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Chapter 1

Getting Started

1.1 VALIII Atmosphere
1.1 VALIII_READ restores height and temperature data from valiii.txt.
1.2 See figure 1.1.
1.3 The minimum temperature is 4179.08 K.
1.4 The height at the minimum temperature is 491.721 km.

1.5 The temperature of the corona is between 2 kK and 2 MK.
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Figure 1.1: Temperature structure of the solar atmosphere.



1.2 Call K line

1.6 —
1.7 The dimensions of the image are 250 by 250 pixels.

1.8 —

: : : —1 1550 _ »
1.9 The pixelsize is tan (150x106) 3600 = 2.13”.

1.10 In kilometers, the dimensions of the image are 1550 x 250 = 3.875 x 10° kilometers
square. This equals 3.875 x 10° ;’%2 = 31.7° square.

1.11 See figure 1.2. n_elements(y0) yields 1381.

1.12 n_elements(yl) yields 2297, because the minimal value has been set to zero.
1.13 The most occoring value is 1991.

1.14 See figure 1.3.

1.15 Supergranules have typical sizes of 20 to 40 Mm.
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Figure 1.2: Intensity distribution of Ca II K image.



Figure 1.3: The Ca II K image thresholded above 1970.



Chapter 2

The Inversion Problem

2.1 Gray Atmosphere
2.1 x=findgen(51)/10.-4, tau=10"x.

2.2 sigma=5.67eb, Teff=5770, and T=(3./4.*(tau+2./3.))"0.25*%Teff. Be careful that
Teff~4 may be bigger than what can fit in a float. S=T"4*sigma/!pi.

2.3 See figure 2.1.

Figure 2.1: Source function as a function of optical depth: S = i—g (7’ + %)

2.2 Line Profile

2.4 y=findgen(21)/2.-5
2.5 The simple, gaussian profile function plot is omitted.

2.6 You can create tau2 with loops or matrix-multiplication Matrix multiplication in IDL
is done by giving the command result=A##B. Define the matrix tau2=fltarr(51,21)



so that IDL knows in what type of array it has to put the variable. Fill the array with
two loops from 0 to 50 and from 0 to 20, respectively,

for i=0,50 do for j=0,20 do tau2(i,j)=(10*phi(j)+1)*tau(i) or
tau2=(10*phi+1)##tau (or tau2=tau#(10*phi+1)).

See Figure 2.2.

Figure 2.2: Nongray optical depth, as a function of gray optical depth (continuum) and
frequency.

2.7 The emerging intensity has the integral form

I(r, = 0) = / S, (ty) et dt, . 2.1)
0
2.8 In our example we write this convolution as
L(y) = / S(r(z)) e ¥ dr, (2.2)
0
Writing
T2(2=>50,y) =50
Z S(r(z)) e @y An@y) — Z S(r(x))e @) log, 10 Ty (z,y) 6 | (2.3)
TQ(IZO,y) z=0
we find
flx) = S(r(2)), (2.4)
g(z) = e @Y log 1075(2,y)6 | (2.5)
so that
50
I(y) =>  f@)g(z,y), (2.6)
0
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or

1(0) = 9(0,0)f(0) + g(1,0)f(1) + -- -+ g(50,0) f (50)

1(20) = g(0,20)f(0) 4+ g(1,20)f(1) +--- + g(50,20) f (50) .
2.9 This can be written in a matrix equation

9(0,0) ... g(50,0)
I= : : : f=KS.

9(0.20) ... g(50,20)

2.10 See figure 2.3.
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Figure 2.3: Emerging intensity as a function of frequency. The frequencies are in Doppler

widths vp = ”—g’\/%.

2.3 The Eddington-Barbier Approximation

211 —
2.12 See figure 2.4

2.4 Inversion
213 (KTK)"'K'I=8
2.14 Any matrix with the same dimensions as KT K will work.

2.15 See figure 2.5
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Figure 2.4: Upper panel: Determination of frequencies for which the line optical depth 7 ~ 1.
Lower panel: Source function as a function of gray optical depth, using the frequencies found
in the upper panel and the Eddington-Barbier relation S, (7, = p) ~ I} (1, = 0,u), where

w=1

2.5 Regularization

2.16 The regularization matrix H has the form

1 -2 1 0 ...

-2 5 -4 1 0
1 -4 6 —4 1 e
1 -4 6 -4 1 0

1 -4 5 =2
1 -2 1
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Figure 2.5: Source function determined by straightforward inversion of I = K S with the help
of the relation (AK)"'AI=S. A is non-unique, and the source function determined by this

inversion is highly unstable. In this plot we used A = KT.

2.17 A = 1.2 x 1074, determined by calculating > ((S — Spew)?)-

2.18 See figure 2.6.

2.19 See figure 2.6. Enough noise spoils the results.

0% noise, A= 1.2/10°
1% noise, A= 0.5 10*
- 10% noise, A= 0.1 10°
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Figure 2.6: Source function determined by inversion of the regularized equation (KTK +
MH)"'KTI = S, where we have added several percentages of random noise to the emerging

intensity.
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Chapter 3

The Newton-Raphson Method

3.1 Four iteraties are required to find v/2 up to th 5th decimal with starting estimate x=1.
3.2 Ten iteraties are required to find v/2 up to th 5th decimal with starting estimate x=100.
3.3 We now find —v/2 in same number of iterations. This is also a solution of the equation.
3.4 There are four solutions, 1, —1, i, and —i. The equation becomes éx = (1 — x4)/(42?).
3.5 See figure 3.1.

3.6 Some programming is omitted.

3.7 With a finer grid the result looks the same. We have a fractal.

Figure 3.1: Application of the Newton-Raphson method for z* = 1 in the complex plane.
The colors correspond to the solutions (1,4, —1, —i) reached after 99 iterations.
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Chapter 4

The Feautrier Method

4.1 Feautrier Method by hand
4.1 Approximate dP = P11 — P;, dT7 =,
Pig—-F5 B—-Py

52 52
P —(2+8)P+P_1 = §S;. (4.2)

- P8, (4.1)

4.2 The first order boundary conditions (Lecture Notes page 119) are

dP
TL1: — =P, (4.3)
dr
P — P,
PP g (4.9
Py
== 4.5
T 144 (45)
dP dB
1: — = — —P 4.6
T> dr dr ’ (4.6)
P, — P, 1 dB
= Bn— —4in—-1, 4
d 1 (dT>n—1 ' ( 7)
Pn_‘SBn—l_‘s((é_B) 1
P,q1= Tone 4.
n—1 1-5 ( 8)
4.3 For ¢ =1 and ¢ = 2 respectively we have
P — (2 + 62)P1 + P = —(5251 , (49)
Py
Py — (24 6*)P = -4 4.1
> — (2+ )1+1+5 Sty (4.10)
1+ 6)(Py + 62
Q)P +0%5) _ p (4.11)

1+0)(2+42) -1
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—5252 = P3-— (2 +62)P2 + P,

—028y = P3—(2+ 8Py +

P, =

(1+8) (P2 +6%51)
(1+0)2+462)—1"

[(1+8)(2 + %) = 1] [Py + 8 (st $1 + 52 )|

4.2 Feautrier Program

2462 [(1+0)(2+2)—1]—(1+90)

4.4 See Lecture Notes eqns. 5.16 and 5.17,

1
P~ Py+ PiAmo+ 5P6/AT§ ,
1 _ _
Bo= L om=n-
Py = Py -5,
so that 1
P~ PFP+ ATQ(PQ — I(;) + §A7'2(P0 — S(]) .
4.5 Use
I:Lr_l Rnflli 1 +Hn71 )
IrJerl = 2P -1,
to find
_ _ 2Pn—1 - Hn—l
n—1 1 +Rn—1

(4.12)

(4.13)

(4.14)

(4.15)

(4.21)

4.6 In the deepest point of the atmosphere in an half-infinite space I™ = I, so H, = 0

and R, =

4.7 For an illuminated medium I~

4.8 For a symmetrical slab I =T

4.9 —

= I, so that Hy = I;) and Ry = 0.

—,so H,=0and R, = 1.

4.10 tau(0) is not equal 0, so the radiation still has to go through very small part of the
atmosphere. I' =1—S, (Ie7") = =Se ", Iy = I,e "+ (1 —e~7)S,, if you assume that

S, equals Sg.
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Chapter 5

A-Iteration

5.1

5.1

5.2

5.3

5.2

5.4

Angle-Quadrature
The Feautrier transport equation can be rewritten as

d*P(1/p)
d(7/p)?

so that the transformation is 7 — 7/u, while S stays the same.

— P(r/p) - S(r) . (5.1)

J(1) = %(713(7', p1) + 32P(7, ua) + 12P (7, us) + 32P(7, g) + TP(1,115)) . (5.2)

The values of p in the procedure are 0.05, 0.275, 0.5, 0.725, 0.95. The value = 0
would lead to infinity in 7/pu, so this is avoided. The summation is normalized to 0.5.

A-Matrix
We know Zy = g—g, so Xgg = BLO. For Z;, we find
S1+ A1 Zy
7 = —— 5.3
! Ci(1+ Fy) (5:3)
S1 4 A1 Xoo So
— 21FAide0o0 5.4
A (54)
= X1051 + X105 , (5.5)
so that
Ay Xoo
X i U 5.6
10 Ci(1+ Fy) (56)
1
X = — . 5.7
H Ci(1+ Fy) (5:7)
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The expression for Z, are

7 So+ Ay Zy
2 Co(l1+ Fy) '’
_ (S2+ Az X11 51+ Az X10 S0)
02(1 —I—Fg)
Hence,
Ax X1
Xog = 07,
20 Ca(1 + F3)
Ay X1
Xo1 = 0,
21 Co(1 + F3)
1
X = —
22 02(1 + F2)

5.5 With P, = 0 and the bidiagonal system
Pi=(1+F)"'Pa+Zi,
we find

Po1 = Zp
= [XS]n—17

thus, writing P =TS, we find 7,1 ; = X,,—1,;. For P,_5 we find
P2 = (1 + Fn72)71[X S]nfl + [X S]nf2 )
so that T,—9j = (1 + Fp—2) t Xpo15 + Xn—2 ;.
5.6 The IDL program should look like the following.

FUNCTION LMBD,TAU

nd=n_elements (tau)

quadrature,a,mu

ms=n_elements (mu)

Lambda=fltarr(nd,nd)

FOR i=0,ms -1 DO Lambda=Lambda+a(i)*1lmbd_matrix(tau,mu(i))
RETURN, Lambda
END

5.7 See figure 5.1.

5.3 Inversion
58 S=(1-€)J+eB,S=(1-€)AS+¢B,S=(1-(1-¢A(eB)
5.9 See figure 5.2.
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Figure 5.2: B(1) =1—e"", e = 0.1. Source function derived by straightforward inversion.

5.4 A-Iteration

5.10 The iteration is stopped when the difference between steps becomes smaller then €/100.
5.11 The number of steps varies from 2434 for e = 1073 to 2 for € = 0.9.
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5.12 See figure 5.3.

5.13 See figure 5.4.
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Figure 5.4: The source function derived by A-iteration.
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5.5 Accelerated A-Iteration

5.14 The inverse of a diagonal matrix is the matrix with the inverse of each element on the
diagonal.

515 —

5.16 —

5.17 —

518 —

519 —

5.20 —

521 —

5.22 Some relatively easy IDL code is omitted.
5.23 See figure 5.5.

5.24 See figure 5.6.
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Figure 5.5: The source function derived by accelerated A-iteration.

5.6 Optional

5.25 —
5.26 —
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Figure 5.6: Number of steps needed for convergence of lambda iteration and accelerated
lambda iteration, as a function of destruction probability e.
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