explanation      blue bibcodes open ADS page with paths to full text
Author name code: brooks
ADS astronomy entries on 2022-09-14
author:"Brooks, David H." AND (aff:"Fairfax" OR aff:"Kyoto" OR aff:"Glasgow")  

---------------------------------------------------------
Title: Parallel Plasma Loops and the Energization of the Solar Corona
Authors: Peter, Hardi; Chitta, Lakshmi Pradeep; Chen, Feng; Pontin,
   David I.; Winebarger, Amy R.; Golub, Leon; Savage, Sabrina L.;
   Rachmeler, Laurel A.; Kobayashi, Ken; Brooks, David H.; Cirtain,
   Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.;
   Testa, Paola; Tiwari, Sanjiv K.; Walsh, Robert W.; Warren, Harry P.
2022ApJ...933..153P    Altcode: 2022arXiv220515919P
  The outer atmosphere of the Sun is composed of plasma heated to
  temperatures well in excess of the visible surface. We investigate
  short cool and warm (<1 MK) loops seen in the core of an active
  region to address the role of field-line braiding in energizing these
  structures. We report observations from the High-resolution Coronal
  imager (Hi-C) that have been acquired in a coordinated campaign with
  the Interface Region Imaging Spectrograph (IRIS). In the core of the
  active region, the 172 Å band of Hi-C and the 1400 Å channel of IRIS
  show plasma loops at different temperatures that run in parallel. There
  is a small but detectable spatial offset of less than 1″ between
  the loops seen in the two bands. Most importantly, we do not see
  observational signatures that these loops might be twisted around each
  other. Considering the scenario of magnetic braiding, our observations
  of parallel loops imply that the stresses put into the magnetic field
  have to relax while the braiding is applied: the magnetic field never
  reaches a highly braided state on these length scales comparable to
  the separation of the loops. This supports recent numerical 3D models
  of loop braiding in which the effective dissipation is sufficiently
  large that it keeps the magnetic field from getting highly twisted
  within a loop.

---------------------------------------------------------
Title: Constraining Global Coronal Models with Multiple Independent
    Observables
Authors: Badman, Samuel T.; Brooks, David H.; Poirier, Nicolas;
   Warren, Harry P.; Petrie, Gordon; Rouillard, Alexis P.; Nick Arge,
   C.; Bale, Stuart D.; de Pablos Agüero, Diego; Harra, Louise; Jones,
   Shaela I.; Kouloumvakos, Athanasios; Riley, Pete; Panasenco, Olga;
   Velli, Marco; Wallace, Samantha
2022ApJ...932..135B    Altcode: 2022arXiv220111818B
  Global coronal models seek to produce an accurate physical
  representation of the Sun's atmosphere that can be used, for example, to
  drive space-weather models. Assessing their accuracy is a complex task,
  and there are multiple observational pathways to provide constraints
  and tune model parameters. Here, we combine several such independent
  constraints, defining a model-agnostic framework for standardized
  comparison. We require models to predict the distribution of coronal
  holes at the photosphere, and neutral line topology at the model's outer
  boundary. We compare these predictions to extreme-ultraviolet (EUV)
  observations of coronal hole locations, white-light Carrington maps of
  the streamer belt, and the magnetic sector structure measured in situ
  by Parker Solar Probe and 1 au spacecraft. We study these metrics for
  potential field source surface (PFSS) models as a function of source
  surface height and magnetogram choice, as well as comparing to the more
  physical Wang-Sheeley-Arge (WSA) and the Magnetohydrodynamic Algorithm
  outside a Sphere (MAS) models. We find that simultaneous optimization
  of PFSS models to all three metrics is not currently possible, implying
  a trade-off between the quality of representation of coronal holes
  and streamer belt topology. WSA and MAS results show the additional
  physics that they include address this by flattening the streamer belt
  while maintaining coronal hole sizes, with MAS also improving coronal
  hole representation relative to WSA. We conclude that this framework
  is highly useful for inter- and intra-model comparisons. Integral to
  the framework is the standardization of observables required of each
  model, evaluating different model aspects.

---------------------------------------------------------
Title: Detection of Stellar-like Abundance Anomalies in the Slow
    Solar Wind
Authors: Brooks, David H.; Baker, Deborah; van Driel-Gesztelyi, Lidia;
   Warren, Harry P.; Yardley, Stephanie L.
2022ApJ...930L..10B    Altcode: 2022arXiv220409332B
  The elemental composition of the Sun's hot atmosphere, the corona,
  shows a distinctive pattern that is different from the underlying
  surface or photosphere. Elements that are easy to ionize in the
  chromosphere are enhanced in abundance in the corona compared to
  their photospheric values. A similar pattern of behavior is often
  observed in the slow-speed (&lt;500 km s<SUP>-1</SUP>) solar wind
  and in solar-like stellar coronae, while a reversed effect is seen
  in M dwarfs. Studies of the inverse effect have been hampered in the
  past because only unresolved (point-source) spectroscopic data were
  available for these stellar targets. Here we report the discovery of
  several inverse events observed in situ in the slow solar wind using
  particle-counting techniques. These very rare events all occur during
  periods of high solar activity that mimic conditions more widespread
  on M dwarfs. The detections allow a new way of connecting the slow
  wind to its solar source and are broadly consistent with theoretical
  models of abundance variations due to chromospheric fast-mode waves
  with amplitudes of 8-10 km s<SUP>-1</SUP>, sufficient to accelerate
  the solar wind. The results imply that M-dwarf winds are dominated
  by plasma depleted in easily ionized elements and lend credence to
  previous spectroscopic measurements.

---------------------------------------------------------
Title: Multiwavelength optical and NIR variability analysis of the
    Blazar PKS 0027-426
Authors: Guise, E.; Hönig, S. F.; Almeyda, T.; Horne, K.; Kishimoto,
   M.; Aguena, M.; Allam, S.; Andrade-Oliveira, F.; Asorey, J.; Banerji,
   M.; Bertin, E.; Boulderstone, B.; Brooks, D.; Burke, D. L.; Carnero
   Rosell, A.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Costanzi,
   M.; da Costa, L. N.; Davis, T. M.; De Vicente, J.; Doel, P.; Everett,
   S.; Ferrero, I.; Flaugher, B.; Frieman, J.; Gandhi, P.; Goad, M.;
   Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hinton, S. R.;
   Hollowood, D. L.; Honscheid, K.; James, D. J.; Johnson, M. A. C.;
   Kuehn, K.; Lewis, G. F.; Lidman, C.; Lima, M.; Maia, M. A. G.; Malik,
   U.; Menanteau, F.; Miquel, R.; Morgan, R.; Ogando, R. L. C.; Palmese,
   A.; Paz-Chinchón, F.; Pereira, M. E. S.; Pieres, A.; Plazas Malagón,
   A. A.; Sanchez, E.; Scarpine, V.; Serrano, S.; Sevilla-Noarbe, I.;
   Seymour, N.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; To, C.; Tucker, B. E.
2022MNRAS.510.3145G    Altcode: 2021arXiv210813386G; 2021MNRAS.tmp.3142G
  We present multiwavelength spectral and temporal variability analysis
  of PKS 0027-426 using optical griz observations from Dark Energy Survey
  between 2013 and 2018 and VEILS Optical Light curves of Extragalactic
  TransienT Events (VOILETTE) between 2018 and 2019 and near-infrared
  (NIR) JKs observations from Visible and Infrared Survey Telescope for
  Astronomy Extragalactic Infrared Legacy Survey (VEILS) between 2017 and
  2019. Multiple methods of cross-correlation of each combination of light
  curve provides measurements of possible lags between optical-optical,
  optical-NIR, and NIR-NIR emission, for each observation season and for
  the entire observational period. Inter-band time lag measurements
  consistently suggest either simultaneous emission or delays
  between emission regions on time-scales smaller than the cadences of
  observations. The colour-magnitude relation between each combination
  of filters was also studied to determine the spectral behaviour of
  PKS 0027-426. Our results demonstrate complex colour behaviour that
  changes between bluer when brighter, stable when brighter, and redder
  when brighter trends over different time-scales and using different
  combinations of optical filters. Additional analysis of the optical
  spectra is performed to provide further understanding of this complex
  spectral behaviour.

---------------------------------------------------------
Title: Evolution of Plasma Composition in an Eruptive Flux Rope
Authors: Baker, D.; Green, L. M.; Brooks, D. H.; Démoulin, P.;
   van Driel-Gesztelyi, L.; Mihailescu, T.; To, A. S. H.; Long, D. M.;
   Yardley, S. L.; Janvier, M.; Valori, G.
2022ApJ...924...17B    Altcode: 2021arXiv211011714B
  Magnetic flux ropes are bundles of twisted magnetic field enveloping a
  central axis. They harbor free magnetic energy and can be progenitors
  of coronal mass ejections (CMEs). However, identifying flux ropes on
  the Sun can be challenging. One of the key coronal observables that
  has been shown to indicate the presence of a flux rope is a peculiar
  bright coronal structure called a sigmoid. In this work, we show Hinode
  EUV Imaging Spectrometer observations of sigmoidal active region (AR)
  10977. We analyze the coronal plasma composition in the AR and its
  evolution as a sigmoid (flux rope) forms and erupts as a CME. Plasma
  with photospheric composition was observed in coronal loops close to
  the main polarity inversion line during episodes of significant flux
  cancellation, suggestive of the injection of photospheric plasma into
  these loops driven by photospheric flux cancellation. Concurrently,
  the increasingly sheared core field contained plasma with coronal
  composition. As flux cancellation decreased and a sigmoid/flux
  rope formed, the plasma evolved to an intermediate composition in
  between photospheric and typical AR coronal compositions. Finally,
  the flux rope contained predominantly photospheric plasma during and
  after a failed eruption preceding the CME. Hence, plasma composition
  observations of AR 10977 strongly support models of flux rope formation
  by photospheric flux cancellation forcing magnetic reconnection first
  at the photospheric level then at the coronal level.

---------------------------------------------------------
Title: Investigating the origin of magnetic perturbations associated
    with the FIP Effect
Authors: Murabito, M.; Stangalini, M.; Baker, D.; Valori, G.; Jess,
   D. B.; Jafarzadeh, S.; Brooks, D. H.; Ermolli, I.; Giorgi, F.; Grant,
   S. D. T.; Long, D. M.; van Driel-Gesztelyi, L.
2021A&A...656A..87M    Altcode: 2021arXiv210811164M
  Recently, magnetic oscillations were detected in the chromosphere
  of a large sunspot and found to be linked to the coronal locations
  where a first ionization potential (FIP) effect was observed. In
  an attempt to shed light on the possible excitation mechanisms
  of these localized waves, we further investigate the same data
  by focusing on the relation between the spatial distribution of
  the magnetic wave power and the overall field geometry and plasma
  parameters obtained from multi-height spectropolarimetric non-local
  thermodynamic equilibrium (NLTE) inversions of IBIS data. We find,
  in correspondence with the locations where the magnetic wave energy
  is observed at chromospheric heights, that the magnetic fields have
  smaller scale heights, meaning faster expansions of the field lines,
  which ultimately results in stronger vertical density stratification
  and wave steepening. In addition, the acoustic spectrum of the
  oscillations at the locations where magnetic perturbations are
  observed is broader than that observed at other locations, which
  suggests an additional forcing driver to the p-modes. Analysis of the
  photospheric oscillations in the sunspot surroundings also reveals
  a broader spectrum between the two opposite polarities of the active
  region (the leading spot and the trailing opposite polarity plage),
  and on the same side where magnetic perturbations are observed in
  the umbra. We suggest that strong photospheric perturbations between
  the two polarities are responsible for this broader spectrum of
  oscillations, with respect to the p-mode spectrum, resulting in locally
  excited acoustic waves that, after crossing the equipartition layer,
  located close to the umbra-penumbra boundary at photopheric heights,
  are converted into magnetic waves and steepen due to the strong
  density gradient. <P />Movie associated to Fig. 1 is available at <A
  href="https://www.aanda.org/10.1051/0004-6361/202141504/olm">https://www.aanda.org</A>

---------------------------------------------------------
Title: Signature and escape of highly fractionated plasma in an
    active region
Authors: Brooks, David H.; Yardley, Stephanie L.
2021MNRAS.508.1831B    Altcode: 2021MNRAS.tmp.2443B; 2021arXiv210911157B
  Accurate forecasting of space weather requires knowledge of the source
  regions where solar energetic particles (SEP) and eruptive events
  originate. Recent work has linked several major SEP events in 2014,
  January, to specific features in the host active region (AR 11944). In
  particular, plasma composition measurements in and around the footpoints
  of hot, coronal loops in the core of the active region were able to
  explain the values later measured in situ by the Wind spacecraft. Due
  to important differences in elemental composition between SEPs and
  the solar wind, the magnitude of the Si/S elemental abundance ratio
  emerged as a key diagnostic of SEP seed population and solar wind
  source locations. We seek to understand if the results are typical
  of other active regions, even if they are not solar wind sources or
  SEP productive. In this paper, we use a novel composition analysis
  technique, together with an evolutionary magnetic field model, in a
  new approach to investigate a typical solar active region (AR 11150),
  and identify the locations of highly fractionated (high Si/S abundance
  ratio) plasma. Material confined near the footpoints of coronal loops,
  as in AR 11944, that in this case have expanded to the AR periphery,
  show the signature, and can be released from magnetic field opened by
  reconnection at the AR boundary. Since the fundamental characteristics
  of closed field loops being opened at the AR boundary is typical of
  active regions, this process is likely to be general.

---------------------------------------------------------
Title: The Formation and Lifetime of Outflows in a Solar Active Region
Authors: Brooks, David H.; Harra, Louise; Bale, Stuart D.; Barczynski,
   Krzysztof; Mandrini, Cristina; Polito, Vanessa; Warren, Harry P.
2021ApJ...917...25B    Altcode: 2021arXiv210603318B
  Active regions are thought to be one contributor to the slow solar
  wind. Upflows in EUV coronal spectral lines are routinely observed at
  their boundaries, and provide the most direct way for upflowing material
  to escape into the heliosphere. The mechanisms that form and drive these
  upflows, however, remain to be fully characterized. It is unclear how
  quickly they form, or how long they exist during their lifetimes. They
  could be initiated low in the atmosphere during magnetic flux emergence,
  or as a response to processes occurring high in the corona when the
  active region is fully developed. On 2019 March 31 a simple bipolar
  active region (AR 12737) emerged and upflows developed on each side. We
  used observations from Hinode, SDO, IRIS, and Parker Solar Probe (PSP)
  to investigate the formation and development of the upflows from the
  eastern side. We used the spectroscopic data to detect the upflow,
  and then used the imaging data to try to trace its signature back to
  earlier in the active region emergence phase. We find that the upflow
  forms quickly, low down in the atmosphere, and that its initiation
  appears associated with a small field-opening eruption and the onset
  of a radio noise storm detected by PSP. We also confirmed that the
  upflows existed for the vast majority of the time the active region
  was observed. These results suggest that the contribution to the solar
  wind occurs even when the region is small, and continues for most of
  its lifetime.

---------------------------------------------------------
Title: Measurements of Coronal Magnetic Field Strengths in Solar
    Active Region Loops
Authors: Brooks, David H.; Warren, Harry P.; Landi, Enrico
2021ApJ...915L..24B    Altcode: 2021arXiv210610884B
  The characteristic electron densities, temperatures, and thermal
  distributions of 1 MK active region loops are now fairly well
  established, but their coronal magnetic field strengths remain
  undetermined. Here we present measurements from a sample of coronal
  loops observed by the Extreme-ultraviolet Imaging Spectrometer on
  Hinode. We use a recently developed diagnostic technique that involves
  atomic radiation modeling of the contribution of a magnetically
  induced transition to the Fe X 257.262 Å spectral line intensity. We
  find coronal magnetic field strengths in the range of 60-150 G. We
  discuss some aspects of these new results in the context of previous
  measurements using different spectropolarimetric techniques, and their
  influence on the derived Alfvén speeds and plasma β in coronal loops.

---------------------------------------------------------
Title: Comparison of active region upflow and core properties using
    simultaneous spectroscopic observations from IRIS and Hinode
Authors: Barczynski, Krzysztof; Harra, Louise; Kleint, Lucia; Panos,
   Brandon; Brooks, David H.
2021A&A...651A.112B    Altcode: 2021arXiv210410234B
  Context. The origin of the slow solar wind is still an open issue. It
  has been suggested that upflows at the edge of active regions are
  a possible source of the plasma outflow and therefore contribute
  to the slow solar wind. <BR /> Aims: We investigate the origin and
  morphology of the upflow regions and compare the upflow region and
  the active region core properties. <BR /> Methods: We studied how the
  plasma properties of flux, Doppler velocity, and non-thermal velocity
  change throughout the solar atmosphere, from the chromosphere via the
  transition region to the corona in the upflow region and the core
  of an active region. We studied limb-to-limb observations of the
  active region (NOAA 12687) obtained from 14 to 25 November 2017. We
  analysed spectroscopic data simultaneously obtained from IRIS and
  Hinode/EIS in the six emission lines Mg II 2796.4Å, C II 1335.71Å,
  Si IV 1393.76Å, Fe XII 195.12Å, Fe XIII 202.04Å, and Fe XIV
  270.52Å and 274.20Å. We studied the mutual relationships between the
  plasma properties for each emission line, and we compared the plasma
  properties between the neighbouring formation temperature lines. To
  find the most characteristic spectra, we classified the spectra in
  each wavelength using the machine learning technique k-means. <BR />
  Results: We find that in the upflow region the Doppler velocities of
  the coronal lines are strongly correlated, but the transition region
  and coronal lines show no correlation. However, their fluxes are
  strongly correlated. The upflow region has a lower density and lower
  temperature than the active region core. In the upflow region, the
  Doppler velocity and non-thermal velocity show a strong correlation in
  the coronal lines, but the correlation is not seen in the active region
  core. At the boundary between the upflow region and the active region
  core, the upflow region shows an increase in the coronal non-thermal
  velocity, the emission obtained from the DEM, and the domination
  of the redshifted regions in the chromosphere. <BR /> Conclusions:
  The obtained results suggest that at least three parallel mechanisms
  generate the plasma upflow: (1) The reconnection between closed loops
  and open magnetic field lines in the lower corona or upper chromosphere;
  (2) the reconnection between the chromospheric small-scale loops and
  open magnetic field; and (3) the expansion of the magnetic field lines
  that allows the chromospheric plasma to escape to the solar corona.

---------------------------------------------------------
Title: Widespread occurrence of high-velocity upflows in solar
    active regions
Authors: Yardley, S. L.; Brooks, D. H.; Baker, D.
2021A&A...650L..10Y    Altcode: 2021arXiv210601396Y
  <BR /> Aims: We performed a systematic study of 12 active regions
  (ARs) with a broad range of areas, magnetic fluxes, and associated
  solar activity in order to determine whether there are upflows present
  at the AR boundaries and, if these upflows exist, whether there is
  a high-speed asymmetric blue wing component present in them. <BR />
  Methods: To identify the presence and locations of the AR upflows, we
  derive relative Doppler velocity maps by fitting a Gaussian function
  to Hinode/EIS Fe XII 192.394 Å line profiles. To determine whether
  there is a high-speed asymmetric component present in the AR upflows,
  we fit a double Gaussian function to the Fe XII 192.394 Å mean
  spectrum that is computed in a region of interest situated in the
  AR upflows. <BR /> Results: Upflows are observed at both the eastern
  and western boundaries of all ARs in our sample, with average upflow
  velocities ranging between −5 and −26 km s<SUP>−1</SUP>. A blue
  wing asymmetry is present in every line profile. The intensity ratio
  between the minor high-speed asymmetric Gaussian component compared
  to the main component is relatively small for the majority of regions;
  however, in a minority of cases (8/30) the ratios are large and range
  between 20 and 56 %. <BR /> Conclusions: These results suggest that
  upflows and the high-speed asymmetric blue wing component are a common
  feature of all ARs.

---------------------------------------------------------
Title: The active region source of a type III radio storm observed
    by Parker Solar Probe during encounter 2
Authors: Harra, L.; Brooks, D. H.; Bale, S. D.; Mandrini, C. H.;
   Barczynski, K.; Sharma, R.; Badman, S. T.; Vargas Domínguez, S.;
   Pulupa, M.
2021A&A...650A...7H    Altcode: 2021arXiv210204964H
  Context. We investigated the source of a type III radio burst storm
  during encounter 2 of NASA's Parker Solar Probe (PSP) mission. <BR />
  Aims: It was observed that in encounter 2 of NASA's PSP mission there
  was a large amount of radio activity and, in particular, a noise storm
  of frequent, small type III bursts from 31 March to 6 April 2019. Our
  aim is to investigate the source of these small and frequent bursts. <BR
  /> Methods: In order to do this, we analysed data from the Hinode EUV
  Imaging Spectrometer, PSP FIELDS, and the Solar Dynamics Observatory
  Atmospheric Imaging Assembly. We studied the behaviour of active region
  12737, whose emergence and evolution coincides with the timing of the
  radio noise storm and determined the possible origins of the electron
  beams within the active region. To do this, we probed the dynamics,
  Doppler velocity, non-thermal velocity, FIP bias, and densities,
  and carried out magnetic modelling. <BR /> Results: We demonstrate
  that although the active region on the disc produces no significant
  flares, its evolution indicates it is a source of the electron beams
  causing the radio storm. They most likely originate from the area
  at the edge of the active region that shows strong blue-shifted
  plasma. We demonstrate that as the active region grows and expands,
  the area of the blue-shifted region at the edge increases, which is
  also consistent with the increasing area where large-scale or expanding
  magnetic field lines from our modelling are anchored. This expansion
  is most significant between 1 and 4 April 2019, coinciding with the
  onset of the type III storm and the decrease of the individual burst's
  peak frequency, indicating that the height at which the peak radiation
  is emitted increases as the active region evolves.

---------------------------------------------------------
Title: Plasma Upflows Induced by Magnetic Reconnection Above an
    Eruptive Flux Rope
Authors: Baker, Deborah; Mihailescu, Teodora; Démoulin, Pascal;
   Green, Lucie M.; van Driel-Gesztelyi, Lidia; Valori, Gherardo; Brooks,
   David H.; Long, David M.; Janvier, Miho
2021SoPh..296..103B    Altcode: 2021arXiv210616137B
  One of the major discoveries of Hinode's Extreme-ultraviolet
  Imaging Spectrometer (EIS) is the presence of upflows at the edges
  of active regions. As active regions are magnetically connected
  to the large-scale field of the corona, these upflows are a likely
  contributor to the global mass cycle in the corona. Here we examine
  the driving mechanism(s) of the very strong upflows with velocities
  in excess of 70 km s<SUP>−1</SUP>, known as blue-wing asymmetries,
  observed during the eruption of a flux rope in AR 10977 (eruptive flare
  SOL2007-12-07T04:50). We use Hinode/EIS spectroscopic observations
  combined with magnetic-field modeling to investigate the possible
  link between the magnetic topology of the active region and the strong
  upflows. A Potential Field Source Surface (PFSS) extrapolation of the
  large-scale field shows a quadrupolar configuration with a separator
  lying above the flux rope. Field lines formed by induced reconnection
  along the separator before and during the flux-rope eruption are
  spatially linked to the strongest blue-wing asymmetries in the upflow
  regions. The flows are driven by the pressure gradient created when
  the dense and hot arcade loops of the active region reconnect with
  the extended and tenuous loops overlying it. In view of the fact
  that separator reconnection is a specific form of the more general
  quasi-separatrix (QSL) reconnection, we conclude that the mechanism
  driving the strongest upflows is, in fact, the same as the one driving
  the persistent upflows of ≈10 - 20 km s<SUP>−1</SUP> observed in
  all active regions.

---------------------------------------------------------
Title: The Evolution of Plasma Composition during a Solar Flare
Authors: To, Andy S. H.; Long, David M.; Baker, Deborah; Brooks, David
   H.; van Driel-Gesztelyi, Lidia; Laming, J. Martin; Valori, Gherardo
2021ApJ...911...86T    Altcode: 2021arXiv210209985T
  We analyze the coronal elemental abundances during a small flare using
  Hinode/EIS observations. Compared to the preflare elemental abundances,
  we observed a strong increase in coronal abundance of Ca XIV 193.84
  Å, an emission line with low first ionization potential (FIP &lt;
  10 eV), as quantified by the ratio Ca/Ar during the flare. This is in
  contrast to the unchanged abundance ratio observed using Si X 258.38
  Å/S X 264.23 Å. We propose two different mechanisms to explain
  the different composition results. First, the small flare-induced
  heating could have ionized S, but not the noble gas Ar, so that the
  flare-driven Alfvén waves brought up Si, S, and Ca in tandem via
  the ponderomotive force which acts on ions. Second, the location of
  the flare in strong magnetic fields between two sunspots may suggest
  fractionation occurred in the low chromosphere, where the background
  gas is neutral H. In this region, high-FIP S could behave more like a
  low-FIP than a high-FIP element. The physical interpretations proposed
  generate new insights into the evolution of plasma abundances in the
  solar atmosphere during flaring, and suggests that current models must
  be updated to reflect dynamic rather than just static scenarios.

---------------------------------------------------------
Title: Upflows in the Upper Solar Atmosphere
Authors: Tian, Hui; Harra, Louise; Baker, Deborah; Brooks, David H.;
   Xia, Lidong
2021SoPh..296...47T    Altcode: 2021arXiv210202429T
  Spectroscopic observations at extreme- and far-ultraviolet wavelengths
  have revealed systematic upflows in the solar transition region and
  corona. These upflows are best seen in the network structures of
  the quiet Sun and coronal holes, boundaries of active regions, and
  dimming regions associated with coronal mass ejections. They have been
  intensively studied in the past two decades because they are likely to
  be closely related to the formation of the solar wind and heating of the
  upper solar atmosphere. We present an overview of the characteristics
  of these upflows, introduce their possible formation mechanisms, and
  discuss their potential roles in the mass and energy transport in the
  solar atmosphere. Although past investigations have greatly improved
  our understanding of these upflows, they have left us with several
  outstanding questions and unresolved issues that should be addressed
  in the future. New observations from the Solar Orbiter mission, the
  Daniel K. Inouye Solar Telescope, and the Parker Solar Probe will
  likely provide critical information to advance our understanding of
  the generation, propagation, and energization of these upflows.

---------------------------------------------------------
Title: Spectropolarimetric fluctuations in a sunspot chromosphere
Authors: Stangalini, M.; Baker, D.; Valori, G.; Jess, D. B.;
   Jafarzadeh, S.; Murabito, M.; To, A. S. H.; Brooks, D. H.; Ermolli,
   I.; Giorgi, F.; MacBride, C. D.
2021RSPTA.37900216S    Altcode: 2020arXiv200905302S
  The instrumental advances made in this new era of 4 m class solar
  telescopes with unmatched spectropolarimetric accuracy and sensitivity
  will enable the study of chromospheric magnetic fields and their
  dynamics with unprecedented detail. In this regard, spectropolarimetric
  diagnostics can provide invaluable insight into magneto-hydrodynamic
  (MHD) wave processes. MHD waves and, in particular, Alfvénic
  fluctuations associated with particular wave modes were recently
  recognized as important mechanisms not only for the heating of the outer
  layers of the Sun's atmosphere and the acceleration of the solar wind,
  but also for the elemental abundance anomaly observed in the corona
  of the Sun and other Sun-like stars (also known as first ionization
  potential) effect. Here, we take advantage of state-of-the-art and
  unique spectropolarimetric Interferometric BIdimensional Spectrometer
  observations to investigate the relation between intensity and circular
  polarization (CP) fluctuations in a sunspot chromosphere. Our results
  show a clear link between the intensity and CP fluctuations in a patch
  which corresponds to a narrow range of magnetic field inclinations. This
  suggests the presence of Alfvénic perturbations in the sunspot. <P
  />This article is part of the Theo Murphy meeting issue `High-resolution
  wave dynamics in the lower solar atmosphere'.

---------------------------------------------------------
Title: Alfvénic Perturbations in a Sunspot Chromosphere Linked to
    Fractionated Plasma in the Corona
Authors: Baker, Deborah; Stangalini, Marco; Valori, Gherardo; Brooks,
   David H.; To, Andy S. H.; van Driel-Gesztelyi, Lidia; Démoulin,
   Pascal; Stansby, David; Jess, David B.; Jafarzadeh, Shahin
2021ApJ...907...16B    Altcode: 2020arXiv201204308B
  In this study, we investigate the spatial distribution of highly
  varying plasma composition around one of the largest sunspots of solar
  cycle 24. Observations of the photosphere, chromosphere, and corona
  are brought together with magnetic field modeling of the sunspot
  in order to probe the conditions that regulate the degree of plasma
  fractionation within loop populations of differing connectivities. We
  find that, in the coronal magnetic field above the sunspot umbra,
  the plasma has photospheric composition. Coronal loops rooted in the
  penumbra contain fractionated plasma, with the highest levels observed
  in the loops that connect within the active region. Tracing field
  lines from regions of fractionated plasma in the corona to locations
  of Alfvénic fluctuations detected in the chromosphere shows that they
  are magnetically linked. These results indicate a connection between
  sunspot chromospheric activity and observable changes in coronal
  plasma composition.

---------------------------------------------------------
Title: Investigating the Chromospheric Footpoints of the Solar Wind
Authors: Bryans, Paul; McIntosh, Scott W.; Brooks, David H.; De
   Pontieu, Bart
2020ApJ...905L..33B    Altcode:
  Coronal holes present the source of the fast solar wind. However,
  the fast solar wind is not unimodal—there are discrete, but subtle,
  compositional, velocity, and density structures that differentiate
  different coronal holes as well as wind streams that originate within
  one coronal hole. In this Letter we exploit full-disk observational
  "mosaics" performed by the Interface Region Imaging Spectrograph
  (IRIS) spacecraft to demonstrate that significant spectral variation
  exists within the chromospheric plasma of coronal holes. The spectral
  differences outline the boundaries of some—but not all—coronal
  holes. In particular, we show that the "peak separation" of the Mg
  II h line at 2803 Å illustrates changes in what appear to be open
  magnetic features within a coronal hole. These observations point
  to a chromospheric source for the inhomogeneities found in the fast
  solar wind. These chromospheric signatures can provide additional
  constraints on magnetic field extrapolations close to the source,
  potentially on spatial scales smaller than from traditional coronal hole
  detection methods based on intensity thresholding in the corona. This
  is of increased importance with the advent of Parker Solar Probe and
  Solar Orbiter and the ability to accurately establish the connectivity
  between their in situ measurements and remote sensing observations of
  the solar atmosphere.

---------------------------------------------------------
Title: IRIS Observations of the Low-atmosphere Counterparts of Active
    Region Outflows
Authors: Polito, Vanessa; De Pontieu, Bart; Testa, Paola; Brooks,
   David H.; Hansteen, Viggo
2020ApJ...903...68P    Altcode: 2020arXiv201015945P
  Active region (AR) outflows have been studied in detail since
  the launch of Hinode/EIS and are believed to provide a possible
  source of mass and energy to the slow solar wind. In this work, we
  investigate the lower atmospheric counterpart of AR outflows using
  observations from the Interface Region Imaging Spectrograph (IRIS). We
  find that the IRIS Si IV, C II&gt; and Mg II transition region (TR)
  and chromospheric lines exhibit different spectral features in the
  outflows as compared to neighboring regions at the footpoints ("moss")
  of hot AR loops. The average redshift of Si IV in the outflow region
  (≍5.5 km s<SUP>-1</SUP>) is smaller than typical moss (≍12-13
  km s<SUP>-1</SUP>) and quiet Sun (≍7.5 km s<SUP>-1</SUP>) values,
  while the C II line is blueshifted (≍-1.1-1.5 km s<SUP>-1</SUP>),
  in contrast to the moss where it is observed to be redshifted by
  about ≍2.5 km s<SUP>-1</SUP>. Further, we observe that the low
  atmosphere underneath the coronal outflows is highly structured, with
  the presence of blueshifts in Si IV and positive Mg II k2 asymmetries
  (which can be interpreted as signatures of chromospheric upflows)
  which are mostly not observed in the moss. These observations show a
  clear correlation between the coronal outflows and the chromosphere
  and TR underneath, which has not been shown before. Our work strongly
  suggests that these regions are not separate environments and should
  be treated together, and that current leading theories of AR outflows,
  such as the interchange reconnection model, need to take into account
  the dynamics of the low atmosphere.

---------------------------------------------------------
Title: Directly comparing coronal and solar wind elemental
    fractionation
Authors: Stansby, D.; Baker, D.; Brooks, D. H.; Owen, C. J.
2020A&A...640A..28S    Altcode: 2020arXiv200500371S
  Context. As the solar wind propagates through the heliosphere, dynamical
  processes irreversibly erase the signatures of the near-Sun heating
  and acceleration processes. The elemental fractionation of the solar
  wind should not change during transit, however, making it an ideal
  tracer of these processes. <BR /> Aims: We aim to verify directly if
  the solar wind elemental fractionation is reflective of the coronal
  source region fractionation, both within and across different solar wind
  source regions. <BR /> Methods: A backmapping scheme was used to predict
  where solar wind measured by the Advanced Composition Explorer (ACE)
  originated in the corona. The coronal composition measured by the Hinode
  Extreme ultraviolet Imaging Spectrometer (EIS) at the source regions
  was then compared with the in situ solar wind composition. <BR />
  Results: On hourly timescales, there is no apparent correlation between
  coronal and solar wind composition. In contrast, the distribution of
  fractionation values within individual source regions is similar in
  both the corona and solar wind, but distributions between different
  sources have a significant overlap. <BR /> Conclusions: The matching
  distributions directly verify that elemental composition is conserved
  as the plasma travels from the corona to the solar wind, further
  validating it as a tracer of heating and acceleration processes. The
  overlap of fractionation values between sources means it is not possible
  to identify solar wind source regions solely by comparing solar wind
  and coronal composition measurements, but a comparison can be used to
  verify consistency with predicted spacecraft-corona connections.

---------------------------------------------------------
Title: Directly Comparing Coronal and Solar Wind Elemental
    Fractionation
Authors: Stansby, D.; Baker, D.; Owen, C.; Brooks, D.
2020SPD....5120801S    Altcode:
  The elemental fractionation of the quasi-collisionless solar wind
  should not change during transit, making it an ideal tracer of coronal
  heating and acceleration processes. We aimed to verify directly if the
  solar wind elemental fractionation is reflective of the coronal source
  region fractionation, both within and across different solar wind
  source regions. A backmapping scheme was used to predict where solar
  wind measured by the Advanced Composition Explorer (ACE) across 15 days
  originated in the corona. The coronal composition measured by Hinode
  Extreme ultraviolet Imaging Spectrometer (EIS) at the source regions
  was then compared with the in-situ solar wind composition. On hourly
  timescales there was no apparent correlation between coronal and solar
  wind composition. In contrast, the distribution of fractionation values
  within individual source regions was similar in both the corona and
  solar wind, but distributions between different sources had significant
  overlap. The overlap of fractionation values between sources means it is
  not possible to identify solar wind source regions solely by comparing
  solar wind and coronal composition measurements, but a comparison can be
  used to verify consistency with predicted spacecraft-corona connections.

---------------------------------------------------------
Title: Observation and Modeling of High-temperature Solar Active
    Region Emission during the High-resolution Coronal Imager Flight of
    2018 May 29
Authors: Warren, Harry P.; Reep, Jeffrey W.; Crump, Nicholas A.;
   Ugarte-Urra, Ignacio; Brooks, David H.; Winebarger, Amy R.; Savage,
   Sabrina; De Pontieu, Bart; Peter, Hardi; Cirtain, Jonathan W.; Golub,
   Leon; Kobayashi, Ken; McKenzie, David; Morton, Richard; Rachmeler,
   Laurel; Testa, Paola; Tiwari, Sanjiv; Walsh, Robert
2020ApJ...896...51W    Altcode:
  Excellent coordinated observations of NOAA active region 12712 were
  obtained during the flight of the High-resolution Coronal Imager (Hi-C)
  sounding rocket on 2018 May 29. This region displayed a typical active
  region core structure with relatively short, high-temperature loops
  crossing the polarity inversion line and bright "moss" located at the
  footpoints of these loops. The differential emission measure (DEM) in
  the active region core is very sharply peaked at about 4 MK. Further,
  there is little evidence for impulsive heating events in the moss, even
  at the high spatial resolution and cadence of Hi-C. This suggests that
  active region core heating is occurring at a high frequency and keeping
  the loops close to equilibrium. To create a time-dependent simulation of
  the active region core, we combine nonlinear force-free extrapolations
  of the measured magnetic field with a heating rate that is dependent
  on the field strength and loop length and has a Poisson waiting time
  distribution. We use the approximate solutions to the hydrodynamic
  loop equations to simulate the full ensemble of active region core
  loops for a range of heating parameters. In all cases, we find that
  high-frequency heating provides the best match to the observed DEM. For
  selected field lines, we solve the full hydrodynamic loop equations,
  including radiative transfer in the chromosphere, to simulate transition
  region and chromospheric emission. We find that for heating scenarios
  consistent with the DEM, classical signatures of energy release,
  such as transition region brightenings and chromospheric evaporation,
  are weak, suggesting that they would be difficult to detect.

---------------------------------------------------------
Title: The Drivers of Active Region Outflows into the Slow Solar Wind
Authors: Brooks, David H.; Winebarger, Amy R.; Savage, Sabrina; Warren,
   Harry P.; De Pontieu, Bart; Peter, Hardi; Cirtain, Jonathan W.; Golub,
   Leon; Kobayashi, Ken; McIntosh, Scott W.; McKenzie, David; Morton,
   Richard; Rachmeler, Laurel; Testa, Paola; Tiwari, Sanjiv; Walsh, Robert
2020ApJ...894..144B    Altcode: 2020arXiv200407461B
  Plasma outflows from the edges of active regions have been suggested as
  a possible source of the slow solar wind. Spectroscopic measurements
  show that these outflows have an enhanced elemental composition,
  which is a distinct signature of the slow wind. Current spectroscopic
  observations, however, do not have sufficient spatial resolution to
  distinguish what structures are being measured or determine the driver
  of the outflows. The High-resolution Coronal Imager (Hi-C) flew on a
  sounding rocket in 2018 May and observed areas of active region outflow
  at the highest spatial resolution ever achieved (250 km). Here we use
  the Hi-C data to disentangle the outflow composition signatures observed
  with the Hinode satellite during the flight. We show that there are
  two components to the outflow emission: a substantial contribution
  from expanded plasma that appears to have been expelled from closed
  loops in the active region core and a second contribution from dynamic
  activity in active region plage, with a composition signature that
  reflects solar photospheric abundances. The two competing drivers of the
  outflows may explain the variable composition of the slow solar wind.

---------------------------------------------------------
Title: Can Subphotospheric Magnetic Reconnection Change the Elemental
    Composition in the Solar Corona?
Authors: Baker, Deborah; van Driel-Gesztelyi, Lidia; Brooks, David H.;
   Démoulin, Pascal; Valori, Gherardo; Long, David M.; Laming, J. Martin;
   To, Andy S. H.; James, Alexander W.
2020ApJ...894...35B    Altcode: 2020arXiv200303325B
  Within the coronae of stars, abundances of those elements with low
  first ionization potential (FIP) often differ from their photospheric
  values. The coronae of the Sun and solar-type stars mostly show
  enhancements of low-FIP elements (the FIP effect) while more active
  stars such as M dwarfs have coronae generally characterized by the
  inverse-FIP effect (I-FIP). Here we observe patches of I-FIP effect
  solar plasma in AR 12673, a highly complex βγδ active region. We
  argue that the umbrae of coalescing sunspots, and more specifically
  strong light bridges within the umbrae, are preferential locations for
  observing I-FIP effect plasma. Furthermore, the magnetic complexity
  of the active region and major episodes of fast flux emergence also
  lead to repetitive and intense flares. The induced evaporation of
  the chromospheric plasma in flare ribbons crossing umbrae enables
  the observation of four localized patches of I-FIP effect plasma in
  the corona of AR 12673. These observations can be interpreted in the
  context of the ponderomotive force fractionation model which predicts
  that plasma with I-FIP effect composition is created by the refraction
  of waves coming from below the chromosphere. We propose that the waves
  generating the I-FIP effect plasma in solar active regions are generated
  by subphotospheric reconnection of coalescing flux systems. Although
  we only glimpse signatures of I-FIP effect fractionation produced by
  this interaction in patches on the Sun, on highly active M stars it
  may be the dominant process.

---------------------------------------------------------
Title: A Solar Magnetic-fan Flaring Arch Heated by Nonthermal
    Particles and Hot Plasma from an X-Ray Jet Eruption
Authors: Lee, Kyoung-Sun; Hara, Hirohisa; Watanabe, Kyoko; Joshi,
   Anand D.; Brooks, David H.; Imada, Shinsuke; Prasad, Avijeet; Dang,
   Phillip; Shimizu, Toshifumi; Savage, Sabrina L.; Moore, Ronald;
   Panesar, Navdeep K.; Reep, Jeffrey W.
2020ApJ...895...42L    Altcode: 2020arXiv200509875L
  We have investigated an M1.3 limb flare, which develops as a magnetic
  loop/arch that fans out from an X-ray jet. Using Hinode/EIS, we
  found that the temperature increases with height to a value of over
  10<SUP>7</SUP> K at the loop top during the flare. The measured Doppler
  velocity (redshifts of 100-500 km s<SUP>-1</SUP>) and the nonthermal
  velocity (≥100 km s<SUP>-1</SUP>) from Fe XXIV also increase with
  loop height. The electron density increases from 0.3 × 10<SUP>9</SUP>
  cm<SUP>-3</SUP> early in the flare rise to 1.3 × 10<SUP>9</SUP>
  cm<SUP>-3</SUP> after the flare peak. The 3D structure of the loop
  derived with Solar TErrestrial RElations Observatory/EUV Imager
  indicates that the strong redshift in the loop-top region is due to
  upflowing plasma originating from the jet. Both hard X-ray and soft
  X-ray emission from the Reuven Ramaty High Energy Solar Spectroscopic
  Imager were only seen as footpoint brightenings during the impulsive
  phase of the flare, then, soft X-ray emission moved to the loop top in
  the decay phase. Based on the temperature and density measurements and
  theoretical cooling models, the temperature evolution of the flare arch
  is consistent with impulsive heating during the jet eruption followed
  by conductive cooling via evaporation and minor prolonged heating in
  the top of the fan loop. Investigating the magnetic field topology and
  squashing factor map from Solar Dynamics Observatory/HMI, we conclude
  that the observed magnetic-fan flaring arch is mostly heated from low
  atmospheric reconnection accompanying the jet ejection, instead of from
  reconnection above the arch as expected in the standard flare model.

---------------------------------------------------------
Title: Is the High-Resolution Coronal Imager Resolving Coronal
    Strands? Results from AR 12712
Authors: Williams, Thomas; Walsh, Robert W.; Winebarger, Amy R.;
   Brooks, David H.; Cirtain, Jonathan W.; De Pontieu, Bart; Golub,
   Leon; Kobayashi, Ken; McKenzie, David E.; Morton, Richard J.; Peter,
   Hardi; Rachmeler, Laurel A.; Savage, Sabrina L.; Testa, Paola; Tiwari,
   Sanjiv K.; Warren, Harry P.; Watkinson, Benjamin J.
2020ApJ...892..134W    Altcode: 2020arXiv200111254W
  Following the success of the first mission, the High-Resolution
  Coronal Imager (Hi-C) was launched for a third time (Hi-C 2.1)
  on 2018 May 29 from the White Sands Missile Range, NM, USA. On this
  occasion, 329 s of 17.2 nm data of target active region AR 12712 were
  captured with a cadence of ≈4 s, and a plate scale of 0.129 arcsec
  pixel<SUP>-1</SUP>. Using data captured by Hi-C 2.1 and co-aligned
  observations from SDO/AIA 17.1 nm, we investigate the widths of 49
  coronal strands. We search for evidence of substructure within the
  strands that is not detected by AIA, and further consider whether these
  strands are fully resolved by Hi-C 2.1. With the aid of multi-scale
  Gaussian normalization, strands from a region of low emission that can
  only be visualized against the contrast of the darker, underlying moss
  are studied. A comparison is made between these low-emission strands
  and those from regions of higher emission within the target active
  region. It is found that Hi-C 2.1 can resolve individual strands as
  small as ≈202 km, though the more typical strand widths seen are
  ≈513 km. For coronal strands within the region of low emission, the
  most likely width is significantly narrower than the high-emission
  strands at ≈388 km. This places the low-emission coronal strands
  beneath the resolving capabilities of SDO/AIA, highlighting the need
  for a permanent solar observatory with the resolving power of Hi-C.

---------------------------------------------------------
Title: Hi-C 2.1 Observations of Jetlet-like Events at Edges of Solar
    Magnetic Network Lanes
Authors: Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.;
   Winebarger, Amy R.; Tiwari, Sanjiv K.; Savage, Sabrina L.; Golub, Leon
   E.; Rachmeler, Laurel A.; Kobayashi, Ken; Brooks, David H.; Cirtain,
   Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton, Richard J.;
   Peter, Hardi; Testa, Paola; Walsh, Robert W.; Warren, Harry P.
2019ApJ...887L...8P    Altcode: 2019arXiv191102331P
  We present high-resolution, high-cadence observations of six,
  fine-scale, on-disk jet-like events observed by the High-resolution
  Coronal Imager 2.1 (Hi-C 2.1) during its sounding-rocket flight. We
  combine the Hi-C 2.1 images with images from the Solar Dynamics
  Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and the Interface
  Region Imaging Spectrograph (IRIS), and investigate each event’s
  magnetic setting with co-aligned line-of-sight magnetograms from the
  SDO/Helioseismic and Magnetic Imager (HMI). We find that (i) all six
  events are jetlet-like (having apparent properties of jetlets), (ii)
  all six are rooted at edges of magnetic network lanes, (iii) four of
  the jetlet-like events stem from sites of flux cancelation between
  majority-polarity network flux and merging minority-polarity flux, and
  (iv) four of the jetlet-like events show brightenings at their bases
  reminiscent of the base brightenings in coronal jets. The average
  spire length of the six jetlet-like events (9000 ± 3000 km) is three
  times shorter than that for IRIS jetlets (27,000 ± 8000 km). While
  not ruling out other generation mechanisms, the observations suggest
  that at least four of these events may be miniature versions of both
  larger-scale coronal jets that are driven by minifilament eruptions
  and still-larger-scale solar eruptions that are driven by filament
  eruptions. Therefore, we propose that our Hi-C events are driven by
  the eruption of a tiny sheared-field flux rope, and that the flux rope
  field is built and triggered to erupt by flux cancelation.

---------------------------------------------------------
Title: Fine-scale Explosive Energy Release at Sites of Prospective
    Magnetic Flux Cancellation in the Core of the Solar Active Region
    Observed by Hi-C 2.1, IRIS, and SDO
Authors: Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.;
   De Pontieu, Bart; Winebarger, Amy R.; Golub, Leon; Savage, Sabrina L.;
   Rachmeler, Laurel A.; Kobayashi, Ken; Testa, Paola; Warren, Harry P.;
   Brooks, David H.; Cirtain, Jonathan W.; McKenzie, David E.; Morton,
   Richard J.; Peter, Hardi; Walsh, Robert W.
2019ApJ...887...56T    Altcode: 2019arXiv191101424T
  The second Hi-C flight (Hi-C 2.1) provided unprecedentedly high spatial
  and temporal resolution (∼250 km, 4.4 s) coronal EUV images of Fe IX/X
  emission at 172 Å of AR 12712 on 2018 May 29, during 18:56:21-19:01:56
  UT. Three morphologically different types (I: dot-like; II: loop-like;
  III: surge/jet-like) of fine-scale sudden-brightening events (tiny
  microflares) are seen within and at the ends of an arch filament system
  in the core of the AR. Although type Is (not reported before) resemble
  IRIS bombs (in size, and brightness with respect to surroundings),
  our dot-like events are apparently much hotter and shorter in span
  (70 s). We complement the 5 minute duration Hi-C 2.1 data with SDO/HMI
  magnetograms, SDO/AIA EUV images, and IRIS UV spectra and slit-jaw
  images to examine, at the sites of these events, brightenings and
  flows in the transition region and corona and evolution of magnetic
  flux in the photosphere. Most, if not all, of the events are seated
  at sites of opposite-polarity magnetic flux convergence (sometimes
  driven by adjacent flux emergence), implying likely flux cancellation
  at the microflare’s polarity inversion line. In the IRIS spectra
  and images, we find confirming evidence of field-aligned outflow from
  brightenings at the ends of loops of the arch filament system. In types
  I and II the explosion is confined, while in type III the explosion
  is ejective and drives jet-like outflow. The light curves from Hi-C,
  AIA, and IRIS peak nearly simultaneously for many of these events,
  and none of the events display a systematic cooling sequence as seen in
  typical coronal flares, suggesting that these tiny brightening events
  have chromospheric/transition region origin.

---------------------------------------------------------
Title: The High-Resolution Coronal Imager, Flight 2.1
Authors: Rachmeler, Laurel A.; Winebarger, Amy R.; Savage, Sabrina L.;
   Golub, Leon; Kobayashi, Ken; Vigil, Genevieve D.; Brooks, David H.;
   Cirtain, Jonathan W.; De Pontieu, Bart; McKenzie, David E.; Morton,
   Richard J.; Peter, Hardi; Testa, Paola; Tiwari, Sanjiv K.; Walsh,
   Robert W.; Warren, Harry P.; Alexander, Caroline; Ansell, Darren;
   Beabout, Brent L.; Beabout, Dyana L.; Bethge, Christian W.; Champey,
   Patrick R.; Cheimets, Peter N.; Cooper, Mark A.; Creel, Helen K.;
   Gates, Richard; Gomez, Carlos; Guillory, Anthony; Haight, Harlan;
   Hogue, William D.; Holloway, Todd; Hyde, David W.; Kenyon, Richard;
   Marshall, Joseph N.; McCracken, Jeff E.; McCracken, Kenneth; Mitchell,
   Karen O.; Ordway, Mark; Owen, Tim; Ranganathan, Jagan; Robertson,
   Bryan A.; Payne, M. Janie; Podgorski, William; Pryor, Jonathan; Samra,
   Jenna; Sloan, Mark D.; Soohoo, Howard A.; Steele, D. Brandon; Thompson,
   Furman V.; Thornton, Gary S.; Watkinson, Benjamin; Windt, David
2019SoPh..294..174R    Altcode: 2019arXiv190905942R
  The third flight of the High-Resolution Coronal Imager (Hi-C 2.1)
  occurred on May 29, 2018; the Sounding Rocket was launched from White
  Sands Missile Range in New Mexico. The instrument has been modified
  from its original configuration (Hi-C 1) to observe the solar corona
  in a passband that peaks near 172 Å, and uses a new, custom-built
  low-noise camera. The instrument targeted Active Region 12712, and
  captured 78 images at a cadence of 4.4 s (18:56:22 - 19:01:57 UT; 5
  min and 35 s observing time). The image spatial resolution varies due
  to quasi-periodic motion blur from the rocket; sharp images contain
  resolved features of at least 0.47 arcsec. There are coordinated
  observations from multiple ground- and space-based telescopes providing
  an unprecedented opportunity to observe the mass and energy coupling
  between the chromosphere and the corona. Details of the instrument
  and the data set are presented in this paper.

---------------------------------------------------------
Title: Active Region Modulation of Coronal Hole Solar Wind
Authors: Macneil, Allan R.; Owen, Christopher J.; Baker, Deborah;
   Brooks, David H.; Harra, Louise K.; Long, David M.; Wicks, Robert T.
2019ApJ...887..146M    Altcode:
  Active regions (ARs) are a candidate source of the slow solar wind
  (SW), the origins of which are a topic of ongoing research. We present
  a case study that examines the processes by which SW is modulated in
  the presence of an AR in the vicinity of the SW source. We compare
  properties of SW associated with a coronal hole (CH)-quiet Sun boundary
  to SW associated with the same CH but one Carrington rotation later,
  when this region bordered the newly emerged NOAA AR 12532. Differences
  found in a range of in situ parameters are compared between these
  rotations in the context of source region mapping and remote sensing
  observations. Marked changes exist in the structure and composition of
  the SW, which we attribute to the influence of the AR on SW production
  from the CH boundary. These unique observations suggest that the
  features that emerge in the AR-associated wind are consistent with an
  increased occurrence of interchange reconnection during SW production,
  compared with the initial quiet Sun case.

---------------------------------------------------------
Title: Achievements of Hinode in the first eleven years
Authors: Hinode Review Team; Al-Janabi, Khalid; Antolin, Patrick;
   Baker, Deborah; Bellot Rubio, Luis R.; Bradley, Louisa; Brooks,
   David H.; Centeno, Rebecca; Culhane, J. Leonard; Del Zanna, Giulio;
   Doschek, George A.; Fletcher, Lyndsay; Hara, Hirohisa; Harra,
   Louise K.; Hillier, Andrew S.; Imada, Shinsuke; Klimchuk, James A.;
   Mariska, John T.; Pereira, Tiago M. D.; Reeves, Katharine K.; Sakao,
   Taro; Sakurai, Takashi; Shimizu, Toshifumi; Shimojo, Masumi; Shiota,
   Daikou; Solanki, Sami K.; Sterling, Alphonse C.; Su, Yingna; Suematsu,
   Yoshinori; Tarbell, Theodore D.; Tiwari, Sanjiv K.; Toriumi, Shin;
   Ugarte-Urra, Ignacio; Warren, Harry P.; Watanabe, Tetsuya; Young,
   Peter R.
2019PASJ...71R...1H    Altcode:
  Hinode is Japan's third solar mission following Hinotori (1981-1982)
  and Yohkoh (1991-2001): it was launched on 2006 September 22 and is in
  operation currently. Hinode carries three instruments: the Solar Optical
  Telescope, the X-Ray Telescope, and the EUV Imaging Spectrometer. These
  instruments were built under international collaboration with the
  National Aeronautics and Space Administration and the UK Science and
  Technology Facilities Council, and its operation has been contributed
  to by the European Space Agency and the Norwegian Space Center. After
  describing the satellite operations and giving a performance evaluation
  of the three instruments, reviews are presented on major scientific
  discoveries by Hinode in the first eleven years (one solar cycle long)
  of its operation. This review article concludes with future prospects
  for solar physics research based on the achievements of Hinode.

---------------------------------------------------------
Title: Structure and dynamics of the hot flaring loop-top source
    observed by Hinode, SDO, RHESSI, and STEREO
Authors: Lee, Kyoung-Sun; Hara, Hirohisa; Watanabe, Kyoko; Joshi,
   Anand D.; Imada, Shinsuke; Brooks, David H.; Dang, Phillip; Shimizu,
   Toshifumi; Savage, Sabrina
2019AAS...23421605L    Altcode:
  We have investigated an M1.3 flare on 2014 January 13 around
  21:48 UT observed at the west limb using the Hinode, SDO, RHESSI,
  and STEREO. Especially, the Hinode/EIS scanned the flaring loop
  covering the loop-top region over the limb, which is a good target to
  investigate the dynamics of the flaring loop with their height. Using
  the multi-wavelength observations from the Hinode/EIS and SDO/AIA,
  we found a very hot emission above the loop-top observed in Fe XXIV
  and 131Å channel. Measuring the intensity, Doppler velocity and line
  width for the flaring loop, we found that hot emission observed at
  the cusp-like shape of the loop-top region which shows strong redshift
  about 500 km s<SUP>-1</SUP> in Doppler velocity and strong enhancement
  of the non-thermal velocity (line width enhancement) larger than 100
  km s<SUP>-1</SUP>. Combining with the STEREO observation, we have
  examined the 3D structure with loop tilt angle and have investigated
  the velocity distribution of the loop-top region. With the loop tilt
  angle, we could identify the strong redshift at the loop-top region
  may indicate an up-flow along the loop-top region. From RHESSI hard
  X-ray (HXR), and soft X-ray (SXR) emission, we found that the footpoint
  brightening region at the beginning of the flare has a both HXR (25-50
  keV) and SXR (12-25 keV) emission in which imply that the region has
  non-thermal emission or accelerated particles. Then, within 10 minutes
  the soft X-ray (SXR) emission observed near the cusp shape region at
  loop top. The temporal variation of the HXR and SXR emissions and the
  Doppler velocity variation of the hot plasma component at the loop-top
  imply that the strong flow in a hot component near loop-top could be
  the evaporation flows which detected at the corona along the tilted
  loop. Moreover, The temporal evolution of the temperature observed
  by SDO/AIA and Hinode/EIS also shows the cooling process of the flare
  plasma which is consistent with the impulsively heated flare model.

---------------------------------------------------------
Title: Comprehensive Determination of the Hinode/EIS Roll Angle
Authors: Pelouze, Gabriel; Auchère, Frédéric; Bocchialini, Karine;
   Harra, Louise; Baker, Deborah; Warren, Harry P.; Brooks, David H.;
   Mariska, John T.
2019SoPh..294...59P    Altcode: 2019arXiv190311923P
  We present a new coalignment method for the EUV Imaging Spectrometer
  (EIS) on board the Hinode spacecraft. In addition to the pointing
  offset and spacecraft jitter, this method determines the roll angle
  of the instrument, which has never been systematically measured, and
  which is therefore usually not corrected. The optimal pointing for EIS
  is computed by maximizing the cross-correlations of the Fe XII 195.119
  Å line with images from the 193 Å band of the Atmospheric Imaging
  Assembly (AIA) on board the Solar Dynamics Observatory (SDO). By
  coaligning 3336 rasters with high signal-to-noise ratio, we estimate
  the rotation angle between EIS and AIA and explore the distribution
  of its values. We report an average value of (−0.387<SUP>±0.007 )
  ∘</SUP>. We also provide a software implementation of this method
  that can be used to coalign any EIS raster.

---------------------------------------------------------
Title: First Measurement of the Hubble Constant from a Dark Standard
    Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo
    Binary-Black-hole Merger GW170814
Authors: Soares-Santos, M.; Palmese, A.; Hartley, W.; Annis, J.;
   Garcia-Bellido, J.; Lahav, O.; Doctor, Z.; Fishbach, M.; Holz, D. E.;
   Lin, H.; Pereira, M. E. S.; Garcia, A.; Herner, K.; Kessler, R.;
   Peiris, H. V.; Sako, M.; Allam, S.; Brout, D.; Carnero Rosell, A.;
   Chen, H. Y.; Conselice, C.; deRose, J.; deVicente, J.; Diehl, H. T.;
   Gill, M. S. S.; Gschwend, J.; Sevilla-Noarbe, I.; Tucker, D. L.;
   Wechsler, R.; Berger, E.; Cowperthwaite, P. S.; Metzger, B. D.;
   Williams, P. K. G.; Abbott, T. M. C.; Abdalla, F. B.; Avila, S.;
   Bechtol, K.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.;
   Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha,
   C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel,
   P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.;
   Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.;
   Gruendl, R. A.; Gutierrez, G.; Hollowood, D. L.; Hoyle, B.; James,
   D. J.; Jeltema, T.; Kuehn, K.; Kuropatkin, N.; Li, T. S.; Lima, M.;
   Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Neilsen,
   E.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.;
   Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Serrano,
   S.; Smith, M.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson,
   M. E. C.; Tarle, G.; Thomas, R. C.; Walker, A. R.; Wester, W.; Zuntz,
   J.; DES Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.;
   Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.;
   Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.;
   Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, G.; Allocca,
   A.; Aloy, M. A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson,
   S. B.; Anderson, W. G.; Angelova, S. V.; Appert, S.; Arai, K.; Araya,
   M. C.; Areeda, J. S.; Arène, M.; Ascenzi, S.; Ashton, G.; Aston,
   S. M.; Astone, P.; Aubin, F.; Aufmuth, P.; AultONeal, K.; Austin, C.;
   Avendano, V.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Badaracco, F.;
   Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin,
   G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.;
   Barish, B. C.; Barker, D.; Barkett, K.; Barnum, S.; Barone, F.; Barr,
   B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.;
   Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy,
   B.; Bejger, M.; Bell, A. S.; Beniwal, D.; Bergmann, G.; Bernuzzi,
   S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhandare, R.; Bidler, J.; Bilenko, I. A.; Bilgili,
   S. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans,
   S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Blackburn, J. K.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bode, N.; Boer,
   M.; Boetzel, Y.; Bogaert, G.; Bondu, F.; Bonilla, E.; Bonnand,
   R.; Booker, P.; Boom, B. A.; Booth, C. D.; Bork, R.; Boschi, V.;
   Bose, S.; Bossie, K.; Bossilkov, V.; Bosveld, J.; Bouffanais, Y.;
   Bozzi, A.; Bradaschia, C.; Brady, P. R.; Bramley, A.; Branchesi, M.;
   Brau, J. E.; Briant, T.; Briggs, J. H.; Brighenti, F.; Brillet, A.;
   Brinkmann, M.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brunett,
   S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic,
   D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.;
   Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni,
   E.; Camp, J. B.; Campbell, W. A.; Cannon, K. C.; Cao, H.; Cao, J.;
   Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Carullo,
   G.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.;
   Cavalieri, R.; Cella, G.; Cerdá-Durán, P.; Cerretani, G.; Cesarini,
   E.; Chaibi, O.; Chakravarti, K.; Chamberlin, S. J.; Chan, M.; Chao,
   S.; Charlton, P.; Chase, E. A.; Chassande-Mottin, E.; Chatterjee,
   D.; Chaturvedi, M.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, X.;
   Chen, Y.; Cheng, H. -P.; Cheong, C. K.; Chia, H. Y.; Chincarini, A.;
   Chiummo, A.; Cho, G.; Cho, H. S.; Cho, M.; Christensen, N.; Chu, Q.;
   Chua, S.; Chung, K. W.; Chung, S.; Ciani, G.; Ciobanu, A. A.; Ciolfi,
   R.; Cipriano, F.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater,
   P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Colgan,
   R.; Colleoni, M.; Collette, C. G.; Collins, C.; Cominsky, L. R.;
   Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt,
   T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Cotesta, R.; Coughlin, M. W.; Coughlin,
   S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.;
   Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne,
   R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Croquette, M.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.;
   Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann,
   K.; Dasgupta, A.; Da Silva Costa, C. F.; Datrier, L. E. H.; Dattilo,
   V.; Dave, I.; Davis, D.; Daw, E. J.; DeBra, D.; Deenadayalan, M.;
   Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.;
   DeMarchi, L. M.; Demos, N.; Dent, T.; De Pietri, R.; Derby, J.;
   De Rosa, R.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Dhurandhar,
   S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di
   Girolamo, T.; Di Lieto, A.; Ding, B.; Di Pace, S.; Di Palma, I.; Di
   Renzo, F.; Dmitriev, A.; Donovan, F.; Dooley, K. L.; Doravari, S.;
   Dorrington, I.; Downes, T. P.; Drago, M.; Driggers, J. C.; Du, Z.;
   Dupej, P.; Dwyer, S. E.; Easter, P. J.; Edo, T. B.; Edwards, M. C.;
   Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenmann, M.;
   Eisenstein, R. A.; Estelles, H.; Estevez, D.; Etienne, Z. B.; Etzel,
   T.; Evans, M.; Evans, T. M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan,
   X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata,
   M.; Fays, M.; Fazio, M.; Fee, C.; Feicht, J.; Fejer, M. M.; Feng,
   F.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferreira,
   T. A.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher,
   R. P.; Fishner, J. M.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.;
   Flynn, E.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Fournier, J. -D.;
   Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia, A.; García-Quirós, C.; Garufi, F.; Gateley, B.;
   Gaudio, S.; Gaur, G.; Gayathri, V.; Gemme, G.; Genin, E.; Gennai,
   A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.;
   Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giacomazzo, B.; Giaime,
   J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Giordano, G.; Glover,
   L.; Godwin, P.; Goetz, E.; Goetz, R.; Goncharov, B.; González, G.;
   Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan,
   S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.;
   Grant, A.; Gras, S.; Grassia, P.; Gray, C.; Gray, R.; Greco, G.; Green,
   A. C.; Green, R.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald,
   S.; Guidi, G. M.; Gulati, H. K.; Guo, Y.; Gupta, A.; Gupta, M. K.;
   Gustafson, E. K.; Gustafson, R.; Haegel, L.; Halim, O.; Hall, B. R.;
   Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.;
   Hanks, J.; Hanna, C.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.;
   Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Haster, C. -J.;
   Haughian, K.; Hayes, F. J.; Healy, J.; Heidmann, A.; Heintze, M. C.;
   Heitmann, H.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Hernandez Vivanco, Francisco; Heurs, M.; Hild,
   S.; Hinderer, T.; Hoak, D.; Hochheim, S.; Hofman, D.; Holgado, A. M.;
   Holland, N. A.; Holt, K.; Hopkins, P.; Horst, C.; Hough, J.; Howell,
   E. J.; Hoy, C. G.; Hreibi, A.; Huerta, E. A.; Hughey, B.; Hulko, M.;
   Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idzkowski, B.; Iess, A.;
   Ingram, C.; Inta, R.; Intini, G.; Irwin, B.; Isa, H. N.; Isac, J. -M.;
   Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jadhav, S. J.; Jani, K.;
   Janthalur, N. N.; Jaranowski, P.; Jenkins, A. C.; Jiang, J.; Johnson,
   D. S.; Jones, A. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.;
   Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy,
   S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen,
   K. S.; Kashyap, R.; Kasprzack, M.; Katsanevas, S.; Katsavounidis, E.;
   Katzman, W.; Kaufer, S.; Kawabe, K.; Keerthana, N. V.; Kéfélian, F.;
   Keitel, D.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, H.; Khan,
   I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Khursheed, M.; Kijbunchoo,
   N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim,
   Y. -M.; Kimball, C.; King, E. J.; King, P. J.; Kinley-Hanlon, M.;
   Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klika, J. H.; Klimenko,
   S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koekoek, G.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Koper, N.; Korobko, M.; Korth, W. Z.;
   Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnendu, N.; Królak,
   A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo,
   L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Lam, T. L.;
   Landry, M.; Lane, B. B.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza,
   R. K.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci,
   P.; Leavey, S.; Lecoeuche, Y. K.; Lee, C. H.; Lee, H. K.; Lee, H. M.;
   Lee, H. W.; Lee, J.; Lee, K.; Lehmann, J.; Lenon, A.; Letendre, N.;
   Levin, Y.; Li, J.; Li, K. J. L.; Li, T. G. F.; Li, X.; Lin, F.; Linde,
   F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.;
   Lockerbie, N. A.; London, L. T.; Longo, A.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lower, M. E.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.;
   Ma, Y.; Macas, R.; Macfoy, S.; MacInnis, M.; Macleod, D. M.; Macquet,
   A.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche,
   L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malik, A.; Man, N.;
   Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.;
   Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsat, S.;
   Martelli, F.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason,
   K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.;
   Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala,
   N.; Mazumder, N.; McCann, J. J.; McCarthy, R.; McClelland, D. E.;
   McCormick, S.; McCuller, L.; McGuire, S. C.; McIver, J.; McManus,
   D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.;
   Mehmet, M.; Mehta, A. K.; Meidam, J.; Melatos, A.; Mendell, G.;
   Mercer, R. A.; Mereni, L.; Merilh, E. L.; Merzougui, M.; Meshkov,
   S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao,
   H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller,
   A. L.; Miller, A.; Millhouse, M.; Mills, J. C.; Milovich-Goff, M. C.;
   Minazzoli, O.; Minenkov, Y.; Mishkin, A.; Mishra, C.; Mistry, T.;
   Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mo,
   G.; Moffa, D.; Mogushi, K.; Mohapatra, S. R. P.; Montani, M.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Mours, B.; Mow-Lowry,
   C. M.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund,
   N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray,
   P. G.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.;
   Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Ng, K. Y.;
   Ng, S.; Nguyen, P.; Nichols, D.; Nissanke, S.; Nocera, F.; North,
   C.; Nuttall, L. K.; Obergaulinger, M.; Oberling, J.; O'Brien, B. D.;
   O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Ohta, H.;
   Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly,
   B.; Ormiston, R. G.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine,
   S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Pagano,
   G.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.;
   Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.;
   Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti,
   R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.;
   Pedersen, C.; Pedraza, M.; Pedurand, R.; Pele, A.; Penn, S.; Perez,
   C. J.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Phukon, K. S.;
   Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pillant, G.; Pinard,
   L.; Pirello, M.; Pitkin, M.; Poggiani, R.; Pong, D. Y. T.; Ponrathnam,
   S.; Popolizio, P.; Porter, E. K.; Powell, J.; Prajapati, A. K.; Prasad,
   J.; Prasai, K.; Prasanna, R.; Pratten, G.; Prestegard, T.; Privitera,
   S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo,
   P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quinonez, P. J.; Quintero,
   E. A.; Quitzow-James, R.; Radkins, H.; Radulescu, N.; Raffai, P.;
   Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.;
   Ramos-Buades, A.; Rana, Javed; Rao, K.; Rapagnani, P.; Raymond, V.;
   Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.;
   Ren, W.; Ricci, F.; Richardson, C. J.; Richardson, J. W.; Ricker,
   P. M.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Rocchi,
   A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romanelli, M.; Romano,
   R.; Romel, C. L.; Romie, J. H.; Rose, K.; Rosińska, D.; Rosofsky,
   S. G.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins,
   G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sakellariadou, M.; Salconi,
   L.; Saleem, M.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sanchez,
   L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Santiago,
   K. A.; Sarin, N.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage,
   R. L.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, P.; Schnabel, R.;
   Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schulte, B. W.;
   Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.;
   Sellers, D.; Sengupta, A. S.; Sennett, N.; Sentenac, D.; Sequino,
   V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.;
   Shaner, M. B.; Shao, L.; Sharma, P.; Shawhan, P.; Shen, H.; Shink,
   R.; Shoemaker, D. H.; Shoemaker, D. M.; ShyamSundar, S.; Siellez,
   K.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, N.;
   Singhal, A.; Sintes, A. M.; Sitmukhambetov, S.; Skliris, V.; Slagmolen,
   B. J. J.; Slaven-Blair, T. J.; Smith, J. R.; Smith, R. J. E.; Somala,
   S.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Sowell,
   E.; Spencer, A. P.; Srivastava, A. K.; Srivastava, V.; Staats, K.;
   Stachie, C.; Standke, M.; Steer, D. A.; Steinke, M.; Steinlechner, J.;
   Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stocks, D.; Stone,
   R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk,
   A.; Sturani, R.; Stuver, A. L.; Sudhir, V.; Summerscales, T. Z.; Sun,
   L.; Sunil, S.; Sur, A.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.;
   Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder,
   D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor,
   R.; Thies, F.; Thomas, M.; Thomas, P.; Thondapu, S. R.; Thorne, K. A.;
   Thrane, E.; Tiwari, Shubhanshu; Tiwari, Srishti; Tiwari, V.; Toland,
   K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.;
   Töyrä, D.; Travasso, F.; Traylor, G.; Tringali, M. C.; Trovato,
   A.; Trozzo, L.; Trudeau, R.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada,
   L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan,
   C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes,
   G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den
   Broeck, C.; Vander-Hyde, D. C.; van Heijningen, J. V.; van der Schaaf,
   L.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.;
   Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.;
   Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.;
   Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warden, Z. A.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert, M.;
   Weinstein, A. J.; Weiss, R.; Wellmann, F.; Wen, L.; Wessel, E. K.;
   Weßels, P.; Westhouse, J. W.; Wette, K.; Whelan, J. T.; Whiting,
   B. F.; Whittle, C.; Wilken, D. M.; Williams, D.; Williamson, A. R.;
   Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.;
   Wittel, H.; Woan, G.; Woehler, J.; Wofford, J. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, L.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yeeles, D. W.; Yu, Hang;
   Yu, Haocun; Yuen, S. H. R.; Yvert, M.; Zadrożny, A. K.; Zanolin, M.;
   Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, J.; Zhang, L.; Zhang,
   T.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zimmerman, A.; Zucker,
   M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2019ApJ...876L...7S    Altcode: 2019arXiv190101540T
  We present a multi-messenger measurement of the Hubble constant
  H <SUB>0</SUB> using the binary-black-hole merger GW170814 as a
  standard siren, combined with a photometric redshift catalog from the
  Dark Energy Survey (DES). The luminosity distance is obtained from
  the gravitational wave signal detected by the Laser Interferometer
  Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017
  August 14, and the redshift information is provided by the DES Year 3
  data. Black hole mergers such as GW170814 are expected to lack bright
  electromagnetic emission to uniquely identify their host galaxies and
  build an object-by-object Hubble diagram. However, they are suitable
  for a statistical measurement, provided that a galaxy catalog of
  adequate depth and redshift completion is available. Here we present
  the first Hubble parameter measurement using a black hole merger. Our
  analysis results in {H}<SUB>0</SUB>={75}<SUB>-32</SUB><SUP>+40</SUP>
  {km} {{{s}}}<SUP>-1</SUP> {Mpc}}<SUP>-1</SUP>, which is consistent
  with both SN Ia and cosmic microwave background measurements of the
  Hubble constant. The quoted 68% credible region comprises 60% of the
  uniform prior range [20, 140] km s<SUP>-1</SUP> Mpc<SUP>-1</SUP>,
  and it depends on the assumed prior range. If we take a broader
  prior of [10, 220] km s<SUP>-1</SUP> Mpc<SUP>-1</SUP>, we
  find {H}<SUB>0</SUB>={78}<SUB>-24</SUB><SUP>+96</SUP> {km}
  {{{s}}}<SUP>-1</SUP> {Mpc}}<SUP>-1</SUP> (57% of the prior
  range). Although a weak constraint on the Hubble constant from a single
  event is expected using the dark siren method, a multifold increase in
  the LVC event rate is anticipated in the coming years and combinations
  of many sirens will lead to improved constraints on H <SUB>0</SUB>.

---------------------------------------------------------
Title: Transient Inverse-FIP Plasma Composition Evolution within a
    Solar Flare
Authors: Baker, Deborah; van Driel-Gesztelyi, Lidia; Brooks, David
   H.; Valori, Gherardo; James, Alexander W.; Laming, J. Martin; Long,
   David M.; Démoulin, Pascal; Green, Lucie M.; Matthews, Sarah A.;
   Oláh, Katalin; Kővári, Zsolt
2019ApJ...875...35B    Altcode: 2019arXiv190206948B
  Understanding elemental abundance variations in the solar corona
  provides an insight into how matter and energy flow from the
  chromosphere into the heliosphere. Observed variations depend on the
  first ionization potential (FIP) of the main elements of the Sun’s
  atmosphere. High-FIP elements (&gt;10 eV) maintain photospheric
  abundances in the corona, whereas low-FIP elements have enhanced
  abundances. Conversely, inverse FIP (IFIP) refers to the enhancement of
  high-FIP or depletion of low-FIP elements. We use spatially resolved
  spectroscopic observations, specifically the Ar XIV/Ca XIV intensity
  ratio, from Hinode’s Extreme-ultraviolet Imaging Spectrometer to
  investigate the distribution and evolution of plasma composition
  within two confined flares in a newly emerging, highly sheared
  active region. During the decay phase of the first flare, patches
  above the flare ribbons evolve from the FIP to the IFIP effect, while
  the flaring loop tops show a stronger FIP effect. The patch and loop
  compositions then evolve toward the preflare basal state. We propose
  an explanation of how flaring in strands of highly sheared emerging
  magnetic fields can lead to flare-modulated IFIP plasma composition
  over coalescing umbrae which are crossed by flare ribbons. Subsurface
  reconnection between the coalescing umbrae leads to the depletion of
  low-FIP elements as a result of an increased wave flux from below. This
  material is evaporated when the flare ribbons cross the umbrae. Our
  results are consistent with the ponderomotive fractionation model for
  the creation of IFIP-biased plasma.

---------------------------------------------------------
Title: Properties of the Diffuse Emission around Warm Loops in Solar
    Active Regions
Authors: Brooks, David H.
2019ApJ...873...26B    Altcode: 2019arXiv190107741B
  Coronal loops in active regions are the subjects of intensive
  investigation, but the important diffuse unresolved emission in which
  they are embedded has received relatively little attention. Here
  I measure the densities and emission measure (EM) distributions of
  a sample of background-foreground regions surrounding warm (2 MK)
  coronal loops, and introduce two new aspects to the analysis. First,
  I infer the EM distributions only from temperatures that contribute
  to the same background emission. Second, I measure the background
  emission co-spatially with the loops so that the results are truly
  representative of the immediate loop environment. The second aspect
  also allows me to take advantage of the presence of embedded loops
  to infer information about the (unresolvable) magnetic field in
  the background. I find that about half of the regions in my sample
  have narrow but not quite isothermal EM distributions with a peak
  temperature of 1.4-2 MK. The other half have broad EM distributions
  (Gaussian width &gt;3 × 10<SUP>5</SUP> K), and the width of the
  EM appears to be correlated with peak temperature. Densities in the
  diffuse background are log (n/cm<SUP>-3</SUP>) = 8.5-9.0. Significantly,
  these densities and temperatures imply that the co-spatial background
  is broadly compatible with static equilibrium theory (RTV scaling laws)
  provided that the unresolved field length is comparable to the embedded
  loop length. For this agreement to break down, the field length in
  most cases would have to be substantially longer than the loop length,
  a factor of 2-3 on average, which for the sample in this work approaches
  the dimensions of only the largest active regions.

---------------------------------------------------------
Title: A Diagnostic of Coronal Elemental Behavior during the Inverse
    FIP Effect in Solar Flares
Authors: Brooks, David H.
2018ApJ...863..140B    Altcode: 2018arXiv180704408B
  The solar corona shows a distinctive pattern of elemental abundances
  that is different from that of the photosphere. Low first ionization
  potential (FIP) elements are enhanced by factors of several. A similar
  effect is seen in the atmospheres of some solar-like stars, while
  late-type M stars show an inverse FIP effect. This inverse effect
  was recently detected on the Sun during solar flares, potentially
  allowing a very detailed look at the spatial and temporal behavior
  that is not possible from stellar observations. A key question for
  interpreting these measurements is whether both effects act solely on
  low-FIP elements (a true inverse effect predicted by some models),
  or whether the inverse FIP effect arises because high-FIP elements
  are enhanced. Here we develop a new diagnostic that can discriminate
  between the two scenarios, based on modeling of the radiated power
  loss, and apply the models to a numerical hydrodynamic simulation of
  coronal loop cooling. We show that when low-/high-FIP elements are
  depleted/enhanced, there is a significant difference in the cooling
  lifetime of loops that is greatest at lower temperatures. We apply this
  diagnostic to a post X1.8 flare loop arcade and inverse FIP region,
  and show that for this event, low-FIP elements are depleted. We discuss
  the results in the context of stellar observations, and models of the
  FIP and inverse FIP effect. We also provide the radiated power-loss
  functions for the two inverse FIP effect scenarios in machine readable
  form to facilitate further modeling.

---------------------------------------------------------
Title: Solar Cycle Observations of the Neon Abundance in the
    Sun-as-a-star
Authors: Brooks, David H.; Baker, Deborah; van Driel-Gesztelyi, Lidia;
   Warren, Harry P.
2018ApJ...861...42B    Altcode: 2018arXiv180507032B
  Properties of the Sun’s interior can be determined accurately
  from helioseismological measurements of solar oscillations. These
  measurements, however, are in conflict with photospheric elemental
  abundances derived using 3D hydrodynamic models of the solar
  atmosphere. This divergence of theory and helioseismology is known as
  the “solar modeling problem.” One possible solution is that the
  photospheric neon abundance, which is deduced indirectly by combining
  the coronal Ne/O ratio with the photospheric O abundance, is larger
  than generally accepted. There is some support for this idea from
  observations of cool stars. The Ne/O abundance ratio has also been
  found to vary with the solar cycle in the slowest solar wind streams
  and coronal streamers, and the variation from solar maximum to minimum
  in streamers (∼0.1-0.25) is large enough to potentially bring some
  of the solar models into agreement with the seismic data. Here we use
  daily sampled observations from the EUV Variability Experiment on the
  Solar Dynamics Observatory taken in 2010-2014, to investigate whether
  the coronal Ne/O abundance ratio shows a variation with the solar cycle
  when the Sun is viewed as a star. We find only a weak dependence on,
  and moderate anti-correlation with, the solar cycle with the ratio
  measured around 0.2-0.3 MK falling from 0.17 at solar minimum to
  0.11 at solar maximum. The effect is amplified at higher temperatures
  (0.3-0.6 MK) with a stronger anti-correlation and the ratio falling
  from 0.16 at solar minimum to 0.08 at solar maximum. The values we
  find at solar minimum are too low to solve the solar modeling problem.

---------------------------------------------------------
Title: Coronal Elemental Abundances in Solar Emerging Flux Regions
Authors: Baker, Deborah; Brooks, David H.; van Driel-Gesztelyi,
   Lidia; James, Alexander W.; Démoulin, Pascal; Long, David M.; Warren,
   Harry P.; Williams, David R.
2018ApJ...856...71B    Altcode: 2018arXiv180108424B
  The chemical composition of solar and stellar atmospheres differs from
  the composition of their photospheres. Abundances of elements with low
  first ionization potential (FIP) are enhanced in the corona relative
  to high-FIP elements with respect to the photosphere. This is known as
  the FIP effect and it is important for understanding the flow of mass
  and energy through solar and stellar atmospheres. We used spectroscopic
  observations from the Extreme-ultraviolet Imaging Spectrometer on board
  the Hinode observatory to investigate the spatial distribution and
  temporal evolution of coronal plasma composition within solar emerging
  flux regions inside a coronal hole. Plasma evolved to values exceeding
  those of the quiet-Sun corona during the emergence/early-decay phase
  at a similar rate for two orders of magnitude in magnetic flux, a rate
  comparable to that observed in large active regions (ARs) containing
  an order of magnitude more flux. During the late-decay phase, the rate
  of change was significantly faster than what is observed in large,
  decaying ARs. Our results suggest that the rate of increase during the
  emergence/early-decay phase is linked to the fractionation mechanism
  that leads to the FIP effect, whereas the rate of decrease during
  the later decay phase depends on the rate of reconnection with the
  surrounding magnetic field and its plasma composition.

---------------------------------------------------------
Title: Spectroscopic Observations of Current Sheet Formation and
    Evolution
Authors: Warren, Harry P.; Brooks, David H.; Ugarte-Urra, Ignacio;
   Reep, Jeffrey W.; Crump, Nicholas A.; Doschek, George A.
2018ApJ...854..122W    Altcode: 2017arXiv171110826W
  We report on the structure and evolution of a current sheet that formed
  in the wake of an eruptive X8.3 flare observed at the west limb of
  the Sun on 2017 September 10. Using observations from the EUV Imaging
  Spectrometer (EIS) on Hinode and the Atmospheric Imaging Assembly
  (AIA) on the Solar Dynamics Observatory, we find that plasma in the
  current sheet reaches temperatures of about 20 MK and that the range
  of temperatures is relatively narrow. The highest temperatures occur
  at the base of the current sheet, in the region near the top of the
  post-flare loop arcade. The broadest high temperature line profiles,
  in contrast, occur at the largest observed heights. Furthermore,
  line broadening is strong very early in the flare and diminishes over
  time. The current sheet can be observed in the AIA 211 and 171 channels,
  which have a considerable contribution from thermal bremsstrahlung
  at flare temperatures. Comparisons of the emission measure in these
  channels with other EIS wavelengths and AIA channels dominated by
  Fe line emission indicate a coronal composition and suggest that
  the current sheet is formed by the heating of plasma already in the
  corona. Taken together, these observations suggest that some flare
  heating occurs in the current sheet, while additional energy is released
  as newly reconnected field lines relax and become more dipolar.

---------------------------------------------------------
Title: The Origin of the Solar Wind
Authors: Lee, Kyoung-Sun; Brooks, David H.; Imada, Shinsuke
2018ASSL..449...95L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: A gravitational-wave standard siren measurement of the
    Hubble constant
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.;
   Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch,
   J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.;
   Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann,
   G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.;
   Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley,
   G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.;
   Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.;
   Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair,
   R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe,
   A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi,
   V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.;
   Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.;
   Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.;
   Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema,
   A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.;
   Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.;
   Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.;
   Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano,
   C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz,
   J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.;
   Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani,
   G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.;
   Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.;
   Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H. -P.;
   Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho,
   M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.;
   Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.;
   Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.;
   Cocchieri, C.; Coccia, E.; Cohadon, P. -F.; Cohen, D.; Colla, A.;
   Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper,
   S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley,
   K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin,
   M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares,
   P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne,
   D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.;
   Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco,
   E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.;
   Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.;
   Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.;
   de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise,
   S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.;
   Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.;
   de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore,
   L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di
   Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley,
   K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez,
   M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.;
   Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards,
   M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad,
   D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen,
   M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth,
   P. W. F.; Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.;
   Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel,
   P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.;
   Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar,
   S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur,
   G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.;
   George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh,
   Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.;
   Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.;
   Goncharov, B.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.;
   Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado,
   A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.;
   Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.;
   Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange,
   J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen,
   M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.;
   Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon,
   A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.;
   Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.;
   Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette,
   V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace,
   G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas,
   R.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.;
   Hernandez, I. Magaña; Magaña-Sandoval, F.; Zertuche, L. Magaña;
   Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.;
   Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni,
   F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.;
   Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.;
   Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera,
   E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni,
   S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder,
   N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.;
   McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.;
   McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.;
   Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.;
   Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.;
   Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.;
   Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller,
   J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.;
   Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher,
   G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.;
   Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno,
   G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir,
   A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.;
   Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.;
   Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson,
   J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin,
   L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols,
   D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.;
   Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.;
   Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.;
   Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega,
   L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.;
   Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.;
   Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard;
   Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.;
   Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker,
   W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.;
   Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand,
   R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.;
   Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot,
   M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto,
   I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio,
   P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.;
   Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.;
   Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo,
   M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.;
   Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai,
   P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez,
   K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.;
   Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.;
   Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo,
   M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland,
   L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.;
   Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan,
   S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.;
   Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem,
   M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez,
   E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders,
   J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter,
   O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer,
   J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.;
   Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz,
   B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers,
   D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock,
   D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.;
   Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.;
   Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg,
   D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes,
   A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.;
   Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino,
   F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.;
   Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner,
   S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain,
   K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver,
   A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton,
   P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.;
   Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.;
   Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.;
   Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.;
   Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.;
   Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä,
   D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.;
   Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.;
   Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban,
   A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van
   Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck,
   C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.;
   van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.;
   Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara,
   K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets,
   A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo,
   T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade,
   L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang,
   G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.;
   Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L. -W.; Weinert,
   M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels,
   P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb,
   S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams,
   R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.;
   Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford,
   J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki,
   D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.;
   Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin,
   M.; Zelenova, T.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.;
   Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.;
   Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.;
   Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore,
   B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Piro, A. L.; Prochaska,
   J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.;
   Siebert, M. R.; Simon, J. D.; Ulloa, N.; Annis, J.; Soares-Santos,
   M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.;
   Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler,
   R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Drlica-Wagner,
   A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong,
   W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl,
   R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen,
   D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenço,
   A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson,
   T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl,
   M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako,
   M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira,
   F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams,
   P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.;
   Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.;
   Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco;
   Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da
   Costa, L. N.; Davis, C.; Depoy, D. L.; Desai, S.; Dietrich, J. P.;
   Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga,
   E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.;
   Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.;
   Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn,
   K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.;
   March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando,
   R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.;
   Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith,
   M.; Smith, R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.;
   Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller,
   J.; Zhang, Y.; Haislip, J. B.; Kouprianov, V. V.; Reichart,
   D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi,
   Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis;
   Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, A. J.;
   Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.;
   Evans, P. A.; Fynbo, J. P. U.; González-Fernández, C.; Greiner,
   J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen,
   B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi,
   E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.;
   Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema,
   K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.;
   Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.;
   Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.;
   Rebolo, R.; Serra-Ricart, M.
2017Natur.551...85A    Altcode: 2017arXiv171005835A
  On 17 August 2017, the Advanced LIGO and Virgo detectors observed the
  gravitational-wave event GW170817—a strong signal from the merger
  of a binary neutron-star system. Less than two seconds after the
  merger, a γ-ray burst (GRB 170817A) was detected within a region
  of the sky consistent with the LIGO-Virgo-derived location of the
  gravitational-wave source. This sky region was subsequently observed
  by optical astronomy facilities, resulting in the identification of
  an optical transient signal within about ten arcseconds of the galaxy
  NGC 4993. This detection of GW170817 in both gravitational waves and
  electromagnetic waves represents the first ‘multi-messenger’
  astronomical observation. Such observations enable GW170817 to be
  used as a ‘standard siren’ (meaning that the absolute distance
  to the source can be determined directly from the gravitational-wave
  measurements) to measure the Hubble constant. This quantity represents
  the local expansion rate of the Universe, sets the overall scale of
  the Universe and is of fundamental importance to cosmology. Here
  we report a measurement of the Hubble constant that combines the
  distance to the source inferred purely from the gravitational-wave
  signal with the recession velocity inferred from measurements of
  the redshift using the electromagnetic data. In contrast to previous
  measurements, ours does not require the use of a cosmic ‘distance
  ladder’: the gravitational-wave analysis can be used to estimate
  the luminosity distance out to cosmological scales directly, without
  the use of intermediate astronomical distance measurements. We
  determine the Hubble constant to be about 70 kilometres per second
  per megaparsec. This value is consistent with existing measurements,
  while being completely independent of them. Additional standard siren
  measurements from future gravitational-wave sources will enable the
  Hubble constant to be constrained to high precision.

---------------------------------------------------------
Title: Multi-messenger Observations of a Binary Neutron Star Merger
Authors: Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.;
   Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya,
   V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma,
   K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.;
   Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva,
   A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.;
   Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun,
   K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.;
   Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin,
   C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae,
   S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.;
   Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker,
   D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia,
   M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri,
   R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.;
   Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger,
   B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.;
   Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko,
   I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.;
   Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.;
   Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair,
   C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.;
   Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.;
   Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais,
   Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau,
   J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill,
   P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett,
   S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno,
   A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.;
   Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.;
   Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.;
   Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride,
   S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.;
   Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.;
   Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.;
   Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.;
   Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.;
   Chen, X.; Chen, Y.; Cheng, H. -P.; Chia, H.; Chincarini, A.; Chiummo,
   A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.;
   Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani,
   G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.;
   Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon,
   P. -F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.;
   Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt,
   T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.;
   Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon,
   J. -P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.;
   Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton,
   J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.;
   Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya,
   G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.;
   Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.;
   Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis,
   M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.;
   De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi,
   C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz,
   M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.;
   Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.;
   Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas,
   R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker,
   C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.;
   Edo, T. B.; Edwards, M. C.; Effler, A.; Ehrens, P.; Eichholz, J.;
   Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.;
   Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich,
   M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr,
   B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee,
   C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.;
   Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.;
   Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.;
   Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.;
   Forsyth, S. S.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.;
   Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov,
   V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel,
   S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.;
   Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.;
   Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George,
   D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup;
   Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto,
   A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov,
   B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky,
   M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.;
   Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.;
   Gretarsson, E. M.; Griswold, B.; Groot, P.; Grote, H.; Grunewald, S.;
   Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa,
   K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall,
   E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks,
   J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick,
   T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C. -J.;
   Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann,
   H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.;
   Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.;
   Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough,
   J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta,
   E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh,
   T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J. -M.; Isi,
   M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski,
   P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones,
   D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi,
   C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner,
   J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.;
   Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.;
   Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.;
   Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov,
   E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.;
   Kim, W. S.; Kim, Y. -M.; Kimbrell, S. J.; King, E. J.; King, P. J.;
   Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.;
   Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley,
   S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska,
   I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak,
   A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia,
   A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.;
   Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard,
   A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.;
   Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.;
   Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin,
   Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo,
   R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini,
   M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto,
   C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch,
   R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.;
   Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña
   Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.;
   Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.;
   Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.;
   Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh,
   P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.;
   Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger,
   T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.;
   Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland,
   D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.;
   McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.;
   Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.;
   Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.;
   Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.;
   Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.;
   Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff,
   M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.;
   Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi,
   A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore,
   C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry,
   C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.;
   Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.;
   Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni,
   L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery,
   M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.;
   Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke,
   S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall,
   L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.;
   Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.;
   O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine,
   S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page,
   J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.;
   Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.;
   Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti,
   F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.;
   Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli,
   B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele,
   A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.;
   Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro,
   V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.;
   Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell,
   J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard,
   T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi,
   G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer,
   M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab,
   F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan,
   C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades,
   A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.;
   Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.;
   Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.;
   Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.;
   Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska,
   D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.;
   Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou,
   M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.;
   Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.;
   Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.;
   Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale,
   P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel,
   R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette,
   D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.;
   Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac,
   D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah,
   A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan,
   P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.;
   Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.;
   Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.;
   Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg,
   J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.;
   Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner,
   J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.;
   Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.;
   Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.;
   Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.;
   Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.;
   Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor,
   R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.;
   Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.;
   Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.;
   Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor,
   G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.;
   Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini,
   D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.;
   Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den
   Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der
   Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.;
   Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch,
   J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.;
   Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.;
   Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin,
   S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.;
   Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.;
   Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver,
   B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.;
   Wessel, E. K.; Wessels, P.; Westerweck, J.; Westphal, T.; Wette, K.;
   Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken,
   D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.;
   Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan,
   G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright,
   J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey,
   C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert,
   M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J. -P.; Zevin,
   M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y. -H.; Zhao, C.; Zhou,
   M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.;
   Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration;
   Wilson-Hodge, C. A.; Bissaldi, E.; Blackburn, L.; Briggs, M. S.;
   Burns, E.; Cleveland, W. H.; Connaughton, V.; Gibby, M. H.; Giles,
   M. M.; Goldstein, A.; Hamburg, R.; Jenke, P.; Hui, C. M.; Kippen,
   R. M.; Kocevski, D.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.;
   Poolakkil, S.; Preece, R. D.; Racusin, J.; Roberts, O. J.; Stanbro,
   M.; Veres, P.; von Kienlin, A.; GBM, Fermi; Savchenko, V.; Ferrigno,
   C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.;
   Courvoisier, T. J. -L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain,
   E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Martin-Carrillo, A.;
   Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J. -P.; Sunyaev,
   R.; Ubertini, P.; INTEGRAL; Aartsen, M. G.; Ackermann, M.; Adams, J.;
   Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Samarai, I. Al; Altmann, D.;
   Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.;
   Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.;
   Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.;
   Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss,
   E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.;
   Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.;
   Brayeur, L.; Brenzke, M.; Bretz, H. -P.; Bron, S.; Brostean-Kaiser,
   J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.;
   Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.;
   Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de
   André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.;
   De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With,
   M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.;
   Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.;
   Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.;
   Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.;
   Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.;
   Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt,
   A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren,
   A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing,
   K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman,
   K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber,
   M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.;
   Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski,
   P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani,
   A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher,
   T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.;
   Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.;
   Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.;
   Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.;
   Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lesiak-Bzdak,
   M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.;
   Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.;
   Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier,
   M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.;
   Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer,
   R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki,
   S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha,
   A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper,
   J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.;
   Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea,
   I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.;
   Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch,
   D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.;
   Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.;
   Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg,
   S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.;
   Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.;
   Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.;
   Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Strotjohann, N. L.;
   Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar,
   J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav,
   S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou,
   M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.;
   Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.;
   Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.;
   Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky,
   N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.;
   Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams,
   D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg,
   K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida,
   S.; Yuan, T.; Zoll, M.; IceCube Collaboration; Balasubramanian, A.;
   Mate, S.; Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Dewangan,
   G. C.; Rao, A. R.; Vadawale, S. V.; AstroSat Cadmium Zinc Telluride
   Imager Team; Svinkin, D. S.; Hurley, K.; Aptekar, R. L.; Frederiks,
   D. D.; Golenetskii, S. V.; Kozlova, A. V.; Lysenko, A. L.; Oleynik,
   Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Cline, T.; IPN Collaboration;
   Li, T. P.; Xiong, S. L.; Zhang, S. N.; Lu, F. J.; Song, L. M.; Cao,
   X. L.; Chang, Z.; Chen, G.; Chen, L.; Chen, T. X.; Chen, Y.; Chen,
   Y. B.; Chen, Y. P.; Cui, W.; Cui, W. W.; Deng, J. K.; Dong, Y. W.; Du,
   Y. Y.; Fu, M. X.; Gao, G. H.; Gao, H.; Gao, M.; Ge, M. Y.; Gu, Y. D.;
   Guan, J.; Guo, C. C.; Han, D. W.; Hu, W.; Huang, Y.; Huo, J.; Jia,
   S. M.; Jiang, L. H.; Jiang, W. C.; Jin, J.; Jin, Y. J.; Li, B.; Li,
   C. K.; Li, G.; Li, M. S.; Li, W.; Li, X.; Li, X. B.; Li, X. F.; Li,
   Y. G.; Li, Z. J.; Li, Z. W.; Liang, X. H.; Liao, J. Y.; Liu, C. Z.;
   Liu, G. Q.; Liu, H. W.; Liu, S. Z.; Liu, X. J.; Liu, Y.; Liu, Y. N.;
   Lu, B.; Lu, X. F.; Luo, T.; Ma, X.; Meng, B.; Nang, Y.; Nie, J. Y.;
   Ou, G.; Qu, J. L.; Sai, N.; Sun, L.; Tan, Y.; Tao, L.; Tao, W. H.;
   Tuo, Y. L.; Wang, G. F.; Wang, H. Y.; Wang, J.; Wang, W. S.; Wang,
   Y. S.; Wen, X. Y.; Wu, B. B.; Wu, M.; Xiao, G. C.; Xu, H.; Xu, Y. P.;
   Yan, L. L.; Yang, J. W.; Yang, S.; Yang, Y. J.; Zhang, A. M.; Zhang,
   C. L.; Zhang, C. M.; Zhang, F.; Zhang, H. M.; Zhang, J.; Zhang, Q.;
   Zhang, S.; Zhang, T.; Zhang, W.; Zhang, W. C.; Zhang, W. Z.; Zhang,
   Y.; Zhang, Y.; Zhang, Y. F.; Zhang, Y. J.; Zhang, Z.; Zhang, Z. L.;
   Zhao, H. S.; Zhao, J. L.; Zhao, X. F.; Zheng, S. J.; Zhu, Y.; Zhu,
   Y. X.; Zou, C. L.; Insight-HXMT Collaboration; Albert, A.; André,
   M.; Anghinolfi, M.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Avgitas,
   T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.;
   Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.;
   Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr,
   J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella,
   M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.;
   Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis,
   G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic,
   D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.;
   Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.;
   Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Ruiz,
   R. Gracia; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.;
   Hello, Y.; Hernández-Rey, J. J.; Hössl, J.; Hofestädt, J.; Hugon,
   C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler,
   M.; Kalekin, O.; Katz, U.; Kiessling, D.; Kouchner, A.; Kreter, M.;
   Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre,
   D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.;
   Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael,
   T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.;
   Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa,
   V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa,
   A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti,
   M.; Sapienza, P.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti,
   M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.;
   Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.;
   Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Beardmore, A. P.;
   Breeveld, A. A.; Burrows, D. N.; Cenko, S. B.; Cusumano, G.; D'Aì, A.;
   de Pasquale, M.; Emery, S. W. K.; Evans, P. A.; Giommi, P.; Gronwall,
   C.; Kennea, J. A.; Krimm, H. A.; Kuin, N. P. M.; Lien, A.; Marshall,
   F. E.; Melandri, A.; Nousek, J. A.; Oates, S. R.; Osborne, J. P.;
   Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Siegel, M. H.;
   Sbarufatti, B.; Tagliaferri, G.; Tohuvavohu, A.; Swift Collaboration;
   Tavani, M.; Verrecchia, F.; Bulgarelli, A.; Evangelista, Y.; Pacciani,
   L.; Feroci, M.; Pittori, C.; Giuliani, A.; Del Monte, E.; Donnarumma,
   I.; Argan, A.; Trois, A.; Ursi, A.; Cardillo, M.; Piano, G.; Longo,
   F.; Lucarelli, F.; Munar-Adrover, P.; Fuschino, F.; Labanti, C.;
   Marisaldi, M.; Minervini, G.; Fioretti, V.; Parmiggiani, N.; Gianotti,
   F.; Trifoglio, M.; Di Persio, G.; Antonelli, L. A.; Barbiellini, G.;
   Caraveo, P.; Cattaneo, P. W.; Costa, E.; Colafrancesco, S.; D'Amico,
   F.; Ferrari, A.; Morselli, A.; Paoletti, F.; Picozza, P.; Pilia,
   M.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; AGILE Team; Foley,
   R. J.; Coulter, D. A.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.;
   Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.;
   Madore, B. F.; Murguia-Berthier, A.; Pan, Y. -C.; Prochaska, J. X.;
   Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; 1M2H Team; Berger, E.;
   Soares-Santos, M.; Annis, J.; Alexander, K. D.; Allam, S.; Balbinot,
   E.; Blanchard, P.; Brout, D.; Butler, R. E.; Chornock, R.; Cook,
   E. R.; Cowperthwaite, P.; Diehl, H. T.; Drlica-Wagner, A.; Drout,
   M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Frieman,
   J. A.; Fryer, C. L.; García-Bellido, J.; Gruendl, R. A.; Hartley,
   W.; Herner, K.; Kessler, R.; Lin, H.; Lopes, P. A. A.; Lourenço,
   A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.;
   Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.;
   Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.;
   Schlegel, D. J.; Scolnic, D.; Secco, L. F.; Smith, N.; Sobreira, F.;
   Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny,
   B.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Banerji, M.; Bechtol,
   K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke,
   D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander,
   F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.;
   Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Eifler, T. F.;
   Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes,
   D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.;
   Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Johnson,
   M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.;
   Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; McMahon,
   R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol,
   R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.;
   Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell,
   M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Stebbins,
   A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, R. C.; Troxel,
   M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.;
   Weller, J.; Carlin, J. L.; Gill, M. S. S.; Li, T. S.; Marriner, J.;
   Neilsen, E.; Dark Energy Camera GW-EM Collaboration; DES Collaboration;
   Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Sand, D. J.;
   Tartaglia, L.; Valenti, S.; Yang, S.; DLT40 Collaboration; Benetti,
   S.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D'Avanzo,
   P.; D'Elia, V.; Getman, F.; Ghirlanda, G.; Ghisellini, G.; Limatola,
   L.; Nicastro, L.; Palazzi, E.; Pian, E.; Piranomonte, S.; Possenti,
   A.; Rossi, A.; Salafia, O. S.; Tomasella, L.; Amati, L.; Antonelli,
   L. A.; Bernardini, M. G.; Bufano, F.; Capaccioli, M.; Casella, P.;
   Dadina, M.; De Cesare, G.; Di Paola, A.; Giuffrida, G.; Giunta,
   A.; Israel, G. L.; Lisi, M.; Maiorano, E.; Mapelli, M.; Masetti,
   N.; Pescalli, A.; Pulone, L.; Salvaterra, R.; Schipani, P.; Spera,
   M.; Stamerra, A.; Stella, L.; Testa, V.; Turatto, M.; Vergani, D.;
   Aresu, G.; Bachetti, M.; Buffa, F.; Burgay, M.; Buttu, M.; Caria,
   T.; Carretti, E.; Casasola, V.; Castangia, P.; Carboni, G.; Casu,
   S.; Concu, R.; Corongiu, A.; Deiana, G. L.; Egron, E.; Fara, A.;
   Gaudiomonte, F.; Gusai, V.; Ladu, A.; Loru, S.; Leurini, S.; Marongiu,
   L.; Melis, A.; Melis, G.; Migoni, Carlo; Milia, Sabrina; Navarrini,
   Alessandro; Orlati, A.; Ortu, P.; Palmas, S.; Pellizzoni, A.; Perrodin,
   D.; Pisanu, T.; Poppi, S.; Righini, S.; Saba, A.; Serra, G.; Serrau,
   M.; Stagni, M.; Surcis, G.; Vacca, V.; Vargiu, G. P.; Hunt, L. K.;
   Jin, Z. P.; Klose, S.; Kouveliotou, C.; Mazzali, P. A.; Møller, P.;
   Nava, L.; Piran, T.; Selsing, J.; Vergani, S. D.; Wiersema, K.; Toma,
   K.; Higgins, A. B.; Mundell, C. G.; di Serego Alighieri, S.; Gótz,
   D.; Gao, W.; Gomboc, A.; Kaper, L.; Kobayashi, S.; Kopac, D.; Mao,
J.; Starling, R. L. C.; Steele, I.; van der Horst, A. J.; GRAWITA:
   GRAvitational Wave Inaf TeAm; Acero, F.; Atwood, W. B.; Baldini,
   L.; Barbiellini, G.; Bastieri, D.; Berenji, B.; Bellazzini, R.;
   Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini,
   E.; Bregeon, J.; Buehler, R.; Buson, S.; Cameron, R. A.; Caputo, R.;
   Caraveo, P. A.; Cavazzuti, E.; Chekhtman, A.; Cheung, C. C.; Chiang,
   J.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costantin, D.;
   Cuoco, A.; D'Ammando, F.; de Palma, F.; Digel, S. W.; Di Lalla,
   N.; Di Mauro, M.; Di Venere, L.; Dubois, R.; Fegan, S. J.; Focke,
   W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano,
   F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.;
   Glanzman, T.; Green, D.; Grondin, M. -H.; Guillemot, L.; Guiriec,
   S.; Harding, A. K.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei,
   S.; Kuss, M.; La Mura, G.; Latronico, L.; Lemoine-Goumard, M.;
   Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill,
   J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.;
   Meyer, M.; Michelson, P. F.; Mirabal, N.; Monzani, M. E.; Moretti,
   E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ojha, R.;
   Omodei, N.; Orienti, M.; Orlando, E.; Palatiello, M.; Paliya, V. S.;
   Paneque, D.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.;
   Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer,
   O.; Reposeur, T.; Rochester, L. S.; Saz Parkinson, P. M.; Sgrò, C.;
   Siskind, E. J.; Spada, F.; Spandre, G.; Suson, D. J.; Takahashi, M.;
   Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo,
   L.; Torres, D. F.; Torresi, E.; Troja, E.; Venters, T. M.; Vianello,
   G.; Zaharijas, G.; Fermi Large Area Telescope Collaboration; Allison,
   J. R.; Bannister, K. W.; Dobie, D.; Kaplan, D. L.; Lenc, E.; Lynch,
   C.; Murphy, T.; Sadler, E. M.; Australia Telescope Compact Array,
ATCA:; Hotan, A.; James, C. W.; Oslowski, S.; Raja, W.; Shannon,
R. M.; Whiting, M.; Australian SKA Pathfinder, ASKAP:; Arcavi,
   I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Hiramatsu, D.;
   Poznanski, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; Las
   Cumbres Observatory Group; Cooke, J.; Bailes, M.; Wolf, C.; Deller,
   A. T.; Lidman, C.; Wang, L.; Gendre, B.; Andreoni, I.; Ackley, K.;
   Pritchard, T. A.; Bessell, M. S.; Chang, S. -W.; Möller, A.; Onken,
   C. A.; Scalzo, R. A.; Ridden-Harper, R.; Sharp, R. G.; Tucker, B. E.;
   Farrell, T. J.; Elmer, E.; Johnston, S.; Venkatraman Krishnan, V.;
   Keane, E. F.; Green, J. A.; Jameson, A.; Hu, L.; Ma, B.; Sun, T.;
   Wu, X.; Wang, X.; Shang, Z.; Hu, Y.; Ashley, M. C. B.; Yuan, X.; Li,
   X.; Tao, C.; Zhu, Z.; Zhang, H.; Suntzeff, N. B.; Zhou, J.; Yang, J.;
   Orange, B.; Morris, D.; Cucchiara, A.; Giblin, T.; Klotz, A.; Staff,
   J.; Thierry, P.; Schmidt, B. P.; OzGrav; (Deeper, DWF; Wider; program,
   Faster; AST3; CAASTRO Collaborations; Tanvir, N. R.; Levan, A. J.;
   Cano, Z.; de Ugarte-Postigo, A.; González-Fernández, C.; Greiner,
   J.; Hjorth, J.; Irwin, M.; Krühler, T.; Mandel, I.; Milvang-Jensen,
   B.; O'Brien, P.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.;
   Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Bruun,
   S. H.; Cutter, R.; Figuera Jaimes, R.; Fujii, Y. I.; Fruchter, A. S.;
   Gompertz, B.; Jakobsson, P.; Hodosan, G.; Jèrgensen, U. G.; Kangas,
   T.; Kann, D. A.; Rabus, M.; Schrøder, S. L.; Stanway, E. R.; Wijers,
   R. A. M. J.; VINROUGE Collaboration; Lipunov, V. M.; Gorbovskoy, E. S.;
   Kornilov, V. G.; Tyurina, N. V.; Balanutsa, P. V.; Kuznetsov, A. S.;
   Vlasenko, D. M.; Podesta, R. C.; Lopez, C.; Podesta, F.; Levato,
   H. O.; Saffe, C.; Mallamaci, C. C.; Budnev, N. M.; Gress, O. A.;
   Kuvshinov, D. A.; Gorbunov, I. A.; Vladimirov, V. V.; Zimnukhov,
   D. S.; Gabovich, A. V.; Yurkov, V. V.; Sergienko, Yu. P.; Rebolo,
   R.; Serra-Ricart, M.; Tlatov, A. G.; Ishmuhametova, Yu. V.; MASTER
   Collaboration; Abe, F.; Aoki, K.; Aoki, W.; Asakura, Y.; Baar, S.;
   Barway, S.; Bond, I. A.; Doi, M.; Finet, F.; Fujiyoshi, T.; Furusawa,
   H.; Honda, S.; Itoh, R.; Kanda, N.; Kawabata, K. S.; Kawabata, M.; Kim,
   J. H.; Koshida, S.; Kuroda, D.; Lee, C. -H.; Liu, W.; Matsubayashi,
   K.; Miyazaki, S.; Morihana, K.; Morokuma, T.; Motohara, K.; Murata,
   K. L.; Nagai, H.; Nagashima, H.; Nagayama, T.; Nakaoka, T.; Nakata,
   F.; Ohsawa, R.; Ohshima, T.; Ohta, K.; Okita, H.; Saito, T.; Saito,
   Y.; Sako, S.; Sekiguchi, Y.; Sumi, T.; Tajitsu, A.; Takahashi,
   J.; Takayama, M.; Tamura, Y.; Tanaka, I.; Tanaka, M.; Terai, T.;
   Tominaga, N.; Tristram, P. J.; Uemura, M.; Utsumi, Y.; Yamaguchi,
   M. S.; Yasuda, N.; Yoshida, M.; Zenko, T.; J-GEM; Adams, S. M.;
   Anupama, G. C.; Bally, J.; Barway, S.; Bellm, E.; Blagorodnova, N.;
   Cannella, C.; Chandra, P.; Chatterjee, D.; Clarke, T. E.; Cobb, B. E.;
   Cook, D. O.; Copperwheat, C.; De, K.; Emery, S. W. K.; Feindt, U.;
   Foster, K.; Fox, O. D.; Frail, D. A.; Fremling, C.; Frohmaier, C.;
   Garcia, J. A.; Ghosh, S.; Giacintucci, S.; Goobar, A.; Gottlieb, O.;
   Grefenstette, B. W.; Hallinan, G.; Harrison, F.; Heida, M.; Helou,
   G.; Ho, A. Y. Q.; Horesh, A.; Hotokezaka, K.; Ip, W. -H.; Itoh, R.;
   Jacobs, Bob; Jencson, J. E.; Kasen, D.; Kasliwal, M. M.; Kassim,
   N. E.; Kim, H.; Kiran, B. S.; Kuin, N. P. M.; Kulkarni, S. R.;
   Kupfer, T.; Lau, R. M.; Madsen, K.; Mazzali, P. A.; Miller, A. A.;
   Miyasaka, H.; Mooley, K.; Myers, S. T.; Nakar, E.; Ngeow, C. -C.;
   Nugent, P.; Ofek, E. O.; Palliyaguru, N.; Pavana, M.; Perley, D. A.;
   Peters, W. M.; Pike, S.; Piran, T.; Qi, H.; Quimby, R. M.; Rana, J.;
   Rosswog, S.; Rusu, F.; Sadler, E. M.; Van Sistine, A.; Sollerman, J.;
   Xu, Y.; Yan, L.; Yatsu, Y.; Yu, P. -C.; Zhang, C.; Zhao, W.; GROWTH;
   JAGWAR; Caltech-NRAO; TTU-NRAO; NuSTAR Collaborations; Chambers,
   K. C.; Huber, M. E.; Schultz, A. S. B.; Bulger, J.; Flewelling, H.;
   Magnier, E. A.; Lowe, T. B.; Wainscoat, R. J.; Waters, C.; Willman,
   M.; Pan-STARRS; Ebisawa, K.; Hanyu, C.; Harita, S.; Hashimoto, T.;
   Hidaka, K.; Hori, T.; Ishikawa, M.; Isobe, N.; Iwakiri, W.; Kawai,
   H.; Kawai, N.; Kawamuro, T.; Kawase, T.; Kitaoka, Y.; Makishima,
   K.; Matsuoka, M.; Mihara, T.; Morita, T.; Morita, K.; Nakahira, S.;
   Nakajima, M.; Nakamura, Y.; Negoro, H.; Oda, S.; Sakamaki, A.; Sasaki,
   R.; Serino, M.; Shidatsu, M.; Shimomukai, R.; Sugawara, Y.; Sugita,
   S.; Sugizaki, M.; Tachibana, Y.; Takao, Y.; Tanimoto, A.; Tomida, H.;
   Tsuboi, Y.; Tsunemi, H.; Ueda, Y.; Ueno, S.; Yamada, S.; Yamaoka,
   K.; Yamauchi, M.; Yatabe, F.; Yoneyama, T.; Yoshii, T.; MAXI Team;
   Coward, D. M.; Crisp, H.; Macpherson, D.; Andreoni, I.; Laugier,
   R.; Noysena, K.; Klotz, A.; Gendre, B.; Thierry, P.; Turpin, D.;
   Consortium, TZAC; Im, M.; Choi, C.; Kim, J.; Yoon, Y.; Lim, G.; Lee,
   S. -K.; Lee, C. -U.; Kim, S. -L.; Ko, S. -W.; Joe, J.; Kwon, M. -K.;
   Kim, P. -J.; Lim, S. -K.; Choi, J. -S.; KU Collaboration; Fynbo,
   J. P. U.; Malesani, D.; Xu, D.; Optical Telescope, Nordic; Smartt,
   S. J.; Jerkstrand, A.; Kankare, E.; Sim, S. A.; Fraser, M.; Inserra,
   C.; Maguire, K.; Leloudas, G.; Magee, M.; Shingles, L. J.; Smith,
   K. W.; Young, D. R.; Kotak, R.; Gal-Yam, A.; Lyman, J. D.; Homan,
   D. S.; Agliozzo, C.; Anderson, J. P.; Angus, C. R.; Ashall, C.;
   Barbarino, C.; Bauer, F. E.; Berton, M.; Botticella, M. T.; Bulla,
   M.; Cannizzaro, G.; Cartier, R.; Cikota, A.; Clark, P.; De Cia,
   A.; Della Valle, M.; Dennefeld, M.; Dessart, L.; Dimitriadis, G.;
   Elias-Rosa, N.; Firth, R. E.; Flörs, A.; Frohmaier, C.; Galbany, L.;
   González-Gaitán, S.; Gromadzki, M.; Gutiérrez, C. P.; Hamanowicz,
   A.; Harmanen, J.; Heintz, K. E.; Hernandez, M. -S.; Hodgkin, S. T.;
   Hook, I. M.; Izzo, L.; James, P. A.; Jonker, P. G.; Kerzendorf, W. E.;
   Kostrzewa-Rutkowska, Z.; Kromer, M.; Kuncarayakti, H.; Lawrence,
   A.; Manulis, I.; Mattila, S.; McBrien, O.; Müller, A.; Nordin, J.;
   O'Neill, D.; Onori, F.; Palmerio, J. T.; Pastorello, A.; Patat, F.;
   Pignata, G.; Podsiadlowski, P.; Razza, A.; Reynolds, T.; Roy, R.;
   Ruiter, A. J.; Rybicki, K. A.; Salmon, L.; Pumo, M. L.; Prentice,
   S. J.; Seitenzahl, I. R.; Smith, M.; Sollerman, J.; Sullivan, M.;
   Szegedi, H.; Taddia, F.; Taubenberger, S.; Terreran, G.; Van Soelen,
   B.; Vos, J.; Walton, N. A.; Wright, D. E.; Wyrzykowski, Ł.; Yaron,
   O.; pre="(">ePESSTO, <author; Chen, T. -W.; Krühler, T.; Schady,
   P.; Wiseman, P.; Greiner, J.; Rau, A.; Schweyer, T.; Klose, S.;
   Nicuesa Guelbenzu, A.; GROND; Palliyaguru, N. T.; Tech University,
   Texas; Shara, M. M.; Williams, T.; Vaisanen, P.; Potter, S. B.; Romero
   Colmenero, E.; Crawford, S.; Buckley, D. A. H.; Mao, J.; SALT Group;
   Díaz, M. C.; Macri, L. M.; García Lambas, D.; Mendes de Oliveira,
   C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell,
   W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz,
   M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Chavushyan, V.; Coelho,
   P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; Domínguez
   Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.;
   Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.;
   Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Melia,
   R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones,
   C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.;
   Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.;
Torres-Flores, S.; Tornatore, M.; Zadrożny, A.; Castillo, M.; TOROS:
   Transient Robotic Observatory of South Collaboration; Castro-Tirado,
   A. J.; Tello, J. C.; Hu, Y. -D.; Zhang, B. -B.; Cunniffe, R.;
   Castellón, A.; Hiriart, D.; Caballero-García, M. D.; Jelínek,
   M.; Kubánek, P.; Pérez del Pulgar, C.; Park, I. H.; Jeong, S.;
   Castro Cerón, J. M.; Pandey, S. B.; Yock, P. C.; Querel, R.; Fan,
   Y.; Wang, C.; BOOTES Collaboration; Beardsley, A.; Brown, I. S.;
   Crosse, B.; Emrich, D.; Franzen, T.; Gaensler, B. M.; Horsley,
   L.; Johnston-Hollitt, M.; Kenney, D.; Morales, M. F.; Pallot, D.;
   Sokolowski, M.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.;
Wayth, R.; Williams, A.; Wu, C.; Murchison Widefield Array, MWA:;
   Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Yamaoka, K.; Takahashi,
   I.; Asaoka, Y.; Ozawa, S.; Torii, S.; Shimizu, Y.; Tamura, T.;
   Ishizaki, W.; Cherry, M. L.; Ricciarini, S.; Penacchioni, A. V.;
   Marrocchesi, P. S.; CALET Collaboration; Pozanenko, A. S.; Volnova,
   A. A.; Mazaeva, E. D.; Minaev, P. Yu.; Krugov, M. A.; Kusakin, A. V.;
   Reva, I. V.; Moskvitin, A. S.; Rumyantsev, V. V.; Inasaridze, R.;
   Klunko, E. V.; Tungalag, N.; Schmalz, S. E.; Burhonov, O.; IKI-GW
   Follow-up Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.;
   Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert,
   P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus,
   J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher,
   M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.;
   Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.;
   Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.;
   Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon,
   B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt,
   P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson,
   K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J. -P.;
   Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.;
   Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.;
   Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.;
   Glicenstein, J. F.; Gottschall, D.; Grondin, M. -H.; Hahn, J.;
   Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.;
   Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.;
   Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.;
   Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt,
   I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Kerszberg,
   D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov,
   D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.;
   Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J. -P.;
   Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J. -P.;
   Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Malyshev,
   D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.;
   Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.;
   Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach,
   T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.;
   Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski,
   M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur,
   N. W.; Pelletier, G.; Perennes, C.; Petrucci, P. -O.; Peyaud, B.;
   Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph,
   H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth,
   R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger,
   F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.;
   Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.;
   Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer,
   S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon,
   I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob,
   M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch,
   I.; Takahashi, T.; Tavernet, J. -P.; Tavernier, T.; Taylor, A. M.;
   Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard,
   C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt,
   D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis,
   G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin,
   F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.;
   Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann,
   P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.;
   Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn,
   J.; Żywucka, N.; H. E. S. S. Collaboration; Fender, R. P.; Broderick,
   J. W.; Rowlinson, A.; Wijers, R. A. M. J.; Stewart, A. J.; ter Veen,
   S.; Shulevski, A.; LOFAR Collaboration; Kavic, M.; Simonetti, J. H.;
   League, C.; Tsai, J.; Obenberger, K. S.; Nathaniel, K.; Taylor,
   G. B.; Dowell, J. D.; Liebling, S. L.; Estes, J. A.; Lippert, M.;
Sharma, I.; Vincent, P.; Farella, B.; Wavelength Array, LWA: Long;
   Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.;
   Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.;
   Barber, A. S.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno,
   E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.;
   Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova,
   S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.;
   De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.;
   Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth,
   R. W.; Engel, K.; Enríquez-Rivera, O.; Fiorino, D. W.; Fleischhack,
   H.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.;
   Gonzõlez Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias,
   Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.;
   Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann,
   S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.;
   Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García,
   R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.;
   Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.;
   Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.;
   Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo,
   R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière,
   C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar,
   H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.;
   Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Tibolla, O.;
   Tollefson, K.; Torres, I.; Ukwatta, T. N.; Weisgarber, T.; Westerhoff,
   S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.;
   Zhou, H.; Álvarez, J. D.; HAWC Collaboration; Aab, A.; Abreu,
   P.; Aglietta, M.; Albuquerque, I. F. M.; Albury, J. M.; Allekotte,
   I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi,
   G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arsene,
   N.; Asorey, H.; Assis, P.; Avila, G.; Badescu, A. M.; Balaceanu, A.;
   Barbato, F.; Barreira Luz, R. J.; Becker, K. H.; Bellido, J. A.; Berat,
   C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Biteau, J.; Blaess,
   S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Bonifazi,
   C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.;
   Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink,
   S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio,
   A.; Canfora, F.; Caruso, R.; Castellina, A.; Catalani, F.; Cataldi,
   G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay,
   R. W.; Cobos Cerutti, A. C.; Colalillo, R.; Coleman, A.; Collica,
   L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.;
   Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.;
   Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; Day, J. A.; de
   Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.;
   De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny,
   O.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.;
   Dorosti, Q.; Dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.;
   Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.;
   Etchegoyen, A.; Falcke, H.; Farmer, J.; Farrar, G.; Fauth, A. C.;
   Fazzini, N.; Feldbusch, F.; Fenu, F.; Fick, B.; Figueira, J. M.;
   Filipčič, A.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaïor, R.;
   García, B.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.;
   Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup,
   G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi,
   A.; Gottowik, M.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes,
   G. P.; Halliday, R.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison,
   T. A.; Harvey, V. M.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann,
   P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.;
   Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.;
   Insolia, A.; Isar, P. G.; Jandt, I.; Johnsen, J. A.; Josebachuili,
   M.; Jurysek, J.; Kääpä, A.; Kampert, K. H.; Keilhauer,
   B.; Kemmerich, N.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.;
   Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.;
   Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; Lago, B. L.; LaHurd,
   D.; Lang, R. G.; Lauscher, M.; Legumina, R.; Leigui de Oliveira,
   M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti,
   D.; Lopes, L.; López, R.; López Casado, A.; Lorek, R.; Luce, Q.;
   Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.;
   Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez,
   H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys,
   S.; Matthews, J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.;
   Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K. -D.; Michal,
   S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.;
   Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Morlino,
   G.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa,
   R.; Naranjo, I.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol,
   M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.;
   Nožka, L.; Núñez, L. A.; Oikonomou, F.; Olinto, A.; Palatka,
   M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.;
   Pech, M.; Pedreira, F.; Pȩkala, J.; Peña-Rodriguez, J.; Pereira,
   L. A. S.; Perlin, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok,
   J.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.;
   Poh, J.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel,
   E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.;
   Ravignani, D.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.;
   Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo,
   J.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl,
   P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.;
   Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos,
   E.; Sarazin, F.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Schauer,
   M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten,
   O.; Schovánek, P.; Schröder, F. G.; Schröder, S.; Schulz, A.;
   Schumacher, J.; Sciutto, S. J.; Segreto, A.; Shadkam, A.; Shellard,
   R. C.; Sigl, G.; Silli, G.; Šmída, R.; Snow, G. R.; Sommers, P.;
   Sonntag, S.; Soriano, J. F.; Squartini, R.; Stanca, D.; Stanič, S.;
   Stasielak, J.; Stassi, P.; Stolpovskiy, M.; Strafella, F.; Streich,
   A.; Suarez, F.; Suarez-Durán, M.; Sudholz, T.; Suomijärvi, T.;
   Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.;
   Taborda, O. A.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.;
   Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Tueros, M.;
   Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño,
   I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.;
   van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, R. A.;
   Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha,
   J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.;
   Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiedeński, M.;
   Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler,
   B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.;
   Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello,
   F.; Pierre Auger Collaboration; Kim, S.; Schulze, S.; Bauer, F. E.;
   Corral-Santana, J. M.; de Gregorio-Monsalvo, I.; González-López,
   J.; Hartmann, D. H.; Ishwara-Chandra, C. H.; Martín, S.; Mehner,
   A.; Misra, K.; Michałowski, M. J.; Resmi, L.; ALMA Collaboration;
   Paragi, Z.; Agudo, I.; An, T.; Beswick, R.; Casadio, C.; Frey, S.;
   Jonker, P.; Kettenis, M.; Marcote, B.; Moldon, J.; Szomoru, A.;
   van Langevelde, H. J.; Yang, J.; Euro VLBI Team; Cwiek, A.; Cwiok,
   M.; Czyrkowski, H.; Dabrowski, R.; Kasprowicz, G.; Mankiewicz, L.;
   Nawrocki, K.; Opiela, R.; Piotrowski, L. W.; Wrochna, G.; Zaremba,
   M.; Żarnecki, A. F.; Pi of Sky Collaboration; Haggard, D.; Nynka,
   M.; Ruan, J. J.; Chandra Team at McGill University; Bland, P. A.;
   Booler, T.; Devillepoix, H. A. R.; de Gois, J. S.; Hancock, P. J.;
   Howie, R. M.; Paxman, J.; Sansom, E. K.; Towner, M. C.; Desert
Fireball Network, DFN:; Tonry, J.; Coughlin, M.; Stubbs, C. W.;
   Denneau, L.; Heinze, A.; Stalder, B.; Weiland, H.; ATLAS; Eatough,
   R. P.; Kramer, M.; Kraus, A.; Time Resolution Universe Survey, High;
   Troja, E.; Piro, L.; Becerra González, J.; Butler, N. R.; Fox, O. D.;
   Khandrika, H. G.; Kutyrev, A.; Lee, W. H.; Ricci, R.; Ryan, R. E.,
   Jr.; Sánchez-Ramírez, R.; Veilleux, S.; Watson, A. M.; Wieringa,
   M. H.; Burgess, J. M.; van Eerten, H.; Fontes, C. J.; Fryer, C. L.;
   Korobkin, O.; Wollaeger, R. T.; RIMAS; RATIR; Camilo, F.; Foley,
   A. R.; Goedhart, S.; Makhathini, S.; Oozeer, N.; Smirnov, O. M.;
   Fender, R. P.; Woudt, P. A.; South Africa/MeerKAT, SKA
2017ApJ...848L..12A    Altcode: 2017arXiv171005833L
  On 2017 August 17 a binary neutron star coalescence candidate (later
  designated GW170817) with merger time 12:41:04 UTC was observed
  through gravitational waves by the Advanced LIGO and Advanced Virgo
  detectors. The Fermi Gamma-ray Burst Monitor independently detected a
  gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 {{s}} with
  respect to the merger time. From the gravitational-wave signal, the
  source was initially localized to a sky region of 31 deg<SUP>2</SUP>
  at a luminosity distance of {40}<SUB>-8</SUB><SUP>+8</SUP> Mpc and
  with component masses consistent with neutron stars. The component
  masses were later measured to be in the range 0.86 to 2.26 {M}<SUB>⊙
  </SUB>. An extensive observing campaign was launched across the
  electromagnetic spectrum leading to the discovery of a bright optical
  transient (SSS17a, now with the IAU identification of AT 2017gfo) in
  NGC 4993 (at ∼ 40 {{Mpc}}) less than 11 hours after the merger by the
  One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The
  optical transient was independently detected by multiple teams
  within an hour. Subsequent observations targeted the object and its
  environment. Early ultraviolet observations revealed a blue transient
  that faded within 48 hours. Optical and infrared observations showed
  a redward evolution over ∼10 days. Following early non-detections,
  X-ray and radio emission were discovered at the transient's position ∼
  9 and ∼ 16 days, respectively, after the merger. Both the X-ray and
  radio emission likely arise from a physical process that is distinct
  from the one that generates the UV/optical/near-infrared emission. No
  ultra-high-energy gamma-rays and no neutrino candidates consistent with
  the source were found in follow-up searches. These observations support
  the hypothesis that GW170817 was produced by the merger of two neutron
  stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A)
  and a kilonova/macronova powered by the radioactive decay of r-process
  nuclei synthesized in the ejecta. <P />Any correspondence should be
  addressed to .

---------------------------------------------------------
Title: A Solar cycle correlation of coronal element abundances in
    Sun-as-a-star observations
Authors: Brooks, David H.; Baker, Deborah; van Driel-Gesztelyi, Lidia;
   Warren, Harry P.
2017NatCo...8..183B    Altcode: 2018arXiv180200563B
  The elemental composition in the coronae of low-activity solar-like
  stars appears to be related to fundamental stellar properties such as
  rotation, surface gravity, and spectral type. Here we use full-Sun
  observations from the Solar Dynamics Observatory, to show that when
  the Sun is observed as a star, the variation of coronal composition
  is highly correlated with a proxy for solar activity, the F10.7 cm
  radio flux, and therefore with the solar cycle phase. Similar cyclic
  variations should therefore be detectable spectroscopically in X-ray
  observations of solar analogs. The plasma composition in full-disk
  observations of the Sun is related to the evolution of coronal magnetic
  field activity. Our observations therefore introduce an uncertainty
  into the nature of any relationship between coronal composition and
  fixed stellar properties. The results highlight the importance of
  systematic full-cycle observations for understanding the elemental
  composition of solar-like stellar coronae.

---------------------------------------------------------
Title: On-Disc Observations of Flux Rope Formation Prior to Its
    Eruption
Authors: James, A. W.; Green, L. M.; Palmerio, E.; Valori, G.; Reid,
   H. A. S.; Baker, D.; Brooks, D. H.; van Driel-Gesztelyi, L.; Kilpua,
   E. K. J.
2017SoPh..292...71J    Altcode: 2017arXiv170310837J
  Coronal mass ejections (CMEs) are one of the primary manifestations of
  solar activity and can drive severe space weather effects. Therefore,
  it is vital to work towards being able to predict their
  occurrence. However, many aspects of CME formation and eruption
  remain unclear, including whether magnetic flux ropes are present
  before the onset of eruption and the key mechanisms that cause CMEs
  to occur. In this work, the pre-eruptive coronal configuration of
  an active region that produced an interplanetary CME with a clear
  magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid
  appears in extreme-ultraviolet (EUV) data two hours before the onset
  of the eruption (SOL2012-06-14), which is interpreted as a signature
  of a right-handed flux rope that formed prior to the eruption. Flare
  ribbons and EUV dimmings are used to infer the locations of the flux
  rope footpoints. These locations, together with observations of the
  global magnetic flux distribution, indicate that an interaction between
  newly emerged magnetic flux and pre-existing sunspot field in the days
  prior to the eruption may have enabled the coronal flux rope to form
  via tether-cutting-like reconnection. Composition analysis suggests
  that the flux rope had a coronal plasma composition, supporting our
  interpretation that the flux rope formed via magnetic reconnection in
  the corona. Once formed, the flux rope remained stable for two hours
  before erupting as a CME.

---------------------------------------------------------
Title: IRIS, Hinode, SDO, and RHESSI Observations of a White Light
    Flare Produced Directly by Nonthermal Electrons
Authors: Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko; Bamba,
   Yumi; Brooks, David H.
2017ApJ...836..150L    Altcode: 2017arXiv170106286L
  An X1.6 flare occurred in active region AR 12192 on 2014 October 22
  at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We
  analyze a bright kernel that produces a white light (WL) flare with
  continuum enhancement and a hard X-ray (HXR) peak. Taking advantage
  of the spectroscopic observations of IRIS and Hinode/EIS, we measure
  the temporal variation of the plasma properties in the bright kernel
  in the chromosphere and corona. We find that explosive evaporation
  was observed when the WL emission occurred, even though the intensity
  enhancement in hotter lines is quite weak. The temporal correlation of
  the WL emission, HXR peak, and evaporation flows indicates that the WL
  emission was produced by accelerated electrons. To understand the WL
  emission process, we calculated the energy flux deposited by non-thermal
  electrons (observed by RHESSI) and compared it to the dissipated
  energy estimated from a chromospheric line (Mg II triplet) observed
  by IRIS. The deposited energy flux from the non-thermal electrons is
  about (3-7.7) × 10<SUP>10</SUP> erg cm<SUP>-2</SUP> s<SUP>-1</SUP>
  for a given low-energy cutoff of 30-40 keV, assuming the thick-target
  model. The energy flux estimated from the changes in temperature in
  the chromosphere measured using the Mg II subordinate line is about
  (4.6-6.7) × 10<SUP>9</SUP> erg cm<SUP>-2</SUP> s<SUP>-1</SUP>:
  ∼6%-22% of the deposited energy. This comparison of estimated energy
  fluxes implies that the continuum enhancement was directly produced
  by the non-thermal electrons.

---------------------------------------------------------
Title: Properties and Modeling of Unresolved Fine Structure Loops
    Observed in the Solar Transition Region by IRIS
Authors: Brooks, David H.; Reep, Jeffrey W.; Warren, Harry P.
2016ApJ...826L..18B    Altcode: 2016arXiv160605440B
  Recent observations from the Interface Region Imaging Spectrograph
  (IRIS) have discovered a new class of numerous low-lying dynamic loop
  structures, and it has been argued that they are the long-postulated
  unresolved fine structures (UFSs) that dominate the emission of the
  solar transition region. In this letter, we combine IRIS measurements
  of the properties of a sample of 108 UFSs (intensities, lengths, widths,
  lifetimes) with one-dimensional non-equilibrium ionization simulations,
  using the HYDRAD hydrodynamic model to examine whether the UFSs are now
  truly spatially resolved in the sense of being individual structures
  rather than being composed of multiple magnetic threads. We find that
  a simulation of an impulsively heated single strand can reproduce most
  of the observed properties, suggesting that the UFSs may be resolved,
  and the distribution of UFS widths implies that they are structured on
  a spatial scale of 133 km on average. Spatial scales of a few hundred
  kilometers appear to be typical for a range of chromospheric and
  coronal structures, and we conjecture that this could be an important
  clue for understanding the coronal heating process.

---------------------------------------------------------
Title: Transition Region Abundance Measurements During Impulsive
    Heating Events
Authors: Warren, Harry P.; Brooks, David H.; Doschek, George A.;
   Feldman, Uri
2016ApJ...824...56W    Altcode: 2015arXiv151204447W
  It is well established that elemental abundances vary in the solar
  atmosphere and that this variation is organized by first ionization
  potential (FIP). Previous studies have shown that in the solar corona,
  low-FIP elements such as Fe, Si, Mg, and Ca, are generally enriched
  relative to high-FIP elements such as C, N, O, Ar, and Ne. In this paper
  we report on measurements of plasma composition made during impulsive
  heating events observed at transition region temperatures with the
  Extreme Ultraviolet Imaging Spectrometer (EIS) on Hinode. During these
  events the intensities of O IV, v, and VI emission lines are enhanced
  relative to emission lines from Mg v, VI, and vii and Si VI and vii,
  and indicate a composition close to that of the photosphere. Long-lived
  coronal fan structures, in contrast, show an enrichment of low-FIP
  elements. We conjecture that the plasma composition is an important
  signature of the coronal heating process, with impulsive heating leading
  to the evaporation of unfractionated material from the lower layers of
  the solar atmosphere and higher-frequency heating leading to long-lived
  structures and the accumulation of low-FIP elements in the corona.

---------------------------------------------------------
Title: Measurements of Non-thermal Line Widths in Solar Active Regions
Authors: Brooks, David H.; Warren, Harry P.
2016ApJ...820...63B    Altcode: 2015arXiv151102313B
  Spectral line widths are often observed to be larger than can be
  accounted for by thermal and instrumental broadening alone. This excess
  broadening is a key observational constraint for both nanoflare and
  wave dissipation models of coronal heating. Here we present a survey
  of non-thermal velocities measured in the high temperature loops (1-4
  MK) often found in the cores of solar active regions. This survey of
  Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations
  covers 15 non-flaring active regions that span a wide range of solar
  conditions. We find relatively small non-thermal velocities, with a
  mean value of 17.6 ± 5.3 km s<SUP>-1</SUP>, and no significant trend
  with temperature or active region magnetic flux. These measurements
  appear to be inconsistent with those expected from reconnection jets in
  the corona, chromospheric evaporation induced by coronal nanoflares,
  and Alfvén wave turbulence models. Furthermore, because the observed
  non-thermal widths are generally small, such measurements are difficult
  and susceptible to systematic effects.

---------------------------------------------------------
Title: A Comparison of Global Magnetic Field Skeletons and
    Active-Region Upflows
Authors: Edwards, S. J.; Parnell, C. E.; Harra, L. K.; Culhane, J. L.;
   Brooks, D. H.
2016SoPh..291..117E    Altcode: 2015SoPh..tmp..161E
  Plasma upflows have been detected in active regions using Doppler
  velocity maps. The origin and nature of these upflows is not well known
  with many of their characteristics determined from the examination
  of single events. In particular, some studies suggest these upflows
  occur along open field lines and, hence, are linked to sources of
  the solar wind. To investigate the relationship these upflows may
  have with the solar wind, and to probe what may be driving them, this
  paper considers seven active regions observed on the solar disc using
  the Extreme ultraviolet Imaging Spectrometer aboard Hinode between
  August 2011 and September 2012. Plasma upflows are observed in all
  these active regions. The locations of these upflows are compared
  to the global potential magnetic field extrapolated from the Solar
  Dynamics Observatory, Helioseismic and Magnetic Imager daily synoptic
  magnetogram taken on the day the upflows were observed. The structure
  of the magnetic field is determined by constructing its magnetic
  skeleton in order to help identify open-field regions and also sites
  where magnetic reconnection at global features is likely to occur. As
  a further comparison, measurements of the temperature, density and
  composition of the plasma are taken from regions with active-region
  upflows. In most cases the locations of the upflows in the active
  regions do not correspond to areas of open field, as predicted by
  a global coronal potential-field model, and therefore these upflows
  are not always sources of the slow solar wind. The locations of the
  upflows are, in general, intersected by separatrix surfaces associated
  with null points located high in the corona; these could be important
  sites of reconnection with global consequences.

---------------------------------------------------------
Title: Photospheric Abundances of Polar Jets on the Sun Observed
    by Hinode
Authors: Lee, Kyoung-Sun; Brooks, David H.; Imada, Shinsuke
2015ApJ...809..114L    Altcode: 2015arXiv150704075L
  Many jets are detected at X-ray wavelengths in the Sun's polar
  regions, and the ejected plasma along the jets has been suggested to
  contribute mass to the fast solar wind. From in situ measurements
  in the magnetosphere, it has been found that the fast solar wind
  has photospheric abundances while the slow solar wind has coronal
  abundances. Therefore, we investigated the abundances of polar jets
  to determine whether they are the same as that of the fast solar
  wind. For this study, we selected 22 jets in the polar region observed
  by Hinode/EUV Imaging Spectroscopy (EIS) and X-ray Telescope (XRT)
  simultaneously on 2007 November 1-3. We calculated the First Ionization
  Potential (FIP) bias factor from the ratio of the intensity between high
  (S) and low (Si, Fe) FIP elements using the EIS spectra. The values of
  the FIP bias factors for the polar jets are around 0.7-1.9, and 75% of
  the values are in the range of 0.7-1.5, which indicates that they have
  photospheric abundances similar to the fast solar wind. The results
  are consistent with the reconnection jet model where photospheric
  plasma emerges and is rapidly ejected into the fast wind.

---------------------------------------------------------
Title: FIP Bias Evolution in a Decaying Active Region
Authors: Baker, D.; Brooks, D. H.; Démoulin, P.; Yardley, S. L.;
   van Driel-Gesztelyi, L.; Long, D. M.; Green, L. M.
2015ApJ...802..104B    Altcode: 2015arXiv150107397B
  Solar coronal plasma composition is typically characterized by
  first ionization potential (FIP) bias. Using spectra obtained by
  Hinode’s EUV Imaging Spectrometer instrument, we present a series
  of large-scale, spatially resolved composition maps of active region
  (AR)11389. The composition maps show how FIP bias evolves within the
  decaying AR during the period 2012 January 4-6. Globally, FIP bias
  decreases throughout the AR. We analyzed areas of significant plasma
  composition changes within the decaying AR and found that small-scale
  evolution in the photospheric magnetic field is closely linked to the
  FIP bias evolution observed in the corona. During the AR’s decay
  phase, small bipoles emerging within supergranular cells reconnect
  with the pre-existing AR field, creating a pathway along which
  photospheric and coronal plasmas can mix. The mixing timescales are
  shorter than those of plasma enrichment processes. Eruptive activity
  also results in shifting the FIP bias closer to photospheric in the
  affected areas. Finally, the FIP bias still remains dominantly coronal
  only in a part of the AR’s high-flux density core. We conclude that
  in the decay phase of an AR’s lifetime, the FIP bias is becoming
  increasingly modulated by episodes of small-scale flux emergence,
  i.e., decreasing the AR’s overall FIP bias. Our results show that
  magnetic field evolution plays an important role in compositional
  changes during AR development, revealing a more complex relationship
  than expected from previous well-known Skylab results showing that
  FIP bias increases almost linearly with age in young ARs.

---------------------------------------------------------
Title: Full-Sun observations for identifying the source of the slow
    solar wind
Authors: Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.
2015NatCo...6.5947B    Altcode: 2016arXiv160509514B; 2015NatCo...6E5947B
  Fast (&gt;700 km s<SUP>-1</SUP>) and slow
  (~400 km s<SUP>-1</SUP>) winds stream from the Sun, permeate
  the heliosphere and influence the near-Earth environment. While the
  fast wind is known to emanate primarily from polar coronal holes,
  the source of the slow wind remains unknown. Here we identify possible
  sites of origin using a slow solar wind source map of the entire Sun,
  which we construct from specially designed, full-disk observations
  from the Hinode satellite, and a magnetic field model. Our map
  provides a full-Sun observation that combines three key ingredients
  for identifying the sources: velocity, plasma composition and magnetic
  topology and shows them as solar wind composition plasma outflowing on
  open magnetic field lines. The area coverage of the identified sources
  is large enough that the sum of their mass contributions can explain
  a significant fraction of the mass loss rate of the solar wind.

---------------------------------------------------------
Title: Constraining hot plasma in a non-flaring solar active region
    with FOXSI hard X-ray observations
Authors: Ishikawa, Shin-nosuke; Glesener, Lindsay; Christe, Steven;
   Ishibashi, Kazunori; Brooks, David H.; Williams, David R.; Shimojo,
   Masumi; Sako, Nobuharu; Krucker, Säm
2014PASJ...66S..15I    Altcode: 2015arXiv150905288I; 2014PASJ..tmp..102I
  We present new constraints on the high-temperature emission measure
  of a non-flaring solar active region using observations from the
  recently flown Focusing Optics X-ray Solar Imager (FOXSI) sounding
  rocket payload. FOXSI has performed the first focused hard X-ray
  (HXR) observation of the Sun in its first successful flight on 2012
  November 2. Focusing optics, combined with small strip detectors,
  enable high-sensitivity observations with respect to previous
  indirect imagers. This capability, along with the sensitivity of
  the HXR regime to high-temperature emission, offers the potential
  to better characterize high-temperature plasma in the corona as
  predicted by nanoflare heating models. We present a joint analysis of
  the differential emission measure (DEM) of active region 11602 using
  coordinated observations by FOXSI, Hinode/XRT, and Hinode/EIS. The
  Hinode-derived DEM predicts significant emission measure between
  1 MK and 3 MK, with a peak in the DEM predicted at 2.0-2.5 MK. The
  combined XRT and EIS DEM also shows emission from a smaller population
  of plasma above 8 MK. This is contradicted by FOXSI observations that
  significantly constrain emission above 8 MK. This suggests that the
  Hinode DEM analysis has larger uncertainties at higher temperatures and
  that &gt; 8 MK plasma above an emission measure of 3 × 10<SUP>44</SUP>
  cm<SUP>-3</SUP> is excluded in this active region.

---------------------------------------------------------
Title: Hot Topic, Warm Loops, Cooling Plasma? Multithermal Analysis
    of Active Region Loops
Authors: Schmelz, J. T.; Pathak, S.; Brooks, D. H.; Christian, G. M.;
   Dhaliwal, R. S.
2014ApJ...795..171S    Altcode:
  We have found indications of a relationship between the differential
  emission measure (DEM) weighted temperature and the cross-field DEM
  width for coronal loops. The data come from the Hinode X-ray Telescope,
  the Hinode EUV Imaging Spectrometer, and the Solar Dynamics Observatory
  Atmospheric Imaging Assembly. These data show that cooler loops tend to
  have narrower DEM widths. If most loops observed by these instruments
  are composed of bundles of unresolved magnetic strands and are only
  observed in their cooling phase, as some studies have suggested,
  then this relationship implies that the DEM of a coronal loop narrows
  as it cools. This could imply that fewer strands are seen emitting
  in the later cooling phase, potentially resolving the long standing
  controversy of whether the cross-field temperatures of coronal loops
  are multithermal or isothermal.

---------------------------------------------------------
Title: Tracking Solar Active Region Outflow Plasma from Its Source
    to the Near-Earth Environment
Authors: Culhane, J. L.; Brooks, D. H.; van Driel-Gesztelyi, L.;
   Démoulin, P.; Baker, D.; DeRosa, M. L.; Mandrini, C. H.; Zhao, L.;
   Zurbuchen, T. H.
2014SoPh..289.3799C    Altcode: 2014SoPh..tmp...90C; 2014arXiv1405.2949C
  Seeking to establish whether active-region upflow material contributes
  to the slow solar wind, we examine in detail the plasma upflows from
  Active Region (AR) 10978, which crossed the Sun's disc in the interval 8
  to 16 December 2007 during Carrington rotation (CR) 2064. In previous
  work, using data from the Hinode/EUV Imaging Spectrometer, upflow
  velocity evolution was extensively studied as the region crossed the
  disc, while a linear force-free-field magnetic extrapolation was used
  to confirm aspects of the velocity evolution and to establish the
  presence of quasi-separatrix layers at the upflow source areas. The
  plasma properties, temperature, density, and first ionisation potential
  bias [FIP-bias] were measured with the spectrometer during the disc
  passage of the active region. Global potential-field source-surface
  (PFSS) models showed that AR 10978 was completely covered by the
  closed field of a helmet streamer that is part of the streamer
  belt. Therefore it is not clear how any of the upflowing AR-associated
  plasma could reach the source surface at 2.5 R<SUB>⊙</SUB> and
  contribute to the slow solar wind. However, a detailed examination of
  solar-wind in-situ data obtained by the Advanced Composition Explorer
  (ACE) spacecraft at the L<SUB>1</SUB> point shows that increases in
  O<SUP>7+</SUP>/O<SUP>6+</SUP>, C<SUP>6+</SUP>/C<SUP>5+</SUP>, and Fe/O -
  a FIP-bias proxy - are present before the heliospheric current-sheet
  crossing. These increases, along with an accompanying reduction in
  proton velocity and an increase in density are characteristic of
  both AR and slow-solar-wind plasma. Finally, we describe a two-step
  reconnection process by which some of the upflowing plasma from the
  AR might reach the heliosphere.

---------------------------------------------------------
Title: FIP bias in a sigmoidal active region
Authors: Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi,
   Lidia; Green, L. M.; Steed, K.; Carlyle, J.
2014IAUS..300..222B    Altcode:
  We investigate first ionization potential (FIP) bias levels in
  an anemone active region (AR) - coronal hole (CH) complex using an
  abundance map derived from Hinode/EIS spectra. The detailed, spatially
  resolved abundance map has a large field of view covering 359” ×
  485”. Plasma with high FIP bias, or coronal abundances, is concentrated
  at the footpoints of the AR loops whereas the surrounding CH has a low
  FIP bias, ~1, i.e. photospheric abundances. A channel of low FIP bias
  is located along the AR's main polarity inversion line containing a
  filament where ongoing flux cancellation is observed, indicating a
  bald patch magnetic topology characteristic of a sigmoid/flux rope
  configuration.

---------------------------------------------------------
Title: Plasma Composition in a Sigmoidal Anemone Active Region
Authors: Baker, D.; Brooks, D. H.; Démoulin, P.; van Driel-Gesztelyi,
   L.; Green, L. M.; Steed, K.; Carlyle, J.
2013ApJ...778...69B    Altcode: 2013arXiv1310.0999B
  Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument
  onboard Hinode, we present a detailed spatially resolved abundance map
  of an active region (AR)-coronal hole (CH) complex that covers an area
  of 359” × 485”. The abundance map provides first ionization potential
  (FIP) bias levels in various coronal structures within the large EIS
  field of view. Overall, FIP bias in the small, relatively young AR
  is 2-3. This modest FIP bias is a consequence of the age of the AR,
  its weak heating, and its partial reconnection with the surrounding
  CH. Plasma with a coronal composition is concentrated at AR loop
  footpoints, close to where fractionation is believed to take place in
  the chromosphere. In the AR, we found a moderate positive correlation
  of FIP bias with nonthermal velocity and magnetic flux density, both
  of which are also strongest at the AR loop footpoints. Pathways of
  slightly enhanced FIP bias are traced along some of the loops connecting
  opposite polarities within the AR. We interpret the traces of enhanced
  FIP bias along these loops to be the beginning of fractionated plasma
  mixing in the loops. Low FIP bias in a sigmoidal channel above the
  AR's main polarity inversion line, where ongoing flux cancellation is
  taking place, provides new evidence of a bald patch magnetic topology
  of a sigmoid/flux rope configuration.

---------------------------------------------------------
Title: High Spatial Resolution Observations of Loops in the Solar
    Corona
Authors: Brooks, David H.; Warren, Harry P.; Ugarte-Urra, Ignacio;
   Winebarger, Amy R.
2013ApJ...772L..19B    Altcode: 2013arXiv1305.2246B
  Understanding how the solar corona is structured is of fundamental
  importance to determine how the Sun's upper atmosphere is heated to
  high temperatures. Recent spectroscopic studies have suggested that an
  instrument with a spatial resolution of 200 km or better is necessary
  to resolve coronal loops. The High Resolution Coronal Imager (Hi-C)
  achieved this performance on a rocket flight in 2012 July. We use Hi-C
  data to measure the Gaussian widths of 91 loops observed in the solar
  corona and find a distribution that peaks at about 270 km. We also
  use Atmospheric Imaging Assembly data for a subset of these loops and
  find temperature distributions that are generally very narrow. These
  observations provide further evidence that loops in the solar corona
  are often structured at a scale of several hundred kilometers, well
  above the spatial scale of many proposed physical mechanisms.

---------------------------------------------------------
Title: Tracking Solar Active Region Outflow Plasma from its Source
    to the near-Earth Environment
Authors: Culhane, J. L.; Brooks, D.; Zurbuchen, T.; van
   Driel-Gesztelyi, L.; Fazakerley, A. N.; DeRosa, M. L.
2012AGUFMSH53A2255C    Altcode:
  In a recent study of persistent active region outflow from AR 10978 in
  the period 10 - 15, December, 2007, Brooks and Warren (2011), using the
  Hinode EUV Imaging Spectrometer (EIS) instrument showed the presence
  of a strong low-FIP element enhancement in the outflowing plasma that
  was replicated three days later in the in-situ solar wind measurements
  made by the ACE/SWICS instrument. In the present work, we examine the
  outflowing plasma properties (Te, Ne, v, abundances) as a function
  of time in greater detail as AR 10978 passes the Earth-Sun line. The
  structure of the magnetic field above the two outflow regions - E and
  W of the AR, is also examined. Following an assessment of the relevant
  magnetic structures between Sun and Earth, the properties of the solar
  wind plasma arriving at ACE approximately three days later are measured
  and compared with those of the outflowing AR plasma. The relationship
  of these measurements to the in-situ magnetic field observed by the
  ACE magnetometer is also studied. Finally the role of persistent AR
  outflows in contributing to the slow solar wind is assessed.

---------------------------------------------------------
Title: Hinode/EIS measurements of Abundances in Solar Active Region
    Outflows
Authors: Brooks, D.; Warren, H. P.
2012AGUFMSH52A..04B    Altcode:
  Peripheral outflows appear to be a common feature of active regions,
  and may be a significant source of the slow speed solar wind. Spectral
  line profiles from the Hinode EUV Imaging Spectrometer (EIS) show that
  the bulk outflows reach speeds of ~50km/s with a much faster component
  reaching hundreds of km/s. I will review recent measurements of the
  elemental composition of the outflows obtained by EIS, with particular
  attention paid to AR 10978 that was observed as it crossed the solar
  disk in December 2007. EIS measurements show that the temperature
  distribution of the outflows is dominated by coronal emission, and
  that plasma with a slow wind-like composition flowed from the edge of
  AR 10978 for at least five days. Furthermore, when the outflow from
  the Western side was favorably oriented in the Earth direction, the
  composition was found to match the value measured a few days later by
  ACE/SWICS. The composition of the high speed component of the outflows
  was also found to be similar to that of the slow speed wind, implying
  that it may also be a contributor. Observations and models indicate
  that it takes time for plasma to evolve to the enhanced composition
  typical of the slow wind, suggesting that the material in the outflows
  is trapped on closed loops before escaping, perhaps by interchange
  reconnection. The results, therefore, also identify the high speed
  component of the plasma as having a coronal origin. A significant
  constraint on the mechanisms that drive the outflows.

---------------------------------------------------------
Title: Magnetic Topology of Active Regions and Coronal Holes:
    Implications for Coronal Outflows and the Solar Wind
Authors: van Driel-Gesztelyi, L.; Culhane, J. L.; Baker, D.; Démoulin,
   P.; Mandrini, C. H.; DeRosa, M. L.; Rouillard, A. P.; Opitz, A.;
   Stenborg, G.; Vourlidas, A.; Brooks, D. H.
2012SoPh..281..237V    Altcode: 2012SoPh..tmp..228V
  During 2 - 18 January 2008 a pair of low-latitude opposite-polarity
  coronal holes (CHs) were observed on the Sun with two active regions
  (ARs) and the heliospheric plasma sheet located between them. We use
  the Hinode/EUV Imaging Spectrometer (EIS) to locate AR-related outflows
  and measure their velocities. Solar-Terrestrial Relations Observatory
  (STEREO) imaging is also employed, as are the Advanced Composition
  Explorer (ACE) in-situ observations, to assess the resulting impacts on
  the solar wind (SW) properties. Magnetic-field extrapolations of the two
  ARs confirm that AR plasma outflows observed with EIS are co-spatial
  with quasi-separatrix layer locations, including the separatrix of a
  null point. Global potential-field source-surface modeling indicates
  that field lines in the vicinity of the null point extend up to the
  source surface, enabling a part of the EIS plasma upflows access
  to the SW. We find that similar upflow properties are also observed
  within closed-field regions that do not reach the source surface. We
  conclude that some of plasma upflows observed with EIS remain confined
  along closed coronal loops, but that a fraction of the plasma may be
  released into the slow SW. This suggests that ARs bordering coronal
  holes can contribute to the slow SW. Analyzing the in-situ data, we
  propose that the type of slow SW present depends on whether the AR is
  fully or partially enclosed by an overlying streamer.

---------------------------------------------------------
Title: A Systematic Survey of High-temperature Emission in Solar
    Active Regions
Authors: Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.
2012ApJ...759..141W    Altcode: 2012arXiv1204.3220W
  The recent analysis of observations taken with the EUV Imaging
  Spectrometer and X-Ray Telescope instruments on Hinode suggests that
  well-constrained measurements of the temperature distribution in solar
  active regions can finally be made. Such measurements are critical
  for constraining theories of coronal heating. Past analysis, however,
  has suffered from limited sample sizes and large uncertainties at
  temperatures between 5 and 10 MK. Here we present a systematic study
  of the differential emission measure distribution in 15 active region
  cores. We focus on measurements in the "inter-moss" region, that is, the
  region between the loop footpoints, where the observations are easier
  to interpret. To reduce the uncertainties at the highest temperatures
  we present a new method for isolating the Fe XVIII emission in the
  AIA/SDO 94 Å channel. The resulting differential emission measure
  distributions confirm our previous analysis showing that the temperature
  distribution in an active region core is often strongly peaked near 4
  MK. We characterize the properties of the emission distribution as a
  function of the total unsigned magnetic flux. We find that the amount
  of high-temperature emission in the active region core is correlated
  with the total unsigned magnetic flux, while the emission at lower
  temperatures, in contrast, is inversely related. These results provide
  compelling evidence that high-temperature active region emission is
  often close to equilibrium, although weaker active regions may be
  dominated by evolving million degree loops in the core.

---------------------------------------------------------
Title: The Coronal Source of Extreme-ultraviolet Line Profile
    Asymmetries in Solar Active Region Outflows
Authors: Brooks, David H.; Warren, Harry P.
2012ApJ...760L...5B    Altcode: 2012arXiv1210.1274B
  High-resolution spectra from the Hinode EUV Imaging Spectrometer have
  revealed that coronal spectral line profiles are sometimes asymmetric,
  with a faint enhancement in the blue wing on the order of 100 km
  s<SUP>-1</SUP>. These asymmetries could be important since they may
  be subtle yet diagnostically useful signatures of coronal heating or
  solar wind acceleration processes. It has also been suggested that
  they are signatures of chromospheric jets supplying mass and energy
  to the corona. Until now, however, there have been no studies of the
  physical properties of the plasma producing the asymmetries. Here we
  identify regions of asymmetric profiles in the outflows of AR 10978
  using an asymmetric Gaussian function and extract the intensities
  of the faint component using multiple Gaussian fits. We then derive
  the temperature structure and chemical composition of the plasma
  producing the asymmetries. We find that the asymmetries are dependent
  on temperature, and are clearer and stronger in coronal lines. The
  temperature distribution peaks around 1.4-1.8 MK with an emission
  measure at least an order of magnitude larger than that at 0.6
  MK. The first ionization potential bias is found to be 3-5, implying
  that the high-speed component of the outflows may also contribute to
  the slow-speed wind. Observations and models indicate that it takes
  time for plasma to evolve to a coronal composition, suggesting that
  the material is trapped on closed loops before escaping, perhaps by
  interchange reconnection. The results, therefore, identify the plasma
  producing the asymmetries as having a coronal origin.

---------------------------------------------------------
Title: Solar Coronal Loops Resolved by Hinode and the Solar Dynamics
    Observatory
Authors: Brooks, David H.; Warren, Harry P.; Ugarte-Urra, Ignacio
2012ApJ...755L..33B    Altcode:
  Despite decades of studying the Sun, the coronal heating problem remains
  unsolved. One fundamental issue is that we do not know the spatial scale
  of the coronal heating mechanism. At a spatial resolution of 1000 km or
  more, it is likely that most observations represent superpositions of
  multiple unresolved structures. In this Letter, we use a combination
  of spectroscopic data from the Hinode EUV Imaging Spectrometer and
  high-resolution images from the Atmospheric Imaging Assembly on the
  Solar Dynamics Observatory to determine the spatial scales of coronal
  loops. We use density measurements to construct multi-thread models of
  the observed loops and confirm these models using the higher spatial
  resolution imaging data. The results allow us to set constraints on the
  number of threads needed to reproduce a particular loop structure. We
  demonstrate that in several cases million degree loops are revealed to
  be single monolithic structures that are fully spatially resolved by
  current instruments. The majority of loops, however, must be composed
  of a number of finer, unresolved threads, but the models suggest that
  even for these loops the number of threads could be small, implying
  that they are also close to being resolved. These results challenge
  heating models of loops based on the reconnection of braided magnetic
  fields in the corona.

---------------------------------------------------------
Title: Constraints on the Heating of High-temperature Active Region
Loops: Observations from Hinode and the Solar Dynamics Observatory
Authors: Warren, Harry P.; Brooks, David H.; Winebarger, Amy R.
2011ApJ...734...90W    Altcode: 2010arXiv1009.5976W
  We present observations of high-temperature emission in the core
  of a solar active region using instruments on Hinode and the Solar
  Dynamics Observatory (SDO). These multi-instrument observations allow
  us to determine the distribution of plasma temperatures and follow the
  evolution of emission at different temperatures. We find that at the
  apex of the high-temperature loops the emission measure distribution
  is strongly peaked near 4 MK and falls off sharply at both higher and
  lower temperatures. Perhaps most significantly, the emission measure at
  0.5 MK is reduced by more than two orders of magnitude from the peak at
  4 MK. We also find that the temporal evolution in broadband soft X-ray
  images is relatively constant over about 6 hr of observing. Observations
  in the cooler SDO/Atmospheric Imaging Assembly (AIA) bandpasses
  generally do not show cooling loops in the core of the active region,
  consistent with the steady emission observed at high temperatures. These
  observations suggest that the high-temperature loops observed in the
  core of an active region are close to equilibrium. We find that it is
  possible to reproduce the relative intensities of high-temperature
  emission lines with a simple, high-frequency heating scenario where
  heating events occur on timescales much less than a characteristic
  cooling time. In contrast, low-frequency heating scenarios, which are
  commonly invoked to describe nanoflare models of coronal heating, do
  not reproduce the relative intensities of high-temperature emission
  lines and predict low-temperature emission that is approximately an
  order of magnitude too large. We also present an initial look at images
  from the SDO/AIA 94 Å channel, which is sensitive to Fe XVIII.

---------------------------------------------------------
Title: EUV Spectral Line Formation and the Temperature Structure of
Active Region Fan Loops: Observations with Hinode/EIS and SDO/AIA
Authors: Brooks, David H.; Warren, Harry P.; Young, Peter R.
2011ApJ...730...85B    Altcode: 2011arXiv1101.5240B
  With the aim of studying active region fan loops using observations
  from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics
  Observatory Atmospheric Imaging Assembly (AIA), we investigate a number
  of inconsistencies in modeling the absolute intensities of Fe VIII
  and Si VII lines, and address why spectroheliograms formed from these
  lines look very similar despite the fact that ionization equilibrium
  calculations suggest that they have significantly different formation
  temperatures: log(T<SUB>e</SUB> /K) = 5.6 and 5.8, respectively. It is
  important to resolve these issues because confidence has been undermined
  in their use for differential emission measure (DEM) analysis, and
  Fe VIII is the main contributor to the AIA 131 Å channel at low
  temperatures. Furthermore, the strong Fe VIII 185.213 Å and Si VII
  275.368 Å lines are the best EIS lines to use for velocity studies
  in the transition region, and for assigning the correct temperature
  to velocity measurements in the fans. We find that the Fe VIII 185.213
  Å line is particularly sensitive to the slope of the DEM, leading to
  disproportionate changes in its effective formation temperature. If
  the DEM has a steep gradient in the log(T<SUB>e</SUB> /K) = 5.6-5.8
  temperature range, or is strongly peaked, Fe VIII 185.213 Å and Si VII
  275.368 Å will be formed at the same temperature. We show that this
  effect explains the similarity of these images in the fans. Furthermore,
  we show that the most recent ionization balance compilations resolve the
  discrepancies in absolute intensities. With these difficulties overcome,
  we combine EIS and AIA data to determine the temperature structure of
  a number of fan loops and find that they have peak temperatures of
  0.8-1.2 MK. The EIS data indicate that the temperature distribution
  has a finite (but narrow) width &lt; log (σ_{T_e}/K) = 5.5 which,
  in one detailed case, is found to broaden substantially toward the
  loop base. AIA and EIS yield similar results on the temperature,
  emission measure magnitude, and thermal distribution in the fans,
  though sometimes the AIA data suggest a relatively larger thermal
  width. The result is that both the Fe VIII 185.213 Å and Si VII
  275.368 Å lines are formed at log(T<SUB>e</SUB> /K)~ 5.9 in the fans,
  and the AIA 131 Å response also shifts to this temperature.

---------------------------------------------------------
Title: Establishing a Connection Between Active Region Outflows and
the Solar Wind: Abundance Measurements with EIS/Hinode
Authors: Brooks, David H.; Warren, Harry P.
2011ApJ...727L..13B    Altcode: 2010arXiv1009.4291B
  One of the most interesting discoveries from Hinode is the presence
  of persistent high-temperature high-speed outflows from the edges
  of active regions (ARs). EUV imaging spectrometer (EIS) measurements
  indicate that the outflows reach velocities of 50 km s<SUP>-1</SUP>
  with spectral line asymmetries approaching 200 km s<SUP>-1</SUP>. It
  has been suggested that these outflows may lie on open field lines
  that connect to the heliosphere, and that they could potentially
  be a significant source of the slow speed solar wind. A direct link
  has been difficult to establish, however. We use EIS measurements of
  spectral line intensities that are sensitive to changes in the relative
  abundance of Si and S as a result of the first ionization potential
  (FIP) effect, to measure the chemical composition in the outflow
  regions of AR 10978 over a 5 day period in 2007 December. We find that
  Si is always enhanced over S by a factor of 3-4. This is generally
  consistent with the enhancement factor of low FIP elements measured
  in situ in the slow solar wind by non-spectroscopic methods. Plasma
  with a slow wind-like composition was therefore flowing from the edge
  of the AR for at least 5 days. Furthermore, on December 10 and 11,
  when the outflow from the western side was favorably oriented in the
  Earth direction, the Si/S ratio was found to match the value measured
  a few days later by the Advanced Composition Explorer/Solar Wind Ion
  Composition Spectrometer. These results provide strong observational
  evidence for a direct connection between the solar wind, and the
  coronal plasma in the outflow regions.

---------------------------------------------------------
Title: Characteristics and Evolution of the Magnetic Field and
    Chromospheric Emission in an Active Region Core Observed by Hinode
Authors: Brooks, David H.; Warren, Harry P.; Winebarger, Amy R.
2010ApJ...720.1380B    Altcode: 2010arXiv1006.5776B
  We describe the characteristics and evolution of the magnetic field and
  chromospheric emission in an active region core observed by the Solar
  Optical Telescope (SOT) on Hinode. Consistent with previous studies,
  we find that the moss is unipolar, the spatial distribution of magnetic
  flux evolves slowly, and that the magnetic field is only moderately
  inclined. We also show that the field-line inclination and horizontal
  component are coherent, and that the magnetic field is mostly sheared
  in the inter-moss regions where the highest magnetic flux variability
  is seen. Using extrapolations from spectropolarimeter magnetograms,
  we show that the magnetic connectivity in the moss is different from
  that in the quiet Sun because most of the magnetic field extends to
  significant coronal heights. The magnetic flux, field vector, and
  chromospheric emission in the moss also appear highly dynamic but
  actually show only small-scale variations in magnitude on timescales
  longer than the cooling times for hydrodynamic loops computed from
  our extrapolations, suggesting high-frequency (continuous) heating
  events. Some evidence is found for flux (Ca II intensity) changes on
  the order of 100-200 G (DN) on timescales of 20-30 minutes that could
  be taken as indicative of low-frequency heating. We find, however,
  that only a small fraction (10%) of our simulated loops would be
  expected to cool on these timescales, and we do not find clear evidence
  that the flux changes consistently produce intensity changes in the
  chromosphere. Using observations from the EUV Imaging Spectrometer
  (EIS), we also determine that the filling factor in the moss is ~16%,
  consistent with previous studies and larger than the size of an SOT
  pixel. The magnetic flux and chromospheric intensity in most individual
  SOT pixels in the moss vary by less than ~20% and ~10%, respectively,
  on loop cooling timescales. In view of the high energy requirements of
  the chromosphere, we suggest that these variations could be sufficient
  for the heating of "warm" EUV loops, but that the high basal levels
  may be more important for powering the hot core loops rooted in the
  moss. The magnetic field and chromospheric emission appear to evolve
  gradually on spatial scales comparable to the cross-field scale of
  the fundamental coronal structures inferred from EIS measurements.

---------------------------------------------------------
Title: Evidence for Steady Heating: Observations of an Active Region
    Core with Hinode and TRACE
Authors: Warren, Harry P.; Winebarger, Amy R.; Brooks, David H.
2010ApJ...711..228W    Altcode: 2009arXiv0910.0458W
  The timescale for energy release is an important parameter for
  constraining the coronal heating mechanism. Observations of "warm"
  coronal loops (~1 MK) have indicated that the heating is impulsive and
  that coronal plasma is far from equilibrium. In contrast, observations
  at higher temperatures (~3 MK) have generally been consistent with
  steady heating models. Previous observations, however, have not been
  able to exclude the possibility that the high temperature loops are
  actually composed of many small-scale threads that are in various stages
  of heating and cooling and only appear to be in equilibrium. With new
  observations from the EUV Imaging Spectrometer and X-ray Telescope
  (XRT) on Hinode we have the ability to investigate the properties of
  high temperature coronal plasma in extraordinary detail. We examine
  the emission in the core of an active region and find three independent
  lines of evidence for steady heating. We find that the emission observed
  in XRT is generally steady for hours, with a fluctuation level of
  approximately 15% in an individual pixel. Short-lived impulsive heating
  events are observed, but they appear to be unrelated to the steady
  emission that dominates the active region. Furthermore, we find no
  evidence for warm emission that is spatially correlated with the hot
  emission, as would be expected if the high temperature loops are the
  result of impulsive heating. Finally, we also find that intensities in
  the "moss," the footpoints of high temperature loops, are consistent
  with steady heating models provided that we account for the local
  expansion of the loop from the base of the transition region to the
  corona. In combination, these results provide strong evidence that
  the heating in the core of an active region is effectively steady,
  that is, the time between heating events is short relative to the
  relevant radiative and conductive cooling times.

---------------------------------------------------------
Title: Signatures of Coronal Heating Mechanisms
Authors: Antolin, P.; Shibata, K.; Kudoh, T.; Shiota, D.; Brooks, D.
2010ASSP...19..277A    Altcode: 2010mcia.conf..277A; 2009arXiv0903.1766A
  Alfvén waves created by sub-photospheric motions or by magnetic
  reconnection in the low solar atmosphere seem good candidates for
  coronal heating. However, the corona is also likely to be heated more
  directly by magnetic reconnection, with dissipation taking place
  in current sheets. Distinguishing observationally between these
  two heating mechanisms is an extremely difficult task. We perform
  1.5-dimensional MHD simulations of a coronal loop subject to each
  type of heating and derive observational quantities that may allow
  these to be differentiated. This work is presented in more detail in
  Antolin et al. (2008).

---------------------------------------------------------
Title: Hinode/Extreme-Ultraviolet Imaging Spectrometer Observations
    of the Temperature Structure of the Quiet Corona
Authors: Brooks, David H.; Warren, Harry P.; Williams, David R.;
   Watanabe, Tetsuya
2009ApJ...705.1522B    Altcode: 2009arXiv0905.3603B
  We present a differential emission measure (DEM) analysis of the quiet
  solar corona on disk using data obtained by the Extreme-ultraviolet
  Imaging Spectrometer (EIS) on Hinode. We show that the expected
  quiet-Sun DEM distribution can be recovered from judiciously selected
  lines, and that their average intensities can be reproduced to
  within 30%. We present a subset of these selected lines spanning the
  temperature range log T = 5.6-6.4 K that can be used to derive the DEM
  distribution reliably, including a subset of iron lines that can be used
  to derive the DEM distribution free of the possibility of uncertainties
  in the elemental abundances. The subset can be used without the need for
  extensive measurements, and the observed intensities can be reproduced
  to within the estimated uncertainty in the pre-launch calibration
  of EIS. Furthermore, using this subset, we also demonstrate that
  the quiet coronal DEM distribution can be recovered on size scales
  down to the spatial resolution of the instrument (1” pixels). The
  subset will therefore be useful for studies of small-scale spatial
  inhomogeneities in the coronal temperature structure, for example,
  in addition to studies requiring multiple DEM derivations in space or
  time. We apply the subset to 45 quiet-Sun data sets taken in the period
  2007 January to April, and show that although the absolute magnitude
  of the coronal DEM may scale with the amount of released energy, the
  shape of the distribution is very similar up to at least log T ~ 6.2 K
  in all cases. This result is consistent with the view that the shape of
  the quiet-Sun DEM is mainly a function of the radiating and conducting
  properties of the plasma and is fairly insensitive to the location and
  rate of energy deposition. This universal DEM may be sensitive to other
  factors such as loop geometry, flows, and the heating mechanism, but
  if so they cannot vary significantly from quiet-Sun region to region.

---------------------------------------------------------
Title: Flows and Motions in Moss in the Core of a Flaring Active
Region: Evidence for Steady Heating
Authors: Brooks, David H.; Warren, Harry P.
2009ApJ...703L..10B    Altcode: 2009arXiv0905.3462B
  We present new measurements of the time variability of intensity,
  Doppler, and nonthermal velocities in moss in an active region core
  observed by the EUV Imaging Spectrometer on Hinode in 2007 June. The
  measurements are derived from spectral profiles of the Fe XII 195
  Å line. Using the 2” slit, we repeatedly scanned 150” by 150”
  in a few minutes. This is the first time it has been possible to
  make such velocity measurements in the moss, and the data presented
  are the highest cadence spatially resolved maps of moss Doppler and
  nonthermal velocities ever obtained in the corona. The observed region
  produced numerous C- and M-class flares with several occurring in
  the core close to the moss. The magnetic field was therefore clearly
  changing in the active region core, so we ought to be able to detect
  dynamic signatures in the moss if they exist. Our measurements of
  moss intensities agree with previous studies in that a less than 15%
  variability is seen over a period of 16 hr. Our new measurements of
  Doppler and nonthermal velocities reveal no strong flows or motions
  in the moss, nor any significant variability in these quantities. The
  results confirm that moss at the bases of high temperature coronal loops
  is heated quasi-steadily. They also show that quasi-steady heating
  can contribute significantly even in the core of a flare productive
  active region. Such heating may be impulsive at high frequency, but
  if so it does not give rise to large flows or motions.

---------------------------------------------------------
Title: The Temperature and Density Structure of the Solar
    Corona. I. Observations of the Quiet Sun with the EUV Imaging
    Spectrometer on Hinode
Authors: Warren, Harry P.; Brooks, David H.
2009ApJ...700..762W    Altcode: 2009arXiv0901.1621W
  Measurements of the temperature and density structure of the
  solar corona provide critical constraints on theories of coronal
  heating. Unfortunately, the complexity of the solar atmosphere,
  observational uncertainties, and the limitations of current atomic
  calculations, particularly those for Fe, all conspire to make this
  task very difficult. A critical assessment of plasma diagnostics in
  the corona is essential to making progress on the coronal heating
  problem. In this paper, we present an analysis of temperature and
  density measurements above the limb in the quiet corona using new
  observations from the EUV Imaging Spectrometer (EIS) on Hinode. By
  comparing the Si and Fe emission observed with EIS we are able to
  identify emission lines that yield consistent emission measure
  distributions. With these data we find that the distribution of
  temperatures in the quiet corona above the limb is strongly peaked
  near 1 MK, consistent with previous studies. We also find, however,
  that there is a tail in the emission measure distribution that extends
  to higher temperatures. EIS density measurements from several density
  sensitive line ratios are found to be generally consistent with
  each other and with previous measurements in the quiet corona. Our
  analysis, however, also indicates that a significant fraction of the
  weaker emission lines observed in the EIS wavelength ranges cannot be
  understood with current atomic data.

---------------------------------------------------------
Title: Active Region Transition Region Loop Populations and Their
    Relationship to the Corona
Authors: Ugarte-Urra, Ignacio; Warren, Harry P.; Brooks, David H.
2009ApJ...695..642U    Altcode: 2009arXiv0901.1075U
  The relationships among coronal loop structures at different
  temperatures are not settled. Previous studies have suggested that
  coronal loops in the core of an active region (AR) are not seen cooling
  through lower temperatures and therefore are steadily heated. If loops
  were cooling, the transition region would be an ideal temperature regime
  to look for a signature of their evolution. The Extreme-ultraviolet
  Imaging Spectrometer on Hinode provides monochromatic images of the
  solar transition region and corona at an unprecedented cadence and
  spatial resolution, making it an ideal instrument to shed light on
  this issue. Analysis of observations of AR 10978 taken in 2007 December
  8-19 indicates that there are two dominant loop populations in the AR:
  (1) core multitemperature loops that undergo a continuous process of
  heating and cooling in the full observed temperature range 0.4-2.5
  MK and even higher as shown by the X-Ray Telescope and (2) peripheral
  loops which evolve mostly in the temperature range 0.4-1.3 MK. Loops
  at transition region temperatures can reach heights of 150 Mm in the
  corona above the limb and develop downflows with velocities in the
  range of 39-105 km s<SUP>-1</SUP>.

---------------------------------------------------------
Title: The Role of Transient Brightenings in Heating the Solar Corona
Authors: Brooks, David H.; Ugarte-Urra, Ignacio; Warren, Harry P.
2008ApJ...689L..77B    Altcode:
  Nanoflare reconnection events have been proposed as a mechanism for
  heating the corona. Parker's original suggestion was that frequent
  reconnection events occur in coronal loops due to the braiding of the
  magnetic field. Many observational studies, however, have focused on the
  properties of isolated transient brightenings unassociated with loops,
  but their cause, role, and relevance for coronal heating have not
  yet been established. Using Hinode SOT magnetograms and high-cadence
  EIS spectral data we study the relationship between chromospheric,
  transition region, and coronal emission and the evolution of the
  magnetic field. We find that hot, relatively steadily emitting coronal
  loops and isolated transient brightenings are both associated with
  magnetic flux regions that are highly dynamic. An essential difference,
  however, is that brightenings are typically found in regions of flux
  collision and cancellation whereas coronal loops are generally rooted
  in magnetic field regions that are locally unipolar with unmixed
  flux. This suggests that the type of heating (transient vs. steady) is
  related to the structure of the magnetic field, and that the heating
  in transient events may be fundamentally different than in coronal
  loops. This implies that they do not play an important role in heating
  the "quiescent" corona.

---------------------------------------------------------
Title: Predicting Observational Signatures of Coronal Heating by
    Alfvén Waves and Nanoflares
Authors: Antolin, P.; Shibata, K.; Kudoh, T.; Shiota, D.; Brooks, D.
2008ApJ...688..669A    Altcode:
  Alfvén waves can dissipate their energy by means of nonlinear
  mechanisms, and constitute good candidates to heat and maintain the
  solar corona to the observed few million degrees. Another appealing
  candidate is nanoflare reconnection heating, in which energy is released
  through many small magnetic reconnection events. Distinguishing the
  observational features of each mechanism is an extremely difficult
  task. On the other hand, observations have shown that energy release
  processes in the corona follow a power-law distribution in frequency
  whose index may tell us whether small heating events contribute
  substantially to the heating or not. In this work we show a link
  between the power-law index and the operating heating mechanism in
  a loop. We set up two coronal loop models: in the first model Alfvén
  waves created by footpoint shuffling nonlinearly convert to longitudinal
  modes which dissipate their energy through shocks; in the second model
  numerous heating events with nanoflare-like energies are input randomly
  along the loop, either distributed uniformly or concentrated at the
  footpoints. Both models are based on a 1.5-dimensional MHD code. The
  obtained coronae differ in many aspects; for instance, in the flow
  patterns along the loop and the simulated intensity profile that
  Hinode XRT would observe. The intensity histograms display power-law
  distributions whose indexes differ considerably. This number is found
  to be related to the distribution of the shocks along the loop. We
  thus test the observational signatures of the power-law index as a
  diagnostic tool for the above heating mechanisms and the influence of
  the location of nanoflares.

---------------------------------------------------------
Title: Modeling of the Extreme-Ultraviolet and Soft X-Ray Emission
    in a Solar Coronal Bright Point
Authors: Brooks, David H.; Warren, Harry P.
2008ApJ...687.1363B    Altcode:
  Previous studies have been able to reproduce both the observed
  intensities and the morphology of high-temperature solar plasma
  using steady state heating models. These models, however, have
  been unable to reproduce the lower temperature emission observed in
  active regions. Here we present results from numerical simulations
  of a coronal bright point. We use potential field extrapolations of a
  Kitt Peak magnetogram to compute the coronal field lines and populate
  them with solutions to the hydrostatic loop equations based on a
  volumetric heating function that scales as bar B/L, where bar B is the
  magnetic field strength averaged along a field line and L is the loop
  length. We consider the effects of altering the magnitude and scale
  height of the energy deposition and the effect of allowing the loop
  cross sections to expand proportionally to 1/bar B. We then use the
  computed densities and temperatures to calculate average intensities
  and simulated EUV and soft X-ray images and compared them to Yohkoh
  and SOHO observations. We find that our best-case model (apex heating
  of expanding loops) can reproduce the high-temperature emission, the
  general morphology of the lower temperature emission, and the majority
  of the average intensities of reliable lines over a wide range of
  temperatures to within ~20%. The morphology in the EUV visualizations,
  however, shows some differences from the observations. These results
  suggest the role of nonpotential or evolving magnetic fields, or
  dynamic processes, but indicate that departures from the potential
  field hydrostatic case may not be too large.

---------------------------------------------------------
Title: Observations of Active Region Loops with the EUV Imaging
    Spectrometer on Hinode
Authors: Warren, Harry P.; Ugarte-Urra, Ignacio; Doschek, George A.;
   Brooks, David H.; Williams, David R.
2008ApJ...686L.131W    Altcode: 2008arXiv0808.3227W
  Previous solar observations have shown that coronal loops near 1 MK
  are difficult to reconcile with simple heating models. These loops have
  lifetimes that are long relative to a radiative cooling time, suggesting
  quasi-steady heating. The electron densities in these loops, however,
  are too high to be consistent with thermodynamic equilibrium. Models
  proposed to explain these properties generally rely on the existence
  of smaller scale filaments within the loop that are in various stages
  of heating and cooling. Such a framework implies that there should be
  a distribution of temperatures within a coronal loop. In this paper
  we analyze new observations from the EUV Imaging Spectrometer (EIS)
  on Hinode. EIS is capable of observing active regions over a wide range
  of temperatures (Fe VIII-Fe XVII) at relatively high spatial resolution
  (1”). We find that most isolated coronal loops that are bright in Fe
  XII generally have very narrow temperature distributions (σ<SUB>T</SUB>
  lesssim 3 × 10<SUP>5</SUP> K), but are not isothermal. We also derive
  volumetric filling factors in these loops of approximately 10%. Both
  results lend support to the filament models.

---------------------------------------------------------
Title: Predicting observational signatures of coronal heating by
    Alfvén waves and nanoflares
Authors: Antolin, Patrick; Shibata, Kazunari; Kudoh, Takahiro; Shiota,
   Daiko; Brooks, David
2008IAUS..247..279A    Altcode: 2007IAUS..247..279A
  Alfvén waves can dissipate their energy by means of nonlinear
  mechanisms, and constitute good candidates to heat and maintain the
  solar corona to the observed few million degrees. Another appealing
  candidate is the nanoflare-reconnection heating, in which energy is
  released through many small magnetic reconnection events. Distinguishing
  the observational features of each mechanism is an extremely difficult
  task. On the other hand, observations have shown that energy release
  processes in the corona follow a power law distribution in frequency
  whose index may tell us whether small heating events contribute
  substantially to the heating or not. In this work we show a link
  between the power law index and the operating heating mechanism in
  a loop. We set up two coronal loop models: in the first model Alfvén
  waves created by footpoint shuffling nonlinearly convert to longitudinal
  modes which dissipate their energy through shocks; in the second model
  numerous heating events with nanoflare-like energies are input randomly
  along the loop, either distributed uniformly or concentrated at the
  footpoints. Both models are based on a 1.5-D MHD code. The obtained
  coronae differ in many aspects, for instance, in the simulated intensity
  profile that Hinode/XRT would observe. The intensity histograms display
  power law distributions whose indexes differ considerably. This number
  is found to be related to the distribution of the shocks along the
  loop. We thus test the observational signatures of the power law index
  as a diagnostic tool for the above heating mechanisms and the influence
  of the location of nanoflares.

---------------------------------------------------------
Title: The Role of Isolated EUV Brightenings in Heating the Corona
Authors: Brooks, D. H.; Warren, H. P.; Ugarte-Urra, I.
2008AGUSMSP43C..04B    Altcode:
  Nanoflare reconnection events have been proposed as a mechanism for
  heating the solar corona. Parker's original suggestion was that frequent
  reconnection events occur in coronal loops due to the twisting and
  braiding of the magnetic field. Many observational studies, however,
  have focused on the radiating properties of isolated brightening
  events, but their cause, role, and relevance for coronal heating
  has not yet been established. Using Hinode Solar Optical Telescope
  (SOT) magnetograms and high cadence EUV Imaging Spectrometer (EIS)
  slot rasters we study the relationship between transition region and
  coronal emission and the evolution of the magnetic field. We find that
  hot, relatively steadily emitting coronal loops are generally rooted in
  magnetic field regions that are locally unipolar yet highly dynamic,
  whereas detailed analysis shows that ubiquitous EUV brightenings are
  found in regions of magnetic flux cancellation in the photosphere. This
  suggests that the heating in transient events may be fundamentally
  different than the heating in coronal loops and that they play no
  direct role in the heating of the quiescent corona.

---------------------------------------------------------
Title: Electron Densities in Active Region Loops Observed with
    Hinode/EIS
Authors: Warren, H. P.; Winebarger, A. R.; Brooks, D. H.
2008AGUSMSP41C..02W    Altcode:
  Active region observations with the Transition Region and Coronal
  Explorer (TRACE) showed that loops near 1 MK appear to have high
  densities relative to the predictions of scaling laws based on steady
  heating. These loops also persist much longer than a radiative cooling
  time. This lead to the formation of models based on the impulsive
  heating of small scale filaments. With the launch of the EUV Imaging
  Spectrometer (EIS) on Hinode we now have a much more detailed view of
  coronal loops at these temperatures. We find that the temperatures,
  densities, and filling factors inferred from the new spectroscopic
  data are largely consistent with our interpretation of the earlier
  TRACE observations. The impulsive heating models also predict low
  densities relative to the steady heating models at high temperatures,
  and we will discuss the EIS evidence for hot, underdense loops in
  solar active regions.

---------------------------------------------------------
Title: EIS: a new view of active region transition region loops
Authors: Ugarte-Urra, I.; Warren, H. P.; Brooks, D. H.
2008AGUSMSP41C..03U    Altcode:
  The EUV Imaging Spectrometer (EIS) on board Hinode is providing
  unprecedented diagnostics of solar coronal plasmas. One of its less
  exploited capabilities is the ability to make instantaneous spectrally
  pure images with the 40” slot. Simultaneous transition region (Mg
  VI, Mg VII, Si VII) and coronal (Fe XI - Fe XVI) images allow us
  to observe active region loops as we have not been able to before,
  given the spatial resolution (1arcsec pixels), cadence (70s) and,
  most importantly, the broad temperature coverage. Under this scrutiny
  two distinct populations of active region transition region loops can
  be differentiated: core loops that result from the cooling of several
  million degree plasma; and fan structures with their main contribution
  in the 0.6-1 MK temperature range. These results suggest that the cores
  of active regions are not as steady as commonly assumed and reinforce
  the idea of coexistance of differentiated loop populations within the
  active region topology. We present the properties of the loops and we
  discuss the implications that these new observations have for current
  transition region and coronal models.

---------------------------------------------------------
Title: Observations of Transient Active Region Heating with Hinode
Authors: Warren, Harry P.; Ugarte-Urra, Ignacio; Brooks, David H.;
   Cirtain, Jonathan W.; Williams, David R.; Hara, Hirohisa
2007PASJ...59S.675W    Altcode: 2007arXiv0711.0357W
  We present observations of transient active region heating events
  observed with the Extreme Ultraviolet Imaging Spectrometer (EIS) and
  X-ray Telescope (XRT) on Hinode. This initial investigation focuses
  on NOAA active region 10940 as observed by Hinode on 2007 February 1
  between 12 and 19UT. In these observations we find numerous examples
  of transient heating events within the active region. The high spatial
  resolution and broad temperature coverage of these instruments allows
  us to track the evolution of coronal plasma. The evolution of the
  emission observed with XRT and EIS during these events is generally
  consistent with loops that have been heated and are cooling. We have
  analyzed the most energetic heating event observed during this period,
  a small GOES B-class flare, in some detail and present some of the
  spectral signatures of the event, such as relative Doppler shifts at
  one of the loop footpoints and enhanced line widths during the rise
  phase of the event. While the analysis of these transient events has
  the potential to yield insights into the coronal heating mechanism,
  these observations do not rule out the possibility that there is a
  strong steady heating level in the active region. Detailed statistical
  analysis will be required to address this question definitively.

---------------------------------------------------------
Title: Hinode EUV Imaging Spectrometer Observations of Solar Active
    Region Dynamics
Authors: Mariska, John T.; Warren, Harry P.; Ugarte-Urra, Ignacio;
   Brooks, David H.; Williams, David R.; Hara, Hirohisa
2007PASJ...59S.713M    Altcode: 2007arXiv0708.4309M
  The EUV Imaging Spectrometer (EIS) on the Hinode satellite is capable of
  measuring emission line center positions for Gaussian line profiles to a
  fraction of a spectral pixel, resulting in relative solar Doppler-shift
  measurements with an accuracy of a less than a km s<SUP>-1</SUP> for
  strong lines. We show an example of the application of that capability
  to an active region sit-and-stare observation in which the EIS slit
  is placed at one location on the Sun and many exposures are taken
  while the spacecraft tracking keeps the same solar location within
  the slit. For the active region examined (NOAA10930), we find that
  significant intensity and Doppler-shift fluctuations as a function of
  time are present at a number of locations. These fluctuations appear
  to be similar to those observed in high-temperature emission lines
  with other space-borne spectroscopic instruments. With its increased
  sensitivity over earlier spectrometers and its ability to image many
  emission lines simultaneously, EIS should provide significant new
  constraints on Doppler-shift oscillations in the corona.

---------------------------------------------------------
Title: The X10 Flare on 29 October 2003: Was It Triggered by Magnetic
    Reconnection between Counter-Helical Fluxes?
Authors: Liu, Yu; Kurokawa, Hiroki; Liu, Chang; Brooks, David H.;
   Dun, Jingping; Ishii, Takako T.; Zhang, Hongqi
2007SoPh..240..253L    Altcode: 2007astro.ph..1794L
  Vector magnetograms taken at Huairou Solar Observing Station (HSOS)
  and Mees Solar Observatory (MSO) reveal that the super active region
  (AR) NOAA 10486 was a complex region containing current helicity flux of
  opposite signs. The main positive sunspots were dominated by negative
  helicity fields, while positive helicity patches persisted both inside
  and around the main positive sunspots. Based on a comparison of two days
  of deduced current helicity density, pronounced changes associated with
  the occurrence of an X10 flare that peaked at 20:49 UT on 29 October
  2003 were noticed. The average current helicity density (negative) of
  the main sunspots decreased significantly by about 50%. Accordingly,
  the helicity densities of counter-helical patches (positive) were also
  found to decay by the same proportion or more. In addition, two hard
  X-ray (HXR) "footpoints" were observed by the Reuven Ramaty High Energy
  Solar Spectroscopic Imager (RHESSI) during the flare in the 50 - 100
  keV energy range. The cores of these two HXR footpoints were adjacent
  to the positions of two patches with positive current helicity that
  disappeared after the flare. This strongly suggested that the X10
  flare on 29 October 2003 resulted from reconnection between magnetic
  flux tubes having opposite current helicity. Finally, the global
  decrease of current helicity in AR 10486 by ∼50% can be understood
  as the helicity launched away by the halo coronal mass ejection (CME)
  associated with the X10 flare.

---------------------------------------------------------
Title: An Hα Surge Provoked by Moving Magnetic Features near an
    Emerging Flux Region
Authors: Brooks, D. H.; Kurokawa, H.; Berger, T. E.
2007ApJ...656.1197B    Altcode:
  We present a detailed study of Hα surges from cotemporal
  high-resolution multiwavelength images of NOAA AR 8227 obtained by
  the 50 cm Swedish Vacuum Solar Telescope (formerly situated on La
  Palma, Spain) and TRACE. We find that two kinds of collisions between
  opposite polarity magnetic flux produce the surges. First, one edge of
  an emerging flux region (EFR) collides with the preexisting magnetic
  field and causes continual surge activities, which have already been
  named EFR surges by previous authors. Secondly, moving magnetic features
  (MMFs), which emerge near the sunspot penumbra, pass through the ambient
  plasma and eventually collide with the opposite polarity magnetic
  field of the EFR. During their passage from the sunspot penumbra to
  the EFR, the MMFs constantly interacted with other magnetic elements
  and had a close relationship and showed similar flow patterns to Ca
  II K bright points. These brightenings were located at the leading
  edges of the MMFs. Cancellation of opposite polarity magnetic flux
  at the surge footpoint is observed, accompanied by chromospheric and
  coronal brightenings. We explain the evolutionary and morphological
  characteristics of the multiwavelength features associated with the Hα
  surges in both cases by the extension of previous 2D schematic models of
  reconnection in surges. Furthermore, by measuring the expansion velocity
  and photospheric magnetic field around the surge footpoint, we estimate
  a dimensionless reconnection rate of 0.04 (ratio of inflow velocity to
  Alfvén velocity). This is sufficient to produce a significant surge
  that heats the chromospheric plasma to coronal temperatures.

---------------------------------------------------------
Title: The in-flight monitoring and validation of the SOHO CDS Normal
    Incidence Spectrometer radiometric calibration
Authors: Lang, J.; Brooks, D. H.; Lanzafame, A. C.; Martin, R.; Pike,
   C. D.; Thompson, W. T.
2007A&A...463..339L    Altcode:
  The scientific return from an extreme-ultraviolet spectrometer depends
  on the accuracy and precision of its radiometric calibration. For
  the Coronal Diagnostic Spectrometer on SOHO, radiometric calibration
  started pre-launch in the laboratory and continued after launch
  by making comparison measurements of the same area of the Sun with
  calibrated sounding rocket payloads and also by intercalibration with
  the SUMER instrument on SOHO. The present work uses the measurement
  of line ratios to monitor and validate the calibration over the
  first six years of observation. As well as using branching ratios
  and line ratios independent of the electron temperature and density,
  line ratios dependent on electron temperature or density have also been
  used successfully to validate and monitor the calibration. The results
  indicate that, within the uncertainties, the radiometric calibration has
  been validated and maintained over the first six years of observations
  apart from three specific wavelengths, 338.98 Å, 315.0 Å, and 311.8
  Å. Problems with lines at 608.4 Å, 303.4 Å (seen in second order),
  335.4 Å, and 360.7 Å are attributed to difficulties with the burn-in
  correction.

---------------------------------------------------------
Title: The Intercalibration of SOHO EIT, CDS-NIS, and TRACE
Authors: Brooks, David H.; Warren, Harry P.
2006ApJS..164..202B    Altcode:
  Using coordinated observations of a quiet coronal region, we study the
  intercalibration of the CDS and EIT instruments on board the Solar and
  Heliospheric Observatory (SOHO) and the Transition Region and Coronal
  Explorer (TRACE). We derive the differential emission measure (DEM)
  distribution from CDS spectral line intensities and convolve it with
  EIT and TRACE temperature response functions, calculated with the
  latest atomic data from the CHIANTI database, to predict count rates
  in their observing channels. We examine different analysis methods and
  briefly discuss some more advanced aspects of atomic modeling such as
  the density dependence of the ionization fractions. We investigate the
  implications for our study using data from the ADAS database. We find
  that our CDS DEM can predict the TRACE and EIT 171 and 195 Å channel
  count rates to within 25%. However, the accuracy of the predictions
  depends on the ionization fractions and elemental abundances used. The
  TRACE 284 Å and EIT 284 and 304 Å filter predictions do not agree
  well with the observations, even after taking the contribution from
  the optically thick He II 304 Å line to the TRACE 284 Å channel into
  account. The different CDS DEM solutions we derive using different
  ionization fractions produce fairly similar results: the majority of
  the CDS line intensities used are reproduced to within 20% with only
  around one-fifth reproduced to worse than 50%. However, the comparison
  provides us with further clues with which to explain the discrepancies
  found for some lines, and highlights the need for accurate equilibrium
  ionization balance calculations even at low density.

---------------------------------------------------------
Title: On Deriving Plasma Velocity Information from CDS/NIS
Observations: Application to the Dynamics of Blinkers
Authors: Brooks, David Hamilton; Bewsher, Danielle
2006SoPh..234..257B    Altcode:
  Using standard instrument software and two independently developed
  data reduction and analysis procedures, we re-examine the accuracy of
  plasma velocity information derived from data obtained by the Solar
  and Heliospheric Observatory (SOHO)-Coronal Diagnostic Spectrometer
  (CDS). We discuss only the Ov 629 Å line data obtained by the Normal
  Incidence Spectrometer (NIS) and analyse a quiet Sun (QS) and active
  region (AR) dataset. Using the QS data, we demonstrate that the
  well-known North-South tilt in wavelength along the NIS slit varies
  significantly with time, which is not accounted for in the standard CDS
  correction procedures. In addition, when residual N - S trends exist in
  the data after processing, they may not be detected, nor removed, using
  the standard analysis software. This underscores the need for careful
  analysis of velocity results for individual datasets when using standard
  correction procedures. Furthermore, even when the results obtained by
  the two independent methods are well correlated (coefficients greater
  than 0.9), discrepancies in the values of the derived Doppler velocities
  can remain (95% within ±5 km s<SUP>−1</SUP>). Therefore, we apply the
  results to examine the velocities obtained for EUV blinkers by previous
  authors. It is found that a strong correlation exists in the patterns
  of variation of the blinker velocities (&gt; 0.98), even though there
  may be differences in their magnitudes. That is, in a clear majority of
  cases, the methods agree that a blinker is red-shifted or blue-shifted,
  although the uncertainty in the absolute velocity may be large.

---------------------------------------------------------
Title: Horizontal and Vertical Flow Structure in Emerging Flux Regions
Authors: Kozu, Hiromichi; Kitai, Reizaburo; Brooks, David H.; Kurokawa,
   Hiroki; Yoshimura, Keiji; Berger, Thomas E.
2006PASJ...58..407K    Altcode:
  In order to obtain an overall view of the flow structure of convective
  gas in emerging flux regions (EFRs), we studied three EFRs in two
  solar active regions, NOAA 8218 and NOAA 10774. Using the Local
  Correlation Tracking method, we found several horizontally divergent
  flow structures, which were stable over a period of 1 hour, in 2
  EFRs in NOAA 8218. The horizontal flow velocities and the sizes
  of the structures were around 500m s<SUP>-1</SUP> and about 4Mm
  in radius, respectively. We analyzed another dataset of NOAA 10774
  using spectroscopic methods and found temporarily stable up-ward gas
  flows in the central part of the EFR. The line-of-sight velocities
  were around 150m s<SUP>-1</SUP> and the size of the flow patch was
  2 to 5Mm in radius. These results support our previous findings that
  convective-cell-like flow appears in the central part of an EFR. We
  estimated from these results that the depth of the flow cell in EFRs
  is about 600km, and the turn-over time of the cell is about 2 hours.

---------------------------------------------------------
Title: Ionization state, excited populations and emission of
impurities in dynamic finite density plasmas: I. The generalized
    collisional radiative model for light elements
Authors: Summers, H. P.; Dickson, W. J.; O'Mullane, M. G.; Badnell,
   N. R.; Whiteford, A. D.; Brooks, D. H.; Lang, J.; Loch, S. D.; Griffin,
   D. C.
2006PPCF...48..263S    Altcode: 2005astro.ph.11561S
  The paper presents an integrated view of the population structure and
  its role in establishing the ionization state of light elements in
  dynamic, finite density, laboratory and astrophysical plasmas. There
  are four main issues, the generalized collisional-radiative picture
  for metastables in dynamic plasmas with Maxwellian free electrons and
  its particularizing to light elements, the methods of bundling and
  projection for manipulating the population equations, the systematic
  production/use of state selective fundamental collision data in the
  metastable resolved picture to all levels for collisonal-radiative
  modelling and the delivery of appropriate derived coefficients for
  experiment analysis. The ions of carbon, oxygen and neon are used in
  illustration. The practical implementation of the methods described
  here is part of the ADAS Project.

---------------------------------------------------------
Title: Transition Region Downflows in the Impulsive Phase of Solar
    Flares
Authors: Kamio, S.; Kurokawa, H.; Brooks, D. H.; Kitai, R.; UeNo, S.
2005ApJ...625.1027K    Altcode:
  We present observations of four flares that occurred during
  coordinated observations between the Coronal Diagnostic Spectrometer
  (CDS) on board SOHO and the Domeless Solar Telescope (DST) at Hida
  Observatory. We studied the evolution of relative Doppler velocities
  in the flare kernels by using He I (3.5×10<SUP>4</SUP> K), O V
  (2.2×10<SUP>5</SUP> K), and Mg IX (1.0×10<SUP>6</SUP> K) spectra
  obtained with high time cadence (42 s) SOHO CDS observations and the
  Hα monochromatic images obtained with the DST. We found that the
  transition region plasma of O V showed strong downward velocities
  up to 87 km s<SUP>-1</SUP> simultaneously with the downflows in the
  lower temperature chromospheric emissions in He I and Hα during the
  impulsive phase of all four flares. From these results we suggest
  that the downflows in the transition region and the chromosphere are a
  common feature in the impulsive phase of flares. For the Mg IX line we
  did not detect any significant change in velocity, which suggests that
  the 10<SUP>6</SUP> K plasma was close to the intermediate temperature
  between the upflowing plasma (10<SUP>7</SUP> K) and the downflowing
  plasma (10<SUP>4</SUP>-10<SUP>5</SUP> K). These are important for
  understanding the dynamics of the solar atmosphere in response to the
  sudden energy deposition of a flare.

---------------------------------------------------------
Title: ADAS analysis of the differential emission measure structure
    of the inner solar corona.  II. A study of the "quiet Sun"
    inhomogeneities from SOHO CDS-NIS spectra
Authors: Lanzafame, A. C.; Brooks, D. H.; Lang, J.
2005A&A...432.1063L    Altcode: 2004astro.ph.12118L
  We present a study of the differential emission measure (DEM)
  of a “quiet Sun” area observed in the extreme ultraviolet
  at normal incidence by the Coronal Diagnostic Spectrometer (CDS)
  on the SOHO spacecraft. The data used for this work were taken
  using the NISAT<SUB>S</SUB> observing sequence. This takes the full
  wavelength ranges from both the NIS channels (308 381 Å and 513 633
  Å) with the 2 arcsec by 240 arcsec slit, which is the narrowest slit
  available, yielding the best spectral resolution. In this work we
  contrast the DEM from subregions of 2 × 80 arcsec<SUP>2</SUP> with
  that obtained from the mean spectrum of the whole raster (20 × 240
  arcsec<SUP>2</SUP>). We find that the DEM maintains essentially the
  same shape in the subregions, differing by a constant factor between
  0.5 and 2 from the mean DEM, except in areas were the electron density
  is below 2 × 10<SUP>7</SUP> cm<SUP>-3</SUP> and downflow velocities
  of 50 km s<SUP>-1</SUP> are found in the transition region. Such areas
  are likely to contain plasma departing from ionisation equilibrium,
  violating the basic assumptions underlying the DEM method. The
  comparison between lines of Li-like and Be-like ions may provide
  further evidence of departure from ionisation equilibrium. We find
  also that line intensities tend to be lower where velocities of the
  order of 30 km s<SUP>-1</SUP> or higher are measured in transition
  region lines. The DEM analysis is also exploited to improve the
  line identification performed by [CITE] and to investigate possible
  elemental abundance variations from region to region. We find that the
  plasma has composition close to photospheric in all the subregions
  examined. <P />Table 5 is only available in electronic form at the
  CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
  http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/432/1063

---------------------------------------------------------
Title: A Study of a Tiny Two-Ribbon Flare Driven by Emerging Flux
Authors: Sakajiri, Takuma; Brooks, David H.; Yamamoto, Tetsuya;
   Shiota, Daikou; Isobe, Hiroaki; Akiyama, Sachiko; Ueno, Satoru; Kitai,
   Reizaburo; Shibata, Kazunari
2004ApJ...616..578S    Altcode:
  We present observations of the eruption of a miniature filament that
  occurred near NOAA Active Region 9537 on 2001 July 14. The eruption was
  observed by the Hida Observatory Domeless Solar Telescope, in the Hα
  line center and +/-0.4 Å wings, the Solar and Heliospheric Observatory
  EUV Imaging Telescope (EIT) and Michelson Doppler Imager, and the Yohkoh
  Soft X-Ray Telescope (SXT). The miniature filament began to form and
  was clearly visible in Hα images by around 06:50 UT. It erupted about
  25 minutes later, accompanied by a small two-ribbon subflare (with
  an area of 61 arcsec<SUP>2</SUP>). The two ribbons were also found to
  approach each other at a speed of 3.33 km s<SUP>-1</SUP>. We found that
  this event was caused by the emergence of new magnetic flux in a quiet
  region. The emerging flux appeared as a bright region in the EIT and
  SXT images taken on the previous day. It moved southward into an area
  of preexisting opposite-polarity flux, where a cancelling magnetic
  flux region was formed. The miniature filament then appeared, and we
  suggest that it played some role in inhibiting the release of energy
  by delaying reconnection between the emerging and preexisting flux, as
  evidenced by the disappearance of the bright region between opposite
  polarities in the EUV and soft X-ray images. Consequently, magnetic
  energy was stored as a result of the slow converging motion of the two
  opposite-polarity flux regions (0.17 km s<SUP>-1</SUP>). Reconnection
  below the filament provoked the filament eruption, and the two-ribbon
  flare occurred. Miniature filaments are thought to be small-scale
  analogs of large-scale filaments. Our observations also suggest some
  common properties between small-scale and large-scale flares. These
  results support the view that a unified magnetic reconnection model
  may be able to explain all scales of flares.

---------------------------------------------------------
Title: Hida Domeless Solar Telescope and SOHO Coronal Diagnostic
    Spectrometer Observations of Short-Duration Active Region
    Blinkers. II. Extreme-Ultraviolet Properties
Authors: Brooks, D. H.; Kurokawa, H.
2004ApJ...611.1125B    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Short-Duration Active Region Brightenings Observed in the
    Extreme Ultraviolet and Hα by the Solar and Heliospheric Observatory
    Coronal Diagnostic Spectrometer and Hida Domeless Solar Telescope
Authors: Brooks, D. H.; Kurokawa, H.; Kamio, S.; Fludra, A.; Ishii,
   T. T.; Kitai, R.; Kozu, H.; Ueno, S.; Yoshimura, K.
2004ApJ...602.1051B    Altcode:
  We present the first detection of an Hα counterpart to the EUV
  blinker. The observations come from a coordinated campaign between
  the Hida Observatory Domeless Solar Telescope (DST) and the Solar
  and Heliospheric Observatory Coronal Diagnostic Spectrometer (CDS)
  conducted in 2002 July and August. Utilizing studies designed for
  high-cadence observations, many short-duration brightenings (&lt;3
  minutes) were identified in the He I λ584.334 and O V λ629.732
  spectral lines in CDS data of active region NOAA 10039/10044. These
  brightenings show similar characteristics (increases in intensity,
  size) to longer duration EUV blinkers previously reported in active
  regions and the quiet Sun. Focusing on two events that show pronounced
  emission in the upper chromosphere (He I), we have been able to identify
  cospatial bright points in the lower chromosphere (Hα center, +/-0.5
  Å) that show enhanced emission during the EUV blinker. These bright
  features have lifetimes similar to those of their EUV counterparts,
  and their peak intensities occur nearly simultaneously with the peak
  blinker intensities in the He I and O V lines. In both cases the He
  I and O V lines show excess line broadening at the peak of the event
  (&gt;15 km s<SUP>-1</SUP>). Our high-cadence observations also enabled
  us to examine the dimensions and lifetimes of short-duration active
  region blinkers in detail. We find that the instrumental spatial and
  temporal resolution can combine to distort their characteristics:
  even short-duration blinkers appear to be composed of elementary
  brightening events. The optical brightenings also appear to closely
  follow the behavior of the elementary brightenings. The spatial and
  temporal relationships between the brightenings indicate a causal link
  between the EUV and Hα blinkers.

---------------------------------------------------------
Title: A Reexamination of the Evidence for Reconnection Inflow
Authors: Chen, P. F.; Shibata, K.; Brooks, D. H.; Isobe, H.
2004ApJ...602L..61C    Altcode:
  In the flare event of 1999 March 18, a threadlike structure observed
  in EUV Imaging Telescope images was found to move inward and collapse
  to an X-shaped configuration below the ejecta, strongly suggestive
  of the occurrence of magnetic reconnection. On the basis of the
  numerical results of a coronal mass ejection (CME) flare model, a
  similar threadlike structure in the Fe XII 195 Å image is reproduced
  in this Letter. It is found that, as in the observations, the thread
  experiences an outward motion in the preflare phase, which is followed
  by an inward motion. Our simulation suggests that its formation and
  outward motion in the preflare phase result from the CME expansion;
  after the onset of the flare, the threadlike structure is always
  located on the upstream side of the interface between the reconnection
  inflow and outflow. Its apparent inward motion, which is several times
  slower than the in situ reconnection inflow, is mainly attributed to
  the rising motion of the reconnection X-point.

---------------------------------------------------------
Title: A study of the causal relationship between the emergence  of
    a twisted magnetic flux rope and a small Hα  two-ribbon flare
Authors: Brooks, D. H.; Kurokawa, H.; Yoshimura, K.; Kozu, H.; Berger,
   T. E.
2003A&A...411..273B    Altcode:
  We present results from an analysis of a small two-ribbon flare which
  occurred above emerging flux in solar active region NOAA 8218 on 1998,
  May 13th and which was observed by the Swedish Vacuum Solar Telescope
  (SVST) on the island of La Palma, Spain. The relatively simple magnetic
  morphology and small size of the flare together with the high quality
  of the SVST observations allow us to examine the essential properties
  of flares in emerging flux regions in greater detail than before. <P
  />In this paper we compare and contrast the flaring emerging flux region
  simultaneously with a non-flaring emerging flux region within the same
  field of view. Unusual magnetic footpoint motions are observed in the
  flaring region, coincident with the Hα kernels, which result in a
  high level of shearing of the magnetic neutral line between opposite
  polarities. The Hα images show dark filament structures which form an
  inverted S-like shape immediately prior to the flare and then separate
  after the energy release disrupts the magnetic field. We interpret
  the motions and structures as strong evidence for the emergence of a
  twisted magnetic flux rope which developed a sheared configuration with
  the overlying magnetic field. In contrast the companion region shows
  separating footpoints, with apparent arch-like filament connections in
  the Hα images, consistent with the expected appearance of emerging
  flux. The observations imply that the attachment of the inverted
  S-shaped structure may be an observational consequence of the magnetic
  reconnection or untwisting of the field which triggered the flare. We
  also find some evidence that the increase in magnetic flux is faster
  in the flaring region. <P />Finally, we propose a simple schematic
  model of the emergence of a twisted magnetic flux rope and attached
  branch which can account for the observed footpoint motions and Hα
  structures of the flaring region. Such a model can, in principle,
  induce partial magnetic reconnection in the overlying coronal field
  and we found some evidence of coronal loop footpoint brightenings
  which support our conclusions. Our high resolution study supports the
  results of previous authors that even a small twisted structure in an
  emerging flux tube can be important for flare production.

---------------------------------------------------------
Title: Spectroscopic diagnostics of UV power and accretion in T
    Tauri stars
Authors: Brooks, D. H.; Costa, V. M.
2003MNRAS.339..467B    Altcode:
  It is known that in the upper atmospheres of the Sun and some late-type
  stars there is a systematic relationship between the optically
  thin total radiated power and the power emitted by single spectral
  lines. Using recently derived emission-measure distributions from IUE
  spectra for BP Tau, CV Cha, RY Tau, RU Lupi and GW Ori, we demonstrate
  that this is also true for classical T Tauri stars (CTTSs). As in
  the solar case it is found that the CIV resonance doublet at 1548 Å
  is also the most accurate indicator of the total radiated power from
  the atmospheres of CTTSs. Since the total radiated-power density in
  CTTSs exceeds that of the Sun by over three orders of magnitude we
  derive new analytic expressions that can be used to estimate the
  values for these stars. We also discuss the implications of these
  results with regard to the influence or absence of accretion in this
  sample of stars and suggest that the method can be used to infer
  properties of the geometrical structure of the emission regions. As a
  demonstration case we also use archived HST-GHRS data to estimate the
  total radiative losses in the UV emitting region of BP Tau. We find
  values of 4.57 × 10<SUP>9</SUP> erg cm<SUP>-2</SUP> s<SUP>-1</SUP>
  and 5.11 × 10<SUP>32</SUP> erg s<SUP>-1</SUP> dependent on the
  geometry of the emission region. These results are several orders
  of magnitude larger than would be expected if the UV emission came
  primarily from an atmosphere covered in solar-like active regions
  and are closer to values associated with solar flares. They lead to
  luminosity estimates of 0.07 and 0.13 L<SUB>solar</SUB>, respectively,
  which are in broad agreement with results obtained from theoretical
  accretion shock models. Taken together they suggest that accretion
  may well be the dominant contributor to the UV emission in BP Tau.

---------------------------------------------------------
Title: ADAS analysis of the differential emission measure structure
    of the inner solar corona . Application of the data adaptive smoothing
    approach to the SERTS-89 active region spectrum
Authors: Lanzafame, A. C.; Brooks, D. H.; Lang, J.; Summers, H. P.;
   Thomas, R. J.; Thompson, A. M.
2002A&A...384..242L    Altcode:
  The differential emission measure (DEM) of a solar active region is
  derived from SERTS-89 rocket data between 170 and 450 Å (Thomas &amp;
  Neupert \cite{Thomas_Neupert:94}). The integral inversion to infer
  the DEM distribution from spectral line intensities is performed by
  the data adaptive smoothing approach (Thompson \cite{Thompson:90},
  \cite{Thompson:91}). Our analysis takes into account the density
  dependence of both ionisation fractions and excitation coefficients
  according to the collisional-radiative theory as implemented in
  ADAS, the Atomic Data and Analysis Structure (McWhirter &amp;
  Summers \cite{McWhirter_Summers:84}; Summers \cite{Summers:94};
  Summers \cite{Summers:01}). Our strategy aims at checking, using
  observational data, the validity and limitations of the DEM method
  used for analysing solar EUV spectra. We investigate what information
  it is possible to extract, within defined limitations, and how the
  method can assist in a number of cases, e.g. abundance determination,
  spectral line identification, intensity predictions, and validation
  of atomic cross-sections. Using the above data and theory, it is
  shown that a spurious multiple peak in the DEM distribution between
  log (T<SUB>e</SUB>)=6.1 and 6.7, where T<SUB>e</SUB> is the electron
  temperature, may derive from an inaccurate treatment of the population
  densities of the excited levels and ionisation fractions or from using
  an integral inversion technique with arbitrary smoothing. Therefore,
  complex DEM structures, like those proposed for solar and stellar
  coronae by several authors, must be considered with caution. We address
  also the issue of systematic differences between iso-electronic
  sequences and show that these cannot be unambiguously detected in
  the coronal lines observed by SERTS. Our results indicate that a
  substantial improvement is required in the atomic modelling of the
  complex element Fe. The elemental abundance ratio Si/Ne is found to
  be close to its photospheric value. The same result may be true for
  the Fe/Ne abundance, but this latter result is uncertain because of
  the problems found with Fe.

---------------------------------------------------------
Title: Solar Si XI Line Ratios Observed by the Normal Incidence
    Spectrometer on SOHO CDS
Authors: Lang, J.; Brooks, D. H.; O'Mullane, M. G.; Pike, C. D.;
   Summers, H. P.; Thompson, W. T.
2001SoPh..201...37L    Altcode:
  New measurements of line intensity ratios in the Be-like ion Si xi are
  presented for observations of the quiet Sun, active regions, coronal
  holes and above-limb regions obtained using the Coronal Diagnostic
  Spectrometer on the Solar and Heliospheric Observatory. A model ion,
  constructed using the best available atomic data, is used to predict
  the line intensity ratios for a wide range of electron temperatures
  and densities. Comparisons of the theoretical ratios with the new
  intensity ratios as well as with those from previous solar observations
  and laboratory measurements are given. The usefulness of the ratios
  for electron temperature and density diagnostics, as well as for
  spectrometer calibration, is discussed.

---------------------------------------------------------
Title: An Optical/ultraviolet Study of RW Aur
Authors: Gameiro, J. F.; Costa, V. M.; Brooks, D. H.
2001AGM....18S0707G    Altcode: 2001AGAb...18R..78G
  RW Aur is a classical T Tauri star showing unusually high activity and
  complex patterns of variability in all optical emission and absorption
  lines. Periodic variations in the photospheric absorption features
  were also found by Petrov et al. (2001). These authors suggest that
  axi-symmetric magnetospheric accretion can account for the periodic
  phenomena and most of the variations observed in the optical data. They
  also made estimates of physical parameters (such as electron density)
  in different regions of the accretion stream. It seems clear that most
  of the excess emission is related to a strong magnetic field. Here
  we extend their analysis into the ultraviolet region of the spectrum
  using data from the IUE satellite. We use emission measure analysis
  and diagnostic line ratios to estimate the electron density in the
  UV emission zone. We also assess the variability in the ultraviolet
  spectrum. The results are compared to those obtained from the optical
  observations and provide a further quantitative test of the proposed
  accretion models.

---------------------------------------------------------
Title: A study of opacity in SOHO-SUMER and SOHO-CDS spectral
    observations. I. Opacity deduction at the limb
Authors: Brooks, D. H.; Fischbacher, G. A.; Fludra, A.; Harrison,
   R. A.; Innes, D. E.; Landi, E.; Landini, M.; Lang, J.; Lanzafame,
   A. C.; Loch, S. D.; McWhirter, R. W. P.; Summers, H. P.
2000A&A...357..697B    Altcode:
  A study is presented of the optical thickness of spectral lines of
  carbon, nitrogen and oxygen ions in the quiet sun. The observations
  consist of cross limb scans by the SUMER and CDS spectrometers on
  the SOHO spacecraft. A maximum likelihood spectral line fitting code
  has been adapted to analyse the multiplet profiles and to provide an
  assessment of errors in the count rates, especially of close lying
  components. Branching multiplet component ratios are presented as a
  function of position across the limb and contrasted with theoretical
  ratios in the optically thin case. The emergent fluxes are analysed
  in an escape probability model to deduce the optical thicknesses in
  the various spectral lines. Different specifications of the escape
  probability are examined. These are used to compare the observations
  with a geometric model of the emitting layer thickness across the limb
  and the thinning of the emitting layer above the limb. Classification
  of the deviations of quiet sun spectral line intensities from the
  optically thin case is given to assist in the critical selection of
  lines for differential emission measure analysis. This is linked to
  a general purpose code for the calculation of the influence of the
  line radiation fields on the local excited state population structure
  of the selected ions so that the fluxes in any spectral lines can be
  predicted. The Atomic Data and Analysis Structure (ADAS) was used for
  the atomic calculations and data of the paper.

---------------------------------------------------------
Title: The quiet Sun extreme ultraviolet spectrum observed in normal
    incidence by the SOHO coronal diagnostic spectrometer
Authors: Brooks, D. H.; Fischbacher, G. A.; Fludra, A.; Harrison,
   R. A.; Innes, D. E.; Landi, E.; Landini, M.; Lang, J.; Lanzafame,
   A. C.; Loch, S. D.; McWhirter, R. W. P.; Summers, H. P.; Thompson,
   W. T.
1999A&A...347..277B    Altcode:
  The extreme ultraviolet quiet Sun spectrum, observed at normal incidence
  by the Coronal Diagnostic Spectrometer on the SOHO spacecraft, is
  presented. The spectrum covers the wavelength ranges 308-381 Ä and
  513-633 Ä and is based on data recorded at various positions on the
  solar disk between October 1996 and February 1997. Datasets at twelve
  of these `positions' were judged to be free from active regions and
  data faults and selected for detailed study. A constrained maximum
  likelihood spectral line fitting code was used to analyse the spectral
  features. In all over 200 spectrum lines have been measured and about
  50% identified. The line identification process consisted of a number
  of steps. Firstly assignment of well known lines was made and used to
  obtain the primary wavelength calibration. Variations of wavelengths
  with position were used to assess the precision of calibration
  achievable. Then, an analysis method first used in studies with the
  CHASE experiment, was applied to the new observations. The behaviour
  of the intensities of lines from like ions over the twelve positions,
  called `position patterns', were used to distinguish probable emitters
  of weaker lines and extend the identifications. Spectral line widths
  and expected multiplet intensities were examined to identify lines and
  probable blends. The product of the study is a table which includes all
  clearly observed emission lines, their measured wavelengths, widths
  and count rates. Adopted laboratory wavelengths, ion and transition
  designations are also presented for identified lines. The table has an
  estimate of the uncertainty of the count rates based on a statistical
  analysis of the variability of each line. A marked spectrum is also
  provided.

---------------------------------------------------------
Title: EUV Spectral Variability and Non-Equilibrium Ionisation in the
    'Quiet' Sun
Authors: Brooks, D. H.; Summers, H. P.; Harrison, R. A.; Lang, J.;
   Lanzafame, A. C.
1998Ap&SS.261...91B    Altcode: 1999Ap&SS.261...91B
  Recent spectroscopic observations by the Solar and Heliospheric
  Observatory (SOHO) have revealed the dynamic nature of even the
  'quiet' Sun. Spectral variability data clearly show that dynamics in
  the solar upper atmosphere take place on timescales shorter than those
  of ionisation relaxation. Accuracy in the interpretation of diagnostic
  spectral data can only be maintained through detailed quantitative
  modelling of the relevant atomic physics. In particular, dynamical
  plasma models of the solar plasma require matching dynamic atomic
  models to underpin conclusions drawn from the spectral reduction. The
  inclusion of important effects such as finite plasma electron density
  and the influence of metastable levels is essential to reduce the
  uncertainties associated with equilibrium assumptions.