSAT operations will greatly exceed previous surveys in spatial resolution (∼5 arc min pixels) and statistical significance (better than 25% for unbinned pixels). The spectral information of the survey will, in general, be greater as well. Finally, because of the survey geometry, very accurate contamination identification and background subtraction will be possible ensuring the reliability of the data. Title: ROSAT Authors: Schmitt, J.; Trumper, J.; Pounds, K. Bibcode: 1990IAUC.5069....2S Altcode: J. Schmitt communicates: "The ROSAT all-sky survey will take place during 1990 July 30-1991 Feb. 1, during which the whole sky will be simultaneously surveyed with an x-ray telescope (XRT) and extreme-ultraviolet telescope (WFC). The ROSAT XRT and WFC have 2 deg and 5 deg fields-of-view, respectively. The survey will be carried out in scans along great circles that always pass through the poles of the ecliptic. Therefore, at any given time, two ecliptic longitudes (separated by 180 deg) are being scanned. The central scan location (ecliptic longitude in degrees) for the all-sky survey can be computed from the formula 49.187 + 0.915T + 3.79 x 10E-4 TE2 - 5.9 x 10E-7 TE3, where T denotes the time in days since 1990 July 30.0 UT. With this formula the epoch can be computed when any given point in the sky is scanned by ROSAT. The ROSAT project would welcome observations of sources at other wavelengths contemporaneously with ROSAT. Interested parties may contact J. Trumper (Max-Plank-Institute fur Extraterrestrische Physik, Giessenbachstr., D-8046 Garching, West Germany) with regard to the XRT, and K. Pounds (Department of Physics, University of Leicester, Leicester LE1 4RH, England) with regard to the WFC. For more information on the ROSAT all-sky survey timeline, contact J. Schmitt at the Garching address above." Title: Rotational modulation and flares on RS Canum Venaticorum and BY Draconis-type stars. XIV. Phasen eclipse and flare observations of YY Geminorum by EXOSAT and IUE. Authors: Haisch, B. M.; Schmitt, J. H. M. M.; Rodono, M.; Gibson, D. M. Bibcode: 1990A&A...230..419H Altcode: The eclipsing spectroscopic binary YY Geminorum has been observed at optical, ultraviolet, and X-ray wavelengths for rotational modulation, eclipse variability, and flaring. The epoch T(phi = 0) = JD 2425698.3561, and the phase P = 0.81428224 d. The quiescent level of Mg II emission is remarkably steady during the three-year observing interval, with F(Mg II) roughly 3.6 x 10 to the -12th erg/sq cm/s. Both stars appear to have identical Mg II surface fluxes, with F roughly 1.8 x 10 to the 6th erg/sq cm/s. Both stars appear to be covered with evenly distributed Mg II emitting regions consistent with the proposition of Doyle (1987) that saturation of the Mg II lines occurs for stars having P less than 4 d, implying that such stars are entirely covered by plage. The transition region lines show significantly more rotational modulation and/or secular variability than Mg II. Both Mg II and the transition region lines show preflare and postflare enhancement. Title: Comet Austin (1989c1) Authors: Altenhoff, W. J.; Kreysa, E.; Schmidt, J.; Schraml, J. B.; Thum, C.; Gehrz, R. D.; Ney, E. P.; Kronk, G.; Shanklin, J. D.; Haver, R.; Bortle, J. E.; Hahn, H. -M.; Mikuz, H.; Baroni, S. Bibcode: 1990IAUC.4993....2A Altcode: W. J. Altenhoff, E. Kreysa, J. Schmidt, and J. B. Schraml, Max- Planck-Institut fur Radioastronomie, Bonn; and C. Thum, Institut de Radio Astronomie Millimetrique, Granada, write: "We have observed continuum emission of comet Austin at 250 GHz with the IRAM 30-m telescope. Preliminary evaluation results in 11.0 +/- 2.7 mJy on Mar. 15 and 12.8 +/- 3.4 mJy on Mar. 16. The comet was at heliocentric distance 0.75 AU and geocentric distance 1.47 AU (probably the largest distance at which a radio signal of a comet has been detected). The deduced grain halo of comet Austin seems to be similar in grain size, photometric diameter, mass, etc., to that of P/Halley in 1986 April." R. D. Gehrz and E. P. Ney, University of Minnesota, report the following infrared magnitudes obtained with the 0.76-m telescope of O'Brien Observatory on Apr. 12.78 UT (20" diaphragm, 34" beam throw; cf. IAUC 4988): 2.3 microns, +5.34; 3.6 microns, +1.52; 4.9 microns, -0.32; 8.6 microns, -2.74; 10.7 microns, -3.50; 12.2 microns, -3.72. Further total visual magnitude estimates: Apr. 7.06 UT, 4.8 (G. Kronk, Troy, IL, 20x80 binoculars; 1 deg tail in p.a. about 40 deg); 7.85, 5.7 (J. D. Shanklin, Cambridge, England, 20x80 binoculars; 40' tail in p.a. 40 deg); 8.78, 4.7 (R. Haver, Rome, Italy, 15x80 binoculars; 0.5 deg tail in p.a. 50 deg); 9.02, 5.3 (J. E. Bortle, Stormville, NY, 15x80 binoculars); 9.81, 5.1 (H.-M. Hahn, Cologne, W. Germany, 11x80 binoculars); 10.80, 4.8 (H. Mikuz, Ljubljana, Yugoslavia, 15x80 binoculars; 1 deg tail in p.a. 20 deg); 11.79, 3.8 (S. Baroni, Milan, Italy, 40x80 binoculars; 0.3 deg tail in p.a. 20 deg); 13.02, 5.2 (Bortle). Title: Coronal Temperatures of Late-type Stars Authors: Harnden, F. R., Jr.; Schmitt, J. H. M. M.; Rosner, R.; Collura, A.; Vaiana, G. S. Bibcode: 1990BAAS...22..858H Altcode: No abstract at ADS Title: X-ray studies of coeval star samples. III. X-ray emission in the UrsaMajor stream. Authors: Schmitt, J. H. M. M.; Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R. Bibcode: 1990ApJ...351..492S Altcode: Results are reported from a comprehensive survey of X-ray emission from stars known or suspected to be members of the UMa cluster and/or stream. Of the 42 UMa member stars surveyed, 18 were detected as X-ray sources, and spectral analysis was performed for 10 stars with sufficient X-ray counts. Consideration is given to relations between X-ray luminosity, color, and kinematics of the sample stars, and the X-ray spectra of the UMa stars are discussed in the context of the general problem of stellar X-ray temperatures. Also confirmed is the lack of X-ray-emitting A dwarfs among UMa members; among stars of later spectra type there is a rather large dispersion in X-ray luminosity. This dispersion cannot readily be explained by contamination with field star interlopers and appears rather to be a property of the UMa X-ray luminosity distribution function. Title: Flaring and quiescent X-rays from Castor. Authors: Pallavicini, R.; Tagliaferri, G.; Pollock, A. M. T.; Schmitt, J. H. M. M.; Rosso, C. Bibcode: 1990A&A...227..483P Altcode: Using data obtained with the Low Energy (LE) and Medium Energy instruments aboard Exosat, the first detection of both flaring and quiescent X-ray emission from the A-type visual binary Castor (alpha Gem) is reported. In the LE, Castor was clearly resolved from the nearby star YY Gem, which was also observed to flare some hours after Castor. After verifying that the Castor flare was indeed an X-ray as opposed to a UV event, physical parameters of the flaring source are derived. The detection of the quiescent emission led to reevaluation of the previous X-ray observations by the Einstein Observatory showing that, contrary to earlier reports, Castor was strongly detected in the IPC. Possible interpretations of the results are discussed by devoting some attention to the multiplicity of the Castor system, suggesting that the X-rays originate from an unseen late-type companion rather than from the A-type primaries. Title: The Einstein Survey of O-Stars Authors: Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Ramella, M.; Morossi, C.; Rosner, R.; Schmitt, J. H. M. M. Bibcode: 1990ixra.conf..227S Altcode: 1990ixra.symp..227S The authors give a brief account of some of the main results of a detailed analysis of a sample of 288 X-ray surveyed O stars. Title: The Einstein Observatory Stella X-Ray Database Authors: Harnden, F. R., Jr.; Sciortino, S.; Micela, G.; Maggio, A.; Vaiana, G. S.; Schmitt, J. H. M. M. Bibcode: 1990ixra.conf..313H Altcode: 1990ixra.symp..313H The authors present the motivation for and methodology followed in constructing the Einstin Observatory Stellar X-ray Database from a uniform analysis of nearly 4000 Imaging Proportional Counter fields obtained during the life of this mission. This project has been implemented using the INGRESTM database system, so that statistical analyses of the properties of detected X-ray sources are relatively easy and flexibly accomplished. Title: Spectroscopy of stellar coronal sources with the medium energy experiment on EXOSAT Authors: Pallavicini, R.; Pasquini, L.; Schmitt, J. H. M. M.; Tagliaferri, G. Bibcode: 1990hrxr.conf..122P Altcode: 1990IAUCo.115..122P Results obtained on the spectral analysis of the Exosat medium-energy observations of stellar coronal sources are summarized. Special attention is given to the time-resolved spectroscopy of stellar flares and determination of the temperature structure of quiescent RS CVn binaries. Substantial differences were found between the coronae of RS CVn stars and the coronae of the sun and other single late-type stars. The results suggest that either the coronae of most RS CVn stars involve more than one family of loops (also indicated by eclipse observations of White et al., 1988) or the coronal structures in these stars have a more complex emission measure distribution than the simple power-law assumed in this study. Title: Stellar X-ray astronomy Authors: Schmitt, J. H. M. M. Bibcode: 1990AdSpR..10b.115S Altcode: 1990AdSpR..10Q.115S The properties of the X-ray emission from normal stars, i.e., single stars located on the main-sequence or giant branch, are reviewed. Theoretical attempts to explain the observed X-ray emission both from early as well as late type stars are presented and, in particular, coronal length scale determination from spatially unresolved data is discussed and applied to the Sun as a star. Title: Time variability of stellar coronal sources observed by EXOSAT Authors: Pallavicini, R.; Schmitt, J. H. M. M. Bibcode: 1990AdSpR..10b.125P Altcode: 1990AdSpR..10..125P We present an overview of time variability in stellar coronal sources as observed with the EXOSAT satellite. We focus on M dwarf flare stars and we discuss both quiescent and flaring emission. We also outline recent developments in the modelling of stellar flares. Title: X-ray spectroscopy across the HR-diagram Authors: Schmitt, J. H. M. M. Bibcode: 1990hrxr.conf..110S Altcode: 1990IAUCo.115..110S X-ray spectra of stellar X-ray sources taken with high, moderate, and low spectral resolution are discussed. Only low resolution spectra are available for a sufficiently large number of late-type stars. It is shown that high temperature plasmas (log T greater than 7) produce the dominant emission component in the coronae of red dwarfs as well as yellow giants, while the coronae of F stars usually have X-ray temperatures similar to those found in the quiet sun. The need for density diagnostics of stellar coronae is stressed, and it is argued that the waveband region between 90 - 140 A is particularly well suited for this purpose. Title: X-Ray Studies of Coeval Star Samples. II. The Pleiades Cluster as Observed with the Einstein Observatory Authors: Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.; Schmitt, J. H. M. M. Bibcode: 1990ApJ...348..557M Altcode: Coronal X-ray emission of the Pleiades stars is investigated, and maximum likelihood, integral X-ray luminosity functions are computed for Pleiades members in selected color-index ranges. A detailed search is conducted for long-term variability in the X-ray emission of those stars observed more than once. An overall comparison of the survey results with those of previous surveys confirms the ubiquity of X-ray emission in the Pleiades cluster stars and its higher rate of emission with respect to older stars. It is found that the X-ray emission from dA and early dF stars cannot be proven to be dissimilar to that of Hyades and field stars of the same spectral type. The Pleiades cluster members show a real rise of the X-ray luminosity from dA stars to early dF stars. X-ray emission for the young, solarlike Pleiades stars is about two orders of magnitude more intense than for the nearby solarlike stars. Title: X-ray spectroscopy of RS CVn stars with EXOSAT. Authors: Pasquini, L.; Schmitt, J. H. M. M.; Pallavicini, R. Bibcode: 1989A&A...226..225P Altcode: Results are presented of a spectral analysis of a sample of RS CVn stars which comprises all (except two) cataloged RS CVn binaries observed by Exosat. Data from both the Medium Energy and Low Energy Exosat experiments are analyzed assuming simple spectral models and the dependence of the fitted coronal parameters on the signal-to-noise ratio. Evidence is found for multitemperature coronal structures in RS CVn stars, together with indications of intrinsic differences in the temperature stratification of different stars. Title: Physical Models of the Solar System Do Help Students Understand the Scale of the Universe Authors: Shipman, H. L.; Schmidt, J. Bibcode: 1989BAAS...21.1066S Altcode: No abstract at ADS Title: Radio continuum observations of Comet P/Halley at 250 GHz Authors: Altenhoff, W. J.; Huchtmeier, W. K.; Kreysa, E.; Schmidt, J.; Schraml, J. B.; Thum, C. Bibcode: 1989A&A...222..323A Altcode: The detection of continuum radio emission from comet Halley has been confirmed using a He-3 cooled bolometer at a frequency of 250 GHz. The radiation, normalized to a geocentric and heliocentric distance of 0.66 and 1.58 AU, respectively, is probably not correlated with the 2.2-day or the 7.4-day nucleus rotation periods. The normalized emission is steady, with a mean flux density of 51.6 + or - 5.2 mJy over the postperihelion observing period of 8 days (March 1986). This is comparable to the value determined several months earlier (November 1985). The error limits include the uncertainty of the absolute calibration. The derived photometric diameter is 35 km. The bulk of the emission seems to come from centimeter-sized particles within a sphere of diameter 3800 km centered on the nucleus. The steady emission over months may indicate that the larger particles remain a long time near the nucleus. Title: X-ray and optical observations of LDS 587. Authors: Pasquini, L.; Schmitt, J. H. M. M.; Harnden, F. R., Jr.; Tozzi, G. P.; Krautter, J. Bibcode: 1989A&A...218..187P Altcode: During an Exosat observation of the RS CVn star HD 155555 (LDS 587 A) a serendipitous X-ray source (EXO 171224-6653.9) was discovered. This paper presents an analysis of the Exosat and Einstein Observatory (HEAO 2) X-ray observations as well as optical spectra of the serendipitous X-ray source; the X-ray properties of HD 155555 are also discussed. In particular, it is shown that the source EXO 171224-6653.9 is a dMe star, identified as LDS 587 B, rather than a cataclysmic variable as previously suggested on the basis of Exosat observations alone. Title: Book Review: Activity in cool star envelopes. / Kluwer Academic, 1988 Authors: Pettersen, B. R.; Schmitt, J. H. M. M.; Solheim, J. E.; Dyson, J. Bibcode: 1989Ap&SS.154..158H Altcode: No abstract at ADS Title: A Solar Flare Observed with the SMM and Einstein Satellites Authors: Schmitt, J. H. M. M.; Lemen, J. R.; Zarro, D. Bibcode: 1989SoPh..121..361S Altcode: 1989IAUCo.104..361S We present X-ray observations of the 21 July, 1980 flare which was observed both with the Einstein Observatory Imaging Proportional Counter (IPC) and the X-Ray Polychromator (XRP) and Gamma-Ray Spectrometer onboard the SMM satellite. The Einstein observations were obtained in scattered X-ray light, i.e., in X-rays scattered off the Earth's atmosphere. In this way it is possible to obtain spatially unresolved X-ray data of a solar flare with the same instrument that observed many X-ray flares on other stars. This paper juxtaposes the results and implications of the `stellar interpretation' to those obtained from the far more detailed SMM observations. The result of this `calibration' observation is that the basic properties of the flaring plasma can be reliably determined from the `stellar' data, however, the basic physics issues can only be studied through models. Title: Transmission gratings for AXAF - LETG. Authors: Predehl, P.; Aschenbach, B.; Bräuninger, H.; Burkert, W.; Lochbihler, H.; Schmitt, J.; Trümper, J. Bibcode: 1989AGAb....2...12P Altcode: 1989amt..conf...12P No abstract at ADS Title: An Einstein Observatory View of Large-Scale Soft X-ray Background Structures: A Status Report Authors: Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.; Schmitt, J. H. M. M. Bibcode: 1988feta.conf...28M Altcode: No abstract at ADS Title: Coronal Temperatures of late-type stars Authors: Collura, A.; Schmitt, J. H. M. M.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R. Bibcode: 1988feta.conf...14C Altcode: No abstract at ADS Title: Relationship between Optical and X-ray Properties of O-type Stars Surveyed by Einstein Authors: Sciortino, S.; Harnden, F. R., Jr.; Ramella, M.; Morossi, C.; Rosner, R.; Schmitt, J. H. M. M.; Vaiana, G. S. Bibcode: 1988feta.conf...13S Altcode: No abstract at ADS Title: The Einstein Observatory Stellar X-ray Database Authors: Harnden, F. R., Jr.; Sciortino, S.; Micela, G.; Maggio, A.; Vaiana, G. S.; Schmitt, J. H. M. M. Bibcode: 1988feta.conf....2H Altcode: No abstract at ADS Title: Time variability in the X-ray emission of dM stars observed by EXOSAT. Authors: Collura, A.; Pasquini, L.; Schmitt, J. H. M. M. Bibcode: 1988A&A...205..197C Altcode: The authors studied the variability in the X-ray emission of 13 dMe stars observed with the LE+CMA onboard EXOSAT. The basic aim of this paper is to search for frequently occurring impulsive events with small energy releases in an effort to find out whether the "quiescent" X-ray emission from dM stars is really quiescent. The authors do not find, in any case, evidence for variability on short time scales in the quiescent emission of the sample stars, i.e., in periods during which no obvious large flare occurred. The authors also studied the non-quiescent (i.e., flaring) emission from the 13 stars in their sample and derived the cumulative distribution of the event frequency N(>E) vs. energy (E). The derived distribution implies that the most energetic events produce most of the non-quiescent X-ray emission. Title: A Survey of the X-ray Spectra of Stars Authors: Harnden, F. R., Jr.; Schmitt, J. H. M. M.; Collura, A.; Vaiana, G. S. Bibcode: 1988BAAS...20.1101H Altcode: No abstract at ADS Title: Hydrodynamic Modeling of an X-Ray Flare on Proxima Centauri Observed by the Einstein Telescope Authors: Reale, F.; Peres, G.; Serio, S.; Rosner, R.; Schmitt, J. H. M. M. Bibcode: 1988ApJ...328..256R Altcode: Hydrodynamic numerical calculations of a flare which occurred on Proxima Centauri and was observed by the Einstein satellite on August 20, 1980 at 12:50 UT are presented. The highlights of the hydrodynamic code are reviewed, and the physical and geometrical parameters necessary for the calculations are derived and compared with observations. The results are consistent with the stellar flare being caused by the rapid dissipation of 5.9 x 10 to the 31st ergs, within a magnetic loop structure whose semilength is 7 x 10 to the 9th cm and cross-sectional radius is 7.3 x 10 to the 8th cm. The results provide evidence that flares on late-type stars can be described by a hydrodynamic model with a relatively simple geometry, similar to solar compact flares. Title: The scattered solar X-ray background in low earth orbit. Authors: Fink, H. H.; Schmitt, J. H. M. M.; Harnden, F. R., Jr. Bibcode: 1988A&A...193..345F Altcode: In order to interpret X-ray observations of the sun-lit earth obtained with the IPC, a detailed model is developed that treats the radiative transfer of solar X-rays in single scattering approximation and employs the relevant scattering processes (elastic Thomson scattering and inelastic fluorescent scattering). The X-ray-bright earth, one of the strongest soft X-ray sources seen by the IPC, can then be understood in terms of solar X-rays scattered in the upper atmosphere. Using the CIRA 1972 Reference Atmosphere, it is possible to account for the observed 'bright earth' X-ray light curves under a variety of different viewing geometries. It is argued that the observed changes in hardness ratio of the scattered radiation can be interpreted as an indication of a change in the ratio of Thomson and fluorescently scattered photons as a function of zenith angle. The relevance of bright earth X-ray observations is further discussed in the context of operating X-ray telescopes in low-earth orbit, as well as in a broader astrophysical context. Title: EXOSAT observations of M dwarf stars in the solar neighborhood. Authors: Schmitt, J. H. M. M.; Rosso, C. Bibcode: 1988A&A...191...99S Altcode: The authors present EXOSAT observations of a sample of nearby (d < 6 pc) M dwarf stars most of which have not previously been observed in X-rays. All the target stars were detected except one (Gl 754, spectral type M7). The X-ray luminosities derived are in the typical range of M dwarf X-ray luminosities derived from Einstein Observatory data, and the authors find further evidence for a drop in X-ray luminosity towards late spectral types. The EXOSAT filter ratios indicate the presence of gas at temperatures in excess of 107K, again confirming the Einstein Observatory results. The observations provide no evidence for any time variability in the form of flares or trends. Title: The Einstein Observatory Survey of Stars in the Hyades Cluster Region Authors: Micela, G.; Sciortino, S.; Vaiana, G. S.; Schmitt, J. H. M. M.; Stern, R. A.; Harnden, F. R., Jr.; Rosner, R. Bibcode: 1988ApJ...325..798M Altcode: The authors report the results of an extensive X-ray investigation of the Hyades region and improve upon previous studies by using refined X-ray source detection algorithms and the complete set of Einstein Observatory IPC exposures covering the Hyades cluster region (a total of 63 1°×1° images). Using a somewhat more extensive and complete compilation of optical candidates, the authors have detected 66 out of 121 Hyades members falling in the combined fields of view. The authors have also computed 3σ upper limits for all the nondetected Hyades members and have derived maximum-likelihood X-ray luminosity functions for the Hyades stars in selected spectral type ranges, using both detections and upper limits. Title: Stellar coronae with EXOSAT : broad band spectroscopy of nearby coronal sources. Authors: Pallavicini, R.; Monsignori-Fossi, B. C.; Landini, M.; Schmitt, J. H. M. M. Bibcode: 1988A&A...191..109P Altcode: Broad-band observations of stellar coronae obtained with the Low Energy experiment on board the Exosat satellite are presented, together with a technique for the analysis of Exosat low-energy data. The limitations of filter spectroscopy with Exosat are discussed. Specific relationships are provided for extracting physical quantities (temperature, emission measure, luminosities) from the observed count rates for the case of nearby coronal sources. A continuous temperature distribution exists in the coronae of late-type stars; the differential emission measure distribution extends to temperatures in excess of 10 million K for flare stars and RS CVn binaries, even during quiescent conditions. Coronal loop models, similar to those developed for magnetically confined structures on the sun, should be used for interpreting spatially integrated observations of stellar coronae. Title: The Einstein Observatory Stellar X-ray Database: an overview. Authors: Sciortino, S.; Harnden, F. R., Jr.; Maggio, A.; Micela, G.; Vaiana, G. S.; Schmitt, J.; Rosner, R. Bibcode: 1988ESOC...28..483S Altcode: 1988alds.proc..483S The authors present the motivations for and the methodology followed in building the "Einstein Observatory Stellar X-ray Database" based on the uniform analysis of all Einstein Observatory Imaging Proportional Counter fields obtained during the life of the HEAO-2 mission. The database has been implemented using the INGRESTM database system, so that statistical analyses of the properties of the full detection catalog are relatively easily and flexibly accomplished. Some illustrative examples will furnish a general view both of the kind and the amount of the archived information, and of the statistical approach used in analyzing the global properties of the data. Title: Image merging software for imaging X-ray detectors on ROSAT : a status report based on simultated results. Authors: Collura, A.; Schmitt, J. H. M. M. Bibcode: 1988MmSAI..59..493C Altcode: One of the algorithms that will be used for the image merging of both survey and pointed observations of the Rosat satellite is described. The algorithm is designed to deal efficiently with a large number of photons and to allow a planar representation of a large section of the sky preserving the distance of individual photons from the coordinate origin and the spherical angles defined by the triangle Photon-Origin-North. This representation, which is the spherical analogue of the planar polar coordinate representation, makes it possible to project the image without using the photon sky coordinates, saving computer time. An application of this technique to simulated observations is presented. The simulated images are compared with those obtained by the Einstein satellite. Title: Stellar X-ray astronomy with ROSAT Authors: Schmitt, J. H. M. M. Bibcode: 1988ASSL..143..219S Altcode: 1988acse.conf..219S The author discusses the possibilities of stellar X-ray astronomy using the next generation of X-ray telescopes onboard ROSAT. ROSAT will perform both an all sky survey at X-ray and XUV wavelengths exceeding the sensitivity of previous all sky surveys by orders of magnitude as well as pointed observations of specific targets. Title: X-Ray Emission from Normal Stars Authors: Schmitt, J. H. M. M. Bibcode: 1988ASIC..249..109S Altcode: 1988htpa.conf..109S No abstract at ADS Title: Activity in cool star envelopes. Proceedings of the Midnight Sun Conference, held in Tromsø, Norway, 1 - 8 July 1987. Authors: Havnes, O.; Pettersen, B. R.; Schmitt, J. H. M. M.; Solheim, J. E. Bibcode: 1988ASSL..143.....H Altcode: 1988acse.conf.....H Topics discussed include magnetic fields, atmospheric activity, stellar and solar flares, and stellar coronae and winds. Particular papers are presented on the origin and structure of stellar magnetic fields, atmospheric activity in the outer envelopes of cool dwarf stars, simultaneous optical and infrared observations of solar flares, and densities and heating of coronae of active late-type dwarfs. Title: X-ray variability of dM stars observed by EXOSAT Authors: Collura, A.; Pasquini, L.; Schmitt, J. H. M. M. Bibcode: 1988ASSL..143..253C Altcode: 1988acse.conf..253C No abstract at ADS Title: EXOSAT observations of RSCVn stars Authors: Pasquini, L.; Schmitt, J. H. M. M.; Pallavicini, R. Bibcode: 1988ASSL..143..241P Altcode: 1988acse.conf..241P EXOSAT observations of RS CVn stars are analyzed using simple spectral models; the authors argue first, that the X-ray emission from these stars requires the presence of emitting plasma continuously distributed in temperature and second, that there are intrinsic differences in the coronal temperature stratification of these stars. Title: X-Ray Observations of Solar Flares with the Einstein Observatory Authors: Schmitt, J. H. M. M.; Harnden, F. R., Jr.; Fink, H. Bibcode: 1987ApJ...322.1023S Altcode: The first Einstein Observatory Imaging Proportional Counter (IPC) observations of solar flares are presented. These flares were detected in scattered X-ray light when the X-ray telescope was pointed at the sunlit earth. The propagation and scattering of solar X-rays in the earth's atmosphere are discussed in order to be able to deduce the solar X-ray flux incident on top of the atmosphere from scattered X-ray intensity measurements. After this correction, the scattered X-ray data are interpreted as full-disk observations of the sun obtained with the same instrumentation used for observations of flares on other stars. Employing the same data analysis and interpretation techniques, extremely good agreement is found between the physical flare parameters deduced from IPC observations and 'known' properties of compact loop flares. This agreement demonstrates that flare observations with the IPC can reveal physical parameters such as temperature and density quite accurately in the solar case and therefore suggests that the interpretations of stellar X-ray flare observations are on a physically sound basis. Title: An Einstein Observatory Stellar X-ray Catalog Authors: Harnden, F. R., Jr.; Rosner, R.; Sciortino, S.; Maggio, A.; Micela, G.; Vaiana, G. S.; Schmitt, J. Bibcode: 1987BAAS...19.1040H Altcode: No abstract at ADS Title: FIR galaxies with compact radio cores. Authors: Chini, R.; Biermann, P. L.; Kreysa, E.; Kuhr, H.; Mezger, P. G.; Schmidt, J.; Witzel, A.; Zensus, J. A. Bibcode: 1987A&A...181..237C Altcode: Comparing the IRAS point-source catalog (1985) with sources detected in a VLBI extragalactic radio source survey (Zensus et al., 1984), five FIR sources are found which all show compact radio cores. These objects have been observed with the 30-m MRT at Pico Veleta (Spain) at 1.2-mm wavelength to provide spectral coverage between IRAS and radio bands. The two galaxies among the five sources have luminosities of order 10 to the 12th solar luminosities in the FIR and thus may be super star bursters similar to Arp 220. On the other hand, all five objects have active galactic nuclei, and so the FIR luminosities may be powered by the nuclear activity. Since flat-spectrum radio sources have compact nuclear components, the 1-Jy catalog and its extension to lower flux densities (Kuehr et al., 1979 and 1981) are compared with the IRAS catalog, and a small number of additional active nuclei with strong emission in the FIR are identified. These objects can serve to study the competition between starbursts and nuclear activity to explain high FIR luminosities. Title: A comparison of coronal X-ray emission observed with the Einstein andEXOSAT observatories. Authors: Schmitt, J. H. M. M.; Pallavicini, R.; Monsignori-Fossi, B. C.; Harnden, F. R., Jr. Bibcode: 1987A&A...179..193S Altcode: The present Einstein and Exosat observatories' star coronal X-ray emission data are subjected to a spectral analysis which employs the Raymond and Smith (1977) and Landini and Fossi (1984) computer codes to calculate X-ray emission from optically thin plasmas that are in collisional equilibrium. It is found that the derived coronal parameters depend only loosely on the details of the calculated theoretical X-ray spectrum, although the spectra nevertheless differ in their prediction of X-ray fluxes in various lines. It is demonstrated that the Einstein spectra and Exosat filter ratios can be naturally and simultaneously explained by assuming an underlying, continuous distribution of emission measure with temperature, as in the case of the solar corona. Title: The X-ray spectroscopy cornerstone mission. Authors: Bely-Dubau, F.; Gabriel, A. H.; Predehl, Peter; Schmitt, J.; Stewart, Gordon; Truemper, J.; Wells, Alan; White, Nicolas E. Bibcode: 1987ESASP.268..117B Altcode: The high throughput X-ray astronomical spectroscopy observatory, called the X-ray Multi-Mirror mission (XMM) is an array of telescopes providing the required sensitivity to perform detailed spectral diagnostics on many classes of objects, particularly those with low surface brightness. Such investigations are important for studying the evolution of large and small scale structures of the Universe. The XMM also allows simultaneous observations of spatial, spectral, and temporal properties of many classes of astronomical targets, and unambiguous physical interpretation of the observed phenomena. The XMM is Europe's cornerstone mission in X-ray astronomy and complements NASA's AXAF mission, which pursues ultimate imaging capability as its main objective. Title: What can be learnt from full disk X-ray observations of stellar flares? Authors: Schmitt, J. H. M. M.; Fink, H.; Harnden, F. R., Jr. Bibcode: 1987IAUS..122..373S Altcode: The analysis procedures used to interpret stellar flares are rather crude, and further, only full disk observations with rather low spectral resolution and low signal to noise ratio (SNR) are available. Solar flares on the other hand are typically observed with rather high spatial, spectral and temporal resolution with good SNR, and we simply do not know what solar flares would look like if observed with the same instrumentation used on other stars. The authors have studied in detail solar X-ray light scattered in the upper atmosphere. Title: Hydrodynamics of an X-Ray Flare on Proxima Centauri Authors: Reale, F.; Peres, G.; Serio, S.; Rosner, R.; Schmitt, J. H. M. M. Bibcode: 1987LNP...291..179R Altcode: 1987csss....5..179R; 1987LNP87.291..179R We apply the Palermo-Harvard hydrodynamic numerical code to compute the evolution of temperature, density, pressure and velocity in a semicircular symmetric rigid loop to reproduce the Einstein IPC observations of the 20 August 1980 flare on Proxima Centauri. Title: Searches for parent molecules at MPIfR. Authors: Bird, M. K.; Huchtmeier, W. K.; von Kap-Herr, A.; Schmidt, J.; Walmsley, C. M. Bibcode: 1987cra..proc...85B Altcode: Searches for radio line emission/absorption from comet Halley and comet Giacobini-Zinner were made at the 100-m Effelsberg Telescope in late 1985/early 1986. No detections were made for the K-band lines of water and ammonia, the ground state rotational transition of formaldehyde, or the excited lambda-doublet transitions of OH. Strong emission lines of the ground state OH molecule were observed in late January 1986. Title: Number-Counts Slope Estimation in the Presence of Poisson Noise Authors: Schmitt, Juergen H. M. M.; Maccacaro, Tommaso Bibcode: 1986ApJ...310..334S Altcode: The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution. Title: Radio continuum observations of comet Halley Authors: Altenhoff, W. J.; Huchtmeier, W. K.; Schmidt, J.; Schraml, J. B.; Stumpff, P. Bibcode: 1986A&A...164..227A Altcode: Radio continuum observations of comets Hartley-IRAS, Crommelin, Giacobini-Zinner, Hartley-Good, and Halley are reported. All measurements in the cm-wavelength-range from Effelsberg resulted in upper limits. Additionally comet Halley was observed with the 30 m radio telescope on Pico Veleta around the perigee in 1985. For each of the ten days no significant signal was observed at 86 GHz and at 226 GHz, putting a severe limit on any transient emission. combining all data, a positive signal of 5.9 + or - 1.4 (mJy) and 52.0 + or - 15.1 (mJy) at 86 and 226 GHz is derived, respectively. This is consistent with black body radiation. From the analysis of the noise as function of integration time and from trial observation of weak radio stars it is concluded that the detection of comet Halley is real. Title: Data Analysis for the ROSAT Mission Authors: Zimmermann, H. U.; Gruber, R.; Hasinger, G.; Paul, J.; Schmitt, J.; Voges, W. Bibcode: 1986daa..conf..155Z Altcode: The German astronomical X-ray satellite ROSAT will perform the first all-sky survey with an imaging telescope. The large number of expected new source detections poses severe requirements on a fast and high qualitiy data evaluation. In the context of the general mission goals the main data evaluation methods are described. Special emphasis is given to the organizational data handling structures applied to the standard data processing. Title: Coronal X-ray temperatures from Einstein and EXOSAT observations Authors: Schmitt, J. H. M. M.; Pallavicini, R.; Monsignori-Fossi, B. C.; Harnden, F. R., Jr. Bibcode: 1986AdSpR...6h.141S Altcode: 1986AdSpR...6..141S Spectral analysis of coronal X-ray emission from stars observed with both the Einstein and EXOSAT Observatories is presented. Using computer codes developed by Raymond and Smith /1/ and Landini and Fossi /2/ to calculate the X-ray emission from optically thin plasma in collisional equilibrium we find that the derived coronal parameters depend only rather insensitively on the details of the calculated theoretical X-ray spectrum and demonstrate how both the Einstein Observatory IPC spectra and the EXOSAT LE filter ratios can be naturally and simultaneously explained by assuming an underlying continuous emission measure distribution as is the case in the solar corona. Title: X-Ray Spectra and the Rotation-Activity Connection of RS Canum Venaticorum Binaries Authors: Majer, P.; Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R., Jr.; Rosner, R. Bibcode: 1986ApJ...300..360M Altcode: Results are presented from a survey of RS CVn binaries which were observed with the imaging proportional counter (IPC) on board the Einstein Observatory. Spectral analyses of the IPC pulse height spectra show that the coronae of RS CVn binaries always contain hot gas with temperatures in excess of 10 to the 7th K, similar to active late-type main-sequence stars, and that at least two temperature components are necessary to account for the higher quality IPC spectra (when absorption is unimportant). It is argued that these bimodal temperature distributions found by the IPC are indicative of true distributions of emission measure versus temperature that are continuous (just as is the case of magnetically confined coronal plasma loops observed on the sun). It is further shown that none of the derivable X-ray characteristics of RS CVn binaries depend on rotation period, implying that previous claims of period-activity relationships in RS CVn binaries were unfounded. Title: Zur Genauigkeit visueller Helligkeitsschätzungen anhand von Parallelbeobachtungen. Authors: Schmidt, J.; Thomas, A. Bibcode: 1986BAVSR..35..125S Altcode: 1986BAVRu..35..125S No abstract at ADS Title: X-ray spectra and the rotation-activity connection of RS CVn binaries. Authors: Majer, P.; Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R.; Rosner, R. Bibcode: 1985ESASP.239..141M Altcode: 1985cxrs.work..141M Results from a survey of RS CVn binaries which were observed with the Imaging Proportional Counter (IPC) on board the Einstein Observatory are presented. Spectral analyses of the IPC pulse height spectra show that the coronae of RS CVn binaries always contain hot gas with temperatures 10 million K, similar to active late-type main sequence stars, and that at least 2 temperature components are necessary to account for the higher quality IPC spectra (when absorption is unimportant). It is argued that these bimodal temperature distributions indicate true distributions of emission measure vs temperature that are continuous (just as is the case for magnetically-confined coronal plasma loops observed on the Sun). It is shown that none of the derivable X-ray characteristics of RS CVn binaries depend on rotation period, implying that claims of period-activity relationships in RS CVn binaries are unfounded. Title: Statistical analysis of astronomical data containing upper bounds: general methods and examples drawn from X-ray astronomy. Authors: Schmitt, J. H. M. M. Bibcode: 1985ApJ...293..178S Altcode: Statistical techniques suitable for the analysis of censored data, i.e., data containing both flux measurements and upper limits, are adapted to astronomical usage from the field of survival analysis, and are used in a statistical analysis of X-ray luminosities for single stars and binaries. The conditions of applicability of these methods are discussed and verified, and it is shown that neglect of the information contained in the upper limits can lead to incorrect conclusions. Several methods suitable for linear regression in the presence of censored data are discussed. A new method, based on maximum likelihood estimation in two dimensions, is developed, and is used to determine linear regression curves in the presence of arbitrarily censored data. Title: An Einstein Observatory X-ray survey of main-sequence stars with shallow convection zones. Authors: Schmitt, J. H. M. M.; Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S. Bibcode: 1985ApJ...290..307S Altcode: The results of an X-ray survey of bright late A and early F stars on the main B-V sequence between 0.1 and 0.5 are presented. All the stars were observed with the Einstein Observatory for a period of at least 500 seconds. The survey results show significantly larger X-ray luminosities for the sample binaries than for the single stars. It is suggested that the difference is due to the presence of multiple X-ray sources in binaries. It is shown that the X-ray luminosities for single stars increase rapidly with increasing color, and that the relation Lx/Lbol is equal to about 10 to the -7th does not hold for A stars. No correlation was found between X-ray luminosity and projected equatorial rotation velocity. It is argued on the basis of the observations that X-ray emission in the sample stars originated from coronae. The available observational evidence supporting this view is discussed. Title: VLBI observations of the nucleus of M 87 at two epochs. Authors: Schmitt, J. H. M. M.; Reid, M. J. Bibcode: 1985ApJ...289..120S Altcode: VLBI hybrid maps are presented at 18 cm wavelength of the nucleus of M87 at epochs 1980.12 and 1982.27. The differences between these two maps are very slight. Internal proper motions at a 2 sigma confidence level of 0.3 c could not be detected. For a relativistic beaming model in which one sees the same material radiating at both epochs, the outflow velocity must exceed about 0.6c and the jet must be aligned to better than 12 deg with respect to the line of sight. If outflow velocities near the speed of light are assumed, then the alignment must be better than 1 deg. Title: EXOSAT Observations of M Dwarfs Authors: Schmitt, J. H. M. M.; Sztajno, M. Bibcode: 1985SSRv...40...69S Altcode: We give a progress report of our EXOSAT observations of active M dwarfs. The possibilities of filter spectroscopy of coronal X-ray sources using the available CMA filters are discussed, and we confirm that M dwarfs are rather hot coronal sources with X-ray temperatures in excess of 107 K, a result previously obtained with the Einstein Observatory. Title: The X-ray corona of Procyon. Authors: Schmitt, J. H. M. M.; Harnden, F. R., Jr.; Rosner, R.; Peres, G.; Serio, S. Bibcode: 1985ApJ...288..751S Altcode: X-ray emission from the nearby system Procyon A/B (F5 IV + DF) was detected, using the IPC (Imaging Proportional Counter) on board the Einstein Observatory. Analysis of the X-ray pulse height spectrum suggests that the observed X-ray emission originates in Procyon A rather than in the white dwarf companion Procyon B, since the derived X-ray temperature, log T = 6.2, agrees well with temperatures found for quiescent solar X-ray emission. Modeling Procyon's corona with loops characterized by some apex temperature Tmax and emission length scale L, it is found that Tmax is well constrained, but L, and consequently the filling factor of the X-ray emitting gas, are essentially unconstrained even when EUV emission from the transition region is included in the analysis. Title: New discoveries with radio telescopes. Authors: Schmidt, J. Bibcode: 1985SchTZ..82...11S Altcode: No abstract at ADS Title: EXOSAT Observations of M Dwarfs Authors: Schmitt, J. H. M. M.; Sztajno, M. Bibcode: 1985xray.symp....1S Altcode: No abstract at ADS Title: X-ray coronae of late-type stars: theoretical implications. Authors: Schmitt, J. H. M. M. Bibcode: 1985xra..conf...17S Altcode: 1984xra..conf...17S The Einstein Observatory provided evidence for the ubiquity of coronae in late type stars. The hypothesis that loop-like structures, as seen in the solar corona, are also present in the coronae of other stars, is consistent with the available X-ray spectra. Title: Beobachtungen an δ-Cephei Sternen 1984. Authors: Schmidt, J. Bibcode: 1985BAVSM..34...75S Altcode: No abstract at ADS Title: X-ray coronae of late type stars: Theoretical implications Authors: Schmitt, J. H. M. M. Bibcode: 1984xras.rept....1S Altcode: Einstein Observatory evidence for the ubiquity of coronae in late type stars is reviewed. The observed X-ray activity can be interpreted and understood in terms of models originally developed in the solar context. The existence of a corona seems to be linked to the existence of a subphotospheric convection zone; the hypothesis is that loop-like structures, as seen in the coronae of other stars is consistent with X-ray spectra. However, multicomponent IPC pulse height spectra are shown not to necessarily indicate the presence of physically distinct X-ray emitting structures, and structures containing emission measured at various temperatures such as loops may also account for the observed multicomponent X-ray spectra. Title: Radioastronomical observations of comets IRAS-Araki-Alcock (1983d) and Sugano-Saigusa-Fujikawa (1983e) Authors: Irvine, W. M.; Abraham, Z.; A'Hearn, M.; Altenhoff, W.; Andersson, Ch.; Bally, J.; Batrla, W.; Baudry, A.; Bockelee-Morvan, D.; Chin, G.; Crovisier, J.; de Pater, I.; Despois, D.; Ekelund, L.; Gerard, E.; Hasegawa, T.; Heiles, C.; Hollis, J. M.; Huchtmeier, W.; Kaifu, N.; Levreault, R.; Masson, C. R.; Palmer, P.; Perault, M.; Rickard, L. J.; Sargent, A. I.; Scalise, E.; Schloerb, F. P.; Schmidt, J.; Stark, A. A.; Stevens, M.; Stumpff, P.; Sutton, E. C.; Swade, D.; Sykes, M.; Turner, B.; Wade, C.; Walmsley, M.; Webber, J.; Winnberg, A.; Wootten, A. Bibcode: 1984Icar...60..215I Altcode: Detections and upper limits to the continuum emission (1 ≤ λ ≤6 cm) and spectral line emission (OH, CO, CS, HCN, HCO +, CN, CH 3CN, CH 3C 2H, NH 3, H 2O, HC 3N, CH 3CH 2CN) are reported from radio observations of Comets 1983d and 1983e. Comparison is made with observations of CN at optical wavelengths. These results may be useful in planning future cometary observations. Title: The overshoot region at the bottom of the solar convection zone. Authors: Schmitt, J. H. M. M.; Rosner, R.; Bohn, H. U. Bibcode: 1984ApJ...282..316S Altcode: The extent and thermal stratification of the region of convective overshoot underneath the convection zone of the sun are investigated. The phenomenon of convective overshoot in general is discussed, and some of the modal and model approaches to studying it are briefly reviewed. A detailed theoretical description of the motion of plumes in a stably stratified medium is given, leading to a 'derivation' of the plume equations from the hydrodynamic equations. Entrainment is discussed, and it is shown how the plume equations can be used to compute convective overshoot in the sun. The limitations of the plume model are addressed, arguing that a thin boundary layer must exist which separates convective and radiative regions. The results of numerical integrations of the plume equations, as applied to the region of convective overshoot underneath the solar convective zone, are discussed. Title: Theoretical and Observational Studies of Stellar Activity Authors: Schmitt, J. H. M. M. Bibcode: 1984PhDT.........8S Altcode: In the theoretical part of this thesis, doubly -diffusive MHD instabilities are studied as a means of breaking up a diffuse magnetic field at the bottom of the solar convection zone. The analysis is linear and local, and assumes short meridional wavelengths; the effects of rotation and diffusion of vorticity, magnetic fields and heat are included. Our results show that the instability depends sensitively on the temperature stratification, but rather insensitively on the assumed magnetic field configuration; instability time scales considerably less than the solar cycle period can be easily obtained. A new model for the region of convective overshoot underneath the solar convection zone is developed. It assumes highly asymmetric up- and down-flows, and utilizes semiempirical models, developed for the description of plume motions in the Earth's atmosphere. Using these plume equations together with the stellar structure equations, we derive a set of differential equations suitable for the study of convective overshoot phenomena in astrophysical contexts. Our results indicate the formation of an almost adiabatically stratified region underneath the "active" convection zone; in addition, we demonstrate the existence of a stabilising boundary layer between adiabatically and non-adiabatically stratified regions, and compute an upper limit of 500 km to its thickness. In the observational part of this thesis, we report the results of a survey of the X-ray emission of stars with shallow convection zones to study the onset of convection and dynamo activity along the main sequence. We extensively discuss the complications arising from stellar multiplicity; we demonstrate that binaries have statistically higher X-ray luminosities, and show that physical parameters can only be deduced from single stars. We further show that the X-ray luminosities of stars with spectral type in the color range 0.1 (LESSTHEQ) B-V (LESSTHEQ) 0.5 increase rapidly, whereas stars with B-V (TURN) 0.0 appear to have no intrinsic X-ray emission at presently detectable levels. We argue that the observed X-ray emission in our sample stars originates from coronae, produced by dynamo processes in the convection zones of these stars, and provide evidence supporting this point of view. A variety of statistical techniques was used to obtain the above results; these include two sample tests with censored data, adapted to astronomical usage from the field of survival analysis. A new method, based on maximum likelihood estimation in two dimensions, to determine correlation and linear regression coefficients in the presence of arbitrarily censored data, is developed. Further applications of the new method for likelihood ratio tests and principal component analysis in the presence of arbitrary censoring are also presented. Title: Subluminal Motions in the Nucleus of M87 Authors: Reid, M. J.; Schmitt, J. H. M. M.; Wilkinson, P. N.; Johnston, K. J. Bibcode: 1984IAUS..110..145R Altcode: The authors have observed the nucleus of the elliptical galaxy M87 with VLBI arrays at 18 cm wavelength at two epochs separated by about two years. The nucleus of M87 exhibits a highly asymmetric emission pattern with a bright "core" and long, thin "jet" extending for more than 0.05 arcsec towards the 20 arcsec jet seen in radio, optical, and X-ray radiation. Apparent motions in this structure are discussed. Title: Radio observations of Comet 1983 D Authors: Altenhoff, W. J.; Batrla, W. K.; Huchtmeier, W. K.; Schmidt, J.; Stumpff, P.; Walmsley, M. Bibcode: 1983A&A...125L..19A Altcode: Radio continuum and spectral line observations of Comet 1983d (IRAS-Araki-Alcock) have been made using the Effelsberg 100-m telescope at a wavelength of 1.3 cm. A continuum point source of strength 9 mJy was detected at the time of perigee (May 11), and this emission persisted throughout the next day. The authors have probably detected both the NH3 (3,3) and H2O (616-523) lines from the comet. The derived ammonia production rate of 6×1026 s-1 suggests that NH3 forms roughly six percent of the gases subliming from the cometary nucleus. Title: Comet IRAS-Araki-Alcock (1983d) Authors: Richter, G.; Altenhoff, W.; Batrla, W.; Huchtmeier, W.; Schmidt, J.; Stumpff, P.; Walmsley, M.; Nolthenius, R.; Drummond, J. D.; de Assis Neto, V. F. Bibcode: 1983IAUC.3817....1R Altcode: G. Richter, Sonneberg Observatory, reports that further prediscovery images have been found by Huth, Kroll and himself near the plate limit on two simultaneous exposures. The position is: 1983 UT R.A. (1950.0) Decl. m1 Apr. 17.0535 19 07 47.5 +46 57 14 12 W. Altenhoff, W. Batrla, W. Huchtmeier, J. Schmidt, P. Stumpff and M. Walmsley, Max-Planck-Institut fur Radioastronomie, telex: "Radio observations at 13 mm using the Effelsberg 100-m telescope (halfpower bandwidth 40") have resulted in the detection of a pointlike radio continuum source with a flux of 8 mJy on May 11.5 UT. We have also made detections of the NH3 (3,3) and the 22.2-GHz H2O lines, with main-beam brightness temperatures of 0.16 and 0.12 K, on May 11.6 and 12.6, respectively." R. Nolthenius, University of California at Los Angeles, writes that he observed an occultation of SAO 98040 by the nuclear region of comet 1983d on May 12.188 +/- 0.003 UT. Visual observations (at Lockwood Valley, CA, Long. 119deg01'47" west, lat. 34deg47'51" north, altitude 1630 m; 0.20-m Schmidt-Cassegrain, 275 x; seeing steady at 1"-1".5) showed the condensation to be not quite resolved, distinctly fuzzy, ~ 1.3 mag fainter than the star. The event lasted 0.8 s (corresponding to 31 km at the comet's distance), during which the combined image slowly faded by 0.5 mag, then brightened, with no obvious interval of constant light. With further reference to IAUC 3801 and 3811, J. D. Drummond, Steward Observatory, writes that his visual observations indicated a definite minor meteor shower associated with the comet. He gives zenithal hourly rates as follows: May 9.47 UT, 5.1; 10.32, 4.1; 10.40, 3.2; 10.44, 3.1; 11.36, 2.4; 11.41, 3.2; 11.44, 3.1. Total visual magnitude estimates by V. F. de Assis Neto, Sao Francisco de Oliveira, Brazil: May 11.92 UT, 2.6 (naked eye); 12.94, 3.8; 13.98, 5.2; 15.98, 5.4; 17.02, 5.4 (0.10-m reflector); 18.94, 7.5 (0.10-m reflector; 7'2 coma with 10 x 70 binoculars). Title: Doubly diffusive magnetic buoyancy instability in the solar interior Authors: Schmitt, J. H. M. M.; Rosner, R. Bibcode: 1983ApJ...265..901S Altcode: An investigation of the buoyancy of diffuse magnetic fields has shown that in the presence of rotation, static equilibrium configurations of the toroidal magnetic field and ambient plasma can exist. In that case, the escape of toroidal magnetic flux from the solar interior may be determined by the growth of instabilities which the equilibrium configuration may be subject to. In connection with the present investigation, it is assumed that in the region of toroidal magnetic flux amplification, the magnetic field has not as yet filamented into flux ropes, and is therefore 'diffuse'. A study is conducted of the MHD stability of an electrically conducting and differentially rotating gas in the presence of a toroidal magnetic field, an external constant gravitational field, and radiance pressure. The full dispersion relation for the magnetic buoyancy problem is developed, and the solutions of the dispersion relation are discussed. Title: VLBI observations of the nucleus and jet of M 87. Authors: Reid, M. J.; Schmitt, J. H. M. M.; Owen, F. N.; Booth, R. S.; Wilkinson, P. N.; Shaffer, D. B.; Johnston, K. J.; Hardee, P. E. Bibcode: 1982ApJ...263..615R Altcode: The nucleus and jet of M87 was mapped with an eight-station very long baseline interferometric array at 18 cm wavelength with high dynamic range. It was found that the nucleus of M87 consists of a core-jet structure with a peak brightness temperature greater than 10 to the 10th K. Emission is shown to extend for more than 50 milli-arcsec with a brightness temperature exceeding 10 to the 8th K along a position angle of 288 degrees, which precisely matches the position angle of the 20'' radio/optical/X-ray jet. In addition, the nucleus contains a significant structure of lower brightness at approximately the same position angle, although no counterjet is observed. By invoking relativistic beaming in order to enhance the jet and diminish the counterjet, it is shown that the jet must be aligned within about 60 degrees to our line of sight, and its flow velocity must exceed about 60% of the speed of light. The knots embedded in the 20'' jet contain no bright compact structures, and the sizes of the innermost knot (knot D) is between 0.1-0.3''. Title: VLBI observations of M87 Authors: Reid, M. J.; Schmitt, J. H. M. M.; Owen, F. N.; Booth, R. S.; Wilkinson, P. N.; Shaffer, D. B.; Johnston, K. J.; Hardee, P. E. Bibcode: 1982IAUS...97..293R Altcode: Results of VLBI observations of the nucleus and jet of M87 at 1666.6 MHz in right circular polarization are presented. A hybrid map of the nucleus was made revealing the presence of a one-sided jet, whose position angle is 290.5 (+ or - 1) deg. Assuming that no counter-jet exists because of the effects of relativistic beaming, limits can be placed on the flow velocity of the jet, and the resulting ratio of the observed intensities of the jet to the counter-jet explains the absence of the counter-jet. Another explanation is that jets are intrinsically one-sided, or that counter-jet observed emissions are delayed. Finally, the possibility of existing small wiggles is considered, but further observations are required to verify their existence in M87. Title: The 5 GHz strong source surveys. V. Survey of the area between declination 70 and 90deg. Authors: Kuehr, H.; Pauliny-Toth, I. I. K.; Witzel, A.; Schmidt, J. Bibcode: 1981AJ.....86..854K Altcode: The north pole region between declinations 70° and 90° has been surveyed at 4.9 GHz using the MPI 100-m telescope. A total of 476 sources with flux densities above 50 mJy were found in this survey, which covers 0.401 sr of the sky and is essentially complete above 250 mJy. It is thus the most sensitive of the S-surveys. Radio positions accurate to between 0.2 and 6 arcsec are given in this catalog, as well as accurate flux densities at 2.7, 5.0, and 10.7 GHz, and suggested optical identifications for the stronger sources. Title: Buoyancy Instabilities at the Base of the Solar Convection Zone Authors: Schmitt, J. H. M. M.; Rosner, R. Bibcode: 1981BAAS...13..907S Altcode: No abstract at ADS Title: The anisotropic microwave background in Bianchi V models Authors: Schmitt, J. H. M. M. Bibcode: 1980A&A....87..236S Altcode: The anisotropy pattern of the microwave background in hypersurface orthogonal Bianchi V models is discussed. With a tetrad formalism a system of differential equations describing the motion of null geodesics in such models is set up and solved analytically as far as possible. It is found that the anisotropy in the microwave background in these models tends, depending on the acceleration parameter, to become concentrated in small parts of the celestial sphere. Title: Radio continuum observations of Markarian Galaxies at 1410, 2380, and 5000 MHz Authors: Biermann, P.; Pauliny-Toth, I. I. K.; Witzel, A.; Clarke, J. N.; Fricke, K. J.; Schmidt, J. Bibcode: 1980A&A....81..235B Altcode: Markarian Galaxies were observed with the 100 m Effelsberg and the 305 m Arecibo telescopes. The ratio of radio power and blue light plotted against B-V shows that all galaxies which are neither variable nor BL Lac objects, lie close to or below the limiting reddening line for bursts of star formation with the exception of MRK011 which has a flat spectrum and is suspected to be a BL Lac object. The earlier conclusion (Biermann and Fricke, 1977; Bieging et al., 1977) that bursts of star formation can explain the radio radiation and the colors of many Markarian galaxies is confirmed. Title: PDX Divertor Operation Authors: Owens, D. K.; Arunasalam, W.; Barnes, C.; Bell, M.; Bol, K.; Cohen, S.; Cecchi, J.; Daughney, C.; Davis, S.; Dimock, D.; Dylla, F.; Efthimion, P.; Fonck, R.; Grek, B.; Hawryluk, R.; Hinnov, E.; Hsuan, H.; Irie, M.; Jacobsen, R.; Johnson, D.; Johnson, L.; Maeda, H.; Mansfield, D.; Mazzucato, E.; McGuire, K.; Meade, D.; Mueller, D.; Okabayashi, M.; Schmidt, G.; Schmidt, J.; Silver, E.; Sinnis, J.; Staib, P.; Strachan, J.; Suckewer, S.; Tenney, F.; Ulrickson, M. Bibcode: 1980JNuM...93...94O Altcode: No abstract at ADS Title: 21 cm flux density measurements of sources from the NRAO-MPIfR 6 cm surveys. Authors: Witzel, A.; Schmidt, J.; Pauliny-Toth, I. I. K.; Nauber, U. Bibcode: 1979AJ.....84..942W Altcode: Results are presented for 21-cm observations of 345 sources from four NRAO-MPI 6-cm surveys of extragalactic sources. Twenty-one-centimeter flux densities are reported, along with two-point 21-cm/6-cm spectral indices. The distribution of the two-point spectral indices is determined for a complete sample of NRAO-MPI sources with 6-cm flux densities of at least 0.8 Jy. A histogram of this spectral-index (alpha) distribution is plotted which exhibits the well-known double peak. It is shown that galaxies are mainly responsible for the peak around alpha -0.8, while quasars form the peak around alpha 0. Title: The faint object camera (phase a). Volume 4: Mechanical, thermal and electrical design Authors: Borucki, L.; Katzenbeisser, R.; Mauch, A.; Pittermann, F.; Polaczek, G.; Raupp, H.; Reffel, H.; Schmidt, J.; Schwarz, J.; Schwille, H. Bibcode: 1976dwgf.reptQ....B Altcode: A study of the requirements on structural design, mechanisms, thermal control and electronics is presented. The major results are the mass budget, mass distribution, and overall power consumption; and they indicate that if the mechanical, thermal, and electronic requirements are satisfied, the camera can be built and operated in space for more than 2.5 years. Critical areas are surveyed, one of them being the optical bench. It is recommended that the bench be constructed in graphite/epoxy. Title: Lokaler Vergleich von astrogravimetrischen Ergebnissen mit anderen geodätischen Daten. Authors: Brennecke, J.; Groten, E.; Hein, G.; Schaab, H.; Schmitt, J. Bibcode: 1976DGKBB.217...67B Altcode: No abstract at ADS Title: Hydrodynamic model calculations for supermassive stars. III. The collapse and explosion of a slowly rotating 7.5×105M sun object. Authors: Schmidt, J. Bibcode: 1973A&A....27..351S Altcode: No abstract at ADS Title: Kollaps und Explosion eines rotierenden supermassiven Sterns Authors: Schmidt, J. Bibcode: 1973MitAG..34...75S Altcode: No abstract at ADS Title: Johannes Kepler - Sein Leben in Bildern und eigenen Berichten. Authors: Schmidt, J. Bibcode: 1971joke.book.....S Altcode: No abstract at ADS Title: Utilisation des rayonnements de fluorescence en microradiographie de contact Ses applications en minéralogie et pétrographie Authors: Goldsztaub, S.; Schmitt, J. Bibcode: 1960xmxm.conf..149G Altcode: No abstract at ADS Title: Minima of Ceraski's new variable in Cepheus Authors: Schmidt, J. Bibcode: 1880Obs.....3..663S Altcode: No abstract at ADS Title: Sternschnuppenbeobachtungen in Altona am 9-11ten August 1843. Von Herrn J. Schmidt Authors: Schmidt, J. Bibcode: 1843AN.....21..183S Altcode: 1844AN.....21..183S No abstract at ADS