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Abstract. We derive the conditions under which the profile of a weak Fraunhofer line can be described 
as the convolution of the separate profiles of damping, thermal and non-thermal motions at the 
average depth of formation of the line. The average velocity distribution along the line of sight, rather 
than its customary chosen macro- and micro-turbulent components, is then found from the decon- 
volution of the observed profile with the known other contributions. Reversely, the observed profiles 
can be compared to predicted profiles on the basis of De Jager's (1974) theoretical turbulence broad- 
ening curves. 

These two methods are tested on four suitable lines. The results indicate a non-gaussian velocity 
distribution with arms velocity of about 3 km s -1 and show that the photospheric turbulence is not 
incompatible with Kolmogoroff's law. 

1. Introduction 

The photospheric  mot ion  field is usually described by its macroturbulent and micro- 

turbulent components  that  measure the motions of  ' large'  and of  'small '  elements as 
experienced by a photon.  An  infinitesimally narrow Fraunhofer  line, instantaneously 

observed at one mathematical  point  on the solar disc, would be displaced by macro-  

turbulence and broadened by microturbulence, respectively measured by the second 
and first moment  o f  the profile (De Jager, 1972). 

This description is physically realistic only when all non-thermal  motions are in- 
deed either macroturbulent  or microturbulent.  In  general, however, one must  in- 

t roduce the concept  o f  a ' spectrum of  turbulence'  : i.e., the Fourier  decomposi t ion o f  
all motions along the line o f  sight; in this connection a wavelength l and a wave- 

number  k = 2n/l  are introduced. The one-dimensional spectrum of  turbulence is the 

distribution o f  the turbulent energy �89 contained in the mot ion components  with 

wavenumbers between k and k + dk, with ( rE)  the average over their velocity distribu- 

tion. Following De Jagel (1972), the distinction between macroturbulence and micto- 
turbulence is then found by means o f  the 'optical scale height'  0 = dz/d logv where 
is the continuous optical depth and z the geometrical depth. The mean flee path of  a 

pho ton  at the level z--- 1 is about  0. Macroturbulent  motions have kO ~ 1 ; microturbu- 
lent motions have kO>> 1. This distinction looses part  of  its significance when the 

wavenumbers with kO ~ 1 contain a significant part  o f  the turbulent energy. In fact, 
there are indications that  the greater part  o f  the photospheric  turbulent energy is 
contained in wavenumbers with kO ~ 1 (De Jager, 1972). The derivation o f  the turbul- 
ence spectrum as a whole is therefore to be preferred. 

Solar Physics 38 (1974) 321,-336. All Rights Reserved 
Copyright �9 1974 by D. Reidel Publishing Company, Dordrecht-Holland 



322 R.J. RUTTEN ET AL. 

There are two aspects of the turbulence spectrum to be studied: the distribution of 
turbulent energy over the wavenumbers and the distribution function of the velocities. 
In this paper we are interested in the second aspect: we discuss the extraction of the 
velocity distribution of all non-thermal motions from observations of weak Fraun- 
hofer lines. In Section 2 we obtain a general expression for the profile of a weak line 
that is affected by a non-thermal motion field, averaged over a large area of the solar 
disc. This expression is non-linear; we derive the conditions under which it is sim- 
plified to a linear convolution integral that can be solved numerically. As an example 
we apply the method in Section 3 to 4 suitable Fraunhofer lines; the results ate dis- 
cussed in Section 4. Finally we compare these four line profiles with the turbulent 
broadening predicted by de Jager (1974). 

2. The Profile of a Weak Line Affected by a Motion Field 

2.1. THE 'TRUE' PROFILE 

We start to derive the profile of a weak line observed instantaneously at a mathe- 
matical point on the solar disc. Assume that the line-of-sight component of the 
non-thermal motion field in the solar atmosphere (depth coordinate z) is given by 

�9 (x, y, z, t). 
The absorption coefficient at a depth z has its maximum value at a wavelength 

distance from the unshifted line center 20 

2c (z) - 2o = 2~ �9 (z) . (1) 
c 

Functional dependences on x, y and t are not given explicitly. The influence of thermal 
motions and damping is to broaden the line into a Voigt profile. Hence, defining 
A 2 = 2 - 2 o ,  the line absorption coefficient tc~ at a depth z is given by 

~c(z) ( 7 , Aa - )~~ (2) 
tq(Aa, z ) =  ~ H 2A-~% 6 ' 

where 
2~zc 2~zc 

A f o  D = ~ -  A 2  D ~ ~ -  6 .  

Here, 6 = 2(2RT/#)1/2/c is the theimal Doppler width, 7 is the damping constant, x(z) 
is the total line absorption coefficient and H(~, v) is the Voigt function (Uns61d, 1955, 
p. 261). Since we are dealing with weak lines, the relative line depression r (Aa) is given 
by (cf. Uns61d, 1955, p. 385) 

oo 

r(Aa) = dza ga('ca), 
K a 

0 

(3) 

where gl(ra) is the weighting function, specific for a given atmospheric model (cf. 
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Section 2.3), tc~ is the continuous absorption coefficient and z~ is the continuous optical 
depth at the wavelength 2 o. 

We use Equation (2) and integrate over z instead of z;. with the aid of dz~ = Kz dz 
to find 

co 

r (A2) = dz w (z) H \4nc5' 6 (4) 

with 

( : )  - g,  ( z ) l a , / , .  (s) 

2.2. THE OBSERVED TIME- AND AREA-AVERAGED PROFILE 

As derived in Equation (4), r(A2) is not yet related to an observable line profile. It 
must be averaged over the area A of the slit of the spectrograph, projected on the Sun 

oo 

r (A2) = dz w (z) dx dy H ~4~e6' (6) 
- - c o  A 

This expression still contains all spatial and temporal dependences of ~, 7 and 6. It 
fully describes the instantaneously observed profile of a weak line. If  A is sufficiently 
large, r (A2) does not depend on t since nearly all possible values of ~ (z) occur on A 
with the correct relative weight. A change in t amounts to a redistribution of the same 
set of  values of the vertical velocity (b(z) over the area A, so the double integral in 
Equation (6) will have nearly always the same value. We formulate this more care- 
fully: define a function f(z, v, t, A)dv = relative part of the area A at depth z where 
the line-of-sight component of the velocity field is between v and v+dv;  hence 
~_codvf(z, v)= 1. Then, for any physical quantity G that depends on v only, one has 

e l f  i A dx dy G (~ (x, y, z, t)) = dv f (z, v, t, A) G (v). (7) 

- c o  

For sufficiently large A , fbecomes  independent of A and t 

lira f (z, v, t, A) = f (z, v). 
A - + C O  

Likewise Equation (6) is replaced by 

;co i ~'2]) ' (~A) - -  " ( A2 oV/e 
r (A) 0 = dz w (z) dv f (z, v) H \ 4 ~ c 6 -  " (8) 

-co -co 
This expression describes the line profile averaged over the observing time and the 
observed area. It is not linear, since 5 and y are functions of T and P, hence of z; they 
also depend on v in sofar as correlations between v and T, P are present. 
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2.3. THE LINEARIZATION ASSUMPTIONS 

We now make the critical assumptions that: 
(1) 6 and ? are not functions of v: then in Equation (8) the average value of 6 and ? 

over the surface at depth z can be used. 
(2) The lines are formed in a thin and homogeneous layer: i.e., 6, 7 and f are ap- 

proximately constant over the layer of formation. It is then allowed to interpret 6, y 
and f(v) as the Doppler width, damping constant, and the line of sight non-thermal 
velocity distribution at an average depth of line formation. 

With these assumptions the integral over z in Equation (8) decouples 

with 

r (A2) = a dv f (v) H \4n~e6 6 ] '  
- o o  

(9a) 

oo 

a =  l" dzw(z) .  (9b) 

- o o  

We replace the integration variable v by x=2v/c and introduce the following ab- 
breviations 

C ( C x ) ,  F(x)=- f - 

" 

Equation (9a) is then shown to be a simple linear convolution integral 

o0 

r ( A 2 ) = a  f F(x) H(A).-x)dx (10) 
- o o  

and the non-thermal velocity distribution F(x) can be found by deconvolution of the 
observed profile r(A•) with the known Voigt function H(x), describing the broad- 
ening caused by damping and thermal motions only. 

2.4.  DECONVOLUTION 

Since convolution is equivalent to multiplication in the Fourier transform domain, 
we obtain r(x) by dividing the Fourier transforms ~(s) and/ t ( s )  of r(x) and H(x) 

P(s) = (s)/a q (11) 

and applying the inverse transform to the result. The advantages in this approach to 
deconvolution over previously used methods (e.g., De Jager and Neven, 1966) are the 
absence of any assumptions with regard to the shape and symmetry of the non-thermal 
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velocity distribution and the availability of the optimum noise filtering technique in 
the transform domain. The latter is especially important since the deconvolution 
process is very unstable. This is clear from Equation (11): the transform of a Voigt 
profile is given by (Bracewell, 1965 p. 357) 

' 
/7(s) = ~ z  exp - ~ 6s - 14 �9 (12) 

It decreases rapidly so that the high frequency terms in ?(s) are greatly enhanced with 
respect to the low frequency terms. The deconvolution is only meaningful when f(s) 
decays faster than/-7 (s) (or: when r (x) is wider than H(x)). Since there is always some 
high frequency noise present in r (x) - if only caused by the finite sampling precision - 
the deconvoluted low frequency 'signal' F(x) will be drowned completely in blown-up 
high frequency noise even when r(x) is much wider than H(x). In the case that the 
noise and signal power spectra PN(s) and Ps(s) of the observed line profile occupy 
quite different frequency bands, the obvious solution is multiplication in the Fourier 
transform domain with a properly chosen filter that passes only the signal band. In the 
more realistic case of overlapping signal and noise frequency bands but with random 
noise that is not correlated with the signal an 'optimum' filter is defined by (Helstrom, 
1967; Brault and White, 1971) 

Ps(S) 
~opt (s) = Ps (s) + Pn (s)" (13) 
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Observed power spectrum, vertically: log ([ ~(s)l 2) in arbitrary units; horizontally: frequency 
s in arbitrary units. 
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Of all possible linear shift invariant filters this filter gives the best approximation to the 
true F(x) in the rms sense. To use this filter, one has to know the power spectra Ps(s) 
and PN(s) of the signal and noise components of the observed profile r (x) separately. 
To find these we plot the total raw power spectrum or 'periodogram' of r (x) on a 
logarithmic scale (Brault and White, 1971). A sample (Figure 1) shows that the signal 
and noise power spectra are clearly distinct: in general the signal has a steeply declin- 
ing spectrum while the noise has a more or less constant spectrum. Since in the defini- 
tion of the optimum filter tffopt(S ) only the frequency band where Ps(s)~-PN(s) is im- 
portant and the logarithmic signal power spectrum is nearly linear in this region, 
simple linear approximations to both log Ps(s) and log PN(s) can be used. 

2.5. AVERAGE DEPTH OF FORMATION 

We need to know the damping and Doppler widths at the average depth of line for- 
mation. Gurtovenko et aL (1974) have shown that this depth must be determined 
from the line depression using the classical weighting function method that will be 
extended here to the whole profile of a weak line. 

The equivalent width of a line is given by 

A = f w (z) 5 ~  dz.  (14) 

Assuming LTE we write (Uns61d, 1955, Equations (101), (50)) 

w (z) = gl (v~.)~tot/6~/Tr, (15) 

with 

sec 0 
61 (Z2) - -  1~, (0)  {(~* (T2) - -  B (zx) e - '  . . . .  a}, (16) 

of? 

rce2 22gtfN(z). (17) 
Nto t --  mc 2 

In Equation (17) gt is the statistical weight of the lower level of the transition, f the 
oscillator strength, and N(z) is the number density of the relevant particles in the lower 
level of the transition; N is computed assuming the validity of Saha's and Boltzmann's 
laws (LTE) 

N (z) = Nto t Selemen~t N r  St, s, with Nto t ~ Po/T. 
Ntot Nelement Nr 

With Equations (14), (15) and (17) one obtains for the equivalent width of the line 

A = f gl('~),)l~tot(z)dz~ f gl(za) N(z)dz. (18) 
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Hence the average optical depth of the whole line profile is 

( z ~ ) =  o , (19) 

i dz gl (z~) N(z~) ~ dz z 

0 

where the weighting function gx(za) is conveniently written as 

~o B(oo) 

see`9 f _ dB dz~ -  sec,9 f 
91 -- ~ ,  (0) e TM dzz ~* (0) 

~ B(~z) 

e -*~ dB. (20) 

3. Application to some Observed Line Profiles 

3.1. OBSERVATIONS 

Through the kind cooperation of Dr L. Neven, Royal Observatory of Uccle-Biussels, 
and of Drs L. Delbouille and G. Roland, Astrophysical Institute of the Li6ge Uni- 
versity, we obtained an accurate recording of a part of the solar spectrum observed in 
the disc center with the solar spectrograph at the Jungfraujoch Scientific Station. The 
observations were made in the 13th order; they covel the wavelength range from 4456 
to 4477 A, and are the result of 50 independent scans, averaged in the on-line computer. 
The recordings have an estimated scatter of 0.3% of the continuous spectrum intensity. 
See also the similar scans in Delbouille et al. (1973). 

3.2. SELECTION OF LINES 

In this part of the spectrum a sealch was made for weak lines, i.e., lines that are still 
situated on the linear part of the curve of growth. From a standard empirical curve of 
growth (e.g., Uns61d, 1955, p. 444) it appears that such lines have an equivalent width 
W for which log (/4//2)< -5 .3 ,  resulting at 4450 A~ in a maximum value W = 22 mA. 

The lines to be selected should, furthermore, be unblended, while also their damp- 
ing parameters should be known. Four lines appeared to suit these conditions; they 
are given in Table I. Their line profiles were read off plots of the the Jungfraujoch 
scans, to which continua and where necessary extensions of the line wings were fitted 
by hand. The apparatus profile is published in graphical form in Delbouille et aL 
(1973). At 4680 A in the 13th order it has a full half width of 6 mA. This would corre- 
spond to a Doppler (half) half-width of 3.4 mA at 4460 A or with an rms velocity of 
0.23 km s -a, which is negligibly small in the present rather qualitative test. The ob- 
served profiles were therefoie not corrected for the influence of the apparatus profile. 
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3.3. AVERAGE OPTICAL DEPTH OF FORMATION 

These values were computed according to Equation (19) using the Harvard Smithsonian 
Reference Atmosphere (Gingerich et al., 1971). The resulting ( % )  values are given in 
Table II. The part of the photosphere that contributes to the line depression is rather 
wide: see Figure 2. Also the average optical depth computed via a computation of the 

TABLE II 

Damping parameters for the level of  the average op- 
tical depth of  formation 

Atom 2(A) <rE> T(K) 2.7y(s -1) 

Cr I 4477.06 0.50 5890 1.18 • 10 l~ 
Cr I 4475.31 0.53 5920 1.37 x 10 l~ 
Cr t 4460.78 0.50 5890 1.18 • 101~ 
V t 4452.01 0.39 5760 6.72 • 109 
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Contribution functions of  the four investigated lines. 

average geometrical depth differs from the values of Table II. For the Cr I line at 
4477 A: (z> = - 9 7  kin, ( z = 0  at z 5 = 1) which corresponds to a zs-value of 0.19 (cf.: 
( z5 )=0 .50 ) .  This difference is due to the non-linearity of  the relation between Zo 
and z, and to the skewness of the contribution function, and makes it clear that the 
notion 'average optical depth' has only an indicatory value and should surely not be 
considered as a precise indicator of the level of origin of the lines. 
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The weakness of the lines was checked by using a spectral line synthesis program 
(Wijbenga and Zwaan, 1972) to calculate the emergent profiles including microtur- 
bulence (1.5 km s -1) and depth-dependent damping. 

For each line we fitted the abundance to the observed equivalent width and then 
computed the equivalent width using half this abundance. The results show that the 
lines are indeed on the linear part of the curve of growth, except for V 1 24552.01 that 
already shows slight self-absorption. 

3.4. DAMPING PARAMETERS 

Even for these weak lines damping cannot be completely neglected. The damping is the 
combined effect of the influences of Van der Waals broadening, quadrupole interaction 
and the quadratic Stark effect due to electronic collisions (in this succession of im- 
portance). Their values (~) were computed according to De Jager and Neven 
(1970). 

The necessary values of the radial wave functions r, the mean square radii ( r  2) for 
the atomic states, and the oscillator strengths were at our request kindly computed 
by Dr W. van Rensbergen of the Astrophysical Institute of the Free University of 
Brussels, according to a method applied earlier by him to other lines (Van Rensbergen, 
1970). The results are given in Table I, the computations according to the 'scaled 
Thomas-Fermi method' are considered to be the more tellable ones and were used in 
the following computations. Damping constants were computed for the four lines for 
the physical parameters (T, Pg, Pe) read from the Harvard-Smithsonian Reference 
Atmosphere at the average depths of formation given in Table H. For their practical 
application we used the empirical result of De Jager and Neven (1970) that the actual 
values for the damping parameters seem to be about 2.7 times the theoretical values 
computed on the basis of ( r  2) values found with the 'scaled Thomas-Fermi method'. 
An empirical correction of similar value was found by Holweger (1972). It should, 
however, be remarked that its value is not very critical since the influence of damping 
on the results is small anyhow. 

The resulting ~-values are given in Table II. 

3.5. FOURIER TRANSFORM 

We used the ALGOL'60 Fast Fourier Transform procedures given by Singleton 
(1968) and applied the recipes given by Brault and White (1971) to ensure a clean 
transform. The Voigt profiles were calculated with the series expansions given by 
Reichel (1968). 

The effect of the filtering on the original observations is shown in Figure 3 where the 
observed profile is given with the approximation to it obtained with the optimum filter 
in the transform domain; the lost high frequencies clearly convey no spectral in- 
formation. The quality of the optimum filter, described in Section 2.4, is clear from 
Figure 4 in which instead of the optimum filtel a simple filter has been used that has an 
unsmoothed steplike cut-off, introducing strong oscillations. Figure 5 shows the same 
velocity distribution but obtained with the optimum filter. 
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Velocity distribution obtained with the optimum filter. 

4. Results 

In view of  the usual uncertainties in 9f ,  A etc. we did not evaluate the constant a in 
Equation (10) so that the four line profiles yield relative distribution functions; these 
are shown in Figure 6. The rms velocities, calculated from the observed profiles with 

with 

C 
< v 2 )  '/2 = ~ ( (A~2)o ,  . . . . .  ~ - (A~2)Vo,, , )  ' / '  

(~2 ~)2~4- 

(A22)Voigt  = ~ -  + 16n2C~ 

are given in Table III, together with the rms velocity of  a gaussian with the same half- 
width as the distributions, found from 

, 2,,1/2 = 0 .425 ,  FHW(f(v)) tJ / G a u s s  

The resulting rms velocity values range between 2 and 4 km s-1 and agree in general 
with the quadratic sum of  quoted micro- and macroturbulent velocities (De Jager, 
1972). All distributions are wider than gaussians; however, the spread in the shapes o f  
the distribution functions is large. All four lines are formed at about the same level in 
the atmosphere, so they should show similar velocity broadening; since they do not, 
we must question the validity of  the two linearization assumptions made in Section 
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Velocity distributions for the four investigated lines. 

TABLE III 
rms velocity values 

20 

2 ( ~ )  (V2)  1/2 (l)2)l/s Qj2)l/2theoretical 
(km s -1) (km s -t) (kin s -1) 

Cr I 4477.06 3.7 1.8 2.4 
Cr i 4475.31 2.3 1.5 2.1 
Cr ~ 4460.78 2.6 1.4 1.7 
V I 4452.01 2.6 2.4 2.8 

2.3. Of  course, errors in the determination o f  the cont inuum level or the calculation o f  

the depth o f  format ion and ~ also influence the results; these errors might be reduced 
by using a large number  of  profiles, all originating at about  the same depth. 

With  regard to the linearization assumptions, it is difficult to see that  the second 

assumption (stating that  the lines are formed in a layer thin enough to be homogeneous)  

causes this diversity, since the contribution functions o f  these lines are not  very different 
f rom each other. The first assumption (5 and ~ are independent o f  v) is the most  critical 
one. I f  it is not  correct, studies o f  the solar mot ion  field must  be multidimensional. 

Usually gaussians are taken for both  micro- and macroturbulent  distribution func- 
tions, and usually these are convoluted under the first assumption, respectively with 
the absorpt ion coefficient and the emergent profile. We note that  next to the indication 
that  the first assumption is perhaps incorrect, the four  derived distribution functions 
are not  gaussian but  have significantly extended wings. Again, a further analysis o f  a 
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larger number  of  profiles is needed to confirm this behaviour. An obvious extension 
will then be to study center-to-limb and depth behaviour of  the velocity distribution. 

In conclusion the analysis of  these four lines shows that the method presented here 
is suitable to find the average velocity distribution when the linearization assumptions 
(that are implicitly made in many analyses) hold, but does not present a clear affirma- 
tion of these assumptions. Also a wider than Gaussian velocity is indicated, with a rms 
velocity of about  3 km s -1. 

4.1. COMPARISON WITH THEORETICAL VELOCITY DISTRIBUTIONS 

De Jager (1974) published theoretical profiles of  weak Fraunhofer lines in the absence 
of  damping and thermal broadening that were calculated from assumed spectla of  
turbulence, characterized by a power law k-" ,  yielding Kolmogoroff ' s  law for n = { .  

He calculated theoretical profiles both with and without variation of the largest 
turbulent wavelength, which was estimated from granulation cell statistics; samples 

are given in Figure 7. 
These theoretical distribution functions are quite different f rom the ones found in the 

above analysis: they are all doubly peaked. However, the distribution functions found 
by deconvolution are not unique: there is a multitude of  mathematically correct solu- 
tions containing different high frequency contributions. We therefore tested the com- 
patibility of  De Jager's distributions with the four observed profiles the other way 

2 �84 

,5 

~3 1.5 
03 c-, 

1.0 

0.5 

0 0.5 1.0 1.5 2.0 2.5 
wave leng th  

Theoretical weak line profiles broadened by turbulence only, taken from De Jager (1974). Fig. 7. 
Top curve: n = 2; middle curve: n = 2/3; bottom curve (dashed): n = 2/3 but with granulation size 

distribution included. 
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around by convoluting them with the Voigt profiles detetmined by damping and ther- 
mal motions, varying the width of the distribution to obtain maximum fit between the 
result and the observed profiles. In this procedure again the linearization assumptions 
of Section 2.3 are made. 

The results show that the double-peak feature is wholly lost and that the observed 
profiles are quite well reproduced by the convoluted distribution, except for the wings 
which are more extended in some observed profiles (Figure 8). The differences be- 
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Fig. 8. Line profiles resulting from the convolution of the theoretical turbulence profile with thermal 
motions and damping. Crosses: observed profile. Dashed: granulation cell size included. 

tween the distribution without and with granulation cell variation are too small to 
warrant a choice; the distributions with n = 2 fit better than those with larger n since 
they have more extended wings. The fitted distribution width finally determines the 
mean turbulent velocity: in Table III we give the rms values. Most of these are smaller 
than the rms velocities found in the preceding analysis, corresponding to the lack of 
wing in the convoluted profiles. From these four lines we conclude that the theoretical 
distributions are not incompatible with the observations, with an indication that the 
turbulent energy spectrum is Kolmogoroffian. 
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