
October 17, 2002 A. G. de Wijn: A parallel implementation of speckle image reconstruction 1

A parallel implementation of speckle image reconstruction

Toward parallel speckle reconstruction for the Dutch Open Telescope

A. G. de Wijn

Astronomical Institute, P.O. box 80 000, 3508 TA Utrecht, The Netherlands
e-mail: A.G.deWijn@astro.uu.nl

Abstract. In this report, I present a parallelized speckle-reconstruction code for use with the Dutch Open Telescope.
The code implements the speckle-masking algorithm. The theory of speckle masking is explained in some detail.
We discuss the differences and similarities between the new implementation in C and the old implementation in
IDL. I present measurements on the performance of both implementations. The parallelization model of the C
implementation is discussed. The model and the measurements are compared qualitatively and quantitatively.
Finally, I make some recommendations for a reconstruction farm for the Dutch Open Telescope.

1. Introduction

The general belief of stellar activity is that stellar coro-
nae and chromospheres are heated magnetically, but it re-
mains an open question how this comes about. Magnetism
lies at the heart of most solar and heliospheric physics. The
intricate structure of the solar field, the activity cycle and
the influence of the field on the heliosphere represent ma-
jor quests of astrophysics bearing directly on the human
environment. Solar activity modulation affects satellite or-
bits, influences jet stream patterns, and contributes to the
causes of ice ages.

In order to study solar magnetic fields, observations at
high spatial resolution are required over periods of time in
the order of hours. Magnetic structures in the photosphere
have typical diameters of less than 100 km. Although a
telescope with a primary mirror of about 50-cm diameter
is theoretically able to resolve such features, observations
with these resolution are very rare in practice.

The reason is that the Earth’s atmosphere distorts the
image. This well-known effect is due to local variations
in temperature, which affect the index of refraction. This
effect is commonly referred to as seeing. It can also be
observed above the flame of a candle, or above a road on
a sunny day. Figure 1 illustrates the effect. The intensity
distribution of the object is distorted by the atmosphere.
Rays that were initially parallel are affected differently,
and arrive at the telescope via different paths.

The severity of the distortion is usually expressed in
the so-called Fried parameter. The Fried parameter de-
scribes the effective diameter with respect to the reso-
lution of the telescope, i.e., making the primary mirror
larger than the Fried parameter does not allow one to see
smaller structures. The major advantage of a larger mir-

ror is that it collects more light, so that fainter objects
become visible.

There are several ways to reduce the effect of seeing.
One way is to reduce the amount of atmosphere between
the sun and the telescope. Some of the first attempts at
this involved telescopes mounted on balloons, which were
flown to high altitudes. Although the results were not dis-
appointing, the size of the telescope was severely limited
by the weight limit imposed. Furthermore, the duration
of a flight was relatively short. There are several new
projects in development for balloon-mounted telescopes,
claiming long-duration observations with large telescopes.
Of course, the best way of reducing the effect of seeing is
by leaving the Earth’s atmosphere altogether, but building
a space-based telescope is costly. Also, once such a tele-
scope has been launched, servicing it is difficult at best,
and very expensive.

Ground-based observatories are usually built on ele-
vated terrain selected for low atmospheric turbulence and
high seeing quality. Many telescopes are built on extinct
volcanoes at altitudes over 2 km. For example, the Dutch
Open Telescope (DOT), together with a large number of
other telescopes, both solar and night-time, is built on the
Canary Island La Palma at a height of 2350 m. Many more
telescopes are situated on Tenerife at a similar altitude.

Solar telescopes suffer from the high heat flux of the
sun. When a conventional night-time telescope would be
used to observe the sun, the interior would quickly heat up
and produce large amounts of turbulence inside the tele-
scope itself, distorting the image to unacceptable levels.
Classic solar telescopes therefore have most of the optics
in a vacuum. The DOT pioneered an open design, allowing
the strong trade winds on La Palma to continually flush
the primary mirror. In this way the formation of internal

2 A. G. de Wijn: A parallel implementation of speckle image reconstruction October 17, 2002

.

Fig. 1. The effects of seeing. In an ideal situation (left), a tele-
scope records a point source as the diffraction pattern of the
aperture. The atmosphere distorts the image. Bubbles of air
with varying refractive index float through the field of view. In
a long-exposure image (middle), the image of a point source is
a blurry shape much larger than the diffraction limit of even
small telescopes. Short exposures (right) show “speckles,” the
instantaneous result of the effect of the atmosphere on the im-
age.

turbulence is strongly reduced. This design is now being
adopted for several new solar telescopes in development.

Also, there are techniques to reduce the effect of seeing.
A well-known method is adaptive optics, the correction
of the distorted image in real-time by adjustable optical
components, e.g., a deformable mirror. Because this tech-
nology is relatively new, few telescopes have implemented
it. There are several disadvantages to adaptive optics. The
fully corrected image region cannot be larger than the area
over which the atmosphere is coherent, which is usually in
the order of a few arcseconds. This is solved with so-called
multi-conjugate adaptive optics, but as yet such systems
are not used in production environments.

It is also possible to correct an image after it has
been recorded. Extra information on the object recorded
is needed to remove the atmospheric distortions. Phase di-
verse reconstruction requires the recording of two simulta-
neous images of the object with a known phase difference.
One camera is in focus, while another is slightly out of
focus, with the distance between the two cameras known.
Provided the seeing quality is not too bad, it is then pos-
sible to reconstruct the image of the original object in the
focal plane. The Swedish Vacuum Solar Telescope and the

Fig. 2. The single best frame of a burst of 100 images.

German Vacuum Tower Telescope, among others, have
used this method to produce high-quality images of the
sun.

Speckle masking of an image is a stochastic process
to remove seeing effects from observations. In order to re-
construct one image, one needs a large number of images,
called a burst, recorded in a period of time significantly
less than the time in which the recorded object changes.
If the atmospheric conditions are not too bad, it is possible
to find a “most likely original” image, with a resolution
near or at the theoretic limit of the telescope. This form of
image restoration has been used on the DOT since 1999.

It is widely believed that both phase diversity and
speckle masking are valid methods of improving obser-
vation quality. Both methods, though different, produce
similar results. Comparison with observations made dur-
ing superseeing show very similar structures. The ultimate
test will be when Solar-B has been launched and recon-
structed earth observations can be compared with its re-
sults.

Speckle reconstruction is a computationally very in-
tensive process. On the DOT, the reconstruction of a
90-minutes time series at 30-seconds cadence with bursts
of 100 images currently takes about two months on six
dual 600-MHz Intel Pentium III machines. The algorithm
is now implemented in IDL. IDL is an interactive data-
manipulation language. It is an excellent tool for what it
was designed to do, and is widely used in astrophysics. Its
performance is far from poor, but it is not well suited for
situations where performance is paramount, where the im-
plementation does not change rapidly, or where the same
program is used to process large quantities of different
data sets.

The speckle reconstruction as used on the DOT al-
lows for parallelization in several ways. The most simple

October 17, 2002 A. G. de Wijn: A parallel implementation of speckle image reconstruction 3

Fig. 3. The speckle-reconstructed image of the burst of which
Fig. 2 is the single best frame. The improvement in quality is
obvious.

is of course the processing of several bursts at a time.
However, one might desire a quick preview of the area be-
ing observed. Since the reconstruction of one burst now
takes in the order of a few hours, the current setup can-
not provide such a preview. Furthermore, the hardware
requirements are substantial, especially with respect to
memory usage. If the memory usage can be spread over
several machines, a sufficiently powerful system would be
cheaper, while the processing speed would not be reduced
significantly. Therefore, I have sought to parallelize the
reconstruction of a single burst.

2. History

In 2001, to celebrate the 365-th anniversary of Utrecht
University, the Utrecht University Linux Users Group
(UULUG) built a temporary cluster supercomputer from
existing university hardware. While scouting for possible
users of the cluster, the speckle-reconstruction algorithm
was identified to be an excellent application to run on
such a cluster. The reconstruction loop itself requires very
little input data, and produces even less output, while it
requires a large amount of calculations.

Since the DOT team had no one able or willing to
spend time on such a project, I took it onto myself to
rewrite the IDL implementation in C and to parallelize it.
Though not completely finished, the result of my efforts
was run during the demonstration of the cluster on July
9, 2001.

There have been a large number of improvements since
then. The implementation of the preprocessing and the
speckle reconstruction is now finished. The implementa-
tion has been better optimized for use in a parallel envi-

ronment and several improvements over the original IDL
code have been made.

3. Speckle Reconstruction

Any implementation of speckle reconstruction will consist
of at least two parts: the preprocessing and the recon-
struction. Since the reconstruction can only work on an
isoplanatic patch, i.e., a region of the image over which
the atmosphere is coherent, in most cases a third part is
needed to reconnect the reconstructed subimages the size
of an isoplanatic patch.

3.1. Preprocessing

During the preprocessing, the data is prepared for the re-
construction loop. This means that it is corrected for specs
of dust on the optical components near the focal plane,
such as the CCD itself, and dark current from the CCD.
This is commonly referred to as flatfielding and darkfield-
ing, respectively. Errors such as due to telescope guiding
and atmospheric distortions causing large scale displace-
ment must be removed. Also the seeing quality has to be
computed. We now discuss this in more detail.

First, the data must be corrected for CCD and tele-
scope errors. Thermal excitations, e.g., may increase pho-
ton counts on the CCD. To correct for these virtual pho-
tons, a burst is recorded while the CCD shutter is closed,
so no photons from the object of interest reach the CCD.
This is called a darkfield burst. The average image of this
burst is computed and is subtracted from the data.

A speck of dust on the CCD for example will cause a
localized decrease in the intensity whose position on the
CCD will not move. The CCD itself may have different
sensitivity at different positions. In order to correct this,
every recording run, which may last for a few hours, must
include a flatfield burst. A flatfield burst is very similar to
a normal burst, except the telescope is intentionally out
of focus. As a result, all features on the sun are blurred
to such an extent that no structure can be detected. This
means the CCD records an essentially flat image, but with
all telescope errors present. Something like a speck of dust
on the CCD will be clearly visible. The flatfield burst is
summed to produce one flatfield image, and the data is
divided by this image.

Next, residual telescope guiding errors, which are negli-
gible for the DOT due to its excellent mechanical stability,
and large scale motions caused by atmospheric distortions
must be removed. This involves feature tracking to align
the images in the burst. Once that is done, the images in
the burst have to be split up into parts no larger than an
isoplanatic patch. Since distortions on the size of an isopla-
natic patch are not removed by the alignment of the whole
field, these sets of subimages must also be co-aligned.

From these sets of subimages the seeing quality can
be computed. When comparing each subimage in a stack
to the corresponding average subimage, low frequencies
in the spatial domain will be approximately the same,

4 A. G. de Wijn: A parallel implementation of speckle image reconstruction October 17, 2002

while high frequencies will be much reduced in the av-
erage. When the seeing quality becomes better, more high
frequencies will remain. Thus by comparing the ratio be-
tween the two power spectra, and using a model of the
atmosphere, a number indicating the seeing quality, the
modified Fried parameter, can be estimated. The modified
Fried parameter is the Fried parameter divided by the
telescope aperture. From this, the speckle transfer func-
tion (STF) can be computed. This function is also depen-
dent on the telescope aperture. The calculation of the STF
would require the numerical evaluation of a complex four-
dimensional integral, and is not done during the prepro-
cessing. STFs have been precomputed for several values of
the modified Fried parameter, and these are interpolated
at the computed value.

The noise in the measurements must also be computed.
What is computed is the power spectrum of photon noise.
This is done by subtracting the darkfield from the flatfield
burst and dividing the result by the average flatfield im-
age. The result should only contain noise, and no signal.
This burst is split into subimages and the average power
spectrum for each stack is computed. The result is called
the noise power. This quantity can be different in differ-
ent parts of the image, but not by much. Therefore, just
like the average flat- and darkfield images, the noise power
can be computed in advance, and has to be computed only
once per observation run.

3.2. Speckle Masking

At this point all variables needed during the reconstruc-
tion loop are known, and all data required have been pre-
pared. The reconstruction requires one stack of subimages,
the noise power corresponding to that subimage, and the
STF. There is no correlation between subimages, meaning
every stack of subimages can be reconstructed separately.

The fundamental assumption in the speckle-masking
method is that the recorded intensity distribution f of an
object is a convolution of the real, time-independent in-
tensity distribution f0 with a point-spread function PSF .
That is,

f(x, t) = f0(x)⊗ PSF (x, t) , (1)

where ⊗ denotes the convolution. This equation in the
spatial domain has an equivalent in the Fourier domain,

F (q, t) = F0(q) S(q, t) . (2)

For a large number of observations (a burst) made at times
t1, t2, . . . , we have〈

|F (q, t)|2
〉

=
〈
|F0(q) S(q, t)|2

〉
=

|F0(q)|2
〈
|S(q, t)|2

〉
, (3)

where 〈. . . 〉 has been used to indicate the average over
time. Here 〈|S(q, t)|2〉 is known STF (cf. Sect. 3.1).
Transformation back to the spatial domain will yield the
autocorrelation function of f0(x), but not the original ob-
ject. This is known as the Labeyrie method.

In practice, f0 gradually changes with time. This im-
poses a restriction on the time between the first and the
last observation: the time in which the object observed
does not change noticeably, and f0 is approximately time-
invariant.

In order to be able to recreate the original image f0(x),
it is not enough to know the absolute value of the intensity
distribution in the Fourier domain |F0(q)|. The phases
φ(q) in

F0(q) = |F0(q)| eiφ(q), (4)

must also be computed. We will rewrite Eq. 2 in such a
way that the left hand side is known from measurements,
and the right hand side is made up of two factors, one of
which is depends only on the object, and the another one
is real. If this second factor can be computed from other
known quantities such as the telescope aperture and the
seeing quality, the original image can be reconstructed. It
turns out to be useful to multiply the left hand side of
Eq. 2 with F (p, t)F ∗(q + p, t) and the right hand side
with F0(p) F ∗

0 (q + p) S(p, t)S∗(q + p, t). From Eq. 2 it
can easily be seen that these two expressions are equal.
Again averaging over time, we then find

〈F (p, t)F (q, t)F ∗(q + p, t)〉 =
F0(p)F0(q)F ∗

0 (q + p)
× 〈S(p, t)S(q, t)S∗(q + p, t)〉 . (5)

The speckle-masking bispectrum is now defined as

F 3(q,p, t) = F (q, t)F (p, t)F ∗(q + p, t) . (6)

Inserting this into Eq. 5, we find〈
F 3(q,p, t)

〉
= F 3

0 (q,p)
〈
S3(q,p, t)

〉
, (7)

where the last term
〈
S3(q,p)

〉
is called the speckle-

masking transfer function. Detailed analysis by von der
Lühe showed it to be real-valued (von der Lühe 1985),
and thus does not contribute to the phases of F 3

0 (q,p).
We now turn our attention to the phases. Expanding

F 3
0 (q,p) with Eq. 4, one finds

F 3
0 (q,p) = A0(q) A0(p) A0(q + p)

× ei[φ0(q)+φ0(p)−φ0(q+p)] . (8)

Thus, the phases can be computed by solving

eiφ(q+p) = eiφ(q)eiφ(p)eiΦ(q,p), (9)

where Φ(q,p) is the phase of the average bispectrum at
position (q,p). This can be solved recursively, starting
at φ(0) = 0, by making only one assumption about the
coordinate q′ closest to 0. We assume the atmosphere has
no effect on q′. In this case, the phase can be estimated
by averaging the phases of the individual images in the
burst at that point.

Summarizing, one can find the Fourier phases of the
object one by one. Together with the Labeyrie method,
this completely describes the Fourier transform of the ob-
ject, and simple back transformation will give the recon-
structed image of the object in the burst.

October 17, 2002 A. G. de Wijn: A parallel implementation of speckle image reconstruction 5

3.3. Postprocessing

Once all the subimages have been reconstructed, they
must be joined together to form a single large image. The
subimages must be aligned with respect to each other and
to the average recorded image. The average recorded im-
age is obviously quite blurred, but it does represent a long-
exposure image of the recorded object.

4. The Implementations

Currently, the data recorded by the Dutch Open Telescope
in La Palma is reconstructed using an implementation
of the speckle-masking algorithm in IDL, as has been
noted in the Introduction. This implementation was writ-
ten by P. Sütterlin, and is based on an implementation by
C. de Boer.

I have developed an implementation of the speckle-
masking algorithm in C. Large parts of this implemen-
tation are heavily based on the IDL implementation dis-
cussed above. The code was then parallelized using the
MPI message-passing library. The only part not yet imple-
mented in C is the reconnection. The reconnection is the
most fragile part of the whole process. Logical arguments
are not enough to position reconstructed subimages. The
regions of overlap between two subimages, though very
much alike, do not have to be exactly identical. This in-
troduces small errors, in the order of one pixel, in the
positioning of the subimages. The error will most likely
not be noticed in a single image, but in a movie it may
be painfully visible. The reconnection algorithm used for
DOT data is still under development.

The implementation thus only covers the preprocess-
ing and the speckle masking. Starting the preprocess-
ing, images from the burst are distributed as evenly as
possible over all CPUs, while keeping the lowest possi-
ble number of images on CPU 0, since some calculations
are only performed on that CPU. During the preprocess-
ing, the data is split into subimages. Since the speckle
masking requires a full stack for every subimage, the data
is shuffled to distribute the subimage stacks evenly over
all CPUs, again minimizing the number of subimages on
CPU 0. In an example, assume a burst of 100 images of
256 pixels square, and 8 CPUs. First, CPUs 1 through 7
will receive d100/8e = 13 images from the burst, while
CPU 0 will receive 9 images. Every image will consist of
36 subimage stacks, assuming the standard configuration.
This means that during the splitting, CPUs 1 through 7
will get d36/8e = 5 subimage stacks, while CPU 0 will
receive only one subimage stack.

The vast majority of the time is spent in the re-
construction loop. Reconstruction requires a negligible
amount of communication, and scales linearly with the
number of subimages, and thus with the surface size of
the input image. The total time is expected to increase ap-
proximately linearly with the input data size. Also, since
the number of subimages is large (around 280 for the data
that was used in the tests and 1000 for data recorded

with the current cameras), inverse linear scaling is also
expected with respect to the number of CPUs.

The requirements for the speckle masking and the pre-
processing are very different. The preprocessing operates
on the whole burst at once, using an amount of mem-
ory up to seven times the size of the burst, while the
speckle masking operates only on one stack of subimages,
requiring in the order of 10 MB of memory. However, the
speckle masking is much more computationally intensive,
and requires much less communication between CPUs. It
is possible that in the future, the DOT will use a (multi-
processor) system to do the preprocessing, while a cluster
consisting of fast machines without disk storage and with
minimal amounts of memory will handle the reconstruc-
tion, retrieving the data needed from the preprocessing
machine, and returning the reconstructed image. I will in-
vestigate both parts separately.

Figure 4 shows the schematic layout of the implemen-
tation together with estimates on the memory require-
ments. The code assumes the average flat- and darkfield
have been precomputed, together with the noise power,
and have been stored on disk. The program largely fol-
lows the explanation of preprocessing and speckle masking
from Sect. 3.

The implementations introduce one nontrivial param-
eter, Nmd, the masking depth. Usually, it is just too much
work to compute the phases for all possible combinations
of p and q in Eq. 9. The bispectrum and the phases
are computed only for those p and q where ||p − q|| ≤
Nmd. Increasing the masking depth produces more redun-
dant information, which results in a better estimates for
the phases being computed. Thus increasing the masking
depth should result in a better reconstruction.

In order to make quantitative and qualitative predic-
tions about the behavior of the implementation, I estimate
the number of operations required and the time required
for communication between CPUs. The number of non-
floating-point operations is negligible. Operations are split
between “simple” and “complex” operations. Floating-
point additions, subtractions, and multiplications are clas-
sified as simple operations, and one such operation is as-
sumed to take s seconds. All other operations on float-
ing point numbers, most frequently divisions or square
roots, are classified as complex operations, taking c sec-
onds to complete. The bandwidth between CPUs is b float-
ing point numbers per second, l is the network latency in
seconds. Nbi is the number of images in the burst, Nb is
the one-directional size of the data, Nsi is the number of
subimages in one full-field image, Ns is the one-directional
size of a subimage, NCPU is the number of CPUs used, and
Nmd is the masking depth. Obviously, since all subimages
together cover the full-field image, N2

b = α NsiN
2
s , with

α depending on the subimage overlap. For a reasonable
overlap, α ≈ 2.

6 A. G. de Wijn: A parallel implementation of speckle image reconstruction October 17, 2002

START

initialization

generate
norm and gain

average data

track images

track
subimages

split
dataimages

flatfield

io: 100*1296*1030*2 B = 255 MB

correct data
with gain

compute
contrast

burst (509 MB), subimage shifts (800 KB)

burst (509 MB), contrast (400 B)

burst (509 MB)

io: 1296*1030*4 B = 5.1 MB

burst (509 MB), average (5.1 MB), darkfield (5.1 MB)

io: 1296*1030*4 B = 5.1 MB

burst (509 MB), reference (5.1 MB), contrast (400 B)

calculate
STF STF (17 KB)

noisepower

Speckle mask

connect

io: 1000*64*64*4 B = 15.7 MB

reconstructed subimages (15.7 MB)

reconstructed io: 1296*1030*4 B = 5.1 MB

darkfield

burst

burst (509 MB), darkfield (5.1 MB), gain (5.1 MB), norm (4 B)

peak memory usage: 2.02 GB

burst (1.53 GB), in stacks of 100*64*64*4 B = 1.56 MB

END

Fig. 4. The flowchart of the speckle-reconstruction implementation, also indicating the memory requirements, assuming a burst
of 100 images of 1296× 1030 pixels.

For the preprocessing, by analyzing the code by hand,
I find

tcalc,pre = (Nbi + 5 log2 Nb + 16)sN2
b (10)

+ [(5.5 + 8Nbi)s + Nbic + 15N2
s s log2 Ns]Nsi

+ (19.5s + 2.5c)N2
s

+ [(15Nbis log2 Nb + 17.5Nbis + 2c)N2
b

+ (35.5Nbis + 3Nbic)N2
s Nsi

+ 15NbiN
2
s log2 Nss]N−1

CPU ,

tcomm,pre = {NbiN
2
b + N2

s NCPU (11)
+ [2(2 + Nsi + NsiN

2
s)NbiN

−1
CPU

+ 2N2
s + N2

b] log2 NCPU}b−1

+ (Nbi + Nsi + NCPU + 8)l .

October 17, 2002 A. G. de Wijn: A parallel implementation of speckle image reconstruction 7

A similar evaluation of the speckle-masking loop, again
analyzing the code by hand, yields

tcalc,msk = (9.5s + 1.5c)N2
s (12)

+ {(11.75s + 10s log2 Ns + 2.25c)N2
s

+ (14N2
md + 3Nmd + 10 log2 Ns + 6)sN2

s Nbi

+ (16s + 2c)N2
bi

+ π
8 [(8s + c)N4

md

+ (53.5s + 19c)N2
md]N2

s }NsiN
−1
CPU ,

tcomm,msk = Nsi(N2
s b−1 log2 NCPU + l) . (13)

I have assumed that a two-dimensional Fourier transform
of N2 complex data points requires 10N2s log2 N seconds
to complete, and all interprocessor (collective) communi-
cation is implemented ideally.

Assuming reasonable values for the variables this can
be simplified. Typical order-of-magnitude values for the
various parameters are Nbi ∼ 100, Nsi ∼ 103, N2

b ∼ 106,
N2

s ∼ 103, and Nmd ∼ 10. It is also reasonable to assume
that s and c do not differ more than an order of magni-
tude. Using these order-of magnitude estimates, the above
equations reduce to

tcalc,pre = (Nbi + 5 log2 Nb)sN2
b + 15N2

s Nsis log2 Ns (14)
+ (15Nbi log2 NbsN2

b + 35.5NbisN
2
s Nsi)N−1

CPU ,

tcomm,pre = (NbiN
2
b + 2NsiN

2
s NbiN

−1
CPU log2 NCPU)b−1

+ Nsil , (15)

tcalc,msk = (9.5s + 1.5c)N2
s (16)

+ [14sNbi + π
8 (8s + c)N2

md]N2
mdN2

s NsiN
−1
CPU ,

tcomm,msk = Nsi(N2
s b−1 log2 NCPU + l) . (17)

5. Test Results

It is of interest to investigate the performance of the im-
plementation presented here, also in comparison with the
IDL implementation. We will present data regarding speed
for both implementations and the scaling of the parallel C
implementation will be investigated on various platforms.
In order for the numbers presented here to be representa-
tive for the production environment, machines similar to
those in use on La Palma were used wherever possible.

In all these cases Nmd = 9, Nbi = 100, and Ns = 64.

5.1. IDL

The benchmarks presented here were performed on a dual
450-MHz Pentium II. This machine resembles the ma-
chines used on La Palma. The IDL implementation uses
a lot of intermediate storage. All data files are stored
in XDR format to allow for cross-platform compatibility.
During the tests it was discovered that this introduced

quite some overhead, and the code was promptly changed
to allow for non-XDR format intermediate storage.

For a burst of 100 images of 768× 572 pixels, the pre-
processing took roughly 600 s when not using the XDR
format. Writing in XDR results in 135 s of additional over-
head when storing in little-endian format and 170 s when
storing in big-endian format.

Only ten of the 280 subimages were reconstructed.
This took 558 s. If all subimages were to be reconstructed,
it would take 15612 s. This means that 96% of the time is
spent in the main reconstruction loop.

5.2. Sequential C

In order to compare the C code with the IDL code, a com-
plete run was timed on the same machine as the IDL code
was timed on. In total, the reconstruction took 7025 s.
Thus, overall, the C code is 2.3 times as fast as the IDL
code when running on a single CPU.

Table 1 shows a comparisons between the various func-
tions in the preprocessing in IDL and C. Most functions
show a speed increase by a factor of 2, roughly. The only
large difference is in the image-tracking routine, which
shows a speed increase by a factor of 30. This probably
is a result of the highly sub-optimal Fourier transforms
in IDL in combination with a smoothing function to re-
move large structures. The latter has been replaced with
a simple and cheap Fourier filter in the C implementation.

More tests were run on a 1200-MHz Athlon. The im-
plementation uses the Fourier transform library FFTW,
of which a special optimized version exists for the Athlon
CPU. I have run the program with this optimized li-
brary, timing the preprocessing and the reconstruction.
The times for startup and initialization are not included.
Figure 5 shows the behavior of the code. The curve in the
figure represents linear scaling with respect to the data
surface size, and it seems to fit well. The points are not
exactly on the curve, since the number of subimages is
discrete. This can most clearly be seen from the diamond
at 400 pixels and the circle at 448 pixels. These input data
sizes produce the same number of subimages. This effect
introduces larger errors as the input data size goes up.
When going from, for instance, six to seven subimages in
both directions, the relative increase is larger than when
going from eight to nine, but the absolute difference is
smaller. Note that the diamonds and circles are on the
same curve, indicating that Fourier transforms of arrays
whose size is not a power of two do not slow down the
computation much. This is in agreement with the model,
which shows that the contribution of Fourier transforms
is small.

The dashed curve in Fig. 5 is the scaling as predicted
by the model. Though it shows the same behavior as
the measurements, for large images its predictions are
50% off. This is contributed to cache effects. The CPU
benchmarks on the Athlon show that the time required
for one operation increases by a factor of 4 if the data

8 A. G. de Wijn: A parallel implementation of speckle image reconstruction October 17, 2002

function C IDL factor

data correction, computation of the contrast, norm, and gain 20.9 s 32.8 s 1.6
image tracking 4.3 s 126.0 s 29.3
subimage tracking, splitting and noise power computation 160.5 s 356.8 s 2.2
computation of the STF 37.3 s 77.3 s 2.1

Table 1. The comparison of specific parts of the preprocessing in C and IDL. Most functions show a speed increase by a factor
of roughly 2, with the notable exception of the image tracking. The discrepancy is attributed to much faster Fourier transforms
and the replacement of a smoothing function with a Fourier filter.

size increases somewhat beyond the cache size. I find
s ≈ c ≈ 2.4 × 10−8 s for data sizes much larger than
the cache size, and s ≈ c ≈ 7.1 × 10−9 s for data sizes
smaller than the cache size. The dashed curve was drawn
assuming that during the preprocessing the data is not in
cache, and that it is during the masking. Filling in the
known quantities in Eqs. 10 and 12 I find

t = 0.92 s + 1.6× 10−3N2
b s

+ 3.8× 10−5N2
b log2 Nb s . (18)

This also assumes a ratio of 2.25 between N2
s Nsi and N2

b . It
must be noted that the last term only becomes significant
when log2 Nb ≈ 45. This implies an image size of some
1013 pixels square, and thus the last term can be safely
disregarded.

The two dotted curves are similar predictions as the
dashed curve. The top curve assumes both the masking
and the preprocessing are not in cache, while the bottom
curve assumes both are in cache. It is difficult to say how
much of the masking loop is in cache and how much isn’t.
Closer inspection of the code indicates arrays that don’t fit
in the Athlon’s cache are used. This means the expected
time spent is somewhere between the top dotted curve and
the dashed curve. The measurements are indeed within
these boundaries.

5.3. Parallel C

The parallel code was tested on a Beowulf cluster con-
sisting of sixteen 180-MHz Pentium Pro based machines,
connected with a 100-Mbit Ethernet. These machines were
used for educational purposes before they were installed
as cluster computer. Though not very powerful, this sys-
tem was a very useful tool during the development of the
code. This system is, however, not a good representation
of the setup currently on La Palma, nor will it ever be. But
benchmarks on this machine will still show the strengths
and weaknesses of the implementation.

In order to compare the measurements with the model,
the values of s, c, b and l must be known. I have timed
simple and complex operations on data similar in size to
the data used in these experiments. I find s ≈ 7.8×10−8 s,
c ≈ 3.6 × 10−7 s. I find b ≈ 106 floats/s with a latency
of l ≈ 0.6 ms. Benchmarks of the MPI implementation
MPICH, which was used, showed non-log2 NCPU behavior

Fig. 5. The behavior of the code as a function of the input
data size. The size of the sides of the input data is plotted hor-
izontally. The data is a square of the indicated size. Circles are
with the input data a multiple of 64 pixels, while diamonds are
at multiples of 50 pixels. The curve drawn through the points
indicates linear scaling with the data surface size, y = αx2.
The dashed curve represents the predictions of the paralleliza-
tion model, Eq. 18. The dotted curves are also predictions of
the model, making different assumptions about cache effects
than the dashed curve.

for gather and allgather collective communication. It
is expected that the preprocessing will scale to a larger
number of CPUs if this is remedied.

To be able to test the implementation on a large range
of CPUs with the same data set, the input data size was
limited to 256 pixels square because of memory require-
ments. Figure 6 shows the behavior. The dashed line is
the scaling as predicted by the model. With Eqs. 10, 11,
12 and 13 the predicted relation is found to be the sum of

tpre = 7.48 s + 126N−1
CPU s + 4.70× 10−3NCPU s

+ 7.37× 10−2 log2 NCPU s

+ 14.8N−1
CPU log2 NCPU s , (19)

October 17, 2002 A. G. de Wijn: A parallel implementation of speckle image reconstruction 9

Fig. 6. The behavior of the code on a cluster computer consist-
ing of sixteen 180-MHz Pentium Pro machines with switched
100-Mbit Ethernet interconnects, using 256-pixel square input
data. The solid curve indicates inverse linear scaling with re-
spect to the number of CPUs, and seems to fit quite well in
the cases where the number of subimages can be spread al-
most evenly over all CPUs. The dashed curve indicates what
is expected from the parallelization model, Eqs. 19 and 20. The
dotted stepfunction is given by Eq. 21.

and

tmsk = 2.68× 10−2 s + 1767N−1
CPU s
+ 0.15 log2 NCPU s . (20)

The stepping behavior can easily be explained by the
fixed number of subimages. In this case, there are 36
subimages. At 12 CPUs, there are d36/12e = 3 subim-
ages per CPU. At 16 CPUs, there are still d36/16e = 3
subimages on several, but not all, CPUs. This means that
the reconstruction loop takes the same amount of time.
Since the contribution of the preprocessing is minimal,
the speed difference between 12–16 CPUs is not measur-
able. In fact, since the preprocessing and communication
do not much contribute to the total time, a stepfunction
should be able to fit the data quite well. The dotted line
in the figure is the figure is the curve

t = 12.9 s + 41.3d36/NCPUe s . (21)

It must be noted that the effect is very pronounced here
because of the limited memory capacity of the machines.
As the ratio between the number of subimages and the
number of CPUs increases, the effect will become less no-
ticeable. Since the number of subimages is around 103

for an image recorded with the current cameras, this ef-
fect should remain hardly noticeable while the number of
CPUs is under a few hundred.

Fig. 7. The behavior of the code on a cluster computer consist-
ing of sixteen 180-MHz Pentium Pro machines with switched
100-Mbit Ethernet interconnects, using 512-pixel square in-
put data, Eqs. 22 and 23. The dotted stepfunction is given
by Eq. 24.

These measurements indicate the preprocessing on this
machine with this data size is not expected to scale beyond
20 CPUs. The model indicates that the speckle-masking
loop is expected to scale to 105 CPUs, assuming there are
sufficient subimage stacks.

For larger input data sizes, the model overestimates
the time required on this machine. Figure 7 shows the
comparison between model and measurements for input
data of 512 pixels square. The dashed line is again the
model, and it is given by the sum of

tpre = 29.8 s + 577N−1
CPU s + 4.70× 10−3NCPU s

+ 0.27 log2 NCPU s + 69.3N−1
CPU log2 NCPU s , (22)

and

tmsk = 0.11 s + 8293N−1
CPU s + 0.96 log2 NCPU s . (23)

The stepping effect is again clearly visible. The dotted
line is given by

t = 26.7 s + 42.8d169/NCPUe s , (24)

where 169 is the number of subimages for this image size.
For this input data size, the preprocessing again does

not scale well beyond 20 CPUs. This is not unexpected,
since both the computation and the bulk of the communi-
cation scale linearly with the input data size. Again, the
speckle masking is expected to scale well up to the limit
imposed by the number of subimage stacks.

10 A. G. de Wijn: A parallel implementation of speckle image reconstruction October 17, 2002

6. Conclusions

The C implementation shows a definite speed increase
as compared to the IDL implementation. On the same
hardware, the C version delivers roughly twice the perfor-
mance. The implementation also shows that the speckle
masking itself can be run in parallel on a large number
of CPUs. The preprocessing of the data does not scale as
well. Both parts of the reconstruction do behave similar to
what the theoretical model derived from the code predicts.

Measurements on the Pentium Pro cluster indicate
that on that cluster the preprocessing does not scale be-
yond 20 CPUs. Assuming the network performance re-
mains the same, on a cluster of Athlons such as the one
benchmarked the preprocessing will not scale much be-
yond 2 or 3 CPUs. Using conservative estimates, the model
indicates the masking loop will scale well on a cluster of
Athlons up to 100 CPUs.

Since the preprocessing does not scale as well and
the hardware requirements for the preprocessing and the
masking are very different, a large cluster of homogeneous
hardware is obviously not the correct choice of reconstruc-
tion farm for the DOT. Most likely a system consisting
of several sets of a multiprocessor machine for the pre-
processing in conjunction with several possibly diskless,
fast machines with little memory would be the system of
choice. The number of masking nodes per preprocessing
node is hardware dependent and should be investigated
on a case-by-case basis. For the Pentium Pro cluster, the
ratio would be approximately one preprocessing machine
for twenty masking nodes. For use on this kind of system
the code will have to be adapted to a master-slave system,
but this should not be very difficult. The number of such
sets of machines desired depends on the amount of input
data and the time constraints on its processing. Several of
these systems would provide a fast masking pipeline that
would greatly increase the scientific potential of the DOT.

Acknowledgements. I would like to thank the DOT team,
R. Hammerschlag, F. Bettonvil, R.J. Rutten, and P. Sütterlin,
for the support they have given this project. P. Sütterlin in par-
ticular deserves mention for many useful discussions regarding
speckle masking. I have benefited much from A. van der Steen’s
guidance and extensive knowledge on parallel processing.

References

de Boer, C. R. 1993, Ph.D. Thesis
Lohmann, A. W., Weigelt, G., & Wirnitzer, B. 1983,

Appl. Opt., 22, 4028
von der Lühe, O. 1985, A&A, 150, 229
Weigelt, G. P. 1977, Optics Communications, 21, 55

