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Chapter 1

Getting Started

1.1 VALIII Atmosphere

We consider the temperature structure of a VALIII atmosphere. VALIII atmospheric param-
eters can be found at http://www.astro.uu.nl/~dwijn/teaching/afyc/.

1.1 Copy the files valiii.txt and valiii_rw.pro to your home-directory and read it by
running VALIII_READ in valiii_rw.pro. Which variables did you restore from the file?

1.2 Make a plot of temperature as a function of height. Specify an x-range from 2500 to
−500 km and a logarithmic y-axis. Add titles to the axes, expressing the temperature
in reasonable units.

1.3 What is the minimum temperature?

1.4 Determine the height where the temperature is minimal, using the WHERE statement.
Indicate this height in your figure with the command OPLOT. Indicate photosphere,
chromosphere and corona in your plot.

1.5 What’s the corona’s temperature range?

1.2 Ca II K line

A strong line in the chromosphere is the Ca II K line (3933 Å). Why we can observe the
chromosphere (and the photosphere) in this line will become clear throughout this course.

The Ca II K line is used often to trace magnetic flux tubes from the photosphere to
the chromosphere and higher altitudes. The line does not discriminate between magnetic
polarity. An example of an observation is available in caiik.txt in http://www.astro.uu.

nl/~dwijn/teaching/afyc/.

Figure 1.1 shows an image from the same sequence of observations in Ca II K, and a Kitt
Peak magnetogram, taken at the same time.

1.6 Copy this file and the program caiik_rw.pro.

1.7 What are the dimensions of the image (in pixels)? Show the image on your screen.
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Figure 1.1: Upper panel: Ca II K filtergram, remapped to disk center, observed at 17:30 UT
on Dec 21, 1994. The horizontal and vertical axes are aligned with the E–W and N–S
directions, respectively. The dashed line represents the equator. Lower panel: Remapped
NSO/Kitt Peak magnetogram corresponding to the region analyzed in the Ca II K image
sequence. The full-disk magnetogram from which this field was extracted was observed on
Dec 21, 1994, between 17:01:22 and 17:56:01 UT. The remapping procedure developed for the
Ca II K filtergrams was also used on this magnetogram.

1.8 This observation has been recorded on a CCD, from the geographic south pole in De-
cember 1994. Besides two active regions of enhanced magnetic field or plage, the chro-
mospheric network is visible.

1.9 The pixels of the CCD are 1550 × 1550 km2. Express this in arc-seconds.
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1.10 What are the dimensions of the image in km and in heliographic degrees? Assume the
sun has a radius of 6.96 × 108 m.

The contrast of the image is very low. To determine the minimum and maximum brightness
you can use the IDL commands MIN(image) and MAX(image).

1.11 Plot the histogram of brightnesses y0 with the IDL function y0=HISTOGRAM(image).
How many elements has y0?

1.12 Now define y1=HISTOGRAM(image,min=0). How many elements has y1? Can you ex-
plain the difference?

1.13 What is the most occurring value? Determine this automatically with the WHERE state-
ment in combination with HISTOGRAM(image,min=0).

The applied filter transmits a 1 nm bandpass centered on the Ca II K line. The line-center
is chromospheric, the wings are photospheric. Fluctuations in the photospheric component
in time and space have been filtered out so that the remaining component is homogeneous.
This component contributes a constant brightness in each pixel.

1.14 Consider every signal below the threshold value 1970 as photospheric. Show a thresh-

olded image on your screen. Vary the threshold until you think the contrast is optimal.

1.15 The chromospheric network is found to correspond to the boundaries of convection cells
(i.e., centers of upflow and cell boundaries, where the gas flows down) that can be
recognized in the photosphere: the supergranulation. Can you recognize some of these
cells? Estimate the order of size of these supergranular cells.
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Chapter 2

The Inversion Problem

From Lecture Notes by Phil Judge, Summer School on Radiative Transfer and Radiation

Hydrodynamics, Institute of Theoretical Astrophysics, Oslo, 1995.

In this exercise we construct a line profile in a simple but realistic model atmosphere and then
compute emergent intensities. Next we assume the intensity is given and try to reconstruct
the temperature profile of the atmosphere.

2.1 Gray Atmosphere

A Milne-Eddington atmosphere is an atmosphere in which radiative equilibrium is valid. We
assume gray opacities, LTE for the source function and use the Eddington approximation to
find

T 4(τ) =
3

4
T 4

eff

(

τ +
2

3

)

, (2.1)

S(τ) = J(τ) = B(τ) =
σR

π
T 4 , (2.2)

where Teff = 5770 K and σR = 5.67 × 105 erg cm−2 sec−1 deg−4.

2.1 Construct an array of 51 gray optical depth points distributed logarithmically uniform
between τ = 10−4 and τ = 10.

2.2 Define T (τ) and S(τ) as functions of τ .

2.3 Plot S as a function of τ .

2.2 Line Profile

2.4 Define a frequency variable y describing the distance in Doppler widths from line center,
varying from −5, −4.5, −4, . . ., 5. Use φ(y) = e−y2

for the Doppler line profile function
normalized to unity at line center.

2.5 Plot the profile function.
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The non-gray optical depth is now defined as

τ2(x, y) = 10φ(y) τ(x) + τ(x)

=
(

10φ(y) + 1
)

τ(x) , (2.3)

so that the opacity in the line center (at y = 0) is eleven times greater than the gray opacity
τ(x).

2.6 In IDL, define a matrix tau2 containing the non-gray optical depth.

2.7 What is the formal integral solution of the transport equation

dIν

dτν
= Iν − Sν (2.4)

for the emergent intensity?

2.8 Write the integral equation as a summation of differences1.

Remember, we assume that the source function depends on temperature and gray optical
depth only, and is frequency-independent.

2.9 Derive the general form

I = K S , (2.6)

where I is the denoting emergent intensity as a function of frequency, S is the source
function as a function of depth, and K is the so-called kernel matrix.

2.10 Compute the emergent intensity as a function of frequency. Plot I as a function of
frequency.

2.3 The Eddington-Barbier Approximation

In this exercise we pretend that the source function is unknown (as in real life) and that all we
know is the outgoing surface intensity. We want to find the source function from the intensity
and Eq. 2.6. A first approximation is the Eddington-Barbier relation:

Sν(τν = µ) ≈ I+
ν (τν = 0, µ) , (2.7)

which is exact when Sν varies linearly with τν . Here we assume µ = 1 so that Sν(τν = 1) ≈
I+
ν (τν = 0).

τ2 is a function of gray optical depth τ and frequency φ. If we look at a certain gray
optical depth τ there might be a frequency φ for which the corresponding line optical depth
τ2(τ, φ) ≈ 1.

1Use:

∆τ2(x, y) ≈

dτ2(x, y)

dτ (x)

dτ (x)

d log
10

τ (x)
∆ (log

10
τ (x))

= (10 φ(y) + 1) τ (x) log
e
(10) ∆ = log

e
(10) τ2(x, y)∆ , (2.5)

where ∆ = ∆ (log
10

τ (x)) = 0.1 is constant.
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2.11 Find this frequency for each individual gray optical depth if possible. For the ap-
proximation, assume any τ2 between 0.5 and 1.5 is valid2. What is the corresponding
emerging intensity at this frequency? There are two frequencies because the line profile
is symmetric. Take the lower frequency.

2.12 Our source function is gray and only depends on the continuum optical depth τ . Apply
the Eddington-Barbier relation and plot the gray optical scale depth against the derived
source function, in units of 1020 erg cm−2. Overplot the original source function. Add
titles to the axes with the correct units, and save your plot as a postscript file.

The emerging intensity across the line profile originates from different depths. If we
consider the intensity at a certain frequency ν, we know this intensity roughly equals the
source function at a line optical depth τν = 1, with a corresponding continuum optical depth
τ . The gray source function at this gray optical depth is representative for the emerging
intensity.

2.4 Inversion

Another way to derive the source function from the emerging intensity is by inversion of
relation 2.6. However, because K is not a square matrix it has no inverse. We circumvent
this problem by multiplying both sides of Eq. 2.6 with the transpose of K, KT. The matrix
KT K is square and invertible.

2.13 Express S in terms of K and I and perform this calculation in IDL. Use the standard
IDL functions TRANSPOSE and INVERT.

2.14 Is multiplying with KT the only possibility in order to get a square matrix, i.e., is the
solution unique?

2.15 Plot the ‘inverted’ source function over the original source function and explain the
difference.

2You might use something that looks like
; the y index (of phi) we are searching for

yind=INTARR(51)

; create difference matrix with absolute difference between tau2 and 1

tau1=ABS(tau2-1)

; check for all 51 tau-indices where the difference matrix is at minimum

; and less then .5 (thus between .5 and 1.5)

FOR i=0,50 DO $

yind[i]= MIN(WHERE((tau1[i,*] EQ $

MIN(tau1[i,*])) AND $

(tau1[i,*] LT .5)))

; take only tau indices where you found frequencies

tauind=WHERE(yind GE 0)

; take tau’s for which you found a frequency

foundtau=tau(tauind)

; take intensity at the corresponding frequency

sedd=int(yind(tauind))

; plot the ’found’ source function as function of ’found’ tau

PLOT,foundtau,sedd,/PSYM
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We see that small errors in I can give rise to high frequency instabilities in the solution.
The problem with the obtained solution is that it is not unique: K could be multiplied by
any matrix with the same dimensions as KT, and the amount of information contained in
the resulting square matrix is limited to the number of independent measurements. A whole
family of results is possible. The results may look very instable and have large fluctuations,
which is caused by a lack of data. An optimum inversion depends on the properties of the
unknown solution, which can not be determined from the data alone (see Craig & Brown,
1986, Inverse Problems in Astronomy, Adam Hilger Ltd, Bristol, UK).

2.5 Regularization

In the method of regularization the extra information required to stabilize the inversion is
introduced by way of forcing an arbitrary ‘smoothness condition’ on the source function,
requiring that HS is minimal, with H some suitable chosen linear operator. To accept a
found S as a good solution we also want the difference between KS and I to be minimal.
The original ill-posed problem KS = I is thus replaced by the minimization of

‖KS − I‖2 + λ ‖HS‖2 , (2.8)

where λ is a positive regularization parameter. However we can still choose H freely and
thus find many possible solutions. A suggested choosing for H is to minimize the norm of
the second derivative so that HS = S′′. This choice is very natural since by considering only
the most smooth function (hence the name ‘smoothness condition’) we ignore oscillatory or
discontinuous solutions. This yields

‖KS − I‖2 + λ ‖S′′‖2 = minimal . (2.9)

For a Euclidean vector norm a discretized approximation to Eq. 2.9 is given by

m
∑

i=1





n
∑

j=1

Kij Sj − Ii





2

+ λ

n
∑

j=1

(Sj+1 − 2Sj + Sj−1)
2 = minimal . (2.10)

with S′′ replaced by second order differences (see Lecture Notes). Differentiating Eq. 2.10
with respect to Sk and expressing the result in matrix form yields

(

KT K
)

S−KT I + λHS = 0 , (2.11)

where some constants have been included into λ. The regularization matrix H can now be
determined since

∂

∂Sk

n
∑

j=1

(Sj+1 − 2Sj + Sj−1)
2 = λHS (2.12)
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For k = 1, 2, n − 1 and n, end conditions apply, so that

∂

∂S1
(S3 − 2S2 + S1)

2 = 2(S3 − 2S2 + S1) k = 1 , (2.13)

∂

∂S2

[

(S3 − 2S2 + S1)
2 + (S4 − 2S3 + S2)

2
]

=

2 (S4 − 4S3 + 5S2 − 2S1) k = 2 , (2.14)

∂

∂Sn−1

[

(Sn − 2Sn−1 + Sn−2)
2 + (Sn−1 − 2Sn−2 + Sn−3)

2
]

=

2(−2Sn + 5Sn−1 − 4Sn−2 + Sn−3) k = n − 1 , (2.15)

∂

∂Sn
(Sn − 2Sn−1 + Sn−2)

2 = 2(Sn − 2Sn−1 + Sn−2) k = n , (2.16)

while for 2 ≤ k ≤ n − 1 we have

∂

∂Sk

[

(Sk − 2Sk−1 + Sk−2)
2 + (Sk+1 − 2Sk + Sk−1)

2 + (Sk+2 − 2Sk+1 + Sk)
2
]

=

2(Sk+2 − 4Sk+1 + 6Sk − 4Sk−1 + Sk−2) . (2.17)

2.16 Write down the regularization matrix H and write an IDL procedure that returns H as
a function of its dimension.

2.17 Invert the regularized matrix KT K + λH in your IDL program. Vary λ from 8 × 10−5

to 8 × 10−4 and find the best value for λ (e.g., through the χ2-method).

2.18 Plot the real source function against τ and then overplot the inverted source functions.

2.19 Repeat this exercise twice, adding 1% and 10% random noise of to each intensity.
Comment upon the three solutions obtained. What is the effect of adding some noise
to the ‘data’? Finally, think about what we needed to impose on the inverted solutions
in order simply to obtain any inverted solution at all.
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Chapter 3

The Newton-Raphson Method

In this exercise we study the Newton-Raphson method. This method is based on Taylor
expansion

f(x) =
∞

∑

n=0

1

n!
f (n)(x0) (x − x0)

n

= f(x0) +
∂f

∂x
(x0) (x − x0) + O

(

(x − x0)
2
)

, (3.1)

where f (n)(x0) denotes the n-th derivative of f(x) evaluated in x0. To first order, this yields

f(x) − f(x0) ≈
∂f

∂x
(x0) (x − x0) , (3.2)

or

f(x0 + δx) − f(x0) ≈
∂f

∂x
(x0) δx0 . (3.3)

Suppose we have a first estimate x0 for a certain solution of f(x) = C and we want to find
δx for which f(x0 + δx) approaches C. Substitution of C in Eq. 3.3 yields

C − f(x0) ≈
∂f

∂x
(x0) δx0 , (3.4)

so that, to first order,

δx0 =
C − f(x0)

∂f
∂x

(x0)
. (3.5)

Now we have a second estimate x1 = x0 + δx. Iterating yields a δx1 such that

x2 = x1 + δx1

= x1 +
C − f(x1)

∂f
∂x

(x1)
. (3.6)

In many cases the estimate converges to a stable solution after several iterations. For example,
take f(x) = x2. Suppose we want to know the solution x for f(x) = 2, which is of course
x =

√
2 ≈ 1.414213562. We start with a rough estimate x0 = 1.

3.1 Use the Newton-Raphson method to calculate
√

2 up to the 5th decimal. How many
iterations do you need?
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3.2 Now start with a first estimate not even close to
√

2, for example x0 = 100. How many
steps do you need in this case to approach the real value up to the 5th decimal?

3.3 Repeat this exercise for two values of x0 < 0. What happens and why? Can you think
of a way to solve this?

3.4 A classic example in chaos theory is the application of Newton’s method to find the
roots of x4 = 1. How many solutions are there in the complex space? Write down
Eq. 3.5 for this function.

Now consider the whole complex space. We start with a first guess x0 = a+b i, for the solution
of x4 = 1. This point can be represented in a plane with (x, y) = (a, b). In newt_raphs.pro,
which is available from http://www.astro.uu.nl/~dwijn/teaching/afyc/, you find a pro-
cedure to calculate the values of each point in the complex plane after several iterations.

3.5 Copy this procedure and, after studying and understanding the code, run it. The
procedure pauses every 5 iterations and draws those points that have converged to one
of the exact solutions1. The color of each point corresponds to the solution to which it
converges.

3.6 Change the procedure so that the number of points and the range for which the result
is plotted are variable.

3.7 Look only at one quadrant, and study it using a finer grid. Is the result unexpected?
What happens if you ‘zoom in’ again and take an even finer grid?

The Newton-Raphson method is very powerful: the number of decimals usually doubles
with every iteration. For higher-order polynomials, especially those with multiple complex
solutions, the situation is far more complicated. Intuitively one expects a first estimate x0

to converge to the closest solution, so that two points infinitesimally close to one another
converge to the same solution. In reality this is not true. We have seen that two very close
points in complex space can behave extremely different. Some points converge to one of the
solutions after a small number of iterations, while others seem to jump around randomly or
even end in a loop and never reach a solution. This is one of the subjects of chaos theory. A
nice fractal picture of the behavior of complex space under a Newton approximation of the
function in the exercise can be found in J. Gleick, 1987, Chaos: making a new science, Viking,
New York. The point we make here is that the Newton approximation is very useful, but we
should be aware of possible nonlinear effects.

1Note that the number of steps depends on the accurateness of IDL. Even though the procedure uses
double-precision variables, the precision is finite. Values close to a solution will be found as converged to a
that solution.
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Chapter 4

The Feautrier Method

4.1 Feautrier Method by hand

In this exercise we apply the Feautrier method by hand, to become familiar with this method
to solve the transport equation.

In static, plane-parallel media the transfer equation can easily be put into the Feautrier
form

d2P

dτ2
= P − S , (4.1)

where S is the source function, P = 1
2 (I+

ν (τ, µ)+I−ν (τ, µ)) and τ is the monochromatic optical
depth along a ray at angle µ.

4.1 Write Eq. 4.1 as a difference equation. Assume a homogeneous distribution of τi, i.e.,
∆τi+ 1

2

= τi+1 − τi = δ.

4.2 Write the first-order difference equation for boundary conditions τ ≈ 0 and τ � 1 (see
Lecture Notes).

4.3 Express P1 in P2 (and P2 in P3 if you have time left) and see that the equations for Pi

become complicated. This method can however easily be applied with a computer.

4.2 Feautrier Program

Straightforward discretization of the transfer equation for an optical depth grid τi = 1, . . . , n,
leads to the tridiagonal system (see Lecture Notes)

−Ai Pi−1 + Bi Pi − Ci Pi+1 = Si . (4.2)

The coefficients for i = 1 and i = n depend on the chosen boundary conditions.

We use IDL to evaluate monochromatic intensities I+ and I− and emergent intensity along
a ray with given optical depth. The IDL function in feautrier.pro by Han Uitenbroek (1991)
(from http://www.astro.uu.nl/~dwijn/teaching/afyc/) follows a second order Feautrier
method and a bidiagonal system, described below.
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The program introduces auxiliary variables Ki, Fi, and Zi in order to preserve numerical
precision1 (see Appendix A of G.B. Rybicki & D.G. Hummer, 1991, A&A 245, 171–181 and
next section). The discretized transport equation is transformed into a bidiagonal system
that can be solved iteratively

Pi = (1 + Fi)
−1Pi+1 + Zi . (4.3)

A simple improvement to first-order boundary conditions can increase accuracy by a factor
up to 40, by taking into account second-order terms (see L. Auer, 1967, ApJ 150, L53–55).
Instead of the upper boundary condition for τ � 1,

dP

dτ
(τ0) = P (τ0) , (4.4)

we use a second order Taylor approximation for P1.

4.4 Give this second order Taylor approximation if you consider P1 to be P0 with a small
deviation. Then express P ′

0 and P ′′

0 in I−0 and S0 (see Lecture Notes), so that P1 can
be expressed in I−0 , S0 and P0.

In the IDL program2 the quantities R0 (r0), H0 (h0), Rn (rn), and Hn (hn) represent the
boundary conditions at respectively τ(0) and τ(n − 1). The values depend on the geometry
of the problem you want to solve and the illumination at τ = τ(0) and τ = τ(n − 1).

R0 and H0 dictate I−0 , the ingoing intensity I−0 = R0 I+
0 + H0, at τ(0), i.e., at the first

grid point. With P0 = 1
2 (I+

0 + I−0 ), we can eliminate I+
0 and find

I−0 =
2R0 P0 + H0

1 + R0
. (4.5)

Equivalently, Rn and Hn dictate I+
n , the outgoing intensity at the last grid point τ(n−1),

I+
n = Rn I−n + Hn.

4.5 Follow the same argumentation as above and express I−

n in Pn,Hn and Rn.

Assume the radiation is thermalized and isotropic at the deepest point in a half-infinite plane-
parallel space.

4.6 What does this mean for I+ and I− at the deepest point τ(n − 1)? What are Rn and
Hn in this case?

4.7 What are R0 and H0 if the medium is illuminated at τ = τ(0) with illumination Iill?

If the slab is symmetrical with the same illumination at both sides, it is only necessary to
consider half of the slab, and assume the middle of the layer is at τ(n − 1).

4.8 What does this mean for Hn and Rn?

4.9 Use the optical depth scale and source function from Sect. 2.4. Use the Feautrier
program to determine the emergent intensity for a half-infinite isotropic layer without
illumination.

4.10 Why is the emergent intensity computed with the Feautrier program not equal to I +(0)?

1Small optical depth increments ∆τ can cause numerical problems in the Bi coefficient when the first term
becomes lost to machine precision compared to the second term, which is of order ∆τ−2.

2The R used in this program is not the R used in the Lecture Notes.
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Chapter 5

Λ-Iteration

The Laplace transform of the formal solution of the transfer equation defines the Λ-operator
(see Lecture Notes). In the following exercises, the transfer equation is solved by Λ-iteration
with the Feautrier method as a Λ-operator.

5.1 Angle-Quadrature

In the previous exercise the Feautrier transport equation

µ2 d2P (τ, µ)

dτ2
= P (τ, µ) − S(τ) , (5.1)

with τ the monochromatic optical depth along a ray at a certain angle µ, had the form

d2P (τ)

dτ2
= P (τ) − S(τ) . (5.2)

5.1 Which transformation, taking different angles into account, changes τ such that the
Feautrier transport equation 5.2 returns the solution of Eq. 5.1? Remember that the
source function only depends on depth.

The quantity P = 1
2 [I(τ, µ) + I(τ,−µ)] is J -like in character: numerical integration gives

J(τ) from P (τ, µ) if the latter is known for a set of m outward directions µj ,

J(τ) =

∫ 1

0
P (τ, µ)dµ ≈

m
∑

j=1

ajP (τ, µj) , (5.3)

where aj are the numerical integration weights. If we find P for an appropriate number of
angles µ, we can numerically calculate J.

We write the summation in Eq. 5.3 as a closed Newton-Cotes 5-point quadrature, Bode’s

rule,

∫ x5

x1

f(x)dx = h

[

14

45
f(x1) +

64

45
f(x2) +

24

45
f(x3) +

64

45
f(x4) +

14

45
f(x5)

]

+

O
(

h7f (6)
)

, (5.4)

where x1, . . ., x5 are equally spaced.
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5.2 Write down Eq 5.3 using Bode’s rule.

5.3 Write an IDL subroutine QUADRATURE with output a and µ. In order to avoid aiµi = 0,
take 0.05 ≤ µ ≤ 0.95 with homogeneously distributed µi. Normalize so that

∫ 1
0 µdµ =

∑m
1 aiµi

1.

5.2 Λ-Matrix

An alternative for the previously defined integration scheme

−AiPi−1 + BiPi − CiPi+1 = Si , (5.5)

is the bidiagonal system

Pi = (1 + Fi)
−1Pi+1 + Zi Pn = 0 , (5.6)

where the elimination scheme is

Fi =

(

Ki +
AiFi−1

1 + Fi−1

)

1

Ci

, (5.7)

F0 =
K0

C0
, (5.8)

Zi =
Si + AiZi−1

Ci(1 + Fi)
, (5.9)

Z0 =
S0

B0
, (5.10)

with Ki = −Ai + Bi − Ci.

5.4 Express Z as a vector given by Z = XS, i.e., a matrix multiplication of a certain
matrix Xij and the source function. Use the above elimination scheme. Determine the
exact expressions for the first three rows of the matrix Xij , starting with the boundary
condition for Z0.

5.5 Express the discretized transport equation in terms of a matrix T and the vectors P

and S, and give an expression for the last two rows of this matrix, using Pn = 0 and
the fact that X and F are known.

The IDL function LMBD_MATRIX returns this matrix T as a function of angle µ and optical
depth τ . Basically, it is the Feautrier program, but instead of producing the emergent intensity
as a function of depth, the output is the matrix Xij , as a function of µ and τ .

Consider the equation P = TS. This equation is valid for one angle µ, and we write
P (τ, µ) = T (τ, µ)S(τ).

5.6 Combine this equation and Eq. 5.3 in order to express J in terms of T and S.

1A better solution is to choose not only variable weighting coefficients, but also varying the space between the
points at which the function is to be evaluated (for extended description, see Numerical Recipes, W. H. Press).
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We have determined the matrix of the Λ-operator:

J(τ) = Λ [S(τ)] . (5.11)

5.7 Write an IDL function LMBD, with input TAU, that returns the whole Λ matrix2. Use
your QUADRATURE and the function LMBD_MATRIX, available from http://www.astro.

uu.nl/~dwijn/teaching/afyc/.

In the IDL program J and S are vectors and we write J = ΛS.

5.8 Define τ as a floating-point array of size 101, with grid points spread homogeneously
between 10−4 and 106. Suppose the source function equals the Planck function at each
depth point. Plot J and S in one figure, assuming B(τ) = 1 − e−τ .

5.3 Inversion

5.9 Substitute the expression for J in Eq. 5.11 in the two-level coherent scattering source
function S = (1 − ε)J + εB and determine the direct solution of the source function.

5.10 Assume ε = 0.1 is constant throughout the atmosphere. Now plot, B, S and J in one
figure.

5.4 Λ-Iteration

You probably noticed that matrix inversion is computationally expensive. The classical al-
ternative to inversion is Λ-iteration,

Sn+1 = (1 − ε)Λ[Sn] + εB , (5.12)

starting with a first guess S0, for example S0 = B.

The IDL procedure LAMBDA_ITERATE, to be found in http://www.astro.uu.nl/~dwijn/

teaching/afyc/, returns J, S, the number of iterations (STEP), and the time needed for the
iteration (TIME).

5.11 Study the program. When is the iteration stopped?

5.12 Vary the value of epsilon, from 10−3 to 0.9, and study the number of steps needed for
the iteration to converge.

5.13 Plot S, B and J in one figure, with different line styles, for different epsilon.

5.14 Change the program such that it plots Sn in one figure every 10 steps, for B = 1− e−τ

and ε = 0.01. Save this plot as a postscript file and change the program back to the old
version.

2Your program should calculate the sum of 5 Λ matrices with an appropriate weighing factor, following
from the quadrature.
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5.5 Accelerated Λ-Iteration

The process of Λ-iteration can be accelerated by splitting Λ,

Λ = Λ∗ + (Λ−Λ∗) , (5.13)

with Λ∗ the approximate Λ-operator. The iteration scheme becomes

Sn+1 = (1 − ε)Λ∗[Sn+1] + (1 − ε) (Λ −Λ∗)[Sn] + εB . (5.14)

The new estimate is then found from matrix inversion

Sn+1 =
(

1 − (1 − ε)Λ∗
)

−1
[(1 − ε) (Λ −Λ∗)[Sn] + εB] . (5.15)

By making a smart choice of Λ∗ the inversion in Eq. 5.15 is highly simplified. In the IDL
program below the diagonal of Λ is taken as Λ∗, and the first guess for the source function is
S0 = Λ∗ B.

5.15 How is the inverse
(

1 − (1 − ε)Λ∗
)

−1
easily calculated? What is the main difference

with the classical inversion?

Below we develop an IDL procedure LAMBDA_AP_ITERATE, returning J, S, the number of
iterations and the time needed for the iteration.

5.16 Firstly, save the LAMBDA_ITERATE program as LAMBDA_AP_ITERATE.

5.17 Define the approximate Λ-operator, the inverse approximate Λ-operator, and the iden-
tity matrix as two-dimensional floating-point arrays of the same size as τ 3, instead of
taking a first guess S = B.

5.18 Define the Λ-operator. It is a function of τ .

5.19 In one loop, fill in the identity matrix, the approximate Λ-operator and the inverse
approximate Λ-operator. Note that they are all diagonal matrices so that you have to
define only elements (i, i).

5.20 Next, define the initial matrix ∆Λ = (1 − ε)(Λ −Λ∗).

5.21 The first guess is now S = Λ∗ B.

5.22 Now use the above defined operators in a new iteration scheme.

If you have changed and implemented the necessary changes, the approximate Λ-operator
should now be ready.

5.23 Repeat the exercises from the previous section with the accelerated Λ-operator.

5.24 Plot the number of steps needed for the source function to converge using Λ-iteration
and accelerated Λ-iteration as a function of epsilon, in one figure.

3For example:
nd=n elements(tau)

Lambda ap=fltarr(nd,nd)
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5.6 Optional

5.25 Write an IDL procedure to plot the time needed for the inversion as a function of the
length of τ 4.

5.26 Plot the time needed for determination of the source function as a function of the
dimension of τ for the three different methods (inversion, Λ-iteration and accelerated
Λ-iteration) in one figure.

4To calculate the system-time in seconds, use
t=systime(0)

dt=long(strmid(t,11,2))*3600+long(strmid(t,14,2))*60 $

+long(strmid(t,17,2))

The variable systime(0) is a string, for example
Fri Feb 9 12:00:10 1996

We want the time in seconds, i.e., the number of hours times 3600 plus the number of minutes times 60 plus
the number of seconds. The number of hours are the 11th and the 12th characters of the string, converted
into integers and so on.
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