Author name code: sigwarth ADS astronomy entries on 2022-09-14 author:"Sigwarth, Michael" ------------------------------------------------------------------------ Title: The Polarimetric and Helioseismic Imager on Solar Orbiter Authors: Solanki, S. K.; del Toro Iniesta, J. C.; Woch, J.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Appourchaux, T.; Martínez Pillet, V.; Pérez-Grande, I.; Sanchis Kilders, E.; Schmidt, W.; Gómez Cama, J. M.; Michalik, H.; Deutsch, W.; Fernandez-Rico, G.; Grauf, B.; Gizon, L.; Heerlein, K.; Kolleck, M.; Lagg, A.; Meller, R.; Müller, R.; Schühle, U.; Staub, J.; Albert, K.; Alvarez Copano, M.; Beckmann, U.; Bischoff, J.; Busse, D.; Enge, R.; Frahm, S.; Germerott, D.; Guerrero, L.; Löptien, B.; Meierdierks, T.; Oberdorfer, D.; Papagiannaki, I.; Ramanath, S.; Schou, J.; Werner, S.; Yang, D.; Zerr, A.; Bergmann, M.; Bochmann, J.; Heinrichs, J.; Meyer, S.; Monecke, M.; Müller, M. -F.; Sperling, M.; Álvarez García, D.; Aparicio, B.; Balaguer Jiménez, M.; Bellot Rubio, L. R.; Cobos Carracosa, J. P.; Girela, F.; Hernández Expósito, D.; Herranz, M.; Labrousse, P.; López Jiménez, A.; Orozco Suárez, D.; Ramos, J. L.; Barandiarán, J.; Bastide, L.; Campuzano, C.; Cebollero, M.; Dávila, B.; Fernández-Medina, A.; García Parejo, P.; Garranzo-García, D.; Laguna, H.; Martín, J. A.; Navarro, R.; Núñez Peral, A.; Royo, M.; Sánchez, A.; Silva-López, M.; Vera, I.; Villanueva, J.; Fourmond, J. -J.; de Galarreta, C. Ruiz; Bouzit, M.; Hervier, V.; Le Clec'h, J. C.; Szwec, N.; Chaigneau, M.; Buttice, V.; Dominguez-Tagle, C.; Philippon, A.; Boumier, P.; Le Cocguen, R.; Baranjuk, G.; Bell, A.; Berkefeld, Th.; Baumgartner, J.; Heidecke, F.; Maue, T.; Nakai, E.; Scheiffelen, T.; Sigwarth, M.; Soltau, D.; Volkmer, R.; Blanco Rodríguez, J.; Domingo, V.; Ferreres Sabater, A.; Gasent Blesa, J. L.; Rodríguez Martínez, P.; Osorno Caudel, D.; Bosch, J.; Casas, A.; Carmona, M.; Herms, A.; Roma, D.; Alonso, G.; Gómez-Sanjuan, A.; Piqueras, J.; Torralbo, I.; Fiethe, B.; Guan, Y.; Lange, T.; Michel, H.; Bonet, J. A.; Fahmy, S.; Müller, D.; Zouganelis, I. Bibcode: 2020A&A...642A..11S Altcode: 2019arXiv190311061S
Aims: This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, while hosting the potential of a rich return in further science.
Methods: SO/PHI measures the Zeeman effect and the Doppler shift in the Fe I 617.3 nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders. The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2k × 2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope, covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope, can resolve structures as small as 200 km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line.
Results: SO/PHI was designed and built by a consortium having partners in Germany, Spain, and France. The flight model was delivered to Airbus Defence and Space, Stevenage, and successfully integrated into the Solar Orbiter spacecraft. A number of innovations were introduced compared with earlier space-based spectropolarimeters, thus allowing SO/PHI to fit into the tight mass, volume, power and telemetry budgets provided by the Solar Orbiter spacecraft and to meet the (e.g. thermal) challenges posed by the mission's highly elliptical orbit. Title: Spectropolarimetric Observations of an Arch Filament System with GREGOR Authors: Balthasar, H.; Gömöry, P.; González Manrique, S. J.; Kuckein, C.; Kučera, A.; Schwartz, P.; Berkefeld, T.; Collados, M.; Denker, C.; Feller, A.; Hofmann, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; von der Lühe, O. Bibcode: 2019ASPC..526..217B Altcode: 2018arXiv180401789B We observed an arch filament system (AFS) in a sunspot group with the GREGOR Infrared Spectrograph attached to the GREGOR solar telescope. The AFS was located between the leading sunspot of negative polarity and several pores of positive polarity forming the following part of the sunspot group. We recorded five spectro-polarimetric scans of this region. The spectral range included the spectral lines Si I 1082.7 nm, He I 1083.0 nm, and Ca I 1083.9 nm. In this work we concentrate on the silicon line which is formed in the upper photosphere. The line profiles are inverted with the code 'Stokes Inversion based on Response functions' to obtain the magnetic field vector. The line-of-sight velocities are determined independently with a Fourier phase method. Maximum velocities are found close to the ends of AFS fibrils. These maximum values amount to 2.4 km s-1 next to the pores and to 4 km s-1 at the sunspot side. Between the following pores, we encounter an area of negative polarity that is decreasing during the five scans. We interpret this by new emerging positive flux in this area canceling out the negative flux. In summary, our findings confirm the scenario that rising magnetic flux tubes cause the AFS. Title: Photospheric Magnetic Fields of the Trailing Sunspots in Active Region NOAA 12396 Authors: Verma, M.; Balthasar, H.; Denker, C.; Böhm, F.; Fischer, C. E.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Diercke, A.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pastor Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2019ASPC..526..291V Altcode: 2018arXiv180507752V The solar magnetic field is responsible for all aspects of solar activity. Sunspots are the main manifestation of the ensuing solar activity. Combining high-resolution and synoptic observations has the ambition to provide a comprehensive description of the sunspot growth and decay processes. Active region NOAA 12396 emerged on 2015 August 3 and was observed three days later with the 1.5-meter GREGOR solar telescope on 2015 August 6. High-resolution spectropolarimetric data from the GREGOR Infrared Spectrograph (GRIS) are obtained in the photospheric lines Si I λ1082.7 nm and Ca I λ1083.9 nm, together with the chromospheric He I λ1083.0 nm triplet. These near-infrared spectropolarimetric observations were complemented by synoptic line-of-sight magnetograms and continuum images of the Helioseismic and Magnetic Imager (HMI) and EUV images of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). Title: High uniformity IBS coatings for the world's largest Fabry-Perot etalon of the VTF instrument Authors: Pinard, L.; Michel, C.; Sassolas, B.; Teillon, J.; Cagnoli, G.; Sigwarth, M.; Kentischer, T.; Schmidt, W.; Reichman, B. Bibcode: 2018SPIE10706E..1RP Altcode: The first large Fabry-Perot etalon (Ø35 cm) of the VTF instrument was coated successfully using IBS technique. The High Reflective (HR) coatings need to meet the reflectivity specifications (95 +/- 1%) over the entire wavelength range 520-870 nm and the entire aperture (Ø25 cm) and also preserve the plate's flatness and airgap uniformity between the two platesto be better than 3 nm RMS. The change of the figure error of the individual faces after HR coating was exceptionally small: For plate 1 (upper) it changed from 1.7nm RMS before coating to 2.12 nm after coating, no change at all for plate 2 (lower). Title: Flows along arch filaments observed in the GRIS `very fast spectroscopic mode' Authors: González Manrique, S. J.; Denker, C.; Kuckein, C.; Pastor Yabar, A.; Collados, M.; Verma, M.; Balthasar, H.; Diercke, A.; Fischer, C. E.; Gömöry, P.; Bello González, N.; Schlichenmaier, R.; Cubas Armas, M.; Berkefeld, T.; Feller, A.; Hoch, S.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2017IAUS..327...28G Altcode: 2017arXiv170102206G A new generation of solar instruments provides improved spectral, spatial, and temporal resolution, thus facilitating a better understanding of dynamic processes on the Sun. High-resolution observations often reveal multiple-component spectral line profiles, e.g., in the near-infrared He i 10830 Å triplet, which provides information about the chromospheric velocity and magnetic fine structure. We observed an emerging flux region, including two small pores and an arch filament system, on 2015 April 17 with the `very fast spectroscopic mode' of the GREGOR Infrared Spectrograph (GRIS) situated at the 1.5-meter GREGOR solar telescope at Observatorio del Teide, Tenerife, Spain. We discuss this method of obtaining fast (one per minute) spectral scans of the solar surface and its potential to follow dynamic processes on the Sun. We demonstrate the performance of the `very fast spectroscopic mode' by tracking chromospheric high-velocity features in the arch filament system. Title: Slipping reconnection in a solar flare observed in high resolution with the GREGOR solar telescope Authors: Sobotka, M.; Dudík, J.; Denker, C.; Balthasar, H.; Jurčák, J.; Liu, W.; Berkefeld, T.; Collados Vera, M.; Feller, A.; Hofmann, A.; Kneer, F.; Kuckein, C.; Lagg, A.; Louis, R. E.; von der Lühe, O.; Nicklas, H.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; Waldmann, T. Bibcode: 2016A&A...596A...1S Altcode: 2016arXiv160500464S A small flare ribbon above a sunspot umbra in active region 12205 was observed on November 7, 2014, at 12:00 UT in the blue imaging channel of the 1.5 m GREGOR telescope, using a 1 Å Ca II H interference filter. Context observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), the Solar Optical Telescope (SOT) onboard Hinode, and the Interface Region Imaging Spectrograph (IRIS) show that this ribbon is part of a larger one that extends through the neighboring positive polarities and also participates in several other flares within the active region. We reconstructed a time series of 140 s of Ca II H images by means of the multiframe blind deconvolution method, which resulted in spatial and temporal resolutions of 0.1″ and 1 s. Light curves and horizontal velocities of small-scale bright knots in the observed flare ribbon were measured. Some knots are stationary, but three move along the ribbon with speeds of 7-11 km s-1. Two of them move in the opposite direction and exhibit highly correlated intensity changes, which provides evidence of a slipping reconnection at small spatial scales.

Movies associated to Figs. 1 and 2 are available at http://www.aanda.org Title: Deep probing of the photospheric sunspot penumbra: no evidence of field-free gaps Authors: Borrero, J. M.; Asensio Ramos, A.; Collados, M.; Schlichenmaier, R.; Balthasar, H.; Franz, M.; Rezaei, R.; Kiess, C.; Orozco Suárez, D.; Pastor Yabar, A.; Berkefeld, T.; von der Lühe, O.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Soltau, D.; Volkmer, R.; Waldmann, T.; Denker, C.; Hofmann, A.; Staude, J.; Strassmeier, K. G.; Feller, A.; Lagg, A.; Solanki, S. K.; Sobotka, M.; Nicklas, H. Bibcode: 2016A&A...596A...2B Altcode: 2016arXiv160708165B Context. Some models for the topology of the magnetic field in sunspot penumbrae predict regions free of magnetic fields or with only dynamically weak fields in the deep photosphere.
Aims: We aim to confirm or refute the existence of weak-field regions in the deepest photospheric layers of the penumbra.
Methods: We investigated the magnetic field at log τ5 = 0 is by inverting spectropolarimetric data of two different sunspots located very close to disk center with a spatial resolution of approximately 0.4-0.45''. The data have been recorded using the GRIS instrument attached to the 1.5-m solar telescope GREGOR at the El Teide observatory. The data include three Fe I lines around 1565 nm, whose sensitivity to the magnetic field peaks half a pressure scale height deeper than the sensitivity of the widely used Fe I spectral line pair at 630 nm. Before the inversion, the data were corrected for the effects of scattered light using a deconvolution method with several point spread functions.
Results: At log τ5 = 0 we find no evidence of regions with dynamically weak (B< 500 Gauss) magnetic fields in sunspot penumbrae. This result is much more reliable than previous investigations made on Fe I lines at 630 nm. Moreover, the result is independent of the number of nodes employed in the inversion, is independent of the point spread function used to deconvolve the data, and does not depend on the amount of stray light (I.e., wide-angle scattered light) considered. Title: Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope Authors: Balthasar, H.; Gömöry, P.; González Manrique, S. J.; Kuckein, C.; Kavka, J.; Kučera, A.; Schwartz, P.; Vašková, R.; Berkefeld, T.; Collados Vera, M.; Denker, C.; Feller, A.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pastor Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2016AN....337.1050B Altcode: 2016arXiv160901514B Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines Si I λ1082.7 nm, He I λ1083.0 nm, and Ca I λ1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s-1 in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. Title: Magnetic fields of opposite polarity in sunspot penumbrae Authors: Franz, M.; Collados, M.; Bethge, C.; Schlichenmaier, R.; Borrero, J. M.; Schmidt, W.; Lagg, A.; Solanki, S. K.; Berkefeld, T.; Kiess, C.; Rezaei, R.; Schmidt, D.; Sigwarth, M.; Soltau, D.; Volkmer, R.; von der Luhe, O.; Waldmann, T.; Orozco, D.; Pastor Yabar, A.; Denker, C.; Balthasar, H.; Staude, J.; Hofmann, A.; Strassmeier, K.; Feller, A.; Nicklas, H.; Kneer, F.; Sobotka, M. Bibcode: 2016A&A...596A...4F Altcode: 2016arXiv160800513F Context. A significant part of the penumbral magnetic field returns below the surface in the very deep photosphere. For lines in the visible, a large portion of this return field can only be detected indirectly by studying its imprints on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe a narrow layer in the very deep photosphere, providing the possibility of directly measuring the orientation of magnetic fields close to the solar surface.
Aims: We study the topology of the penumbral magnetic field in the lower photosphere, focusing on regions where it returns below the surface.
Methods: We analyzed 71 spectropolarimetric datasets from Hinode and from the GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy of the infrared data after applying several reduction steps. Techniques of spectral inversion and forward synthesis were used to test the detection algorithm. We compared the morphology and the fractional penumbral area covered by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk center. We determined the amount of reversed-polarity and three-lobed Stokes V profiles in visible and infrared data of sunspots at various heliocentric angles. From the results, we computed center-to-limb variation curves, which were interpreted in the context of existing penumbral models.
Results: Observations in visible and near-infrared spectral lines yield a significant difference in the penumbral area covered by magnetic fields of opposite polarity. In the infrared, the number of reversed-polarity Stokes V profiles is smaller by a factor of two than in the visible. For three-lobed Stokes V profiles the numbers differ by up to an order of magnitude. Title: Horizontal flow fields in and around a small active region. The transition period between flux emergence and decay Authors: Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2016A&A...596A...3V Altcode: 2016arXiv160507462V Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity.
Aims: Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region.
Methods: The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Pérot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution.
Results: The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s-1 is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules. Title: Active region fine structure observed at 0.08 arcsec resolution Authors: Schlichenmaier, R.; von der Lühe, O.; Hoch, S.; Soltau, D.; Berkefeld, T.; Schmidt, D.; Schmidt, W.; Denker, C.; Balthasar, H.; Hofmann, A.; Strassmeier, K. G.; Staude, J.; Feller, A.; Lagg, A.; Solanki, S. K.; Collados, M.; Sigwarth, M.; Volkmer, R.; Waldmann, T.; Kneer, F.; Nicklas, H.; Sobotka, M. Bibcode: 2016A&A...596A...7S Altcode: 2016arXiv160707094S Context. The various mechanisms of magneto-convective energy transport determine the structure of sunspots and active regions.
Aims: We characterise the appearance of light bridges and other fine-structure details and elaborate on their magneto-convective nature.
Methods: We present speckle-reconstructed images taken with the broad-band imager (BBI) at the 1.5 m GREGOR telescope in the 486 nm and 589 nm bands. We estimate the spatial resolution from the noise characteristics of the image bursts and obtain 0.08″ at 589 nm. We describe structure details in individual best images as well as the temporal evolution of selected features.
Results: We find branched dark lanes extending along thin (≈1″) light bridges in sunspots at various heliocentric angles. In thick (≳ 2″) light bridges the branches are disconnected from the central lane and have a Y shape with a bright grain toward the umbra. The images reveal that light bridges exist on varying intensity levels and that their small-scale features evolve on timescales of minutes. Faint light bridges show dark lanes outlined by the surrounding bright features. Dark lanes are very common and are also found in the boundary of pores. They have a characteristic width of 0.1″ or smaller. Intergranular dark lanes of that width are seen in active region granulation.
Conclusions: We interpret our images in the context of magneto-convective simulations and findings: while central dark lanes in thin light bridges are elevated and associated with a density increase above upflows, the dark lane branches correspond to locations of downflows and are depressed relative to the adjacent bright plasma. Thick light bridges with central dark lanes show no projection effect. They have a flat elevated plateau that falls off steeply at the umbral boundary. There, Y-shaped filaments form as they do in the inner penumbra. This indicates the presence of inclined magnetic fields, meaning that the umbral magnetic field is wrapped around the convective light bridge. Title: Probing deep photospheric layers of the quiet Sun with high magnetic sensitivity Authors: Lagg, A.; Solanki, S. K.; Doerr, H. -P.; Martínez González, M. J.; Riethmüller, T.; Collados Vera, M.; Schlichenmaier, R.; Orozco Suárez, D.; Franz, M.; Feller, A.; Kuckein, C.; Schmidt, W.; Asensio Ramos, A.; Pastor Yabar, A.; von der Lühe, O.; Denker, C.; Balthasar, H.; Volkmer, R.; Staude, J.; Hofmann, A.; Strassmeier, K.; Kneer, F.; Waldmann, T.; Borrero, J. M.; Sobotka, M.; Verma, M.; Louis, R. E.; Rezaei, R.; Soltau, D.; Berkefeld, T.; Sigwarth, M.; Schmidt, D.; Kiess, C.; Nicklas, H. Bibcode: 2016A&A...596A...6L Altcode: 2016arXiv160506324L Context. Investigations of the magnetism of the quiet Sun are hindered by extremely weak polarization signals in Fraunhofer spectral lines. Photon noise, straylight, and the systematically different sensitivity of the Zeeman effect to longitudinal and transversal magnetic fields result in controversial results in terms of the strength and angular distribution of the magnetic field vector.
Aims: The information content of Stokes measurements close to the diffraction limit of the 1.5 m GREGOR telescope is analyzed. We took the effects of spatial straylight and photon noise into account.
Methods: Highly sensitive full Stokes measurements of a quiet-Sun region at disk center in the deep photospheric Fe I lines in the 1.56 μm region were obtained with the infrared spectropolarimeter GRIS at the GREGOR telescope. Noise statistics and Stokes V asymmetries were analyzed and compared to a similar data set of the Hinode spectropolarimeter (SOT/SP). Simple diagnostics based directly on the shape and strength of the profiles were applied to the GRIS data. We made use of the magnetic line ratio technique, which was tested against realistic magneto-hydrodynamic simulations (MURaM).
Results: About 80% of the GRIS spectra of a very quiet solar region show polarimetric signals above a 3σ level. Area and amplitude asymmetries agree well with small-scale surface dynamo-magneto hydrodynamic simulations. The magnetic line ratio analysis reveals ubiquitous magnetic regions in the ten to hundred Gauss range with some concentrations of kilo-Gauss fields.
Conclusions: The GRIS spectropolarimetric data at a spatial resolution of ≈0.̋4 are so far unique in the combination of high spatial resolution scans and high magnetic field sensitivity. Nevertheless, the unavoidable effect of spatial straylight and the resulting dilution of the weak Stokes profiles means that inversion techniques still bear a high risk of misinterpretating the data. Title: Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396 Authors: Verma, M.; Denker, C.; Böhm, F.; Balthasar, H.; Fischer, C. E.; Kuckein, C.; Bello González, N.; Berkefeld, T.; Collados, M.; Diercke, A.; Feller, A.; González Manrique, S. J.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pator Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2016AN....337.1090V Altcode: Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si I λ1082.7 nm line, the chromospheric He I λ1083.0 nm triplet, and the photospheric Ca I λ1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the ``Stokes Inversions based on Response functions'' (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. Title: Three-dimensional structure of a sunspot light bridge Authors: Felipe, T.; Collados, M.; Khomenko, E.; Kuckein, C.; Asensio Ramos, A.; Balthasar, H.; Berkefeld, T.; Denker, C.; Feller, A.; Franz, M.; Hofmann, A.; Joshi, J.; Kiess, C.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pastor Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2016A&A...596A..59F Altcode: 2016arXiv161104803F Context. Active regions are the most prominent manifestations of solar magnetic fields; their generation and dissipation are fundamental problems in solar physics. Light bridges are commonly present during sunspot decay, but a comprehensive picture of their role in the removal of the photospheric magnetic field is still lacking.
Aims: We study the three-dimensional configuration of a sunspot, and in particular, its light bridge, during one of the last stages of its decay.
Methods: We present the magnetic and thermodynamical stratification inferred from full Stokes inversions of the photospheric Si I 10 827 Å and Ca I 10 839 Å lines obtained with the GREGOR Infrared Spectrograph of the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The analysis is complemented by a study of continuum images covering the disk passage of the active region, which are provided by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory.
Results: The sunspot shows a light bridge with penumbral continuum intensity that separates the central umbra from a smaller umbra. We find that in this region the magnetic field lines form a canopy with lower magnetic field strength in the inner part. The photospheric light bridge is dominated by gas pressure (high-β), as opposed to the surrounding umbra, where the magnetic pressure is higher. A convective flow is observed in the light bridge. This flow is able to bend the magnetic field lines and to produce field reversals. The field lines merge above the light bridge and become as vertical and strong as in the surrounding umbra. We conclude that this occurs because two highly magnetized regions approach each other during the sunspot evolution.

Movies associated to Figs. 2 and 13 are available at http://www.aanda.org Title: Inference of magnetic fields in the very quiet Sun Authors: Martínez González, M. J.; Pastor Yabar, A.; Lagg, A.; Asensio Ramos, A.; Collados, M.; Solanki, S. K.; Balthasar, H.; Berkefeld, T.; Denker, C.; Doerr, H. P.; Feller, A.; Franz, M.; González Manrique, S. J.; Hofmann, A.; Kneer, F.; Kuckein, C.; Louis, R.; von der Lühe, O.; Nicklas, H.; Orozco, D.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Verma, M.; Waldman, T.; Volkmer, R. Bibcode: 2016A&A...596A...5M Altcode: 2018arXiv180410089M Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution.
Aims: We present high-precision spectro-polarimetric data with high spatial resolution (0.4'') of the very quiet Sun at 1.56 μm obtained with the GREGOR telescope to shed some light on this complex magnetism.
Methods: We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component.
Results: Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak ( 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area 50% are two-lobed Stokes V profiles, meaning that 23% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50% based on the regular profiles. Therefore, 12% of the field of view harbour hG fields with filling factors typically below 30%. At our present spatial resolution, 70% of the pixels apparently are non-magnetised. Title: Fitting peculiar spectral profiles in He I 10830Å absorption features Authors: González Manrique, S. J.; Kuckein, C.; Pastor Yabar, A.; Collados, M.; Denker, C.; Fischer, C. E.; Gömöry, P.; Diercke, A.; Bello González, N.; Schlichenmaier, R.; Balthasar, H.; Berkefeld, T.; Feller, A.; Hoch, S.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Verma, M.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2016AN....337.1057G Altcode: 2016arXiv160300679G The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He I 10830 Å triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He I 10830 Å triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub- and supersonic downflow velocities of up to 32 km s-1 for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. Title: Development of high reflectivity coatings for large format Fabry-Perot etalons Authors: Sigwarth, M.; Baumgartner, J.; Bell, A.; Cagnoli, G.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Kentischer, Th. J.; Kestner, B.; Kuschnir, P.; von der Lühe, O.; Pinard, L.; Michel, Ch.; Reichman, W. J.; Sassolas, B.; Scheiffelen, Th.; Schmidt, W. Bibcode: 2016SPIE.9908E..4FS Altcode: The Visible Tunable Filter (VTF) is a diffraction-limited narrowband tunable instrument for imaging spectropolarimetry in the wavelength range between 520 and 860 nm. It is based on large-format Fabry Perot. The instrument will be one of the first-light instruments of the 4m aperture Daniel K. Inoue Solar Telescope (DKIST). To provide a field of view of 1 arcmin and a spectral resolution λ/Δλ of about 100.000, the required free aperture of the Fabry Perot is 250mm. The high reflectivity coatings for the Etalon plates need to meet the specifications for the reflectivity over the entire wavelength range and preserve the plate figure specifications of better λ/300, and a micro roughness of < 0.4 nm rms. Coated surfaces with similar specifications have successfully been made for reflecting mirrors on thick substrates but not for larger format Fabry-Perot systems. Ion Beam Sputtering (IBS) based coatings provide stable, homogeneous, and smooth coatings. But IBS coatings also introduce stresses to the substrate that influence the plate figure in our case at the nm level. In a joint effort with an industry partner and a French CNRS research laboratory, we developed and tested processes on small and full size substrates, to provide coated Etalon plates to the required specifications. Zygo Extreme Precision Optics, Richmond, CA, USA, is polishing and figuring the substrates, doing the metrology and FE analysis. LMA (Laboratoire Matériaux Avancés, Lyon, France) is designing and making the IBS coatings and investigating the detailed behavior of the coatings and related processes. Both partners provide experience from manufacturing coated plane optics for gravitational wave detection experiments and EUV optics. The Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany is designing and building the VTF instrument and is leading the coating development. We present the characteristics of the coatings and the substrate processing concept, as well as results from tests on sample size and from full size substrate processing. We demonstrate that the tight specifications for a single Etalon can be reached. Title: End-to-end simulations of the visible tunable filter for the Daniel K. Inouye Solar Telescope Authors: Schmidt, Wolfgang; Schubert, Matthias; Ellwarth, Monika; Baumgartner, Jörg; Bell, Alexander; Fischer, Andreas; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas; von der Lühe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael Bibcode: 2016SPIE.9908E..4NS Altcode: 2016arXiv160706767S The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope that is currently under construction on Maui (Hawaii). The VTF is being developed by the Kiepenheuer Institut fuer Sonnenphysik in Freiburg as a German contribution to the DKIST. We perform end-to-end simulations of spectropolarimetric observations with the VTF to verify the science requirements of the instrument. The instrument is simulated with two Etalons, and with a single Etalon. The clear aperture of the Etalons is 250 mm, corresponding to a field of view with a diameter of 60 arcsec in the sky (42,000 km on the Sun). To model the large-scale figure errors we employ low-order Zernike polynomials (power and spherical aberration) with amplitudes of 2.5 nm RMS. We use an ideal polarization modulator with equal modulation coefficients of 3-1/2 for the polarization modulation We synthesize Stokes profiles of two iron lines (630.15 nm and 630.25 nm) and for the 854.2 nm line of calcium, for a range of magnetic field values and for several inclination angles. We estimated the photon noise on the basis of the DKIST and VTF transmission values, the atmospheric transmission and the spectral flux from the Sun. For the Fe 630.25 nm line, we obtain a sensitivity of 20 G for the longitudinal component and for 150 G for the transverse component, in agreement with the science requirements for the VTF. Title: Flows in and around Active Region NOAA12118 Observed with the GREGOR Solar Telescope and SDO/HMI Authors: Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K.; Volkmer, R.; von der Lühe, O.; Waldmann, T. Bibcode: 2016ASPC..504...29V Altcode: 2016arXiv160301109V Accurate measurements of magnetic and velocity fields in and around solar active regions are key to unlocking the mysteries of the formation and the decay of sunspots. High spatial resolution images and spectral sequences with a high cadence obtained with the GREGOR solar telescope give us an opportunity to scrutinize 3-D flow fields with local correlation tracking and imaging spectroscopy. We present GREGOR early science data acquired in 2014 July - August with the GREGOR Fabry-Pérot Interferometer and the Blue Imaging Channel. Time-series of blue continuum (λ 450.6 nm) images of the small active region NOAA 12118 were restored with the speckle masking technique to derive horizontal proper motions and to track the evolution of morphological changes. In addition, high-resolution observations are discussed in the context of synoptic data from the Solar Dynamics Observatory. Title: DKIST visible tunable filter control software: connecting the DKIST framework to OPC UA Authors: Bell, Alexander; Halbgewachs, Clemens; Kentischer, Thomas J.; Schmidt, Wolfgang; von der Lühe, Oskar; Sigwarth, Michael; Fischer, Andreas Bibcode: 2014SPIE.9152E..1DB Altcode: The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based on large-format Fabry Perot interferometers that is currently built by the Kiepenheuer Institut fuer Sonnenphysik for the Daniel K. Inouye Solar Telescope (DKIST). The control software must handle around 30 motorised drives, 3 etalons, a polarizing modulator, a helium neon laser for system calibration, temperature controllers and a multitude of sensors. The VTF is foreseen as one of the DKISTs first-light instruments and should become operational in 2019. In the design of the control software we strongly separate between the high-level part interfacing to the DKIST common services framework (CSF) and the low-level control system software which guarantees real-time performance and synchronization to precision time protocol (PTP) based observatory time. For the latter we chose a programmable logic controller (PLC) from Beckhoff Automation GmbH which supports a wide set of input and output devices as well as distributed clocks for synchronizing signals down to the sub-microsecond level. In this paper we present the design of the required control system software as well as our work on extending the DKIST CSF to use the OPC Unified Architecture (OPC UA) standard which provides a cross-platform communication standard for process control and automation as an interface between the high-level software and the real-time control system. Title: A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye Solar Telescope Authors: Schmidt, Wolfgang; Bell, Alexander; Halbgewachs, Clemens; Heidecke, Frank; Kentischer, Thomas J.; von der Lühe, Oskar; Scheiffelen, Thomas; Sigwarth, Michael Bibcode: 2014SPIE.9147E..0ES Altcode: The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectropolarimetry. The instrument will be one of the first-light instruments of the Daniel K. Inouye Solar Telescope (DKIST) that is currently under construction on Maui (Hawaii). The DKIST has a clear aperture of 4 meters. The VTF is being developed by the Kiepenheuer Institut für Sonnenphysik in Freiburg, as a German contribution to the DKIST. The VTF is designed as a diffraction-limited narrowband tunable instrument for Stokes spectro-polarimetry in the wavelength range between 520 and 860 nm. The instrument uses large-format Fabry-Perot interferometers (Etalons) as tunable monochromators with clear apertures of about 240 mm. To minimize the influence of gravity on the interferometer plates, the Fabry-Perots are placed horizontally. This implies a complex optical design and a three-dimensional support structure instead of a horizontal optical bench. The VTF has a field of view of one arc minute squared. With 4096x4096 pixel detectors, one pixel corresponds to an angle of 0.014" on the sky (10 x 10 km on the Sun). The spectral resolution is 6 pm at a wavelength of 600 nm. One 2Dspectrum with a polarimetric sensitivity of 5E-3 will be recorded within 13 seconds. The wavelength range of the VTF includes a number of important spectral lines for the measurement flows and magnetic fields in the atmosphere of the Sun. The VTF uses three identical large-format detectors, two for the polarimetric measurements, and one for broadband filtergrams. The main scientific observables of the VTF are Stokes polarimetric images to retrieve the magnetic field configuration of the observed area, Doppler images to measure the line-of-sight flow in the solar photosphere, and monochromatic intensity filtergrams to study higher layers of the solar atmosphere. Title: The 1.5 meter solar telescope GREGOR Authors: Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A. Bibcode: 2012AN....333..796S Altcode: The 1.5 m telescope GREGOR opens a new window to the understanding of solar small-scale magnetism. The first light instrumentation includes the Gregor Fabry Pérot Interferometer (GFPI), a filter spectro-polarimeter for the visible wavelength range, the GRating Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The excellent performance of the first two instruments has already been demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest solar telescope and number 3 in the world. Its all-reflective Gregory design provides a large wavelength coverage from the near UV up to at least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR is equipped with a high-order adaptive optics system, with a subaperture size of 10 cm, and a deformable mirror with 256 actuators. The science goals are focused on, but not limited to, solar magnetism. GREGOR allows us to measure the emergence and disappearance of magnetic flux at the solar surface at spatial scales well below 100 km. Thanks to its spectro-polarimetric capabilities, GREGOR will measure the interaction between the plasma flows, different kinds of waves, and the magnetic field. This will foster our understanding of the processes that heat the chromosphere and the outer layers of the solar atmosphere. Observations of the surface magnetic field at very small spatial scales will shed light on the variability of the solar brightness. Title: Image stabilisation system of the photospheric and helioseismic imager Authors: Volkmer, R.; Bosch, J.; Feger, B.; Gomez, J. M.; Heidecke, F.; Schmidt, W.; Scheiffelen, T.; Sigwarth, M.; Soltau, D. Bibcode: 2012SPIE.8442E..4PV Altcode: The Photospheric and Helioseismic imager (PHI) on board of the ESA mission Solar Orbiter, to be launched in 2017, will provide measurements with high polarimetric accuracy of the photospheric solar magnetic field at high solar latitudes. The needed pointing precision requires an image stabilisation (ISS) to compensate for spacecraft jitter. The image stabilisation system works as a correlation tracker with a high-speed camera and a fast steerable mirror. The optomechanical and electronic design of the system will be presented. Title: The visible tunable filtergraph for the ATST Authors: Kentischer, T. J.; Schmidt, W.; von der Lühe, O.; Sigwarth, M.; Bell, A.; Halbgewachs, C.; Fischer, A. Bibcode: 2012SPIE.8446E..77K Altcode: The Kiepenheuer-Institut will develop for the Advanced Technology Solar Telescope (ATST) a narrowband tunable filter system (Visible Tunable Filter, VTF) for imaging spectroscopy and spectropolarimetry based on large-format Fabry Perot interferometers. A major challenge for the realization of this instrument is the development of large-format Fabry-Perots with a free aperture of about 250 mm. The instrument will operate in the spectral range between 500 and 900 nm with access to a host of magnetically sensitive lines. The instrument is designed to match the diffraction limit of the 4m-aperture ATST and will be able to observe processes on the sun at spatial scales of 35 km. Its multi-line capability, together with a field of view of one arc minute, and the ability to measure polarization states of the incoming light allow to probe different layers of the solar atmosphere within a couple of seconds. The instrument is capable to vary the spectral sampling, the integration time, and the temporal cadence over a wide range without changing or compromising the opto-mechanical setup. This versatility gives unique possibilities to apply different measurement schemes to a variety of science questions. The ATST is a fully funded US project, with the VTF as the only non-US contribution, and is ready to start construction at the Haleakala summit. The VTF is foreseen as one of the ATST's firstlight instruments and should become operational in 2018. Title: The Wave-Front Correction System for the Sunrise Balloon-Borne Solar Observatory Authors: Berkefeld, T.; Schmidt, W.; Soltau, D.; Bell, A.; Doerr, H. P.; Feger, B.; Friedlein, R.; Gerber, K.; Heidecke, F.; Kentischer, T.; v. d. Lühe, O.; Sigwarth, M.; Wälde, E.; Barthol, P.; Deutsch, W.; Gandorfer, A.; Germerott, D.; Grauf, B.; Meller, R.; Álvarez-Herrero, A.; Knölker, M.; Martínez Pillet, V.; Solanki, S. K.; Title, A. M. Bibcode: 2011SoPh..268..103B Altcode: 2010SoPh..tmp..236B; 2010arXiv1009.3196B This paper describes the wave-front correction system developed for the Sunrise balloon telescope, and it provides information about its in-flight performance. For the correction of low-order aberrations, a Correlating Wave-Front Sensor (CWS) was used. It consisted of a six-element Shack - Hartmann wave-front sensor (WFS), a fast tip-tilt mirror for the compensation of image motion, and an active telescope secondary mirror for focus correction. The CWS delivered a stabilized image with a precision of 0.04 arcsec (rms), whenever the coarse pointing was better than ± 45 arcsec peak-to-peak. The automatic focus adjustment maintained a focus stability of 0.01 waves in the focal plane of the CWS. During the 5.5 day flight, good image quality and stability were achieved during 33 hours, containing 45 sequences, which lasted between 10 and 45 min. Title: Flight control software for the wave-front sensor of SUNRISE 1m balloon telescope Authors: Bell, Alexander; Barthol, Peter; Berkefeld, Thomas; Feger, Bernhard; Gandorfer, Achim M.; Heidecke, Frank; Knoelker, Michael; Martinez Pillet, Valentin; Schmidt, Wolfgang; Sigwarth, Michael; Solanki, Sami K.; Soltau, Dirk; Title, Alan M. Bibcode: 2010SPIE.7740E..03B Altcode: 2010SPIE.7740E...2B This paper describes the flight control software of the wave-front correction system that flew on the 2009 science flight of the Sunrise balloon telescope. The software discussed here allowed fully automated operations of the wave-front sensor, communications with the adaptive optics sub-system, the pointing system, the instrument control unit and the main telescope controller. The software was developed using modern object oriented analysis and design techniques, and consists of roughly 13.000 lines of C++ code not counting code written for the on-board communication layer. The software operated error free during the 5.5 day flight. Title: The control and data concept for the robotic solar telescope ChroTel Authors: Halbgewachs, C.; Bethge, Ch.; Caligari, P.; Elmore, D.; Kentischer, T. J.; Peter, H.; Sigwarth, M.; Schmidt, W. Bibcode: 2008SPIE.7019E..2TH Altcode: 2008SPIE.7019E..93H The solar telescope ChroTel is designed as a robotic telescope so that no user interaction is necessary for observation. The telescope will start tracking in the morning as soon as weather conditions are appropriate and will process a user defined observation routine until sunset. Weather conditions and system status are continuously monitored to close the telescope shutter in case of bad weather or to drive to the stow position in case of an error. The ChroTel control software was programmed in LabVIEW. Title: ChroTel: a robotic telescope to observe the chromosphere of the Sun Authors: Kentischer, T. J.; Bethge, Ch.; Elmore, D. F.; Friedlein, R.; Halbgewachs, C.; Knölker, M.; Peter, H.; Schmidt, W.; Sigwarth, M.; Streander, K. Bibcode: 2008SPIE.7014E..13K Altcode: 2008SPIE.7014E..36K The Chromospheric Telescope (ChroTel) is a 10 cm robotic telescope to observe the full solar disk with a 2k × 2k CCD at high temporal cadence. It is located at the Observatorio del Teide, Tenerife, Spain, next to the 70 cm German Vacuum Tower Telescope (VTT). ChroTel contains a turret system that relays a stabilized image of the solar disk into a laboratory within the VTT building. The control design allows a fully robotic operation. Observations are carried out in three chromospheric wavelengths (CaK: 393 nm, Ha: 652 nm, HeI 1083 nm). Title: The Diffraction Limited Spectro-Polarimeter Authors: Sankarasubramanian, K.; Lites, B.; Gullixson, C.; Elmore, D.; Hegwer, S.; Streander, K.; Rimmele, T.; Fletcher, S.; Gregory, S.; Sigwarth, M. Bibcode: 2006ASPC..358..201S Altcode: The Diffraction Limited Spectro-Polarimeter (DLSP) is a collaboration between the National Solar Observatory (NSO) and the High Altitude Observatory (HAO)

to provide a stable instrument for precision measurements of solar vector magnetic fields at high angular resolution. The DLSP is integrated with the new high-order Adaptive Optics (HOAO) system at the Dunn Solar Telescope (DST) and provides Stokes spectra of the Fe I 630 nm lines approaching the 0.2 arcs3c diffraction limit of the DST. It is configured as a fixed, well-calibrated instrument that may be used simultaneously with G-band (1 nm bandpass) and a Ca K imagers (0.1 nm bandpass). The 2K×2K G-band imager allows fast frame selection and includes a burst mode for speckle imaging. The setup of DLSP and its imagers require only about 10 min of preparation before start of observations. This fixed setup facilitates standardized data reduction. The DLSP permits observations with 0.09 arcsec sampling in high resolution mode. In wide-field mode, the 0.27 arcsec sampling allows one to map regions about 3 arcmin on a side. The achieved continuum S/N is 500 (1500) in high resolution (wide-field) mode for a 4 s integration. It is possible to achieve higher S/N by integrating longer. Data reduction routines are now available in IDL for post-observation processing, and parallel analysis routines in FORTRAN 77 are being developed to allow ``on-the-fly'' data reduction and inversion. Title: Auto alignment and image tracking system for the SUNRISE telescope Authors: Schmidt, W.; Berkefeld, T.; Feger, B.; Friedlein, R.; Gerber, K.; Heidecke, F.; Kentischer, T.; Lühe, O. v. d.; Sigwarth, M.; Soltau, D.; Wälde, E. Bibcode: 2006SPIE.6274E..0HS Altcode: 2006SPIE.6274E..14S The 1m balloon-borne solar telescope Sunrise will be equipped with a wave-front sensing system for automatic in-flight focusing and alignment of the telescope and for high-precision image tracking. A six-element wavefront sensor measures low order aberrations of the telescope, including defocus and coma. The correction is achieved by moving the focusing mirror and the telescope secondary, respectively, in a closed-loop circuit. The same system measures image motion. The instrument requirements for the tracking are a dynamical range of about 30 Hz and a precision of about 0.005 arcs in the sky. The image motion signal feeds a closed-loop control system that drives both the tip-tilt mirror assembly and the mirrors that are needed for focusing and alignment. The tip-tilt unit is a dual-stage system, built at the Kiepenheuer-Insitut, consisting of a slow component with a large range of about 60 arcs and a fast component with a short range and high bandwidth. A breadboard-version of the Correlating Wavefront Sensor has been successfully tested at the German Vacuum Tower Telescope on Tenerife in summer of 2005. A closed-loop bandwidth of 80 Hz was measured for the tracking system. The wave-front sensor detected image aberrations pre-set by the telescope's adaptive optics system with the required accuracy. Sunrise will be flown in long duration stratospheric balloon flights, with a first scientific flight in 2009. Title: First-Light Instrumentation for the Advanced Technology Solar Telescope Authors: Rimmele, T.; Balasubramaniam, K.; Berger, T.; Elmore, D.; Gary, A.; Keller, C.; Kuhn, J.; Lin, H.; Mickey, D.; Pevtsov, A.; Robinson, B.; Sigwarth, M.; Soccas-Navarro, H. Bibcode: 2005AGUSMSP34A..03R Altcode: The 4m Advanced Technology Solar Telescope (ATST) is the next generation ground based solar telescope. In this paper we provide an overview of the ATST post-focus instrumentation. The majority of ATST instrumentation is located in an instrument Coude lab facility, where a rotating platform provides image de-rotation. A high order adaptive optics system delivers a corrected beam to the Coude lab facility. Alternatively, instruments can be mounted at the Nasmyth focus. For example, instruments for observing the faint corona preferably will be mounted at Nasmyth where maximum throughput is achieved. In addition, the Nasmyth focus has minimum telescope polarization and minimum stray light. We give an overview of the initial set of first generation instruments: the Visible-Light Broadband Imager (VLBI), the Visible Spectro-Polarimeter (ViSP), the Near-IR Spectro-Polarimeter (NIRSP), which includes a coronal module, and the Visible Tunable Filter. We also discuss the unique and efficient approach to the ATST instrumentation, which builds on the use of common components such as detector systems, polarimetry packages and various opto-mechanical components. For example, the science requirement for polarimetric sensitivity (10-5 relative to intensity) and accuracy (5'10-4 relative to intensity) place strong constraints on the polarization analysis and calibration units. Consequently, these systems are provided at the facility level, rather than making it part of the requirement for each instrument. Title: High-precision wavefront sensor for the SUNRISE Telescope Authors: Schmidt, Wolfgang; Berkefeld, Thomas; Friedlein, Ruediger; Heidecke, Frank; Kentischer, Thomas; von der Lühe, Oskar F.; Sigwarth, Michael; Soltau, Dirk; Walde, E. Bibcode: 2004SPIE.5489.1164S Altcode: SUNRISE is a 1m solar telescope for the visible and near UV wavelength range. It will be flown in long duration stratospheric balloon flights in Antarctica, with a first scientific flight in 2007. In this paper, we describe the development of a wave-front sensing system that will be used for the automatic in-flight alignment of the SUNRISE telescope and for high-precision tracking. The system is based on the principles of an adaptive optics system. A 19-element wavefront sensor is used to determine low order aberrations of the telescope, including defocus and spherical aberrations. The correction is achieved by controlling the position of the telescope secondary and a focusing mirror in closed-loop. In addition to these quasi-static aberrations, the system will also measure image motion with a dynamical range of at least 30 Hz and with a precision of about 0.005 arcs. To this end, the image displacement measured in all sub-apertures is averaged and used as tip-tilt correction signal. This signal will feed a second closed-loop system that drives the tip-tilt mirror assembly. The tip-tilt mirror unit is designed as a dual-stage system that consists of a slow component with a large range of 60 arcs and a fast component with high bandwidth. Title: The Diffraction Limited Spectro-Polarimeter: a new instrument for high-resolution solar polarimetry Authors: Sankarasubramanian, K.; Gullixson, Craig; Hegwer, Stephen; Rimmele, Thomas R.; Gregory, Scott; Spence, Tony; Fletcher, Stephen; Richards, Kit; Rousset, Emilie; Lites, Bruce; Elmore, David; Streander, Kim; Sigwarth, Michael Bibcode: 2004SPIE.5171..207S Altcode: The National Solar Observatory in collaboration with the High-Altitude Observatory is developing a new solar polarimeter, the Diffraction Limited Spectro-Polarimeter. In conjunction with a new high-order adaptive optics system at the NSO Dunn Solar Telescope, the DLSP design facilitates very high angular resolution observations of solar vector magnetic fields. This project is being carried out in two phases. As a follow-on to the successful completion of the first phase, the ongoing DLSP Phase II implements a high QE CCD camera system, a ferro-electric liquid crystal modulator, and a new opto-mechanical system for polarization calibration. This paper documents in detail the development of the modulator system and its performance, and presents preliminary results from an engineering run carried out in combination with the new NSO high-order AO system. Title: Diffraction limited spectro-polarimeter - Phase I Authors: Sankarasubramanian, Kasiviswanathan; Elmore, David F.; Lites, Bruce W.; Sigwarth, Michael; Rimmele, Thomas R.; Hegwer, Steven L.; Gregory, Scott; Streander, Kim V.; Wilkins, Lawrence M.; Richards, K.; Berst, C. Bibcode: 2003SPIE.4843..414S Altcode: A diffraction limited spectro-polarimeter is under construction at the National Solar Observatory in collaboration with the High Altitude Observatory. The scientific objective of the project is to measure the magnetic fields on the Sun up to the diffraction limit of the Dunn Solar Telescope. The same instrument would also measure the magnetic field of large sunspots or sunspot groups with reasonable spatial resolution. This requires a flexible image scale which cannot be obtained with the current Advanced Stokes Polarimeter (ASP) without loosing 50% of the light. The new spectro-polarimeter is designed in such a way that the image scale can be changed without loosing much light. It can work either in high-spatial resolution mode (0.09 arcsec per pixel) with a small field of view (FOV: 65 arcsec) or in large FOV mode (163 arcsec) with low-spatial resolution (0.25 arcsec per pixel). The phase-I of this project is to design and build the spectrograph with flexible image scale. Using the existing modulation, calibration optics of the ASP and the ASP control and data acquisition system with ASP-CHILL camera, the spectrograph was tested for its performance. This paper will concentrate on the performance of the spectrograph and will discuss some preliminary results obtained with the test runs. Title: Multiple Etalon Systems for the Advanced Technology Solar Telescope Authors: Gary, G. A.; Balasubramaniam, K. S.; Sigwarth, Michael Bibcode: 2003SPIE.4853..252G Altcode: Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 pm and reduce parasitic light levels to 10-4 as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10-5. The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut für Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these observatories. Title: First Results from the HAO/NSO Diffraction-Limited Spectro-Polarimeter Authors: Lites, B. W.; Elmore, D. F.; Streander, K. V.; Sankarasubramanian, K.; Rimmele, T. R.; Sigwarth, M. Bibcode: 2003ASPC..307..324L Altcode: No abstract at ADS Title: Temporal and spatial variations of the magnetic field vector in sunspots Authors: Settele, A.; Sigwarth, M.; Muglach, K. Bibcode: 2002A&A...392.1095S Altcode: In order to look for magnetic field vector oscillations in sunspots we used data measured with the Advanced Stokes Polarimeter at the Dunn Solar Telescope. We analyzed two time series of 65 and 110 min that were taken by scanning repeatedly a 6" 24 x 75" field of view, while obtaining the full Stokes vector in the lines FeI 630.15 nm and 630.25 nm. An inversion was carried out and a Fast Fourier Transform (FFT) analysis was used to find oscillatory phenomena. We discuss possible unwanted effects that lead to apparent magnetic field oscillations and find an average amplitude of (B, psi ) 5.8 G/0.23o rms by excluding these effects, which also means that only 6% and 22% of the two sunspot umbrae respectively remained for analysis. If we smooth the power spectra over 2x2 pixels, all significant power disappears. Title: Properties and Origin of Asymmetric and Unusual Stokes V Profiles Observed in Solar Magnetic Fields Authors: Sigwarth, M. Bibcode: 2001ApJ...563.1031S Altcode: Between 5% and 10% of Stokes V profiles observed outside of sunspots with the High Altitude Observatory/National Solar Observatory Advanced Stokes Polarimeter are of unusual shape. We categorize them as follows. Normal profiles have two wings of opposite sign that typically show an asymmetry between both lobes. Single-lobed profiles have an amplitude above the noise level only for one wing. Single-lobed profiles occur because of a strong asymmetry between the red and blue wings in combination with low signal amplitude and the limited sensitivity of the measurement. The strongest verifiable amplitude asymmetry found is 90%. Mixed-polarity profiles are the most common type of unusual profiles. These profiles can occur because of the unresolved mixture of polarities in the solar atmosphere on spatial scales <=600 km or because of the spreading of V signals due to seeing and diffraction. Single-lobed profiles and mixed polarities are mainly found outside high magnetic flux areas. Dynamic profiles consist of two or more superposed components with large Doppler shifts relative to each other. They are mainly observed in an emerging flux region. The measured relative Doppler shifts range up to 18 km s-1, indicating upward and downward moving shocks in magnetic fields. We propose two possible configurations for network and plage fields: (1) a mixture of intense kilogauss flux tubes and a more turbulent subkilogauss field and (2) return flux in the form of weak fields surrounding isolated flux tubes and at the edges of flux tube clusters. Both configurations are supported by the analysis of V profiles in the vicinity of an isolated kilogauss flux tube. We find that the use of low-order adaptive optics reduces the uncertainties in interpreting Stokes data. Title: Small Scale Dynamics in an Emerging Flux Region Authors: Sigwarth, M.; Balasubramaniam, K. Bibcode: 2001AGUSM..SP41B05S Altcode: Unusual Stokes spectra measured with the HAO/NSO Advanced Stokes Polarimeter ASP in a young active region with ongoing flux emergence indicate upward and downward moving shock fronts in the photosphere. The data cover the evolution of the region over 1.25 hours. The found flows are mainly located in magnetic fields only and occur on very small spatial scales. We present results from the analysis of individual Stokes profiles and from the inversion of the full Stokes vector in order to investigate the magnetic field topology and the dynamics that leads to the observed profiles. First results indicate that rising flux tubes with the onset of shocked down drafts can explain some of the observed spectra. Title: Structure and Dynamics of a Sunspot Penumbra using Imaging Spectroscopy Authors: Balasubramaniam, K. S.; Sigwarth, M. Bibcode: 2001AGUSM..SP41C07B Altcode: We present high angular resolution measurements and analysis of a sunspot penumbra using imaging spectroscopy with the NSO Dual-FP system (DPF), simultaneous Hα and G-Band measurements. These measurements were made using the NSO Low-order Adaptive Optics system at the Richard B. Dunn Solar Telescope. The DFP was used to acquire the spectral images using the FeI 5576 Å Zeeman insensitive spectral line to map the upper photospheric layers. The dynamic signatures of the penumbra are analyzed using the Doppler maps of the sunspot. We present FLOW-LESS maps of the sunspot to examine the thermal structure of the sunspot. Using spectral line asymmetries, we probe the dynamical structure of the penumbrae at different heights. We also examine the structural properties of the penumbra using high-resolution high-speed images in Hα , and the G-band. We discuss the impacts of these measurements on the current models of sunspot penumbrae. Title: Advanced Solar Polarimetry-Theory, Observation, and Instrumentation: The 20th NSO/Sacramento Peak Summer Workshop Authors: Sigwarth, Michael Bibcode: 2001PASP..113..260S Altcode: Conference was held in Sunspot, New Mexico, in 2000 September. Proceedings will be edited by Michael Sigwarth and published in the ASP Conference Series. Title: Spectroscopic Observation of G-Band Bright Points Authors: Langhans, K.; Schmidt, W.; Rimmele, T.; Sigwarth, M. Bibcode: 2001ASPC..236..439L Altcode: 2001aspt.conf..439L No abstract at ADS Title: Advanced Solar Polarimetry -- Theory, Observation, and Instrumentation -- 20TH NSO/Sac Summer Workshop Authors: Sigwarth, Michael Bibcode: 2001ASPC..236.....S Altcode: 2001aspt.conf.....S No abstract at ADS Title: A new Stokes Polarimeter for the Dunn Solar Telescope Authors: Sigwarth, M.; Berst, C.; Gregory, S.; Hegwer, S.; Richards, K.; Rimmele, T.; Wilkins, L.; Lites, B. W.; Elmore, D. F.; Streander, K. V. Bibcode: 2001ASPC..236...57S Altcode: 2001aspt.conf...57S No abstract at ADS Title: High resolution spectroscopy of active regions with adaptive optic Authors: Sigwarth, M.; Rimmele, T. R. Bibcode: 2000SPD....31.0304S Altcode: 2000BAAS...32R.834S With the NSO low-order adaptive optic system at the NSO Dunn Solar Telescope it is now possible to perform spectroscopic measurements at high angular resolution and high signal-to-noise level. The performance of the AO system for spectroscopic investigations will be demonstrated. By using a dual Fabry-Perot spectrometer we obtained spectral line scans of active regions with a spatial resolution of 0.3 arcsec at 557nm. We use these data to adress questions of magnetoconvection in active regions. This work is supported by NSO/AURA Title: Strong Stokes V asymmetries of photospheric spectral lines: What can they tell us about the magnetic field structure? Authors: Grossmann-Doerth, U.; Schüssler, M.; Sigwarth, M.; Steiner, O. Bibcode: 2000A&A...357..351G Altcode: In an attempt to identify the mechanism responsible for the extremely asymmetric Stokes V profiles which were recently observed we analyzed several simple atmospheric configurations with separated layers of mass flow and magnetic field. We found that under appropriate conditions the models are capable of producing the observed one-lobe profiles. Title: Dynamics of Solar Magnetic Fields -- A Spectroscopic Investigation Authors: Sigwarth, Michael Bibcode: 2000RvMA...13...45S Altcode: No abstract at ADS Title: Dynamics of solar magnetic elements Authors: Sigwarth, M.; Balasubramaniam, K. S.; Knölker, M.; Schmidt, W. Bibcode: 1999A&A...349..941S Altcode: We present observational results that demonstrate a strong increase in the dynamic behavior of magnetic elements at the solar photosphere, when observed at high spatial and temporal resolution. The HAO/NSO Advanced Stokes Polarimeter was used to obtain an extensive set of high resolution Stokes-V spectra from network, intranetwork and active region magnetic fields at a low noise level. We performed a statistical analysis of Doppler shifts and asymmetries of the V spectra of FeI 630.15 and 630.25 nm to obtain information on the dynamics of magnetic elements of different sizes. The spatial resolution of 0.8-1 arcsec in combination with high polarimetric precision allowed us to investigate Stokes-V spectra of magnetic elements down to a size of ~ 150 km. The Doppler velocity within magnetic elements as well as the amplitude and area asymmetries of the Stokes-V profiles show a strong dependence on the size of the magnetic elements as well as on the granular velocity in their vicinity. Applying an absolute velocity calibration we find that the smallest magnetic features have velocities of up to 5 km s(-1) in both up- and downflows whereas for larger elements or clusters of several flux tubes the velocities become smaller and more uniform. The V-profile asymmetries are larger (both positive and negative) for small fill fraction than for higher fill fraction within the resolution element. Averaged over all individual profiles, there remains a positive amplitude and area asymmetry and a downflow exceeding 0.5 km s(-1) . The properties of spatially and temporally integrated V profiles are consistent with results from FTS-observations. Our observations are in qualitative agreement with results from numerical MHD simulations. Title: Dynamics of the solar granulation. VI. Time variation of the granular shear flow Authors: Nesis, A.; Hammer, R.; Kiefer, M.; Schleicher, H.; Sigwarth, M.; Staiger, J. Bibcode: 1999A&A...345..265N Altcode: Excellent spectrograms can yield observational insight in the dynamics of the solar surface not yet accessible to numerical simulations. We present results of the elaboration of a series of spectrograms taken at the center of the solar disk. Each of the spectrograms includes more than 250 granules, while the series covers a time of 12 min. Our main emphasis is to study the dynamics of the visible solar layers not only as a function of height but also as a function of time. We investigated the temporal and spatial behavior of the turbulent concentration at the granular borders and its spreading-out into the intergranular space. In the deep photosphere, enhanced turbulence is concentrated predominantly near granular borders, while at higher layers the turbulence spreads out over the entire intergranular space. Remarkable is the decay of the turbulence with the height in the photosphere. There was no significant variation of the turbulence over the 12 min. We also determined the rms turbulent pressure at the granulation layers near tau_ {5000}=1. The average ratio of turbulent to gas pressure is of the order of 0.1; values of this size are also discussed in recent theoretical works. In order to take the intermittency into account, we traced the peak to peak variations of the turbulent velocity, which turn out to be ~ 4 km sec(-1) . The corresponding ratio of turbulent to gas pressure may thus reach locally significant values up to about 0.3. We did not find either a correlation or an anticorrelation between turbulence and convective flow, although the turbulence is presumably generated by granular shear flow. We suggest that the intermittent turbulence in the visible layers and the convective flow constitutes a dynamical system. This turbulence-granulation-dynamical system exhibits a cyclic behavior corresponding to the dynamical time of the granules, i.e. the growth and decay of their velocity profile. The power spectra of the turbulent and granular velocity show a two-component character, which presumably reflects the action of two different processes determining the dynamics of the solar convective boundary layers and above. Title: High Resolution Observations of the Dynamics of Magnetic Elements Authors: Sigwarth, M.; Balasubramaniam, K.; Knölker, M. Bibcode: 1999ASPC..183...36S Altcode: 1999hrsp.conf...36S No abstract at ADS Title: The formation of extremely asymmetric Stokes V profiles Authors: Steiner, O.; Grossmann-Doerth, U.; Schüssler, M.; Sigwarth, M. Bibcode: 1999AGAb...15R..10S Altcode: 1999AGM....15..A11S Recent polarimetric observations at high spatial resolution (< 1 arcsec) and with high polarimetric accuracy (noise of Stokes V/I_c < 3 cdot 10^{-4}) have revealed that about 10% of all Stokes V profiles of a quiet Sun region have an abnormal shape that strongly deviates from the more common, nearly antisymmetric profiles. 35% of the abnormal Stokes V profiles are of one-wing type, where the profile shows essentially one lobe only. We show, that a strongly asymmetric Stokes V profile can be obtained when the atmosphere, in which the profile is formed, is divided into two or more layers of different magnetic, flow, and thermal properties. A simple configuration of that kind (sometimes referred to as magnetic canopy) consists of a layer of plasma at rest with a magnetic field component parallel to the line of sight, located on top of a field-free layer with downdraft. The Stokes V asymmetry in this case sensitively depends on the position of the layers interface and may assume values up to about 80%. An asymmetry of nearly 100% (corresponding to a one-wing profile) is obtained when the plasma below the magnetic canopy is relatively cool, giving rise to the formation of a strong, redshifted spectral line in the field-free plasma beneath the canopy. If the core of this line is formed at lower temperature than the temperature of the canopy layer, the red wing of the resulting Stokes V profile is driven into emission, leading to a ``pathological'' V profile. Title: TESOS, a double Fabry-Perot instrument for solar spectroscopy Authors: Kentischer, T. J.; Schmidt, W.; Sigwarth, M.; Uexkuell, M. V. Bibcode: 1998A&A...340..569K Altcode: A double Fabry-Perot spectrometer in a telecentric configuration (TESOS: Telecentric Etalon SOlar Spectrometer) has been developed and installed in the Vacuum Tower Telescope at the Observatorio del Teide, Tenerife. The control system allows to switch from one wavelength band to another within 2 seconds. The telecentric configuration provides a constant wavelength passband across the field of view. Servo-stabilized etalons and a stable thermal environment provide a wavelength stability of <0.3 picometer per hour. We present initial results obtained with this instrument. Title: Upwelling in a young sunspot Authors: Sigwarth, M.; Schmidt, W.; Schuessler, M. Bibcode: 1998A&A...339L..53S Altcode: An upflow of with a velocity exceeding 0.5 km*s(-1) is found in the umbra of the preceding spot in a young active region with ongoing flux emergence. A weak downflow is indicated in the corresponding spot of follower polarity. Such a flow pattern is consistent with the counter-rotation flow along a rising magnetic flux loop driven by the Coriolis force as predicted by numerical simulations.