explanation      blue bibcodes open ADS page with paths to full text
Author name code: reeves
ADS astronomy entries on 2022-09-14
author:"Reeves, Katherine K." 

---------------------------------------------------------
Title: Multiwavelength Observations by XSM, Hinode, and SDO of an
    Active Region. Chemical Abundances and Temperatures
Authors: Del Zanna, G.; Mondal, B.; Rao, Y. K.; Mithun, N. P. S.;
   Vadawale, S. V.; Reeves, K. K.; Mason, H. E.; Sarkar, A.; Janardhan,
   P.; Bhardwaj, A.
2022ApJ...934..159D    Altcode: 2022ApJ...934..159Z; 2022arXiv220706879D
  We have reviewed the first year of observations of the Solar X-ray
  Monitor (XSM) on board Chandrayaan-2 and the available multiwavelength
  observations to complement the XSM data, focusing on the Solar
  Dynamics Observatory AIA and Hinode XRT and EIS observations. XSM has
  provided disk-integrated solar spectra in the 1-15 keV energy range,
  observing a large number of microflares. We present an analysis of
  multiwavelength observations of AR 12759 during its disk crossing. We
  use a new radiometric calibration of EIS to find that the quiescent
  active region (AR) core emission during its disk crossing has a
  distribution of temperatures and chemical abundances that does
  not change significantly over time. An analysis of the XSM spectra
  confirms the EIS results and shows that the low first ionization
  potential (FIP) elements are enhanced compared to their photospheric
  values. The frequent microflares produced by the AR did not affect the
  abundances of the quiescent AR core. We also present an analysis of
  one of the flares it produced, SOL2020-04-09T09:32. The XSM analysis
  indicates isothermal temperatures reaching 6 MK. The lack of very
  high-T emission is confirmed by AIA. We find excellent agreement
  between the observed XSM spectrum and the one predicted using an AIA
  DEM analysis. In contrast, the XRT Al-poly/Be-thin filter ratio gives
  lower temperatures for the quiescent and flaring phases. We show that
  this is due to the sensitivity of this ratio to low temperatures,
  as the XRT filter ratios predicted with a DEM analysis based on EIS
  and AIA give values in good agreement with the observed ones.

---------------------------------------------------------
Title: Realizing Comprehensive 3D Observations to Probe Magnetic
    Energy Storage and Release in the Corona
Authors: Caspi, A.; Seaton, D. B.; Casini, R.; Downs, C.; Gibson, S.;
   Gilbert, H.; Glesener, L.; Guidoni, S.; Hughes, J. M.; McKenzie, D.;
   Reeves, K.; Saint-Hilaire, P.; Shih, A. Y.; West, M.
2022heli.conf.4058C    Altcode:
  Understanding impulsive energy release in the solar corona requires
  knowledge of the 3D coronal magnetic field and 3D signatures of
  energy release through systematic multi-viewpoint observations, in
  many wavelengths, including coronal magnetometry.

---------------------------------------------------------
Title: Real-Time Solar Flare Predictions for Improved Flare
    Observations
Authors: Vievering, J. T.; Athiray, P. S.; Buitrago-Casas, J. C.;
   Chamberlin, P.; Glesener, L.; Golub, L.; Knoer, V.; Krucker, S.;
   Machol, J.; Pantazides, A.; Peck, C.; Reeves, K.; Savage, S.; Schmit,
   D.; Smith, B.; Vigil, G.; Winebarger, A.
2022heli.conf.4038V    Altcode:
  Improving near-term flare forecasts is important for observatories
  targeting flare physics that are restricted in FOV and/or observing
  time. We propose a tool that aggregates near-real-time signatures of
  flare onset to provide early flare predictions.

---------------------------------------------------------
Title: A Strategy for a Coherent and Comprehensive Basis for
    Understanding the Middle Corona
Authors: West, M. J.; Seaton, D. B.; Alzate, N.; Caspi, A.; DeForest,
   C. E.; Gilly, C. R.; Golub, L.; Higginson, A. K.; Kooi, J. E.; Mason,
   J. P.; Rachmeler, L. A.; Reeves, K. K.; Reardon, K.; Rivera, Y. J.;
   Savage, S.; Viall, N. M.; Wexler, D. B.
2022heli.conf.4060W    Altcode:
  We describe a strategy for coherent and comprehensive observations
  needed to achieve a fundamental understanding of the middle solar
  corona.

---------------------------------------------------------
Title: New Approaches to Integrated Mission, Data, and Modeling
    Frameworks
Authors: Seaton, D. B.; Caspi, A.; Casini, R.; Downs, C.; Gibson, S.;
   Gilbert, H.; Glesener, L.; Guidoni, S.; Hughes, J. M.; McKenzie, D.;
   Reeves, K.; Saint-Hilaire, P.; Shih, A.; West, M.
2022heli.conf.4057S    Altcode:
  A new generation of heliophysics missions will require integration of
  data from multiple missions with analysis tools and physics-based
  models. We discuss strategies to develop a framework for
  systems-integrated data and analysis environments.

---------------------------------------------------------
Title: Statistical Study On Kinetic Features Of Supra-arcade Downflows
Authors: Xie, X.; Reeves, K. K.; Shen, C.
2021AAS...23812701X    Altcode:
  We have developed a tracking algorithm to determine the speeds of
  supra-arcade downflows (SADs) and set up a system to automatically
  track the SADs and measure some interesting parameters. By conducting an
  analysis on 6 flares observed by the SDO/AIA, we detected more smaller
  and slower SADs than prior work due to the higher spatial resolution
  of our observational data. The inclusion of these events with smaller
  and slower SADs directly results in lower medians of velocity and
  widths than in prior work, but the probability distributions and
  evolution of the parameters still show good consistency with prior
  work. The distributions of widths, speeds, lifetimes, and numbers of
  the SADs in each frame show log-normal distributions, which reveal
  unstable processes during solar eruptions. Also, the number of the
  SADs in each frame vs. time shows a rest phase of SADs, when few
  SADs are seen. This observation might be supportive evidence for the
  model that SADs originate from a plasma instability. We tentatively
  think that the number of SADs vs. time might related to the rate
  of magnetic reconnection. In addition, we discussed the possible
  correlations between the parameters and compared our results with a
  numerical simulation. It turns out the model proposed by the numerical
  simulation can explain our results pretty well to some extent.

---------------------------------------------------------
Title: Plasma heating induced by tadpole-like downflows in the
    flaring solar corona
Authors: Samanta, T.; Tian, H.; Chen, B.; Reeves, K. K.; Cheung,
   M. C. M.; Vourlidas, A.; Banerjee, D.
2021Innov...200083S    Altcode: 2021arXiv210314257S
  As one of the most spectacular energy release events in the solar
  system, solar flares are generally powered by magnetic reconnection in
  the solar corona. As a result of the re-arrangement of magnetic field
  topology after the reconnection process, a series of new loop-like
  magnetic structures are often formed and are known as flare loops. A
  hot diffuse region, consisting of around 5-10 MK plasma, is also
  observed above the loops and is called a supra-arcade fan. Often,
  dark, tadpole-like structures are seen to descend through the bright
  supra-arcade fans. It remains unclear what role these so-called
  supra-arcade downflows (SADs) play in heating the flaring coronal
  plasma. Here we show a unique flare observation, where many SADs collide
  with the flare loops and strongly heat the loops to a temperature
  of 10-20 MK. Several of these interactions generate clear signatures
  of quasi-periodic enhancement in the full-Sun-integrated soft X-ray
  emission, providing an alternative interpretation for quasi-periodic
  pulsations that are commonly observed during solar and stellar flares.

---------------------------------------------------------
Title: The First Solar Flare Sounding Rocket Campaign and Its
    Potential Impacts for High Energy Solar Instrumentation
Authors: Savage, S. L.; Winebarger, A. R.; Glesener, L.; Reeves, K.;
   Kobayashi, K.; Golub, L.
2020AGUFMSH056..02S    Altcode:
  Solar flares are an essential driver of space weather as they account
  for the rapid release of powerful amounts of energy (~10<SUP>32</SUP>
  ergs) in a matter of seconds to hours. Observations from the past
  several decades have yielded a wealth of understanding of these events
  while at the same time presenting countless new questions. Key gaps
  in our knowledge remain that cannot be satisfactorily answered with
  available instrumentation, and we are now at the precipice of the
  value of incremental improvements in technology versus the need
  for design breakthroughs. The latter requires exceptional testing
  in order to justify vast investments within Explorer-class mission
  programs. High energy instrumentation often invokes the additional
  requirement of testing above the absorption layer of the Earth's
  atmosphere. The NASA sounding rocket program has been an invaluable
  pathway for developing such cutting-edge technologies. However, these
  suborbital missions have been severely limited for the development of
  flare-specific instrumentation due to the current inability to remain in
  a holding pattern until a flare occurs at the White Sands Missile Range
  (~1 hour) compounded by the short duration of a flight (~5 minutes of
  science observations) in which it is nearly impossible to capture a
  flare per chance. In response to this deficiency, a pilot solar flare
  campaign has been established to test the ability to launch at least
  two sounding rockets with instrumentation optimized to observe flares
  from the Poker Flats Research Range in Alaska, taking advantage of the
  site's ability to accommodate a long holding pattern (~4 hours per day
  for several weeks). This capability has been utilized extensively by the
  geospace communities. We will present the first two payloads selected
  specifically for this solar pilot program, Hi-C FLARE and FOXSI 4,
  and discuss how this new technology development paradigm could enable
  the next wave of exploratory flare missions.

---------------------------------------------------------
Title: Nonequilibrium properties in the plasma sheet observed on
    2017 September 10
Authors: Lee, J. Y.; Raymond, J.; Reeves, K.; Shen, C.; Ko, Y. K.;
   Kahler, S. W.; Moon, Y. J.; Kim, Y. H.
2020AGUFMSH0290013L    Altcode:
  We investigate the nonequilibrium properties of both a non-Maxwellian
  electron distribution and nonequilibrium ionization in the plasma
  sheet observed on 2017 September 10. We apply a Kappa (κ) electron
  velocity distribution (non-Maxwellian), which represents supra-thermal
  populations, to find the temperature and density of the plasma sheet. We
  also apply a nonequilibrium ionization model, which assumes that
  the plasma is initially in ionization equilibrium at low temperature
  and heated rapidly by a shock or magnetic reconnection. We search for
  the best parameters, i.e. Kappa, temperature, characteristic timescale
  (density×time) that explain the observations by the Atmospheric Imaging
  Assembly on board the Solar Dynamic Observatory and the X-ray Telescope
  and EUV Imaging Spectrometer on board Hinode. The plasma sheet has been
  widely studied in detail by many researchers with various observations
  under the assumption of a Maxwellian electron velocity distribution
  and equilibrium ionization. We discuss the nonequilibrium effects
  comparing the results with the previous studies assuming equilibrium
  ionization. We also compare the supra-thermal populations in the low
  corona with those in the interplanetary coronal mass ejection revealed
  by in-situ observations.

---------------------------------------------------------
Title: Updates on the Fundamentals of Impulsive Energy Release in
    the Corona Explorer (FIERCE) mission concept
Authors: Shih, A. Y.; Glesener, L.; Krucker, S.; Guidoni, S. E.;
   Christe, S.; Reeves, K.; Gburek, S.; Caspi, A.; Alaoui, M.; Allred,
   J. C.; Battaglia, M.; Baumgartner, W.; Dennis, B. R.; Drake, J. F.;
   Goetz, K.; Golub, L.; Hannah, I. G.; Hayes, L.; Holman, G.; Inglis,
   A.; Ireland, J.; Kerr, G. S.; Klimchuk, J. A.; McKenzie, D. E.; Moore,
   C. S.; Musset, S.; Reep, J. W.; Ryan, D.; Saint-Hilaire, P.; Savage,
   S. L.; Schwartz, R.; Seaton, D. B.; Steslicki, M.; Woods, T. N.
2020AGUFMSH0480012S    Altcode:
  The Fundamentals of Impulsive Energy Release in the Corona Explorer
  ( FIERCE ) Medium-Class Explorer (MIDEX) mission concept addresses
  the following science questions: <P />What are the physical origins
  of space-weather events? <P />How are particles accelerated at the
  Sun? <P />How is impulsively released energy transported throughout
  the solar atmosphere? <P />How is the solar corona heated? <P />FIERCE
  achieves its science objectives through co-optimized X-ray and extreme
  ultraviolet (EUV) observations by the following instruments: <P />FOXSI,
  a focusing hard X-ray spectroscopic imager that is able to capture the
  full range of emission in flares and CMEs (e.g., faint coronal sources
  near bright chromospheric sources) <P />THADIS, a high-resolution,
  fast-cadence EUV imager that will not saturate for even intense flares
  to follow dynamic changes in the configuration of plasma structures
  <P />STC, a soft X-ray spectrometer that provides detailed thermal and
  elemental composition diagnostics <P />If selected, FIERCE will launch
  in 2025, near the peak of the next solar cycle, which is also well timed
  with perihelia of Parker Solar Probe and Solar Orbiter . We describe the
  status and latest updates of the mission concept since it was proposed
  to NASA last year. We also highlight the anticipated science return
  from co-observations with other observatories/instruments such as the
  Expanded Owens Valley Solar Array (EOVSA) or the STIX instrument on
  Solar Orbiter .

---------------------------------------------------------
Title: The Above-the-looptop Source of the 2017 September 10 Solar
Flare: Energetic Electron Distribution over a Broad Energy Range
Authors: Chen, B.; Battaglia, M.; Krucker, S.; Reeves, K.; Glesener, L.
2020AGUFMSH0430001C    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Space Weather, Extreme Ultraviolet Instruments and the
    Multithermal Corona
Authors: Golub, L.; DeLuca, E.; Reeves, K.
2020AGUFMSH0300004G    Altcode:
  Observation of the solar corona from Earth orbit or from other
  locations such as L1 or L5 using suitably-chosen Extreme UltraViolet
  (EUV) wavelengths offers the possibility of addressing two major goals
  that will improve our ability to forecast and predict geoeffective space
  weather events: 1.) improve our understanding of the coronal conditions
  that control the opening and closing of the corona to the heliosphere
  and consequent solar wind streams, and 2.) improve our understanding
  of the physical processes that control the early evolution of CMEs
  and the formation of shocks from the solar surface out to beyond the
  nominal source surface. The time-varying solar corona is structured
  not only in space and in time but also in temperature. A method
  for efficiently observing multiple wavelengths, thereby recording
  emission lines formed at different temperatures, simultaneously is
  therefore desirable. These observations are especially necessary for CME
  detection, as the departing magnetized plasma shows markedly different
  structures at different temperatures and even the detectability of the
  event varies dramatically at different EUV wavelengths. EUV measurements
  can help to: i.) determine coronal structuring from its roots out
  to beyond 2.5 R_s; ii.) measure the changes in coronal connectivity;
  iii.) distinguish between and test solar wind models; iv.) establish
  the impact of pre-existing coronal structures on CME evolution;
  v.) confront theories of SEP acceleration and preconditioning; and
  vi.) establish the extent of energy release behind CMEs.

---------------------------------------------------------
Title: Flare model successes and shortcomings: an observational
    overview
Authors: Reeves, K.
2020AGUFMSH057..01R    Altcode:
  A wide variety of modeling techniques have been used simulate solar
  eruptions as a means of relating the observational signatures of solar
  flares to the underlying physics. In this talk, I will focus on various
  kinds of magnetohydrodynamic models, discuss the observations that
  they have successfully explained, and propose areas where they fall
  short. For example, one-dimensional loop models have been successfully
  employed to probe the physics of chromospheric evaporation, and have
  been able to explain some spectroscopic signatures of flare ribbons
  and reproduce bulk observations of flares such as emission light
  curves. Two dimensional MHD models are able to reproduce magnetic field
  observations (from microwaves) and the thermodynamics and dynamics in
  the reconnection current sheet region. Three dimensional MHD models,
  while computationally expensive, can reproduce complicated eruption
  dynamics. However, purely MHD models are not able to simulate the
  accelerated particles in a flare, which constitute an important part
  of the energy transfer that leads to EUV and X-ray emissions.

---------------------------------------------------------
Title: Untangling the global coronal magnetic field with
    multiwavelength observations
Authors: Gibson, S. E.; Malanushenko, A.; de Toma, G.; Tomczyk, S.;
   Reeves, K.; Tian, H.; Yang, Z.; Chen, B.; Fleishman, G.; Gary, D.;
   Nita, G.; Pillet, V. M.; White, S.; Bąk-Stęślicka, U.; Dalmasse,
   K.; Kucera, T.; Rachmeler, L. A.; Raouafi, N. E.; Zhao, J.
2020arXiv201209992G    Altcode:
  Magnetism defines the complex and dynamic solar corona. Coronal
  mass ejections (CMEs) are thought to be caused by stresses, twists,
  and tangles in coronal magnetic fields that build up energy and
  ultimately erupt, hurling plasma into interplanetary space. Even the
  ever-present solar wind possesses a three-dimensional morphology shaped
  by the global coronal magnetic field, forming geoeffective corotating
  interaction regions. CME evolution and the structure of the solar
  wind depend intimately on the coronal magnetic field, so comprehensive
  observations of the global magnetothermal atmosphere are crucial both
  for scientific progress and space weather predictions. Although some
  advances have been made in measuring coronal magnetic fields locally,
  synoptic measurements of the global coronal magnetic field are not yet
  available. We conclude that a key goal for 2050 should be comprehensive,
  ongoing 3D synoptic maps of the global coronal magnetic field. This will
  require the construction of new telescopes, ground and space-based,
  to obtain complementary, multiwavelength observations sensitive
  to the coronal magnetic field. It will also require development of
  inversion frameworks capable of incorporating multi-wavelength data,
  and forward analysis tools and simulation testbeds to prioritize and
  establish observational requirements on the proposed telescopes.

---------------------------------------------------------
Title: Supra-arcade Downflow Features Based on Flow Calculation
Authors: Xie, X.; Reeves, K.
2020SPD....5121115X    Altcode:
  We have developed a tracking algorithm to determine the speeds of
  supra-arcade downflows (SADs) based on the Farneback optical flow
  method. We show that the algorithm is effective by implementing it
  in several flares. The calculated heating terms related to velocity
  (adiabatic compression, viscous heating) showed consistency
  with previous works. In addition, the flow calculation helps us
  semi-automatically detect the sizes of SADs. In the one flare we have
  analyzed so far, the derived size results showed a SAD size distribution
  with small sizes that are unrevealed in previous works, thanks to
  the high spatial resolution of SDO/AIA. We are going to conduct an
  analysis on a large sample of flares observed by SDO/AIA and compare
  it with previous statistical works done in the era without SDO/AIA.

---------------------------------------------------------
Title: Magnetic Reconnection in a Solar Flare: Bi-Directional Outflows
    vs. Microwave and X-ray Bursts
Authors: Yu, S.; Chen, B.; Reeves, K.; Gary, D.; Fleishman, G.
2020SPD....5121103Y    Altcode:
  Magnetic reconnection is fundamental for the astrophysical and
  laboratory plasma. Its role is crucial in powering solar flares,
  production of energetic particles, and plasma heating. However, where
  the magnetic reconnections occur, how and where the released magnetic
  energy is transported, and how it is converted to other forms remain
  unclear. Here we report recurring bi-directional plasma outflows located
  within a large-scale plasma sheet observed in extreme ultraviolet and
  white light during the post-impulsive gradual phase of the X8.2 solar
  flare on 2017 September 10. Each pair of the bi-directional outflows
  originates in the plasma sheet from a discrete site, identified as
  the magnetic reconnection site. These reconnection sites reside at
  very low altitudes (&lt; 180 Mm, or 0.26 solar radii) above the top of
  the flare arcade, which is only 4% of the total length of the plasma
  sheet that extends to at least 10 solar radii. Each arrival of sunward
  outflows at the looptop region appears to coincide with an impulsive
  microwave and X-ray burst dominated by a superhot source (10-20 MK)
  at the looptop, which is immediately followed by a nonthermal microwave
  burst located in the loop-leg region. We propose that the reconnection
  outflows transport the magnetic energy released at localized magnetic
  reconnection sites outward in the form of kinetic energy flux and/or
  electromagnetic Poynting flux. The sunward-directing energy flux
  induces particle acceleration and plasma heating in the post-flare
  arcades observed as the superhot and nonthermal flare emissions.

---------------------------------------------------------
Title: Magnetic Reconnection During the Post-Impulsive Phase of a
Long-Duration Solar Flare: Bi-Directional Outflows vs. Microwave
    and X-ray Bursts
Authors: Yu, S.; Chen, B.; Reeves, K.; Gary, D.; Musset, S.; Fleishman,
   G.; Nita, G.; Glesener, L.
2020AAS...23611203Y    Altcode:
  Magnetic reconnection is fundamental for the astrophysical and
  laboratory plasma. Its role is crucial in powering solar flares,
  production of energetic particles, and plasma heating. However, where
  the magnetic reconnections occur, how and where the released magnetic
  energy is transported, and how it is converted to other forms remain
  unclear. Here we report recurring bi-directional plasma outflows located
  within a large-scale plasma sheet observed in extreme ultraviolet and
  white light during the post-impulsive gradual phase of the X8.2 solar
  flare on 2017 September 10. Each pair of the bi-directional outflows
  originates in the plasma sheet from a discrete site, identified as the
  magnetic reconnection site. These reconnection sites reside at very low
  altitudes (&lt; 180 Mm, or 0.26 R<SUB>sun</SUB>) above the top of the
  flare arcade, which is only 4% of the total length of the plasma sheet
  that extends to at least 10 R<SUB>sun</SUB>. Each arrival of sunward
  outflows at the looptop region appears to coincide with an impulsive
  microwave and X-ray burst dominated by a superhot source (10-20 MK)
  at the looptop, which is immediately followed by a nonthermal microwave
  burst located in the loop-leg region. We propose that the reconnection
  outflows transport the magnetic energy released at localized magnetic
  reconnection sites outward in the form of kinetic energy flux and/or
  electromagnetic Poynting flux. The sunward-directing energy flux
  induces particle acceleration and plasma heating in the post-flare
  arcades observed as the superhot and nonthermal flare emissions.

---------------------------------------------------------
Title: Measurement of magnetic field and relativistic electrons
    along a solar flare current sheet
Authors: Chen, B.; Shen, C.; Gary, D.; Reeves, K.; Fleishman, G.;
   Yu, S.; Guo, F.; Krucker, S.; Lin, J.; Nita, G.; Kong, X.
2020AAS...23611202C    Altcode:
  In the standard model of solar flares, a large-scale reconnection
  current sheet is postulated as the central engine for powering the flare
  energy release and accelerating particles. However, where and how the
  energy release and particle acceleration occur remain unclear due to
  the lack of measurements for the magnetic properties of the current
  sheet. Here we report the first measurement of spatially-resolved
  magnetic field and flare-accelerated relativistic electrons along a
  current-sheet feature in a solar flare. The measured magnetic field
  profile shows a local maximum where the reconnecting field lines
  of opposite polarities closely approach each other, known as the
  reconnection X point. The measurements also reveal a local minimum near
  the bottom of the current sheet above the flare loop-top, referred to
  as a "magnetic bottle". This spatial structure agrees with theoretical
  predictions and numerical modeling results. A strong reconnection
  electric field of ~4000 V/m is inferred near the X point. This location,
  however, shows a local depletion of microwave-emitting relativistic
  electrons. In contrast, these electrons concentrate at or near the
  magnetic bottle structure, where more than 99% of them reside at each
  instant. Our observations suggest crucial new input to the current
  picture of high energy electron acceleration.

---------------------------------------------------------
Title: Calculating the Emission Measure and Average Emission Weighted
    Temperature of Supra-Arcade Downflows
Authors: Kittrell, D.; Li, Z.; Weber, M.; Reeves, K.
2020AAS...23521005K    Altcode:
  We examine the thermal state of plasma associated with a solar flare
  that occurred July 7, 2012. In the plasma sheet located within the
  region above the flare, supra-arcade downflows (SADs) are observed
  using the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics
  Observatory. The sunward traveling downflows give insight on the local
  heating mechanics of coronal plasma during the post-eruption period
  of the flare. We perform calculations of the differential emission
  measure (DEM) from the AIA data in order to determine the total emission
  measure and the average weighted temperature. Emission within the SADs
  are relatively low, and the temperature is much cooler compared to the
  surrounding plasma. Coupling the DEMs with the velocities within the
  plasma sheet, we can analyze potential heating terms that model dominant
  thermal processes in the supra-arcade region. This work supported by
  the NSF-REU solar physics program at SAO, grant number AGS-1560313, the
  NSF SHINE program, grant #AGS-1723425, and NASA grant #80NSSC18K0732.

---------------------------------------------------------
Title: Solar Soft X-ray Variations from the 2008-2019 Solar Cycle
    inferred from CORONAS/SphinX, GOES/XRS, Hinode/XRT, MinXSS, NuSTAR,
    and RHESSI Instruments
Authors: Moore, C.; Takeda, A.; Sylwester, B.; Sylwester, J.; Hannah,
   I.; Dennis, B.; Reeves, K.; Woods, T.
2020AAS...23535901M    Altcode:
  The Solar spectral irradiance (SSI) is vital for understanding the
  physics of all layers of the solar atmosphere from the photosphere to
  the corona. While most of the contribution to the Total Solar Irradiance
  (TSI) reside in visible and infrared light, the UV and X-rays have the
  largest change in magnitude. Quantifying the UV and X-ray variations
  over the solar cycle is critical for constraining the physics of solar
  flares, active regions, the quiet Sun, as well as the atmospheres
  of planets and moons in the heliosphere. The GOES/XRS spectrally
  integrated 0.1 - 0.8 nm energy flux has been a longstanding diagnostic
  of soft x-ray variations, but is limited by non-linearities in signal
  response for low solar flux levels and an observed minimum detection
  limit. The Hinode/XRT filter images provide a unique alternative proxy
  for solar soft X-ray flux inferences with larger dynamic range and a
  lower flux sensitivity. We compare the spectral irradiance estimate
  from a Hinode/XRT filter-ratio technique results to the lowest spectra
  measured-to-date between 1.25 - 3 keV by CORONAS/SPhinX in 2009,
  and MinXSS CubeSat spectra in 2016 - 2019. We also highlight the
  large variability in the soft X-ray spectra as directly measured by
  CORONAS/SphinX, MinXSS, NuSTAR, and RHESSI intermittently between 2009
  - 2019.

---------------------------------------------------------
Title: SmallSat Solar Axion and Activity X-ray Imager (SSAXI)
Authors: Hong, J.; Romaine, S.; Kenter, A.; Moore, C.; Reeves, K.;
   Ramsey, B.; Kilaru, K.; Vogel, J.; Ruz Armendariz, J.; Hudson, H.;
   Perez, K.
2020AAS...23527101H    Altcode:
  The axion is a promising dark matter candidate as well as a solution
  to the strong charge-parity (CP) problem in quantum chromodynamics
  (QCD). We describe a new concept for SmallSat Solar Axion and Activity
  X-ray Telescope (SSAXI) to search for solar axions or axion-like
  particles (ALPs) and to monitor solar activity over a wide dynamic
  range. SSAXI aims to unambiguously identify X-rays converted from
  axions in the solar magnetic field along the line of sight to the
  solar core, effectively imaging the solar core. SSAXI employs Miniature
  lightweight Wolter-I focusing X-ray optics (MiXO) and monolithic CMOS
  X-ray sensors in a compact package. The wide energy range (0.5 - 5 keV)
  of SSAXI can easily distinguish spectra of axion-converted X-rays
  from solar X-ray spectra, while encompassing the prime energy band
  (3 - 4.5 keV) of axion-converted X-rays. The high angular resolution
  (30 arcsec) and large field of view (40 arcmin) in SSAXI will easily
  resolve the enhanced X-ray flux over the 3 arcmin wide solar core
  while fully covering the X-ray activity over the entire solar disc. The
  fast readout in the inherently radiation tolerant CMOS X-ray sensors
  enables high resolution spectroscopy over a wide dynamic range with a
  broad range of operational temperatures. We present multiple mission
  implementation options for SSAXI under ESPA class. SSAXI will operate
  in a Sun-synchronous orbit for 1 yr preferably near a solar minimum
  to accumulate sufficient X-ray photon statistics.

---------------------------------------------------------
Title: Evidence for Multiple Acceleration Mechanisms in Coronal Jets
Authors: Farid, S. I.; Reeves, K.; Savcheva, A.; Rodríguez, N.;
   Wainwright, W.
2020AAS...23535902F    Altcode:
  Solar coronal jets are small scale, energetic eruptions, characterized
  by a column-like spire and bright dome-shaped base. Jets are often
  associated with notable changes in the underlying photospheric magnetic
  field, and have been found to initiate when opposite polarity magnetic
  flux elements emerge, cancel, flyby, or otherwise interact. Because
  of their association with transient photospheric flux elements,
  jets are thought to be primarily driven by magnetic reconnection,
  however models describing the relationship between initiation and
  plasma properties during eruption are not well understood, and are
  often contradictory. This is further complicated by observations show
  that jets with similar initiation mechanisms can exhibit a wide range of
  plasma parameters with different topological features, while embedded in
  different coronal environments. Recent 3D models show that in addition
  to magnetic tension and energy released during reconnection, jets may
  also be accelerated via chromospheric evaporation, the untwisting motion
  of the field lines, and/or by Alvenic waves that transverse along newly
  reconnected field lines. In this work, we investigate acceleration
  mechanisms of 8 coronal jets embedded in different environments
  by combining multi-wavelength imaging observations, spectroscopic
  observations and 3D topological modeling. We use observations from
  Hinode's X-ray Telescope (XRT), Solar Dynamics Observatory's Atmospheric
  Imaging Array (SDO-AIA), and Interface Region Imaging Spectrograph
  (IRIS), to capture the plane of sky outflow velocities as a function
  of temperature. When available, we use IRIS spectroscopic observations
  of the SiIV line profile to calculate line-of-sight velocity, Doppler
  velocity and non-thermal line broadening. Next we use a Non-Linear Force
  Free (NLFF) model, to examine the magnetic topology of selected jets
  during their eruption and compare with evolution in EUV. In cases where
  a filament is observed, we employ the filament insertion method. In one
  jet we complete a more thorough topological analysis including modeling
  of the quasi-sepratrix layers (QSL), and energy partition during the
  eruption. We find evidence of chromospheric evaporation in most (75%)
  of the jets, including those jets that exhibit twist. We find that the
  NLFF model matches EUV observations, allowing us to identify the height
  of the null region and the upper limits of the toroidal, and poloidal
  flux. For the first time, we combine observations and topological
  modeling to show evidence of different acceleration mechanisms in
  coronal jets.

---------------------------------------------------------
Title: Calculating the Emission Measure and Average Weighted
    Temperature of Supra-Arcade Downflows
Authors: Kittrell, D.; Li, Z.; Reeves, K.; Weber, M.
2019AGUFMSH11D3379K    Altcode:
  We examine the thermal state of plasma associated with a solar flare
  that occurred July 7, 2012. In the plasma sheet located within the
  region above the flare, supra-arcade downflows (SADs) are observed using
  the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory
  . The sunward traveling downflows give insight on the local heating
  mechanics of coronal plasma during the post-eruption period of the
  flare. We perform calculations of the differential emission measure
  (DEM) from the AIA data in order to determine the total emission
  measure and the average weighted temperature. Emission within the SADs
  are relatively low, and the temperature is much cooler compared to
  the surrounding plasma. Coupling the DEMs with the velocities within
  the plasma sheet, we can analyze potential heating terms that model
  dominant thermal processes in the supra-arcade region. <P />This work
  supported by the NSF-REU solar physics program at SAO, grant number
  AGS-1560313, the NSF SHINE program, grant #AGS-1723425, and NASA
  grant #80NSSC18K0732.

---------------------------------------------------------
Title: Loop-top oscillations observed with IRIS spatially correlated
    with nonthermal emission from EOVSA in the September 10 2017 X8 Flare
Authors: Reeves, K.; Polito, V.; Galan, G.; Yu, S.; Chen, B.; Liu,
   W.; Li, G.
2019AGUFMSH13D3416R    Altcode:
  he September 10 2017 X8 flare was a spectacular limb event complete with
  a fast coronal mass ejection, a fully global EUV wave, a bright flare
  loop arcade, and strong emission ranging from microwave to white-light
  continuum and gamma-rays. We examine the IRIS Fe XXI data from this
  event. Fe XXI is a coronal line that is formed at about 10 MK. The IRIS
  pointing was just south of the main cusp-shaped loop structure visible
  in AIA, but it did capture most of the flare arcade on the limb. We find
  that the majority of the emission in the loops is slightly red shifted,
  with speeds of about 20 km/s, probably due to chromospheric evaporation
  and an inclined viewing angle. During the period from 16:05 - 16:15
  UT, we find that faint blue-shifted regions appear at the top of the
  flare loops, indicating plasma flows of 20-60 km/s. After the initial
  blue shift at each location, the Fe XXI Doppler velocities exhibit a
  damped oscillation with a period of about 40 sec. Interestingly, in
  the minutes before the blue-shifted loop-top emission was observed,
  the Expanded Owens Valley Solar Array observed nonthermal microwave
  emission at the same location above the loop-tops, possibly indicative
  of particle acceleration there. We will discuss possible mechanisms
  for these observations.

---------------------------------------------------------
Title: Combined Next-Generation X-ray and EUV Observations with the
    FIERCE Mission Concept
Authors: Shih, A. Y.; Glesener, L.; Christe, S.; Reeves, K.; Gburek,
   S.; Alaoui, M.; Allred, J. C.; Baumgartner, W.; Caspi, A.; Dennis,
   B. R.; Drake, J. F.; Goetz, K.; Golub, L.; Guidoni, S. E.; Inglis,
   A.; Hannah, I. G.; Holman, G.; Hayes, L.; Ireland, J.; Kerr, G. S.;
   Klimchuk, J. A.; Krucker, S.; McKenzie, D. E.; Moore, C. S.; Musset,
   S.; Reep, J. W.; Ryan, D.; Saint-Hilaire, P.; Savage, S. L.; Seaton,
   D. B.; Steslicki, M.; Woods, T. N.
2019AGUFMSH33A..08S    Altcode:
  While there have been significant advances in our understanding
  of impulsive energy release at the Sun through the combination
  of RHESSI X-ray observations and SDO/AIA EUV observations, there
  is a clear science need for significantly improved X-ray and EUV
  observations. These new observations must capture the full range
  of emission in flares and CMEs (e.g., faint coronal sources near
  bright chromospheric sources), connect the intricate evolution of
  energy release with dynamic changes in the configuration of plasma
  structures, and identify the signatures of impulsive energy release in
  even the quiescent Sun. The Fundamentals of Impulsive Energy Release
  in the Corona Explorer ( FIERCE ) MIDEX mission concept makes these
  observations by combining the two instruments previously proposed on the
  FOXSI SMEX mission concept - a focusing hard X-ray spectroscopic imager
  and a soft X-ray spectrometer - with a high-resolution EUV imager that
  will not saturate for even intense flares. All instruments observe at
  high cadence to capture the initiation of solar transient events and
  the fine time structure within events. FIERCE would launch in mid-2025,
  near the peak of the next solar cycle, which is also well timed with
  perihelions of Parker Solar Probe and Solar Orbiter.

---------------------------------------------------------
Title: Coronal Solar Magnetism Observatory Science Objectives
Authors: Gibson, S. E.; Tomczyk, S.; Burkepile, J.; Casini, R.;
   DeLuca, E.; de Toma, G.; de Wijn, A.; Fan, Y.; Golub, L.; Judge,
   P. G.; Landi, E.; McIntosh, S. W.; Reeves, K.; Seaton, D. B.; Zhang, J.
2019AGUFMSH11C3395G    Altcode:
  Space-weather forecast capability is held back by our current
  lack of basic scientific understanding of CME magnetic evolution,
  and the coronal magnetism that structures and drives the solar
  wind. Comprehensive observations of the global magnetothermal
  environment of the solar atmosphere are needed for progress. When fully
  implemented, the COSMO suite of synoptic ground-based telescopes will
  provide the community with comprehensive and simultaneous measurements
  of magnetism, temperature, density and plasma flows and waves from the
  photosphere through the chromosphere and out into the corona. We will
  discuss how these observations will uniquely address a set of science
  objectives that are central to the field of solar and space physics:
  in particular, to understand the storage and release of magnetic energy,
  to understand CME dynamics and consequences for shocks, to determine the
  role of waves in solar atmospheric heating and solar wind acceleration,
  to understand how the coronal magnetic field relates to the solar
  dynamo, and to constrain and improve space-weather forecast models.

---------------------------------------------------------
Title: FIERCE Science: Expected Results From a High-Energy
    Medium-Class Explorer
Authors: Glesener, L.; Shih, A. Y.; Christe, S.; Reeves, K.; Gburek,
   S.; Alaoui, M.; Allred, J. C.; Baumgartner, W.; Caspi, A.; Dennis,
   B. R.; Drake, J. F.; Golub, L.; Goetz, K.; Guidoni, S. E.; Hannah,
   I. G.; Hayes, L.; Holman, G.; Inglis, A.; Ireland, J.; Kerr, G. S.;
   Klimchuk, J. A.; Krucker, S.; McKenzie, D. E.; Moore, C. S.; Musset,
   S.; Reep, J. W.; Ryan, D.; Saint-Hilaire, P.; Savage, S. L.; Seaton,
   D. B.; Steslicki, M.; Woods, T. N.
2019AGUFMSH31C3313G    Altcode:
  A variety of individual X-ray and EUV instruments have probed
  high-energy aspects of the Sun over the decades, each contributing
  pieces to the puzzles of the energization, heating, and acceleration of
  solar plasma and particles. But fundamental difficulties in sensitivity
  and dynamic range impart big challenges in probing the details of
  particle acceleration sites, understanding how eruptions and flares are
  initiated, and tracking the intricacies of energy transfer as flares
  evolve. The Fundamentals of Impulsive Energy Release in the Corona
  Explorer ( FIERCE ) mission will make substantial leaps forward in
  these scientific ventures by combining a variety of instruments into
  one platform, each optimized to have high sensitivity and dynamic
  range. FIERCE is a proposed NASA Heliophysics Medium-Class Explorer
  that will investigate high-energy solar phenomena across a variety
  of spectral and spatial dimensions. It combines hard X-ray imaging
  spectroscopy (via focusing, for the first time for a solar-dedicated
  spacecraft), spatially integrated soft X-ray spectroscopy, and fast,
  high-resolution extreme ultraviolet imaging at coronal and flare
  temperatures. FIERCE uses this array of instruments to make important
  contributions toward probing the genesis of space weather events,
  the acceleration of particles, the transport of flare energy, and the
  heating of the corona. Here, we present some of the expected science
  outcomes for the FIERCE observatory, concentrating on the ways in which
  FIERCE can probe confined and eruptive events, particle acceleration
  everywhere it may occur on the Sun, and the connections of solar
  high-energy phenomena to the heliosphere.

---------------------------------------------------------
Title: Heating Features of Interesting Supra-arcade Downflows
Authors: Li, Z.; Kittrell, D.; Reeves, K.; Weber, M.; McKenzie, D. E.;
   Freed, M.
2019AGUFMSH11D3378L    Altcode:
  Supra-arcade downflows (SADs) have been observed above flare loops
  during the decay phase of flare. They appear as tadpole-like dark plasma
  voids traveling towards the Sun. In areas surrounding where they appear,
  temperatures are often high. We aim to investigate temperature and
  heating mechanism of SADs. We apply our analysis to the M1.7 flare
  that occurred on 2012 July 12 and was observed by the Atmospheric
  Imaging Assembly (AIA) on the Solar Dynamics Observatory. There
  are many obvious SADs above the arcade during this event in the AIA
  131 Å channel. We calculate velocities of SADs using the Fourier
  Local Correlation Tracking (FLCT, Fisher &amp; Welsch, 2008) method
  to derive velocities in the supra-arcade region. Using corks to track
  the calculated velocities, we find our velocity results are consistent
  with the SAD motions in the AIA 131 Å intensity movie. We use the
  velocities to derive the adiabatic heating caused by the compression of
  plasma. Preliminary results indicate that there is adiabatic heating
  in front of the SADs. <P />This work supported by the NSF-REU solar
  physics program at SAO, grant number AGS-1560313, the NSF SHINE program
  AGS-1723425, and NASA grant number 80NSSC18K0732.

---------------------------------------------------------
Title: Unfolding Overlappogram Data: Preparing for the COOL-AID
    instrument on Hi-C FLARE
Authors: Winebarger, A. R.; De Pontieu, B.; Cheung, C. M. M.;
   Martinez-Sykora, J.; Hansteen, V. H.; Testa, P.; Golub, L.; Savage,
   S. L.; Samra, J.; Reeves, K.
2019AGUFMSH33A..06W    Altcode:
  During a solar flare, energy released in the corona streams to the solar
  chromosphere, where plasma is heated and then evaporated upward. The
  magnitude of these velocities and their evolution as a function of time
  can provide quantitative information on the magnitude of energy released
  and the method by which it is transported in a solar flare. Measuring
  these velocities, however, is quite challenging. Typically, they are
  measured with single slit spectrometers, where light passing through
  a long but narrow slit is dispersed and emission lines formed across
  a range of temperatures are observed. The main issue with using
  single slit spectrometers to make this measurement is that they are
  rarely pointed at the right place at the right time. Additionally,
  their fields of view are limited by narrow slit widths, and although
  rastering can effectively expand the field of view, it does so at the
  cost of time. This combination means that single slit spectrometers
  cannot adequately capture the evolution of the flare velocities. On
  the contrary, slitless spectrometers can make "overlappograms”,
  which provide both imaging and spectral information over a large field
  of view. However, spatial information from different spectral lines
  can overlap in the dispersion direction, making the data difficult
  to interpret. Furthermore, the spectral resolution of slitless
  spectrometers are limited and typically worse than single-slit
  spectrometers, since no line fitting (and hence sub-pixel sampling) is
  possible. <P />For the next generation of the High-resolution Coronal
  Imager (Hi-C) Rocket Experiment, which we are proposing to launch during
  a solar flare, we are including the COronal OverLapagram - Ancillary
  Imaging Diagnostics (COOL-AID) instrument. COOL-AID is a slitless
  spectrometer based on the COronal Spectrographic Imager in the EUV
  (COSIE) design, but with a narrow passband coating around 12.9 nm (the
  same passband as the primary Hi-C telescope), a spatial resolution of
  ~1"x2", and a velocity resolution of ~5 km/s. The goal of the COOL-AID
  instrument is to determine the velocity associated with the Fe XXI
  12.9 nm spectral line during a solar flare. In this talk, we will
  demonstrate the unfolding method developed by Cheung et al (2019) to
  determine the velocity information from a simulated COOL-AID data set.

---------------------------------------------------------
Title: Frequency Agile Solar Radiotelescope
Authors: Bastian, Tim; Bain, H.; Bradley, R.; Chen, B.; Dahlin, J.;
   DeLuca, E.; Drake, J.; Fleishman, G.; Gary, D.; Glesener, L.; Guo,
   Fan; Hallinan, G.; Hurford, G.; Kasper, J.; Ji, Hantao; Klimchuk,
   J.; Kobelski, A.; Krucker, S.; Kuroda, N.; Loncope, D.; Lonsdale,
   C.; McTiernan, J.; Nita, G.; Qiu, J.; Reeves, K.; Saint-Hilaire, P.;
   Schonfeld, S.; Shen, Chengcai; Tun, S.; Wertheimer, D.; White, S.
2019astro2020U..56B    Altcode:
  We describe the science objectives and technical requirements for a
  re-scoped Frequency Agile Solar Radiotelescope (FASR). FASR fulfills
  a long term community need for a ground-based, solar-dedicated, radio
  telescope - a next-generation radioheliograph - designed to perform
  ultra-broadband imaging spectropolarimetry.

---------------------------------------------------------
Title: Possible Evidence of Chromospheric Evaporation in Coronal Jets
Authors: Farid, Samaiyah I.; Soto, N.; Reeves, K.; Savcheva, A.
2018shin.confE..90F    Altcode:
  Chromospheric evaporation is commonly associated with flaring
  active regions, when magnetic reconnection in the corona heats and
  drives chromospheric material upward at velocities comparable to the
  local sound speed. In those cases, the tell-tell signs are enhanced
  blue shifts in enhanced blue shifts in hot lines such as Fe XXI,
  Fe XXIII and Fe XXIV, and a notable increase in plasma velocity as
  a function of temperature. Coronal jets could also exhibit evidence
  of chromospheric evaporation when magnetic reconnection occurs. In
  this study, we use observations from Hinode's X-ray Telescope (XRT),
  Solar Dynamics Observatory's Atmospheric Imaging Array (SDO/AIA), and
  Interface Region Imaging Spectrograph (IRIS) to construct line-of-sight
  velocities as a function of temperature along the spire of several
  jets. We also construct differential emission measures over the time
  of the jet eruptions and calculate the rate of change in the thermal
  energy flux, to determine if it is characteristic of explosive or gentle
  evaporation. We present evidence of a temperature-dependent velocity
  in jets ranging from 200 500 km/sec , consistent with chromospheric
  evaporation.

---------------------------------------------------------
Title: Investigation of supra-arcade downflows with a 3D numerical
    model of solar flares
Authors: Guo, Lijia; Shen, C.; Reeves, K. K.; Chen, B.
2018shin.confE.191G    Altcode:
  Supra-arcade downflows are low-emission downflows observed at cusp
  regions of solar flares. Rayleigh-Taylor-type instabilities have been
  proposed to as a possible mechanism for the supra-arcade downflows in
  our previous paper (Guo et al. 2014), in which numerical simulations of
  a reconnecting current sheet qualitatively reproduce AIA observations
  of supra-arcade downflows. As a follow-up work of the previous paper,
  we conduct numerical simulations with more sophisticated setups (Shen
  et al. 2011) to gain a coherent understanding of three-dimensional
  fine structures above flare arcades. These fine structures disturb
  local plasma, cause turbulent flows and possibly help to heat plasma
  in the cusp region, as suggested by spectroscopic observations of
  the cusp region (Hanneman &amp; Reeves 2014, Reeves et al. 2017,
  Innes et al. 2003, McKenzie et al. 2013). In our simulations, we
  observe high-speed Doppler flows in the supra-arcade fan, which lead
  to Doppler-shifted components in synthetic line profiles of hot flare
  lines. We also find that the instabilities that drive supra-arcade
  downflows could cause non-thermal broadenings of line profiles as a
  consequence of turbulent flows. We compare our simulations with existing
  observations and discuss the possible impacts of supra-arcade downflows
  on flare energetics. Last but not least, we conducted parameter scans
  regarding to certain plasma parameters (e.g. beta and guide field)
  and study conditions under which supra-arcade downflows occur.

---------------------------------------------------------
Title: The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
Authors: Winebarger, A. R.; Savage, S. L.; Kobayashi, K.; Champey,
   P. R.; McKenzie, D. E.; Golub, L.; Testa, P.; Reeves, K.; Cheimets,
   P.; Cirtain, J. W.; Walsh, R. W.; Bradshaw, S. J.; Warren, H.; Mason,
   H. E.; Del Zanna, G.
2017AGUFMSH44A..06W    Altcode:
  For over four decades, X-ray, EUV, and UV spectral observations have
  been used to measure physical properties of the solar atmosphere. At
  wavelengths below 10 nm, however, observations of the solar corona
  with simultaneous spatial and spectral resolution are limited,
  and not since the late 1970's have spatially resolved solar X-ray
  spectra been measured. Because the soft X-ray regime is dominated
  by emission lines formed at high temperatures, X-ray spectroscopic
  techniques yield insights to fundamental physical processes that are
  not accessible by any other means. Using a novel implementation of
  corrective optics, the Marshall Grazing Incidence X-ray Spectrometer
  (MaGIXS) will measure, for the first time, the solar spectrum from 0.6-
  2.4 nm with a 6 arcsec resolution over an 8 arcmin slit. The MaGIXS
  mission will address on of the fundamental problems of coronal physics:
  the nature of coronal heating. There are several observables in the
  MaGIXS wavelength range that will constrain the heating frequency and
  hence discriminate between competing coronal heating theories. In this
  presentation, we will present the MaGIXS scientific motivation and
  provide an update on instrument development. MaGIXS will be launched
  from White Sands Missile Range in the summer of 2019.

---------------------------------------------------------
Title: Searching for Spectroscopic Signs of Termination Shocks in
    Solar Flares
Authors: Galan, G.; Polito, V.; Reeves, K.
2017AGUFMSH51C2501G    Altcode:
  The standard flare model predicts the presence of a termination shock
  located above the flare loop tops, however terminations shocks have not
  yet been well observed. We analyze flare observations by the Interface
  Region Imaging Spectrograph (IRIS), which provides cotemporal UV
  imaging and spectral data. Specifically, we study plasma emissions in
  the Fe XXI line, formed at the very hot plasma temperatures in flares
  (&gt; 10 MK). Imaging observations that point to shocks include fast
  hot reconnection downflows above the loop tops and localized dense,
  bright plasma at the loop tops; spectral signatures that suggest shocks
  in the locality of the loop tops include redshifts and nonthermal
  broadening of the Fe XXI line. We identify possibly significant
  redshifts in some on-disk flare events observed by IRIS. Redshifts
  are observed in the vicinity of the bright loop top source that is
  thought to coincide with the site of the shock. In these events,
  the Fe XXI emissions at the time of the redshifted structures are
  dominated by at the at-rest components. The much more less intense
  redshifted components are broader, with velocities of 200 km/s. The
  spatial location of these shifts might indicate plasma motions and
  speeds indicative of termination shocks. This work is supported by
  the NSF-REU solar physics program at SAO, grant number AGS-1560313,
  and by NASA Grant NNX15AJ93G. Keywords: Solar flares, Solar magnetic
  reconnection, Termination shocks

---------------------------------------------------------
Title: Radio Spectral Imaging of Reflective MHD Waves during the
    Impulsive Phase of a Solar Flare
Authors: Yu, S.; Chen, B.; Reeves, K.
2017AGUFMSH33B2781Y    Altcode:
  We report a new type of coherent radio bursts observed by the Karl
  G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase
  of a two-ribbon flare on 2014 November 1, which we interpret as MHD
  waves reflected near the footpoint of flaring loops. In the dynamic
  spectrum, this burst starts with a positive frequency drift toward
  higher frequencies until it slows down near its highest-frequency
  boundary. Then it turns over and drifts toward lower frequencies. The
  frequency drift rate in its descending and ascending branch is between
  50-150 MHz/s, which is much slower than type III radio bursts associated
  with fast electron beams but close to the well-known intermediate drift
  bursts, or fiber bursts, which are usually attributed to propagating
  whistler or Alfvenic waves. Thanks to VLA's unique capability of
  imaging with spectrometer-like temporal and spectral resolution (50
  ms and 2 MHz), we are able to obtain an image of the radio source at
  every time and frequency in the dynamic spectrum where the burst is
  present and trace its spatial evolution. From the imaging results,
  we find that the radio source firstly moves downward toward one of
  the flaring ribbons before it "bounces off" at the lowest height
  (corresponding to the turnover frequency in the dynamic spectrum) and
  moves upward again. The measured speed in projection is at the order
  of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD
  waves in the low corona. We conclude that the radio burst is emitted
  by trapped nonthermal electrons in the flaring loop carried along by
  a large-scale MHD wave. The waves are probably launched during the
  eruption of a magnetic flux rope in the flare impulsive phase.

---------------------------------------------------------
Title: Thermal energy creation and transport and X-ray/EUV emission
    in a thermodynamic MHD CME simulation
Authors: Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.
2017AGUFMSH11C..07R    Altcode:
  We model a CME using the PSI 3D numerical MHD code that includes
  coronal heating, thermal conduction and radiative cooling in the
  energy equation. The magnetic flux distribution at 1 Rs is produced by
  a localized subsurface dipole superimposed on a global dipole field,
  mimicking the presence of an active region within the global corona. We
  introduce transverse electric fields near the neutral line in the
  active region to form a flux rope, then a converging flow is imposed
  that causes the eruption. We follow the formation and evolution of
  the current sheet and find that instabilities set in soon after the
  reconnection commences. We simulate XRT and AIA EUV emission and find
  that the instabilities manifest as bright features emanating from the
  reconnection region. We examine the quantities responsible for plasma
  heating and cooling during the eruption, including thermal conduction,
  radiation, adiabatic compression and expansion, coronal heating and
  ohmic heating due to dissipation of currents. We find that the adiabatic
  compression plays an important role in heating the plasma around the
  current sheet, especially in the later stages of the eruption when the
  instabilities are present. Thermal conduction also plays an important
  role in the transport of thermal energy away from the current sheet
  region throughout the reconnection process.

---------------------------------------------------------
Title: Solar Flare Termination shock and the Synthetic Fe XXI 1354.08
    Å line
Authors: Guo, L.; Li, G.; Reeves, K.; Raymond, J. C.
2017AGUFMSH52B..03G    Altcode:
  Solar flares are one of the most energetic phenomena occurred in the
  solar system. In the standard solar flare model, a fast mode shock,
  which is often referred to as the flare termination shock (TS), can
  exist above the loop-top source of hard X-ray emissions. The existence
  of the termination shock has been recently related to spectral hardening
  of flare hard X-ray spectrum at energies &gt; 300 keV. Observations of
  the Fe XXI 1354.08 Å line during solar flares by the IRIS spacecraft
  have found significant redshift with &gt;100 km/s, which is consistent
  with a reconnection downflow. The ability to identify such a redshift
  by IRIS is made possible by IRIS's high time resolution, high spatial
  resolution, high sensitivity and cadence spectral observations. The
  ability to identify such a redshift by IRIS suggests that one may
  be able to use IRIS observations to identify flare termination
  shocks. Using a MHD simulation to model magnetic reconnection of a
  solar flare and assuming the existence of a TS in the downflow of the
  reconnection plasma, we model the synthetic emission of the Fe XXI
  1354.08 Å line in this work. We show that the existence of the TS in
  the solar flare may manifest itself from the Fe XXI 1354.08 Å line.

---------------------------------------------------------
Title: The Connection Between Solar Coronal Cavities and Solar
    Filaments
Authors: Zawadzki, B.; Karna, N.; Prchlik, J.; Reeves, K.; Kempton,
   D.; Angryk, R.
2017AGUFMSH13A2467Z    Altcode:
  Filaments are structures in the solar corona made up of relatively
  cool, dense, partially ionized plasma. Coronal cavities, circular
  or elliptical regions of low plasma density, are observed above
  prominences on the solar limb when viewed in EUV and white light
  coronal images. Since most filament/cavity eruptions lead to a coronal
  mass ejection (CME), determining the likelihood of an eruption event
  will improve our ability to predict space weather. We examine SDO/AIA
  cavity metadata and HEK filament metadata to determine which cavities
  are associated with which filaments from 2012 to 2015. Our study
  involved 140 cavities and 368 filaments that appeared poleward of
  +-30 degrees. We categorized the cavities and filaments based on the
  stability of the structures, defined by whether or not the cavity and
  filament exist long enough to track fully across the solar disk. Using
  these categories we perform a statistical study on various filament
  qualities within the metadata. Our findings indicate that filaments
  with cavities are observed more often at high latitude in compared
  to filaments without cavities. Moreover, our study indicates that a
  statistically significant difference exists between the filament length
  and tilt distributions for certain categories. This work supported by
  the NSF-REU solar physics program at SAO, grant number AGS-1560313,
  and the NSF-DIBBS project, grant number ACI-1443061.

---------------------------------------------------------
Title: Probing the W tb vertex structure in t-channel single-top-quark
    production and decay in pp collisions at √{s}=8 TeV with the
    ATLAS detector
Authors: Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.;
   Abeloos, B.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu,
   H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk,
   L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.;
   Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov,
   F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.;
   Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada;
   Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos,
   T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire,
   S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.;
   Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.;
   Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio,
   B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor
   Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu,
   L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson,
   K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.;
   Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.;
   Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki,
   M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Ferraz,
   V. Araujo; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.; Argyropoulos,
   S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold,
   H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.;
   Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan,
   K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.;
   Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca,
   M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi,
   P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Bajic, M.; Baker, O. K.;
   Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.;
   Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio,
   E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M. -S.;
   Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett,
   R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.;
   Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães;
   Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.;
   Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce,
   M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.;
   Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.;
   Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov,
   V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.;
   Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.;
   Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev,
   N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos,
   N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.;
   Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge,
   D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.;
   Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.;
   Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche,
   C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.;
   Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.;
   Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski,
   R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud,
   T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.;
   Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black,
   K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker,
   C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.;
   Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler,
   M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.;
   Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben,
   M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt,
   J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman,
   M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker,
   E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.;
   Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt,
   O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden;
   Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler,
   S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock,
   I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer,
   J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko,
   D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH;
   Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.;
   Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.;
   Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.;
   Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.;
   Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.;
   Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti,
   P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera;
   Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.;
   Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba,
   L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.;
   Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans,
   R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani,
   A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero,
   J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.;
   Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli,
   I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney,
   R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter,
   J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper,
   D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez,
   V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.;
   Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.;
   Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda;
   Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.;
   Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.;
   Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau,
   C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.;
   Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.;
   Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng,
   H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.;
   El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.;
   Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan,
   A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou,
   S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba,
   J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.;
   Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto,
   F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark,
   B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou,
   Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.;
   Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis,
   E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu,
   S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar,
   A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.;
   Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa,
   M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.;
   Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs,
   W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.;
   Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth,
   J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio,
   M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.;
   Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.;
   Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger,
   M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.;
   Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison,
   P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De
   Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.;
   De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis,
   U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.;
   Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot,
   F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.;
   Pietra, M. Della; della Volpe, D.; Delmastro, M.; Delsart, P. A.;
   DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.;
   Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.;
   Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.;
   Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di
   Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo,
   R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino,
   D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.;
   Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.;
   Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland,
   J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi,
   J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini,
   J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.;
   Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.;
   Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.;
   Duflot, L.; Dührssen, M.; Dumancic, M.; Duncan, A. K.; Dunford, M.;
   Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta,
   B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards,
   N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi,
   M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot,
   A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari,
   Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis,
   G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch,
   H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans,
   H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov,
   R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.;
   Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.;
   Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht,
   P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett,
   W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni,
   L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.;
   Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.;
   Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere,
   D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut,
   F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini,
   L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel,
   N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.;
   Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.;
   Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier,
   D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis,
   D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn,
   D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost,
   J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster,
   J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach,
   G. P.; Gadatsch, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea,
   C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster,
   G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls,
   F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres,
   M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon;
   Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.;
   Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee,
   C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt,
   K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.;
   George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.;
   Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.;
   Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich,
   D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.;
   Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.;
   Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.;
   Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov,
   A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.;
   Golubkov, D.; Gomes, A.; Gonçalo, R.; Gama, R. Goncalves; Da Costa,
   J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de
   la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov,
   P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek,
   A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.;
   Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber,
   L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling,
   J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.;
   Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen,
   K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo,
   A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Groh, S.;
   Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.;
   Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.;
   Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.;
   Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.;
   Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam,
   C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Hadef, A.; Hageböck,
   S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian,
   G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton,
   A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.;
   Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.;
   Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.;
   Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison,
   P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.;
   Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek,
   M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays,
   C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.;
   Heck, T.; Hedberg, V.; Heelan, L.; Heidegger, K. K.; Heim, S.; Heim,
   T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal,
   J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson,
   R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques;
   Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez,
   Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh,
   G. G.; Hessey, N. P.; Hetherly, J. W.; Higón-Rodriguez, E.; Hill, E.;
   Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines,
   E.; Hirose, M.; Hirschbuehl, D.; Hladik, O.; Hoad, X.; Hobbs, J.;
   Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp,
   M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.;
   Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.;
   Horton, A. J.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howarth, J.;
   Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.;
   Hrynevich, A.; Hsu, P. J.; Hsu, S. -C.; Hu, Q.; Hu, S.; Huang, Y.;
   Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.;
   Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.;
   Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.;
   Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno,
   M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.;
   Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.;
   Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe;
   Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson,
   B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.;
   Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.;
   Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.;
   Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G. -Y.;
   Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.;
   Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru,
   A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson,
   C. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones,
   S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.;
   Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.;
   Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.;
   Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.;
   Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.;
   Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.;
   Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik,
   K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.;
   Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.;
   Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.;
   Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian,
   H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader,
   M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.;
   Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby,
   C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.;
   King, B. T.; King, M.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.;
   Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.;
   Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.;
   Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg,
   R.; Klioutchnikova, T.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Knapik,
   J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.;
   Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas,
   T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.;
   Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.;
   Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis,
   N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas,
   K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner,
   O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris,
   A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.;
   Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.;
   Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.;
   Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.;
   Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka,
   K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.;
   Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal,
   M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.;
   Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky,
   Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.;
   Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.;
   Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos,
   D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.;
   Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.;
   Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon,
   E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.;
   Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.;
   Lapertosa, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.;
   Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law,
   A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz,
   O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.;
   Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.;
   Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto,
   G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.;
   Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.;
   Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.;
   Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko,
   M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.;
   Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.;
   Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.;
   Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.;
   Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi,
   M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.;
   Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.;
   Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.;
   Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew,
   K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long,
   B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez,
   J. A.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis,
   A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.;
   Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti,
   H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.;
   Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.;
   Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.;
   Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens,
   J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.;
   Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze,
   E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier,
   T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.;
   Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone,
   C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli,
   L.; Mandić, I.; Maneira, J.; de Andrade Filho, L. Manhaes; Ramos,
   J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.;
   Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.;
   March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley,
   D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia,
   S.; Martin, B.; Martin, T. A.; Martin, V. J.; dit Latour, B. Martin;
   Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu,
   V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.;
   Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.;
   Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.;
   Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini,
   R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee,
   S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont,
   L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon,
   S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.;
   Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia,
   B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng,
   X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod,
   P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe,
   J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.;
   Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi,
   S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi,
   M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.;
   Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur,
   B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.;
   Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.;
   Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki,
   K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden,
   R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano,
   A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore,
   R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.;
   Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak,
   V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj,
   L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi,
   K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd,
   R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.;
   Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz;
   Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja,
   M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.;
   Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel,
   M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.;
   Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias;
   Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.;
   Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic,
   S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno,
   A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski,
   P.; Newman, P. R.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou,
   R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.;
   Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe,
   T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.;
   Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka,
   L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Neil, D. C.; O'Rourke, A. A.;
   O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.;
   Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren,
   H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.;
   Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino,
   S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.;
   Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.;
   Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.;
   y Garzon, G. Otero; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou,
   A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.;
   Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco;
   Aranda, C. Padilla; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais,
   P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.;
   Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.;
   Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi,
   L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez,
   D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi,
   F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci,
   E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater,
   J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Lopez,
   S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng,
   H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.;
   Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke,
   R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.;
   Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.;
   Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.;
   Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.;
   Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher,
   J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold,
   J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.;
   Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Poettgen, R.;
   Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.;
   Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès,
   K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton,
   A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.;
   Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga,
   M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price,
   L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.;
   Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit,
   M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.;
   Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu,
   V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal,
   G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.;
   Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.;
   Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.;
   Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.;
   Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren,
   H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rezanova, O. L.;
   Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was,
   E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.;
   Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi,
   L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.;
   Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.;
   Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.;
   Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.;
   Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano;
   Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati,
   S.; Rosbach, K.; Rose, P.; Rosien, N. -A.; Rossetti, V.; Rossi,
   E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.;
   Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova,
   Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord,
   J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.;
   Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti,
   S.; Sadrozinski, H. F. -W.; Sadykov, R.; Tehrani, F. Safai; Saha,
   P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai,
   Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek,
   D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.;
   Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel,
   D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda,
   A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.;
   Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico,
   R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva,
   J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.;
   Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra,
   C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.;
   Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.;
   Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.;
   Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger,
   R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.;
   Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.;
   Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.;
   Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.;
   Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.;
   Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.;
   Schultens, M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.;
   Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger,
   H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.;
   Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel,
   S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon,
   K.; Sekula, S. J.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin,
   L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.;
   Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.;
   Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.;
   Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.;
   Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva,
   A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.;
   Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.;
   Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.;
   Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.;
   Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon,
   D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.;
   Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe,
   H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa,
   K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.;
   Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith,
   J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.;
   Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.;
   Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar,
   M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.;
   Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.;
   Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou,
   C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.;
   Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.;
   Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis,
   R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek,
   R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.;
   Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.;
   Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer,
   B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.;
   Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte,
   P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.;
   Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec,
   P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci,
   S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya,
   Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun,
   X.; Sundermann, J. E.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.;
   Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.;
   Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout,
   R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo,
   Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka,
   R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia;
   Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.;
   Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor,
   A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger,
   F. A.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.;
   Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo,
   S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.;
   Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.;
   Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.;
   Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome,
   K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku,
   K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.;
   Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró;
   Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.;
   Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.;
   Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.;
   Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng,
   J. C. -L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.;
   Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.;
   Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.;
   Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi,
   S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.;
   Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal,
   G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.;
   Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant,
   L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes;
   Valencic, N.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.;
   Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.;
   van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop,
   J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.;
   Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.;
   Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell,
   K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder,
   T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso,
   F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini,
   A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest,
   A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu,
   O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.;
   Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.;
   Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.;
   Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von
   Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld,
   J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk,
   M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg,
   H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak,
   W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.;
   Wang, J.; Wang, J.; Wang, K.; Wang, Q.; Wang, R.; Wang, S. M.; Wang,
   T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope,
   D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.;
   Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber,
   S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert,
   B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus,
   T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.;
   Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.;
   White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.;
   Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.;
   Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.;
   Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier,
   F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf,
   T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek,
   B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu,
   M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella,
   S.; Xi, Z.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.;
   Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi,
   K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.;
   Yao, W. -M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye,
   J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.;
   Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.;
   Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.;
   Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk,
   N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.;
   Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.;
   Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.;
   Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.;
   Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.;
   Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou,
   M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.;
   Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.;
   Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković,
   L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L.
2017JHEP...04..124A    Altcode: 2019arXiv190605310A
  To probe the W tb vertex structure, top-quark and W -boson polarisation
  observables are measured from t-channel single-top-quark events produced
  in proton-proton collisions at a centre-of-mass energy of 8 TeV. The
  dataset corresponds to an integrated luminosity of 20.2 fb<SUP>-1</SUP>,
  recorded with the ATLAS detector at the LHC. Selected events contain
  one isolated electron or muon, large missing transverse momentum and
  exactly two jets, with one of them identified as likely to contain a
  b-hadron. Stringent selection requirements are applied to discriminate
  t-channel single-top-quark events from background. The polarisation
  observables are extracted from asymmetries in angular distributions
  measured with respect to spin quantisation axes appropriately chosen for
  the top quark and the W boson. The asymmetry measurements are performed
  at parton level by correcting the observed angular distributions for
  detector effects and hadronisation after subtracting the background
  contributions. The measured top-quark and W -boson polarisation
  values are in agreement with the Standard Model predictions. Limits
  on the imaginary part of the anomalous coupling g <SUB>R</SUB> are
  also set from model-independent measurements. [Figure not available:
  see fulltext.]

---------------------------------------------------------
Title: MWA Observations of Solar Radio Bursts and the Quiet Sun
Authors: Cairns, I.; Oberoi, D.; Morgan, J.; Bastian, T.; Bhatnagar,
   S.; Bisi, M.; Benkevitch, L.; Bowman, J.; Donea, A.; Giersch, O.;
   Jackson, B.; Chat, G. L.; Golub, L.; Hariharan, K.; Herne, D.; Kasper,
   J.; Kennewell, J.; Lonsdale, C.; Lobzin, V.; Matthews, L.; Mohan, A.;
   Padmanabhan, J.; Pankratius, V.; Pick, M.; Subramanian, P.; Ramesh,
   R.; Raymond, J.; Reeves, K.; Rogers, A.; Sharma, R.; Tingay, S.;
   Tremblay, S.; Tripathi, D.; Webb, D.; White, S.; Abidin, Z. B. Z.
2017mwa..prop..A06C    Altcode:
  A hundred hours of observing time for solar observations is requested
  during the 2017-A observing semester. These data will be used to address
  science objectives for solar burst science (Goal A), studies of weak
  non-thermal radiation (Goal B) and quiet sun science (Goal C). Goal
  A will focus on detailed investigations of individual events seen in
  the MWA data, using the unsurpassed spectroscopic imaging ability
  of the MWA to address some key solar physics questions. Detailed
  observations of type II bursts, of which MWA has observed two, will
  be one focus, with MWA polarimetric imaging observations of type III
  bursts another focus. Goal B will address studies of the numerous
  short lived and narrow band emission features, significantly weaker
  than those seen by most other instruments revealed by the MWA. These
  emission features do not resemble any known types of solar bursts, but
  are possible signatures of "nanoflares" which have long been suspected
  to play a role in coronal heating. A large database of these events is
  needed to be able to reliably estimate their contribution to coronal
  heating. These observations will contribute to this database. Goal C
  will focus on characterizing the Sun's background thermal emission,
  their short and long term variability and looking for evidence of a
  scattering disc around the Sun.

---------------------------------------------------------
Title: Signatures of Reconnection Observed in a Candle-Flame Solar
    Flare at the Limb
Authors: Reeves, K.; Chen, B.; White, S. M.; Schanche, N.; Tian, H.
2016AGUFMSH31B2565R    Altcode:
  We examine a well-observed flare that occurred on the limb of the Sun
  on March 7, 2015 in order to find possible signatures of a termination
  shock due to outflows from reconnecting magnetic fields. Images of this
  flare from Hinode/XRT and the SDO/AIA 131 bandpass show a cusp-shaped
  morphology. The IRIS slit was positioned in the region of the current
  sheet, above the flare loops. Fe XXI is detected in the IRIS spectra
  with an average Doppler velocity of about 20 km/s. The non-thermal
  widths in IRIS decrease steadily from 23:00 UT on the 7th until 00:20
  UT the next day. This decrease correlates well with the microwave
  radio flux observed by the Nobeyama Radioheliograph (NoRH), which is
  primarily due to thermal free-free emission based on the examination
  of NoRH images at 17 GHz and 34 GHz. Temperatures of the loop-top
  source derived from RHESSI and XRT also show a steady decrease during
  this time. We measure downflow velocities in the cusp region in the
  AIA 131 A bandpass, and find that from 22-23 UT the flows are about
  300-400 km/s, and they slow down to about 100 km/s after 23 UT. This
  work supported by NASA Grant NNX15AJ93G.

---------------------------------------------------------
Title: Mechanisms of Plasma Acceleration in Coronal Jets
Authors: Soto, N.; Reeves, K.; Savcheva, A. S.
2016AGUFMSH31B2568S    Altcode:
  Jets are small explosions that occur frequently in the Sun possibly
  driven by the local reconfiguration of the magnetic field, or
  reconnection. There are two types of coronal jets: standard jets
  and blowout jets. The purpose of this project is to determine which
  mechanisms accelerate plasma in two different jets, one that occurred
  in January 17, 2015 at the disk of the sun and another in October
  24, 2015 at the limb. Two possible acceleration mechanisms are
  chromospheric evaporation and magnetic acceleration. Using SDO/AIA,
  Hinode/XRT and IRIS data, we create height-time plots, and calculate
  the velocities of each wavelength for both jets. We calculate the
  potential magnetic field of the jet and the general region around it
  to gain a more detailed understanding of its structure, and determine
  if the jet is likely to be either a standard or blowout jet. Finally,
  we calculate the magnetic field strength for different heights along
  the jet spire, and use differential emission measures to calculate
  the plasma density. Once we have these two values, we calculate the
  Alfven speed. When analyzing our results we are looking for certain
  patterns in our velocities. If the plasma in a jet is accelerated by
  chromospheric evaporation, we expect the velocities to increase as
  function of temperature, which is what we observed in the October 24th
  jet. The magnetic models for this jet also show the Eiffel Tower shaped
  structure characteristic of standard jets, which tend to have plasma
  accelerated by this mechanism. On the other hand, if the acceleration
  mechanism were magnetic acceleration, we would expect the velocities
  to be similar regardless of temperature. For the January 17th jet,
  we saw that along the spire, the velocities where approximately 200
  km/s in all wavelengths, but the velocities of hot plasma detected at
  the base were closer to the Alfven speed, which was estimated to be
  about 2,000 km/s. These observations suggest that the plasma in the
  January 17th jet is magnetically accelerated. The magnetic model for
  this jet needs to be studied further by using a NLFFF magnetic field
  model and not just the potential magnetic field. This work supported
  by the NSF-REU solar physics program at SAO, grant number AGS-1560313
  and NASA Grant NNX15AF43G

---------------------------------------------------------
Title: Density diagnostics derived from the O iv and S iv
    intercombination lines observed by IRIS
Authors: Polito, V.; Del Zanna, G.; Dudík, J.; Mason, H. E.; Giunta,
   A.; Reeves, K. K.
2016A&A...594A..64P    Altcode: 2016arXiv160705072P
  The intensity of the O iv 2s<SUP>2</SUP> 2p
  <SUP>2</SUP>P-2s2p<SUP>2</SUP><SUP>4</SUP>P and S iv 3 s<SUP>2</SUP>
  3p <SUP>2</SUP>P-3s 3p<SUP>2</SUP><SUP>4</SUP> P intercombination lines
  around 1400 Å observed with the Interface Region Imaging Spectrograph
  (IRIS) provide a useful tool to diagnose the electron number density
  (N<SUB>e</SUB>) in the solar transition region plasma. We measure the
  electron number density in a variety of solar features observed by
  IRIS, including an active region (AR) loop, plage and brightening,
  and the ribbon of the 22-June-2015 M 6.5 class flare. By using the
  emissivity ratios of O iv and S iv lines, we find that our observations
  are consistent with the emitting plasma being near isothermal
  (logT[K] ≈ 5) and iso-density (N<SUB>e</SUB> ≈ 10<SUP>10.6</SUP>
  cm<SUP>-3</SUP>) in the AR loop. Moreover, high electron number
  densities (N<SUB>e</SUB> ≈ 10<SUP>13</SUP> cm<SUP>-3</SUP>) are
  obtained during the impulsive phase of the flare by using the S iv line
  ratio. We note that the S iv lines provide a higher range of density
  sensitivity than the O iv lines. Finally, we investigate the effects
  of high densities (N<SUB>e</SUB> ≳ 10<SUP>11</SUP> cm<SUP>-3</SUP>)
  on the ionization balance. In particular, the fractional ion
  abundances are found to be shifted towards lower temperatures for
  high densities compared to the low density case. We also explored the
  effects of a non-Maxwellian electron distribution on our diagnostic
  method. <P />The movie associated to Fig. 3 is available at <A
  href="http://www.aanda.org/10.1051/0004-6361/201628965/olm">http://www.aanda.org</A>

---------------------------------------------------------
Title: Simultaneous IRIS and Hinode/EIS Observations and Modelling
    of the 2014 October 27 X2.0 Class Flare
Authors: Polito, V.; Reep, J. W.; Reeves, K. K.; Simões, P. J. A.;
   Dudík, J.; Del Zanna, G.; Mason, H. E.; Golub, L.
2016ApJ...816...89P    Altcode: 2015arXiv151206378P
  We present a study of the X2-class flare which occurred on 2014 October
  27 and was observed with the Interface Region Imaging Spectrograph
  (IRIS) and the EUV Imaging Spectrometer (EIS) on board the Hinode
  satellite. Thanks to the high cadence and spatial resolution of the IRIS
  and EIS instruments, we are able to compare simultaneous observations
  of the Fe xxi 1354.08 Å and Fe xxiii 263.77 Å high-temperature
  emission (≳10 MK) in the flare ribbon during the chromospheric
  evaporation phase. We find that IRIS observes completely blueshifted
  Fe xxi line profiles, up to 200 km s<SUP>-1</SUP> during the rise
  phase of the flare, indicating that the site of the plasma upflows is
  resolved by IRIS. In contrast, the Fe xxiii line is often asymmetric,
  which we interpret as being due to the lower spatial resolution of
  EIS. Temperature estimates from SDO/AIA and Hinode/XRT show that hot
  emission (log(T[K]) &gt; 7.2) is first concentrated at the footpoints
  before filling the loops. Density-sensitive lines from IRIS and
  EIS give estimates of electron number density of ≳10<SUP>12</SUP>
  cm<SUP>-3</SUP> in the transition region lines and 10<SUP>10</SUP>
  cm<SUP>-3</SUP> in the coronal lines during the impulsive phase. In
  order to compare the observational results against theoretical
  predictions, we have run a simulation of a flare loop undergoing
  heating using the HYDRAD 1D hydro code. We find that the simulated
  plasma parameters are close to the observed values that are obtained
  with IRIS, Hinode, and AIA. These results support an electron beam
  heating model rather than a purely thermal conduction model as the
  driving mechanism for this flare.

---------------------------------------------------------
Title: Predicting Solar Filament Eruptions with HEK Filament Metadata
Authors: Aggarwal, A.; Reeves, K.; Schanche, N.
2015AGUFMSH51B2445A    Altcode:
  Solar filaments are cool, dark channels of partially-ionized plasma
  that lie above the chromosphere. Their structure follows the neutral
  line between local regions of opposite magnetic polarity. Previous
  research (e.g. Schmieder et al. 2013) has shown a positive correlation
  (80%) between the occurrence of filament eruptions and coronal mass
  ejections (CME's). If certain filament properties, such as length,
  chirality, and tilt, indicate a tendency towards filament eruptions,
  one may be able to further predict an oncoming CME. Towards this
  end, we present a novel algorithm based on spatiotemporal analysis
  that systematically correlates filament eruptions documented in the
  Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been
  grouped together using a tracking algorithm developed at Georgia State
  University (e.g. Kempton et al. 2014). We also find filament tracks
  that are not correlated with eruptions to form a null data set in a
  similar fashion. Finally, we compare the metadata from erupting and
  non-erupting filament tracks to discover which filament properties may
  present signs of an eruption onset. Through statistical methods such as
  the two-sample Kolmogorov-Smirnov test and Random Forest Classifier,
  we find that a filament that is increasing in length or changing in
  tilt with respect to the equator may be a useful gauge to predict a
  filament eruption. However, the average values of length and tilt for
  both datasets follow similar distributions, leading us to conclude
  that these parameters do not indicate an eruption event. This work is
  supported by the NSF-REU solar physics program at SAO, grant number
  AGS-1263241, and NSF DIBBS grant number ACI-1443061.

---------------------------------------------------------
Title: Study on the temperature and density of erupting prominences
    associated with coronal mass ejections
Authors: Lee, J. Y.; Raymond, J. C.; Reeves, K.; Moon, Y. J.; Kim,
   K. S.
2015AGUFMSH31B2417L    Altcode:
  We investigate the densities and temperatures of erupting prominences
  associated with coronal mass ejections and X-ray flares. Several
  events observed in EUV by AIA/SDO show that the absorption features
  of prominences/filaments change to emission features during their
  eruptions, which indicates the heating of the erupting plasma. These
  events are also observed in X-rays by Hinode/XRT. We estimate the
  temperatures and densities of the erupting prominences/filaments using
  absorption properties of hydrogen and helium in different passbands. We
  estimate the temperatures and densities of the erupting plasma in
  emission features using differential emission measure method, which
  uses both EUV and X-ray observations. These events show very hot plasma
  of higher than 10 MK. We discuss the heating of the erupting plasmas
  comparing the energies obtained from the estimated the temperatures
  and densities during the eruption.

---------------------------------------------------------
Title: Recent Progress in Understanding Energy Transfer in Solar
    Flares Resulting from Coordinated IRIS, SDO, and Hinode Observations
Authors: Reeves, K.
2015AGUFMSH23D..06R    Altcode:
  Flares are the most energetic events that take place on the Sun,
  and studying them results in a wealth of information about the
  energy transfer between the solar corona and lower layers of the
  atmosphere. Prior to a flare, magnetic fields in the photosphere and
  chromosphere are stressed until a trigger causes energy release in the
  corona. Manifestations of this energy release are accelerated electrons
  high in the corona, increased intensity in post-flare arcades and
  chromospheric footpoint brightenings. Chromospheric evaporation at flare
  footpoints gives insight into the particular energy release mechanisms
  during solar flares. Progress in understanding the energy storage,
  release and deposition of energy during solar flares has come thanks
  to coordinated observations between IRIS, SDO and Hinode. In this talk,
  I will review recent results from these coordinated efforts, including
  observations of reconnection outflows, chromospheric evaporation,
  turbulence in flare loop tops, and flare triggering.

---------------------------------------------------------
Title: Search for Dark Matter in Events with Missing Transverse
    Momentum and a Higgs Boson Decaying to Two Photons in p p Collisions
    at √{s }=8 TeV with the ATLAS Detector
Authors: Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.;
   Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.;
   Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman,
   J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.;
   Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.;
   Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.;
   Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.;
   Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos,
   T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.;
   Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.;
   Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.;
   Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.;
   Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.;
   Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.;
   Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders,
   J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.;
   Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov,
   A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos,
   J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai,
   Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J. -F.;
   Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.;
   Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai,
   S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan,
   K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten,
   K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos,
   G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.;
   Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain,
   T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli,
   F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.;
   Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari,
   T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett,
   B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr,
   A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.;
   Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.;
   Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce,
   M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.;
   Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker,
   K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall,
   A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.;
   Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.;
   Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.;
   Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender,
   M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.;
   Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen,
   S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.;
   Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.;
   Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella,
   C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana,
   M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.;
   Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.;
   Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.;
   Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul,
   A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn,
   D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.;
   Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.;
   Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler,
   M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold,
   T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.;
   Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto,
   V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.;
   Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.;
   Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt,
   A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun,
   H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner,
   L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton,
   D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.;
   Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.;
   Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.;
   Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat,
   Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer,
   F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.;
   Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.;
   Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.;
   Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu,
   A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.;
   Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.;
   Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda,
   S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.;
   Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.;
   Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido,
   M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli,
   R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.;
   Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.;
   Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.;
   Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.;
   Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.;
   Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny,
   K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.;
   Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova,
   I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau,
   C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov,
   S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.;
   Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng,
   H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El
   Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella,
   V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.;
   Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.;
   Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.;
   Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci,
   A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron,
   Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke,
   R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.;
   Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn,
   A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.;
   Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.;
   Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi,
   F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen,
   T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez,
   A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté,
   D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.;
   Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar,
   M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann,
   T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski,
   P.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.;
   da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire,
   F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells,
   A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora,
   S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.;
   Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson,
   I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro,
   S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de
   Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis,
   U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del
   Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.;
   Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della
   Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demarco, D. A.;
   Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz,
   D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre,
   C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio,
   A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo,
   A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di
   Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond,
   M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio,
   S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.;
   Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos,
   D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.;
   Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini,
   J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.;
   Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda,
   D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford,
   M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger,
   D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.;
   Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler,
   K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus,
   F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov,
   D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.;
   Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier,
   M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion,
   E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov,
   R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti,
   M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington,
   S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.;
   Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin,
   O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.;
   Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.;
   Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima,
   D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.;
   Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut,
   F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini,
   L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher,
   W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.;
   Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus,
   A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.;
   Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.;
   Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn,
   D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.;
   Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.;
   Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch,
   S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.;
   Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.;
   Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.;
   García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner,
   R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio,
   G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.;
   Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts,
   D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest,
   M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon,
   A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti,
   P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.;
   Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani,
   M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.;
   Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis,
   S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.;
   Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.;
   Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.;
   Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella,
   L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.;
   Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini,
   B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling,
   C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.;
   Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.;
   Grahn, K. -J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi,
   V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.;
   Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo,
   A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J. -F.; Grohs,
   J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.;
   Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta,
   O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo,
   J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.;
   Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand,
   H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan,
   H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.;
   Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton,
   S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.;
   Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen,
   M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri,
   F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.;
   Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.;
   Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.;
   Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays,
   C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.;
   Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann,
   B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.;
   Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler,
   C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.;
   Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.;
   Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey,
   N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill,
   E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.;
   Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.;
   Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp,
   M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann,
   M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.;
   Horton, A. J.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.; Howard, J.;
   Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.;
   Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, Q.; Hu,
   X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.;
   Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov,
   N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.;
   Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina,
   O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.;
   Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice,
   M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.;
   Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.;
   Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.;
   Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson,
   P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.;
   Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.;
   Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.;
   Jeanty, L.; Jejelava, J.; Jeng, G. -Y.; Jennens, D.; Jenni, P.;
   Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.;
   Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.;
   Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones,
   G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi,
   K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.;
   Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.;
   Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya,
   N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.;
   Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.;
   Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik,
   K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.;
   Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto,
   T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler,
   R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka,
   O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-Zada, F.;
   Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy,
   V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim,
   Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.;
   King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska,
   D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.;
   Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.;
   Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.;
   Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops,
   E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.;
   Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan,
   L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski,
   H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova,
   N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.;
   Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp,
   A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.;
   Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin,
   V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.;
   Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.;
   Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.;
   Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.;
   Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.;
   Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.;
   Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.;
   Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal,
   M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger,
   F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.;
   Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.;
   Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.;
   Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.;
   Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta,
   V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.;
   Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.;
   Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford,
   A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte,
   J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.;
   Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.;
   Le Menedeu, E.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee,
   C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.;
   Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.;
   Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.;
   Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone,
   S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.;
   Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.;
   Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.;
   Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.;
   Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani,
   A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann,
   J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer,
   D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.;
   Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.;
   Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.;
   Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.;
   Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.;
   Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos,
   D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez,
   N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.;
   Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte,
   A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen,
   B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone,
   G.; Macchiolo, A.; MacDonald, C. M.; Machado Miguens, J.; Macina,
   D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen,
   A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi,
   K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier,
   T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.;
   Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone,
   C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini,
   G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira,
   J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos,
   J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie,
   B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori,
   G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.;
   Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin,
   B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez,
   M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.;
   Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.;
   Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.;
   Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.;
   Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.;
   Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn,
   A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane,
   K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson,
   R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier,
   K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.;
   Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer,
   S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.;
   Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer,
   J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.;
   Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.;
   Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.;
   Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.;
   Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.;
   Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra,
   S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.;
   Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani,
   S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.;
   Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.;
   Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen,
   S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.;
   Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza,
   S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller,
   R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.;
   Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.;
   Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.;
   Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata,
   K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.;
   Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.;
   Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.;
   Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.;
   Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy,
   P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.;
   Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson,
   R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.;
   Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos,
   K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius,
   R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.;
   Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.;
   Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti,
   F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham,
   F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.;
   Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.;
   Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.;
   Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.;
   Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi,
   P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando,
   N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero
   Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada,
   F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.;
   Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.;
   Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.;
   Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini,
   S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou,
   E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.;
   Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.;
   Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.;
   Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio,
   S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel,
   N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen,
   L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.;
   Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.;
   Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger,
   H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters,
   R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.;
   Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.;
   Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro,
   E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.;
   Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold,
   J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak,
   L.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth,
   D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio,
   A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.;
   Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic,
   D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.;
   Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov,
   V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.;
   Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev,
   K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot,
   J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.;
   Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie,
   D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.;
   Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.;
   Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith,
   C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.;
   Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece,
   R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren,
   H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek,
   P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken,
   O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek,
   M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.;
   Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau,
   A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe,
   S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez,
   S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.;
   Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.;
   Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.;
   Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph,
   M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.;
   Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov,
   Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato,
   G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F. -W.; Sadykov, R.;
   Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna,
   G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.;
   Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.;
   Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez,
   J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander,
   H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.;
   Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico,
   R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva,
   J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.;
   Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.;
   Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella,
   M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.;
   Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer,
   U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.;
   Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo,
   C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt,
   C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.;
   Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf,
   E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova,
   J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens,
   M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm,
   B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz,
   T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst,
   R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.;
   Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov,
   G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.;
   Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach,
   K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.;
   Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj,
   T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.;
   Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.;
   Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.;
   Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva,
   A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.;
   Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.;
   Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver,
   Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion,
   S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo,
   P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.;
   Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic,
   P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.;
   Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova,
   L. N.; Smirnova, O.; Smith, M. N. K.; Smizanska, M.; Smolek, K.;
   Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.;
   Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov,
   E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov,
   O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.;
   Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.;
   Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South,
   D.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel,
   F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer,
   T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm,
   S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.;
   Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov,
   P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer,
   H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.;
   Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte,
   P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.;
   Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss,
   M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.;
   Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su,
   J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.;
   Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann,
   J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki,
   Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora,
   T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.;
   Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.;
   Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.;
   Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.;
   Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.;
   Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.;
   Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger,
   F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming,
   K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada,
   S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.;
   Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker,
   J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson,
   A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.;
   Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov,
   Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.;
   Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.;
   Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.;
   Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.;
   Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli,
   A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk,
   W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.;
   True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.;
   Tseng, J. C. -L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.;
   Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.;
   Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.;
   Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek,
   D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.;
   Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock,
   M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno,
   Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai,
   G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis,
   C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar,
   S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.;
   van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van
   der Graaf, H.; van der Leeuw, R.; van Eldik, N.; van Gemmeren, P.;
   van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.;
   Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan,
   G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian,
   A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.;
   Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi,
   M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke,
   W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou,
   I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.;
   Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter,
   M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.;
   Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.;
   von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.;
   Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes
   Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic,
   I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.;
   Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.;
   Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang,
   R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.;
   Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki,
   C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.;
   Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber,
   S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten,
   J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.;
   Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter,
   J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.;
   White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.;
   Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.;
   Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.;
   Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter,
   B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.;
   Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak,
   K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne,
   B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe,
   R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka,
   T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang,
   Y.; Yao, L.; Yao, W. -M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.;
   Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita,
   K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef,
   S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.;
   Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.;
   Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman,
   M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang,
   D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang,
   Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou,
   B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.;
   Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.;
   Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser,
   M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur
   Nedden, M.; Zurzolo, G.; Zwalinski, L.; Atlas Collaboration
2015PhRvL.115m1801A    Altcode: 2015arXiv150601081A
  Results of a search for new phenomena in events with large missing
  transverse momentum and a Higgs boson decaying to two photons are
  reported. Data from proton-proton collisions at a center-of-mass
  energy of 8 TeV and corresponding to an integrated luminosity of 20.3
  fb<SUP>-1</SUP> have been collected with the ATLAS detector at the
  LHC. The observed data are well described by the expected standard
  model backgrounds. Upper limits on the cross section of events with
  large missing transverse momentum and a Higgs boson candidate are also
  placed. Exclusion limits are presented for models of physics beyond
  the standard model featuring dark-matter candidates.

---------------------------------------------------------
Title: Prominence and Filament Eruptions Observed by the Solar
Dynamics Observatory: Statistical Properties, Kinematics, and
    Online Catalog
Authors: McCauley, P. I.; Su, Y. N.; Schanche, N.; Evans, K. E.; Su,
   C.; McKillop, S.; Reeves, K. K.
2015SoPh..290.1703M    Altcode: 2015arXiv150502090M; 2015SoPh..tmp...56M
  We present a statistical study of prominence and filament eruptions
  observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar
  Dynamics Observatory (SDO). Several properties are recorded for 904
  events that were culled from the Heliophysics Event Knowledgebase
  (HEK) and incorporated into an online catalog for general use. These
  characteristics include the filament and eruption type, eruption
  symmetry and direction, apparent twisting and writhing motions, and the
  presence of vertical threads and coronal cavities. Associated flares
  and white-light coronal mass ejections (CME) are also recorded. Total
  rates are given for each property along with how they differ among
  filament types. We also examine the kinematics of 106 limb events to
  characterize the distinct slow- and fast-rise phases often exhibited
  by filament eruptions. The average fast-rise onset height, slow-rise
  duration, slow-rise velocity, maximum field-of-view (FOV) velocity, and
  maximum FOV acceleration are 83 Mm, 4.4 hours, 2.1 km s<SUP>−1</SUP>,
  106 km s<SUP>−1</SUP>, and 111 m s<SUP>−2</SUP>, respectively. All
  parameters exhibit lognormal probability distributions similar
  to that of CME speeds. A positive correlation between latitude and
  fast-rise onset height is found, which we attribute to a corresponding
  negative correlation in the average vertical magnetic field gradient,
  or decay index, estimated from potential field source surface (PFSS)
  extrapolations. We also find the decay index at the fast-rise onset
  point to be 1.1 on average, consistent with the critical instability
  threshold theorized for straight current channels. Finally, we
  explore relationships between the derived kinematics properties and
  apparent twisting motions. We find that events with evident twist
  have significantly faster CME speeds and significantly lower fast-rise
  onset heights, suggesting relationships between these values and flux
  rope helicity.

---------------------------------------------------------
Title: Joint High Temperature Observation of a Small C6.5 Solar
    Flare With Iris/Eis/Aia
Authors: Polito, V.; Reeves, K. K.; Del Zanna, G.; Golub, L.; Mason,
   H. E.
2015ApJ...803...84P    Altcode:
  We present the observation of a C6.5 class flare on 2014 February 3,
  obtained with the Interface Region Imaging Spectrograph (IRIS) and
  the EUV Imaging Spectrometer (EIS) on board HINODE. We follow the
  details of the impulsive phase with IRIS and the gradual decay phase
  with both IRIS and EIS. The IRIS Slit-Jaw Imager and Atmospheric
  Imaging Assembly (AIA) are used to precisely co-align the two sets
  of spectroscopic observations. Of particular interest is the Fe xxi
  1354.08 Å spectral line, which is the highest temperature emission
  (∼10 MK) observed in the IRIS wavelength range. We show the evolution
  of the Fe xxi profiles during the impulsive phase of the flare at the
  same ribbon location with a 75 s temporal cadence. Totally blueshifted
  (∼82 km {{s}<SUP>-1</SUP>}) profiles are found at the very early
  phase of the flare and gradually decrease in about 6 minutes. This
  result is consistent with 1D model predictions during chromospheric
  evaporation in flares. The blueshifted components also exhibit large
  non-thermal broadening, which decreases simultaneously with the
  blueshifted velocity. After the evaporation first occurs, the Fe xxi
  intensity progressively moves from the footpoints to the top of the
  hot flare loops seen in the AIA 131 Å images, where the emission is
  observed to be at rest and thermal. Emission measure estimates from
  IRIS/EIS/AIA observations during the gradual phase show isothermal loop
  top structures cooling from about 13.5 to 12 MK with electron densities
  of the order of ∼ 5-6× {{10}<SUP>10</SUP>} c{{m}<SUP>-3</SUP>}.

---------------------------------------------------------
Title: Homologous Helical Jets: Observations By IRIS, SDO, and Hinode
    and Magnetic Modeling With Data-Driven Simulations
Authors: Cheung, Mark C. M.; De Pontieu, B.; Tarbell, T. D.; Fu, Y.;
   Tian, H.; Testa, P.; Reeves, K. K.; Martínez-Sykora, J.; Boerner,
   P.; Wülser, J. P.; Lemen, J.; Title, A. M.; Hurlburt, N.; Kleint,
   L.; Kankelborg, C.; Jaeggli, S.; Golub, L.; McKillop, S.; Saar, S.;
   Carlsson, M.; Hansteen, V.
2015ApJ...801...83C    Altcode: 2015arXiv150101593C
  We report on observations of recurrent jets by instruments on board
  the Interface Region Imaging Spectrograph, Solar Dynamics Observatory
  (SDO), and Hinode spacecraft. Over a 4 hr period on 2013 July 21,
  recurrent coronal jets were observed to emanate from NOAA Active Region
  11793. Far-ultraviolet spectra probing plasma at transition region
  temperatures show evidence of oppositely directed flows with components
  reaching Doppler velocities of ±100 km s<SUP>-1</SUP>. Raster Doppler
  maps using a Si iv transition region line show all four jets to have
  helical motion of the same sense. Simultaneous observations of the
  region by SDO and Hinode show that the jets emanate from a source
  region comprising a pore embedded in the interior of a supergranule. The
  parasitic pore has opposite polarity flux compared to the surrounding
  network field. This leads to a spine-fan magnetic topology in the
  coronal field that is amenable to jet formation. Time-dependent
  data-driven simulations are used to investigate the underlying drivers
  for the jets. These numerical experiments show that the emergence of
  current-carrying magnetic field in the vicinity of the pore supplies
  the magnetic twist needed for recurrent helical jet formation.

---------------------------------------------------------
Title: IRIS Observations of Magnetic Reconnection and Chromospheric
    Evaporation in a Solar Flare
Authors: Tian, H.; Li, G.; Reeves, K.; Raymond, J. C.; Guo, F.
2014AGUFMSH23A4145T    Altcode:
  NASA's IRIS mission has observed signatures of the Fe XXI 1354 line
  in tens of solar flares. In many of them, large blue shifts were
  identified, supporting the scenario of chromospheric evaporation in
  postflare loops. In the standard CSHKP flare model, the postflare
  loops are a natual consequence of magnetic reconnection occurring at
  the flare site. The CSHKP model also predicts downflow (and upflow)
  plasma having a speed close to the Alfven speed. Yet, to date there
  were no observations of fast moving downflow plasma in flares. Here, we
  report the first detection of large red shift (~200 km/s along line of
  sight) of the Fe XXI line with IRIS. Combined imaging and spectroscopic
  observations of IRIS, together with SDO/AIA and RHESSI observations,
  reveal that the redshifted Fe XXI feature co-located with the loop-top
  hard X-Ray source and above the retracting loops. We intepret this large
  redshift as signature of downward moving reconnection outflow/retracting
  loops. Possible flux rope eruption and reconnection inflows are
  also observed. Furthermore, we found that the entire Fe XXI line is
  blueshifted by ~250 km/s at the loop footpoints. Cool lines of Si IV,
  O IV, C II and Mg II all show obvious redshift at the same locations,
  consistent with the scenario of chromospheric evaporation. The map of
  electron temperature reconstructed from SDO/AIA observations shows
  that the locations of ~10MK temperature generally coincide with the
  observed Fe XXI feature very well. Hard X-rays up to ~100keV were found
  from RHESSI observations, indicating an efficient electron acceleration
  process in this event.

---------------------------------------------------------
Title: Hinode, SDO AIA, and CoMP Observations of a Coronal Cavity
    with a Hot Core
Authors: Reeves, K.; Jibben, P.
2014AGUFMSH13A4067R    Altcode:
  Coronal cavities are low emission regions often situated around
  quiescent prominences. Prominences may exist for days or months
  prior to eruption and the magnetic structure of the cavity during
  the quiescent period is important to understanding the pre-eruption
  phase. We describe observations of a coronal cavity with a hot core
  situated above a polar crown prominence. The cavity, visible on the
  southwest limb, was observed for a period of three hours as a Hinode
  Coordinated Observation (HOP 114). Using Hinode's X-ray Telescope
  (XRT) and EUV Imaging Spectrometer (EIS) we present the thermal
  emission properties and coronal velocity structures of the cavity. We
  find the core has hotter temperatures than the surrounding plasma and
  there is evidence of turbulent velocities within the cavity. We also
  investigate the interaction of the cavity with the prominence material
  using Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA)
  data and H-alpha data from Hinode's Solar Optical Telescope (SOT). We
  find evidence of hot plasma at the spine of the prominence reaching
  into the cavity. These observations suggest a cylindrical flux tube
  best represents the cavity structure. The magnetic structure of the
  cavity is further discussed using data from the Coronal Multichannel
  Polarimeter (CoMP). This work is supported by under contract SP02H1701R
  from Lockheed-Martin to SAO, contract NNM07AB07C from NASA to SAO and
  grant number NNX12AI30G from NASA to SAO.

---------------------------------------------------------
Title: Prevalence of Micro-Jets from the Network Structures of the
    Solar Transition Region and Chromosphere
Authors: DeLuca, E. E.; Tian, H.; Cranmer, S. R.; Reeves, K.; Miralles,
   M. P.; McCauley, P.; McKillop, S.
2014AGUFMSH51C4180D    Altcode:
  IRIS observations in the 1330Å, 1400Å and 2796Å passbands have
  revealed numerous small-scale jet-like features with speeds of ~80-250
  km/s from the chromospheric network. These network jets occur in
  both the quiet Sun and coronal holes. Their widths are often ~300
  km or less. Many of these jets show up as elongated features with
  enhanced line width in maps obtained with transition region (TR)
  lines, suggesting that these jets reach at least TR temperatures and
  they constitute an important element of TR structures. The ubiquitous
  presence of these high-reaching (often &gt;10 Mm) jets also suggests
  that they may play a crucial role in the mass and energy budgets
  of the corona and solar wind. The generation of these jets in the
  network and the accompanying Alfven waves is also consistent with
  the "magnetic furnace model" of solar wind proposed by Axford &amp;
  McKenzie (1992). The large speeds (greater than sound speed) suggest
  that the Lorentz force (perhaps related to reconnection) must play
  an important role in the generation and propagation of the network
  jets. We believe that many network jets are the on-disk counterparts
  and TR manifestation of type-II spicules.

---------------------------------------------------------
Title: Thermal Structure and Dynamics in Supra-arcade Downflows and
    Flare Plasma Sheets
Authors: Reeves, K.; Hanneman, W.; Freed, M.; McKenzie, D. E.
2014AGUFMSM44B..01R    Altcode:
  During a long duration solar flare, a hot plasma sheet is commonly
  formed above the flare loops. Often produced within this sheet are
  down-flowing voids referred to as supra-arcade downflows, thought to
  be the products of a patchy reconnection process. Models differ on the
  question of whether the downflows should be hotter than the surrounding
  plasma or not. We use imaging data from Hinode/XRT and SDO/AIA to
  determine the thermal structure of the plasma sheet and downflows. We
  find that the temperatures of the plasma within the downflows are either
  roughly the same as or lower than the surrounding fan plasma. This
  result implies that a mechanism for forming the voids that involves a
  sunward directed hydrodynamic shock pattern combined with perpendicular
  magnetic shock is unlikely. Additionally, we use the high cadence AIA
  data to trace the velocity fields in these regions through the use of
  a local correlation tracking algorithm. Through these measurements, we
  can determine areas of diverging velocity fields, as well as velocity
  shear fields and correlate them with temperature changes in order to
  understand the heating mechanisms in the plasma sheet. This work is
  supported by under contract SP02H1701R from Lockheed-Martin to SAO,
  contract NNM07AB07C from NASA to SAO and NASA grant numbers NNX13AG54G
  and NNX14AD43G

---------------------------------------------------------
Title: Mass and energy of erupting plasma associated with coronal
    mass ejections in X-rays and EUV
Authors: Lee, J. Y.; Raymond, J. C.; Reeves, K.; Moon, Y. J.; Kim,
   K. S.
2014AGUFMSH53D..03L    Altcode:
  We investigate the mass and energy of erupting plasma observed in
  X-ray and EUV, which are associated with both coronal mass ejections
  (CMEs) and X-ray flares. Hinode/XRT observed the erupting hot plasma
  in a few passbands, which allows us to determine the temperature
  of the plasma using a filter ratio method. SDO/AIA observed the
  erupting plasma in EUV passbands. We estimate the temperatures and
  emission measures of the erupting plasma in EUV using a differential
  emission measure method. One of these observations shows eruptive
  plasma with a loop-like structure in X-ray and EUV. The temperature
  of the erupting plasma in X-ray is about 13 MK by the filter ratio
  method. The estimated mass of this erupting plasma in X-ray is similar
  to that in EUV. In addition, we estimate the radiative loss, thermal
  conduction, thermal, and kinetic energies of the eruptive hot plasma in
  X-rays. We find that the thermal conduction time scale is much shorter
  than the duration of eruption. This result implies that additional
  heating during the eruption may be required to explain the hot plasma
  observations in X-rays. A couple of events are associated with the
  eruptions of prominences as absorption features in EUV in addition
  to hot plasma eruption. One event shows that the absorption features
  change to emission features at the beginning of their eruptions in
  all EUV wavelengths of SDO/AIA. By estimating the energy budget of
  the erupting plasmas, we discuss the heating of the plasmas associated
  with coronal mass ejections in the low corona.

---------------------------------------------------------
Title: Hot explosions in the cool atmosphere of the Sun
Authors: Peter, H.; Tian, H.; Curdt, W.; Schmit, D.; Innes, D.;
   De Pontieu, B.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.;
   Tarbell, T. D.; Wuelser, J. P.; Martínez-Sykora, Juan; Kleint,
   L.; Golub, L.; McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.;
   Kankelborg, C.; Jaeggli, S.; Carlsson, M.; Hansteen, V.
2014Sci...346C.315P    Altcode: 2014arXiv1410.5842P
  The solar atmosphere was traditionally represented with a simple
  one-dimensional model. Over the past few decades, this paradigm shifted
  for the chromosphere and corona that constitute the outer atmosphere,
  which is now considered a dynamic structured envelope. Recent
  observations by the Interface Region Imaging Spectrograph (IRIS) reveal
  that it is difficult to determine what is up and down, even in the cool
  6000-kelvin photosphere just above the solar surface: This region hosts
  pockets of hot plasma transiently heated to almost 100,000 kelvin. The
  energy to heat and accelerate the plasma requires a considerable
  fraction of the energy from flares, the largest solar disruptions. These
  IRIS observations not only confirm that the photosphere is more complex
  than conventionally thought, but also provide insight into the energy
  conversion in the process of magnetic reconnection.

---------------------------------------------------------
Title: The unresolved fine structure resolved: IRIS observations of
    the solar transition region
Authors: Hansteen, V.; De Pontieu, B.; Carlsson, M.; Lemen, J.; Title,
   A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.; Pereira,
   T. M. D.; De Luca, E. E.; Golub, L.; McKillop, S.; Reeves, K.; Saar,
   S.; Testa, P.; Tian, H.; Kankelborg, C.; Jaeggli, S.; Kleint, L.;
   Martínez-Sykora, J.
2014Sci...346E.315H    Altcode: 2014arXiv1412.3611H
  The heating of the outer solar atmospheric layers, i.e., the transition
  region and corona, to high temperatures is a long-standing problem
  in solar (and stellar) physics. Solutions have been hampered by an
  incomplete understanding of the magnetically controlled structure of
  these regions. The high spatial and temporal resolution observations
  with the Interface Region Imaging Spectrograph (IRIS) at the solar
  limb reveal a plethora of short, low-lying loops or loop segments
  at transition-region temperatures that vary rapidly, on the time
  scales of minutes. We argue that the existence of these loops solves
  a long-standing observational mystery. At the same time, based on
  comparison with numerical models, this detection sheds light on a
  critical piece of the coronal heating puzzle.

---------------------------------------------------------
Title: Evidence of nonthermal particles in coronal loops heated
    impulsively by nanoflares
Authors: Testa, P.; De Pontieu, B.; Allred, J.; Carlsson, M.; Reale,
   F.; Daw, A.; Hansteen, V.; Martinez-Sykora, J.; Liu, W.; DeLuca, E. E.;
   Golub, L.; McKillop, S.; Reeves, K.; Saar, S.; Tian, H.; Lemen, J.;
   Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.;
   Kleint, L.; Kankelborg, C.; Jaeggli, S.
2014Sci...346B.315T    Altcode: 2014arXiv1410.6130T
  The physical processes causing energy exchange between the Sun’s
  hot corona and its cool lower atmosphere remain poorly understood. The
  chromosphere and transition region (TR) form an interface region between
  the surface and the corona that is highly sensitive to the coronal
  heating mechanism. High-resolution observations with the Interface
  Region Imaging Spectrograph (IRIS) reveal rapid variability (~20 to
  60 seconds) of intensity and velocity on small spatial scales (≲500
  kilometers) at the footpoints of hot and dynamic coronal loops. The
  observations are consistent with numerical simulations of heating by
  beams of nonthermal electrons, which are generated in small impulsive
  (≲30 seconds) heating events called “coronal nanoflares.” The
  accelerated electrons deposit a sizable fraction of their energy
  (≲10<SUP>25 </SUP>erg) in the chromosphere and TR. Our analysis
  provides tight constraints on the properties of such electron beams
  and new diagnostics for their presence in the nonflaring corona.

---------------------------------------------------------
Title: Prevalence of small-scale jets from the networks of the solar
    transition region and chromosphere
Authors: Tian, H.; DeLuca, E. E.; Cranmer, S. R.; De Pontieu, B.;
   Peter, H.; Martínez-Sykora, J.; Golub, L.; McKillop, S.; Reeves,
   K. K.; Miralles, M. P.; McCauley, P.; Saar, S.; Testa, P.; Weber,
   M.; Murphy, N.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.;
   Tarbell, T. D.; Wuelser, J. P.; Kleint, L.; Kankelborg, C.; Jaeggli,
   S.; Carlsson, M.; Hansteen, V.; McIntosh, S. W.
2014Sci...346A.315T    Altcode: 2014arXiv1410.6143T
  As the interface between the Sun’s photosphere and corona, the
  chromosphere and transition region play a key role in the formation and
  acceleration of the solar wind. Observations from the Interface Region
  Imaging Spectrograph reveal the prevalence of intermittent small-scale
  jets with speeds of 80 to 250 kilometers per second from the narrow
  bright network lanes of this interface region. These jets have lifetimes
  of 20 to 80 seconds and widths of ≤300 kilometers. They originate from
  small-scale bright regions, often preceded by footpoint brightenings
  and accompanied by transverse waves with amplitudes of ~20 kilometers
  per second. Many jets reach temperatures of at least ~10<SUP>5</SUP>
  kelvin and constitute an important element of the transition region
  structures. They are likely an intermittent but persistent source of
  mass and energy for the solar wind.

---------------------------------------------------------
Title: On the prevalence of small-scale twist in the solar
    chromosphere and transition region
Authors: De Pontieu, B.; Rouppe van der Voort, L.; McIntosh, S. W.;
   Pereira, T. M. D.; Carlsson, M.; Hansteen, V.; Skogsrud, H.; Lemen,
   J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser,
   J. P.; De Luca, E. E.; Golub, L.; McKillop, S.; Reeves, K.; Saar,
   S.; Testa, P.; Tian, H.; Kankelborg, C.; Jaeggli, S.; Kleint, L.;
   Martinez-Sykora, J.
2014Sci...346D.315D    Altcode: 2014arXiv1410.6862D
  The solar chromosphere and transition region (TR) form an interface
  between the Sun’s surface and its hot outer atmosphere. There,
  most of the nonthermal energy that powers the solar atmosphere
  is transformed into heat, although the detailed mechanism remains
  elusive. High-resolution (0.33-arc second) observations with NASA’s
  Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere
  and TR that are replete with twist or torsional motions on sub-arc
  second scales, occurring in active regions, quiet Sun regions, and
  coronal holes alike. We coordinated observations with the Swedish
  1-meter Solar Telescope (SST) to quantify these twisting motions and
  their association with rapid heating to at least TR temperatures. This
  view of the interface region provides insight into what heats the low
  solar atmosphere.

---------------------------------------------------------
Title: An Interface Region Imaging Spectrograph First View on Solar
    Spicules
Authors: Pereira, T. M. D.; De Pontieu, B.; Carlsson, M.; Hansteen,
   V.; Tarbell, T. D.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt,
   N.; Wülser, J. P.; Martínez-Sykora, J.; Kleint, L.; Golub, L.;
   McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.; Tian, H.; Jaeggli,
   S.; Kankelborg, C.
2014ApJ...792L..15P    Altcode: 2014arXiv1407.6360P
  Solar spicules have eluded modelers and observers for decades. Since
  the discovery of the more energetic type II, spicules have become
  a heated topic but their contribution to the energy balance of the
  low solar atmosphere remains unknown. Here we give a first glimpse of
  what quiet-Sun spicules look like when observed with NASA's recently
  launched Interface Region Imaging Spectrograph (IRIS). Using IRIS
  spectra and filtergrams that sample the chromosphere and transition
  region, we compare the properties and evolution of spicules as
  observed in a coordinated campaign with Hinode and the Atmospheric
  Imaging Assembly. Our IRIS observations allow us to follow the thermal
  evolution of type II spicules and finally confirm that the fading
  of Ca II H spicules appears to be caused by rapid heating to higher
  temperatures. The IRIS spicules do not fade but continue evolving,
  reaching higher and falling back down after 500-800 s. Ca II H type
  II spicules are thus the initial stages of violent and hotter events
  that mostly remain invisible in Ca II H filtergrams. These events
  have very different properties from type I spicules, which show lower
  velocities and no fading from chromospheric passbands. The IRIS spectra
  of spicules show the same signature as their proposed disk counterparts,
  reinforcing earlier work. Spectroheliograms from spectral rasters also
  confirm that quiet-Sun spicules originate in bushes from the magnetic
  network. Our results suggest that type II spicules are indeed the
  site of vigorous heating (to at least transition region temperatures)
  along extensive parts of the upward moving spicular plasma.

---------------------------------------------------------
Title: The Interface Region Imaging Spectrograph (IRIS)
Authors: De Pontieu, B.; Title, A. M.; Lemen, J. R.; Kushner, G. D.;
   Akin, D. J.; Allard, B.; Berger, T.; Boerner, P.; Cheung, M.; Chou,
   C.; Drake, J. F.; Duncan, D. W.; Freeland, S.; Heyman, G. F.; Hoffman,
   C.; Hurlburt, N. E.; Lindgren, R. W.; Mathur, D.; Rehse, R.; Sabolish,
   D.; Seguin, R.; Schrijver, C. J.; Tarbell, T. D.; Wülser, J. -P.;
   Wolfson, C. J.; Yanari, C.; Mudge, J.; Nguyen-Phuc, N.; Timmons,
   R.; van Bezooijen, R.; Weingrod, I.; Brookner, R.; Butcher, G.;
   Dougherty, B.; Eder, J.; Knagenhjelm, V.; Larsen, S.; Mansir, D.;
   Phan, L.; Boyle, P.; Cheimets, P. N.; DeLuca, E. E.; Golub, L.;
   Gates, R.; Hertz, E.; McKillop, S.; Park, S.; Perry, T.; Podgorski,
   W. A.; Reeves, K.; Saar, S.; Testa, P.; Tian, H.; Weber, M.; Dunn, C.;
   Eccles, S.; Jaeggli, S. A.; Kankelborg, C. C.; Mashburn, K.; Pust, N.;
   Springer, L.; Carvalho, R.; Kleint, L.; Marmie, J.; Mazmanian, E.;
   Pereira, T. M. D.; Sawyer, S.; Strong, J.; Worden, S. P.; Carlsson,
   M.; Hansteen, V. H.; Leenaarts, J.; Wiesmann, M.; Aloise, J.; Chu,
   K. -C.; Bush, R. I.; Scherrer, P. H.; Brekke, P.; Martinez-Sykora,
   J.; Lites, B. W.; McIntosh, S. W.; Uitenbroek, H.; Okamoto, T. J.;
   Gummin, M. A.; Auker, G.; Jerram, P.; Pool, P.; Waltham, N.
2014SoPh..289.2733D    Altcode: 2014arXiv1401.2491D; 2014SoPh..tmp...25D
  The Interface Region Imaging Spectrograph (IRIS) small explorer
  spacecraft provides simultaneous spectra and images of the photosphere,
  chromosphere, transition region, and corona with 0.33 - 0.4 arcsec
  spatial resolution, two-second temporal resolution, and 1 km
  s<SUP>−1</SUP> velocity resolution over a field-of-view of up to
  175 arcsec × 175 arcsec. IRIS was launched into a Sun-synchronous
  orbit on 27 June 2013 using a Pegasus-XL rocket and consists of a
  19-cm UV telescope that feeds a slit-based dual-bandpass imaging
  spectrograph. IRIS obtains spectra in passbands from 1332 - 1358 Å,
  1389 - 1407 Å, and 2783 - 2834 Å, including bright spectral lines
  formed in the chromosphere (Mg II h 2803 Å and Mg II k 2796 Å) and
  transition region (C II 1334/1335 Å and Si IV 1394/1403 Å). Slit-jaw
  images in four different passbands (C II 1330, Si IV 1400, Mg II k
  2796, and Mg II wing 2830 Å) can be taken simultaneously with spectral
  rasters that sample regions up to 130 arcsec × 175 arcsec at a variety
  of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to
  emission from plasma at temperatures between 5000 K and 10 MK and will
  advance our understanding of the flow of mass and energy through an
  interface region, formed by the chromosphere and transition region,
  between the photosphere and corona. This highly structured and dynamic
  region not only acts as the conduit of all mass and energy feeding
  into the corona and solar wind, it also requires an order of magnitude
  more energy to heat than the corona and solar wind combined. The
  IRIS investigation includes a strong numerical modeling component
  based on advanced radiative-MHD codes to facilitate interpretation of
  observations of this complex region. Approximately eight Gbytes of data
  (after compression) are acquired by IRIS each day and made available
  for unrestricted use within a few days of the observation.

---------------------------------------------------------
Title: Detection of Supersonic Downflows and Associated Heating
    Events in the Transition Region above Sunspots
Authors: Kleint, L.; Antolin, P.; Tian, H.; Judge, P.; Testa, P.;
   De Pontieu, B.; Martínez-Sykora, J.; Reeves, K. K.; Wuelser, J. P.;
   McKillop, S.; Saar, S.; Carlsson, M.; Boerner, P.; Hurlburt, N.; Lemen,
   J.; Tarbell, T. D.; Title, A.; Golub, L.; Hansteen, V.; Jaeggli, S.;
   Kankelborg, C.
2014ApJ...789L..42K    Altcode: 2014arXiv1406.6816K
  Interface Region Imaging Spectrograph data allow us to study the solar
  transition region (TR) with an unprecedented spatial resolution of
  0.”33. On 2013 August 30, we observed bursts of high Doppler shifts
  suggesting strong supersonic downflows of up to 200 km s<SUP>-1</SUP>
  and weaker, slightly slower upflows in the spectral lines Mg II h
  and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated
  with brightenings in the slitjaw images (SJIs). The bursty behavior
  lasts throughout the 2 hr observation, with average burst durations
  of about 20 s. The locations of these short-lived events appear to
  be the umbral and penumbral footpoints of EUV loops. Fast apparent
  downflows are observed along these loops in the SJIs and in the
  Atmospheric Imaging Assembly, suggesting that the loops are thermally
  unstable. We interpret the observations as cool material falling
  from coronal heights, and especially coronal rain produced along the
  thermally unstable loops, which leads to an increase of intensity
  at the loop footpoints, probably indicating an increase of density
  and temperature in the TR. The rain speeds are on the higher end of
  previously reported speeds for this phenomenon, and possibly higher
  than the free-fall velocity along the loops. On other observing days,
  similar bright dots are sometimes aligned into ribbons, resembling
  small flare ribbons. These observations provide a first insight into
  small-scale heating events in sunspots in the TR.

---------------------------------------------------------
Title: Search for Invisible Decays of a Higgs Boson Produced in
    Association with a Z Boson in ATLAS
Authors: Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek,
   S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.;
   Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.;
   Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.; Aefsky,
   S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.;
   Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.;
   Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert, J.; Albrand, S.;
   Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alessandria,
   F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob,
   M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison,
   L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.;
   Alon, R.; Alonso, A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.;
   Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov,
   V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.;
   Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.;
   Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.;
   Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi,
   F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli,
   M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.;
   Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.;
   Arguin, J. -F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster,
   A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.;
   Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.;
   Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.;
   Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma,
   Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.;
   Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi,
   P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.;
   Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee,
   Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.;
   Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.;
   Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.;
   Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro,
   F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.;
   Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.;
   Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.;
   Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.;
   Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall, A.;
   Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann,
   T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.;
   Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.;
   Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.;
   Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou,
   Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.;
   Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas
   Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.;
   Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.;
   Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.;
   Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.;
   Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.;
   Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.;
   Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.;
   Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard,
   J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein,
   U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.;
   Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.;
   Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.;
   Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.;
   Bona, M.; Boonekamp, M.; Borer, C.; Borisov, A.; Borissov, G.; Borri,
   M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini,
   D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.;
   Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.;
   Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic,
   I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.;
   Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.;
   Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler,
   S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock,
   R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks,
   T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.;
   Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.;
   Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat,
   Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda,
   S. I.; Budagov, I. A.; Budick, B.; Buehrer, F.; Bugge, L.; Bugge,
   M. K.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart, H.; Burdin,
   S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher,
   V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt,
   A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Buzatu, A.;
   Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura,
   P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi,
   R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cameron,
   D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli,
   M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Cantrill, R.;
   Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua,
   M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati,
   L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.;
   Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Caso, C.;
   Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro,
   N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.;
   Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza,
   M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira,
   A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.;
   Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.;
   Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton,
   D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov,
   S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.;
   Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng,
   Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu,
   E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.;
   Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.;
   Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi,
   I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti,
   G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.;
   Cirilli, M.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan,
   M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens,
   J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro,
   A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Colas,
   J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.;
   Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis,
   E.; Conidi, M. C.; Connelly, I. A.; Consonni, S. M.; Consorti, V.;
   Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.;
   Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic,
   K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.;
   Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo,
   D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.;
   Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Crispin Ortuzar, M.;
   Cristinziani, M.; Crosetti, G.; Cuciuc, C. -M.; Cuenca Almenar, C.;
   Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.;
   Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio,
   M.; D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.;
   Dabrowski, W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola,
   C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.;
   Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.;
   Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.;
   Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.;
   de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot,
   N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.;
   de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo,
   A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.;
   Deigaard, I.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot,
   F.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.;
   Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.;
   Demichev, M.; Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz,
   D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros,
   P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.;
   di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di
   Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.;
   di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch,
   T. A.; Diglio, S.; Dimitrievska, A.; Dindar Yagci, K.; Dingfelder,
   J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava,
   T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.;
   Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi,
   J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero,
   P.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.;
   Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil,
   E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.;
   Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.;
   Duran Yildiz, H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.;
   Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen,
   G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles,
   S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing,
   M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann,
   R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.;
   Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier,
   M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne,
   F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri,
   L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti,
   M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington,
   S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.;
   Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin,
   O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.;
   Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag,
   S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari,
   R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.;
   Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.;
   Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.;
   Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher,
   M. J.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.;
   Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus,
   A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.;
   Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Francavilla,
   P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.;
   Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, C.; Friedrich,
   F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa,
   E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli,
   A.; Gabrielli, A.; Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi,
   G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.;
   Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.;
   Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.;
   García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli,
   N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.;
   Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.;
   Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel,
   Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile,
   S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.;
   Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti,
   P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam,
   T. P. S.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.;
   Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud,
   P. F.; Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas,
   I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti,
   G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski,
   J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes,
   A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da
   Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.;
   Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov,
   P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini,
   E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin,
   M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.;
   Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold,
   I.; Grafström, P.; Grahn, K. -J.; Gramling, J.; Gramstad, E.;
   Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray,
   H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenwood,
   Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.;
   Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris,
   Ph.; Grishkevich, Y. V.; Grivaz, J. -F.; Grohs, J. P.; Grohsjean,
   A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.;
   Grout, Z. J.; Grybel, K.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.;
   Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert,
   C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz,
   N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam,
   C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner, P.; Hageboeck,
   S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian,
   G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.;
   Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.;
   Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson,
   P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.;
   Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Harvey,
   A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.;
   Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins,
   A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood,
   S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim,
   T.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller,
   C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson,
   J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia, A. M.;
   Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez,
   Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.;
   Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.;
   Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe,
   I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.;
   Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.;
   Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes,
   T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J. -Y.; Hou,
   S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova,
   I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu,
   X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.;
   Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing,
   T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci,
   G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga,
   J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.;
   Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince,
   T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles
   Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov,
   R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki,
   H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson,
   M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.;
   Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.;
   Jansen, H.; Janssen, J.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jeanty,
   L.; Jeng, G. -Y.; Jen-La Plante, I.; Jennens, D.; Jenni, P.; Jentzsch,
   J.; Jeske, C.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.;
   Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi,
   O.; Joergensen, M. D.; Joffe, D.; Johansson, K. E.; Johansson, P.;
   Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.;
   Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst,
   R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.;
   Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya,
   N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki,
   J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis,
   N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.;
   Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas,
   A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.;
   Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov,
   M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller,
   J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.;
   Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.;
   Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli,
   G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim,
   H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King,
   R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.;
   Kisielewska, D.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva,
   E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov,
   A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova,
   T.; Klok, P. F.; Kluge, E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.;
   Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.;
   Kodys, P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan,
   L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski,
   H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.;
   Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis,
   N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl,
   K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova,
   E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.;
   Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.;
   Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin,
   A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev,
   D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.;
   Kreiss, S.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger,
   P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.;
   Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn,
   Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.;
   Kuehn, S.; Kugel, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov,
   S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.;
   Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa,
   A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta, C.; Lacava,
   F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.;
   Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Laisne, E.;
   Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.;
   Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni,
   F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte,
   J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavorini, V.;
   Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.;
   Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee,
   H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.;
   Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.;
   Lei, X.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.;
   Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone,
   R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester,
   C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis,
   G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.;
   Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie,
   K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.;
   Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles,
   E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister,
   A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.;
   Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres,
   A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska,
   E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.;
   Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.;
   Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long,
   R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.;
   Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou,
   X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti,
   H. J.; Luci, C.; Lucotte, A.; Ludwig, D.; Ludwig, I.; Luehring, F.;
   Lukas, W.; Luminari, L.; Lundberg, J.; Lundberg, O.; Lund-Jensen,
   B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.;
   Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina,
   D.; Mackeprang, R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader,
   W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.;
   Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.;
   Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal,
   P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.;
   Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.;
   Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.;
   Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres
   Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.;
   Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.;
   Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques,
   C. N.; Marroquim, F.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.;
   Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.;
   Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.;
   Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.;
   Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa,
   I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.;
   Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann,
   J.; Mattravers, C.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.;
   Mazini, R.; Mazzaferro, L.; Mazzanti, M.; Mc Goldrick, G.; Mc Kee,
   S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.;
   McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McLaughlan, T.;
   McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel,
   M.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.;
   Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.;
   Mellado Garcia, B. R.; Meloni, F.; Mendoza Navas, L.; Mengarelli,
   A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric,
   N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt,
   H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.;
   Meyer, J. -P.; Meyer, J.; Meyer, J.; Michal, S.; Middleton, R. P.;
   Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.;
   Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.;
   Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.;
   Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani,
   T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa,
   P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.; Mohapatra, S.; Mohr,
   W.; Molander, S.; Moles-Valls, R.; Molfetas, A.; Mönig, K.; Monini,
   C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.;
   Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange,
   N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.;
   Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi,
   G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss,
   J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.;
   Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.;
   Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.;
   Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.;
   Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano,
   K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama,
   Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava,
   G.; Napier, A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.;
   Navarro, G.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.;
   Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.;
   Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer,
   M. S.; Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer,
   F. M.; Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson,
   R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.;
   Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.;
   Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius,
   R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg,
   S.; Nordberg, M.; Novakova, J.; Nozaki, M.; Nozka, L.; Ntekas, K.;
   Nuncio-Quiroz, A. -E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse,
   E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea,
   V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.;
   Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm,
   C. C.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama,
   T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.;
   Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.;
   Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia,
   M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.;
   Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.;
   Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren,
   K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.;
   Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan
   Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.;
   Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.;
   Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.;
   Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.;
   Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker,
   M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.;
   Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.;
   Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.;
   Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk,
   S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa,
   D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale,
   V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov,
   V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.;
   Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.;
   Petrucci, F.; Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio,
   G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.;
   Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina,
   J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.;
   Pizio, C.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.;
   Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl,
   M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard,
   C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo,
   L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.;
   Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.;
   Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda,
   J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad,
   S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.;
   Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin,
   F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.;
   Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel,
   E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.;
   Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.;
   Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Ragusa, F.; Rahal,
   G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.;
   Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.;
   Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger,
   G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reinsch, A.; Reisin, H.;
   Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi,
   S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.;
   Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu,
   I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.;
   Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson,
   A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues,
   L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo,
   G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.;
   Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.;
   Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.;
   Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph,
   M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.;
   Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ruzicka, P.; Ryabov,
   Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti,
   S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F. -W.; Sadykov, R.;
   Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon,
   A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.;
   Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.;
   Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez,
   A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.;
   Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem,
   R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos,
   H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.;
   Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.;
   Sasaki, Y.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan,
   J. B.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon,
   D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio,
   D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.;
   Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer,
   A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky,
   V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.;
   Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.;
   Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider,
   B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.;
   Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.;
   Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder,
   C.; Schroer, N.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H. -C.;
   Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman,
   A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling,
   J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla,
   G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.;
   Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.;
   Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.;
   Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.;
   Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla,
   A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.;
   Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.;
   Shimmin, C. O.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.;
   Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.;
   Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.;
   Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.;
   Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.;
   Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.;
   Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.;
   Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.;
   Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.;
   Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.;
   Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska,
   M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.;
   Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans,
   C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli
   Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.;
   Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.;
   Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.;
   Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.;
   Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka,
   E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.;
   Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov,
   P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg,
   P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.;
   Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton,
   M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Stradling,
   A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie,
   A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom,
   D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Stumer, I.; Stupak,
   J.; Styles, N. A.; Su, D.; Su, J.; Subramania, Hs.; Subramaniam, R.;
   Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy,
   S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.;
   Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.;
   Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard,
   A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima,
   R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.;
   Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.;
   Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.;
   Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.;
   Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati,
   Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger,
   F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming,
   K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.;
   Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.;
   Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thomas-Wilsker, J.;
   Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.;
   Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.;
   Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov,
   Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.;
   Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.;
   Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.;
   Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor,
   E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger,
   T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.;
   Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon,
   C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski,
   M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C. -L.; Tsiareshka,
   P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze,
   S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia,
   V.; Tsung, J. -W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.;
   Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek,
   D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.;
   Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.;
   Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro,
   F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.;
   Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti,
   S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.;
   Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Deijl,
   P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.;
   van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop,
   J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.;
   Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.;
   Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell,
   K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.;
   Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.;
   Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.;
   Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.;
   Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.;
   Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.;
   Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Vivarelli,
   I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel,
   A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt,
   H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos, M.; Voss,
   R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba,
   V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal,
   Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walder,
   J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang,
   C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang,
   S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope,
   D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.;
   Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts,
   G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.; Weber, M. S.;
   Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weingarten,
   J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.;
   Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.;
   Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White,
   R.; White, S.; Whiteson, D.; Whittington, D.; Wicke, D.; Wickens,
   F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.;
   Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.;
   Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis,
   W.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.;
   Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski,
   J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek,
   B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.;
   Wright, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne,
   B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.;
   Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto,
   K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki,
   Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.;
   Yao, L.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.;
   Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.;
   Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef,
   S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.;
   Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.;
   Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla,
   A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta,
   G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.;
   Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu,
   C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska,
   D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.;
   Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig,
   G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski,
   L.; Atlas Collaboration
2014PhRvL.112t1802A    Altcode: 2014arXiv1402.3244A
  A search for evidence of invisible-particle decay modes of a Higgs boson
  produced in association with a Z boson at the Large Hadron Collider is
  presented. No deviation from the standard model expectation is observed
  in 4.5 fb-<SUP>1</SUP> (20.3 fb-<SUP>1</SUP>) of 7 (8) TeV pp collision
  data collected by the ATLAS experiment. Assuming the standard model
  rate for ZH production, an upper limit of 75%, at the 95% confidence
  level is set on the branching ratio to invisible-particle decay modes
  of the Higgs boson at a mass of 125.5 GeV. The limit on the branching
  ratio is also interpreted in terms of an upper limit on the allowed
  dark matter-nucleon scattering cross section within a Higgs-portal dark
  matter scenario. Within the constraints of such a scenario, the results
  presented in this Letter provide the strongest available limits for
  low-mass dark matter candidates. Limits are also set on an additional
  neutral Higgs boson, in the mass range 110&lt;m<SUB>H</SUB>&lt;400
  GeV, produced in association with a Z boson and decaying to invisible
  particles.

---------------------------------------------------------
Title: High-resolution Observations of the Shock Wave Behavior for
    Sunspot Oscillations with the Interface Region Imaging Spectrograph
Authors: Tian, H.; DeLuca, E.; Reeves, K. K.; McKillop, S.; De Pontieu,
   B.; Martínez-Sykora, J.; Carlsson, M.; Hansteen, V.; Kleint, L.;
   Cheung, M.; Golub, L.; Saar, S.; Testa, P.; Weber, M.; Lemen, J.;
   Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.;
   Kankelborg, C.; Jaeggli, S.; McIntosh, S. W.
2014ApJ...786..137T    Altcode: 2014arXiv1404.6291T
  We present the first results of sunspot oscillations from observations
  by the Interface Region Imaging Spectrograph. The strongly nonlinear
  oscillation is identified in both the slit-jaw images and the
  spectra of several emission lines formed in the transition region and
  chromosphere. We first apply a single Gaussian fit to the profiles of
  the Mg II 2796.35 Å, C II 1335.71 Å, and Si IV 1393.76 Å lines in the
  sunspot. The intensity change is ~30%. The Doppler shift oscillation
  reveals a sawtooth pattern with an amplitude of ~10 km s<SUP>-1</SUP>
  in Si IV. The Si IV oscillation lags those of C II and Mg II by ~3 and
  ~12 s, respectively. The line width suddenly increases as the Doppler
  shift changes from redshift to blueshift. However, we demonstrate
  that this increase is caused by the superposition of two emission
  components. We then perform detailed analysis of the line profiles at
  a few selected locations on the slit. The temporal evolution of the
  line core is dominated by the following behavior: a rapid excursion
  to the blue side, accompanied by an intensity increase, followed by a
  linear decrease of the velocity to the red side. The maximum intensity
  slightly lags the maximum blueshift in Si IV, whereas the intensity
  enhancement slightly precedes the maximum blueshift in Mg II. We find
  a positive correlation between the maximum velocity and deceleration,
  a result that is consistent with numerical simulations of upward
  propagating magnetoacoustic shock waves.

---------------------------------------------------------
Title: An MHD Model for Magnetar Giant Flares
Authors: Meng, Y.; Lin, J.; Zhang, L.; Reeves, K. K.; Zhang, Q. S.;
   Yuan, F.
2014ApJ...785...62M    Altcode: 2014arXiv1402.5824M
  Giant flares on soft gamma-ray repeaters that are thought to take place
  on magnetars release enormous energy in a short time interval. Their
  power can be explained by catastrophic instabilities occurring
  in the magnetic field configuration and the subsequent magnetic
  reconnection. By analogy with the coronal mass ejection events on
  the Sun, we develop a theoretical model via an analytic approach for
  magnetar giant flares. In this model, the rotation and/or displacement
  of the crust causes the field to twist and deform, leading to flux rope
  formation in the magnetosphere and energy accumulation in the related
  configuration. When the energy and helicity stored in the configuration
  reach a threshold, the system loses its equilibrium, the flux rope is
  ejected outward in a catastrophic way, and magnetic reconnection helps
  the catastrophe develop to a plausible eruption. By taking SGR 1806-20
  as an example, we calculate the free magnetic energy released in such
  an eruptive process and find that it is more than 10<SUP>47</SUP>
  erg, which is enough to power a giant flare. The released free
  magnetic energy is converted into radiative energy, kinetic energy,
  and gravitational energy of the flux rope. We calculated the light
  curves of the eruptive processes for the giant flares of SGR 1806-20,
  SGR 0526-66, and SGR 1900+14, and compared them with the observational
  data. The calculated light curves are in good agreement with the
  observed light curves of giant flares.

---------------------------------------------------------
Title: Coronal-Temperature-Diagnostic Capability of the Hinode/ X-Ray
    Telescope Based on Self-consistent Calibration. II. Calibration with
    On-Orbit Data
Authors: Narukage, N.; Sakao, T.; Kano, R.; Shimojo, M.; Winebarger,
   A.; Weber, M.; Reeves, K. K.
2014SoPh..289.1029N    Altcode: 2013arXiv1307.4489N
  The X-Ray Telescope (XRT) onboard the Hinode satellite is an
  X-ray imager that observes the solar corona with the capability of
  diagnosing coronal temperatures from less than 1 MK to more than
  10 MK. To make full use of this capability, Narukage et al. (Solar
  Phys.269, 169, 2011) determined the thickness of each of the X-ray
  focal-plane analysis filters based on calibration measurements
  from the ground-based end-to-end test. However, in their paper,
  the calibration of the thicker filters for observations of active
  regions and flares, namely the med-Be, med-Al, thick-Al and thick-Be
  filters, was insufficient due to the insufficient X-ray flux used in
  the measurements. In this work, we recalibrate those thicker filters
  using quiescent active region data taken with multiple filters of
  XRT. On the basis of our updated calibration results, we present the
  revised coronal-temperature-diagnostic capability of XRT.

---------------------------------------------------------
Title: Search for Dark Matter in Events with a Hadronically Decaying
    W or Z Boson and Missing Transverse Momentum in pp Collisions at
    √s =8 TeV with the ATLAS Detector
Authors: Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek,
   S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.;
   Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk,
   L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adye, T.;
   Aefsky, S.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni,
   M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Ahsan, M.; Aielli, G.;
   Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. A.; Albert,
   J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov,
   I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.;
   Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alio, L.;
   Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.;
   Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso,
   A.; Alonso, F.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.;
   Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Ammosov, V. V.; Amor
   Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.;
   Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.;
   Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.;
   Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov,
   A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov,
   A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.;
   Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.;
   Arguin, J. -F.; Argyropoulos, S.; Arik, E.; Arik, M.; Armbruster,
   A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.;
   Asai, S.; Asbah, N.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.;
   Astalos, R.; Astbury, A.; Atkinson, M.; Atlay, N. B.; Auerbach, B.;
   Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma,
   Y.; Baak, M. A.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.;
   Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi,
   P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.;
   Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee,
   Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.;
   Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero,
   M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow,
   N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr,
   A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.;
   Barton, A. E.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.;
   Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.;
   Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.;
   Becker, K.; Becker, S.; Beckingham, M.; Beddall, A. J.; Beddall,
   A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.;
   Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell,
   P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo,
   M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.;
   Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.;
   Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger,
   J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann,
   E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.;
   Bernat, P.; Bernhard, R.; Bernius, C.; Bernlochner, F. U.; Berry, T.;
   Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.;
   Bessidskaia, O.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.;
   Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.;
   Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.;
   Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Bittner, B.; Black, C. W.;
   Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard,
   J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blocki, J.; Blum, W.;
   Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.;
   Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Boelaert,
   N.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm,
   J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.;
   Bomben, M.; Bona, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov,
   A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto,
   V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami,
   J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios,
   C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.;
   Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.;
   Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun,
   H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brenner, R.;
   Bressler, S.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.;
   Brock, R.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.;
   Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown,
   J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet,
   S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.;
   Buat, Q.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckingham, R. M.;
   Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Buehrer,
   F.; Bugge, L.; Bulekov, O.; Bundock, A. C.; Bunse, M.; Burckhart,
   H.; Burdin, S.; Burgess, T.; Burke, S.; Burmeister, I.; Busato,
   E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler,
   J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.;
   Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir,
   O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba,
   L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri,
   P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana,
   S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero,
   J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.;
   Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino,
   G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.;
   Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado,
   M. P.; Caso, C.; Castaneda-Miranda, E.; Castelli, A.; Castillo
   Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore,
   J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli,
   D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.;
   Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.;
   Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova,
   I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Chapman,
   J. W.; Charfeddine, D.; Charlton, D. G.; Chavda, V.; Chavez Barajas,
   C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.;
   Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen,
   X.; Chen, Y.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.;
   Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari,
   G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm,
   A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choudalakis, G.;
   Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart,
   D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci,
   R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirilli, M.; Cirkovic, P.;
   Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.;
   Clarke, R. N.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.;
   Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coffey, L.; Cogan,
   J. G.; Coggeshall, J.; Colas, J.; Cole, B.; Cole, S.; Colijn, A. P.;
   Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella,
   G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, S. M.;
   Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.;
   Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.;
   Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu,
   A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.;
   Costanzo, D.; Côté, D.; Cottin, G.; Courneyea, L.; Cowan, G.; Cox,
   B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.;
   Cristinziani, M.; Crosetti, G.; Cuciuc, C. -M.; Cuenca Almenar, C.;
   Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.;
   Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.;
   D'Orazio, A.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski,
   W.; Dafinca, A.; Dai, T.; Dallaire, F.; Dallapiccola, C.; Dam, M.;
   Damiani, D. S.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo,
   G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David,
   C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.;
   Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.;
   de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot,
   N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.;
   de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo,
   A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe,
   R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.;
   Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliot, F.; Deliyergiyev,
   M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.;
   Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.;
   Demilly, A.; Demirkoz, B.; Denisov, S. P.; Derendarz, D.; Derkaoui,
   J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst,
   A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di
   Ciaccio, L.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di
   Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.;
   di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch,
   T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.;
   Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale,
   M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.;
   Dodd, J.; Doglioni, C.; Doherty, T.; Dohmae, T.; Doi, Y.; Dolejsi, J.;
   Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Donini, J.;
   Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doyle,
   A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni,
   E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.;
   Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz,
   H.; Düren, M.; Dwuznik, M.; Ebke, J.; Edson, W.; Edwards, C. A.;
   Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler,
   K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles,
   S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing,
   M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann,
   R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.;
   Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier,
   M.; Esch, H.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne,
   F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri,
   L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti,
   M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington,
   S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.;
   Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Federic, P.; Fedin,
   O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Feng, C.; Feng,
   E. J.; Feng, H.; Fenyuk, A. B.; Fernando, W.; Ferrag, S.; Ferrando, J.;
   Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima,
   D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.;
   Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut,
   F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.;
   Firan, A.; Fischer, J.; Fisher, M. J.; Fitzgerald, E. A.; Flechl, M.;
   Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher,
   G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos,
   A. C.; Flowerdew, M. J.; Fonseca Martin, T.; Formica, A.; Forti, A.;
   Fortin, D.; Fournier, D.; Fox, H.; Francavilla, P.; Franchini, M.;
   Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.;
   Fratina, S.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux,
   D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.;
   Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.;
   Gadatsch, S.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.;
   Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.;
   Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.;
   Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García
   Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.;
   Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.;
   Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse,
   Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt,
   K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.;
   George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.;
   Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti,
   F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.;
   Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Giokaris, N.; Giordani,
   M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.;
   Giugni, D.; Giuliani, C.; Giunta, M.; Gjelsten, B. K.; Gkialas,
   I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glonti,
   G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski,
   J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes,
   A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da
   Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.;
   Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens,
   L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini,
   B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling,
   C.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.;
   Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas,
   H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn,
   K. -J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo,
   S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Gray, J. A.; Graziani,
   E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.;
   Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm,
   K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J. -F.;
   Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi,
   G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guescini, F.; Guest,
   D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.;
   Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.;
   Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan,
   C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haefner,
   P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Halladjian,
   G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.;
   Hamilton, S.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel,
   C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen,
   P. H.; Hansson, P.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha,
   S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.;
   Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug,
   S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings,
   R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward,
   H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan,
   L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Hejbal, J.; Helary,
   L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.;
   Henderson, J.; Henderson, R. C. W.; Henrichs, A.; Henriques Correia,
   A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernandez,
   C. M.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten,
   G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.;
   Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.;
   Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.;
   Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.;
   Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann,
   J. I.; Hohlfeld, M.; Holmes, T. R.; Holmgren, S. O.; Hong, T. M.;
   Hooft van Huysduynen, L.; Hostachy, J. -Y.; Hou, S.; Hoummada, A.;
   Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.;
   Hryn'ova, T.; Hsu, P. J.; Hsu, S. -C.; Hu, D.; Hu, X.; Huang, Y.;
   Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.;
   Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz,
   M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.;
   Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo,
   P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.;
   Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice,
   M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.;
   Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin,
   S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.;
   Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.;
   Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin,
   D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.;
   Jared, R. C.; Jarlskog, G.; Jeanty, L.; Jeng, G. -Y.; Jen-La Plante,
   I.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.;
   Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer,
   M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.;
   Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.;
   Jones, R. W. L.; Jones, T. J.; Jorge, P. M.; Joshi, K. D.; Jovicevic,
   J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.;
   Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan,
   M.; Kajomovitz, E.; Kalinin, S.; Kama, S.; Kanaya, N.; Kaneda, M.;
   Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.;
   Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy,
   M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.;
   Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka,
   Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.;
   Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler,
   R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian,
   H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung,
   J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.;
   Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov,
   A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, S. H.;
   Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King,
   S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.;
   Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.;
   Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.;
   Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge,
   E. -E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.;
   Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys,
   P.; Koenig, S.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan,
   L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski,
   H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.;
   Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis,
   N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl,
   K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova,
   E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.;
   Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura,
   V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.;
   Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny,
   M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.;
   Kretzschmar, J.; Kreutzfeldt, K.; Krieger, N.; Krieger, P.; Kroeninger,
   K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.;
   Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.;
   Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel,
   A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.;
   Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.;
   Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee,
   R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lablak, S.; Lacasta,
   C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.;
   Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier,
   H.; Laisne, E.; Lambourne, L.; Lampen, C. L.; Lampl, W.; Lançon, E.;
   Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford,
   A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire,
   C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.;
   Lavorini, V.; Lavrijsen, W.; Laycock, P.; Le, B. T.; Le Dortz, O.;
   Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.;
   Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre,
   G.; Lefebvre, M.; Legendre, M.; Legger, F.; Leggett, C.; Lehan, A.;
   Lehmacher, M.; Lehmann Miotto, G.; Leister, A. G.; Leite, M. A. L.;
   Leitner, R.; Lellouch, D.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.;
   Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis,
   S.; Leroy, C.; Lessard, J. -R.; Lester, C. G.; Lester, C. M.; Levêque,
   J.; Levin, D.; Levinson, L. J.; Lewis, A.; Lewis, G. H.; Leyko, A. M.;
   Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Liang,
   Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig,
   W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.;
   Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.;
   Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.;
   Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.;
   Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino,
   J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman,
   W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.;
   Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.;
   Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos,
   D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada,
   M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Love, J.;
   Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte,
   A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Lukas, W.; Luminari, L.;
   Lund, E.; Lundberg, J.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.;
   Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.;
   Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang,
   R.; Madar, R.; Madaras, R. J.; Maddocks, H. J.; Mader, W. F.; Madsen,
   A.; Maeno, M.; Maeno, T.; Magnoni, L.; Magradze, E.; Mahboubi, K.;
   Mahlstedt, J.; Mahmoud, S.; Mahout, G.; Maiani, C.; Maidantchik, C.;
   Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu,
   B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.;
   Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.;
   Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini,
   A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.;
   Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel,
   R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori,
   G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.;
   Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.;
   Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.;
   Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx,
   M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov,
   R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea,
   P.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita,
   T.; Mättig, P.; Mättig, S.; Mattmann, J.; Mattravers, C.; Maurer,
   J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.;
   Mazzanti, M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy,
   R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden,
   J. A.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson,
   R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meehan,
   S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck,
   C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.;
   Mendoza Navas, L.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio,
   K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.;
   Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.;
   Meyer, C.; Meyer, C.; Meyer, J. -P.; Meyer, J.; Meyer, J.; Michal, S.;
   Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova,
   M.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C.; Milov, A.;
   Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.;
   Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.;
   Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.;
   Mitsui, S.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Moeller, V.;
   Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Molfetas, A.;
   Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.;
   Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes,
   A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini,
   P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi,
   G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.;
   Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudd,
   R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.;
   Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.;
   Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.;
   Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar,
   A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura,
   K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Napier,
   A.; Narayan, R.; Nash, M.; Nattermann, T.; Naumann, T.; Navarro, G.;
   Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.;
   Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek,
   S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.;
   Neumann, M.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newcomer, F. M.;
   Newman, P. R.; Nguyen, D. H.; Nguyen Thi Hong, V.; Nickerson, R. B.;
   Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov,
   A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.;
   Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman,
   L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova,
   J.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nuncio-Quiroz, A. -E.; Nunes
   Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Grady, F.;
   O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.;
   Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.;
   Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Okamura, W.; Okawa, H.;
   Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino,
   S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito,
   D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram,
   C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza
   Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.;
   Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.;
   Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan,
   V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.;
   Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel,
   K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.;
   Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.;
   Panikashvili, N.; Panitkin, S.; Pantea, D.; Papadopoulou, Th. D.;
   Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.;
   Parodi, F.; Parsons, J. A.; Parzefall, U.; Pashapour, S.; Pasqualucci,
   E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor,
   G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly,
   T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedraza Morales,
   M. I.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.;
   Penson, A.; Penwell, J.; Perepelitsa, D. V.; Perez Cavalcanti, T.;
   Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.;
   Perini, L.; Pernegger, H.; Perrino, R.; Peshekhonov, V. D.; Peters,
   K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.;
   Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.;
   Petteni, M.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori,
   E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia,
   R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.;
   Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.;
   Pizio, C.; Pleier, M. -A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.;
   Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl,
   M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard,
   C. S.; Polychronakos, V.; Pomeroy, D.; Pommès, K.; Pontecorvo,
   L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.;
   Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.;
   Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda,
   J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad,
   S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.;
   Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin,
   F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Prudent, X.;
   Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel,
   E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.;
   Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Radeka, V.;
   Radescu, V.; Radloff, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.;
   Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.;
   Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.;
   Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.;
   Reeves, K.; Reinsch, A.; Reisinger, I.; Relich, M.; Rembser, C.; Ren,
   Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek,
   P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.;
   Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Ritsch, E.;
   Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.;
   Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.;
   Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodrigues, L.;
   Roe, A.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.;
   Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati,
   S.; Rosbach, K.; Rose, A.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.;
   Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth,
   I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.;
   Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph,
   M. S.; Rühr, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.;
   Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.;
   Ruzicka, P.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.;
   Saavedra, A. F.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F. -W.;
   Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna,
   G.; Salamon, A.; Saleem, M.; Salek, D.; Salihagic, D.; Salnikov, A.;
   Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.;
   Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez,
   J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders,
   M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.;
   Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos,
   H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.;
   Sarkisyan-Grinbaum, E.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.;
   Sasaki, Y.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan,
   E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer,
   C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.;
   Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.;
   Schacht, P.; Schaefer, D.; Schaelicke, A.; Schaepe, S.; Schaetzel,
   S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.;
   Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer,
   M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker,
   S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt,
   S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel,
   L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.;
   Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm,
   S.; Schreyer, M.; Schroeder, C.; Schroer, N.; Schuh, N.; Schultens,
   M. J.; Schultz-Coulon, H. -C.; Schulz, H.; Schumacher, M.; Schumm,
   B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling,
   Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer,
   M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scutti,
   F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.;
   Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach,
   K. E.; Seliverstov, D. M.; Sellers, G.; Seman, M.; Semprini-Cesari, N.;
   Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini,
   H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.;
   Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw,
   K.; Sherwood, P.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova,
   M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga,
   E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti,
   A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.;
   Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic,
   Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan,
   M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.;
   Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.;
   Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater,
   M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad,
   L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.;
   Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero,
   G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer,
   A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.;
   Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov,
   O. V.; Solovyev, V.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sosebee,
   M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo,
   S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.;
   Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen,
   R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu,
   M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.;
   Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele,
   G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer,
   H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.;
   Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea,
   G.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.;
   Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec,
   P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.;
   Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Su, D.;
   Subramania, Hs.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.;
   Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann,
   J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos,
   M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.;
   Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.;
   Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita,
   T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett,
   M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.;
   Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem,
   S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro,
   T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor,
   F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias
   Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.;
   Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa,
   M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.;
   Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.;
   Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong,
   W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov,
   V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton,
   P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.;
   Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.;
   Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topilin, N. D.;
   Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard,
   F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli,
   A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett,
   N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.;
   Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas,
   C.; Tseng, J. C. -L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.;
   Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.;
   Tsukerman, I. I.; Tsulaia, V.; Tsung, J. -W.; Tsuno, S.; Tsybychev,
   D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Tuna, A. N.;
   Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.;
   Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda,
   I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.;
   Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec,
   D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.;
   Vachon, B.; Vahsen, S.; Valencic, N.; Valentinetti, S.; Valero, A.;
   Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.;
   Valls Ferrer, J. A.; van Berg, R.; van der Deijl, P. C.; van der
   Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.;
   van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.;
   van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov,
   P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.;
   Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.;
   Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura,
   A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.;
   Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.;
   Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.;
   Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.;
   Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Viti, M.;
   Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak,
   M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der
   Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vos,
   M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic,
   M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.;
   Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.;
   Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller,
   P.; Walsh, B.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang,
   K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward,
   C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.;
   Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson,
   M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webb, S.;
   Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell,
   P.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.;
   Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner,
   M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.;
   White, M. J.; White, R.; White, S.; Whiteson, D.; Whittington, D.;
   Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann,
   P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer,
   A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams,
   E.; Williams, H. H.; Williams, S.; Willis, W.; Willocq, S.; Wilson,
   J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier,
   F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.;
   Wolter, M. W.; Wolters, H.; Wong, W. C.; Wosiek, B. K.; Wotschack,
   J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, M.; Wu,
   S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.;
   Xiao, M.; Xu, C.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.;
   Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.;
   Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang,
   H.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, L.;
   Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.;
   Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.;
   Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu,
   J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev,
   A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.;
   Zeitnitz, C.; Zeman, M.; Zemla, A.; Zenin, O.; Ženiš, T.; Zerwas,
   D.; Zevi Della Porta, G.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, L.;
   Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.;
   Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.;
   Zibell, A.; Zieminska, D.; Zimin, N. I.; Zimmermann, C.; Zimmermann,
   R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.;
   Zitoun, R.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden,
   M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2014PhRvL.112d1802A    Altcode:
  A search is presented for dark matter pair production in association
  with a W or Z boson in pp collisions representing 20.3 fb-<SUP>1</SUP>
  of integrated luminosity at √s =8 TeV using data recorded with the
  ATLAS detector at the Large Hadron Collider. Events with a hadronic
  jet with the jet mass consistent with a W or Z boson, and with large
  missing transverse momentum are analyzed. The data are consistent
  with the standard model expectations. Limits are set on the mass
  scale in effective field theories that describe the interaction of
  dark matter and standard model particles, and on the cross section
  of Higgs production and decay to invisible particles. In addition,
  cross section limits on the anomalous production of W or Z bosons with
  large missing transverse momentum are set in two fiducial regions.

---------------------------------------------------------
Title: Asymmetric Magnetic Reconnection in the Solar Atmosphere
Authors: Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope, C. L.;
   Raymond, J. C.; Lukin, V. S.; McKillop, S.; Shen, C.; Winter, H. D.;
   Reeves, K. K.; Lin, J.
2013AGUFMSM12A..06M    Altcode:
  Models of solar flares and coronal mass ejections typically predict the
  development of an elongated current sheet in the wake behind the rising
  flux rope. In reality, reconnection in these current sheets will be
  asymmetric along the inflow, outflow, and out-of-plane directions. We
  perform resistive MHD simulations to investigate the consequences of
  asymmetry during solar reconnection. We predict several observational
  signatures of asymmetric reconnection, including flare loops with a
  skewed candle flame shape, slow drifting of the current sheet into the
  strong field upstream region, asymmetric footpoint speeds and hard X-ray
  emission, and rolling motions within the erupting flux rope. There is
  net plasma flow across the magnetic field null along both the inflow
  and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT,
  and STEREO observations of flare loop shapes, current sheet drifting,
  and rolling motions during prominence eruptions. Simulations of the
  plasmoid instability with different upstream magnetic fields show that
  the reconnection rate remains enhanced even during the asymmetric
  case. The islands preferentially grow into the weak field upstream
  region. The islands develop net vorticity because the outflow jets
  impact them obliquely rather than directly. Asymmetric reconnection in
  the chromosphere occurs when emerging flux interacts with pre-existing
  overlying flux. We present initial results on asymmetric reconnection
  in partially ionized chromospheric plasmas. Finally, we discuss how
  comparisons to observations are necessary to understand the role of
  three-dimensional effects.

---------------------------------------------------------
Title: Asymmetric Magnetic Reconnection in the Solar Atmosphere
Authors: Murphy, N. A.; Miralles, M. P.; Ranquist, D. A.; Pope,
   C. L.; Raymond, J. C.; Lukin, V. S.; McKillop, S. C.; Shen, C.;
   Winter, H. D.; Reeves, K. K.; Lin, J.
2013AGUFMSM12A0006M    Altcode:
  Models of solar flares and coronal mass ejections typically predict the
  development of an elongated current sheet in the wake behind the rising
  flux rope. In reality, reconnection in these current sheets will be
  asymmetric along the inflow, outflow, and out-of-plane directions. We
  perform resistive MHD simulations to investigate the consequences of
  asymmetry during solar reconnection. We predict several observational
  signatures of asymmetric reconnection, including flare loops with a
  skewed candle flame shape, slow drifting of the current sheet into the
  strong field upstream region, asymmetric footpoint speeds and hard X-ray
  emission, and rolling motions within the erupting flux rope. There is
  net plasma flow across the magnetic field null along both the inflow
  and outflow directions. We compare simulations to SDO/AIA, Hinode/XRT,
  and STEREO observations of flare loop shapes, current sheet drifting,
  and rolling motions during prominence eruptions. Simulations of the
  plasm! <P />oid instability with different upstream magnetic fields show
  that the reconnection rate remains enhanced even during the asymmetric
  case. The islands preferentially grow into the weak field upstream
  region. The islands develop net vorticity because the outflow jets
  impact them obliquely rather than directly. Asymmetric reconnection in
  the chromosphere occurs when emerging flux interacts with pre-existing
  overlying flux. We present initial results on asymmetric reconnection
  in partially ionized chromospheric plasmas. Finally, we discuss how
  comparisons to observations are necessary to understand the role of
  three-dimensional effects.

---------------------------------------------------------
Title: Structure and Dynamics of the Polar Crown Prominence that
    Erupted on 2012 March 12
Authors: Su, Yingna; Van Ballegooijen, A. A.; McCauley, P.; Reeves,
   K.; DeLuca, E. E.
2013SPD....4420302S    Altcode:
  We will present preliminary results on the investigation of one polar
  crown prominence that erupted on 2012 March 12. This prominence is
  viewed at the east limb by SDO/AIA and displays a simple vertical-thread
  structure. Bright U-shape (horn-like) structure is observed surrounding
  the upper portion of the prominence before the eruption and becomes
  more prominent during the eruption. When viewed on the disk, STEREO-B
  shows that this prominence is composed of series of vertical threads
  and displays a loop-like structure during the eruption. We focus on
  the magnetic support of the prominence by studying the structure and
  dynamics before and during the eruption using observations from SDO,
  Hinode, and STEREO. We will explore magnetic field modeling of this
  prominence using the flux rope insertion method. We will also present
  preliminary analysis on the thermodynamics of the prominence, namely
  DEM analysis of the cavity surrounding the prominence, as well as
  column density measurements. This work is supported by NASA Grant
  (#NNX12AB25G) and NASA Contract (#SP02H1701R) from LMSAL to SAO.

---------------------------------------------------------
Title: Dynamics of the Transition Corona
Authors: Masson, Sophie; McCauley, P.; Golub, L.; Reeves, K.; DeLuca,
   E. E.
2013SPD....44...27M    Altcode:
  Magnetic reconnection between open and closed magnetic field in the
  corona is believed to play a crucial role in the corona / heliosphere
  coupling. At large scale, the exchange of open /closed connectivity
  is expected to occur in pseudo-streamer structures. However,
  there is neither clear observational evidence of how such coupling
  occurs in pseudo-streamers, nor evidence for how the magnetic
  reconnection evolves. Using a newly-developed technique, we enhance
  the off-limb magnetic fine structures observed with AIA and identify
  a pseudo-streamer-like feature located close to the northern coronal
  hole. We first identify that the magnetic topology associated with the
  observation is a pseudo-streamer, null-point-related topology bounded
  by open field. We then compare the evolution of the observed pseudo-
  streamer fine structure in the location of strong currents, i.e. in
  the region of energy dissipation, with the dynamics of the magnetic
  field resulting from the interchange reconnection obtained in a fully
  3D MHD simulation. The morphological and dynamical similarities between
  the pseudo-streamer observations and the results from the simulation
  strongly suggest that the evolution of the pseudo-streamer is caused
  by interchange reconnection in a null-point topology that is embedded
  in Quasi-Separatrix layers. Besides identifying the mechanism at work
  in the large-scale coupling between open and closed field, our results
  highlight that interchange reconnection in pseudo-streamers is a gradual
  physical process that differs from the impulsive reconnection of the
  solar-jet model.

---------------------------------------------------------
Title: Exploring Low-State Accretion in Polars with a Solar Flux
    Rope Model
Authors: Saar, Steven H.; Reeves, K.
2013SPD....44...78S    Altcode:
  Polars are cataclysmic variables, close binaries consisting
  of a strongly magnetic white dwarf (WD) and a cool solar-like
  secondary star. They tend to have high and low photometric states,
  corresponding to times of high accretion (due to Roche lobe overflow
  from the secondary) and low accretion (where the accretion source
  is under debate). Since tidal spin-up forces the secondary to
  rotate at the orbital period, typically &lt; 1 day, it should be
  very magnetically active. We use a solar flux rope/CME model with
  field strength B<SUP>sec</SUP>, placed in a strong external field
  (B<SUP>WD</SUP>), to explore the stability of magnetic loops on the
  secondary in the presence of the megagauss WD field. We find that
  for low ratios B<SUP>WD</SUP>/B<SUP>sec</SUP>, loops confining a
  prominence separated by more than a certain distance are stable,
  but as the ratio is increased, a second regime of instability for
  widely separated loops appears. The two instability regimes grow
  with B<SUP>WD</SUP>/B<SUP>sec</SUP>, until above a certain value,
  no loops are stable. We find that for reasonable masses of loop
  confined material, the B<SUP>WD</SUP> induced instability may be able
  to explain much of the accretion seen in polar low states, as well as
  several other observed properties. Implications for polar evolution
  are discussed. This research was supported by several NSF grants.

---------------------------------------------------------
Title: Morphology and Temperature of a Hot Prominence Cavity Observed
    with SDO
Authors: Weber, Mark A.; Reeves, K.; Gibson, S.; Kucera, T. A.
2013SPD....44...39W    Altcode:
  Prominence cavities appear as circularly shaped voids in coronal
  emission over polarity inversion lines where a prominence channel
  is straddling the solar limb. The presence of chromospheric material
  suspended at coronal altitudes is a common but not necessary feature
  within these cavities. These voids are observed to change shape as
  a prominence feature rotates around the limb. We apply temperature
  diagnostics to SDO data to investigate the thermal structure. We find
  significant evidence that the prominence cavity is hotter than the
  corona immediately outside the cavity boundary. This investigation
  follows upon “Thermal Properties of A Solar Coronal Cavity Observed
  with the X-ray Telescope on Hinode” by Reeves et al., 2012, ApJ, in
  press. M. Weber and K.K. Reeves are supported under contract NNM07AB07C
  from NASA to SAO. T. Kucera is supported by an award from the NASA
  SHP Program.

---------------------------------------------------------
Title: Simulating Emission of Coronal Loops with Non-Constant
    Cross-Section
Authors: Winter, Henry D.; Curme, C. D.; Reeves, K.; Martens, P. C.
2013SPD....44...45W    Altcode:
  The solar corona is filled with loop-like structures that appear
  bright against the background when observed in the extreme ultraviolet
  (EUV). These loops have several remarkable properties. Warm loops
  (∼ 1 MK) appear to be ∼ 2 - 9 times as dense at their apex
  as predicted by of hydrostatic atmosphere models. These loops also
  appear to be of constant cross-section despite the fact that the field
  strength in a potential magnetic field should decrease in the corona,
  causing the loops to expand. Why many active region loops appear to be
  of constant cross-section is not well understood. Theories range from
  an internal twist of the magnetic field to observational effects. In
  this work we simulate active region loops with different expansion
  factors heated by nanoflare storms. We calculate the hydrodynamic
  properties for each loop as a function of the expansion factor
  Gamma. We show that even modest tapering ratios can lead to drastic
  changes in the density profiles of active region loops, and they can
  also explain the overpressure at the apex of these loops. Synthetic
  AIA images of each loop are made to show the observable consequences
  of the expansion of loops near the instrumental resolution. We find
  that all loops, even those with a large expansion factor, appear
  to be of near constant cross-section when images are simulated in
  AIA passbands. Only when the images are simulated for a much higher
  resolution instrument with 0.1” pixels does the real expansion
  of the loop become apparent.Abstract (2,250 Maximum Characters):
  The solar corona is filled with loop-like structures that appear
  bright against the background when observed in the extreme ultraviolet
  (EUV). These loops have several remarkable properties. Warm loops (∼
  1 MK) appear to be ∼ 2 - 9 times as dense at their apex as predicted
  by of hydrostatic atmosphere models. These loops also appear to be of
  constant cross-section despite the fact that the field strength in a
  potential magnetic field should decrease in the corona, causing the
  loops to expand. Why many active region loops appear to be of constant
  cross-section is not well understood. Theories range from an internal
  twist of the magnetic field to observational effects. In this work we
  simulate active region loops with different expansion factors heated by
  nanoflare storms. We calculate the hydrodynamic properties for each loop
  as a function of the expansion factor Gamma. We show that even modest
  tapering ratios can lead to drastic changes in the density profiles
  of active region loops, and they can also explain the overpressure at
  the apex of these loops. Synthetic AIA images of each loop are made
  to show the observable consequences of the expansion of loops near
  the instrumental resolution. We find that all loops, even those with
  a large expansion factor, appear to be of near constant cross-section
  when images are simulated in AIA passbands. Only when the images are
  simulated for a much higher resolution instrument with 0.1” pixels
  does the real expansion of the loop become apparent.

---------------------------------------------------------
Title: Non-Equilibrium Ionization Modeling of the Current Sheet in
    a Simulated Solar Eruption
Authors: Shen, C.; Reeves, K. K.; Raymond, J. C.; Murphy, N. A.; Ko,
   Y. -K.; Lin, J.; Mikić, Z.
2013enss.confE..44S    Altcode:
  The current sheet that extends from the top of flare loops to an
  associated flux rope is a common structure in models of coronal mass
  ejections (CMEs). To understand the observational properties of CME
  current sheets, we generate predictions from flare/CME models to
  be compared with observations. We use a simulation of a large-scale
  CME current sheet previously reported by Reeves et al. (2010). This
  simulation includes Ohmic and coronal heating, thermal conduction,
  and radiative cooling in the energy equation. Using the results of
  this simulation, we perform time-dependent ionization calculations of
  the flow in a CME current sheet and construct two-dimensional spatial
  distributions of ionic charge states for multiple chemical elements. We
  use the filter responses from the Atmospheric Imaging Assembly (AIA) on
  the Solar Dynamics Observatory and the predicted intensities of emission
  lines to compute the count rates for each of the AIA bands. The results
  show differences in the emission line intensities between equilibrium
  and non-equilibrium ionization. The current sheet plasma is underionized
  at low heights and overionized at large heights. At low heights in the
  current sheet, the intensities of the AIA 94Å and 131Å channels are
  lower for non-equilibrium ionization than for equilibrium ionization;
  and at large heights, these intensities are higher for non-equilibrium
  ionization than for equilibrium ionization. We also calculated the
  intensity of ultraviolet lines and predicted emission features that
  could be compared with those events observed by the Ultraviolet
  Coronagraph Spectrometer on the Solar and Heliospheric Observatory,
  including a low intensity region around the sheet present in the model.

---------------------------------------------------------
Title: Thermal Structure of Current Sheets and Supra-Arcade Downflows
    in the Solar Corona
Authors: Hanneman, Will; Reeves, K.
2013AAS...22115907H    Altcode:
  Data has been collected from the Atmospheric Imaging Assembly (AIA) on
  the Solar Dynamics Observatory (SDO) to determine the thermal structure
  of supra-arcade downflows (SADs) in the solar corona. SADs, first
  discovered by Yohkoh in 1999 January 20 (McKenzie &amp; Hudson 1999)
  can be described as inward flowing density depletions, often observed in
  post flare current sheets. Some models of this phenomenon have suggested
  that the plasma in the dark lanes is heated to temperatures of ~8 MK
  (Maglione et al. 2011). The three flares examined here took place on
  2011 October 22, 2012 January 14 and 2012 January 27. Using the relation
  between temperature and the different sensitivity of the 94Å, 131Å,
  and 171Å channels, colour-temperature maps are made for each flare,
  and contours are added to indicate the distribution of very hot plasma
  (&gt; 5.5 MK) and slightly cooler plasma (&gt; 3 MK). We find that
  the hottest areas in the current sheet are located near the top of the
  arcade. We also compare the colour-temperatures in the SADs to that of
  the surrounding plasma. Cross sections of emission in the AIA bandpasses
  through the dark lanes are quantitatively measured and compared with the
  predictions made by Maglione et al. The levels of emission in relation
  to background determine whether these predictions can be ruled out.

---------------------------------------------------------
Title: Three 2012 Transits of Venus: From Earth, Jupiter, and Saturn
Authors: Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.;
   Edelman, E.; Reardon, K.; Widemann, T.; Tanga, P.; Dantowitz, R.;
   Silverstone, M. D.; Ehrenreich, D.; Vidal-Madjar, A.; Nicholson,
   P. D.; Willson, R. C.; Kopp, G. A.; Yurchyshyn, V. B.; Sterling,
   A. C.; Scherrer, P. H.; Schou, J.; Golub, L.; McCauley, P.; Reeves, K.
2013AAS...22131506P    Altcode:
  We observed the 2012 June 6/5 transit seen from Earth (E/ToV),
  simultaneously with Venus Express and several other spacecraft
  not only to study the Cytherean atmosphere but also to provide an
  exoplanet-transit analog. From Haleakala, the whole transit was visible
  in coronal skies; among our instruments was one of the world-wide Venus
  Twilight Experiment's nine coronagraphs. Venus's atmosphere became
  visible before first contact. SacPeak/IBIS provided high-resolution
  images at Hα/carbon-dioxide. Big Bear's NST also provided
  high-resolution observations of the Cytherean atmosphere and black-drop
  evolution. Our liaison with UH's Mees Solar Observatory scientists
  provided magneto-optical imaging at calcium and potassium. Solar
  Dynamics Observatory's AIA and HMI, and the Solar Optical Telescope
  (SOT) and X-ray Telescope (XRT) on Hinode, and total-solar-irradiance
  measurements with ACRIMSAT and SORCE/TIM, were used to observe the
  event as an exoplanet-transit analog. On September 20, we imaged
  Jupiter for 14 Hubble Space Telescope orbits, centered on a 10-hour
  ToV visible from Jupiter (J/ToV), as an exoplanet-transit analog in
  our own solar system, using Jupiter as an integrating sphere. Imaging
  was good, although much work remains to determine if we can detect
  the expected 0.01% solar irradiance decrease at Jupiter and the even
  slighter differential effect between our violet and near-infrared
  filters caused by Venus's atmosphere. We also give a first report on our
  currently planned December 21 Cassini UVIS observations of a transit of
  Venus from Saturn (S/ToV). Our E/ToV expedition was sponsored by the
  Committee for Research and Exploration/National Geographic Society;
  supplemented: NASA/AAS's Small Research Grant Program. We thank Rob
  Ratkowski, Stan Truitt, Rob Lucas, Aram Friedman, and Eric Pilger
  '82 at Haleakala, and Joseph Gangestad '06 at Big Bear for assistance,
  and Lockheed Martin Solar and Astrophysics Lab and Hinode science and
  operations teams for support for coordinated observations with NASA
  satellites. Our J/ToV observations were based on observations made
  with HST, operated by AURA, Inc., under NASA contract NAS 5-26555;
  these observations are associated with program #13067.

---------------------------------------------------------
Title: Mass constraints on the eruptive plasma in X-ray and EUV
Authors: Lee, J.; Raymond, J. C.; Reeves, K. K.; Moon, Y.; Kim, K.
2012AGUFMSH33A2226L    Altcode:
  We investigate several eruptive hot plasma observations by
  Hinode/XRT. Their corresponding EUV and/or white light CME features
  are visible in some events. Using those observations, we determine the
  mass constraints of eruptive plasma by assuming simplified geometrical
  structures of the plasma. In some events, the associated prominence
  eruptions and eruptive plasma were observed in EUV observations as
  absorption or emission features. The absorption feature provides the
  lower limit to the cold mass while the emission feature provides
  the upper limit to the mass of observed eruptive plasma in X-ray
  and EUV passbands. In addition, some events were observed in a few
  passbands in X-rays, which allows the determination of the eruptive
  plasma temperature using a filter ratio method. We compare the mass
  constraints for each temperature response and find that the mass in EUV
  and XRT are smaller in their upper or lower limit than total mass in
  coronagraph. About half eruptive events in XRT have no corresponding
  CME, which may be due to failed eruptions or low plasma density.

---------------------------------------------------------
Title: Ionization and Emission Characteristics of the Current Sheet
    in a CME/flare Eruption Mode
Authors: Shen, C.; Reeves, K. K.; Raymond, J. C.; Murphy, N. A.; Ko, Y.
2012AGUFMSH51A2209S    Altcode:
  The current sheet that extends from the top of flare loops to the
  associated flux rope is a common structure in coronal mass ejection
  (CME) models. To understand the observational properties of CME current
  sheets, we generate predictions that can be compared with CME/flare
  models in this work. For example, Reeves et al. (2010) report on
  the detailed evolution of a large scale CME current sheet. Using
  the results of this numerical simulation, we perform time-dependent
  ionization calculations of the flow in the CME current sheet and
  construct two-dimensional spatial distributions of ionic charge
  states for multiple elements. We use the SDO/AIA filter responses
  and the predicted intensities of spectral lines to compute the count
  rates in the AIA bands. The results show that intensities can be much
  different than intensities which assume ionization equilibrium along
  the reconnection outflow. Furthermore, we calculate the spectral
  intensities of several UV and EUV lines considering time-dependent
  ionization process and compare them with the observational results
  from SOHO/UVCS. The characteristics of UV and EUV lines crossing the
  current sheet show, for instance, a low temperature sheath around the
  current sheet.

---------------------------------------------------------
Title: Testing Flare Simulations Sensitivity to Chromospheric Models
Authors: Winter, H. D.; Reeves, K. K.
2012AGUFMSH43B2160W    Altcode:
  Understanding chromospheric effects is key to interpreting simulations
  of coronal flare signatures. The chromosphere provides a thick target
  for nonthermal particle collisions which generate HXR emission in the
  foot points of flare loops. Heated either by nonthermal particle beams
  or by strong conduction fronts, chromospheric material is ablated
  to fill the post-flare loops. Because of the complex nature of the
  chromosphere (optically thick, neutral species present, etc.) most
  flare models, including our HyLoop code, out of necessity, treat the
  chromosphere either as a single cell boundary condition or with a very
  simplistic atmospheric model. HyLoop has been updated to accept time
  dependent, swappable chromosphere modules as an input. This allows
  HyLoop to run experiments under different chromospheric conditions,
  such as a constant, single cell boundary, or a stratified atmosphere
  with at constant temperature, or various radiative loss functions. Thus
  HyLoop can determine how sensitive simulation results are to differing
  chromospheric assumptions. Since the chromospheric modules are
  swappable, the HyLoop flare simulations can continue to improve as
  more detailed models of the chromospheric response to flares become
  available. In this work we monitor the mass flux from four different
  chromospheric models as they undergo nonthermal beam heating and
  measure any systematic differences in the simulated Neupert effect.

---------------------------------------------------------
Title: The 2012 Transit of Venus for Cytherean Atmospheric Studies
    and as an Exoplanet Analog
Authors: Pasachoff, Jay M.; Schneider, G.; Babcock, B. A.; Lu, M.;
   Reardon, K. P.; Widemann, T.; Tanga, P.; Dantowitz, R.; Willson,
   R.; Kopp, G.; Yurchyshyn, V.; Sterling, A.; Scherrer, P.; Schou, J.;
   Golub, L.; Reeves, K.
2012DPS....4450806P    Altcode:
  We worked to assemble as complete a dataset as possible for the
  Cytherean atmosphere in collaboration with Venus Express in situ
  and to provide an analog of spectral and total irradiance exoplanet
  measurements. From Haleakala, the whole transit was visible in
  coronal skies; our B images showed the evolution of the visibility
  of Venus's atmosphere and of the black-drop effect, as part of the
  Venus Twilight Experiment's 9 coronagraphs distributed worldwide
  with BVRI. We imaged the Cytherean atmosphere over two minutes before
  first contact, with subarcsecond resolution, with the coronagraph and
  a separate refractor. The IBIS imaging spectrometer at Sacramento
  Peak Observatory at H-alpha and carbon-dioxide also provided us
  high-resolution imaging. The NST of Big Bear Solar Observatory
  also provided high-resolution vacuum observations of the Cytherean
  atmosphere and black drop evolution. Our liaison with UH's Mees Solar
  Observatory scientists provided magneto-optical imaging at calcium
  and potassium. Spaceborne observations included the Solar Dynamics
  Observatory's AIA and HMI, and the Solar Optical Telescope (SOT)
  and X-ray Telescope (XRT) on Hinode, and total-solar-irradiance
  measurements with ACRIMSAT and SORCE/TIM, to characterize the
  event as an exoplanet-transit analog. Our expedition was sponsored
  by the Committee for Research and Exploration/National Geographic
  Society. Some of the funds for the carbon-dioxide filter for IBIS were
  provided by NASA through AAS's Small Research Grant Program. We thank
  Rob Lucas, Aram Friedman, and Eric Pilger '82 for assistance with
  Haleakala observing, Rob Ratkowski of Haleakala Amateur Astronomers
  for assistance with equipment and with the site, Stan Truitt for the
  loan of his Paramount ME, and Steve Bisque/Software Bisque for TheSky
  X controller. We thank Joseph Gangestad '06 of Aerospace Corp., a
  veteran of our 2004 expedition, for assistance at Big Bear. We thank
  the Lockheed Martin Solar and Astrophysics Laboratory and Hinode
  science and operations teams for planning and support.

---------------------------------------------------------
Title: Plasma Diagnostics and Magnetic Complexity of a Post-Flare
Active Region with Hinode/XRT: Spatial and Temporal Evolution
Authors: Parenti, S.; Reale, F.; Reeves, K. K.
2012ASPC..454..291P    Altcode:
  Flares are localized phenomena in active regions, but the magnetic
  and plasma responses may propagate to a larger area. In this work we
  investigate the temporal evolution of a flare in an active region
  with particular attention to the morphological details, and to the
  temperature and emission measure diagnostics allowed by Hinode/XRT.

---------------------------------------------------------
Title: Shrinking Loops Observations for the 2008 April 9 Flare
Authors: Savage, S. L.; McKenzie, D. E.; Reeves, K. K.; Forbes, T. G.
2012ASPC..454..295S    Altcode:
  Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft
  X-rays (SXR)), TRACE (extreme ultra-violet (EUV)), SoHO/LASCO (white
  light), SoHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics
  such as low emissivity and trajectories which slow as they reach the
  top of the arcade are consistent with post-reconnection magnetic flux
  tubes. The magnetic flux within the tubes provides pressure against
  filling with plasma. As with the standard model of reconnection,
  the tubes retract from a reconnection site high in the corona until
  they reach a more potential magnetic configuration. Viewed from a
  perpendicular angle, SADs should appear as shrinking loops rather
  than downflowing voids. We will present observations of supra-arcade
  downflowing loops (SADLs) and show that their speeds and decelerations
  are consistent with those determined for SADs.

---------------------------------------------------------
Title: The onset and dynamics of the plasmoid instability during
    asymmetric inflow reconnection
Authors: Murphy, Nicholas A.; Shen, C.; Lin, J.; Reeves, K. K.;
   Raymond, J. C.
2012shin.confE..67M    Altcode:
  High Lundquist number current sheets have recently been found to
  be unstable to the formation of plasmoids. Simulations of this
  instability have been considered primarily for reconnection with
  symmetric inflow. We therefore present simulations of the plasmoid
  instability during asymmetric inflow reconnection. Asymmetry in
  the upstream magnetic fields modifies the scaling, onset, and
  dynamics of this instability. Preliminary results suggest that the
  nonlinear development of the plasmoid instability is slower than in the
  symmetric case. Plasmoids develop preferentially into the weak magnetic
  field upstream region and are slowly advected with the reconnection
  outflow. We discuss the implications of these results on asymmetric
  magnetic reconnection in the solar atmosphere.

---------------------------------------------------------
Title: Simulating the Strength of the Neupert Effect in Large Flares
Authors: Winter, Henry D., III; Reeves, K. K.; Egan, A.
2012AAS...22020402W    Altcode:
  The Neupert Effect is the well known empirical result that the
  hard X-ray emission of about half of large, impulsive flares looks
  like the derivative of the soft X-ray emission. This relationship
  between the non-thermal, hard X-ray emission and the thermal,
  soft X-ray emission supports the theory that the majority of
  the energy liberated by the flare is in the form of non-thermal,
  high-energy electrons which then heat the thermal plasma and drive
  chromospheric evaporation. Observational estimates currently put the
  energy budget of a flare as 75% in non-thermal processes and 25%
  in thermal processes. However, the observational estimates of the
  thermal and non-thermal energy in flares are currently uncertain
  to within an order of magnitude. It is also unclear as to why 24%
  of large, impulsive flares have their soft X-ray emission peak well
  before the end of the hard X-ray emission in direct violation of
  the Neupert Effect. In this work, we address the question of how
  non-thermal particle properties affect the observed Neupert Effect
  by simulating a series solar flares using the HyLoop code. HyLoop
  simulates non-thermal particles interacting a with thermal plasma
  and the thermal plasma's response to those interactions. A series of
  flares are simulated with different non-thermal particle parameters,
  such as pitch-angle distribution and non-thermal fraction of total
  flare energy. The hard and soft X-rays emissions are synthesized for
  each simulation. These simulated emissions are then used to determine
  what impacts the non-thermal particle parameters have on the observed
  Neupert Effect.

---------------------------------------------------------
Title: The Effects of Including Non-Thermal Particles in Flare
    Loop Models
Authors: Reeves, K. K.; Winter, H. D.; Larson, N. L.
2012ASPC..455..199R    Altcode: 2012arXiv1201.5877R
  In this work, we use HyLoop (Winter et al. 2011), a loop model
  that can incorporate the effects of both MHD and non-thermal
  particle populations, to simulate soft X-ray emissions in various
  situations. First of all, we test the effect of acceleration location
  on the emission in several XRT filters by simulating a series of
  post flare loops with different injection points for the non-thermal
  particle beams. We use an injection distribution peaked at the loop
  apex to represent a direct acceleration model, and an injection
  distribution peaked at the footpoints to represent the Alfvén
  wave interaction model. We find that footpoint injection leads to
  several early peaks in the apex-to-footpoint emission ratio. Second,
  we model a loop with cusp-shaped geometry based on the eruption model
  developed byLin &amp; Forbes (2000) and Reeves &amp; Forbes (2005a),
  and find that early in the flare, emission in the loop footpoints is
  much brighter in the XRT filters if non-thermal particles are included
  in the calculation. Finally, we employ a multi-loop flare model to
  simulate thermal emission and compare with a previous model where a
  semi-circular geometry was used (Reeves et al. 2007). We compare the
  Geostationary Operational Environmental Satellite (GOES) emission
  from the two models and find that the cusp-shaped geometry leads to
  a smaller GOES class flare.

---------------------------------------------------------
Title: Complex Dynamic Flows in Solar Flare Sheet Structures
Authors: McKenzie, David Eugene; Reeves, K. K.; Savage, S. L.
2012AAS...22020422M    Altcode:
  Observations of high-energy emission from solar flares often reveal
  the presence of large sheet-like structures, sometimes extending over a
  space comparable to the Sun's radius. Given that these structures are
  found between a departing coronal mass ejection and the post-eruption
  flare arcade, it is natural to associate the structure with a
  current sheet; though the relationship is unclear. Moreover, recent
  high-resolution observations have begun to reveal that the motions
  in this region are highly complex, including reconnection outflows,
  oscillations, and apparent wakes and eddies. We present a detailed
  first look at the complicated dynamics within this supra-arcade
  plasma, and consider implications for the interrelationship between
  the plasma and its embedded magnetic field. <P />This work is supported
  by NASA under contract SP02H3901R from Lockheed-Martin to MSU (DMcK),
  contract SP02H1701R from Lockheed-Martin to SAO (KKR), and contract
  NNM07AB07C with the Harvard-Smithsonian Astrophysical Observatory. SLS
  is supported via a NASA/GSFC NPP appointment administered by Oak Ridge
  Associated Universities and under the mentorship of G. Holman.

---------------------------------------------------------
Title: Current Sheet and Reconnection Inflow-Outflow Observations
    During Solar Eruptions
Authors: Savage, S. L.; Holman, G.; Reeves, K. K.; Seaton, D. B.;
   McKenzie, D. E.; Su, Y.
2012ASPC..456..169S    Altcode:
  Magnetic reconnection is widely accepted as being associated with energy
  release during solar flares; however, observations of it have been
  indirect and/or incomplete. Using the suite of instruments available
  spanning wavelength space, we provide observations and measurements of
  both the inputs and outputs predicted from reconnection in the form of
  inflows preceding outflows (i.e. supra-arcade downflows, supra-arcade
  downflowing loops, upflows, and disconnection events). We also present
  evidence for current sheets through which reconnection is expected to
  occur and discuss current sheet motion during flare progression.

---------------------------------------------------------
Title: Asymmetric Magnetic Reconnection in Coronal Mass Ejection
    Current Sheets
Authors: Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.;
   Reeves, K. K.; Seaton, D. B.; Webb, D. F.
2012ASPC..456..199M    Altcode:
  We present resistive MHD simulations of magnetic reconnection in the
  context of coronal mass ejection current sheets. We hypothesize that
  several commonly observed features of solar flares such as sub-Alfvénic
  downflows, candle flame shaped post-flare loops, and current sheet
  drifting are the result of asymmetry in the inflow and/or outflow
  directions during the reconnection process.

---------------------------------------------------------
Title: Asymmetric Magnetic Reconnection in Solar Flare and Coronal
    Mass Ejection Current Sheets
Authors: Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.;
   Winter, H. D.; Reeves, K. K.; Seaton, D. B.; van Ballegooijen, A. A.;
   Lin, J.
2012ApJ...751...56M    Altcode: 2012arXiv1203.5360M
  We present two-dimensional resistive magnetohydrodynamic simulations
  of line-tied asymmetric magnetic reconnection in the context of solar
  flare and coronal mass ejection current sheets. The reconnection
  process is made asymmetric along the inflow direction by allowing the
  initial upstream magnetic field strengths and densities to differ, and
  along the outflow direction by placing the initial perturbation near
  a conducting wall boundary that represents the photosphere. When the
  upstream magnetic fields are asymmetric, the post-flare loop structure
  is distorted into a characteristic skewed candle flame shape. The
  simulations can thus be used to provide constraints on the reconnection
  asymmetry in post-flare loops. More hard X-ray emission is expected
  to occur at the footpoint on the weak magnetic field side because
  energetic particles are more likely to escape the magnetic mirror
  there than at the strong magnetic field footpoint. The footpoint on
  the weak magnetic field side is predicted to move more quickly because
  of the requirement in two dimensions that equal amounts of flux must
  be reconnected from each upstream region. The X-line drifts away from
  the conducting wall in all simulations with asymmetric outflow and
  into the strong magnetic field region during most of the simulations
  with asymmetric inflow. There is net plasma flow across the X-line
  for both the inflow and outflow directions. The reconnection exhaust
  directed away from the obstructing wall is significantly faster than
  the exhaust directed toward it. The asymmetric inflow condition allows
  net vorticity in the rising outflow plasmoid which would appear as
  rolling motions about the flux rope axis.

---------------------------------------------------------
Title: Morphology Of A Hot Prominence Cavity Observed With Hinode/XRT
    And SDO/AIA
Authors: Weber, Mark A.; Reeves, K. K.; Gibson, S. E.; Kucera, T. A.
2012AAS...22020205W    Altcode:
  Prominence cavities appear as circularly shaped voids in coronal
  emission over polarity inversion lines where a prominence channel
  is straddling the solar limb. The presence of chromospheric material
  suspended at coronal altitudes is a common but not necessary feature
  within these cavities. These voids are observed to change shape as a
  prominence feature rotates around the limb. We use a morphological
  model projected in cross-sections to fit the cavity emission in
  Hinode/XRT passbands, and then apply temperature diagnostics to
  XRT and SDO/AIA data to investigate the thermal structure. We find
  significant evidence that the prominence cavity is hotter than the
  corona immediately outside the cavity boundary. This investigation
  follows upon “Thermal Properties of A Solar Coronal Cavity Observed
  with the X-ray Telescope on Hinode” by Reeves et al., 2012, ApJ, in
  press. M. Weber and K.K. Reeves are supported under contract NNM07AB07C
  from NASA to SAO. T. Kucera is supported by an award from the NASA
  SHP Program.

---------------------------------------------------------
Title: Mass Constraints of Hot and Cold Coronal Mass Ejection Plasmas
    Observed in EUV and X-ray
Authors: Lee, Jin-Yi; Raymond, J. C.; Reeves, K. K.; Moon, Y.
2012AAS...22020002L    Altcode:
  Hinode/XRT has observed coronal mass ejections (CMEs) since it launched
  on Sep. 2006. Observing programs of Hinode/XRT, called ‘CME watch’,
  perform several binned observations to obtain large FOV observations
  with long exposure time that allows the detection of faint CME plasmas
  in high temperatures. Using those observations, we determine the upper
  limit to the mass of hot CME plasma using emission measure by assuming
  the observed plasma structure. In some events, an associated prominence
  eruption and CME plasma were observed in EUV observations as absorption
  or emission features. The absorption feature provides the lower limit to
  the cold mass while the emission feature provides the upper limit to the
  mass of observed CME plasma in X-ray and EUV passbands. In addition,
  some events were observed by coronagraph observations (SOHO/LASCO,
  STEREO/COR1) that allow the determination of total CME mass. However,
  some events were not observed by the coronagraphs possibly because
  of low density of the CME plasma. We present the mass constraints of
  CME plasma and associated prominence as determined by emission and
  absorption in EUV and X-ray passbands, then compare this mass to the
  total CME mass as derived from coronagraphs.

---------------------------------------------------------
Title: Photometric Uncertainties within Hinode XRT
Authors: Kobelski, Adam; Saar, S. H.; Weber, M. A.; McKenzie, D. E.;
   Reeves, K. K.
2012AAS...22020126K    Altcode:
  We have developed estimates of the systematic uncertainties for
  the X-Ray Telescope (XRT) on Hinode. These estimates are included
  as optional returns from the standard XRT data reduction software,
  xrt_prep.pro. Included in these software estimates are uncertainties
  from instrument vignetting, dark current subtraction, split bias
  leveling, Fourier filtering and JPEG compression. Sources of uncertainty
  that rely heavily on models of plasma radiation or assumptions of
  elemental abundances, such as photon noise, are discussed, but not
  included in the software. It will be shown that the photon noise
  is much larger than the systematic uncertainty. <P />This work is
  supported by NASA under contract NNM07AB07C with the Harvard-Smithsonian
  Astrophysical Observatory

---------------------------------------------------------
Title: Temperature Diagnostic of a Brightening Observed by Hinode/XRT
Authors: Dudík, J.; Reeves, K. K.; Schmieder, B.; Dzifčáková,
   E.; Golub, L.
2012ASPC..456..137D    Altcode:
  We analyze the temperature distribution of the active region brightening
  observed by HINODE/XRT. The temperature structure is derived using
  various filter-ratio techniques and DEM analysis. The results are
  compared and it is found that the filter-ratio techniques are accurate
  only for relatively narrow DEMs.

---------------------------------------------------------
Title: Re-interpretation Of Supra-arcade Downflows In Solar Flares
Authors: Savage, Sabrina; McKenzie, D. E.; Reeves, K. K.
2012AAS...22051602S    Altcode:
  Following the eruption of a filament from a flaring active region,
  sunward-flowing voids are often seen above developing post-eruption
  arcades. First discovered using the soft X-ray telescope aboard Yohkoh,
  these supra-arcade downflows (SADs) are now an expected observation of
  extreme ultra-violet and soft X-ray coronal imagers and spectrographs
  (e.g, TRACE, SOHO/SUMER, Hinode/XRT, SDO/AIA). Observations made prior
  to the operation of AIA suggested that these plasma voids (which
  are seen in contrast to bright, high-temperature plasma associated
  with current sheets) are the cross-sections of evacuated flux tubes
  retracting from reconnection sites high in the corona. The high
  temperature imaging afforded by AIA's 131, 94, and 193 Angstrom channels
  coupled with the fast temporal cadence allows for unprecedented scrutiny
  of the voids. For a flare occurring on 2011 October 22, we provide
  evidence suggesting that SADs, instead of being the cross-sections
  of relatively large, evacuated flux tubes, are actually wakes (i.e.,
  trailing regions of low density) created by the retraction of much
  thinner tubes. This re-interpretation is a significant shift in the
  fundamental understanding of SADs, as the features once thought to
  be identifiable as the shrinking loops themselves now appear to be
  "side effects" of the passage of the loops through the supra-arcade
  plasma. In light of the fact that previous measurements have attributed
  to the shrinking loops characteristics that may instead belong to
  their wakes, we discuss the implications of this new interpretation
  on previous parameter estimations and on reconnection theory.

---------------------------------------------------------
Title: Measuring Uncertainties in the Hinode X-Ray Telescope
Authors: Kobelski, A.; Saar, S.; McKenzie, D. E.; Weber, M.; Reeves,
   K.; DeLuca, E.
2012ASPC..456..241K    Altcode:
  We have developed estimates of the systematic photometric uncertainties
  the X-Ray Telescope (Kano et al. (2008)) on Hinode (Kosugi et
  al.(2007)). These estimates are included as optional returns from the
  standard XRT data reduction software, xrt_prep.pro. Included in the
  software estimates are uncertainties from instrument vignetting, dark
  current subtraction, split bias leveling, fourier filtering and JPEG
  compression. We show that these uncertainties are generally smaller
  than the photon counting uncertainty. However, due to the reliance
  on assumptions of plasma radiation models and elemental abundances,
  photon counting is not included in the software.

---------------------------------------------------------
Title: Observations and simulations of the sympathetic eruptions on
    2010 August 1
Authors: Torok, T.; Mikic, Z.; Panasenco, O.; Titov, V. S.; Reeves,
   K. K.; Velli, M.; Linker, J. A.; de Toma, G.
2012EGUGA..14.3270T    Altcode:
  During the rise of the new solar cycle, the Sun has produced a number
  of so-called sympathetic eruptions, i.e., eruptions that occur close in
  time in different source regions. While it has become clear in recent
  years that in many of such events the individual eruptions must be
  magnetically connected, the exact nature of these connections is not
  yet understood. A particularly beautiful case, which consisted of half
  a dozen individual eruptions, was observed by STEREO and SDO on 2010
  August 1. Here we focus on a subset of two large, consecutive filament
  eruptions that were preceded by a nearby CME. We first summarize the
  main features of these events and then present 3D MHD simulations
  that were designed to model such a chain of eruptions. The simulations
  suggest that the two filament eruptions were triggered by two successive
  reconnection events, each of which was induced by the previous eruption,
  and thus provide a new mechanism for sympathetic eruptions.

---------------------------------------------------------
Title: Morphology of a Hot Prominence Cavity Observed with XRT and AIA
Authors: Weber, Mark; Reeves, Katherine K.; Gibson, Sarah E.; Kucera,
   Therese A.
2012decs.confE..56W    Altcode:
  Prominence cavities appear as circularly shaped voids in coronal
  emission over polarity inversion lines where a prominence channel
  is straddling the solar limb. The presence of chromospheric material
  suspended at coronal altitudes is a common but not necessary feature
  within these cavities. These voids are observed to change shape as
  a prominence feature rotates around the limb. We use a morphological
  model projected in cross-sections to fit the cavity emission in XRT
  passbands, and then apply temperature diagnostics to XRT and AIA data
  to investigate the thermal structure. We find significant evidence that
  the prominence cavity is hotter than the corona immediately outside the
  cavity boundary. This investigation follows upon “Thermal Properties
  of A Solar Coronal Cavity Observed with the X-ray Telescope on Hinode”
  by Reeves et al., 2012, ApJ, in press. M. Weber and K.K. Reeves are
  supported under contract NNM07AB07C from NASA to SAO. T. Kucera is
  supported by an award from the NASA SHP Program.

---------------------------------------------------------
Title: Models and Comparisons of Long Duration and Impulsive Solar
    Flare Events from SDO
Authors: Bowen, Trevor; Testa, P.; Reeves, K.
2012AAS...21914407B    Altcode:
  We compare observational signatures of two GOES C8-class solar flares
  through instrumentation on Solar Dynamics Observatory (SDO). Data from
  the Atmospheric Imaging Assembly (AIA) and the Extreme Ultraviolet
  Variability Experiment (EVE) provide a unique look at the sun through
  global scale, fast cadence, high-resolution photometric and spectral
  measurements; this data is ideal for analyzing the temporal evolution
  of flare properties. The two flares studied differ in both time scale
  and morphology, one may be classified as a long duration event (LDE),
  while the other is highly impulsive. Differences are noted in behavior
  in the AIA EUV bands as well as several spectral lines. Furthermore,
  we apply both zero and one dimensional multi-threaded hydrodynamic loop
  models to synthesize light curves and spectra for each flare. Funding
  provided by NSF REU solar physics program at CfA, grant number
  ATM-0851866 and Marlboro College.

---------------------------------------------------------
Title: Asymmetric Magnetic Reconnection in Coronal Mass Ejection
    Current Sheets
Authors: Murphy, N. A.; Miralles, M. P.; Pope, C. L.; Raymond, J. C.;
   Young, A. K.; Shen, C.; Lin, J.; Reeves, K. K.; Seaton, D. B.; Webb,
   D. F.
2011AGUFMSH51A1997M    Altcode:
  Flux rope models of coronal mass ejections (CMEs) predict the
  formation of an elongated current sheet in the wake behind the rising
  plasmoid. Magnetic reconnection in these current sheets is highly
  asymmetric. Sunward outflow impacts the post-flare loops and regions
  of high plasma and magnetic pressure, whereas antisunward outflow
  impacts the rising flux rope. There are strong gradients along
  the outflow direction for upstream density, pressure, and magnetic
  field strength. Resistive magnetohydrodynamic simulations of X-line
  retreat predict that the majority of the outflow energy is directed
  upward because the principal X-line is located near the lower base
  of the current sheet. We derive an exact expression showing that the
  rate of X-line retreat is given by a combination of advection and
  diffusion. During line-tied reconnection with asymmetric upstream
  magnetic field strengths, the structure of the post-flare loops is
  skewed and the current sheet drifts along the inflow direction. We
  compare the drift rate to observations of CME current sheets that
  characteristically drift or tilt with time, including the 2008 April 9
  "Cartwheel CME." We will present simulations of plasmoid formation in
  high Lundquist number current sheets, and report our progress using
  time-dependent ionization to predict observational signatures from
  simulations of CME current sheets.

---------------------------------------------------------
Title: Comparing Long Duration and Impulsive Solar Flares Using
    SDO Data
Authors: Bowen, T.; Testa, P.; Reeves, K. K.
2011AGUFMSH13B1943B    Altcode:
  We present observations of two solar flares as recorded by instruments
  on the Solar Dynamics Observatory (SDO). Combining observations from
  the Atmospheric Imaging Assembly (AIA) and the Extreme Ultraviolet
  Variability Experiment (EVE) Spectrometer provide a robust set of
  data for solar flare analysis. The two instruments together provide
  a unique look at the sun through global scale, fast cadence, high
  resolution images and spectral measurements. Our study compares two
  solar flares--occurring on 05/29/2011 and 06/21/2011--of similar
  GOES X-ray flux classification, but which differ in both time
  scale and morphology. We note striking differences between the two
  flares; particularly in the behavior of the 131Å, 304Å, and 335Å
  wavebands. The results of this study have implications for numeric
  simulations of flaring loops, and may help constrain certain free
  parameters in modeling flare dynamics. We show that for the long
  duration flare, both EVE lightcurves and the peak flare spectrum are
  successfully simulated by multi-threaded loop models. Furthermore,
  we show that these same models accurately reproduce the lightcurves
  of hotter AIA channels for both flare types.

---------------------------------------------------------
Title: Ionic Composition Structure of Coronal Mass Ejections in
    Axisymmetric Magnetohydrodynamic Models
Authors: Lynch, B. J.; Reinard, A. A.; Mulligan, T.; Reeves, K. K.;
   Rakowski, C. E.; Allred, J. C.; Li, Y.; Laming, J. M.; MacNeice,
   P. J.; Linker, J. A.
2011ApJ...740..112L    Altcode:
  We present the ionic charge state composition structure derived
  from axisymmetric MHD simulations of coronal mass ejections
  (CMEs), initiated via the flux-cancellation and magnetic breakout
  mechanisms. The flux-cancellation CME simulation is run on the
  Magnetohydrodynamics-on-A-Sphere code developed at Predictive Sciences,
  Inc., and the magnetic breakout CME simulation is run on ARC7 developed
  at NASA GSFC. Both MHD codes include field-aligned thermal conduction,
  radiative losses, and coronal heating terms which make the energy
  equations sufficient to calculate reasonable temperatures associated
  with the steady-state solar wind and model the eruptive flare heating
  during CME formation and eruption. We systematically track a grid of
  Lagrangian plasma parcels through the simulation data and calculate the
  coronal density and temperature history of the plasma in and around the
  CME magnetic flux ropes. The simulation data are then used to integrate
  the continuity equations for the ionic charge states of several heavy
  ion species under the assumption that they act as passive tracers in
  the MHD flow. We construct two-dimensional spatial distributions of
  commonly measured ionic charge state ratios in carbon, oxygen, silicon,
  and iron that are typically elevated in interplanetary coronal mass
  ejection (ICME) plasma. We find that the slower CME eruption has
  relatively enhanced ionic charge states and the faster CME eruption
  shows basically no enhancement in charge states—which is the
  opposite trend to what is seen in the in situ ICME observations. The
  primary cause of the difference in the ionic charge states in the two
  simulations is not due to the different CME initiation mechanisms per
  se. Rather, the difference lies in their respective implementation
  of the coronal heating which governs the steady-state solar wind,
  density and temperature profiles, the duration of the connectivity of
  the CME to the eruptive flare current sheet, and the contribution of the
  flare-heated plasma associated with the reconnection jet outflow into
  the ejecta. Despite the limitations inherent in the first attempt at
  this novel procedure, the simulation results provide strong evidence in
  support of the conclusion that enhanced heavy ion charge states within
  CMEs are a direct consequence of flare heating in the low corona. We
  also discuss future improvements through combining numerical CME
  modeling with quantitative ionic charge state calculations.

---------------------------------------------------------
Title: A Model for Magnetically Coupled Sympathetic Eruptions
Authors: Török, T.; Panasenco, O.; Titov, V. S.; Mikić, Z.; Reeves,
   K. K.; Velli, M.; Linker, J. A.; De Toma, G.
2011ApJ...739L..63T    Altcode: 2011arXiv1108.2069T
  Sympathetic eruptions on the Sun have been observed for several decades,
  but the mechanisms by which one eruption can trigger another remain
  poorly understood. We present a three-dimensional MHD simulation that
  suggests two possible magnetic trigger mechanisms for sympathetic
  eruptions. We consider a configuration that contains two coronal flux
  ropes located within a pseudo-streamer and one rope located next to
  it. A sequence of eruptions is initiated by triggering the eruption of
  the flux rope next to the streamer. The expansion of the rope leads
  to two consecutive reconnection events, each of which triggers the
  eruption of a flux rope by removing a sufficient amount of overlying
  flux. The simulation qualitatively reproduces important aspects of the
  global sympathetic event on 2010 August 1 and provides a scenario for
  the so-called twin filament eruptions. The suggested mechanisms are
  also applicable for sympathetic eruptions occurring in other magnetic
  configurations.

---------------------------------------------------------
Title: 3d Mhd Simulation Of Sympathetic Eruptions On 1 August 2010
Authors: Torok, Tibor; Panasenco, O.; Titov, V.; Mikic, Z.; Reeves,
   K.; Velli, M.; Linker, J.; de Toma, G.
2011SPD....42.0908T    Altcode: 2011BAAS..43S.0908T
  Apart from single eruptions originating in localized source regions, the
  Sun sometimes produces so-called sympathetic events, which consist of
  <P />several individual eruptions occurring <P />almost simultaneously
  in different source regions. The close temporal vicinity of the
  individual eruptions in such events indicates the <P />existence of
  a causal link between them, but the mechanisms by which one eruption
  can trigger another one remain largely a mystery. A particularly
  beautiful example of a global sympathetic event was recently observed
  by the Solar Dynamics Observatory (SDO) on 1 August 2010. It included
  a small filament eruption and CME that was closely followed by the
  eruptions of two large adjacent (twin) filaments, indicating that these
  three eruptions were physically connected. A coronal potential field
  extrapolation revealed that the twin filaments were located in the
  lobes of a so-called pseudostreamer prior to their eruptions. Here we
  present a 3D MHD simulation of the successive eruption of two magnetic
  flux ropes in such a pseudostreamer configuration. The two eruptions are
  triggered by the simulated eruption of a third flux rope in the vicinity
  of the pseudostreamer. The simulation qualitatively reproduces the CME
  and subsequent twin filament eruption on 1 August 2010 and suggests that
  these events were indeed physically connected. Furthermore, it provides
  a generic scenario for the frequently observed twin filament eruptions
  in coronal pseudostreamers and suggests a mechanism by which such
  eruptions can be triggered in the first place. Our results thus provide
  an important step for a better understanding of sympathetic eruptions.

---------------------------------------------------------
Title: Many Flares Make a Corona
Authors: Saar, Steven H.; Kashyap, V.; Drake, J.; Reeves, K.;
   Connors, A.
2011AAS...21832202S    Altcode: 2011BAAS..43G32202S
  It is well known that solar flare energies have a self-similar
  distribution. The number of flares, N, of any given energy, E,
  follows a power-law distribution, dN/dE E^(-alpha), over many orders
  of magnitude, with alpha 1.8. A similar distribution holds for stellar
  coronae, but in this case, typically alpha &gt; 2. The value alpha=2
  is important because it represents a threshold beyond which it is
  possible to ascribe all of the coronal luminosity to increasingly
  weaker, but more numerous, flares. <P />Current methods to evaluate the
  flare distribution index alpha for stars are limited by two factors:
  they either depend on explicit detections of flares, or if the flare
  distribution itself is being modeled, then they are highly computation
  intensive and are thus slow. We have developed analytical methodology
  that substitutes for Monte Carlo simulations over a majority of the
  latter calculations. This causes improvements in computational speed
  of over 100x. We describe these methods below, and apply it to some
  simulated and observed data. <P />This work was supported by CXC NASA
  contract NAS8-39073 and Chandra grant AR0-11001X.

---------------------------------------------------------
Title: Three-dimensional morphology of a coronal prominence cavity
Authors: Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; de
   Toma, G.; Hao, J.; Hill, S. M.; Hudson, H. S.; Marque, C.; McIntosh,
   P. S.; Rachmeler, L.; Reeves, K. K.; Schmieder, B.; Schmit, D. J.;
   Sterling, A.; Tripathi, D.; Williams, D. R.; Zhang, M.
2010AGUFMSH51A1667G    Altcode:
  We present a three-dimensional density model of coronal prominence
  cavities, and a morphological fit that has been tightly constrained
  by a uniquely well-observed cavity. Observations were obtained as part
  of an International Heliophysical Year campaign by instruments from a
  variety of space- and ground-based observatories, spanning wavelengths
  from radio to soft-X-ray to integrated white light. From these data
  it is clear that the prominence cavity is the limb manifestation of
  a longitudinally-extended polar-crown filament channel, and that
  the cavity is a region of low density relative to the surrounding
  corona. As a first step towards quantifying density and temperature
  from campaign spectroscopic data, we establish the three-dimensional
  morphology of the cavity. This is critical for taking line-of-sight
  projection effects into account, since cavities are not localized in the
  plane of the sky and the corona is optically thin. We have augmented
  a global coronal streamer model to include a tunnel-like cavity with
  elliptical cross-section and a Gaussian variation of height along
  the tunnel length. We have developed a semi-automated routine that
  fits ellipses to cross-sections of the cavity as it rotates past the
  solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI)
  observations from the two Solar Terrestrial Relations Observatory
  (STEREO) spacecraft. This defines the morphological parameters of our
  model, from which we reproduce forward-modeled cavity observables. We
  find that cavity morphology and orientation, in combination with the
  viewpoints of the observing spacecraft, explains the observed variation
  in cavity visibility for the east vs. west limbs.

---------------------------------------------------------
Title: Three-dimensional Morphology of a Coronal Prominence Cavity
Authors: Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; de
   Toma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marqué, C.; McIntosh,
   P. S.; Rachmeler, L.; Reeves, K. K.; Schmieder, B.; Schmit, D. J.;
   Seaton, D. B.; Sterling, A. C.; Tripathi, D.; Williams, D. R.;
   Zhang, M.
2010ApJ...724.1133G    Altcode:
  We present a three-dimensional density model of coronal prominence
  cavities, and a morphological fit that has been tightly constrained
  by a uniquely well-observed cavity. Observations were obtained as part
  of an International Heliophysical Year campaign by instruments from a
  variety of space- and ground-based observatories, spanning wavelengths
  from radio to soft X-ray to integrated white light. From these data
  it is clear that the prominence cavity is the limb manifestation of
  a longitudinally extended polar-crown filament channel, and that the
  cavity is a region of low density relative to the surrounding corona. As
  a first step toward quantifying density and temperature from campaign
  spectroscopic data, we establish the three-dimensional morphology
  of the cavity. This is critical for taking line-of-sight projection
  effects into account, since cavities are not localized in the plane of
  the sky and the corona is optically thin. We have augmented a global
  coronal streamer model to include a tunnel-like cavity with elliptical
  cross-section and a Gaussian variation of height along the tunnel
  length. We have developed a semi-automated routine that fits ellipses
  to cross-sections of the cavity as it rotates past the solar limb, and
  have applied it to Extreme Ultraviolet Imager observations from the
  two Solar Terrestrial Relations Observatory spacecraft. This defines
  the morphological parameters of our model, from which we reproduce
  forward-modeled cavity observables. We find that cavity morphology
  and orientation, in combination with the viewpoints of the observing
  spacecraft, explain the observed variation in cavity visibility for
  the east versus west limbs.

---------------------------------------------------------
Title: Comparison of simulated and observed loop-top emission in
    flares using the AIA telescopes on SDO
Authors: Engell, A.; Reeves, K. K.; Ji, L.; Deluca, E. E.; Smith,
   R.; Golub, L.
2010AGUFMSH11A1596E    Altcode:
  We investigate the spatial and temporal behavior of emission in
  flaring loops observed by AIA's 193 (Fe XXIV/XII), 131(Fe XX), 094
  (Fe XVIII), 335 (Fe XVI), 211 (Fe XIV), and 171 (Fe IX) channels for
  two C class flares and one M class flare. Plotting light curves from
  loop-top areas in the six channels reveals the temporal distributions
  as a function of the ionization stages, with the same characteristic
  behavior identifiable in all three flares. The order of appearance
  is from the highest ionization state (FeXXIV) to the lowest (Fe XVI),
  and the observations are compared with the Reeves, Warren &amp; Forbes
  (2007) model of flare loop energization, calculated for the various
  AIA channels. We also model the effects of non-equilibrium ionization
  on the simulated light curves.

---------------------------------------------------------
Title: Space Based Observations of Coronal Cavities in Conjunction
    with the Total Solar Eclipse of July 2010
Authors: Kucera, T. A.; Berger, T. E.; Boerner, P.; Dietzel, M.;
   Druckmuller, M.; Gibson, S. E.; Habbal, S. R.; Morgan, H.; Reeves,
   K. K.; Schmit, D. J.; Seaton, D. B.
2010AGUFMSH51A1666K    Altcode:
  In conjunction with the total solar eclipse on July 11, 2010 we
  coordinated a campaign between ground and space based observations. Our
  specific goal was to augment the ground based measurement of coronal
  prominence cavity temperatures made using iron lines in the IR (Habbal
  et al. 2010 ApJ 719 1362) with measurements performed by space based
  instruments. Included in the campaign were Hinode/EIS, XRT and SOT,
  PROBA2/SWAP, SDO/AIA, SOHO/CDS and STEREO/SECCHI/EUVI, in addition
  to the ground based IR measurements. We plan to use a combination of
  line ratio and forward modeling techniques to investigate the density
  and temperature structure of the cavities at that time.

---------------------------------------------------------
Title: Morphology of a hot coronal cavity core as observed by
    Hinode/XRT
Authors: Reeves, K. K.; Gibson, S. E.; Kucera, T. A.; Hudson, H. S.
2010AGUFMSH51A1669R    Altcode:
  We follow a coronal cavity that was observed by Hinode/XRT during the
  summer of 2008. This cavity has a persistent area of relatively bright
  X-ray emission in its center. We use multifilter data from XRT to
  study the thermal emission from this cavity, and find that the bright
  center is hotter than the surrounding cavity plasma with temperatures
  of about 1.6 MK. We follow the morphology of this hot feature as the
  cavity structure rotates over the limb during the several days between
  July 19 - 23 2008. We find that the hot structure at first looks fairly
  circular, then appears to expand and elongate, and then shrinks again
  to a compact circular shape. We interpret this apparent change in shape
  as being due to the morphology of the filament channel associated with
  the cavity, and the change in viewing angle as the structure rotates
  over the limb of the Sun.

---------------------------------------------------------
Title: Science Objectives for an X-Ray Microcalorimeter Observing
    the Sun
Authors: Laming, J. Martin; Adams, J.; Alexander, D.; Aschwanden, M;
   Bailey, C.; Bandler, S.; Bookbinder, J.; Bradshaw, S.; Brickhouse,
   N.; Chervenak, J.; Christe, S.; Cirtain, J.; Cranmer, S.; Deiker, S.;
   DeLuca, E.; Del Zanna, G.; Dennis, B.; Doschek, G.; Eckart, M.; Fludra,
   A.; Finkbeiner, F.; Grigis, P.; Harrison, R.; Ji, L.; Kankelborg,
   C.; Kashyap, V.; Kelly, D.; Kelley, R.; Kilbourne, C.; Klimchuk, J.;
   Ko, Y. -K.; Landi, E.; Linton, M.; Longcope, D.; Lukin, V.; Mariska,
   J.; Martinez-Galarce, D.; Mason, H.; McKenzie, D.; Osten, R.; Peres,
   G.; Pevtsov, A.; Porter, K. Phillips F. S.; Rabin, D.; Rakowski, C.;
   Raymond, J.; Reale, F.; Reeves, K.; Sadleir, J.; Savin, D.; Schmelz,
   J.; Smith, R. K.; Smith, S.; Stern, R.; Sylwester, J.; Tripathi, D.;
   Ugarte-Urra, I.; Young, P.; Warren, H.; Wood, B.
2010arXiv1011.4052L    Altcode:
  We present the science case for a broadband X-ray imager with
  high-resolution spectroscopy, including simulations of X-ray spectral
  diagnostics of both active regions and solar flares. This is part of
  a trilogy of white papers discussing science, instrument (Bandler et
  al. 2010), and missions (Bookbinder et al. 2010) to exploit major
  advances recently made in transition-edge sensor (TES) detector
  technology that enable resolution better than 2 eV in an array that
  can handle high count rates. Combined with a modest X-ray mirror, this
  instrument would combine arcsecondscale imaging with high-resolution
  spectra over a field of view sufficiently large for the study of
  active regions and flares, enabling a wide range of studies such as
  the detection of microheating in active regions, ion-resolved velocity
  flows, and the presence of non-thermal electrons in hot plasmas. It
  would also enable more direct comparisons between solar and stellar
  soft X-ray spectra, a waveband in which (unusually) we currently have
  much better stellar data than we do of the Sun.

---------------------------------------------------------
Title: Post-flare evolution of AR 10923 with Hinode/XRT
Authors: Parenti, S.; Reale, F.; Reeves, K. K.
2010A&A...517A..41P    Altcode: 2010arXiv1010.3124P
  Context. Flares are dynamic events which involve rapid changes in
  coronal magnetic topology end energy release. Even if they may be
  localized phenomena, the magnetic disturbance at their origin may
  propagate and be effective in a larger part of the active region. <BR
  /> Aims: We investigate the temporal evolution of a flaring active
  region with respect to the loops morphology, the temperature,
  and emission measure distributions. <BR /> Methods: We consider
  Hinode/XRT data of a the 2006 November 12th C1.1 flare. We inspect
  the evolution of the morphology of the flaring region also with the
  aid of TRACE data. XRT filter ratios are used to derive temperature
  and emission measure maps and evolution. <BR /> Results: The analyzed
  flare includes several brightenings. We identify a coherent sequence
  of tangled and relaxed loop structures before, during, and after the
  brightenings. Although the thermal information is incomplete because of
  pixel saturation at the flare peak, thermal maps show fine, evolving
  spatial structuring. Temperature and emission measure variations show
  up in great detail, and we are able to detect a secondary heating of
  larger loops close to the proper flaring region. Finally we estimate the
  amount of energy released in these flaring loops during the flare decay.

---------------------------------------------------------
Title: Ionic Composition Structure in 2.5D MHD CME Simulations
Authors: Lynch, Benjamin J.; Li, Y.; Reinard, A. A.; Reeves, K. K.;
   Allred, J. C.; Linker, J. A.; MacNeice, P. J.; Laming, J. M.
2010AAS...21640619L    Altcode: 2010BAAS...41..883L
  We present a comparison of ionic charge state composition structure of
  axisymmetric CMEs initiated via the flux cancellation mechanism and the
  magnetic breakout mechanism. The flux cancellation CME simulation is
  run using the Predictive Science Inc.'s Magnetohydrodynamics-on-A-Sphere
  (MAS) Code and the magnetic breakout CME simulation is run on A Research
  Code (ARC7) developed at GSFC by Allred and MacNeice (2010). Both MHD
  simulations include field-aligned thermal conduction, radiative losses,
  and coronal heating terms that give rise to steady-state solar wind
  and streamer solutions. The energy equation is sufficiently complex
  to calculate reasonable densities and temperatures associated with
  eruptive flare heating and CME formation. We systematically track
  a number of Lagrangian plasma parcels through the simulation data
  and can calculate the coronal temperature history of the plasma
  associated with the CME. We can then integrate the continuity
  equation for the various charge states associated with heavy ion
  species assuming they act as passive tracers in the MHD flow and
  using the plasma temperature and density in the determination of the
  ionization and recombination rates. Thus, we are able to calculate a 2D
  spatial distribution of commonly measured ionic charge state ratios,
  e.g. C<SUP>6</SUP>+/C<SUP>5</SUP>+, O<SUP>7</SUP>+/O<SUP>6</SUP>+,
  Si<SUP>12</SUP>+/Si<SUP>11</SUP>+, and Fe^&gt;=16+/Fe_total, over the
  cross section of the CME flux rope and the surrounding plasma. We
  discuss the role of flare heating in determining the ionic charge
  state structure of CMEs. <P />Authors acknowledge support from NASA
  NNX08AJ04G and NNX08AH54G.

---------------------------------------------------------
Title: Coronal Loop Evolution and Inferred Coronal Magnetic Energy
    in a Quiet Active Region
Authors: Lee, Jin-Yi; Barnes, G.; Leka, K.; Reeves, K. K.; Korreck,
   K. E.; Golub, L.
2010AAS...21640514L    Altcode: 2010BAAS...41R.891L
  We investigate changes in the properties of the coronal magnetic field
  in the context of different emission of coronal loops. Observations by
  the Transition Region and Coronal Explorer (TRACE), the Hinode/X-ray
  Telescope (XRT), and the SOHO/Michelson Doppler Imager (MDI), the
  X-ray and EUV light curves as well as the photospheric magnetic flux
  of NOAA active region 10963 are utilized to compare the coronal and
  photospheric magnetic fields. A Magnetic Charge Topology (MCT) model
  is used to establish potential magnetic field connectivity of the
  surface magnetic flux distribution. A Minimum Current Corona (MCC)
  model is applied to determine the coronal currents and quantify the
  energy build-up. The results of the MCC analysis are compared to the
  evolution of the coronal loop brightness, comparing areas of steady
  emission, transient emission, and temporal patterns of emission which
  imply coronal cooling.

---------------------------------------------------------
Title: Reconnection Outflows and Current Sheet Observed with
    Hinode/XRT in the April 9 2008 "Cartwheel CME" Flare
Authors: Savage, Sabrina; McKenzie, D. E.; Reeves, K. K.; Forbes,
   T. G.; Longcope, D. W.
2010AAS...21640423S    Altcode: 2010BAAS...41R.903S
  Supra-arcade downflows (SADs) have been observed with Yohkoh/SXT (soft
  X-rays (SXR)), TRACE (extreme ultra-violet (EUV)), SoHO/LASCO (white
  light), SoHO/SUMER (EUV spectra), and Hinode/XRT (SXR). Characteristics
  such as low emissivity and trajectories which slow as they reach the
  top of the arcade are consistent with post-reconnection magnetic flux
  tubes. The magnetic flux within the tubes provides pressure against
  filling with plasma. As with the standard model of reconnection,
  the tubes then retract from a reconnection site high in the corona
  until they reach a more potential magnetic configuration. Viewed from
  a perpendicular angle, SADs should appear as shrinking loops rather
  than downflowing voids. We will present observations of supra-arcade
  downflowing loops (SADLs) following a CME on April 9, 2008 with XRT
  and show that their speeds and decelerations are consistent with those
  determined for SADs. We will also present evidence for a possible
  current sheet observed during this flare that extends between the CME
  and the flare arcade. Additionally, we will show a correlation between
  reconnection outflows observed with XRT and outgoing flows observed
  with LASCO.

---------------------------------------------------------
Title: Geometric Model of a Coronal Cavity
Authors: Kucera, Therese A.; Gibson, S. E.; Rastawicki, D.; Dove, J.;
   de Toma, G.; Hao, J.; Hudson, H. S.; Marque, C.; McIntosh, P. S.;
   Reeves, K. K.; Schmidt, D. J.; Sterling, A. C.; Tripathi, D. K.;
   Williams, D. R.; Zhang, M.
2010AAS...21640510K    Altcode: 2010BAAS...41..890K
  We observed a coronal cavity from August 8-18 2007 during a
  multi-instrument observing campaign organized under the auspices of
  the International Heliophysical Year (IHY). Here we present initial
  efforts to model the cavity with a geometrical streamer-cavity
  model. The model is based the white-light streamer model of Gibson et
  al. (2003), which has been enhanced by the addition of a cavity and
  the capability to model EUV and X-ray emission. The cavity is modeled
  with an elliptical cross-section and Gaussian fall-off in length and
  width inside the streamer. Density and temperature can be varied in the
  streamer and cavity and constrained via comparison with data. Although
  this model is purely morphological, it allows for three-dimensional,
  multi-temperature analysis and characterization of the data, which
  can then provide constraints for future physical modeling. Initial
  comparisons to STEREO/EUVI images of the cavity and streamer show that
  the model can provide a good fit to the data. This work is part of the
  effort of the International Space Science Institute International Team
  on Prominence Cavities.

---------------------------------------------------------
Title: Solar Eruption Model Relating CME Kinematics to Flare Emissions
Authors: Moats, Stephanie; Reeves, K.
2010AAS...21640803M    Altcode: 2010BAAS...41Q.816M
  The combination of a loss-of-equilibrium coronal mass ejection (CME)
  model with a multi-threaded flare loop model is used to develop a model
  of solar eruptions. The CME kinematics, thermal energy release, and
  flare emissions are compared in order to understand the relationship
  between these properties of solar eruptions. CME accelerations and
  peak x-ray fluxes are modeled for many different cases, and it is found
  that the timing of the peak flux derivative and the peak acceleration
  are well correlated when the inflow Alfven Mach number is fast and
  the magnetic field is high. The total thermal energy release and peak
  soft x-ray flux are observed to have a power law relationship, where
  the peak flux is about equal to the thermal energy to the power of
  alpha (alpha is between 2.54 and 1.54, depending on the reconnection
  rate). This finding conflicts with theoretical underpinnings of the
  Neupert Effect, which assumes the soft x-ray flux is proportional to
  the thermal energy release.

---------------------------------------------------------
Title: Modeling Twisted Coronal Loops: AR 10938
Authors: Golub, L.; Engell, A. J.; van Ballegooijen, A. A.; Korreck,
   K. E.; Reeves, K. K.
2009ASPC..415..268G    Altcode:
  When modeling coronal loops by calculating the potential field
  from magnetograms it is often found that field lines highlighted
  of the potential field do not match the coronal loops observed in
  the data. To rectify this situation, we construct a non-potential
  field in which helical “twisted” currents with prescribed radii
  are inserted along certain potential field lines. We then relax
  the magnetic field to a non-linear force-free field (NLFFF) using
  magneto-frictional relaxation. In doing so, we find that we are able
  to approach a geometrical match between the field lines and the coronal
  loops observed in AR 10938 on January 18, 2007.

---------------------------------------------------------
Title: DEM Temperature Analysis of Post-Flare Loops Using Hinode's
    X-Ray Telescope
Authors: Reeves, K. K.; Weber, M. A.
2009ASPC..415..443R    Altcode:
  We investigate the temperature structure of the post-flare loops from
  two small flares by utilizing a differential emission measure (DEM)
  method that takes advantage of the many X-ray filters available on
  the X-Ray Telescope (XRT) on Hinode. This method allows us to observe
  multi-thermal plasma along the line of sight. Using this method, we
  see clear evidence of multiple temperatures in the post-flare loops
  systems. We also find that intensity changes in the XRT images are
  due to cooling plasma in one of the flares, and decreasing emission
  measure in the other flare.

---------------------------------------------------------
Title: The Second Hinode Science Meeting: Beyond Discovery-Toward
    Understanding
Authors: Lites, B.; Cheung, M.; Magara, T.; Mariska, J.; Reeves, K.
2009ASPC..415.....L    Altcode:
  No abstract at ADS

---------------------------------------------------------
Title: Evolution of Magnetic Properties for Two Active Regions
    Observed by Hinode/XRT and TRACE
Authors: Lee, J. -Y.; Leka, K. D.; Barnes, G.; Reeves, K. K.; Korreck,
   K. E.; Golub, L.
2009ASPC..415..279L    Altcode:
  We investigate two active regions observed by the Hinode X-ray Telescope
  (XRT) and the Transition Region and Coronal Explorer (TRACE). One active
  region shows constant brightness in both XRT and TRACE observations. The
  other active region shows a brightening in the TRACE observation
  just after a decrease in X-ray brightness indicating the cooling of a
  coronal loop. The coronal magnetic topology is derived using a magnetic
  charge topology (MCT) model for these two active regions applied to
  magnetograms from the Michelson Doppler Imager (MDI) on board the Solar
  and Heliospheric Observatory (SOHO). We discuss the results of the MCT
  analysis with respect to the light curves for these two active regions.

---------------------------------------------------------
Title: Magnetic energy build-up and coronal brightness evolution
Authors: Lee, J.; Barnes, G.; Leka, K. D.; Reeves, K. K.; Korreck,
   K. E.; Golub, L.
2009AGUFMSH41B1664L    Altcode:
  We have investigated changes in the properties of the coronal magnetic
  field in the context of different emission behaviors of coronal
  loops. Using observations by the Transition Region and Coronal Explorer
  (TRACE), the Hinode/X-ray Telescope (XRT), and the SoHO/Michelson
  Doppler Imager (MDI), NOAA active region 10963 has been analyzed
  in depth as to how different coronal signatures compare to inferred
  coronal energy build-up. A Magnetic Charge Topology (MCT) model was
  used to establish potential magnetic field connectivity of the surface
  magnetic flux distribution, and a Minimum Current Corona (MCC) model was
  applied to quantify the energy build-up along separator field lines. The
  results of the MCC analysis are compared to the evolution of the coronal
  brightness, comparing areas of steady emission, very transient emission,
  and temporal patterns of emission which imply coronal cooling.

---------------------------------------------------------
Title: Fan-Spine Topology Formation Through Two-Step Reconnection
    Driven by Twisted Flux Emergence
Authors: Török, T.; Aulanier, G.; Schmieder, B.; Reeves, K. K.;
   Golub, L.
2009ApJ...704..485T    Altcode: 2009arXiv0909.2235T
  We address the formation of three-dimensional nullpoint topologies
  in the solar corona by combining Hinode/X-ray Telescope (XRT)
  observations of a small dynamic limb event, which occurred beside
  a non-erupting prominence cavity, with a three-dimensional (3D)
  zero-β magnetohydrodynamics (MHD) simulation. To this end, we model
  the boundary-driven "kinematic" emergence of a compact, intense,
  and uniformly twisted flux tube into a potential field arcade that
  overlies a weakly twisted coronal flux rope. The expansion of the
  emerging flux in the corona gives rise to the formation of a nullpoint
  at the interface of the emerging and the pre-existing fields. We unveil
  a two-step reconnection process at the nullpoint that eventually yields
  the formation of a broad 3D fan-spine configuration above the emerging
  bipole. The first reconnection involves emerging fields and a set of
  large-scale arcade field lines. It results in the launch of a torsional
  MHD wave that propagates along the arcades, and in the formation of
  a sheared loop system on one side of the emerging flux. The second
  reconnection occurs between these newly formed loops and remote arcade
  fields, and yields the formation of a second loop system on the opposite
  side of the emerging flux. The two loop systems collectively display
  an anenome pattern that is located below the fan surface. The flux that
  surrounds the inner spine field line of the nullpoint retains a fraction
  of the emerged twist, while the remaining twist is evacuated along
  the reconnected arcades. The nature and timing of the features which
  occur in the simulation do qualititatively reproduce those observed
  by XRT in the particular event studied in this paper. Moreover, the
  two-step reconnection process suggests a new consistent and generic
  model for the formation of anemone regions in the solar corona.

---------------------------------------------------------
Title: Large-Scale Flows in Prominence Cavities
Authors: Schmit, D. J.; Gibson, S. E.; Tomczyk, S.; Reeves, K. K.;
   Sterling, Alphonse C.; Brooks, D. H.; Williams, D. R.; Tripathi, D.
2009ApJ...700L..96S    Altcode:
  Regions of rarefied density often form cavities above quiescent
  prominences. We observed two different cavities with the Coronal
  Multichannel Polarimeter on 2005 April 21 and with Hinode/EIS on 2008
  November 8. Inside both of these cavities, we find coherent velocity
  structures based on spectral Doppler shifts. These flows have speeds of
  5-10 km s<SUP>-1</SUP>, occur over length scales of tens of megameters,
  and persist for at least 1 hr. Flows in cavities are an example of
  the nonstatic nature of quiescent structures in the solar atmosphere.

---------------------------------------------------------
Title: Computer Vision for The Solar Dynamics Observatory
Authors: Martens, Petrus C.; Angryk, R. A.; Bernasconi, P. N.; Cirtain,
   J. W.; Davey, A. R.; DeForest, C. E.; Delouille, V. A.; De Moortel,
   I.; Georgoulis, M. K.; Grigis, P. C.; Hochedez, J. E.; Kasper, J.;
   Korreck, K. E.; Reeves, K. K.; Saar, S. H.; Savcheva, A.; Su, Y.;
   Testa, P.; Wiegelmann, T.; Wills-Davey, M.
2009SPD....40.1711M    Altcode:
  NASA funded a large international consortium last year to produce
  a comprehensive system for automated feature recognition in SDO
  images. The data we consider are all AIA and EVE data plus surface
  magnetic field images from HMI. Helioseismology is addressed by another
  group. <P />We will produce robust and very efficient software modules
  that can keep up with the relentless SDO data stream and detect, trace,
  and analyze a large number of phenomena, including: flares, sigmoids,
  filaments, coronal dimmings, polarity inversion lines, sunspots,
  X-ray bright points, active regions, coronal holes, EIT waves, CME's,
  coronal oscillations, and jets. In addition we will track the emergence
  and evolution of magnetic elements down to the smallest features
  that are detectable, and we will also provide at least four full
  disk nonlinear force-free magnetic field extrapolations per day. <P
  />A completely new software element that rounds out this suite is a
  trainable feature detection module, which employs a generalized image
  classification algorithm to produce the texture features of the images
  analyzed. A user can introduce a number of examples of the phenomenon
  looked and the software will return images with similar features. We
  have tested a proto-type on TRACE data, and were able to "train" the
  algorithm to detect sunspots, active regions, and loops. Such a module
  can be used to find features that have not even been discovered yet,
  as, for example, sigmoids were in the pre-Yohkoh era. <P />Our codes
  will produce entries in the Helio Events Knowledge base, and that will
  permit users to locate data on individual events as well as carry out
  statistical studies on large numbers of events, using the interface
  provided by the Virtual Solar Observatory.

---------------------------------------------------------
Title: Flows and Plasma Properties in Quiescent Cavities
Authors: Schmit, Donald; Gibson, S.; Reeves, K.; Sterling, A.;
   Tomczyk, S.
2009SPD....40.1015S    Altcode:
  Regions of rarefied density often form cavities above quiescent
  prominences. In an attempt to constrain the plasma properties of
  "equilibrium" cavities we conduct several diagnostics using Hinode/EIS,
  STEREO/EUVI, and CoMP. One novel observation is of large scale flows in
  cavities. Using different instruments to observe two distinct cavities
  off the solar limb in coronal emission lines, we find that spectral
  doppler shifts imply LOS velocities within cavities on the order of
  1-10 km/s. These flows occur over length scales of several hundred Mm
  and persist for hours.

---------------------------------------------------------
Title: Magnetic Topology and Coronal Brightness Evolution: A Case
    Study
Authors: Lee, Jin-Yi; Barnes, G.; Leka, K.; Reeves, K. K.; Korreck,
   K. E.; Golub, L.
2009SPD....40.1209L    Altcode:
  We have applied a Magnetic Charge Topology model to investigate
  what changes in the properties of the magnetic field are responsible
  for different coronal emission behavior of the coronal loops in two
  different active regions. Observations from the X-ray Telescope (XRT)
  on board Hinode and the Transition Region and Coronal Expolorer (TRACE)
  were used, along with time-series of magnetograms for 24 hours from
  the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric
  Observatory (SOHO). The magnetic connectivity and separator field
  lines were established by potential field extrapolation of the observed
  surface magnetic flux distribution. We present the evolution for the
  two active regions in terms of the changes in both the connections and
  in the separator flux, the latter indicative of locations of possible
  energy deposit or release.

---------------------------------------------------------
Title: Observations and analysis of the April 9, 2008 CME using
    STEREO, Hinode TRACE and SoHO data
Authors: Reeves, K. K.; Patsourakos, S.; Stenborg, G.; Miralles, M.;
   Deluca, E.; Forbes, T.; Golub, L.; Kasper, J.; Landi, E.; McKenzie,
   D.; Narukage, N.; Raymond, J.; Savage, S.; Su, Y.; van Ballegooijen,
   A.; Vourlidas, A.; Webb, D.
2008AGUFMSH12A..04R    Altcode:
  On April 9, 2008 a CME originating from an active region behind the limb
  was well-observed by STEREO, Hinode, TRACE and SoHO. Several interesting
  features connected to this eruption were observed. (1) The interaction
  of the CME with open field lines from a nearby coronal hole appeared
  to cause an abrupt change in the direction of the CME ejecta. (2) The
  prominence material was heated, as evidenced by a change from absorption
  to emission in the EUV wavelengths. (3) Because the active region was
  behind the limb, the X-Ray Telescope on Hinode was able to take long
  enough exposure times to observe a faint current- sheet like structure,
  and it was able to monitor the dynamics of the plasma surrounding this
  structure. This event is also being studied in the context of activity
  that occurred during the Whole Heliosphere Interval (WHI).

---------------------------------------------------------
Title: Fine Thermal Structure of a Flare Observed with Hinode/XRT
Authors: Parenti, S.; Reale, F.; Reeves, K. K.
2008ASPC..397..182P    Altcode:
  In this work we investigate the fine thermal structure of a flare
  observed in November 2006 by Hinode/XRT. For this analysis we adopted
  a new technique which optimizes the use of five different filters,
  resulting in a good diagnostic of temperature.

---------------------------------------------------------
Title: Relating X-ray Luminosity of Flares Observed by XRT to Magnetic
    Flux and the Solar Wind
Authors: Korreck, K. E.; Reeves, K. K.; Kozarev, K.; Schwadron, N. A.
2008ASPC..397..106K    Altcode:
  The X-ray Telescope (XRT) on-board Hinode shows stunning images of
  reconnection events associated with flares. These flares release a large
  fraction of their energy in the EUV and X-rays. In a recent paper by
  Schwadron et al. (2006), the relationship between x-ray luminosity,
  magnetic flux and the power available for solar wind acceleration
  was explored. Using Hinode XRT data from AR 10960 and complementary
  magnetic field data, we examine the x-ray luminosity with respect to the
  magnetic field flux. These results are compared with the predicted power
  of the solar wind and measurements taken at the ACE spacecraft at 1AU.

---------------------------------------------------------
Title: Posteruptive phenomena in coronal mass ejections and substorms:
    Indicators of a universal process?
Authors: Reeves, K. K.; Guild, T. B.; Hughes, W. J.; Korreck, K. E.;
   Lin, J.; Raymond, J.; Savage, S.; Schwadron, N. A.; Spence, H. E.;
   Webb, D. F.; Wiltberger, M.
2008JGRA..113.0B02R    Altcode: 2008JGRA..11300B02R
  We examine phenomena associated with eruptions in the two different
  regimes of the solar corona and the terrestrial magnetosphere. We
  find striking similarities between the speeds of shrinking magnetic
  field lines in the corona and dipolarization fronts traversing the
  magnetosphere. We also examine the similarities between supra-arcade
  downflows observed during solar flares and bursty bulk flows seen
  in the magnetotail and find that these phenomena have remarkably
  similar speeds, velocity profiles, and size scales. Thus we show
  manifest similarities in the magnetic reconfiguration in response to
  the ejection of coronal mass ejections in the corona and the ejection
  of plasmoids in the magnetotail. The subsequent return of loops to a
  quasi-potential state in the corona and field dipolarization in the
  magnetotail are physical analogs and trigger similar phenomena such
  as downflows, which provides key insights into the underlying drivers
  of the plasma dynamics.

---------------------------------------------------------
Title: Hinode/XRT Diagnostics of Loop Thermal Structure
Authors: Reale, F.; Parenti, S.; Reeves, K. K.; Weber, M.; Bobra,
   M. G.; Barbera, M.; Kano, R.; Narukage, N.; Shimojo, M.; Sakao, T.;
   Peres, G.; Golub, L.
2008ASPC..397...50R    Altcode:
  We investigate possible diagnostics of the thermal structure of coronal
  loops from Hinode/XRT observations made with several filters. We
  consider the observation of an active region with five filters. We
  study various possible combinations of filter data to optimize for
  sensitivity to thermal structure and for signal enhancement.

---------------------------------------------------------
Title: DEM Temperature Analysis of Eruptive Events Using the XRT
    on Hinode
Authors: Reeves, K. K.; Weber, M. A.; Kashyap, V.; Deluca, E. E.
2008ASPC..397..187R    Altcode:
  The X-Ray Telescope (XRT) on Hinode has unprecedented temperature
  coverage with 9 X-Ray filters in the focal plane. This temperature
  coverage is especially useful in determining the temperatures of
  flaring plasma. In this work, we use DEM techniques to analyze the
  temperature structures in some small eruptive events.

---------------------------------------------------------
Title: Multi-wavelength Comparison of Prominence Cavities
Authors: Schmit, D. J.; Gibson, S.; de Toma, G.; Reeves, K.; Tripathi,
   D.; Kucera, T.; Marque, C.; Tomczyk, S.
2008AGUSMSP43B..04S    Altcode:
  Recent observational campaigns have brought together a wealth of
  data specifically designed to explore the physical properties and
  dynamics of prominence cavities. In particular, STEREO and Hinode
  data have provided new perspectives on these structures. In order to
  effectively analyze the data in a cohesive manner, we produce overlays
  of several distinct and complimentary datasets including SOHO UVCS,
  CDS, and EIT, Hinode SOT and EIS, STEREO SECCHI, TRACE, and Nancay
  Radioheliograph data as well as new observations of coronal magnetic
  fields in cavities from the Coronal Multichannel Polarimeter. We are
  thus able to investigate how sensitive morphology is to the wavelength
  observed which details the nature of the plasma in the cavity.

---------------------------------------------------------
Title: Methods of Analyzing Temperatures in Post-Flare Loops using
    the XRT on Hinode
Authors: Reeves, K. K.; Parenti, S.; Reale, F.; Weber, M. A.
2007AGUFMSH51C..08R    Altcode:
  The X-Ray Telescope on Hinode has unrivaled temperature coverage, with 9
  X-Ray filters in the focal plane. Using 7 different filter combinations,
  XRT observed a C8.2 flare on July 10, 2007. We use two different methods
  to glean temperature information about the post-flare loop system in
  this event. First, we examine the flare loops using the combined filter
  ratio method, which is a ratio method that utilizes observations in
  multiple filters in order to optimize the signal quality. Secondly, we
  calculate temperatures based on a differential emission measure method,
  which is a forward fitting method of determining temperatures. The
  results of these two methods will be compared.

---------------------------------------------------------
Title: Evidence for Alfvén Waves in Solar X-ray Jets
Authors: Cirtain, J. W.; Golub, L.; Lundquist, L.; van Ballegooijen,
   A.; Savcheva, A.; Shimojo, M.; DeLuca, E.; Tsuneta, S.; Sakao, T.;
   Reeves, K.; Weber, M.; Kano, R.; Narukage, N.; Shibasaki, K.
2007Sci...318.1580C    Altcode:
  Coronal magnetic fields are dynamic, and field lines may misalign,
  reassemble, and release energy by means of magnetic reconnection. Giant
  releases may generate solar flares and coronal mass ejections and,
  on a smaller scale, produce x-ray jets. Hinode observations of polar
  coronal holes reveal that x-ray jets have two distinct velocities:
  one near the Alfvén speed (~800 kilometers per second) and another
  near the sound speed (200 kilometers per second). Many more jets were
  seen than have been reported previously; we detected an average of
  10 events per hour up to these speeds, whereas previous observations
  documented only a handful per day with lower average speeds of 200
  kilometers per second. The x-ray jets are about 2 × 10<SUP>3</SUP> to
  2 × 10<SUP>4</SUP> kilometers wide and 1 × 10<SUP>5</SUP> kilometers
  long and last from 100 to 2500 seconds. The large number of events,
  coupled with the high velocities of the apparent outflows, indicates
  that the jets may contribute to the high-speed solar wind.

---------------------------------------------------------
Title: X-rays Observations with Hinode's XRT and the Power of the
    Solar Wind
Authors: Korreck, K. E.; Kozarev, K.; Reeves, K.; Schwadron, N.
2007AGUFMSH21A0282K    Altcode:
  The X-ray Telescope (XRT) shows stunning images of solar corona. The
  x-ray luminosity that comes from the sun is linearly dependant on
  the magnetic flux of this sun. In a recent paper by Schwadron, Mc
  Comas, and DeForest (2006), the relationship between x-ray luminosity,
  magnetic flux and the power available for solar wind acceleration was
  explored. Using Hinode XRT data from AR 10960, quiet sun, and full disk
  observations, along with complimentary magnetic field data, we examine
  the x-ray luminosity with respect to the magnetic field flux. These
  results are compared with the predicted power of the solar wind and
  measurements taken at the ACE spacecraft at 1AU for the different
  regions of the solar surface.

---------------------------------------------------------
Title: Fine Structures of Solar X-Ray Jets Observed with the X-Ray
    Telescope aboard Hinode
Authors: Shimojo, Masumi; Narukage, Noriyuki; Kano, Ryohei; Sakao,
   Taro; Tsuneta, Saku; Shibasaki, Kiyoto; Cirtain, Jonathan W.;
   Lundquist, Loraine L.; Reeves, Katherine K.; Savcheva, Antonia
2007PASJ...59S.745S    Altcode:
  The X-Ray Telescope (XRT) aboard Hinode has revealed the fine structure
  of solar X-ray jets. One of the fine structures observed by XRT is an
  expanding loop. The loop appeared near the footpoint of the jet when
  footpoint brightening was observed. Additionally, we have found that the
  X-ray jets began just after the expanding loop “breaks”. Other fine
  structures discovered by XRT are thread-like features along the axis
  of the jets. XRT has shown that these thread structures compose the
  cross-section of jets. The fine structures and their motions strongly
  support an X-ray jet model based on magnetic reconnection, and also
  suggest that we must consider the three-dimensional configuration of the
  magnetic field to understand the jet phenomenon. We also investigated
  the reverse jet associated with the X-ray jet in the quiet Sun, and
  propose that the reverse jet is produced by heat conduction, or a MHD
  wave subsequent to the main jet.

---------------------------------------------------------
Title: Magnetic Shear in Two-ribbon Solar Flares
Authors: Su, Yingna; Golub, L.; Van Ballegooijen, A.; McCaughey, J.;
   Deluca, E. E.; Reeves, K.; Gros, M.
2007AAS...210.3702S    Altcode: 2007BAAS...39Q.151S
  To study shear motion of the footpoints in solar flares, we selected
  50 X- and M- class two-ribbon flares observed by TRACE (in 1998-2005)
  as our data sample. We found that: 1) 86% (43 out of 50) of these
  flares show both strong-to-weak shear change of footpoints and ribbon
  separation. Shear motion of footpoints is thus a common feature
  in two-ribbon flares; 2) the initial and final shear angles of the
  footpoints in this type of flare are mainly in the range from 50° to
  80° and 15° to 55°, respectively; 3) in 10 out of the 14 events with
  both measured shear angle and corresponding hard X-ray observations,
  the cessation of shear change is 0-2 minutes earlier than the end of
  the impulsive phase. This may suggest that the change from impulsive to
  gradual phase is related to magnetic shear change. We then selected 20
  flares with measured shear angles and corresponding CMEs from our data
  sample. For these flares, we found that the magnetic flux and change
  of shear angle show comparably strong correlations with the peak flare
  flux and CME speed, while the intial shear angle does not. This result
  indicates that the intensity of flare/CME events may depend mainly on
  the released magnetic free energy rather than the total magnetic free
  energy stored prior to the eruption. After a successful launch last
  September, Hinode (Solar-B) caught two X-class solar flares, which
  occurred in AR 10930 on Dec 13 and 14, 2006. Using these new datasets
  (Hinode/XRT, Hinode/SOT, TRACE, and SOHO/MDI), we carried out a study of
  the evolution of the sheared magnetic fields involved in these flares,
  and some preliminary results will also be presented. The TRACE analysis
  was supported at Smithsonian Astrophysical Observatory by a contract
  from Lockheed Martin.

---------------------------------------------------------
Title: Structure and Coronal Activity around Filament Channels
    Observed with Hinode XRT And TRACE
Authors: Lundquist, Loraine L.; van Ballegooijen, A. A.; Reeves,
   K. K.; Sakao, T.; DeLuca, E. E.; Narukage, N.; Kano, R.
2007AAS...210.9427L    Altcode: 2007BAAS...39..221L
  The combination of multi-wavelength, high resolution, high cadence
  data from the Hinode X-Ray Telescope (XRT) and the Transition Region
  And Coronal Explorer (TRACE) give an unprecedented view of solar
  active region dynamics and coronal topology. We focus on examples of
  filament structures observed by TRACE and XRT in December 2006 and
  February 2007. Co-alignment of observations in these two instruments
  yields a striking picture of the coronal structures, with loops lying
  both along and above the filament. Overlying loops exhibit remarkable
  dynamics while the filament lies dormant, and numerous x-point and
  triple-leg structures undergo repeated brightenings. We also employ
  magnetic field data from SOT and from SOLIS to compare a non-linear
  force-free model of the coronal magnetic field with the observed loops.

---------------------------------------------------------
Title: Using a Loss-of-Equilibrium CME Model to Predict X-Ray and
    EUV Emissions Resulting From Solar Flares
Authors: Reeves, K. K.; Warren, H. P.; Forbes, T. G.
2006IAUJD...3E..68R    Altcode:
  In this study, we use a loss-of-equilibrium model for solar eruptions
  to calculate the thermal energy input into a system of flare loops. In
  this model, the flare consists of a system of reconnecting loops
  below a current sheet that connects the flare to an erupting flux
  rope. The thermal energy is calculated by assuming that all of the
  Poynting flux into the current sheet is thermalized. The density,
  temperature and velocity of the plasma in each reconnected loop
  are then calculated using a 1D hydrodynamic code. These parameters
  are coupled with the instrument response functions of various solar
  instruments to calculate flare emissions. We simulate spectra from the
  Bragg Crystal Spectrometer (BCS) on Yohkoh, and find that the strong
  blueshifts that should be present due to chromospheric evaporation
  during flare initiation are difficult to observe with BCS, but may be
  better observed with a more sensitive instrument. We also find that a
  density enhancement occurs at the top of a loop when evaporating plasma
  fronts in each loop leg collide there. This enhancement gives rise to
  bright loop-top intensities in simulated Transition Region and Coronal
  Explorer (TRACE) and Yohkoh Soft X-ray Telescope (SXT) images. These
  loop-top features have been observed in TRACE and SXT images, and are
  not explained by single-loop flare models. The Atmospheric Imaging
  Assembly (AIA) on the Solar Dynamics Observatory should be able to
  observe these features in detail, and we will use this model to help
  develop flare observing programs for AIA.

---------------------------------------------------------
Title: Acceleration and Thermal Energy Release in a CME Model
Authors: Reeves, K. K.
2005AGUFMSH11C..03R    Altcode:
  We examine the relationship between the acceleration of the flux rope
  and the thermal energy release rate in a loss-of-equilibrium model of
  coronal mass ejections. We find that the correlation between thermal
  energy release rate and flux rope acceleration is good for cases where
  the background magnetic field is high and the reconnection rate is fast,
  but that the correlation is poor for cases with low background magnetic
  fields and slow reconnection rates. Thus, though reconnection plays
  an important role in both the acceleration of the flux rope and the
  thermal energy release rate, it does not always affect these quantities
  in the same way.

---------------------------------------------------------
Title: Hydrodynamic Modeling of Flare Loops
Authors: Reeves, K. K.; Warren, H. P.; DeLuca, E. E.; Boyd, J. F.;
   Arber, T. D.
2002AAS...200.6811R    Altcode: 2002BAAS...34..757R
  The study of post-flare loops is instrumental to understanding the
  energy deposition in flares. Previously we modeled the evolution of
  a flare arcade using a set of scaling laws for the conductive and
  radiative cooling of post-flare loops. We found that these simulated
  loops decrease in intensity faster than the observed loops. The scaling
  laws, however, did not allow for heating during the decay of the flare,
  or provide information on variations in temperature and density along
  the loop. In the current work, we use a full hydrodynamic simulation
  to investigate energy deposition in flaring loops. We will compare our
  simulated flare arcades to spatially and temporally resolved TRACE,
  SXT and HESSI observations. This work has been supported in part by
  the NASA Sun-Earth Connection Guest Investigator Program. TRACE is
  supported by Contract NAS5-38099 from NASA to LMATC.

---------------------------------------------------------
Title: RHESSI and TRACE Observations of an X-class Flare
Authors: Hudson, H.; Dennis, B.; Gallagher, P.; Krucker, S.; Reeves,
   K.; Warren, H.
2002cosp...34E3101H    Altcode: 2002cosp.meetE3101H
  RHESSI and TRACE both obtained excellent observations of an X1.5 flare
  on April 21, 2002. In this paper we provide an overview of the flare
  and discuss the high- energy imaging and spectra in detail. The TRACE
  images in the 195A passband (Fe XII and FeXXIV) reveal this flare to
  have a spiky arcade with post-flare flow field in the "supra-arcade
  downflow" pattern discovered by Yohkoh. Below the spikes, but above
  the FeXII loops, TRACE observes a region with complex motions and fine
  structure. We confirm with RHESSI that this region has an elevated
  temperature and discuss the transition between thermal and non-thermal
  sources. RHESSI also observes footpoint emission distributed along
  the flare ribbons.

---------------------------------------------------------
Title: Early Results from a Multi-Thermal Model for the Cooling of
    Post-Flare Loops
Authors: Reeves, K. K.; Warren, H. P.
2002mwoc.conf..275R    Altcode:
  We have developed a multi-thermal model for the cooling of post-flare
  loops. The model consists of an arcade of many nested loops that
  reconnect and begin cooling at slightly different times, and have
  different cooling profiles because of the different loop lengths across
  the arcade. Cooling due to both conductive and radiative processes is
  taken into account. The free parameters in the model include initial
  temperature and density in the loop, loop width and the initial loop
  length. The results from the model are then compared to TRACE and SXT
  observations. Our many-loop model does a much better job of predicting
  the SXT and TRACE light curves than a similar model with only one loop.

---------------------------------------------------------
Title: Solar Explosive Events: Nanoflares and Their Potential to
    Heat the Solar Corona
Authors: Updike, A.; Winebarger, A.; Reeves, K.
2001AAS...199.8808U    Altcode: 2001BAAS...33.1434U
  The question of how the solar corona is heated is one of the more
  interesting aspects of solar physics. One theory is that small
  reconnective events (nanoflares) are responsible for coronal heating,
  but it has not yet been demonstrated that such small events heat plasma
  to cornal temperatures. To address this issue, we used active region
  observations from SUMER to locate 1724 explosive events in the C IV line
  (1548 Å) and 274 explosive events in the Ne VIII line (1540 Å). We
  calculate the global birthrate of 2108 events s<SUP>-1</SUP> in the C
  IV line, and 335 events s<SUP>-1</SUP> in the Ne VIII line. We locate
  the event regions in TRACE 171 Å images of the corona, and look for
  a coronal response to the explosive events. Comparing fluctuations
  in TRACE light curve data above event and non-event areas, we find
  statistically significant fluctuations in the TRACE light curves above
  %51\ of the events. This could imply that explosive event plamsa is
  heated to coronal temperatures, or that both pheonoma are separate
  byproducts of the reconnection process. Funded by the Smithsonian
  Astrophysical Observatory Summer REU program (AST-973192).

---------------------------------------------------------
Title: Investigation of Non-steady Flow Solutions in the Coronal
    Heating Problem
Authors: Boyd, J. F.; DeLuca, E. E.; Reeves, K. K.; Winebarger, A. R.
2001AGUFMSH11A0691B    Altcode:
  Observations made by the TRACE satellite show intermittent intensity
  fluctuations in coronal loops that suggest non-steady mass flows. These
  flows are not explained by previous work on coronal loop models, which
  focus on static and steady flow solutions. To investigate these flows
  we have written a code that looks for thermally stable, non-steady
  solutions to the hydrodynamic equations that govern coronal loops. These
  solutions will be used to determine if an asymmetric heating function
  reproduces the observed intensities.

---------------------------------------------------------
Title: New Observations of Oscillating Coronal Loops
Authors: Reeves, K. K.; Shoer, J.; Deluca, E. E.; Winebarger, A. R.;
   Ofman, L.; Davila, J. M.
2001AGUFMSH11A0704R    Altcode:
  One of the most promising discoveries of the TRACE mission is the first
  observations of transverse oscillations in coronal loops (Aschwanden
  et al 1999, Nakariakov et al 1999). Loops are set into motion from
  nearby flares, oscillate with a well defined frequency and decay
  on a time scale of 10 minutes. While the theoretical study of MHD
  waves in the corona has a long history, observational support has
  dramatically increased over the past 10 years as coronal instruments
  have improved. The transverse oscillations have been identified as
  standing kink modes for the 14-July-1998 observations cited above. In
  this paper we present clear evidence for a decaying global kink modes
  observed by TRACE on 15-Apr-2001. Six different loops have been observed
  to oscillate with a frequency in the range: 15-20 mHz (compared with
  4 mHz for 14-July-1998) and a decay time in the range: 8-23 minutes
  (compared with 11 minutes for the earlier event). The implications
  for these results for coronal diagnostics and solar coronal seismology
  will be discussed.

---------------------------------------------------------
Title: Impulsive Events and Coronal Loop Cooling Observed with TRACE
Authors: Seaton, D. B.; DeLuca, E. E.; Golub, L.; Reeves, K. K.;
   Winebarger, A. R.; Gallagher, P. T.
2001AGUFMSH11A0705S    Altcode:
  Nearly every active region imaged by TRACE contains sporadic
  brightenings in coronal loops. Many of these ubiquitous, short-lived
  events appear nearly simultaneously in the Fe IX/X (log T<SUB></SUB>
  e≈ 6.0) and the C IV channel (log T≈ 5.0); hence, we interpret
  them as the rapid cooling of a multifilament loops. A particularly good
  example of such an event was observed on 21, June 2001, as part of an
  hour long active region observation; a total of 52 of the TRACE 171
  Å and 68 TRACE 1600 Å images have been analyzed from that sequence,
  as well as 35 images provided by the MDI aboard SOHO. In this poster,
  we will discuss the analysis of the events and the implications of
  our cooling model.

---------------------------------------------------------
Title: Observation of Large Flares and Their Evolution with the
    Transition Region and Coronal Explorer
Authors: Reeves, K. K.; Warren, H. P.
2001AGUSM..SP51A08R    Altcode:
  The Transition Region and Coronal Explorer (TRACE) provides some of
  the highest spatial resolution images ever taken of hot solar flare
  plasma. The TRACE 195 A channel is particularly sensitive to high
  temperature flare plasma because of the presence of the Fe XXIV 192
  A resonance line in this bandpass. The TRACE 171 A channel observes
  emission from thermal bremsstrahlung during a flare. Since this
  emission is generally weak compared to the background corona, it is
  difficult to derive electron temperatures for flare plasma from TRACE
  filter ratios. In this paper, we examine large flares observed by TRACE
  that have significant counts in the 171 A channel when compared to the
  background corona. The evolution of the filter ratios of these flares
  is examined over time and compared with a simple cooling model. The
  effects of non-equilibrium ionization are also examined.

---------------------------------------------------------
Title: Temperature Profiles of Super-Hot Flare Plasma using the
    Transition Region and Coronal Explorer (TRACE)
Authors: Reeves, K. K.; Warren, H. P.
2000SPD....31.0263R    Altcode: 2000BAAS...32..822R
  The Transition Region and Coronal Explorer (TRACE) provides some of
  the highest spatial resolution images ever taken of hot solar flare
  plasma. The TRACE 195 Angstroms channel is particularly sensitive
  to flare plasma because of the presence of the Fe XXIV 192 Angstroms
  resonance line in this bandpass. Using TRACE filter ratios to derive
  temperatures and emission measures during flares is often difficult,
  however, because the 171 Angstroms channel is predominately hydrogen
  continuum emission. This emission is generally weak and often hard
  to distinguish from the background corona. A very large flare,
  such as the X2 flare observed on March 24, 2000, yields high
  counts in the 171 Angstroms channel so that background emission
  becomes insignificant. Analysis of these data show steep temperature
  gradients below the brightest flare plasma in the arcade. These data
  also show large 195 Angstroms/171 Angstroms ratios above the arcade,
  suggesting localized regions of super-hot plasma. Interpretation of
  the filter ratios depends on the absolute abundance of Fe, however,
  and we re-examine past measurements of Fe abundances in flares.

---------------------------------------------------------
Title: TRACE and Yohkoh Observations of High-Temperature Plasma in
    a Two-Ribbon Limb Flare
Authors: Warren, H. P.; Bookbinder, J. A.; Forbes, T. G.; Golub, L.;
   Hudson, H. S.; Reeves, K.; Warshall, A.
1999ApJ...527L.121W    Altcode:
  The ability of the Transition Region and Coronal Explorer
  (TRACE) to image solar plasma over a wide range of temperatures
  (T<SUB>e</SUB>~10<SUP>4</SUP>-10<SUP>7</SUP> K) at high spatial
  resolution (0.5" pixels) makes it a unique instrument for observing
  solar flares. We present TRACE and Yohkoh observations of an M2.4
  two-ribbon flare that began on 1999 July 25 at about 13:08 UT. We
  observe impulsive footpoint brightenings that are followed by the
  formation of high-temperature plasma (T<SUB>e</SUB>&gt;~10 MK)
  in the corona. After an interval of about 1300 s, cooler loops
  (T<SUB>e</SUB>&lt;2 MK) form below the hot plasma. Thus, the
  evolution of the event supports the qualitative aspects of the standard
  reconnection model of solar flares. The TRACE and Yohkoh data show that
  the bulk of the flare emission is at or below 10 MK. The TRACE data
  are also consistent with the Yohkoh observations of hotter plasma
  (T<SUB>e</SUB>~15-20 MK) existing at the top of the arcade. The
  cooling time inferred from these observations is consistent with a
  hybrid cooling time based on thermal conduction and radiative cooling.

---------------------------------------------------------
Title: Observations of High-Temperature Flare Plasma with Transition
    Region and Coronal Explorer (TRACE)
Authors: Reeves, K. K.; Golub, L.; Warren, H. P.
1999agu..meet..234R    Altcode:
  The so-called standard model of solar flares makes specific
  predictions concerning the amount, location, and timing of both hot
  (T<SUB>e</SUB>&gt;10 MK) and cool (T<SUB>e</SUB>&lt;2 MK) plasma in
  solar flares. The ability of the Transition Region and Coronal Explorer
  (TRACE) to image solar plasma over a wide range of temperatures
  (T<SUB>e</SUB>~10<SUP>4</SUP>-10<SUP>7</SUP> K) at high spatial
  resolution (0.5″ pixels) make it a unique instrument for observing
  solar flares and testing the model predictions. We present TRACE and
  Yohkoh observations of an M2.4 two-ribbon flare that began on 1999
  July 25 at about 13:08 UT. These observations are in qualitative
  agreement with the essential elements of the reconnection model. We
  observe impulsive footpoint brightenings that are quickly followed
  by the formation of high-temperature plasma in the corona. After an
  interval of about 1300 s cooler loops form below the hot plasma. The
  cooling time inferred from the observations suggests large densities
  (n<SUB>e</SUB>~10<SUP>11</SUP> cm<SUP>-3</SUP>) for the high temperature
  plasma so that radiative losses dominate the cooling process. The
  TRACE data are consistent with the Yohkoh observations of a “hot”
  (T<SUB>e</SUB>~15-20 MK) plasma existing at the top of the arcade.