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Without magnetic fields the Sun would be as boring a star

as the nighttime astronomers think it is.
R.B. Leighton

Magnetic fields are to astrophysics

what sex is to psychoanalysis.
H.C. van de Hulst
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Preface

hese lecture notes result from a 30-hour undergraduate course titled “Solar and Stellar

magnetism” given at the Sterrekundig Instituut Utrecht during the first months of
1999. The motivation for the course was the presence of Prof. S.K. Solanki (ETH Ziirich)
as Minnaert Guest Professor during this period. The lectures were split in ten sessions of
three 45-minute “hours” each:

— R.J. Rutten: introduction;

— R.J. Rutten: stellar magnetism;

— S. K. Solanki: solar magnetic fields;

— 8. K. Solanki: magnetic field diagnostics;

— S. K. Solanki: convection, granulation, sunspots;
— S. K. Solanki: flux tubes;

— J. P. Goedbloed: MHD and spectral theory;

— J. P. Goedbloed: heliosphere and solar wind;

— P. Hoyng: dynamo theory;

— P. Hoyng: dynamo issues.

In addition, Prof. Solanki held the “Minnaert Lecture”, an evening lecture intended for a
wider audience, on solar irradiance modulation and its possible influence on the terrestrial

climate.
The students attending the course were asked to produce lecture notes to the course,
including the Minnaert lecture. The lectures consisted of rather wide overviews of the

field, rather than the cookbook recipes normally taught in undergraduate courses. The
students’ task was to summarize these reviews in yet more condensed form. This volume

is the result.
J.M. Krijger and R.J. Rutten, editors

vii
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Chapter 1

Introduction
R.J. Rutten

1.1 Why study solar and stellar magnetism?

agnetism lies at the root of most solar and heliospheric physics, and likewise at

the root of much stellar physics. The intricate structure of the solar field, the
activity cycle and the influence of the field on the heliosphere represent major quests of
(astro-)physics which bear directly on the human environment. The Sun’s magnetic field
is generated by enigmatic dynamo processes in the solar interior, is organised into the
highly complex patterns of solar activity observed in the solar photosphere, dominates
the structure of the outer solar atmosphere (chromosphere, transition region, corona),
regulates the solar wind, and affects the whole extended heliosphere. Stellar magnetism
plays key roles in the magnetic braking of young-star rotation and in collapsed old-star
remains.

Solar and stellar magnetism pose questions that require answers in the context of dif-
ferent human endeavours. In terms of pure science, solar magnetism provides the Rosetta
stone of cosmic magnetism, not only for other stars but also with respect to accretion disks,
cataclysmic variables, galactic dynamics, active galactic nuclei and other cosmic objects
in which MHD and plasma processes control the structure and energy partitioning. The
Sun is close enough to study these processes in observable detail. The other stars sample
different stellar structure, stellar evolution, and stellar companionship, and so widen the
parameter ranges over which cosmic magnetism can be diagnosed.

Solar and stellar magnetism also provide input to physics. Terrestrial plasma confine-
ment machines do not reach the scales, densities and temperatures exhibited in the solar
atmosphere. Solar physics therefore complements plasma instability studies in fusion re-
search. To physicists, the Sun represents a non-terrestrial plasma physics laboratory that
greatly enlarges the accessible parameter space.

Finally, space weather (the American policy term for solar influences on the near-
Earth environment and on the Earth’s climate) is set by solar magnetism. Solar activity
affects satellites, communication links, and power lines, and its modulation affects satellite
orbits, jet stream patterns, and is likely to contribute to minor, possibly major, ice ages.
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1.2 Solar magnetism gallery

Another reason to study solar and stellar magnetism is one of sheer beauty. Our Sun
permits viewing stellar magnetic structures with the angular resolution necessary to ap-
preciate the intricate topology dictated by magnetic fields and their interaction with the
plasma. Even though the smallest observable feature sizes (about the province of Utrecht
at best!) exceed the intrinsic physics process scales by factors that range from a few times
to many orders of magnitude, solar “fine structure” as we observe it is indeed “fine” struc-
ture in the best sense of the word, providing rich morphology and spectacular dynamic
change to the awed viewer. The rest of this section provides a small sample, ordered from
the largest to the smallest observed scales.

Figure 1.1: Sunset, by Edvard Munch (1863-1944). “The camera cannot compete with the brush and the
palette so long as it cannot be used in heaven or hell”, said Munch. Whether photographed or painted,
sunsets are beautiful without being diagnostically useful within the context of these lecture notes (which
isn’t the case when the Sun is eclipsed by the Moon rather than the Atlantic Ocean). To optical solar
physicists, the painting illustrates undesirable atmospheric refraction and bad optics. Nevertheless, it
conveys solar beauty admirably. More on Munch at http://vwww.mnc.net/norway/Edvmunch.htm.
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Figure 1.2: The solar corona at the July 11, 1991 total solar eclipse. The Sun’s beauty is miraculously
enhanced for terrestrial viewers by the apparent size equality of the Sun and the Moon on our sky. The
corona seen visually during totality is about a billion times weaker than the uneclipsed solar disk.

How does this faint white glow betray the million-degree coronal temperature? The inner part (the
K corona) shines through Thomson scattering off free electrons, using photons that originated in the
unseen photosphere. The electron density is very low and the Thomson cross-section is very small, but
the corona contains sufficient gas along the line of sight to produce emission that exceeds the background
set by scattering off interplanetary dust (the F corona, seen further out) and by scattering in our own
atmosphere (the sky background yet farther out). The electron-scattered photons are Doppler-shifted due
to the large thermal motions, corresponding to line broadening with Doppler width AAp =~ 100 A, so that
the photospheric Fraunhofer spectrum is washed out. Only shallow dips remain from the very strongest
lines (Call H& K). The absence of the Fraunhofer lines prompted Grotrian to propose that the coronal
gas must be exceedingly hot. The hypothesis was confirmed by Edlén’s identification of the few bright
emission lines in the visible coronal spectrum as being due not to a new element “Coronium” but to
forbidden transitions of highly ionized iron and calcium particles

It is clear by now that the high temperature represents the balance between magnetically controlled
heating and X-ray radiation losses — but the precise heating mechanisms are not yet identified in detail.
The present course provides a foundation from which you may start your research effort to answer this basic
question. This picture was constructed from five different exposures bridging the large contrast between
inner and outer corona. Even so, it barely approaches the magnificence of a visually observed total eclipse
— as may be confirmed by bringing a pair of binoculars to the right place on August 11, 1999. From
http://spaceart.com/solar/.
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Figure 1.3: The outer corona seen from space, an image from LASCO on-board SOHO taken on December
23, 1996. Outside the Earth’s atmosphere an space-walking astronaut may simply use a coin (about a
quarter) at arm’s length to view a total solar eclipse. The LASCO telescope eclipses the Sun continuously
in the same manner, so that the evolution of the coronal structure can be monitored at much higher
cadence than from eclipse to subsequent eclipse.

This image shows the corona, including polar plumes all the way out to the edge of the field of view
(8.4 million km radius). It also shows Comet SOHO-6 plunging into the Sun (it didn’t reappear on the
other side). The circle shows the size of the Sun as we see it; the blocking disk is much larger. From

http://spaceart.com/solar/.
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Figure 1.4: The Sun in He Il 304 A. A space platform not only permits eclipses all the time but also permits
access to the wide regions of the electromagnetic spectrum that are absorbed by the Earth’s atmosphere.
This EUV image was taken by an astronaut on-board Skylab, utilising the Apollo Telescope Mount (at
that time ATM did not yet mean automated teller machine), a worthwhile leftover from the Apollo Moon
program.

The chromospheric network, overlying the borders of the supergranulation cells, appears bright due to
magnetic heating, and so do the active regions. A giant prominence juts out far into the corona. Since
helium must be once-ionised to show up in the 304 A resonance line, the gas in the prominence must be
much cooler and therefore heavier than the surrounding 1-2 million degree corona.

Obviously, the filament presence and structure maps out magnetic fields. Less obvious is the field
geometry, how prominences are suspended, and how they survive as long as they do. The most recent
Utrecht solar physics thesis prior to the publishing date of this volume treated solar prominences (Schutgens
1998), but the last word hasn’t yet been said about them. From http://spaceart.com/solar/.
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Figure 1.5: Part of a drawing of coronal loops and limb spicules made on October 5, 1871 by A. Secchi
who founded a Jesuit observatory in Rome, wrote 700 papers and two books ( The Sun and The Stars), all
within three decades, and started spectral classification. He was not only a prolific publicist but also an
excellent observer. This drawing was made from spectrohelioscope observations selecting radiation in the
Balmer Ha line. From Foukal (1990).
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Figure 1.6: The state of the art in coronal loop observation. An image from TRACE (Transition Region
and Coronal Explorer) taken in the FeIX — FeX line pair at A = 171 A on August 19, 1998 at 06:04 UT,
taken from Schrijver and Zwaan 1999.

The FeIX and FeX ionization stages exist at temperatures near 1.0 million Kelvin. TRACE images
the Sun in 171 A light at an angular resolution of 1 arcsec (725 km) through a combination of multi-layer
coatings on the primary mirror and a transmission filter; there are also other spectral passbands. The field
shown here measures 400 arcsec per side.

The TRACE 171 A images are particularly dramatic because loops at this temperature are relatively
scarce. In between the bright loops seen here exists coronal gas of higher temperature that is transparent
at 171 A. Thus, the loops seen here appear as special trees in a forest of transparent other trees — say oak
trees scattered though a pine tree forest. In addition, there is much dark material that intercepts radiation
from behind. This is much cooler material containing once-ionised helium or perhaps even neutral helium
and hydrogen. It scatters 171 A photons out of the TRACE passband by bound-free absorption and
re-emission near the threshold wavelength.

Most loops reach higher than the local pressure scale height so that their emission is concentrated in
their lower parts (e.g., near A and B). Some of the fainter tops are seen as well. The loops are optically
thin, so that lines of sight along their tops produce more emission, as in the relatively dense post-flare
loops near D.

The conduction of energy downwards along the invisible hotter loops leads to the finely speckled “moss”
covering plage areas, for example near E. The latter areas also abound in short “grass” stalks of cool dark
gas; these are short-lived ejections that appear only momentarily on high-cadence TRACE movies. The
limb has similar dark spicule-like structures (above F); these are longer than the classical limb spicules
observed in Ha. Near G is a filament, temporarily wrapped in a shimmering sheet of intricate small-scale
brightenings.

All TRACE data are available at http://vestige.lmsal.com/TRACE/Data/datacentprivate.shtml.
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Figure 1.7: Part of a sunspot drawing made by S.P. Langley on September 21, 1870. He observed with
a 13-inch (33 cm) telescope at Allegheny Observatory. Note the umbral light bridges and the penumbral
filaments. Drawings are of course somewhat less objective than photographic or CCD recordings, but the
beauty of a sunspot is conveyed particularly well. From Foukal (1990).
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Figure 1.8: Sunspot at high resolution, taken with the Swedish Vacuum Solar Telescope on May 12,
1998. This display is a small part of a 2Kx2K pixel G-band image that as a poster adorns walls in
many astronomy institutes (including the Sterrekundig Instituut Utrecht and all Volksterrenwachten in
The Netherlands). It was taken by Goran Scharmer and Tom Berger in the presence of the editors of
this volume. A fast tracker system kept the telescope beam into place during the brief (about 15 ms)
exposure (“tip-tilt wavefront correction”). The seeing was of a quality that is rare even at La Palma.
From http://www.astro.su.se/groups/solar/.
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Figure 1.9: The quiet-Sun outside active regions. These two images show the network in close-up. The
lefthand one is a magnetogram taken with MDI onboard SOHO; the righthand one is a simultaneous and
co-spatial Ly « filtergram taken with TRACE.

The MDI (Michelson Doppler Interferometer) takes magnetograms using the weak photospheric Nil
6768 A line by measuring, per image pixel, the difference between the left and right circularly polarized
amplitude at two wavelengths (Stokes V signal). The magnetic network appears as sparse patches of
positive and negative polarity (black and white). Each patch consists of a cluster of thin vertical fluxtubes
with intrinsic magnetic field strength of about B = 1400 Gauss at the bottom of the photosphere.

The HI Ly o image at right shows the brightness pattern of radiation emerging from the middle chromo-
sphere. The locations where the chromosphere is heated appear bright. The emission pattern corresponds
closely to the underlying photospheric field pattern at left, irrespective of polarity, for all network patches.
The remaining “internetwork” areas show small-scale grainy structure in both panels. It is mostly due to
non-solar detector noise in the MDI magnetogram, but in the Ly o image at right it shows solar acoustic
oscillation patterns. The latter probably cause the so-called “basal emission” in chromospheric lines that
is observed for the least active cool stars. Most of the chromospheric emission comes from the magnetic
patches, however, and clearly betrays heating that, whatever the precise mechanism may be, is directly
related to the presence of strong magnetic field.

Data taken on June 14, 1998, shortly before SOHO was lost for an extended period. Data reduction
by C.J. Schrijver and H.J. Hagenaar, taken from Rutten (1999a).
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Figure 1.10: Magnetic elements in the solar photosphere (left) and chromosphere (right) at the smallest
scale observed so far. These magnificent cospatial high-resolution images were taken with the Swedish
Solar Vacuum Telescope on La Palma by R.A. Shine (Lockheed-Martin).

The lefthand image was taken in the Fraunhofer G band around A = 4305 A which contains a few
dozen dark CH lines that contribute high contrast. The image was corrected for wavefront distortions
introduced by the “seeing” in the Earth’s atmosphere using phase-diverse speckle restoration. In this
technique sequences of image pairs are taken with one frame in focus and the other one deliberately out
of focus. The two frames per pair sample instantaneous atmospheric phase retardation. The sequential
pairs sample different atmospheric behavior. The subsequent computer restoration (an iterative process
taking weeks even on modern workstations) by Lofdahl et al. (1998) delivered resolution at the telescope
diffraction limit of 0.2 arcsec.

At such high angular resolution, individual fluxtubes appear as tiny bright “filigree grains” located
in intergranular lanes. Most of these grains lie together in network patches; the markers indicate three
“loose” ones a bit away from the magnetic network.

The righthand panel shows a nearly simultaneous Call K filtergram, using a filter that transmits the
Call K line core with 3 A bandwidth. The Call K core has its 7 = 1 characteristic escape depth about
1000 km above the photospheric level from which the G-band photons emerge. It suffers from strong
resonance scattering over about the same distance, so that the details in this filtergram are much fuzzier
than in the G-band image (1 arcsec = 725 km on the Sun). Nevertheless, this image pair demonstrates
that the core of the Call K line brightens considerably at the fluxtube locations, even for the three loose
ones away from the clusters.

Thus, one may use Call K brightness as a proxy magnetometer, indicating the presence of kilogauss
field elements without spatial cancelation when positive and negative polarity patches are added up due
to low angular resolution. This property has been used extensively in measuring and monitoring stellar
magnetism, also in the Utrecht theses of Middelkoop (1982), Oranje (1985), Schrijver (1986) and Rutten
(1987) supervised by C. Zwaan. From Lites, Rutten & Berger (1999).
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Chapter 2

Solar magnetism

Lecturer S.K. Solanki, notes by A. Bik

2.1 Introduction

he Sun is an unique object in astrophysics. It is the only star whose surface we can
resolve with current telescopes, so that we can observe more physical processes in
great detail on the Sun than on any other star. From observations of the Sun, we know
that the atmosphere of the Sun is very structured. The interplay between magnetic forces,

turbulent motions and heating processes gives many interesting phenomena we can observe
in detail.
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Figure 2.1: A sketch of a lot of features visible at the surface and in the atmosphere of the Sun.

The magnetic field of the Sun is much more complex than the magnetic field of the
Earth. The Earth magnetic field can, within a good approximation, be described as a
dipole magnetic field. The deviations can be described as perturbations on an ideal dipole
field. On the other hand, the magnetic field of the Sun is much more complicated.
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Magnetic fields influence the dynamics and thermal structure of the solar atmosphere
in many ways. The manifestations of the magnetic field are detected in wavelengths varying
from radio to X-rays. Direct observations of the magnetic field, however, are now largely
restricted to the visible and infrared wavelengths (Zeeman effect) and some measurements
of cyclotron radiation at radio wavelengths.

In the first section we will discuss an active region on the solar surface, starting with
the features in the photosphere, visible in optical wavelengths, e.g., sunspots, pores and
plage. After that we go higher up in the atmosphere to the chromosphere and the corona
and describe features like streamers, solar flares and coronal mass ejections. In the last
section we will describe the magnetic features of the quiet sun, e.g., supergranulation and
facules.

2.2 Active regions

Figure 2.2: An optical image of an active region at the surface of the sun. From Bib Bear solar Observatory
(http://www.bbso.njit.edu).

When we look at an active region (Figs. 2.2 and 2.6) we notice many different features.
A schematic overview of these is given in Figs. 2.3-2.4.

An active region is a mix of magnetic field and plasma, which is constantly changing
in structure (Cox et al. 1991). An active region consist of a wide range of different features
like sunspots, plage and filaments. All these different features can be observed in different
wavelengths.
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2.2.1 Magnetic features in the photosphere

The magnetic field of the Sun is produced in the interior of the Sun by a dynamo process.
The dynamo is located at the bottom of the convection zone (Chapt. 6). Bipolar regions
at the surface of the Sun are formed when magnetic flux emerges there in the form of a
loop (which is a fluxtube in the shape of an 2).

The largest flux concentrations, or fragments of the original fluxtube, block the con-
vective energy transport and are visible as sunspots. Most of them exist in pairs, one with
a negative polarity, and one with a positive polarity. Because of the Maxwell equation
V - B = 0, which states that there are no magnetic monopoles, the magnetic flux can only
emerge in a bipolar form. There are also “open” field lines, but these are either “closed”
at the boundary of the heliosphere, or connected with the interstellar magnetic field lines.

In a sunspot (Chapt. 11), we distinguish between two regions. The inner part of the
sunspot, the umbra and the outer part of the sunspot, the penumbra. The umbra is much
darker than the penumbra. At wavelengths corresponding to green light, the luminosity
of the umbra is 8% of the normal, quiet, photosphere’s luminosity. The luminosity of the
penumbra is about 80% of the photospheric value (Zwaan et al. 1982). The direction of
the magnetic field is also different, the magnetic field in the umbra is nearly vertical, while
the magnetic field in the penumbra is more horizontal.
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Figure 2.3: A sketch of an active region at the surface of the sun. Taken from Cox et al. (1991).

A somewhat smaller dark feature, visible in the optical, is the pore. A pore can be
described as a sunspot without a penumbra. Typical diameters of pores are in the range of
1500 — 6000 km, much smaller than sunspots (5000 — 60,000 km). At diameters of about
5000 — 6000 km there is an overlap between pores and sunspots. Most of the magnetic
features in this size range are sunspots with incomplete penumbrae.

The magnetic field in the pore is relatively vertical, although it becomes somewhat
inclined near the outer edge. The maximum strength of the magnetic field varies from
1900 — 2500 Gauss near the center of the pore and is a few hundred Gauss lower at the
edge. This is smaller than the strength of the magnetic field in the umbrae of sunspots
(2500 — 3300 Gauss).

The lifetime of pores is on the order of hours to days. Pores, and also sunspots, grow
rapidly through merging of smaller magnetic features. The pores, in their turn, can evolve
to sunspots. v
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When an active region is formed, first the plage appears. Plage are bright regions and
consist of 103 to 10° fluzrtubes, small magnetic elements. The strength of the magnetic
field in one fluxtube is of the order of 1500 Gauss.

The magnetic field is not homogeneous over the plage. The fluxtubes are very small
(100 km diameter). The filling factor, the fraction of the area which is covered by magnetic
field, can vary over a large range, but is generally much smaller than unity. Typical values
for the filling factor in plage are 10 — 20 %.

2.2.2 Magnetic features in the chromosphere and the corona
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Figure 2.4: The vertical view of an active region. Taken from Cox et al. (1991).

If we go higher up in the atmosphere, the magnetic field becomes more dominant. In
a fluxtube, pressure equilibrium is valid:
2
% + P = P;. (21)
The term B2/(87) is the magnetic pressure, P; represents the gas pressure within the
fluxtube, P, is the gas pressure outside the fluxtube.

The external density and pressure decrease rapidly (exponentially) with height, as do
the internal density and pressure. To obtain pressure equilibrium (2.1), the field strength
must also drop rapidly with height. Since the magnetic flux must be conserved, the
fluxtube must therefore expand with height.

In the chromosphere, the temperature outside the fluxtube is lower than the tempera-
ture inside. The pressure scale height is proportional to the temperature. So the external
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pressure drops more rapidly than the internal pressure and the magnetic fluxtubes expand
very rapidly and fill the whole chromosphere.

If you take a cross section in height, a canopy structure (Fig. 2.5) becomes visible. In
the photosphere and the lower chromosphere, the fluxtubes are small, while in the higher
chromosphere and the corona, space is completely filled with magnetic field. Above this
height the field strength decreases only slowly as we go outwards, while the gas pressure
keeps dropping exponentially. Hence the magnetic field dominates the force balance and
dynamics in the upper chromosphere and corona.
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Figure 2.5: A sketch of the canopy structure of the fluxtubes.

One of the structures visible in the Ha image are the filaments. In an active region
filaments are located above the separation of the opposite polarities in one active region.

Some filaments lie between two active regions, outlining the magnetic neutral line
between them. This neutral line is the line where the polarity reverses and the strength
of the vertical component of the magnetic field is equal to zero.

We can distinguish between two sorts of filaments, the first filament we described
above; the plage filament. This filament is located in an active region. The other filament
is the quiescent filament. This filament is not located above an active region, but above
the quiet sun.

Because the life time of a plage is often shorter than that of the associated filament,
these may exist longer than the plage itself. After the plage disappears, the filament
appears as a quiescent filament.

If we see the filament at the edge of the solar disk, we see it as a structure in emission.
Then it is called a prominence. Prominences (or filaments) lie in the corona of the sun,
but the spectrum of a prominence shows a spectrum typical for the chromosphere, e.g.,
emission lines of hydrogen, helium and various metals. A prominence has a temperature
of about 10,000 K, much cooler than the surrounding gas, which has a temperature of
2 million K. So if we take an Ha image, we see the prominence in emission, because the
surrounded gas in the corona doesn’t emit radiation at that wavelength.

On the other hand, filaments are absorption features. We observe them as dark struc-
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Figure 2.6: An Ha image of an active region of the sun. Taken from http://www.bbso.njit.edu (Big Bear
Solar Observatory).

tures against the solar disk. The particle density in a filament is very low (107 parti-
cles cm™3), so the collisional excitation is very small, and negligible. Much of the radia-
tion coming from the filament is produced by scattering of photons from the photosphere.
Scattering occurs in all directions, so the photospheric radiation is weakened. A filament
thus appears dark.

There are some differences between plage filaments/prominences and quiescent fila-
ments/prominences. When the filaments are seen at the edge of the disk as prominences
the plage prominences are more compact and brighter than the quiescent ones. The height
where the prominence appears, is for the quiescent prominences somewhat higher than the
plage prominence (1.5 — 2 - 10* km).

The magnetic field of the plage filaments is in the order of 20 Gauss with an azimuthal
angle of 20 degrees with respect to the body of the filament. The orientation of the
magnetic field is in most cases “potential like”. It can be thought of as forming an arcade
of loops, which have a depression near their tops. This depression holds the matter in the
prominence or filament up agains the gravitational force.

In order to study the bulge of material in the corona, we need to observe in the UV,
while we need to observe in X-rays to study the high-energetic, hot plasma. The magnetic
field which emerges from the interior of the sun, completely dominates the corona. Under
these conditions, the magnetic field is said to be nearly force-free. Meaning that in the
force balance, all the non-magnetic forces are small in comparison with the magnetic



2.2. ACTIVE REGIONS 19

Figure 2.7: An image, taken with the EIT camera from SOHO, in far UV (171 A) of an active region of
the sun, many coronal loops are visible. Taken from http://sohowww.estec.esa.nl (SOHO Homepage).

pressure and tension forces, the latter produced by the curvature of the magnetic field.

As mentioned we distinguish two sorts of field lines, the “open” field lines and the
“closed” ones. The “closed” field lines lie within the corona, while the “open” field lines
extend out into the interplanetary space, and can be closed at the boundary of the helio-
sphere, or connected with interstellar magnetic field lines.

Due to the fact that field dominates matter, we can observe several loops of matter
kept together by the field lines.

The smaller loops are only visible as bright knots in X-rays. The large loops only occur
in the zone of active regions, (0 — 60 degrees latitude), because they have their footpoint
in active regions. The small magnetic loops can appear at all latitudes and are not limited
to the zone where the active regions occurs. Their footpoints are small bipolar magnetic
regions.

The largest magnetic loops reach the corona of the Sun and are visible as coronal loops.
The coronal loops often become unstable and explode into a coronal mass ejection (CME).
Coronal mass ejections expand away from the Sun at velocities of about 2000 km s~!. They
carry up to 10'3 kg of matter into the interplanetary space.

Another explosive feature occurring in the corona is the solar flare (Holman and
Benedict 1996b). Flares are detectable from Ha to X-rays. The lifetime of a flare varies
from a couple of minutes for the small solar flares to a day for the giant ones. A solar
flare occurs when magnetic energy that has built up in the solar atmosphere is suddenly
released. The total amount of radiation energy is of the order of 10?° J for the largest
solar flares. A same amount of energy is used to accelerate mass away from the sun.

Solar flares normally occur in active regions, extending out into the corona of the sun.
The corona has a temperature of a few million Kelvin. The temperature of a solar flare is
much higher, it varies form 10 or 20 million K for the small ones to 100 million K for the
largest flares. CME’s were once thought to be initiated by solar flares, but now it is known
that most CME’s are not associated with solar flares (Holman and Benedict 1996a).
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The other type of field lines are the open field lines. The open field lines extend out
through the whole interplanetary space. The gas pressure close to the Sun is much higher
than the pressure further out in the heliosphere, so there is a pressure gradient. Due to
this gradient, there will be a radial force working on the gas in the corona.

Close to the sun, the magnetic field dominates matter, so the solarwind travels along
the field lines. However, at a sufficient distance from the Sun (=~ 20 solar radii), the
velocity of the solar wind is so large that the kinetic energy becomes larger than the
magnetic energy. Beyond this point, the Parker point, the wind dominates the field again.

Coronal holes appear at places where open field lines exist. Around activity minima
this happens at the poles of the sun. Coronal holes emit much less radiation in X-ray than
other parts of the sun. According to Phillips (1992), coronal holes have a great significance
for the connection between the Sun and the interplanetary space. The coronal holes are
the sources of high-speed particle streams; the so-called fast solar wind.

Figure 2.8: An image with the LASCO coronograph of SOHO, a beautiful helmet structure is visible.
Taken from http: //sohowww.estec.esa.nl (SOHO Homepage).

In an image with a coronograph (Fig. 2.8), a beautiful helmet streamer (called such
because of the similarity with a helmet with a spike) is often visible. It is a composition
of closed and open field lines. The closed field lines are located in the inner part of the
streamer, and the open field lines in the outer part. Gas can stream out along the open
field lines.

2.3 The quiet sun

Magnetic field is not confined to active regions, but is present over the whole solar disk
(Fig. 2.9). It is visible as a “pepper and salt” structure; small dots on a magnetogram,
again with a bipolar character. So, this bipolar structure is not only present in active
regions, but also in quiet regions of the sun.
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Figure 2.9: A magnetogram with MDI (SOHO). Magnetic field is present over the whole solar disk, not
only in the active regions. The magnetogram signal of the quiet Sun is much smaller than the signal of
an active region, because the spatially averaged field strenght is much smaller. The magnetic field has a
“pepper and salt” structure. Taken from http: //sohowww.estec.esa.nl (The SOHO Homepage).

2.3.1 Magnetic phenomena in the photosphere

In the quiet regions the field is organized in cell patterns, the so called supergranulation
cells. The fluxtubes, into which the magnetic field is mainly concentrated, are located at
the boundaries of the supergranulation cells.

The supergranulation has its origin in convective motions at intermediate depth in the
solar convection zone. The magnetic field is “frozen in” the solar plasma due to its high
conductivity. So the magnetic field is carried by the horizontal flows to the boundaries of
the cells.

There is an other component of the magnetic field we didn’t discuss, it is the so called
weak field. This field is not organised in cells, and not only distributed in the boundaries
of the supergranulation cells, but present over the whole solar disk. The theory is that
the weak fields are turbulent fields with a strength of (B « 1 kGauss), while others
are fluxtubes of lower field strength than those in the network (200 — 800 Gauss). The
features are so small that we can’t resolve them with the present day detectors. We can
only measure the average over the area in the detector element, while the filling factor in
a detector element is less than unity.
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2.3.2 Magnetic phenomena in the chromosphere and the corona

In the Ha image (Fig. 2.10) of an area near the limb of the sun, we observe several short,
dark structures, forming what looks like hedgerows around supergranules. These spicules
mark the location of the magnetic field. At the limb of the sun, these features however
appear as bright features. Spicules are jets of plasma, shooting out with velocities of
around 10 km s~! from the boundaries of the cells, where the magnetic field is located.
In the spicules matter at photospheric temperature is ejected from the chromosphere into
the corona.

Figure 2.10: Visualization of the supergranulation cell pattern on the quiet sun. The image is taken in
Ha. The spicules and the bright footpoints are visible at the boundaries of the super granulation cells.
Taken from Stenflo (1994).

At the lower end of the dark spicules, tiny, bright emission points are visible in Ha.
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This are the footpoints of the corresponding magnetic field concentrations. These bright
points are located at the boundaries of the supergranulation cells and form the so called
network. These bright spots are present from the higher photosphere to the chromosphere-
corona transition zone. The higher up we go in the atmosphere, the coarser the structures
becomes. This indicates that the structures diverge with height. This is what we expect,
because the magnetic field lines diverge with height due to the drop of the density. Note,
however, that the magnetic field is expected to diverge much more than is seen in brightness
images. Obviously the heating of the plasma in the upper chromosphere and transition
region is confined mainly to the center of the magnetic concentrations.

Another phenomenon observable in Ha are the quiescent filaments. We already dis-
cussed these phenomena in section 2.2.2.

2.4 Conclusion

In this chapter we described a small part of the magnetic features occurring at the solar
surface and in the atmosphere of the sun. In the first section we described the morphology
of an active region where the field lines break out of the interior of the sun. Sunspots,
large dark features, occur at the foot points on the solar surface. The places where the
magnetic field emerges are the footpoints of several features in the chromosphere and the
corona of the sun, like coronal loops or coronal mass ejections.

If we look at the quiet sun, i.e., areas where no active region is present, the magnetic
field is organised in cell patterns, determined by the supergranulation cells. The other
magnetic field component of the quiet Sun is the weak field, not organized in cell patterns,
but distributed over the whole solar disk. In the chromosphere and the corona quiescent
filaments, spicules, the network, active-region plage, X-ray emitting coronal loops, and
helmet streamers are observable consequences of the magnetic field.
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Chapter 3

Stellar magnetism

Lecturer R.J. Rutten, notes by N.P.A. Zagers

3.1 Introduction

he classification of stars in the H-R diagram is based on their luminosity and effec-

tive temperature. It is very well possible to understand main stellar properties such
as the existence of a main sequence without taking magnetic fields into account. Appar-
ently, at least on the main sequence, gross stellar properties (e.g., luminosity and effective
temperature) are not influenced very much by magnetic fields.

For this reason, there has been no strong “push” to search for stellar magnetic fields.
Also, the detection of stellar magnetic fields is far from easy. It took a long time after the
discovery of magnetic fields on the Sun before the existence of magnetic fields on stars was
proven by direct measurements. Since then, magnetic fields have been detected directly
or indirectly on stars throughout the H-R diagram.

A brief overview: T Tauri stars have magnetic fields which often interact with an
accretion disk. Late M stars are fully convective and are fast rotators. They show strong
magnetic fields. F to M main sequence stars have a convective outer region and possess
solar-type fields. All these types of stars have in common that their magnetic fields are
generated in a convective layer.

Some stars of type A and B have magnetic fields as well. Their field structure is
roughly bipolar. The exact origin of their fields is not clear. Most likely their fields are
fossil fields from some earlier stage in their evolution. Other examples of remnant fields
are the fields found on white dwarfs and neutron stars. Their fields have been amplified
enormously when these stars contracted.

This text presents direct and indirect evidence for stellar magnetic fields and the inter-
pretation of these observations. The emphasis is on solar-like or cool-star magnetism. A
separate section is on a relatively new technique, Zeeman Doppler imaging. This promising
technique allows mapping the surface distribution of the magnetic field.

This text is mostly based on the books by Bohm-Vitense (1989) and Schatzman and
Praderie (1993), and the reviews by Donati (1999) and Landstreet (1992). References to
the original literature are found there.
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Cr 0 4558

Figure 3.1: An example of a Zeeman triplet in a stellar spectrum, indicated by the three tick marks just
above the digit 4 in 4558. The spectrum is a small part of the spectrum of HD 215441. Fig. 14.4 on page
121 of B6hm-Vitense (1989).
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Figure 3.2: The results of measurements of stellar magnetic fields by Babcock. The method of Babcock
works best for stars of type A. Fig. (14.9) on page 125 of Bohm-Vitense (1989).

3.2 Direct measurements of stellar magnetic fields

Any direct measurement of a magnetic field is based on the change of shape or polarization
of spectral lines by the Zeeman effect (Donati 1999). The first evidence for a stellar
magnetic field was found by Babcock in 1947. Fig. 3.1 shows an example of direct evidence
for stellar magnetic fields, a Zeeman triplet.

Trying to detect magnetic fields by searching for Zeeman splitting is not very pro-
ductive. The Zeeman broadening has to compete with the rotational broadening. Only
strong fields on stars having a small rotational velocity can be detected. In Fig. 3.1 the
rotational velocity is 5 kms~! while the field strength is 3.4 10 Gauss. This value for the
field strength is large compared to the values found on the Sun. The rotational velocity
is small compared to values found for most stars.

In order to detect weaker fields Babcock designed a sensitive magnetograph (e.g.,
Bohm-Vitense 1989). The light which enters the magnetograph contains both left and
right circular polarized light. The magnetograph splits these components and makes two
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parallel spectra, one of each component. A comparison of the two spectra shows that lines
that are influenced by the Zeeman effect are slightly shifted relative to each other. The
broadening of each line due to rotation is no longer spoiling the measurement.

The results of Babcock’s survey are presented in Fig. 3.2. Magnetic fields are found
from spectral type B8 to F6. Most of the successful measurements are for stars of type
Ap, stars of type A with peculiar abundances for the rare earth elements. Babcock found
that all the A stars with a magnetic field are Ap stars. All the Ap stars with a small
rotational velocity have a magnetic field.

The longitudinal magnetic field found on Ap stars varies with the rotational period
in a sinusoidal way. Most Ap stars are also periodic light and spectrum variables as well.
The period of these variations is also the rotational period. These effects are all clues
leading to the oblique or rigid rotator model. Ap stars are believed to have a roughly
bipolar field, not aligned with the axis of rotation.

On the Sun we find a much more complicated field, with no net polarity. For stars
with a similar field structure the method of Babcock fails, because the effects of regions
with a different polarity cancel out to zero. This is the reason that no fields are found for
spectral types later than F6 with this method.

Schatzman and Praderie (1993) explain on their page 327 ff how the magnetic fields of
stars of later spectral types are determined. Donati (1999) refers to this method as Stokes
I spectroscopy. The method is based on comparing photospheric lines as similar as possible
except for the Landé factor g. Lines with large g are more broadened by a magnetic field
than lines with small g. With this method fields between 600 and 3000 Gauss have been
found on stars between GOV and dM 3.5e.

Besides stars on the main sequence, magnetic fields have been detected on other types
of stars. Donati (1999) quotes a detection of a magnetic field on T Tauri stars measured
with Stokes I spectroscopy. The review by Landstreet (1992) contains a section on mag-
netic fields measured on white dwarfs and neutron stars. Table 2 on page 59 of his review
gives results for 27 white dwarfs. The field strengths vary between a few MGauss and
350 MGauss. On neutron stars magnetic fields as strong as 10!3 Gauss are found.

3.3 Indirect evidence for magnetic activity

3.3.1 X-ray emission

X-ray images of the Sun clearly show bright regions. They appear bright because of their
high temperature. These regions are definitely not in thermodynamical equilibrium. It is
generally accepted that the magnetic field plays an important role in the heating process.
Fig. 3.3 shows an H-R diagram containing X-ray emitting stars as detected by the Einstein
satellite. X-ray emitting stars occur on the entire main sequence. This does not mean that
every main sequence star has a corona heated by a magnetic field. Shocks in an otherwise
cool wind are also able to produce X-rays. This may occur in the wind of hot O and B
stars (e.g., Schatzman and Praderie 1993, Linsky 1985). In cool stars the X-ray emission
is caused by a hot corona. This indicates the existence of magnetic fields on such stars.

3.3.2 Call H& K and MgII h & k lines

Fig. 3.4 shows examples of the Call H & K lines as observed on the Sun. There is a strong
increase of the intensity in the core of the lines in an active region. The same effect is
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Figure 3.3: H-R diagram for stars detected as soft X-ray sources by Einstein. The absolute visual mag-
nitude was determined from the luminosity class or from parallax data. Fig. 1 on page 163 of Vaiana
(1981).

observed for the MgII h&k lines. The fluxes of the H& K emission lines of the disk-
integrated Sun vary with amplitudes of the order of 20% through the eleven-year sunspot
cycle (e.g., Schatzman and Praderie 1993). This means that the integration of the disks of
the stars is not a problem. Effects similar to those on the Sun are expected in the spectra
of stars as well.

Fig. 3.5 shows the modulation of the mean H& K flux for a number of stars. The
variation on a time scale of days is interpreted as a rotational modulation. The variation
on a time scale of years is comparable with the solar eleven-year cycle. On time scales of
years some data spread results from faster rotational modulation.

In a project maintained at the Mount Wilson observatory 91 late-type stars have been
observed since 1966. After 24 years of observing 85% of these stars showed variation. The
typical cycles found are 8 to 12 years. 10-15% are constant in time. Perhaps these stars
are in a period comparable to the Maunder minimum.

The bars in Fig. 3.6 represent the variations found in the 91 stars that were part of
the Mount Wilson H & K project. For comparison “snapshot” measurements of 396 stars
are plotted as well. The overall behavior is an increase of the H& K index with the stellar
temperature. In the middle of the data is a gap, known as the Vaughan-Preston gap.

The Call H& K and MgII h&k activity indicators increase as the rotation rate (2
increases. This correlation is clearly visible in Fig. 3.7. The Rossby number Np is defined
as the ratio of the rotation period 1/ to the convective turnover time 7. = I/V, where
is the mixing length and V is a typical convection velocity. The activity is correlated with
the Rossby number as well, see Fig. 3.8.
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Figure 3.4: The Call H&K lines in an active (upper panel) and quiet (lower panel) region of the Sun,
of size 2" x 10”. The core of the lines increases in intensity in an active region. Fig. 7.5a on page 314 of
Schatzman and Praderie (1993).
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Figure 3.5: Right: rotational modulation of the Call H&K lines. Left: Long term variations of the same
lines. Fig. 1 on page 279 of Vaughan et al. (1981).

The stellar age controls the activity of stars as well. Young stars are in general more
active. However, rotation is a more important factor than age. This can be inferred from
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Figure 3.7: The Call HK activity versus the stellar rotation period in main sequence stars. Fig. 11.3 of

Schrijver and Zwaan (1999).

the extreme activity of RS CVn binaries. These are close binaries containing stars of
nearly equal mass, with the hotter component of spectral type F, G, or K and luminosity
class V or IV. Due to tidal interaction forces these systems show synchronous rotation.
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Figure 3.9: Variations in the magnitude of RS CVn star V711 Tau. The variations in the magnitude are
modeled by two dark spots. Fig. 10 on page 147 of Rodono et al. (1986).

The fast rotation causes the stars to be very active.

3.3.3 Photometric variation

The active Sun shows dark spots and bright active regions as well. The disk coverage of
the sunspots is usually small. However, the small effect sunspots have on the luminosity
are measurable.

The magnitude variations in some stars have been interpreted as caused by star spots,
dark regions in the stars photosphere. An example is given in Fig. 3.9. Stellar spots are
usually much larger than sunspots. One reason for this is that in order to be detectable,
i.e., causing large enough magnitude variations, the spots have to be large.

If the star spot interpretation is correct, the story is not complete yet. What remains
unclear is the exact nature of these large dark regions. It is not evident that they are
simply larger versions of sunspots. Perhaps they are of a completely different nature.
Their relation to any magnetic field is not clear for the same reason. And finally, there is
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a possibility that what we observe as a single large spot is actually a collection of smaller
spots.

3.4 Doppler imaging

The principle of Doppler imaging is explained in Fig. 3.10. It shows the effect of a single
spot rotating along with the star. The line profile is Doppler broadened by the rotation
of the star. If the broadening is too small the technique may not work. The effect of the
spot is a small emission “bump” in the spectrum.

o
o

<©f<©*
SICASI

Figure 3.10: The principle of Doppler imaging. Top: an example of a spot near the equator. Bottom: an
example of a spot near the pole. Fig. 1 on page 20 of Rice (1996).

First consider a spot near the equator. This spot will be visible only part of the time.
When it becomes visible near the edge, the bump appears in the spectrum at the far
blue wing of the spectral line. As the spot rotates along, its Doppler shift will change.
The bump moves through the line profile to the far red wing. A spot near the pole will
be visible for a longer time, perhaps even permanently. The emission bump caused by a
polar spot is less blue- or red-shifted, i.e., never reaches the far wing of the line profile. A
permanently visible spot moves in both directions.

The longitude of the spot follows from the time of passage through the center of the
line profile. The latitude can be inferred from the way the bump travels through the
profile. When there are more spots of different sizes the modification of the spectra gets
more complicated. The essential part of the reconstruction method is to find the image of
the star which reproduces the observed spectra best.

This means that some sort of error function, indicating whether the reconstructed im-
age is “good” or “bad” must be minimized. Using the correct error function and conver-
gence criteria is very important. To gain more confidence in the reconstruction algorithm,
the algorithm is tested on a fictitious star before real data is used.
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First a fictitious star, in this case the “Vogtstar”, is covered with spots as is shown in
Fig. 3.11. For the fictitious star a synthetic spectral line flux is calculated. An example
of such a spectral line flux is given in Fig. 3.12. The reconstruction algorithm is tested on
the synthetic spectrum. Fig. 3.13 is an example of a reconstructed image. Tests like this
validate the use of the algorithm on real data. The same test can be performed for binary
stars, see Figs. 3.14-3.16. Examples of images reconstructed with the Doppler imaging
technique are given in Fig. 3.17 and Fig. 3.18.

Figure 3.11: The figure shows the “Vogtstar” used as test data for a Doppler imaging reconstruction
algorithm. Fig. 4 on page 503 of Vogt et al. (1987).

It is also possible to use the deformation of spectral lines by Zeeman broadening as
input for similar image reconstruction algorithms. Rather than just using the first moment
of the spectral lines, as is done in Stokes I spectroscopy, the full spectral resolution and
polarization information of a large number of lines is used. This technique is called Zeeman
Doppler imaging. Not only can it detect spots, with this method the surface distribution
of the magnetic field can be found as well (Donati 1999, Rice 1996). An example is given
in Fig. 3.19.

Both Doppler imaging techniques are capable of showing the detailed surface distri-
bution of star spots. The Zeeman Doppler technique can recover the structure of the
magnetic field as well. At the present time, observations have been made for only a small
number of stars. Especially the Zeeman Doppler technique has not been fully exploited
yet.

However, observations have shown that Zeeman Doppler imaging gives useful results.
There are plans for a survey of various types of magnetic stars for a considerable period.
This should give information on the evolution of the surface distribution of the magnetic
field and differential rotation. Observations of this kind are important for testing stellar
dynamo theories.
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Figure 3.12: The synthetic spectral line flux for the “Vogtstar” test image of Fig. 3.11. The theoretical
profiles are shown as the crosses. Ten inversion software’s final fit is shown by the solid line. Fig. 5 on

page 504 of Vogt et al. (1987).

Figure 3.13: The reconstructed image of the “Vogtstar”. The image should be compared with the input
image in Fig. 3.11. Fig. 6 on page 505 of Vogt et al. (1987).

3.5 Cool star activity

Only one star, the Sun, can be observed in great detail. On the other hand we can observe
the gross (magnetic activity related) properties of a lot of stars with different depth of the
convection zone, effective temperature, gravity, rotation rate, age, etc. The solar paradigm
states that the Sun can serve as a guide to understand stellar magnetism in general.

The solar paradigm is of great help to make progress in understanding solar and stellar
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Figure 3.14: An example of a fictitious binary star, used as test data for a Doppler imaging reconstruction
algorithm for binary stars. Fig. 1 on page 46 of Piskunov (1996).

After 38 iterctions Deviotion=(0.0283%
vein(i)= 45.0 km/s = 70° Voo™  C.0 km /s
380

o 80 120 180 240 300 360
phase=0.00 hose=0.25

4750
4714K
4678%
4647K
4607K
4571K
4535¢

4300«

Figure 3.15: The reconstruction of a single star from the fictitious binary star in Fig. 3.14. Fig. 2 on page
47 of Piskunov (1996).

magnetic phenomena. Consider for example the increased Call H& K emission in active
regions. From solar observations it first became clear that the effect is related to magnetic
activity. The next step was to apply it to stellar observations.

The solar—stellar comparison may work the other way as well. The Sun remains just a
single star. Its depth of the convection zone, effective temperature, gravity, rotation rate,
age, etc. can not be changed. Stellar observations are essential to obtain information on
the dependence of magnetic activity on such parameters.

In addition, the magnetic events on the Sun may not provide a good example for
similar events on stars in any case. Consider for example the huge spots found from
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Figure 3.16: The reconstruction of the fictitious binary star in Fig. 3.14. The arrows mark the phase of
the eclipse for each component. Fig. 3 on page 48 of Piskunov (1996).
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Figure 3.17: Two images of V410 Tau taken at Nov. 1992 (left) and Dec. 1993 (right) obtained with
Doppler imaging. The rotational pole is at the center, the lines of latitude and longitude have a spacing
of 22.5°. Fig. 2 on page 31 of Rice (1996).

luminosity variations. It seems tricky to assume that these large spots are simply larger
versions of sunspots. The Sun being just a single star is perhaps the weakest point of the
solar paradigm. Many other stars are members of multiple systems.

Although some critical remarks are possible, the solar paradigm seems to work. Of
course it will only work for stars similar to the Sun. How should “similar to the Sun” be
defined? Linsky (1985) defines a solar-like star as

(...) a star which has a turbulent magnetic field sufficiently strong to control the
dynamics and energetics of its outer atmospheric regions.

Fig. 3.20 shows schematically which types of stars are definitely or probably solar-like. The
most important criterion is that a magnetic field is detectable. Call H& K variability on a
rotational time scale and X-ray emission are good indicators. Another important criterion
is that the magnetic field is generated by a dynamo effect in a convective outer region.
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Figure 3.18: The silicon distribution on 42 Ari. Maximum W5 = 550 mA (white), minimum W = 5 m4,
average W = 170 mA. Fig. 2 on page 310 of Hatzes (1996).

These conditions are all met for G, K, and M stars, so they are definitely solar-like. Dwarf
stars of spectral type A4 — F7 are also good candidates, but their fields have not been
detected directly yet.

Other regions of the H-R diagram may possibly contain solar-like stars as well, but
the best correspondence to the solar case is found in the cool dwarfs of type G, K, and M.
Observations of cool star magnetism will be most useful for a better understanding of

solar-like magnetism.
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Figure 3.19: An example of an image obtained with Zeeman Doppler imaging. The plot shows a flat-
tened polar view of the brightness (upper left), radial field (upper right), azimuthal field (lower left) and
meridional field (lower right) of HR 1099 at epoch 1995.94. The concentric circles indicate parallels with
a spacing of 30°, the bold one indicates the equator. The magnetic fields are in Gauss. Fig. 2 on page 32
of Donati (1999).
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Chapter 4

Basic magnetohydrodynamics

All lecturers, notes by R.F.S. Collaris

4.1 Introduction

any stellar objects are strongly influenced by, if not controlled by, magnetic fields. In

order to discuss the magnetic activity in stellar objects (like the Sun) it is necessary
to have some knowledge of the properties of magnetic fields in general and of their role in
the Universe.

In order to understand the following chapters we begin with a chapter on “Basic mag-
neto hydrodynamics” examining the influence of magnetic fields on stellar objects. It
starts by stating “Maxwell’s” equations. Next I simplify these equations through some
constraints and assumptions resulting in the induction equation. I use this powerful equa-
tion to work out the flux conservation and diffusion concepts. Finally I consider magnetic
pressure and tension resulting in phenomena like flux tubes and current sheets. Keep in
mind that there is an extensive literature on this subject and that this chapter by no
means covers all of it. Only the essentials needed for this course are treated here.

4.2 Units

In electromagnetism several systems of units are used. It would clearly be advantageous
if a single system could be accepted by all, even though the transition to standard units
may be a painful one. The rationalized MKS units are now part of the internationally
adopted SI system and in these units Maxwell’s equations are simpler. However, because
of the simplicity of the deﬁnmg equatlons I use the Gaussian cgs units.

In Gaussian cgs e, E 7 and D are measured in esu, while B and H are measured in
emu, respectively electrostatic units and electromagnetic units. Other units are defined
in terms of these by the equations in Fig. 4.1. Note that a.nd p are d1men81onless and
are taken to be unity in plasma physics so that H equals Band D equals E. A useful
conversion table is found on page 618 of Jackson (1962).

41
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Quantity Defining equation Unit
length - 1cm .
mass - 1g
time - _ 1s
force F=mx tdyne=1gcms™?
charge F=2222 1 statcouloinb = 1 cm (dyne)'/?
T
electric fiekd E =rf2- 1 statvolt cm™* = 1 (dyne)"’? cm ™
electric displacement D=¢E 1 statvolt cm ™!
F 211
current T -2 1 abamp = 1 (dyne)*/?
r
21 .
magnetic induction BsT 1 gauss = 1 abamp cm ™!

magnetic field H=B/p 1 oersted = 1 gauss

Figure 4.1: Definition of Gaussian units. From Priest (1982).

4.3 Equations

4.3.1 Maxwell’s equations

Although these equations are called Maxwell’s equations, Maxwell “only” added some
terms to the already existing equations resulting in:

%?:-Nxﬁ (4.1)
. 4r-. 10FE
V-E =4np (4.3)

in Gaussian units. The first equation is actually Faraday’s equation the second is largely
Ampére’s equation and the third is Poisson’s equation. As a constraint to these equations
I use:

V.-B=0. (4.4)
This tells us that magnetic field lines should always connect head to tail except in the case
of infinity. This ”simple” formula states that there can not be any magnetic mono poles.
We are not interested in electromagnetic waves so equation (4.2) becomes:

VxB= —7 (4.5)

We could also approximate equation (4.2) by using the typical scale length: E/L ~ B/(tc)
(Eq. 4.1) and the fact that v < ¢, resulting in:
106 B BL B2



4.4. STELLAR ASPECTS 43

Equation (4.5) implies that V - _; = 0 since the divergence of the rotation equals zero,
which means that the electrical currents are closed loops and no charge will accumulate.

Thus, equation (4.3) becomes: .
V-E=0. (4.7)

Note that the ratio of electrostatic to magnetic density is:

E? E? L? v?
_‘.B;E =3 —E_Z- = _(tc)2 = E2- << ].. (4'8)

In order to obtain the induction equation we should add Ohm’s equation:
F=0o(E) = o(E + g x B). (4.9)

In this equation we used that v < ¢ and therefore -y = 1 where =y is the relativistic factor,
i.e., we only consider the non-relativistic (and non-quantum) case. When we also use
o = oo valid for ideal plasma we again find £ ~ (v/c)B. This is sometimes referred
to as “the infinite conductivity limit”, though “the large length scale limit” would have
been a better name. The current j may be found through equation (4.5) or (4.9) but
because v ~ L/t is so large j is negligible in equation (4.9). Here o is the conductivity and
n = c/(4n0o) is the magnetic diffusivity, not to be confused with the electric resistivity
1/0. Note that 7/c x B is the induced electric field. Combining the equations (4.1), (4.9)
and (4.5) results in:

%3=—chE=Vx(ﬁx§)—Vx(Z§;Vx§), (4.10)
and using:
VxVxB=V(V-B)-(V-V)B=-V2B (4.11)
gives: .
?WB=VX1_)‘X B +nV?B (4.12)

which is called the induction equation and expresses the change of the magnetic field in
“time”. It thus defines the behavior of the magnetic field once ¥ is known. The first term
on the right is caused by convection, carrying the magnetic lines of force bodily with the
fluid. The second by diffusion of the magnetic field. We may observe the effect of ¥ on
B and neglect the effect of B on ¥ whenever 8> 1 (defined in Sect. 4.4.2) and pressure
gradients dominate the Lorentz force (see the next sections). This equation lies at the
heart of all MHD phenomena. One (simple) example is the disk dynamo which will be
treated in later chapters.

4.4 Stellar aspects

Plasma is the most common state of matter in the universe and plasma physics is the tool
to treat the dynamics of astrophysical plasmas like solar magnetic activities, solar wind,
accretion disks etc.. A great argument to use plasma physics on astronomical elements
may be found in Goedbloed and Poedts (1997).
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4.4.1 Debye length and charge neutrality

A plasma is a gas made out of charged and neutral particles. The Coulomb interaction
between charged particles is cut off by a “cloud” of oppositely charged particles around
them. In cold plasmas without any thermal movement this “cloud” would completely
neutralise the Coulomb interactions. However we are working with “normal” plasmas
which do have thermal energy. Thus the thermal movements of the particles may cause
charge fluctuations on the Debije scale. De Debije length is defined by:

kT, \'/?
,\D=(-———) , (4.13)

4dmne?

where T}, is the electron temperature in Kelvin and n the electron density per cm®. A
plasma is an ionized gas with a typical scale length L such that A\p < L. Proper shielding
_ by a cloud of particles occurs only if there are enough particles in the cloud:

Np = %7!'7’1()\1))3 = 1380 T3/2 /nl/2. (4.14)

These conditions are easily satisfied in astrophysical environments. We may estimate AD
in the photosphere, by choosing 7. to be 6000 K and n to be 10~23 particles m™3, to be
0.16 cm. The typical sizes of solar phenomena range from km to Mm (e.g. a granule is
1 Mm and a sunspot is 30 Mm).

4.4.2 Reynolds number and plasma beta

We are interested in plasmas in which L is the _lpngth scale of the system. Thus looking at
equation (4.12) |V x @ x B| ~ vB/L and |nV?B| ~ 1B/ L?. The Reynolds number defined
by dividing the convection part through the diffusion part is:

_ L

Rn = (4.15)

Obviously implying that whenever Ry, > 1 convection dominates and coupling between
plasma flow and magnetic field is strong, but, when Rn, <1 diffusion dominates and
coupling is weak. This magnetic Reynolds number is very large in astrophysical circum-
stances; e.g., for umbrae L = R = 10 km and v; = 100 ms™!, Tlphotosphere = 108 cm?s7!
gives R,, = 10° > 1. So all visible changes in the solar atmosphere are caused by moving

material.
The plasma beta (8) is defined by the plasma pressure divided by the magnetic pres-
sure:

B=— (4.16)

In the photosphere 8 > 1 but in the corona 3 < 1 (the so called low-3 plasma). For more
parameters see Priest (1982).

4.5 High/low conductivity

4.5.1 High conductivity and flux conservation

When assuming an ideal plasma ¢ = oo (7 = 0) and equation (4.12) becomes:
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%:Vxﬁxﬁ (4.17)

Now I define the flux as the number of field lines (field strength) through a surface
element s of a moving contour L:

—

ds

Figure 4.2: Flux conservation through a contour. From Kuperus (1998).

<I>=/B’- ds (4.18)
S

Here d§'is an infinitesimal surface element. The flux changes because of two reasons. In
the first place the local magnetic field B changes in time:

20, = [ 9B 45 At (4.19)
s Ot

and secondly the contour changes shape thus altering the flux:
A¢2=/§-6x di- At (4.20)
S

Here di'is an infinitesimal line element. I use the vector identities: B-7xdl = —(7'x B)-dl
and [; ' x B.di= JsV x (v x B) - d (Stokes theorem) to find:

%:L(%—Vx(ﬁxé))-dé‘ (4.21)
Together with the assumption of an ideal plasma (Eq. (4.17)) we see:
d®
— = 4.22
=0 (4.22)

Thus I conclude that the flux through every contour L will stay the same. This is a very
important fact for it implies that the field lines are “frozen” into the plasma. Plasma can
move freely along field lines, but, in motion perpendicular to them, either the field lines
are dragged with the plasma or the field lines push the plasma. The significance of this
fact will soon become clear. Observing that:

%?=%?+(U-V)§ and -—=Vx¥#xB (4.23)
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We find .

%’f—=vxax1§+(17-V)1§=(B‘-V)v—é(v-a) (4.24)
Now V - 7 is called the compression or expansion term and so the second term on the
right side of equation (4.24) is the change In B through compression or expansion. The
first term on the same side includes the change of B through stretching the field lines by
“forcing” them off the surface.

Considering an ideal plasma with frozen-in magnetic fields, we see that by keeping
the flux constant, differential movements like compression and shear (forcing the magnetic
field lines off the surface) changes the magnetic field.

First I consider shear. We may visualize this by looking at a homogeneous magnetic
field (in say the Z-direction) and a velocity field perpendicular to B with a gradient along
B see figure (4.3). We notice that B which is indicated by the number of field lines
increases. A simple mathematic solution to the given problem: from equation (4.17) with

A 4\ \
z z
viz) v(z)
— =
A A I
By
—— %
X~ X

Figure 4.3: A simple example of shear motion. From Kuperus (1998).

#(z) = (vz(2),0,0) and B = (B;,0, B;) we find

an _ avz a Bz _
S =By, ad =0 (4.25)
Thus B, = By. Take v(z) = az:
B.(t) = aBgt (4.26)
resulting in:
B(t) = (Bo)? + 0+ (By)? = (Bo)*(1 + &°t). (4.27)

This method to increase the field strength is found in systems where turbulence plays
an important role and also in systems with differential rotation. In the sun differential
rotation causes the poloidal magnetic fields to become (and strengthen the) toroidal mag-
netic fields, thus creating two toroidal tubes. I now examine compression through a simple
example. With #(z) = (vz(z),0,0) and B = (0,0, B;) we find

dB, _ Ovy
% = B (4.28)
Now using the continuity equation
dp O
%= Pz (4.29)
We find: d /B
— — g 4.
2(3)=0 (4:30)



4.5. HIGH/LOW CONDUCTIVITY 47

o

v{x)

X> x>

Figure 4.5: A simple example of compression. From Kuperus (1998).

where I used the condition ¥+ B = 0. Thus B /p is constant, meaning that whenever
matter diverges or converges the field strength does so too. Keep in mind that this only
holds if a tube of constant length is considered (see Sect. 4.8.1). A more general example
is illustrated in Priest (1982) and Kuperus (1998).

4.5.2 Low conductivity and diffusion

I now look at the static case in which ¥ = 0 and o # oo; thus the plasma is not ideal, or
in other words R,, < 1. Equation (4.12) becomes:
)] _
— =nV?B. 431
5 =" (4.31)
This is called the diffusion equation. The characteristic diffusion time on the characteristic
length scale L may be estimated by:

= ~ = =—132 4.
"I thus 7p 2 L (4.32)

In astrophysical circumstances 7p is very large due to the fact that both L and o are
large. One reason we cannot reproduce these conditions in the laboratory is the value for
L.
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4.5.2.1 The infinitesimally thin current sheet

The smaller the length scale the faster the field diffuses away. As an example I consider
the infinitesimally thin current sheet:

B = B(z,t)§ (4.33)
with
B(z,0) = +By, >0 B(z,0) = —Bo, z <0 (4.34)
B
N
Bo —— pr
4 g
,’ =t, /,/‘ t=t,
;e
5
- =y + X
/,"/ ,l‘ zqu 2,' "t!
T
L /
== B,

Figure 4.6: A diffusing current sheet: The variation with time of the magnetic field strength. From Priest
(1982).

Suppose the plasma in this initially infinitesimally thin current sheet remains at rest
and the magnetic field remains unidirectional. The equation (4.31) becomes:
0B _ 8B
Bt - "oz
which has solution B(z,t) = By erf(¢) where £ = z/(4nt)? and erf(§) = 2/v/7 JE e du.
In time we find the profiles shown in Figure 4.7.

Here we see |B(z,t)| ~ Boz(mnt)~/? for |z| < +/4nt and |B(z,t)| ~ Bo for |z| >
V/4nt. Here the profile is undisturbed. The region to which the current is concentrated is
known as the current sheet. A rough estimate for its width is 4,/7t, which increases with
time at a continuously decreasing rate. We can see that the field strength at large distances
remains constant, whereas that at small distances decreases monotonically. So I conclude
that the field lines do not move outward; rather, the field diffuses away or is annihilated.
Magnetic energy is converted into heat by ohmic dissipation, Although the current density
j» = cdB/4wdz changes in time, the total current in the sheet J = [ j.dz = 2Boc/(4r)
remains constant. Of course this is a crude example since we cannot neglect the convection
term in the induction equation due to the inward pointing magnetic pressure.

(4.35)

4.6 Reconnection of magnetic field lines

Imagine two oppositely directed fields brought together by fluid motions. The easiest way
to look at it is discussed in Tayler (1997): As the field lines approach, the gradient of the
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Figure 4.7: A diffusing current sheet: a sketch of the magnetic field lines at three times. From Priest

(1982).
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Figure 4.8: A process of steady-state reconnection, showing successive field lines approaching and recon-
nection. From Tayler (1997).

magnetic field will become extremely strong in the region between them, where there will
be what is known as a neutral point; a point where the magnetic field vanishes. As the
field gradient increases the resistive dissipation produced by the term nV2§ will become
important even if the conductivity o is very large. The effect of dissipation is to cause a
reconnection of the magnetic field lines which then move apart in a direction perpendicular
to their original motion. As a consequence magnetic energy has been released in the
neighbourhood of the reconnection point.

Other physical causes of reconnection:
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Figure 4.9: The final stage of reconnection resulting in an configuration with an X-type neutral point.
From Tayler (1997).
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Figure 4.10: Magnetic buoyancy. A tube of magnetic flux with magnetic induction B has an internal gas
pressure pi, which must be smaller than the external pressure pou;. Because temperature is uniform, the
density in the flux tube is lower than that of its surroundings and it rises. From Tayler (1997).

— a resistive instability such as the tearing mode (see Sect. 4.8.2) in a current sheet or
throughout a sheared structure may cause reconnection;

— sudden enhancement of the resistivity at some location may cause reconnection.

4.7 Magnetic pressure and tension

In this section I use our previous findings to determine the effect of magnetic fields on a
stellar structures. To this end I use the equation of motion:

%=—Vp+p§+%jx3 (4.36)
The first term on the right is the gas pressure gradient. The second term stands for
gravity and the third is the Lorentz force. Of course there may be more terms important
in equation (4.36) here but I concentrate on the ones important to this course.
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When we combine equation (4.5) with the equation of motion we find:

= 732

%’g =-V(p+ f_w) +pg + 4—17r-(B -V)B (4.37)
Here B%/(8r) is the magnetic pressure and 1/(4r)(B - V)B the magnetic tension along
the magnetic field lines. The existence of magnetic tension along the magnetic field lines
may be compared to tension in a string. Therefore we expect that transverse waves may
propagate along field lines. These perturbations of magnetic field lines are Alfvén waves
and they propagate with the Alfvén speed v, = B?/(4np).

We can decompose the magnetic tension assuming B = B5 in terms of the unit vector
§ along the field:

1, = -~ B d d (B? B? 7

—(B:-V) B=——(B8)=—|— |5+ —— 4.38

w8 VB= 5 BI=g (87r>s+47ch (4.38)
Where 7i is the principle normal to the magnetic field line and R, is its radius of curvature.
Thus, the smaller the radius of curvature, the larger the tension force becomes. The first
term on the right side of this equation is canceled by the component of the magnetic
pressure along the field lines which is obvious since we used a vector perpendicular to B
(i.e., 3 x B).

4.7.1 The magnetic buoyancy force

An important conclusion has been reached now: magnetic fields exert pressure. This
pressure may be added to the gas pressure. Now I will find through a simple argument
that this extra pressure will make the flux tubes (see Sect. 4.8.1) rise upwards through the
stellar object. To this end I imagine a simple example in which we have a homogeneous
and straight flux tube perpendicular to the gravitational field (see Figure 4.10). Note that
inside this flux tube the pressure will be the same as outside (assuming that perturbations
will be slow). For a pressure difference will make the flux tube expand or compress until
an equilibrium has been reached. In formula:

B2
8r
Assuming the ideal gas law p = TpR/u and that the temperature differences between the

inside and the outside of the tube will be small due to the high radiation inside a stellar
object, equation (4.39) will result in:

Pin + = Pout (4.39)

32
Pin — Pout = %87 (440)
Thus we find the force on the flux tube must be:
_ [m B
Fupwa.rd = RT 8n dv (441)

This example is somewhat simple since a completely homogeneous tube is very rare.
There will almost always be parts were the magnetic field is stronger and these will rise
faster causing the tube to bent. These tubes will form a bipolar magnetic surface upon
breaking through the stellar surface. While rising up through the interior of the stellar
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object, the flux tube will try to keep pressure balance. This means that the thinner the
atmosphere the further the tube will expand. This causes the curvature of the magnetic
field lines to increase (i.e., the radius of curvature decreases) and the magnetic tension
increases too (see equation (4.38)). An equilibrium state will be reached whenever:

B2 g B2
——— = = 4.42
4R, RT 8w (442)
This will happen when:
R =2XL _on (4.43)
©g

Here H is the scale height. Again this is a simplified example; in order to be able to
answer the question whether or not this equilibrium will be reached, one has to consider
convection too. Convection causes the tubes to rise adiabatically keeping their temperature
higher than the outside temperature; this causes the tube to keep on rising.

4.7.2 Magnetic forces influencing stellar structures

I already discussed some ways in which magnetic fields may influence stellar structures.
Note however that there are many ways in which astrophysical magnetic fields can exert
their influence. In many cases this will make observations of these stellar objects hard to
understand. But sometimes we are able to understand the complex way it works. Again I
will not treat all the effects of magnetic fields, but many visible effects will be dealt with
in later chapters. Here is a summation of observable phenomena produced by magnetic

fields:
— Zeeman broadening;

— line and continuum polarization and depolarization;

— radio emission: gyro synchrotron;

— EUV and X-ray emission: heating, acceleration;

— heating: MHD waves, field annihilation;

— particle acceleration: currents;

— flares: rapid field annihilation;

— structural isolation: flux tubes; network; loops, arcades; prominences;
— thermal isolation: suppression of conduction and convection;
— disruption of convection: abnormal granulation;

— turbulent motions;

— wave motions;

— systematic flows;

— wind acceleration;

— wind structure: fast/slow;

— wind composition: FIP anomalies.

Gyro synchrotron radio emission is produced by particles gyrating about magnetic field
lines. Since they are continuously accelerating they have to emit radiation. This kind of
physics belongs to the branch of plasma physics called: “the theorie of motion of individual
charged particles” treated in Goedbloed and Poedts (1997).
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4.7.2.1 Observable phenomena: magnetic braking

Magnetic braking occurs if a rotating magnetized object loses mass which flows along field
lines. If the field is strong enough to control the flow (this is true whenever the energy
density of the magnetic field is greater than the kinetic energy of the expelled matter),
the expelled mass gains angular momentum and the underlying object is slowed down.
Mass following these magnetic field lines will eventually arrive at a distance at which
their kinetic energy exceeds that of the magnetic fields. There the particles may move on
“freely” carrying the magnetic field lines with them.

We can understand that this point (where kinetic energy exceeds magnetic energy)
must exists at some radial distance from the object: the mass should have the same
angular velocity (initially obtained by leaving the stellar object) in addition to a large
enough radial escape speed so as to neglect the object’s gravity. Now in order to keep the
same angular velocity (forced by the magnetic field) at larger distances the matter has to
go faster, thus increasing it’s kinetic energy. The magnetic field lines, however, diverge
and thus the energy density of the magnetic field decreases with the distance.

The gain in angular speed of the mass, can only come from its angular momentum.
Thus the rotation of the object is slowed down. A simple explanation of this phenomenon
may be found in Tayler (1997).

4.7.3 Force-free fields

In many applications not all terms in equation (4.36) are equally important. We may
for example neglect gravity with respect to the pressure gradient when the height of the
structure is less than the scale height. In addition ¥ may be neglected when the flow speed
of the plasma is much smaller than the sound speed, the Alfvén speed and the free fall
speed. We are working within the field of magnetohydrostatics. This results in:

— 1- -
0=-Vp+-jxB (4.44)

Now if # is much smaller than unity, indicating the dominance of magnetic pressure
over gas pressure, pressure gradients can be neglected with respect to the Lorentz force.
Equation (4.44) reduces to:

jxB=0 (4.45)

Magnetic fields satisfying this condition are called force-free. In particular when f =0
the magnetic field is called current-free or potential. We must note that within these
assumptions the Lorentz force is limited since the pressure-gradient is not large enough to
compensate and equation (4.44) still holds.

Magneto hydrostatics may be applicable to a variety of solar structures in which
Uplasma =2 0. Good examples are: the overall structure of sunspots and prominences, and
the large scale structure of the coronal magnetic field, appearing stationary for times long
compared with the Alfvén travel time, and regions above an active region.

Examining the equation (4.45) we notice that the electric current flows along magnetic
field lines. In spite of the “simple” equation (4.45) general solutions to this equation are
still not found.

Some interesting theorems result from the force-free equation and Priest (1982) makes
some interesting reading on this subject. However in order to keep this section clear only
a few results will be mentioned:
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— the induction equation and the force-free equation dictate a slow resistive diffusion of a
magnetic field through a series of force-free equilibria. And an initially force-free field
diffuses in such a way as to remain force-free;

—if 7 x B vanishes everywhere within a volume V and on its surface S, the magnetic
field is identically zero. Thus a non-trivial magnetic field that is force-free within V
must be stressed somewhere on S, since the Lorenz force cannot vanish everywhere on
S. So if one were to construct a force-free field one must anchor it somewhere on the
boundary (e.g. in a high plasma density region).

4.8 Flux tubes and current sheets

Magnetic configurations can be thought of as built up from flux tubes and Jor current
sheets. We will look at the building blocks simply as isolated entities. Note that this again
is a crude assumption since both interact intimately with their surrounding magnetic field.

4.8.1 Flux tubes

The physics of flux tubes is an extensive subject and is discussed in Parker (1979). Again
I will only treat a few important aspects (we use the summary found in Priest (1982)).
Examples of flux tubes are sunspots and prominences. A magnetic field tube or flux tube
is the volume enclosed by the set of field lines which intersect a simple closed curve. The
strength of such a flux tube may be defined as the flux crossing a section S.

— The strength (in other words flux) of a flux tube remains constant along its length.

— in order to keep the flux constant the mean field strength of a flux tube increases when
it narrows and decreases when it widens;

— whenever a flux tube is compressed or expands B and p increase or decrease in the
same proportion. This too has already been proven in Sect. 4.5.1. For a general proof
see Priest (1982);

— an extension of a flux tube without compression increases the field strength. This is
easily seen from the previous points: If the plasma is not compressed (thus p stays the
same for matter is now free to flow in and out the tube) B increases with the extra
volume created. Increasing of the length of the flux tube may be caused by shearing
motions.

Some properties of flux tubes in the solar atmosphere, many of which will be treated in

the next chapters, are:
— convection can expel magnetic flux from a convecting eddy and concentrate it to form

a vertical flux robe;

— a horizontal flux tube embedded in a gravitationally stratified medium is subject to a
magnetic buoyancy force, which tends to make it rise. It can remain in equilibrium
as an arch if the feet are anchored at points that are separated by less than a few
scale-heights. Also magnetic buoyancy may destabilize an equilibrium magnetic field
whose strength declines too rapidly with height;

— a sunspot may consist of either a single large flux tube in equilibrium or a cluster of
small tubes held together by magnetic buoyancy and a downdraft;
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— a slender sub-photospheric tube in thermal and hydrostatic equilibrium widens with
height. If it is cooler than it’s surroundings it becomes evacuated over a few scale-
heights;

— a magnetic flux tube appearing in a turbulent astrophysical environment cannot be
entirely free of twisting, and is often referred to as a flux rope. Only a few revolutions
in a long tube are enough to produce qualitative dynamical effects of instability and
non-equilibrium. Twisted flux tubes are again extensively examined in Parker (1979).
A few characteristics of twisted flux tubes will be present in the next chapters but these
will almost always be “simple” and intuitive.

4.8.2 Current sheets

The current density j ~ cB/(4wL) mostly is very small since the scale length L is very
large. However it is believed that current sheets exist with very small widths and corre-
sponding current densities much larger than the estimate ¢B/(4wL). They do not have
long life times and are believed to play an important role in solar flare processes and the
like.

A current sheet may be defined as a non-propagating boundary between two plasmas,
with the magnetic field tangential to the boundary. The tangential field components are
subject to the condition that the total pressure is continuous:

P2+ o =P + = (4.46)

where subscripts 1 and 2 denote conditions on the two sides of the current sheet. Inside
active regions the magnetic field is so strong that for many purposes the plasma pressures
outside the current may be neglected.

A current sheet is comparable to a shock wave: it is a discontinuity separating two
regions where the equations of ideal MHD hold. Also its width and the details of its
interior are determined by diffusive processes. Here the similarity ends for current sheets
do not propagate, instead they tend to diffuse away in time and jets of plasma are squirted
from their ends at Alfvénic speeds.

Several processes in which current sheets may be formed are also found in Priest
(1982):

— the region near an X-type neutral point can collapse;

— the compression of topologically separate parts of a magnetic configuration may produce
current sheets at the boundary between them,;

— current sheets may develop when a magneto hydrostatic equilibrium becomes unstable.

A full explanation to these causes may be found in Priest (1982). Finally, I discuss some
of the basic properties of current sheets:

— in the absence of a flow, a current sheet diffuses away at a speed n/L, where 7 is
the magnetic diffusivity (this can be seen by dividing L by 7p). As I said before,
the magnetic field is annihilated and magnetic energy converted into heat by ohmic
dissipation;
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— the region outside the current sheet is effectively frozen to the plasma. Plasma and
magnetic flux may be brought towards the sheet from the sides at a certain speed.
Whenever this speed exceeds the speed of dissipation of the sheet the sheet will become
thinner, if it is less the sheet expands and otherwise an equilibrium is maintained;

— the enhanced plasma pressure in the center of the sheet expels material from the ends of
the sheet at the Alfvén speed based on the external magnetic field and internal density.
Magnetic flux is ejected with the material, and so one effect of the sheet is to reconnect
the field lines. Another is to convert magnetic energy into heat and flow energy;

— pairs of slow-mode shock waves (treated in later chapters) propagate from the ends of
the current sheet and remain as standing waves in a steady flow;

— current sheets with the conditions given in the example in Sect. 4.5.2.1 are subject
to the tearing-mode instability on a time scale of typically the geometric mean of the
diffusion time and the Alfvén travel time. A good summary of resistive instabilities is
found in Priest (1982).



Chapter 5

Diagnostics with the Zeeman effect

Lecturer S. Solanki, notes by A.M. van QOosten

5.1 Introduction

o get a better understanding about the Sun’s magnetic features, we need to know
T certain parameters: the magnetic field strength B, filling factor, inclination angle
and azimuth of B, temperature, velocity and pressure. This is not an easy task since all
these parameters depend in turn on position on the Sun and time. Also, they often enter
in complex and hidden ways into the observed radiation.

A way to obtain information about the magnetic features of the Sun is to observe
solar images, or spectra, in polarized light. A useful description of polarized light uses
the Stokes parameters, which use net polarizations in addition to the total intensity. The
Stokes parameters have the advantage that they can be recorded with the help of only a
few measurement (as few as four). They are a powerful tool in resolving magnetic features
and determining their properties.

Using the Stokes parameters, empirical models can then be constructed. Such models,
sunspot thermal structure, for example, can then be applied to give us a better physical
understanding. For example, about the factor by which convective energy transport is
inhibited by the sunspot magnetic field and the layers in which convection is important.
Or the mechanical heating rate in the upper atmosphere and how it differs from that in
other parts of the Sun (quiet Sun, plage, etc.)

In this chapter we discuss how the Stokes profiles can be applied to determine some of
the important parameters for modeling solar magnetic features. Diagnostics with Stokes-
spectra rely heavily upon the the theory of the Zeeman effect.

5.2 The Zeeman Effect

In this section we will discuss some of the basic properties of Zeeman splitting. This
discussion is primarily descriptive in nature. For a rigorous quantum mechanical derivation
of the Zeeman effect, I refer to the excellent work of Bransden and Joachain (1989). In the
presence of magnetic fields, each atomic energy level, and thus the spectral line associated
with it, is split into a number of levels. This splitting is called the Zeeman effect. The
magnitude of the splitting is an indication of the strength of the magnetic field. The
Zeeman splitting also produces a unique polarization signature in the spectral lines. A

57
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measurement of the polarization thus also provides additional information on the magnetic
field.

The splitting itself is associated with the total angular momentum quantum number
J = L+ S, where L is the orbital momentum quantum number and S is the spin quantum
number. J can only take on non-negative integer and half-integer values. The number of
split levels corresponds to 2J + 1, the magnetic quantum number my = =J,—=J+1,...,J —
1,+J. In the classic picture, Zeeman splitting can be interpreted in terms of the precession
of the total angular momentum vector J in a magnetic field, similar to the precession of
the axis of a spinning top in a gravitational field.

Atomic physicists use the abbreviation “s” for a level with L =0, “p” for L =1, and
“d” for L = 2, and so on (the reasons for these designations are of historical interest only).
It is also common to precede this designation with the integer principle quantum number
n. Thus, the designation ”2p” means a level that has n = 2 and L = 1. How strongly the
energy levels split depends on the strength of the magnetic field, the landé-factor and the
wavelength. Into how many components they split depends on the atomic structure, t.e.,
on J and the Landé factor. The Landé factor is defined as followed:

JE+ D) +s(s+1)—1(l+1)
2j(j +1)

So g is entirely dependent upon the, for the Zeeman effect, relevant quantum numbers.

We need to discriminate between the normal Zeeman effect, when a spectral line splits
into three equally spaced components, and the anomalous Zeeman effect, when a spectral
line splits into an often larger number of components. Here we only consider the case of
interest for Zeeman-splitting measurements on the Sun, namely when the splitting is large
enough that there is no quantum interference between different m-levels and when it is
small enough that we needn’t take the Paschen-Back effect into account.

In Fig. 5.1 we see an example of the normal Zeeman effect. Notice that there are
(only) three resulting spectral lines, the so called Lorentz triplet. In this case the Zeeman
splitting AAgy can be written as:

g=1+ (5.1)

Adg = kgB)? (5.2)

where k is a constant, g is the landé-factor of the line, B is the field strength and X the
wavelength.

The “anomalous” Zeeman effect is actually the one most commonly encountered. In
the early days of spectroscopy, before the electron spin was discovered, the normal Zee-
man effect was predicted, on classical grounds, but observations did not conform to the
predictions and were said to be ’anomalous’ (Bransden and Joachain (1989)). In Fig. 5.2
we see examples of anomalous Zeeman splitting patterns.

In Fig. 5.3 the formation of a Zeeman triplet can be observed, both in a field, directed
along the line of sight and a transverse field. Astrophysical fields are often too weak to
separate the o components fully from the central m component (the lower right figure).

The lines undergoing Zeeman splitting also exhibit polarization effects. Polarization
has to do with the direction in which the electro-magnetic fields are vibrating. Using
certain filters, called polarizers, certain polarizations can be selected allowing us to better
research, for example, sunspots. It is almost only in sunspots that we can see and directly
measure the Zeeman splitting in unpolarized radiation. The most complete observational
information is of course obtained if we can record the full state of polarization across the
spectral lines with high spectral resolution(Stenflo (1994))
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Figure 5.1: The normal Zeeman effect. In nine transitions are possible between the split levels consistent
with Am; = 0 or +1 and Am, = 0. Of these, there are only three different frequencies and the lines
form a Lorentz triplet. The frequencies of transitions associated with m, = —% are the same as those for
ms = +%.

5.3 The Stokes parameters

The Stokes-parameters are generally denoted I, @, U, and V. Together they form a
4-vector:

So I
S| @

S = s |=lv | (5.3)
S3 Vv

The four Stokes parameters each represent the light intensity transmitted by a certain

idealized filter (see also Fig. 5.4):

I = total intensity;

@ = intensity of linear polarization at 0° minus the intensity of the linear polarization at
90°;

U = intensity of linear polarization at 45° minus the intensity of the linear polarization
at 135%

V = intensity of right-handed (clockwise) circular polarization, minus the intensity of
left-handed (counter-clockwise) circular polarization.

These six intensity readings uniquely determine the full state of polarization of the inci-
dent beam. Examples of the four Stokes profiles of a solar spectral lines for a range of
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Figure 5.2: Illustration of different anomalous Zeeman splitting patterns. The lengths of the vertical
bars are proportional to the strengths of the transitions, their positions indicate their wavelength shifts.
The 7 components point downwards, the o components upwards. From Landi Degl’Innocenti and Landi
Degl” Innocenti (1985)
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Figure 5.3: Zeeman triplet. Left: extinction profile for a medium without a magnetic field. The graphs
on the right are for a medium that is pervaded by a strong, homogeneous magnetic field, respectively
showing the longitudinal Zeeman pattern (upper right) and the transverse Zeeman pattern (lower right).
a, is here the extinction coefficient for a frequency v. When the line of sight is along the field lines,
the extinction profile consists of two symmetrically displaced o components, applying to lefthand and
righthand circularly polarized light, respectively. When the line of sight crosses the field at right angles,
the "transverse” Zeeman effect produces three extinction peaks, one at line center which applies to linearly
polarized radiation with the Stokes vector parallel to the field vector, and two displaced o components that
extinguish linearly polarized radiation with the Stokes vector perpendicular to the field direction. From
Rutten (1999b)
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Figure 5.4: A graphical representation of the filters used to obtain the Stokes-profiles

field strengths are shown in Fig 5.6. The Stokes profiles are sensitive to many different
atmospheric parameters:

— abundance: affects strength of all profiles of an element;
— temperature: affects the strength of neutral vs. ionized lines;

— magnetic field strength: affects line profile shapes, for example through different Zee-
man splitting;
— field inclination: affects the ratios V/Q and Q/U;
— field filling factor: affects the total amplitude \/V2—+QT+—U_2_ ;
— velocity:
— stationary flow: produces line shift and asymmetry;

— non-stationary flow: produces time-dependent line shift, asymmetry and enhanced
line width;
— sizes of magnetic elements: affect the profile shapes and magnetic field appearance in
images.

The similar influence of different atmospheric parameters on the Stokes-profiles makes
diagnostics a difficult task. Also the influences are often subtle and thus hard to detect.
Due to correlated gradients of the magnetic and velocity fields, the observed Stokes V
profiles are asymmetric, i.e., the blue wing differs from the red line wing both in area and
in amplitude (see Fig. 5.5). An area-asymmetry can only arise if the correlated magnetic
and velocity field gradients are along the line of sight.

5.4 Modeling Magnetic Features

If the observed magnetic feature is spatially resolved, one-component modeling is sufficient.
However, usually two or more components are needed, since due to seeing, the finest
relevant scales on the solar surface usually cannot be resolved.

An unresolved magnetic element has a magnetic filling factor . The magnetic filling
factor is the fraction of area covered by the field within a spatial resolution element. o
is proportional to V, U and @, yet since these parameters depend on so many different
quantities (see section 5.3), which usually aren’t all reliably known, a is hard to determine.
Errors of a factor 2 are not uncommon. o = 1 means a magnetic element is spatially
resolved. An unresolved element has the following observed Stokes profiles (averages over
resolution element):

<I> = alp+(1-a), (5.4)
<P> = abPy, (5.5)
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Figure 5.5: Example of an asymmetric stokes profile, where A, and A, are the area of the blue and red
line wing respectively andd as and a, the amplitude of the respective line wings. A, is the line shift due
to the velocity of the matter and Ap the Doppler line broadening.

where I, is the intensity in the magnetic element, I is the light coming from outside the
magnetic element, P = Q, U, V respectively, and « is the magnetic filling factor. The
observed profiles of Q, U and V give information on the magnetic element alone, since
there is no polarized radiation coming from outside the element There are three main
approaches to modeling:

— purely empirical: the model parameters are derived independently from the observa-
tions. Reasonable values are assumed for the rest;

— semi-empirical: key quantities obtained from observations. All model parameters are
linked self-consistently via a (simple) physical model. The model is then solved through
an iterative process;

— theoretical: all magnetic and hydrodynamic quantities are derived from basic physics.
The model is then compared directly to the observations, or to semi-empirical models.

5.5 Magnetic Field-strength Diagnostics

We discriminate between three regimes of magnetic field strength:
— the weak case: Ady <€ A)lp;

— the intermediate case: AAg = AAp;

— the strong case: Ay >> AAp.

where Aly = kgBA? measures the Zeeman splitting of a spectral line. The profile depends
on the Doppler width AAp ~ A, the turbulent velocity &r, VT and on the amount of
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Figure 5.6: Example of a numerical solution of the LTE (Local Thermodynamic Equilibrium) transfer
equations for the Fe I 5250.2 A absorption line at the center of the solar disk, using a quiet Sun model
atmosphere with a homogeneous magnetic field of inclination v = 45° and azimuth x = 0. The ten different
curves correspond to field strengths varying from 0.2 to 2.0 kG in steps of 0.2 kG. The Stokes parameters
are expressed in units of the intensity I. of the local continuum. Note that the signal in Stokes U is
exclusively due to magneto-optical effects. From Solanki (1993)

saturation in the line width in the absence of a magnetic field. Thus, the regime of a given
measurement depends not only on the field strength but also on the spectral line that is
measured.

Also, looking at the two relations above, one notices that while AAp increases with
A, A\g is proportional to A2. Hence the Zeeman-sensitivity increases with increasing
wavelength. Higher wavelengths (infrared) could thus provide us with more detailed in-
formation on the magnetic structures.

However, as always, a few problems arise when measuring in the infrared spectrum.
Firstly, detectors themselves emit infrared radiation at relatively low temperatures. It is
thus necessary to use cryogenic detectors, i.e., detectors which are kept at a sufficiently
low temperature, so there is as little noise as possible. And secondly, we still lack some
knowledge of the infrared spectrum; We miss some spectral identifications, which make it
hard to couple the spectral lines to the models, although the situation is rapidly improving.

5.5.1 Weak-Field Case

In the weak field case, the Zeeman splitting is much smaller than the Doppler line width.
B can only be measured if the magnetic structure is spatially resolved. If this is not the
case, then only < B > can be measured. In the weak-field case the following relations are

valid:
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V = alAAg cos('y)g—i (5.6)
cosy \%4 (5.7)
sin®y  /Q2 + U?
U
tan2x ~ —= 5.8
X~ 3 (5.8)

where « is the angle of B to line of sight and x is the azimuth angle.

Figure 5.7: The magnetic field vector B, showing the definition of the angles v and x, with the z-axis
being the line of sight.

When the field is resolved, the magnetic filling factor a=1. So, if Q and U are also
observed, B, v and x can be determined. One has to be cautious though, when using the
above relations. They are useful for first rough analysis of observations. The neglection
of magneto-optical effects, however, may lead to serious errors in the calculations. In
Fig. 5.10 we can see an example, illustrating the weak-field approximation. Also, there
is the so called 180° ambiguity: It is impossible from @ and U alone, to determine the
direction of the transverse field, i.e., it is unclear if it is pointing in one direction, or a
direction opposite to that.(See also Fig. 5.8)

-

Figure 7: Same as in Fig. 6, but in a 3D representation.

Figure 5.8: Observations of an active region, with directions of the magnetic field drawn in

For weak fields, the following proportionalities are valid: V ~ B, U ~ B?, Q ~ B? For
strong fields, however, the Stokes V profile hardly changes with increasing field strength.
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This phenomenon is called Zeeman-saturation, and it is a function of the intrinsic field
strength alone (see Fig 5.9). For even stronger fields, Q@ and U also show this property
(i.e., Zeeman saturation).
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Figure 5.9: Zeeman-Saturation: The Zeeman-splitting AAy increases downward, due to increasing mag-
netic field strength. When the field strength B is high, Stokes V hardly rises at all anymore, while for
weak fields V' is proportional with B.

5.6 Thermal Diagnostics

When the field is spatially resolved, one can determine the temperature relatively easily
using standard methods:

— measuring the continuum intensity I.(A);
— observing Stokes I line depths (a single spectral is sufficient);
— observing profile shapes of strong lines (like the Call K line).

When the field is spatially unresolved however, one has to use different methods. The
ratio between two Stokes V-profiles with different azimuth x. or line weakening wr can
be used. Or the shapes of Stokes @, U and V' can be used: If we look at the Stokes Q
profile, we can determine the amount of Zeeman saturation, by determining the height of
the peaks. The smaller the peak the more saturation. From the shape of the Stokes V
profile of well-chosen spectral lines, we can determine the chromospheric temperature rise.
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Figure 5.10: Stokes V (thick curve) plotted in units of the continuum intensity together with g—i— (thin
curve), which has been scaled to agree with the Stokes V/ amplitude of the NaID; line. From Stenflo
(1984)).

5.7 Velocity Diagnostics

While observing a spectral-line, it can be affected in several ways, often due to the velocity
of the particles involved. Firstly, there are wavelength shifts. These can have different
causes:

— Steady flows: as matter flows with a constant velocity, it is Doppler-shifted over a
constant A\y,;

— Non-Stationary velocities: if there is a correlation between the temperature and the
velocity of the matter;

— Instrumental Smearing: if the line profile is asymmetric (see section 10.9);

Secondly, there is line broadening, caused by:

— Line of sight velocity gradient: continuously changing velocities along the line of sight,
means different Doppler shifts at different depths, broadening the line;

— Turbulent velocity: matter moving in a random direction, causes random Doppler shifts
(thermal broadening);

— Instrumental smearing: due to the insufficient spectral resolution of the instrumenta-
tion(see section 10.9);

— Zeeman-broadening: a distribution of field strengths within the resolution element will
induce Zeeman line broadening (especially in the infrared);

And finally line asymmetry:
— Line of sight velocity gradient: Stokes V area asymmetry (see section 10.10.2);
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— Non-stationary or transverse velocity gradients: the asymmetry is due to correlated
gradients of the magnetic and velocity fields;

Note that all these different items are not the cause of a spectral line, only the cause of a
difference in the position, broadness, or the course of the line (e.g. asymmetry).

5.8 Conclusions

There are techniques available to determine many of the parameters which describe the
physical structure of magnetic features. For some quantities no reliable technique appears
to exist (e.g., density). Such parameters must be determined via model-assumptions from
other quantities. No diagnostic is, at some level, completely model independent, although
this is often forgotten. In general, it is better to combine observations made in different
spectral lines The more physical quantities are diagnosed simultaneously the better.
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Chapter 6

Dynamo Theory
Lecturer P. Hoyng, notes by P.J. Sloover

revious chapters have treated the magnetic structures observed on the solar surface,
P in the outer solar atmosphere, and in the solar wind. In this chapter we will take a
closer look at the origin of these structures. What generates them, and how can we study
the parts of the Sun that are hidden under the thick layers of the Sun’s atmosphere? The
main reference for this contribution is Hoyng (1992).

6.1 Introduction

Observations show that the Sun’s atmosphere is in constant motion. Large bubbles of gas
flow up and down and protuberances throw huge amounts of matter into space. With just
a set of binoculars and a piece of paper you can make a projection of the Sun and see
a well known, but still not fully understood phenomenon, sunspots. These dark regions
on the surface are cooler than their surroundings and therefor seem black against the
brighter photosphere. These spots are of magnetic origin, and have been observed with
reasonable accuracy since the 17%* century. The Sun’s magnetic field changes periodically
with a period of 22 years, the well-known solar cycle. This behaviour can’t be explained
by means of a static primordial field for two reasons. A primordial field can not change its
orientation in time and, if there is no dynamo active, resistive decay would make the field
decay within one billion years. Our planet also has a non-primordial field. The resistive
decay time of the Earth’s core is approximately fifty thousand years. From paleomagnetic
evidence we know that the Earth has had a magnetic field for several billions of years.
Therefore there must be some process regenerating the field, and this process is what
dynamo theory is about. There are different types of approaches to work on the subject:
numerical calculations, spectral theory, laminar theory and mean field theory. In this
chapter we shall concentrate on the mean field theory.

6.2 Observations

From observations we know that the number of sunspots changes periodically with an
average period of 11 years. There are some deviations from this period, the longest
period being 17 years and the shortest approximately 7.3 years. The sunspot data show a
modulation of about 90 years, the “Wolf-Gleissberg cycle”. Tree ring 14C data shows us
the solar activity over long periods of time, going back much further than sunspot data.

69
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Figure 6.1: The butterfly diagram: a plot of the latitudes of occurrence of active regions versus time. From
Harvey-Angle (1993)

From this data we observe that there are also long term cycles, with periods of several
hundred years. They also include the so-called Grand Minima, periods of time in which
the Sun seems to have no magnetic activity. The 1°Be nucleus has also been used to track
the Sun’s activity back into time. It is formed in the atmosphere and rains down over the
Earth’s surface. The amount of 1°Be formed depends on the intensity of the solar wind,
which is directly proportional to the magnetic activity of the Sun. 10Be is found in the
polar caps and by taking samples from different depths we can recover the history of solar
activity.

During a solar maximum the amount of sunspots is at a peak, and a large fraction of all
flux is concentrated in active regions. These groups of two, or sometimes more, sunspots
of opposite polarity are located in belts, parallel to the equator. Their bipolar axes are
nearly East-West oriented and, with only few exceptions, obey Hale’s polarity law. The
formation zone of sunspots slowly decreases in latitude as the activity cycle evolves. This
leads to the famous butterfly diagram shown in Fig. 6.1. The distribution of spots is not
uniform in longitude either. New active regions tend to from in regions of previous activity.
The smaller magnetic elements are located at the edges of supergranulation cells, but are
otherwise distributed increasingly more homogeneous over the surface. A full magnetic
period takes 22 years to complete.

Active regions emerge from deep in the convection zone and decay by turbulent diffu-
sion in one or a few months. The decay of these active regions result in the background
small-scale field. The total unsigned flux in this so-called “intranetwork field” shows a
slight increase at a solar maximum, but this might be of artificial nature. The detector
has a limited resolution and might not be able to resolve all individual granules. Another
explanation for the minor increase is found in the decay of regions of high activity, which
leads to an increase in the background noise. The large patches, flux tubes and bundles,
have only a slightly stronger magnetic field than their surroundings. A typical sunspot
has a field strength of about 3000 Gauss, and a small bright network element has a field
strength of approximately 1500 Gauss. The difference in flux, 10?2 Mx for a spot com-
pared to 10'® Mx for a network element, is mainly caused by the large area of the spots
compared to the small elements.

Two distinct patterns of convective activity are clearly visible at the surface. Granu-
lation (typical length scale A = 1-10% km and time scale 7. = 400 s) and supergranulation
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Figure 6.2: Inferred rotation rate as a function of depth and latitude. Evidently the convection zone rotates
uniformly along a radius with all depths showing the differential rotation seen at the surface. Below the
convection zone is a layer of shear below which the radiative interior seems to rotate rigidly. This shear zone
which coincides with the sound speed excess could be the region where the solar cycle dynamo operates.
From SOHO (1998)

GRANULATION
4

GRANU-

LATION
GIANT
CELLS

OVERSHOOT LAYER

RADIATI/VE »ézlon// /

Figure 6.3: A rough sketch of the convection zone. From Hoyng (1992)

(A =3-10* km and 7. = 10° s). Deep in the convection zone, giant convection cells may
exist (A; = 10° km and 7. = 3-10° s). At the bottom of the convection zone exists a
transition zone, the so-called overshoot layer. From helioseismology we know that €, is
roughly independent of r in the convection zone, and that €2, has a large radial gradient
close to the overshoot layer. Below the transition layer the Sun rotates like a solid object.

To explain the form of the fields observed on the Sun we come with a first hypothetical
picture of the structures involved. The large scale field behaves as if it consists of two tubes
of toroidal field deep in the convection zone, one on each side of the equator with opposite
polarities. Due to the convective activity, the frozen fields are at times taken up through
the surface, where they result in pairs of sunspots. Their bipolarity resulted to Hale's
polarity law. Sunspots travel in pairs of opposite polarity and the leading spots on the
northern hemisphere have a polarity opposite to the ones on the southern hemisphere. The
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Figure 6.4: Apparent structure of the large scale field in the convection zone. From Hoyng (1992)

tubes apparently move to the equator in about 11 years and disappear as they arrive there.
Then, somehow, new tubes are formed at high latitudes, but with opposite polarities. This
process can be explained partly by means of differential rotation. Due to the difference in
rotation speeds, an arbitrary fieldline is wound up to form two tubes of toroidal field of
opposite polarity. However, to explain the periodic changes in polarity we need to take a
closer look at the turbulent processes in the convection zone. In Fig. 6.2 is a sketch of the
observed differential rotation in the Sun’s outer layers.

6.3 Different types of dynamo

6.3.1 A trivial dynamo: the Jupiter-Io system

A distinction can be made between trivial and non-trivial dynamos. A trivial dynamo is
a system in which a conductor moves through a given magnetic field. In a real dynamo
the magnetic field must be generated by the current it excites. An example of a trivial
dynamo is the Jupiter-Io system, see Fig. 6.5. The low orbit of Io causes it to be moulded
by the high tidal forces, resulting in vulcanic activity. The eruptions bring huge amounts
of ionized material into Io’s atmosphere, thus making Io act like a conductor. As it circles
through Jupiter’s magnetic field (0.02 Gauss), at a speed of 56 km/s it generates a potential
difference of 100 kV. The generated current excites radio emission but does not act as a
source of the magnetic field, and thus makes it a trivial dynamo.

6.3.2 The homopolar disc dynamo

An instructive exercise is the analysis of the homopolar disc dynamo. A conducting disc
rotates with angular velocity 2 around a conducting coil, connected with sliding contacts.
The coil generates a magnetic field B , and the required current I is maintained by the
potential drop which exists between points P and Q because the disc moves through the
magnetic field, see picture. The system obeys the circuit equation: Vaise + Veoil = IR,
where R is the total resistance. Vg is proportional to © and I: Vg;sc = 2Ja. Where a is
a constant, following from this equation:

Qprz= Ly = anr

R_, 1. - - 1(_ - . 1/R
‘/disc =/ (E+—ﬁxB)dl = —/ ux B-dl = —/ Qr-B.dr = —
0 ¢ 0 cJo 2c 2me ©1)

c
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Figure 6.5: Schematic representation of the Jupiter-Io system. From Hoyng (1994)

¢disc
= rawsc _ 2
a=o = constant (6.2)
On the other hand: V.3 = —L- I / ¢?, where L is the self-inductance of the coil. The result

is: LI = (a2 — R)I. If Q > R/a (a critical value), a spontaneous fluctuation 61 will
grow exponentially. The direction of the fluctuation determines the direction of I. The
lorentz force acts as a breaking torque. Angular momentum balance along the vertical
axis €, requires T) = M + My, (T = moment of inertia; M = driving torque).

ML=e';-/7"'xﬁdT= 6.3)

e;-/Fx(J’;B)dT= (6.4)

=3 / (7 B)T - (7- )Bldr = (6.5)

—% / JBdr = —% f Brdr / Jdo = 6.6)
BI I,

- rdr = 2_1rc¢dm = —al (6.7)

In the derivation above, 7 - B=0 by design, hence T} = M — aI?. In the stationary
state we have I = Q = 0, whence @ = R/a and I = \/M/a. Increasing the driving
torque enhances I but does not increase 2! The power M2 equals the electrical power
I’R dissipated in R (friction is neglected).

The disc dynamo shows us two important properties which also apply to astrophysical
dynamos. The first is the differential motion, here concentrated in the sliding contacts,
and second, reflectionally asymmetric motion. If we reverse the direction of Q2 the current
will drop to zero. The correct sense of rotation is determined by the sense of the winding
of the coil. It is this asymmetry that is not a insignificant detail but an important aspect
of the system. There are also some important difference with astrophysical dynamos.
The disc dynamo allows only two possible directions for current to flow. In astrophysical
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Figure 6.6: The homopolar disc dynamo. From Bullard (1955)

objects the currents can flow over spheres or spherical shells, and have no preferred path.
This suggests that a dynamo in a simply-connected body, with no preffered current path,
can only exist if the velocity field is sufficiently asymmetric. Also the Reynolds number
R, is small in the disc dynamo, which is not the case for most astrophysical objects. Field
lines are frozen in objects with large Ry, where have assumed the field to slip unaffected
through the rotating disc.

The importance of the absence of symmetry for a dynamo is reinforced by Cowling’s
famous theorem. According to this theorem it is impossible to maintain a stationary
axisymmetric magnetic field by dynamo action. To prove this, we split B in a meridional
component By, and an azimuthal component By: B = By, + Bg. In Fig. 6.7 is presented
a sketch of B,,. There must as least be one line, L, for which By, = 0. The current density
J has a nonzero component Jp along L since V X By, # 0 there. However, J; # 0 is
impossible for a stationary dynamo since:

Jpdt = J-;,-dfzafﬁ-df= (6.8)
L L L
o o [ 8B L
aLVxE-da——ZLW-da—O (6.9)

We can hereby conclude that dynamos are non-axisymmetric or non-stationary (or
both). Observations show that the dynamos of the Sun and the Earth are indeed neither
exactly axisymmetric nor stationary. This is now seen to be an essential feature rather
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Figure 6.7: A sketch of the meridional field component Bn and a line £ for which B, = 0. From Hoyng
(1992)

than an irrelevant detail. These so-called anti-dynamo theorems have shown us that it is
difficult to construct a dynamo by taking simple flows %@ interacting with mathematically
simple fields B. A way to deal with these problems, without the use of large computers,
is through of the mean field theory. This will be the subject of the next paragraph.

6.4 Mean field theory in a nutshell

The Sun has an extremely complex velocity field, caused by the turbulent processes in the
convection zone. Magnetic field lines are twisted and turned into knots and teared into
pieces. This makes it difficult to solve the set of mathematical equations that describe the
problem. To get a grasp on the problem we introduce the idea of splitting the physical
quantities involved into an average (large scale) component and a fluctuating component.
When taking an average the fluctuations will cancel each other out and only the large
scale component will remain. Averages will be indicated by < . >. The averages obey the
following set of Reynolds rules:

<f4+g> = <f>+<g> (6.10)

<f<g>> = <f><g> (6.11)
<c> = ¢ (6.12)
<.> commutes with V,8/0t and / dt

In the above f and g are arbitrary functions of # and ¢; ¢ is a constant. When we apply
these rules to the physical quantities involved we get:

= Eo + By (6.13)
= up + U1, (6.14)
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where < Q; >= 0 and < Qo >= Qo , where Q can be B or any of the others above.
When we take these averages into account in the MHD equations we get this new set of
equations:

- 168,
_ _19% 6.15
V x E, —— (6.15)
VxBy = ‘—lffo (6.16)
S 1 - R
Jo = olBy+ziox B+ % < x Bi >} (6.17)
V-By = 0 (6.18)

All seems natura.l but something interesting has occured in the equations. The
quadratic term X B in Ohm’s law gives rise to a new term < u1 X 51 ># 0. This
is because 4 and Bl are statistically correlated. The terms < g x 31 > and < 4] X Bo >
vanish.

In the process of averaging the equations there is a loss of information. This can be
seen by setting < f >= A(f). Now from AZ(f) = A(1- A(f)) = [A(1))(A(S)] = A(f)
it follows that A2 = A and this makes A a projection operator. It is not possible to
reconstruct f from A(f) = fo since A has at least one zero eigenvalue. The average may
be regarded as an average over a large ensemble of f systems, each having the same BO, JO,
Eo and uo, but with different realizations of 4j, Bl, J1 and E1 There i ismno relationship
between Bo, one ensemble member picked at random, and the field B of the dynamo
However, an average over longitude in one system also satisfies the Reynolds rules. By is
then the large-scale, axisymmetric component of B. In the next chapter, written by Mark
Gieles, will be shown that for isotropic turbulence R

- - o . 4mBJo
< i} X By > = aBy — BV x By = aBy — ﬂ-f 9 (619)
The parameters a and 3 are determined by the statistical properties of u]:
1. . I _ 9
az—§<u1-qu1>Tc ; ﬂz§<u1>'rc, (6.20)

where 7, is the correlation time of the turbulence. In this chapter we will solely illustrate
the consequences of Eq. (6.19) and give an explanation for the physics hidden in the
coefficients o and 3 . Substitution of (6.19) into (6.17) gives rise to the following equation:

- — 1 - — -
Jo =oe{Ep + EUO x By + %Bo} (6.21)
with 5 2
1 1 47 o=00 -1
i - 22
o0 p — Oe = 47rﬂ0(<u1 (6.22)

Equations (6.15)- (6.17) and (6.21) form a new set for the mean field. We can now
eliminate Eo and Jp from the equations and come to the dynamo equation, an important
result in dynamo theory.

8Bo
ot

The physical meaning of this equation will now be presented.

=V x {1y x By + aBy — (n+ B)V X Bo} (6.23)
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Figure 6.8: The a-effect. From Hoyng (1992)

6.4.1 About the dynamo equation

We first take a look at the first term on the right hand side of the equation. 8By =
V x (up x EQ) This tells us that the mean field is advected by the mean flow, just as the
actual field B is advected by the actual flow #. The second term gives rise to a new term,
the so-called a-effect. 8,8y = aV x By (with o taken a constant). Consider the picture
below.

Rising gas bubbles expand laterally as they adept themselves to the changing density.
The Coriolis force makes the gas and the field it carries rotate clockwise on the Northern
hemisphere. The rotation is anti-clockwise on the Southern hemisphere and for sinking
bubbles on the Northern hemisphere. This is depicted on the left side of the picture.
On the right side is shown the same process, but after taking averages. It seems new
magnetic field is generated in circles on the mantle of the flux tubes rising and sinking
in the convection zone. Alternatively, we may say that there is a mean current ac By /c
along the flux tube which generates new magnetic field B, around the tube. This is called
the “a-current”. The last term of the dynamo equation takes into account the effects of
turbulent diffusion. Since 8 >> 7, which will be proven in section 7.3.2, the mean field B,
will diffuse much faster than we would have expected from the standard MHD equations.
The diffusion time of the mean field of the Sun has been reduced from R(29 /n =~ 4-10°
years to R2 &/B = 10 years, which is of the same order as the solar cycle. That this is not
shear coincidence will be shown in the last chapter, by Mark Gieles. A visual explanation
on the effects of turbulence on the diffusion of the magnetic field is shown in Fig. 6.9.

The turbulence causes the field lines to get entangled. After averaging the mean field
has spread over a considerable volume, and thus even if ¢ is infinite, the turbulence will
cause By to behave as if it were subject to a finite effective conductivity. The dynamo
equation apparently gives a good description of the global magnetic field of the Sun and
planets. An (old) numerical solution for the sun is presented in Fig. 6.10.

The solutions of this axisymmetric solar model clearly show the movement of tubes
or waves of toroidal mean field to the equatorial plane and the changes of polarity. The
functions o and B have been adapted to make a good fit with the well known 22 year
period of the solar cycle. The toroidal field component of By is much larger than the
poloidal component. This provides a basis for explaining the butterfly diagram. The
idea is that this toroidal field occasionally breaks through the surface by buoyancy. An
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Figure 6.10: Numerical solution of an axisymmetric solar af2-dynamo. The shear is radial with 09, /or <0,
and o o< cos . Each frame is a meridional cross section through the Sun. To the left are contours of constant
toroidal mean field; on the right are the field lines of the poloidal mean field. Solid curves indicate toroidal
field pointing out of the figure and clockwise poloidal field lines. The field at the poles is indicated by
vertical arrows. From Stix (1976).

intuitive explanation of this a Q-dynamo system will be presented in the last paragraph
of this chapter.

6.5 A physical explanation for the solar af2-dynamo

In the cartoon in Fig. 6.11 one may see, step by step, how the various effects will cause
the toroidal flux tubes to move from high regions to the equatorial plane and eventually
diminish and change sign.

a. Two toroidal flux tubes of opposite polarity in each hemisphere.

b. The a-effect generates new loops of magnetic field around these tubes. Since o as well
as By change sign between hemispheres, this new poloidal field has the same orientation
in both hemispheres.
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Figure 6.11: Physical explanation of the oscillatory af2-dynamo. From Stix (1976)

c. We now observe the system along the direction of the arrow. The differential rotation
makes the loops tilt resulting in D.

e. Turbulent diffusion causes the tubes indicated by an } to cancel each other, but some
mean field of opposite polarity is left over.

f. The original flux tubes have moved to the equator, leaving a small amount of opposite
field in their wake. This process continues and leads to G.

g. The flux tube reproduces itself at the equator side while destroying itself on the pole-
ward side. The destruction is incomplete, leading to a growing wake field of opposite

polarity.

h. We are back at our start position, but now with opposite polarities, and a new cycle
will commence.

6.5.1 Earth’s magnetic field

It is currently assumed that the magnetic field of our planet is generated in an analogous
way. The explanation of Fig. 6.12 assumes that there is no differential rotation in the
Earth, and that the a-effect generates the poloidal field from the toroidal field, but also
toroidal from poloidal.

In the first frame we see the two tubes of toroidal mean field, oppositely oriented
on both hemispheres. The a-effect drives a mean a-current Jy along these tubes, which
has the same direction in both hemispheres (opposite on the sun), since a o« cosd. The
toroidal a-current generates its own poloidal mean field. This field extends outward and it
is this field we observe at the Earth’s surface. The a-effect comes into effect for a second
time now, generating a mean a-current along those poloidal field lines which are closed
inside the sphere. This poloidal mean current is the source of the toroidal field, the field
we started of with. The field thus generated is self sustaining, and would even increase
if turbulent diffusion wouldn’t damp it. The damping allows it to become constant. The
dynamo equation apparently possesses stationary, axisymmetric solutions B,. This is not
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Figure 6.12: Physical explanation for the observed magnetic field on earth. From: Hoyng 1992

in contradlctlon with Cowling’s theorem, since that applies to B but not to the mean
field Bo The actual field B does not need to be axisymmetric at all, even if Bo is, so
that there is no contradiction. The mean field theory supplies us with a powerful way to
simplify the problem. The price we pay for it, however, is a (huge) loss of information.



Chapter 7

Dynamo issues
Lecturer P. Hoyng, notes by M. Gieles

his chapter contains a lot of mathematical derivations, therefore I created Sect. 7.7

which is an appendix with formules to which I will refer now and then to keep the
derivation surveyable. Also I include Sect. 7.6 with mathematical steps which I will omit
in the text with the same intention, to keep it all surveyable. In this section I will use the
same symbols as in the text, so it easy to look some steps up and follow the mathematical
derivations. The main reference to this chapter is Hoyng (1992).

7.1 Introduction

In this chapter we are going to have a closer look at the dynamo equation:
8By = V x {(io x Bo + aBo) — (n+ B)V x By} (7.1)

It was derived in the previous chapter by Jacco Sloover, so the equation is the starting
point for further analyses. In Sect. 7.2 we will derive the plane wave solution of the
dynamo equation. In Sect. 7.3 we look at a specific limit of the solution, which is the most
probable solution of plane dynamo waves in the sun. Sect. 7.4 consists of the mathematical
proof of < wu; X B, >= aBg — BV x By. This identity has been derived intuitively
without mathematical proof in the previous chapter and it will be shown that there is a
mathematical proof for it

7.2 Plane wave solution for the dynamo equation

To find the plane wave solution of the dynamo Eq. (7.1) we consider a homogeneous infinite
space filled with turbulent gas, such that a and 3 are constant. The mean flow i is in the
y-direction and taken as a lineair function of z and z so that we can write 4y = up(z, 2)€y
and define the constant vector @ = Vugy (homogenity), see Fig. 7.1. Axisymmetry as in
Fig. 6.10 implies now invariance for translation along the y-axis, which is the same as
saying that /8y = 0. This invariance also makes further calculations easier if we choose
for By the gauge

By =V x (P&,) + Téy, = —&, x VP + T¢,, (7.2)

where we made use of Eq. (7.55) and take P and T as functions of z, 2 and ¢. With this
gauge V - By = 0 and B, is split into its toroidal (]| éy) and poloidal (1 €,) components.

81
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{[:7]

Figure 7.1: Co-ordinate system for analysing the plane wave solutions of the dynamo Eq. (7.1). &, = unit
vector along y-axis, o = uo(z, 2)éy, & = Vuo, @i = k/k, § = angle between k and @.

Now we have a useful expression for B, and insert this expression Eq. (7.2) into the
dynamo Eq. (7.1). With the use of Eq. (7.42) — (7.45) we get two differential equations
for P and T

%tri =aT + BV2P (7.3)
or . S =2 52
= = (g x @) VP —aV?P+pV°T (7.4)

ot
Here we see that new poloidal field can be created from T by a-effect and that it is
subjected to turbulent diffusion by the B62P-term. New toroidal field can be created
from P by shear flow by the first term on the right hand side of Eq. (7.4), the ‘Q2-term’,
and by a-effect, and it is also subjected to turbulent diffusion by the 562T-term. From
Eq. (7.3) we see that that P | 0 if o equals zero by turbulent diffusion, and, subsequently,
also T | 0 according to (7.4). However this does not mean that there is no generation
of magnatic field: the mean field is zero, but, in general, B, is not. Because the terms
(€ x @) - VP and aV2P may have widely different relative magnitude, we define three
limits for these magnitude, leading to three different dynamos with their own properties:

1. af) — dynamo : the o-term is much smaller than the Q term in Eq. (7.4) and can be
ignored. One a-term and the Q-term remain in (7.3) and (7.4). These dynamos tend
to have periodic behaviour and the solar dynamo is believed to be of the af)-type.

2. a? — dynamo : the Q-term is much smaller than the a-term in Eq. (7.4) and can be
ignored, so that the two a-terms remain. This is the same as ignoring the term iy % By
in Eq. (7.1). These dynamos often have non-oscillating, stationary solutions. The
dynamo of the Earth could be an a?-dynamo.

3. a?Q—dynamo : the shear term and the a-term in Eq. (7.4) are of comparible magnitude.

7.3 af)-Dynamo waves in the sun

7.3.1 Plane wave solution in the af)-limit

Because the solar dynamo is believed to be an af2-dynamo, it is interesting to have a closer
look at the plane wave solutions of this approximation to get more insight in the physics
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of the solar dynamo. We will write P and T as a standard plane wave

(P,T) = (Po, To) exp{i(k - 7 — wt)} (7.5)
and insert it in Eq. (7.3) and Eq. (7.4). If we ignore the term aV2P and write (€y x @) k=
—€&y - (71 x @)k = —(asin §)k = —sk, we can write the result in matrix notation:

iw — Bk? o P\ _
( —iks  iw — BK? ) ( To ) =0 (7.6)

To find a nontrivial solution to this equation, the determinant of the 2 x 2 matrix has to
vanish, leading to the dispersion relation :

w? + 2iBk*w — (Bk?)? — iaks = 0 (7.7)
from which we find for w :
w = —ifk? + Viaks = —ifk® £ (1 +i)y/aks/2 (7.8)
From this we can conclude that :
frequency 2 = Rew = x4/ aks/2 (7.9)
growthrateT' = Imw = —Gk? £ /aks/2 (7.10)

The lower sign solution gives a wave that is always damped. This one is not interesting,
unless one is interested in an initial value problem. From Eq. (7.9) and Eq. (7.10) we see
that a permenant wave is possible with the right choice of o and 3. If we do this analysis
for the a? limit, we find :

Q=Rew =0; =Imw=—-8k>+ak (7.11)

This is a purely growing or decaying solution and nonperiodic since Re w = 0.

7.3.2 The af2-dynamo in the Sun

With the results of Sect. 7.3.1 we are able to apply this to the solar dynamo and try to
explain the properties of mean field models such as the one shown in Fig. 6.10.We can
determine the period of the waves with Eq. (7.9) and taking s = asind = Aug/Rg ~ AQ,
and k =~ 1/Rg:

-1/2 1/2
Pd=2?27-[=27r{a7ks} z27r{ai(?)r} (7.12)
Here AS2; is the magnitude of the differential rotation, say, the difference between equa-
torial and polar rotation. Taking P; = 22 years and AQ; ~ 6 x 10~ "s™1, it follows that
a =~ 10 cm s~!, which is of the same order of magnitude as found in numerical models.
Because in the sun the wave is marginally stable, we have to require that the growth rate I'
has to be zero. With Eq. (7.10) we find 8k? = (aks/2)'/2,0r Rg/B =~ P3/2x. This means
that the turbulent diffusion timescale, defined in the previous chapter as Rg/f3, is of the
order of the period of the dynamo. From the values we have so far we find # ~ 4 x 1013
cm? s~!. Numerical models of the solar dynamo based on Eq. (7.1) usually find 8 = 10*3
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cm? s, A slightly smaller value is inferred from the observed surface diffusion of solar
magnetic fields. Finally, n = 2 x 10? cm? s~! in the convection zone near T' = 10°K,
confirming that 8 > 7. Note that the frequency of the wave is given by 2 = (aks/s)'/?
and that from marginal stability follows that (aks/2)'/? = Bk?. One could say Q = Bk2,
but this merely expresses marginal stability. The difference is very important, for example,
when we determine the group velocity of the dynamo wave. We will now look how By
and B, are related to each other and to By. Therefore we start with inserting Eq. (7.5)
in Eq. (7.2) :

Bo = (—iPRy&, x k + Toéy) exp(iyh), (7.13)

where ¢ = k-7 —wt is the phase. We see it is a transverse wave, because k- Eo = 0. From
the first line of Eq. (7.6) we obtain

Po _ a

Ty Bk? —iw
At the last step we assumed marginally stability of the wave. Inserting this in Eq. (7.13)
and taking the real part gives us

(8 .
= g1 +1) (7.14)

B, ©k
——_____ —— &y (Btor)
/ - = \Q‘\\ e - e =
\w ~~~~~ -~ +~I$
o - EFFECT
DIFFERENTIAL ROTATION ' P=_ok/20Q

Figure 7.2: An af-dynamo wave. The vector By runs over a narrow ellipse L E, clockwise for @ > 0 and
anticlockwise for o > 0. Differential rotation sweeps By rapidly from one edge to the other (solid line)
and does work , so that By decreases and then increases again. The a-effect moves By very slowly around
the edge (broken line), after which differential rotation takes over again. During most of the time By is
(anti)parallel to &y.

By x Qa__\/ki cos(v + 3w/4)@t x €y + cospey (7.15)
By eliminating ¢ we find that B, rotates over a tilted ellipse, see Fig. 7.2. This tilt angle,
¢ = —ak/2Q is very small as ak/2Q ~ aPy/4TRO = 10~2. The relative magnitude of
the poloidal field By, and the toroidal field Bior follows from (7.15):

Bpot _ ak

—pd _ T ~1072 7.16
Bior V2 ( )
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The ellipse in Fig. 7.2 is therefore very flat; the toroidal field is about a factor 100 stronger
than the poloidal field, a property which also follows from numerical models. Finally we
compute the group velocity of the wave:

o0 o - «a
Ty = — = —(a, -k x @/2)}/? = —a@ x & 7.17
e~ o7 ak( v /2) T v (7.17)

A wave packet propagates perpendicular to €, and @, along the isoplanes of the ‘rotation’
iy, as was first proven by Yoshimura (1975). See Fig. 7.1 for the geometry. In Fig. 6.10,
@ points inwards and since a « cosf, ¥ is directed to the equator in both hemispheres,
thus explaining the migration of the mean field towards the equator in that model. We
can make an approximation for the magnitude of 7y vy = aa/4Q =~ aAQ, Py/87 ~ 160
cm s~), or 5 x10° km in 11 year, about 50° in latitude, which is of the right order of

magnitude.

7.4 Rigorous mean field theory

In this section we are going to prove that < @; x By >=aBy - BV x By by means of
a rather mathematical derivation. Especially here the reader will need Sect. 7.6 to follow
the derivations. The notation here is the one explaned earlier in Sect. 6.4. We will have
a closer look at equations of the form:

| 0.f = (Ao + A1) f (7.18)

vzhere Ap is time-independent, but A; fluctuates, with zero average. Here f can be e.g.
B. Now we write f as :

f = ety (7.19)

Take the derivative of f and isolate u:

o= e Mt ety = Aju (7.20)

Then integrate this expréssion to get u, see Eq. (7.46) and Eq. (7.47) for the detailed
derivation. From now we will write f™ = f(7) and a = u(0):

t - T .
u=a +/ drA] (a +/ daA‘l’u") (7.21)
0 0

Take the time average, indicated with <>, differentiate with respect to ¢ and use < A >=
0: .
O <u>= /0 do < AL ASu® > (7.22)

While u? evolves on a timescale |fi1|—1, which is assumed to be much longer than the
timescale 7. over which A; changes itself : |A;|re = |A1|7| < 1, where |A;] is the magni-
tude of A;. If we consider 4 and A; as uncorrelated and split the < > -term in two parts,
we make a relative error order |A;|7c < 1. If we now change the integration variable :
o=t—T1,weget: o

O <u>= /0 dr < ALAY" >< b > (7.23)
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We can let the integral run from zero to infinite, because < > is zero beyond |t — 7| > 7.
Now we approximate :

<t T >=<ut > —78, < ul >=<ut > (7.24)

This approximation is permitted because with Eq. (7.23) we can estimate 70; < ut >=
Te - Te|AL]2 < ut >= (|A1}7)? < u* >, so we make a relative error of order (JA1|)? < 1.
Now we have succeeded to reduce Eq. (7.23) to a differential equation:

w ~ ~
A <u>= (/0 dr < AL AT >) <u> (7.25)
From here it is just a lot of algebra from which only the important steps will be mentioned
here, again with references to the derivations in Sect. 7.6. First substitute Eq. (7.19) in
Eq. (7.25):
o0
o < f >= (Ao +/ dr < Alter‘rAlt—T > C—AOT) < f > (726)
0

Ignore etAoT, since |Ao|rc < 1is assumed, and use Eq. (7.48) — (7.51) and the substitution
f=Bpand A; = V x (@ X -) to get an expression for < iy x By > :

— (&) — —
< iy x By >=/ dr < @ x Vx i@, 7 > xBy (7.27)
0

Assume incompressibility V - i; = 0 and use Eq. (7.57) and Eq. (7.52) to get for the ith
component of < @ X Bj > (surpress index 1 on u temporarily):

R o0
<t XBy> = Eikl/ dr (< uktBo,svs ult_T > —< uk‘ust”Vs BO,l >) (7.28)
0
= oaisBos+ BistVs BO,l (7'29)
(7.30)
with

00

Qis = Eikl / do < wet(Vew''™") > (7.31)
0
o0

Bist = —Eikl / dr < uplut" > (7.32)

0

Assume isotropy, so the tensor of the third step in Eq. (7.31) is invariant for rotation :

< upt(Vs u*™") >= const - €kl (7.33)
so with Eq. (7.58):
kst < Ukt (Vs w'™") >= const - exgi€xst = 6 - const (7.34)
Hence (restoring index 1) :
1 -
const = 5 <@ - Vx@&T™ >, (7.35)
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and

1 -
< uk‘(VS ult—r) >= 5 < ’l_lftl (V x 'l_itl—r) > Eksl (7.36)
Similarly to this we find, using Eq. (7.59) :
1
< uplust™T >= 3 < @b a7 > Oks (7.37)

Now we have to substitute these results in Eq. (7.31) and Eq. (7.32) and use Eq. (7.53)
and Eq. (7.54) to find:

1 -
Qs = - Ois with a= —g <t -V X Uy > Te (738)
and
) 1
Bist = —B-e&i With f=3< i > 7 (7.39)

If we insert this in Eq. (7.29) we find what we were looking for :

<@ xBy> = a-6,Bos— BeisiVsBos
= (ago — ,36 X E()) (7.40)
SO
< 1 X é] >= aéo — ,3‘7 X Eo (7.41)

This result has been derived under the following conditions:

1). 7 <€ Ac/uy, since |Ap| ~ u1/Ac

2) |A0|TC K1 — Qo7 K 1

3). turbulence is incompressible (V - @, = 0) and isotropic.

None of these conditions is fulfilled in the solar convection zone! We could remove con-
ditions 2) and 3), with as result that o and 8 become tensors. However condition 1) is
essential and cannot be removed. This is a long standing open problem. The fact that
simple scalar expressions for a and B work rather well, suggests that the general form of
the expression < 4 X B, >= aBo — ﬂV X Bo remains more ore less as it is.

7.5 Current status

There is still much research being done to the solar dynamo. We can roughly split the
research in three subjects.

7.5.1 Interface-dynamo

The idea of these kind of dynamos is that they are believed to operate in subadiabatic
overshoot-tachocline regions. The field is believed to be at the base of the convection zone
and not in the convection zone itself. The original idea came from Parker (1993) and
typical examples can be found in MacGregor and Charbonneau (1997).
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7.5.2 Storage, instability and eruption of magnetic flux

Starting point for explaining the solar magnetic fields here is not the solar dynamo, but
the presents of strong fluxtubes in the overshootlayer. Models are being made to explain
what happens if these tubes get instable and rise through the convection zone and create
active regions. The original work started in Utrecht (van Ballegooijen 1982).

7.5.3 Surface distribution of flux

In this research they just look at the distribution of the vertical flux tubes emerging from
the sun. A typical example of this research can be found in Wang and Sheeley (1994).

7.6 Mathematical steps belonging to previous derivations

¥ x (i x By) = (Bo- V)i — (- V)Bo = &(Bo - V)iip
& (Bo-a@) = —6(@- € x VP)

= 6(€ x &) VP (7.42)

aV x By = aV x (=& x VP) +aV x (T&,)
= aV x (VP x é)+ oV x (Tey)
= —&(aV?P) +aV x (T&,) (7.43)

Here we used vector operation Eq. (7.56) from which the first three terms on the righthand
side equal zero in this case.

BY x (Vx By) = BV xV x(Vx(P&))+8Y x (V x (T&)) (7.44)
= —BV x (V2Pé&,) — B, V2T (7.45)

To go from (7.44) to (7.45) we used vector operation (7.57).
Integrating Eq. (7.20) gives us an expression for u:

t -
u=a+ / drAju” (7.46)
0

Insert this expression for u in the integral on the right hand side to get the next iteration
for u:

t . T -
u=a+ [ dr A (a + / daA‘fu") (7.47)
0 0
Assume e(F407) ~ 1 and revert to < f >= fo:
00
o< f>=0fo= (AO +/ dr < AltAlt_T >) Jo (7.48)
0
but also:
Ofo=0 < f>=< (A() + A])(fo + fl) >= Agfot+ < A1f1 > (7.49)

Now we have : o
< A1f1 >= / dr < AltAlt_T > fo (7.50)
0
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Now we can make the substitution f = Bo and A1 Vv x (#1 % -) so we get the desired

expression for < @] x B; > by omitting the first Vx:

— oo — —
<ﬂ‘1xBl>=/ dr <@ x ¥ x @ > xBy
0
V x (@7 x By) = (Bo - V)@ — (@7 - V)Bp
) i -
/ dr <@ -V x @ >x< @y -V x @ > 7
0
0 44 2
/0 dr < U] 7 >< U] > T

7.7 Mathematical tools

Eksi€ksl = 3 (0550u — 015051) = 6

Eiki€ksl = —Ekli€kls = —20s

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)
(7.56)
(7.57)
(7.58)

(7.59)
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Chapter 8

Solar convection and granulation
Lecturer S.K. Solanki, notes by R. van Deelen

he observed surface of the Sun is called the photosphere. This is the region from
which the observed photons of the visible wavelength originate. Even when the Sun
is quiet, i.e during a sunspot minimum, we see it changing continuously.

Magnetic fields are present all over the Sun. In the “quiet” regions, i.e outside the
active regions (see Chapter 11), the magnetic field gets organized in a cellular pattern; the
so-called network. The network is organized by the supergranulation (see Fig. 2.10) which
has its origin in convective motions at intermediate depths in the solar convection zone.
This zone occupies the outer part of the Sun to a depth of 30% of the solar radius.

The granules, smaller convection cells seen at the surface, also organize and move
the magnetic field. Particular emphasis is placed on the description of granulation, the
convective structures which we understand the best.

. Fransition zone

Chromosphere

Photosphere

Interior

Figure 8.1: The base of the photosphere (h = 0 km) is located at 7 = 1, the optical depth in the visible
continuum. It ends approximately 500 km higher up where the chromosphere starts. The transition zone

is at about 2300 — 2600 km.
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8.1 Idealized convection

It should be pointed out that an adequate theory for magnetoconvection to describe all
the properties of the Sun does not exist, because our understanding of solar and stellar
turbulence and convection is limited. Still it is the detailed properties of the turbulence
(among other things) that determine what the solar dynamo, that drives the magnetic
field, looks like.

We begin by looking at highly idealized convection. When does it occur? Why does
the Sun have an outer convection zone and how does the convection manifest itself at the
solar surface?

8.1.1 The Schwarzschild criterion

Convection will occur in layers of a star where the temperature gradient is so steep that an
arbitrary perturbation (e.g., a little push upwards) of a gas parcel results in a unchecked
movement of this gaseous blob.

Let us consider a parcel of gas lifted adiabatically from its equilibrium position some-
where in the solar interior. If the density of the gas in this perturbed parcel is less than
the density of the surrounding gas in its perturbed location, the parcel will continue to
rise due to buoyancy and expand (pressure equilibrium).

7 f* r+ér

7 (o]

|
f.=p r

BGAS AMBIENT o
PARCE L MEDI UM posITION

Figure 8.2: Gas parcel gets lifted up due to a buoyancy force acting on it.

So convective instability (see Fig. 8.2) occurs only when:

P* - Pf) <0, (81)

where p* is the gas density in the parcel at the perturbed location (r + or).

When this condition is satisfied a buoyancy force acts on the parcel, which accelerates
upwards. If the situation is stable, the force on the parcel decelerates it, finally bringing
it to a halt and accelerating it back towards its original location. Thus the parcel will in
general show a damped oscillatory motion.

We can make a Taylor expansion of p* and p} around p and pp = p, which we can
restrict to first order terms for sufficiently small ér:

o =p+ (g-’rf)ad 5r + O((61)?) , (8.2)

ph=p+ (j—f) o + O((o1)?) . (8.3)
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Expansions (8.2) of p* around p and (8.3) of p}j around pp are now introduced into (8.1)

and lead to:
(%), @)

where (dp/dr),, is the density gradient under adiabatic conditions and dp/dr is the actual
density gradient.

UNSTARBLE STABLE

Figure 8.3: The destiny of gas parcels after a little kick; in a convectively unstable situation it leads to an
accelerating life. For a stably stratified medium it follows damped harmonic oscillary motion.

To obtain the Schwarzschild criterion of convective instability it is necessary to transform
the density gradients into temperature gradients using the equation of state of an ideal
gas:
P =pRT/pn, with R = gas constant
. (8.5)
and 4 = mean molecular weight.

Imposing pressure equilibrium (Eq. (8.4)) results in:

T<(E) +22-2(2) . (8.6)
dr dr/aq pdr p\dr/a.

p changes due to ionization, formation of molecules or thermonuclear fusion (evolution).
Now, we're only interested in the convection zone of the Sun, which does not reach
down into the solar core where fusion of hydrogen into helium is taking place. Here is
du/dr = (dp/dr).q4, because the ionization equilibrium is instantaneously adjusted. The
timescales for chemical reactions of the parcel with its surroundings are much shorter than
the timescale of upward movement (Treaction < Tup). This allows us to simplify (Eq. 8.6)

to
dT aTr
=< (E)ad : (8.7)
which can be rewritten as
V>V, (8.8)

where
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dinT

V= I (8.9)
dinT

Vo = (El—n_P)ad . (8.10)

These conditions are sufficient (Schwarzschild 1906) and necessary (Lebovitz 1966) for
convective instability if du/dr = (du/dr)aq or du/dr = 0.

Near the solar core, the u-gradient in (Eq. 8.6) becomes important because of the
nuclear fusion taking place there. The timescales for changes in u-gradients due to nuclear
reactions are much longer than the travelling timescale (Tquclear > Tup)-

8.1.2 Why does the Sun have an outer convection zone?

In the absence of convection the energy produced in the solar core is transported outward
by radiation. Convection occurs when Visg > Vaq. In the diffusion approximation of
radiative transfer (excellent in an optically thick medium such as the solar interior) the
resulting radiative temperature gradient reads:

3 rebple Ko

V= Vi = 64w r20T* T4 (8.11)
Here Lz = Solar luminosity
o = Stefan-Boltzman constant
k = Absorption coefficient per gram
H, = Pressure scale height

Convection occurs in layers at which, e.g. Viaq is large. This is the case where « is large.
% increases rapidly with depth in layers in which elements are partially ionized, due to
the increasing number of free electrons with depth, which interact with photons extremely
well. Because V = Vyaq ~ & these zones become convective (Viaq > Vad)- The main
zones of partial ionizations in the Sun are:

Just below the solar surface H—- H
At deeper levels (7000 km) He — Het
Deeper still (30 000 km) Het — He™™t

At greater depths H and He are completely ionized, so that & is approximately constant.
V.ad decreases again, mainly due to Viag ~ 1/ T4, so that at sufficiently large depth the
heat can be transported by radiation (here Ving < Vaq). Hence the convection stops
below a certain level.

The Schwarzschild criterion divides the Hertzsprung-Russel diagrams into domains of
stars with convective envelopes and stars without appreciable convection in or just below
the photosphere (see Fig. 3.20). Detailed calculations on stellar interior theory reveal
that the Sun and all stars with an effective temperature below about 7000 K must have a
convective envelope immediately below the observable photosphere.

8.1.3 Overshooting

The solar gas becomes convectively stable just at the visible surface, so why do we see
the granulation pattern at all? At the edge of the convection zone moving parcels of gas
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overshoot into stable stratified gas due to their momentum (see Fig. 8.4). Although the
buoyancy force now acts as a brake and brings eventually the parcel to a standstill. This
only happens 100 — 400 km above the solar surface. This effect is called overshooting.
Without this overshooting we wouldn’t have seen much of the beautiful granulation!

Srasne V<

Unstass V>V

Figure 8.4: An illustration of convective overshoot, i.e. the penetration of convection into a stably stratified
medium. The parcels can reach 400 km into the stably stratified photosphere but the mean is about 100
km.

8.2 Granulation and larger convective cells

Since the gas density drops exponentially with height the heated gas parcels cannot con-
tinue to rise indefinitely. In particular, when they reach the solar surface they cool due to
radiative losses, making them less buoyant. Also, they enter stably stratified gas. Even-
tually they stop and are pulled downwards again. However, due to the continuing rise of
hot gas from below they cannot flow down where they came up. They must first move to
the side. An excess pressure therefore soon builds up over the upflows which drives the
horizontal motions there, forming the granular velocity cells. Note that as the magnetic
field lines are “frozen-in” due to the high electrical conductivity of the solar plasma, they
are carried by the horizontal flows to the cell boundaries, where the magnetic flux gets
concentrated (see Section 10.6.1 for this so-called fluz expulsion).

The convection visible at the solar surface appears to exist on different scales; besides

the normal granules there are also mesogranules, which are five times the “normal” gran-
ules, and the supergranules mentioned earlier which in turn are five times the mesogranular
size. Recently (1998), even larger cells were discovered, so-called giant cells.
The topology of flow changes completely with depth. At the surface: strong downflows
form closed network and gentle upflows in isolated patches. A few scale-heights below the
surface strong downflows in isolated filaments and gentle upflows forming a more or less
closed network are found. Physical reasons for the geometrical (and velocity) differences
between the up and downflows of granules are sketched in Fig. 8.5.
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Property Granulation Mesogranulation | Supergranulation
Sizes 1500 km 7000 km 25000-30000 km
Lifetimes 6-8 min 1h 1 day (3040 h)
Vrms vertical 1kms™! 60 m s~! S50ms!

horizontal 1 km s™! <1kms™? 300 - 500 m s~!
(6I/I)ims  continuum 0.1-02>0 =0 ~0

line core <0 ~ 0 < 0 (network)
Surface Isolated, bright Similar to granules | Downflows and bright
topology upflowing granules, in velocity? network elements are

multiply connected, isolated
dark downflowing
lanes

Table 8.1: Observed properties of surface convective features. (6I/I)rms > O implies that upflows are
bright, downflows are dark. (81/I)rms < O means dark upflows, bright downflows.

8.2.1 Upper limit on granular size

It is possible to make a simple estimate of the largest size which granules can achieve
based on the equation of continuity and buoyancy braking.

Consider a cylindrically symmetric convection cell. We assume stationairy flow. Then the
equation of continuity reads:

0=V-(07) = o (pvs) + = o-(rovi) (8.12)

where p is density, v, is the radial velocity and v, is the vertical velocity. Reasonable
approximations are:
p ~ e #He (H » is the density scale height)
v, =~ independent of z an r
v, ~ r (1st order Taylor expansion around r = 0)

The equation of continuity then becomes:

PYz 2pvr
o (8.13)
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Figure 8.5: Topology of granulation.

If we set » = R for the radius of the convection cell we obtain

R= 2Hp%@ . (8.14)

As R increases v-( R) must increase too, relative to v,! This has to do with the stratification
of the atmosphere, with scaleheight H,. Only a thin layer with sufficient density is available
in which to transport the matter horizontally.



98 CHAPTER 8. SOLAR CONVECTION AND GRANULATION

As v, increases, so must the magnitude of the excess pressure Ap over the upflow which
drives v,. But this Ap also acts as a downward directed force on the gas flowing up below
it. It causes the upflow to slow and finally, if Ap becomes too large chokes it. Obviously the
granules cannot be bigger than a certain size. The measured size distribution of granules
is shown in Fig. 8.6.

Larger cells may exist but must have different properties, in particular a small v, and
a large v./v, ratio (compare with the properties of mesogranules and supergranules in
Table 8.2.

Distance between Granular
granuie centers diameters
wl [ 0
. e
30+ , 30+ L
04 o 20
10 - r _ 10-
0.6 14 22 30 38 46 02 06 10 14 1.8 22 26

d lare sec) D larc sec)

Figure 8.6: Distance d between granule centers (Bray and Loughead 1977) and granular diameters D
(Roudier and Muller 1986). Maximum size is determined by mass conservation.

8.2.2 Supersonic convection

Granular convection is shocking. For large Rayleigh numbers the convective flow can be-
come supersonic at some positions. The Rayleigh number Ra (~ superadiabatic gradient)
measures the importance of the buoyancy force relative to the stabilizing effects of non-
magnetic diffusion (Priest 1982). The presence of supersonic convection is in particular
the case for the horizontal velocity of the largest granules

The shocks themselves have not yet been directly observed, because these require a
very high spatial resolution to be resolved. Recently however, the very large line broad-
ening due to shocks has been observed.



Chapter 9

Flux tube overview

Lecturer S.K. Solanki, notes by R. van Deelen

n the photospheric layers of it active regions we can see a whole zoo of magnetic struc-
tures, corresponding to fluxtubes of different sizes pointing out of the solar surface. An
overview of the observed properties of these fluxtubes is given in Table 9. The dependence
of the brightness and the field-strength of the fluxtubes as a function of their size are
plotted in Figures 9.1 and 9.2, respectively.
It is difficult to obtain information about the so-called ‘weak fields’ and to resolve small
magnetic features. In the next chapter we focus on the biggest structures in town:

sunspots.

Flux tube diameter (km?
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Figure 9.1: Because I ~ T, small differences in T give a good contrast. If a fluxtube is on the dotted
line, this means the magnetic structure is equally bright as its surrounding granulae. The upper line in
the right corner stands for the average relative brightness of sunspots, so we see umbra are very dark.
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Properties ‘Weak fields’ | Magnetic
Elements Knots Pores Spots
Diameter < 100 km < 300 km . 50000 km
T.g = 6000 K Teg ~ 4200 K
(umbra)
Temperature ? Teg =~ 5200 K
(penumbra)
(bright) (neutral) (dark) (dark)
1500 G 2000 — 3000 G
Magnetic (umbra)
field-strength 200 — 800 G 1500 G - . 800 — 2000 G
(penumbra)
Lifetime min — h min — h - days — months
active regions
Distribution everywhere and network - . active regions only
(whole disk) (within 30° of equator)
Inner structure ? perhaps likely lots

Table 9.1: An overview of the properties of photospheric magnetic structures. Information about the
smaller features, especially about weak fields is difficult to obtain For example the lifetimes of the magnetic
elements are not known well.
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Figure 9.2: Field-strength B versus radius R of photospheric magnetic features. B averaged over the
magnetic feature (lower set of curves in the right part of the figure) doesn’t depend much on the size of
the magnetic elements! The upper set of curves describes the peak field strengths.
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Chapter 10

Slender flux tube physics

Lecturer S.K. Solanki, notes by N.L.J. Cox

10.1 Introduction

ost of the magnetic energy is stored within discrete features which are best described

by the term flux tubes. Small scale solar magnetic features can be separated into
two main types. These are the small flur tubes on the one hand and the weak field features
on the other.

In flux tubes the fields are concentrated (up to several kG in the photosphere) and the
magnetic energy density dominates over the thermal energy density (which is expressed by
the pressure) and dynamic energy density at and above the visible solar surface. Whereas
the weak-field features are much less concentrated (field strength below 1 kG) in the
photosphere. In some cases the field strength is small enough for the thermal energy to be
larger than the magnetic energy. Their magnetic flux is also smaller. It is important to
note that the effect on the irradiance of the small flux tubes is significant, but too small to
be measured for the weak field features. Nevertheless, at least 10% of the magnetic flux in
the active region is stored in weak field form. In the quiet Sun this fraction reaches 50%.

Small flux tubes appear mainly as bright magnetic elements forming faculae (or plage
in the chromospheric layers). Due to the measurement threshold of about 200 km a lot of
elements are missed in the observations when only brightness is observed. Observations
in net (e.g., circular) polarisation are also able to reveal features far below the spatial
resolution.

In the course of this chapter the features of flux tubes will be discussed in detail.
First (Section 10.3) an approximation is introduced to provide a better understanding of
the principles of flux tubes. Secondly, in Sections 10.4 and 10.5, we shall take a look
at magnetic field and the theoretical explanation of field strength. Subsequently the two
effects, flux expulsion and convective collapse, which determine the magnetic structures
and field strengths in the interior of convection cells (or flux tubes) to a great extent are
discussed (Section 10.6). The inclination of flux tubes is also briefly discussed at this
point.

The remaining part of the chapter will concentrate mainly on flows and waves in and
on flux tubes.
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10.2 Flux tubes: What are they?

To get more in depth on the matter we first give a definition for a flux tube:

A fluz tube is a bundle of magnetic field lines bounded by a topologically simple surface,
generally modelled by a current sheet.

At first this seems an oversimplified definition, but later on it will become clear that even
this view introduces extensive calculations in even the simpler models. Furthermore, some
characteristics concerning the magnetic field and the active regions need to be discussed
and this simple idea of a flux tube has to be even further simplified by use of the thin flux
tube approximation to be able to draw conclusions without expanding with a large effort.

Figure 10.1: Schematic view of a simple flux tube according to the definition

Flux tubes can have a complex internal structure. This internal structure is described
by a set of different physical quantities. Depending which characteristics are modelled,
only a few quantities actually enter the model in order to ease the solving of all equations
and draw clearer conclusions). Often used quantities are size (i.e., the cross-sectional area
or the radius), magnetic field strength, brightness (or temperature, see also Section 11) and
the magnetic filling factor.

10.3 Thin flux tubes

First, we consider a vertical axially symmetric flux tube (see Fig. 10.2). In principle we now
have a 3-dimensional problem. But if we introduce the cylindrical coordinates (r, ¢, z), set
8/8¢ = 0 and let ¥ =0, as well as §/0t = 0 we can reduce it to a 2-dimensional problem.
Now let’s have a look at any physical quantity f (e.g., pressure P, g—ﬁeld) and expand
it in a Taylor series:
2
f(r,z)= f(0,2) + r%i: lrmo + rzgr—é . (10.1)
If the radius R of the flux tube is smaller than scale of vertical variation, or put differently,
if R < Hp, we may assume that all quantities vary weakly with r (apart from a jump at
r = R ) and therefore the system may be truncated at zeroth order. This is what we call
the thin tube approzimation. So if we now choose the magnetic field B for the quantity f
and insert (10.1) into the MHS equations.

B,?

Py + P,, = P, (horizontal) pressure balance (10.2)
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Figure 10.2: Axisymmetric flux tube representation

%‘: = pig (vertical) hydrostatic balance (10.3)
F; = 'T:—PiTi ideal gas law (10.4)
P
mR?B = © = constant magnetic flux conservation, (10.5)

where subscript m stands for the magnetic feature and the s for its surroundings. The
subscript ¢ can stand for both the m or s.

As with all approximations one should be careful when applying it. At this moment in
the discussion a few remarks concerning the applicable range and usefulness are required:
— the radial and vertical components of the force balance equation decouple completely

in this approximation (see the Equations 10.2 and 10.3);

— the force balance reduces to pure pressure balance, i.e., the curvature forces are negli-
gible (see eq. 10.2);

— allowing first order terms in equations (10.2) —( 10.5) instead of only zeroth order terms,
we may obtain a radial component of B: B, = —r/20B,/0z. Higher order terms can
be introduced to extend the domain of validity of this approximation, but these make
the equations far more complex;

— if ¥ and 3/8t terms are allowed into the equations a dynamic thin tube approximation
is obtained (Roberts 1991). This is important for the description of flux tube waves.
Flux tube waves are discussed in Section 10.13;

— the thin-tube approximation can describe flux tubes in the solar interior (even large
flux tubes) due to the large H, ~ T dependence in the solar interior. The thin-tube
approximation also describes magnetic elements in the solar photosphere, but cannot
do so for large flux tubes such as sunspots. (see Fig. 10.3);

— because the gas pressure is lower in the magnetic feature, the opacity is generally also
lower. And thus we see, via the Wilson depression, deeper layers.

In Fig. 10.3 the results from an expansion solution including second order terms, i.e.,
including magnetic tension, and the thin tube approximation are compared. From which
it can be concluded that for thin tubes (radius r(z = 0) < 50 km) the approximation does
well till reasonable, but for thicker tubes the discrepancies increase, with the discrepancies
starting at lower heights for larger radii.



106 CHAPTER 10. SLENDER FLUX TUBE PHYSICS

800 L A ) | 1 {
600 - B
)
= . -
= 400
20
[
A . L
200 —
N
0 T ' Al l Ll '
o 100 200 300
radius (km)

Figure 10.3: Comparison of the flux tube cross-section obtained with the thin tube approximation with
the expansion solution (with the magnetic tension included) from Pneuman et al. (1986)

10.4 Magnetic fields in flux tubes

A theory of the magnetic field in flux tubes must satisfactorily describe the confinement of
the field. Secondly, a process that is responsible for the concentration of the magnetic field
to its high observed value after its emergence from the solar interior must exist. Both the
predicted and the observed field strengths at emergence lie well below the values observed
in mature stable flux tubes.

We see that most of the visible flux is in strong-field form (at least in the active regions
and the network). In this region B(z = 0) & 1500 — 1700 G which corresponds to a plasma
of 8 = 8wP/B? ~ 0.3 (notice the peak in the right panel of Fig. 10.4), where (3 represents
a measure of energy density in the gas relative to the magnetic energy density. For a
(B) =~ 0.32 the magnetic features are strongly evacuated and the internal magnetic energy
density dominates over the internal gas energy density. How much of the magnetic flux
is in the form of plasma with a certain 3 is shown in the right panel of Fig. 10.4. The
histogram shows a peak at = 0.3 with a long tail extending to larger 8. The vertical
dashed line gives the theoretical limit of convective collapse. Below this value of =138
flux tubes are stable against collapse, according to a linear stability analysis. It states that
flux element with 8 > 1.8 which are embedded in a convectively unstable environment
collapse to a strong-field state. The observed results from both the active (histogram) and
quiet (solid line) regions of the Sun are plotted in the same panel. According to this figure
in active regions most of the magnetic flux resides inside the strongly evacuated magnetic
features and much less flux resides in features with a smaller magnetic field. In the quiet
region the peak in the flux lies at a slightly larger 8 value and it also has a stronger and
longer tail to still larger 3. In the quiet regions of the Sun the magnetic elements are
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Figure 10.4: Left panel: B(z=0) vs. (B), the flux of a magnetic component divided by the area of the
spatial resolution element. (B) is proportional to the magnetic filling factor. Right panel: Histogram of
the magnetic flux contributed by all the magnetic elements (in an active region) vs. the plasma 3(z = 0)
within each element. Overlaid in a solid line are the measured plasma 3 values in the quiet Sun. The
vertical dashed line indicates the boundary for stability against convective collapse (according to linear
stability theory). From Riiedi et al. (1992).

therefore not as much evacuated (due to a larger ) as the ones in the active region. Also,
there is an almost equal amount of flux in weak-field features (3 > 1) as in the strong-field
ones. (i.e., the two integrated areas are about the same).

A regression line has been drawn through the points above 1.3 kG (for which 8 < 1)
in the left panel of Fig. 10.4. For the smaller filling factors, corresponding to the small
features and small flux, a rapid drop of Biptrinsic i shown. These weak-field features tend
to have equipartition fields (800G ~ B < 200G). The observed variation of B with z
is well described by standard flux tube models, including merging of neighbouring tubes
(Solanki 1996).

10.5 Theoretical explanation of field strength

The confining force of the field in solar flux tubes is provided by a horizontal gas pressure
gradient created by partial evacuation of the flux tubes. The Force balance B?/81 =
Pe — p; (see 10.2) must be satisfied at every height z. And because the gas pressure drops
exponentially with 2 the field strength B must follow. The conservation of magnetic flux
then forces the flux tube to expand with height, with its cross-section varying as 1/B(z),
according to equation (10.5).

The lower gas pressure within flux tubes implies that the optical depth unity is reached
at a deeper level than in a field-free gas, which makes you see deeper. In sunspots this
height difference, called the Wilson depression, is directly measurable. The energy outside
the magnetic element (e.g., a flux tube) is mainly transported by convection. Inside a
magnetic element the energy is transported by radiation from the hot walls of the element.
For a optical thin element (i.e., the radius is of the same order of magnitude as the mean-
free path of the photons), the radiation is able to heat up its entire interior. Due to
the presence of a magnetic field inside the element the photons more readily escape in
the vertical direction. Together with the rapid temperature increase downwards and the
fact that we see deeper into the magnetic element than into the non-magnetic atmosphere
(due to the Wilson depression) we see why magnetic elements appears hotter and brighter,
compared to their surroundings. This situation is illustrated in Fig. 10.5.

An interesting question that might arise is whether there is an upper limit for the B
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Figure 10.5: Radiative heating of the interior of a thin flux tube. From Stenflo 1994

at a given height z. This limit is obtained fairly simple by setting P; equal to zero, or:
B?/8r = P,. However, since we see ever deeper with decreasing P;(z9) and B increases
with depth there appears to be no limit on the observed field strength.

Can theory set a limit on the field strength, or, equivalently, on the decrease of F;
in the observed layers of fluxtubes? Perhaps surprisingly it can do exactly that. The
relevant process is called convective collapse. The theory behind convective collapse will
be discussed in Section 10.6.2.

10.6 Formation of flux tubes

Inside the Sun the convective motion sweeps the frozen-in magnetic field to the boundaries
of the convection cells (such as granules or super granules). But this effect, convective
flur ezpulsion, is insufficient to produce the observed kG fields and the momentum of
the convective flows is too small to confine these fields. It is only the gas pressure that
can match the magnetic pressure of such fields. The mechanism leading to the further
confinement of the field is the convective collapse (from Solanki 1996) To understand the
principals behind these statements we now concentrate on the theory (and some modelling)
behind these two phenomenon: convective fluz ezpulsion and convective collapse.

10.6.1 Flux expulsion

Convection and the magnetic field try to avoid each other in a way so that the field
is carried and concentrated into the downflow regions. Field strength is limited by the
equipartition of magnetic and kinetic energy density, i.e., B?/8m = pv? /2, where v is the
velocity of the convective flows (basically of granulations). In this way B = 200 can be
produced. Convection is not totally inhibited.

The results of a numerical experiments by Galloway and Weiss (1981) are represented
in Fig. 10.6. In this experiment they started with a homogeneous magnetic field and
imposed the constraint of flux conservation. An enhancement of the field strength and a
spatial separation between the magnetic field and the flow are seen.
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Figure 10.6: Flux expulsion: The initial condition is a homogeneous B-field. At a certain time (time step
1) the convection is switched on, which imposes a circular motion. In time (time steps 2 and later) the
frozen-in field lines are carried along by the flow. Slowly this results in an initial enhancement of the field.
The production of strong field line curvature is initiated. Around time step 5 a cancellation of flux due
to magnetic reconnection, near the regions with largest velocity, shows up in the model. From there on
(time step 6) there’s a steady expulsion of flux to the boundary of the convection cell. After a while a
final (stationary) state is achieved. Strong fields (B < Bo) occur at the edges of the convection cell, while
the interior is almost field-free. The final field strength near the convection cell boundary is given by the
equipartition field: B = (v/4mwp)v obtained from Galloway and Weiss (1981).
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10.6.2 Convective collapse

The mildly concentrated magnetic field resulting from flux expulsion is thermally insulated
from the surroundings and is therefore also cooler. A small adiabatic downflow cools the
diffuse magnetic tube further compared to its superadiabatic surroundings. Due to this
cooling the gas pressure near the photosphere is lowered in the magnetic feature, since
H, ~ T and also P = Poe?/He.

In addition, a convective downflow within a weak field feature partially evacuates it,
thus lowering the gas pressure even further. This creates a horizontal pressure gradient,
i.e., a force directed towards the flux concentration. In turn this causes gas to flow
horizontally towards the feature. The converging gas flow carries the embedded magnetic
field lines with it, leading to an enhancement of the field. Horizontal pressure balance is
restored by compressing the field lines in the magnetic flux region. If the magnetic pressure
of the amplified field has become strong enough further convective motions within the
newly formed flux tube will be quenched and the flux tube will stabilize against further
collapse. The effect described above is sketched in Fig. 10.7.

Figure 10.7: Left: the initial pressure equilibrium of material in the magnetic patch suffers radiative losses
and consequentially cools. The downflow lanes are cool. The material inside cools down and becomes
denser and starts to low down. Center: the cool material sinks. This leads to a pressure deficit higher up.
Surrounding material flows inwards and concentrates the field. The density in the magnetic patch is lower,
so that the pressure is lower too. Inward flow pushes the field together and the field strength increases.
Right: a new pressure equilibrium is reached when the magnetic pressure becomes sufficiently large. The
time scale of the whole event is estimated to be a few minutes, which is confirmed by magnetohydrodynamic
simulations. No direct observations of a convective collapse have yet been made. Figure courtesy of M.
Biinte and O. Steiner.

The combination of flux expulsion and convective collapse can enhance the magnetic
field strength, by a factor of 10 or even more.

10.7 Magnetic field inclines to a certain inclination

10.7.1 What the observations say

Magnetic elements are on average inclined by 10° to the vertical, with a tendency for a
more inclined field at the edges of plage/network areas. No significant difference between
plage and network has been observed. The distribution of inclination angles in plage is
plotted in Fig. 10.8. Weak field features (surprisingly?) tend to be far more inclined. Can
the observational result above be explained?
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Figure 10.8: Inclination of tubes in two active regions (Figure from Martinez Pillet et al. 1997).

Figure 10.9: Buoyantly unstable situation (left): an upward force acts on the flux tube, which contains
less dense material than its surroundings. Buoyantly stable situation (right): due the upward force the
flux tube is vertically orientated. The tube is anchored at the bottom of the convection zone.

10.7.2 Is there a theory?

Indeed there is. The important physical process is magnetic buoyancy. The evacuation of
material from inside the flux tube due to the pressure balance makes the flux tubes buoyant
relative to the field-free gas in their surroundings. If we recall the fact that flux tubes are
anchored at the bottom of the convection zone their alignment must be practically vertical
at the solar surface.

In the left panel of Fig. 10.9 the buoyantly unstable, and in the right panel, the
buoyantly stable situation are illustrated. In the unstable situation, denser gas overlies
the less dense gas in the flux tube. In the stable situation the dense gas always lies below
the less dense gas.

The cause of magnetic buoyancy is the horizontal pressure balance: B?/8r + p; = p,
(the first term is the magnetic pressure). From the structure of the flux tube we have that
the gas pressure is much lower inside magnetic feature than outside (i.e., 3 < 1 (see also
Section 4.4.2). We also note that T; = T, so that by way of the ideal gas law the density
is lower in the magnetic feature. Therefore a net force acts on the tube until its in an
stable state with its surroundings, i.e., when its aligned vertically.

How then is the observed inclination of 10° explained? There are various ways to
increase the inclination:

— horizontal flows outside the flux tube, for example due to neighboring granules (see

chapter 11) can cause flux tubes to have an inclination. If pv?/2 > B?/8 the inclina-
tion can be significant. In this context the pressure of supersonic horizontal flows in
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granules are important, since at the sound speed pv?/2 ~ p ~ B%/8n (kinetic energy
equals pressure equals magnetic energy);

— kink waves (see Section 10.13.3);

— the balloon-cluster effect (see Fig. 10.10) can occur due the divergence of fluxtubes
with increasing height, causing the outermost flux tubes to be the most inclined, in
agreement with the observations.

Figure 10.10: Illustration of the balloon cluster effect. The widening of the flux tube with height makes
it impossible for the tubes to come closer together, due the lack of available space. Therefore the more
outlying ones must have a small inclination.

10.8 Flows in small fluxtubes

Flows and waves in flux tubes cover a wide area of research. Three main aspects of
this topic will be discussed in the next section. First there is the problem of observing
stationary flows. So far none with a velocity over 250 km/s have been seen in small scale
features, with the duly noted exception of Siphon flows (Section 10.12). The advantages
and disadvantages of a high spectral resolution, in particular for the measurement of
flow, are discussed in Section 10.9. The second issue that is to be treated briefly is
how Stokes V profiles are affected by velocities and velocity gradients inside and outside
magnetic flux tubes. Finally, a brief and simple introduction is given to waves in flux
tubes (Section 10.13).

10.9 Spectral resolution

trying to obtain a high spectral resolution has many advantages. For example, a low
spectral resolution means a low sensitivity to, e.g., velocity (i.e., shifts and broadening)
and Zeeman splitting. When doing polarimetry, by observing the polarized Stokes pa-
rameters (@, U, V), a higher resolution is needed. This is obvious, since these parameters
change more rapidly with wavelength than the parameter I. Even more so the Q,U,V
have positive and negative lobes and when these lobes get spectrally smeared it leads to
cancellation. A significant loss of signal can be the result. This latter effect is clearly
shown in Fig. 10.11. One can see that the observed values of V decreases rapidly with
increasing instrumental broadening.

Three other consequences of too low spectral resolution are the enhancing of blending
problems (nearby lines merge), the production of spurious line shifts (since the blue lobe of
Stokes V is usually stronger than the red lobe this asymmetry leads to a spurious redshift
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Figure 10.11: Observed Profile (FTS), where the different Stokes V profile lines indicate variations in

the instrumental broadening. A higher and steeper profile is a result of a smaller broadening factor, i.e.,
increased spectral resolution.
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of the V' profile) and the fact that a number of interesting features, such as complex
profile shapes are missed. The major disadvantages of high spectral resolution are mainly
practical, such as the increased photon noise or integration time, the date cube and loss
of spectral coverage.

10.10 Stokes V profiles

10.10.1 Typical Stokes V profile

A typical V profile is shown in Fig. 5.5. One typical aspect of the profile is its asymmetric
shape. In particular, the area of the blue wing is larger than the area of the red wing (i.e.,
Abiue > Areq). Before having a closer look at the way these profiles are formed and how
their shape is affected some definitions are recalled.

absolute amplitude asymmetry: Aa=ap, —a;
relative amplitude asymmetry: da = Aa/(ap + ar)
(10.6)
absolute area asymmetry: AA= A, — A,
relative area asymmetry: 64 = AA/(Ap + A;)

10.10.2 Area asymmetry

Consider the way area asymmetric V profiles are produced. We concentrate on this as-
pect since there are many ways of producing amplitude asymmetry so that its diagnostic
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Figure 10.12: Production of Stokes V area asymmetry. The field is assumed to be taken parallel to the
line of sight. (D (upper layer)): If B = 0, there’s no polarization and no splitting of the spectral line into
blue and red profiles. Because of the presence of a down flow velocity the profile is shifted towards the red.
(C (lower layer)): Zeeman splitting due to the non-zero B-field, but because the velocity is zero the blue-
and red-profile components of the Zeeman-split profile cross exactly at Xo. (B): If I+ is plotted the total
absorption due to the blue-shifted component is larger than the red-shifted component. For increasing
absorption the red profile overlaps more. (A): The Stokes V profile. We notice that Ay > A,.
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contents are limited. The ingredients for producing 6A are dv/d7, d|B|/dr and line
saturation. The sign of the asymmetry is given by:

0A x (10.7)

d|B|§'g <0 — 6A>0
dr dr} >0 — J0A<O0

Models that try to reproduce the observed area asymmetries have to satisfy the con-
straint of no zero-crossing shifts (Ay — A1 = 0) (see Section 10.8). This condition can be
fulfilled when there are no mass flows inside the flux tube. It is important to note that a
velocity field outside the magnetic feature can also produce an area asymmetry without
shifting the V profile. (when the line of sight crosses the boundary of the tube, see left
panel of Fig. 10.13). '

In the external, non-magnetic region a downward flow is present, due to the location
of the flux tubes in downflowing intergranular lanes. They are probably responsible for
the 6 A of Stokes V.



10.11. INDIRECT EVIDENCE FOR NON-STATIONARY MOTIONS 115

flux tube boundary

v
1
V<0 v=0 | v | e
B=0 Bgo | B=0 | yoqimes B
dvidt <0 < wo
dBidr <D =0 boundanes
1.0

SA <0 >0

Figure 10.13: Left panel: Flipping of sign of §A. In region 1 B = 0 and v; < 0. In region 2 B # 0 and
v = 0. In region 3 B = 0 and v;; > 0. These are the three regimes a ray crosses. On the boundaries of these

regimes we look at three terms: Z—:, %gl and dA. The first term is < 0 on both boundaries, but the second

term is < O on the left and > O on the right boundary. And this latter sign change is propagated into the
sign change of §A. From Biinte et al. (1993). Right panel: The center-to-limb variation of the relative
area asymmetry 6A. for the Fe I 5250.22A4 line. The curves differ in assumed values for the flow speed in
the external convection cell. (upper) vu > vv, (middle) vy = v, and (lower)vy < vy. vH represents the
horizontal velocity, while v, the vertical velocity. From Biinte et al. (1993).

10.10.3 Production near the limb

Production of an area asymmetry near the limb happens in a slightly different way than
at disk centre. Now, in addition to the vertical component of the velocity of the granules,
also their horizontal component plays a role (the horizontal flows are directed towards the
flux tube). Sufficiently close to the limb most rays pass through the boundary of a flux
tube twice (see left panel of Fig. 10.13). Thus the observed radiation travels through three
magnetic field regimes. The dv/dr factor has the same sign at the two boundaries, but
d|B| /dr changes sign. The §A of the V profile produced at the two boundaries of the flux
tube thus have different signs (see eq. 10.7). The resulting sign of the final observed dA is
caused by a balance of the conditions at the two boundaries.

10.11 Indirect evidence for non-stationary motions

10.11.1 Line width

Stokes V profiles exhibit non-thermal, non-magnetic line broadening of 1.5—2 km/s RMS,
due to some velocity dispersion. Non stationary motions in the unresolved flux tubes
provide one. These velocity values are much larger than those observed directly through
wavelength shifts.
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10.11.2 Horizontal motions

Magnetic elements are moved around horizontally at velocities ranging up to 2 km/s. The
motions can be random or quasiperiodic. It has been shown that at least the faster of
these motions produces kink mode waves with sizable amplitudes. These carry enough
energy to heat the upper solar atmosphere if the energy is efficiently dissipated.

10.12 Siphon flows

If the field strength at the footpoints of a loop is not the same, than due to the resulting
gas pressure difference a flow from the footpoint with the weaker field to the footpoint
with the stronger field is set up. Fig. 10.14 illustrates this effect. This theory holds when
the footholds are thin enough (higher order effects can show up otherwise).

Sub/Super—sonic transition

R > T

iBI < 1B/
upflow downs Low

quiet sun

Figure 10.14: Illustration of the siphon flow

If the observations are compared with the theory it follows that the flow must be
supersonic in the upper photosphere, and that it must shock back to subsonic velocities
above the line formation height. Several question however remain unanswered, such as:
like how often do siphon flows occur and how do they affect the fluxtubes?

10.13 Linear wave modes in thin fluxtubes

There are three wave modes that occur in flux tubes. These are the longitudinal, the
transverse and the torsional waves. The transverse waves can be of different order, with
the lowest order ones (the kink mode) being the only one present in thin flux tubes.
Subsequently some characteristics of these waves are ‘discussed.

10.13.1 Torsional Alfvén waves

If the flux tube is incompressible the waves are Alfvénic (see Fig. 10.15). The restoring
force in this kind of flux tube is the magnetic curvature force. The propagation velocity



10.13. LINEAR WAVE MODES IN THIN FLUXTUBES 117

@
Longitudinal Tronsverse Torsional
{Sausoge) {Kink) {Alfven)

=
o
o
N 4

O
0
ORe

Figure 10.15: Linear wave modes of a flux tube

of these waves is exactly the Alfvén speed: vy = B/+/4Amp,,, with p,, the gas density
inside the flux tube. There is no cutoff frequency, i.e., waves of all frequencies propagate
(Roberts 1991).

10.13.2 Longitudinal or sausage mode

The matter inside the tube is compressible and thus supports magneto-acoustic waves.
In this instance the restoring forces are the gas and magnetic pressure gradients. The
propagation velocity is determined by the tube speed ¢, which is (Roberts 1991):

CsVa
T = ———
Vs + U,

with ¢; = the sound speed. In this case a cutoff frequency does exist at wr ~ 1.2w; &
160 s < 3 min for typical fluxtube parameters. Only waves above this frequency propagate
along flux tubes. Those with longer periods are evanescent, i.e., they decay exponentially
with height.

(10.8)

10.13.3 Transverse or kink mode

There are an incompressible Alfvén-like waves. However, in this instance the restoring
forces are a combination of the magnetic curvature and the buoyancy. The propagation
velocity then becomes equal to the kink speed cy:

[ Pm
= vA < VA, 10.9
% Pm + Ps ( )

with ps the density of the surroundings. Here the cutoff frequency is situated at wy =~
0.4ws < 480 s = 8 min, which is the typical lifetime of granules (from Roberts 1991).
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Figure 10.16: Flux tube geometry and their corresponding Stokes V' and Q profiles. Note that all Stokes
V profiles have asymmetry (Section 10.10.2 and Fig. 10.13). The dotted lines in the left panel show the
flux tube in absence of a wave. From Ploner and Solanki (1997)

10.14 Tube geometry change and Stokes profiles

Consider now how flux tube waves influence Stokes profiles. An illustration of this is given
in Fig. 10.16, in which in the left hand panels the change in flux tube geometry over a wave
period is illustrated. A sample ray (along which Stokes profiles are formed) is also shown.
In the central and right-handed panels the Stokes V and Q profiles generated at the four
plotted phases are shown (solid lines), compared with the V" and Q profiles formed in the
absence of a wave (dotted profiles). Note the asymmetry of the V and Q profiles, and how
this asymmetry changes over the wave period. Thus, if we could observe with sufficient
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spatial resolution, such variable asymmetry would be a certain sign of the presence of a
kink wave.

10.15 Spicules & flux tubes

In Section 2.3 the spicules were shortly described and shown. From these observations we
know that spicules are elongated, narrow structures seen in emission at the solar limb in
the H, line. In devising models to fit the observations the spicules are viewed as outflows
excited by waves propagating along magnetic field lines.

The photospheric source has been thought to be waves generated and propagated
along flux tubes. Hence spicules are coupled to the theory of basic wave modes treated in
the previous section and to the configuration of magnetic field lines of flux tubes.
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Chapter 11

Sunspots
Lecturer S.K. Solanki, notes by R. van Deelen

n the western world sunspots were discovered in 1611 soon after the invention of the

telescope. One popular notion was that the dark spots could be not yet molten rocks
floating at the surface of the Sun, a giant sphere of lava. Could these rocks be drowned
planets? They were wrong.

Wilson showed in 1769 that sunspots are saucer shaped depressions in the photosphere
(Foukal 1990). Now we know that the Wilson depression must be caused by the magnetic
field, specifically the pressure it exerts. Sunspots are the cross-sections at the photospheric
level of giant fluxtubes pointing out through the surface.

.
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Figure 11.1: Return flux model of the sunspot magnetic field (Osherovich '82, Fla et al. ’82).

11.1 Sunspot magnetic fields

The magnetic field is strongest in the central, darkest part of the umbra, where it is also
vertical. This By = B(r = 0) is about 2000 — 3500 G. In the penumbra the B-field is the
weakest and nearly horizontal near the outer penumbral boundary. Here B, = B(rp) is
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700 — 1000 G. The average field-strength of the sunspot is therefore about 1000 — 1500 G. A
very rough description of the radial dependence of the sunspot magnetic field throughout

the spot is the following:
2
T Bp>
_ (T _Dp 11.1
B(r) = Bo (1 (p) (-7 ) (11.1)

and
~(r) = 5 + o(r?), (11.2)
Tp
where 7(r) is given in degrees.

Outside the sunspot as seen in white light the magnetic field forms a canopy with its
base in the photosphere. It is called a canopy because the bundles of magnetic field lines
which start in the sunspot go up vertically and form a curved structure until at certain
distance above the solar surface the field is horizontal and stretches out like a blanket over
enormous distances. Just a minor part of the flux (~ 1% ) returns to the solar interior at
rp. The field-strength decreases above the surface with height. At the axis of the spot it
follows the approximate formula (for z > 0)

1
14+22°
In the penumbra the field has a complex small-scale structure; the field along different

filaments has different inclination with the inclination differences A~y < 40°. The magnetic
structure of sunspots is far more complex than originally thought.

\° Z

By (11.3)

Figure 11.2: Small-scale magnetic structure of a sunspot with uncombed fields. Magnetograms only show
large-scale horizontal B-gradient. :

11.1.1 Is the divergence of the magnetic field non-zero in sunspots?

If we measure the the different gradients of the B-field components it seems like the V - B
law is violated, particulary in the sunspot penumbras. If 8B;/9z and 0B, /0y are taken
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from vector magnetograms and 0B,/0z from B, measured at different heights, it is seen
that the gradient in the 2-direction is an order of magnitude larger than in the horizontal
direction:

OB; + 0B,

oz Oy
A solution to the seeming violation is the idea of uncombed fields, where the B-field has
the following configuration as seen in Fig. 11.2. In this configuration obviously flux is
conserved (all field lines entering the domain also leave it).

0B,

« 2= (11.4)

11.1.2 What is the subsurface structure of a sunspot?

Good question. There are two scenarios, the spaghetti or cluster model (b) or the more
simpler monolith model (a) (see Fig. 11.3). Modelers tend to use the monolith model
due to its simplicity. Reasons for the spaghetti model are that it is expected due to an
instability (interchange instability) acting below the solar surface. It also allows energy to
enter the umbra from below, since normal convection can penetrate between the spaghetti
from below until almost the solar surface.

Honou'rn CLusTeR
Or

SPAGHRETTH

Figure 11.3: Monolith model a) versus spaghetti or cluster b) model of the subsurface structure of a
sunspot.

11.2 Penumbral flows

In the penumbra and beyond observed spectral line profiles are distorted; in the diskward
side of the penumbra spectral lines are blueshifted and asymmetric to the blue, limbwards
the lines are redshifted and asymmetric to the red. This spectroscopic effect was first
discovered by Evershed in 1909 and it is now called the Evershed effect. It is caused by a
radial outflow in the sunspot, but the mechanism behind it (Bows or waves?) is still being
examined (see Rutten and Schrijver 1994), although currently flows are favoured.

This situation in a sunspot is illustrated in Fig. 11.4. The field and gas are in total
pressure equilibrium; in the center of the sunspot the field is strong and the gas pressure
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is low, but in the penumbra the gas pressure is large and the magnetic pressure (B?/87)
is small. A flow starting in the penumbra can end in a stronger-field magnetic element.
There is even more on flows in Section 10.8. Although only 1% of the magnetic flux returns
(see Fig. 11.1), 80% of the mass returns into the solar interior.

¢ ' ’

Re1rons B tooog R iSove

Figure 11.4: Schematic siphon flow model of Evershed effect. Think about sucking on a tube in a gas tank
in order to lift the fluid through a higher potential to a lower one; if successful the fluid flows out of the
tank until it is empty. Notice that a small difference in B is enough for a large effect. A similar siphon
flow can take place on the Sun, along a magnetic loop if the gas pressure is different at the two footpoints
of the loop (i.e. at equal geometrical potential). The gas flows from higher to lower gas pressure, i.e from
lower to higher field strength.
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Figure 11.5: Magnetic structure of sunspots
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11.3 Umbral brightness

Sunspots are not all equally bright. Early results suggested that larger spots are darker.
Later this was thought to be an artifact of straylight: smaller spots are more strongly
affected by it. Most recently evidence was found that even after removing the straylight
there are still differences in brightness for different sunspots.

The umbral core brightness depends on the phase of the solar cycle. Umbras are cool
during the early phase of the cycle by 15 — 20% compared to the late phase. The question
is still not completely resolved whether this is a hidden latitude dependence of the umbral
brightness. The brightness of sunspots is different in the center than in the limb, because
the photons that leave the solar surface originate from areas of different temperatures. At
different latitudes we see different temperatures throughout the sunspots that are on the
same latitude. Sunspots appear on high latitudes early in the cycle (looking cool) and
lower to the equator gradually (“butterfly”-diagram). This could be an explanation of the
hidden latitude dependence.

11.4 Thermal structure of sunspots

Clearly there is a relationship between the sunspot’s magnetic field and temperature, at a
certain geometrical height. This is observed in the umbra, but further away from the center
at the umbral boundary the relationship is broken, the field stays about the same, until
in the penumbra an other relationship is reached. The temperature of different umbras
varies significantly and therefore their brightness does too. Moreover, the temperature
also varies within an umbra. On a large scale the temperature in penumbras is about
constant, although there is considerable fine-scale structure.
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Figure 11.6: Magnetic field-strength versus temperature. Data is taken from infrared spectra of a large
symmetric sunspot.
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Figure 11.7: Shallow versus deep penumbras. The question is which one is correct? Observers say penum-
bras are deep.

11.5 Why are sunspots so dark?

Because magnetic pressure in the umbra (near the surface) is large (8 < 1) and because
the field lines are tied to the plasma, a so-called Wilson depression occurs. The convection
sees the sunspot as an obstacle and diverts the energy flux around it. This causes the
umbra to darken. Much of the blocked flux is stored in the convection zone so that it does
not reappear as a bright ring around the sunspot.

Most photons escape into space, because the photon mean free path (both vertical as
horizontal) is much smaller than the diameter of the sunspot which is about 30 times the
altitude of the Wilson depression. Hence these photons do not contribute to the heating.

All these effects make sunspots look much cooler than the non-magnetic atmosphere
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at equal geometrical height. It is remarkable that if all of the above darkening aspects
of sunspots are taken into account, sunspots actually are brighter than expected. This is
caused by the heating by radiation from the sides of the spot.

In order to understand the darkening this excess brightening shown by real sunspots,
it is important which model is proposed for the energy transport below the umbra; the
spaghetti or the monolith model (see Fig. 11.3).

In the spaghetti or cluster model “normal” convection between the individual fluxtubes
takes place. In the other model, the monolith model magnetoconvection is proposed, with
the determining parameter £ = n/k, where 1 is the magnetic diffusivity and « is the
thermal diffusivity. This £ determines whether there is oscillatory (£ < 1) or overturning
(€ > 1) convection.
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Figure 11.8: Picture of a sunspot (somewhat out of date). The sunspot is heated by the radiation of the
penumbra.

We may conclude the following: just below the sunspot energy is mainly transported
by convection. The strong magnetic field inhibits the convection, because the gas cannot
flow across the field lines.
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Chapter 12

MHD and spectral theory

Lecturer J.P. Goedbloed, notes by J. Wiersma

large part of these lectures is about the surface of the Sun (or stars), by which we mean

the photosphere at optical depth, 7 = 1. In that region the magnetic field is very
well approximated by considering magnetic flux tubes that exist virtually as individual
entities.

There are, however, many different regimes of the Sun’s magnetic field: for example,
the interior of the Sun (at 7 > 1). There, the magnetic field is generated, which means
that the number of flux tubes is not conserved.

In this chapter the magnetic field outside the Sun (7 < 1) is considered. Here, the
dynamics are no longer dominated by the magnetic field but the magnetic field is frozen
in a hydro-magnetic flow. The flux tubes that were tied firmly with both ends in the
Sun have become undone at one end (or sometimes both) and interact with each other
and with other magnetic fields generated by sources outside the Sun (e.g., the Earth’s
magnetosphere).

First, a theory will be considered that describes the dynamics in this regime and the
basic properties of this theory will be established. Then the results of this theory regarding
the heliosphere will be treated.

12.1 The solar wind as an energy leak

Very deep inside the Sun, energy is produced by fusion reactions (at least that is what we
think happens, it might be little gnomes riding bicycles instead. ..). This energy has to
be transported out of the Sun and this is done in several ways.

For example, neutrinos transport the energy almost directly from the core of the Sun
to the outside. Another part is transported by radiation via a long process of absorption
and emission in which the emitted gamma radiation is converted into the solar spectrum
that the Earth receives every day.

The interesting process here is the solar dynamo that transforms energy into magnetic
field which comes up to the surface of the Sun and then flies out in the form of a solar
wind transporting magnetic energy away from the Sun. This magnetic field makes up the
heliosphere.

But, whereas the Earth’s magnetosphere is simply made up of the magnetic field that
comes directly from the Earth’s dynamo, the magnetic field in the heliosphere is embedded
in and transported by a plasma.

It can be concluded that the heliosphere cannot be simply described by flux tubes, nor
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can it be described by electro-magnetism alone. Instead, a theory is needed that describes
the behavior of plasmas that carry a magnetic field. This theory is called Magneto-Hydro-
Dynamics (MHD for short). This section will start with the basic properties of MHD,
focusing on those parts which are relevant to the heliosphere.

12.2 A “construction” of magnetohydrodynamics

Plasmas are ionised gases and we study them via their macroscopic properties (such as
density, pressure, flow velocity, etc.). A theory that deals with such macroscopic quantities
is called a fluid theory and the fluid theory of plasmas is MHD. To put it simply MHD
consists of the sum of gas dynamics (hydrodynamics), Maxwell theory and the interaction
between the two.

To obtain the equations the following method can be used:

From kinetic theory...

Since the plasma is a gas it can be described by kinetic theory, which gives us a distribution
function f,(7,7,t) for each particle species o telling us what fraction of those particles
have a position 7 and velocity ¥ at time ¢. The fundamental equation for the dynamics is
Boltzmann’s equation:

coll

%+6-%’;3‘+6-aaf;=agt“ (12.1)
where @ is the sum of all the accelerations the particles are submitted to as a result of
the different macroscopic forces working on them and 0f, /8t|>°" is the change in the
distribution function due to collisions. This equation expresses the fact that the number
of particles with a certain position and velocity can only change in time (the first term)
due to the movements of the particles (the second term), the forces working on them (the
third term) and the collisions they undergo (the right-hand-side). Of course, collisions are
also accompanied by forces, but they are treated differently in kinetic theory because they

depend on the microscopic properties of the gas.

...via two fluid equations...

However, the variables 7 and ¥ are not useful for studying the behaviour of the plasmas,
because they are microscopic properties of the particles instead of macroscopic quantities
that can be measured. To get around this problem Boltzmann’s equation has to be rewrit-
ten in terms of macroscopic quantities such as density, flow velocity, pressure, etc. The
trick is to take different moments of Boltzmann’s equation, i.e., multiplying the equation
with different powers of ¥ and integrating over all possible velocities. The macroscopic
quantities are then defined as the integrals you are left with (e.g., the particle density of
particles of species a is defined as no = [ fad®v, i.e., the number of particles at a certain
position irrespective of their velocities). This way fluid equations are obtained for each
species of particles. Assuming that there are only electrons and one kind of ions this gives
us two species of particles; hence the name “two fluid equations”.

...to the one fluid equations of MHD

In MHD, however, the plasma is considered as one fluid. This means the equations
have to be rewritten again so that they only contain “one fluid variables” (such as total
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density p = 3, Manq, where Y, sums over all particle species and m, denotes the mass of
particles of species ). The two-fluid variables that are left are removed by making several
approximations. The whole exercise results in the non-relativistic, resistive MHD equations
(see Boyd and Sanderson (1969) chapter 3: equations (3-77)—(3-82); their entropy equation
really includes the entropy):

Conservation of mass:

dp

90 _ _v . (pB), 12.2
a5 (p?) (12.2)
Conservation of momentum:
1 Y o
p(§-+f1‘-V>z7=—Vp+—(VxB)xB+p§, (12.3)
ot Ho
(Near) conservation of entropy:
-1 -
(2+17-V)p=—7pv-17+7 —n(V x B)?, (12.4)
ot T
(Near) conservation of magnetic flux:

B L1 .
?—-=Vx({)’xB)—-—Vx(anB), (12.5)
ot Ko

The equation of magnetic fields:
vV-B=0. (12.6)

These are eight partial differential equations (two scalar equations and two vector equa-
tions) for the eight macroscopic variables: the density p, the three components of the flow
velocity ¥, the pressure p and the three components of the magnetic field B with an extra
restriction (V - B = 0).

Their meanings are:

— Conservation of mass. This equation says that the density can only change at a
point if this is due to a flow of mass to or from a point. Hence there is conservation of
mass.

— Conservation of momentum. The operator between brackets on the left-hand-side is
the Lagrangian derivative. This means that the left-hand-side is the change in velocity
as experienced when moving along with the flow multiplied with the density. In other
words it is the change in momentum (density) as experienced by the particles in the
flow.

This should be equal to the total force the particles feel. Therefore the right-hand-side
contains those forces: the first term is the force due to pressure gradients, the second
term is the electro-magnetic force (uo is the magnetic permeability) and the last term
is gravity (with g the gravitational acceleration).

As you can see the electric field E is absent. This reflects that, in non-relativistic plas-
mas, the physics of the electric field can be left out. (See Sect. 4.3.1 for an explanation
of what this means).

— (Near) conservation of entropy. In this equation 7 is the ratio of specific heat at
constant pressure to the specific heat at constant volume. It is just a constant here
(v = 5/3). The symbol 7 stands for the resistivity of the plasma. It is the factor of
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proportionality in Ohm’s law (E + 7 x B = nj, in which jis the current density which
can be eliminated everywhere by using Ampeére’s law j = V x B/uy since the electric
field can be left out; see Eq. (4.5) in Sect. 4.3.1).

As you may have noticed there is no entropy in this equation. It can actually be
rewritten in terms of the entropy because entropy is a function of density and pressure
for ideal gases (s = Cy In(pp~7) + const., s is identifled with the entropy per unit mass
and Cy is the specific heat of the plasma at constant volume; the plasma is assumed to
behave as an ideal gas). If you do this the equation will turn out to be a conservation
law for the entropy if it wasn’t for the last term in this equation: the one containing
the resistivity. Hence the name. (See Boyd and Sanderson page 105)

This means that entropy is not conserved, if the resistivity of the plasma is not zero. In
other words the processes in the plasma become irreversible: something gets lost. This
expresses the fact that if the plasma is resistive, the energy in the currents running
through the plasma gets transformed into heat, which is an irreversible process.

— (Near) conservation of magnetic flux. This equation is Faraday’s law 8B/0t =
—V x E with E eliminated using Ohm’s law. If the resistivity is zero it can be rewritten
in a conservation equation for the flux going through a surface element that moves with
the flow (see Sect. 4.5.1). To make this more visual, take Fig. 12.1. It depicts a flux
tube that is being pinched by the flow. The directions of the magnetic field and the
flow velocity have been indicated with B and v respectively. The direction of their
cross product has also been indicated (the dashed arrows). As you can see, in this case,
the dashed arrows have a vorticity (indicated by curl(v x B)) that is directed along
the direction of the magnetic field. According to the flux conservation equation this
vorticity is equal to the change in the magnetic field. So the magnetic field gets stronger
which should happen if there is flux conservation since the area of the cross-section of
the flux tube gets smaller.

Figure 12.1: A flux tube that is being pinched by the flow. Because of flux conservation the magnetic field
has to become stronger since the surface area of the cross-section of the tube becomes smaller.

The term containing the resistivity expresses the fact that if currents get dissipated (see
previous paragraph) the magnetic field also gets dissipated (cf. Ampere’s law V x B =
Ko )-
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— The equation of magnetic fields states that there are no magnetic monopoles. In
other words field lines can not end anywhere. This fact is the reason why magnetic
field configurations can never be spherically symmetric.

In most plasmas of interest the resistivity is very low and therefore one usually sets n = 0.
The theory that results from this last assumption is called Ideal MHD.

Notes
The following remarks have to be made:

— The velocity ¥ in the MHD equations is not the same velocity as the velocity in kinetic
theory. In kinetic theory the velocity is the velocity of individual particles and the
theory only gives an estimate of how many of the particles have that velocity. In the
MHD equations the velocity is the center of mass velocity of a plasma element and the
theory gives the evolution of such elements and their velocities. (In Boyd and Sanderson
the distinction is made by denoting the microscopic velocity by v and the macroscopic
velocity by U.)

—~ The assumption of ideal MHD, namely that the resistivity is zero, is not always valid.
If you look at the terms in the MHD equations containing the resistivity you will see
that those terms contain derivative operators as well (curls of the magnetic field). This
means that if the gradients get very large (large currents) those terms may not be small
enough to be neglected.

— In the heliosphere the density is so low that electrons and ions do not interact with
each other very much and they no longer have the same temperature. This means
that their behavior can differ considerably. In the process of going from two fluid to
one fluid equations these differences have been averaged out. Therefore MHD gives no
information about such differences. To consider these differences two fluid theory is
needed, but two fluid theory is not very different from one fluid theory (except for the
two temperatures).

12.3 Waves in MHD

To get a better feel for the dynamics, consider first the ‘simple’ case of a static homogeneous
plasma. Perturbations are used to study the dynamics (the plasma is given a small kick).

Let’s first look at the unperturbed state of the plasma and denote all quantities in this
state with subscripts 0. Because the plasma is static the velocities will be zero (7p = 0)
and all the other equilibrium quantities (pg, po and Eo) will be constant in time and, since
it is homogeneous, they will also be constant in space.

For such a situation the MHD equations (12.2)-(12.6) are only satisfied if gravity is
not present (§ = 0). However, in the case without gravity, the MHD equations are trivially
satisfied since they only contain derivatives.
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12.3.1 The linearised MHD equations

Now consider the perturbations on this background field. The different quantities of the
plasma will differ from their equilibrium values:

p=po+p1, ¥ = o + 71 = 11,
- = - 12.7
p=po+D1, B = By + By, (12.7)

here the perturbations have been indicated with subscripts 1. Inserting these expressions
in the MHD equations (12.2)—-(12.6) and assuming that these perturbations are very small,
all terms that are of second order or higher in the perturbations can be thrown away. This
results in the linearised MHD equations:

%ptl = =V (poth), (12.8)
po?;% = —Vpﬁi(Vxﬁl)xéo, (12.9)
%’ti = —poV - B, (12.10)
le = V x (71 x By), (12.11)
V-B = 0. (12.12)

To solve these equations introduce 5(7"‘, t): the displacement of a plasma element at
position  from its equilibrium position due to the perturbations. The velocity perturba-
tion ) is the change in position with time of the plasma elements:

3
n(7t) = —=. 12.13
Using this expression to eliminate ¥ from the linearised MHD equations the mass,
entropy and flux equations can be turned into algebraic equations relating p1, p1 and B,
respectively, to £ by integrating them over time (remember that all quantities with sub-
scripts 0 are just constants):

p1 = —poV - &, p1 = —7poV &,
. LT 12.14
B1=VX(§XB()), ( )

(note that V - B, = 0 is always satisfied in this case). Inserting these expressions for p
and B; into the momentum equation (12.9) gives us a second order differential equation
for &:
o2€ I .
P = 0VY €= —-Bo (V% (V x (€x By))), (12.15)
which has the form of a wave equation: second order derivatives in time related to second
order spatial derivatives.

12.3.2 Alfvén dynamics

In 1942 H. Alfvén showed that in conducting liquids, such as incompressible plasmas,
waves can occur (See Alfvén 1942). This discovery got him the Nobel Price. He called
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these waves electromagnetic-hydrodynamic waves, known today as Alfvén waves. They
propagate along the magnetic field with a velocity equal to By/\/lopo, the Alfvén velocity.

These waves are one of the solutions of Eq. (12.15). To represent them mathematically
use plane waves:

£(7,t) o e'FTwt) (12.16)

in which k is the wave vector and w is the wave frequency. Solutions of this type are typical
for wave equations and they represent perturbations that have a size that is homogeneous
in the plane perpendicular to k and varies as a sine function of the distance in the direction
of k. This whole configuration then shifts in the direction of k with time.

Note that such a solution is possible because the equilibrium situation is homogeneous
and constant in time.

After substituting this solution for £ in the wave equation (12.15), the equation stays
the same but with time derivatives replaced by multiplication with —éw and spatial deriva-
tives replaced by multiplication with ik which yields an algebraic equation:

—

—_ — - ]_ — - — - —

—po€ = —po(k - ) + —-Bo x (F x (E x (€x o)), (12.17)
which is called the dispersion equation. Alfvén’s solution is the case for which the wave
vector is perpendicular to the displacement ¢ (this condition is always satisfied in incom-
pressible liquids which is the reason why Alfvén spoke of conducting liquids instead of
gases). In this case the waves are called transverse waves. The dispersion equation then

simplifies to:
pow? = (Bo - k)?/uo, (12.18)

which is the dispersion equation for waves with a phase speed vy, = w/ k| =
By cos 0/,/poro, in which 6 is the angle between the wave vector and the magnetic field.
In other words if the wave propagates parallel to the magnetic field its speed is equal to

the Alfvén speed b = By/\/popio-

, L]
B d
/B

7

]
/ /
Figure 12.2: Margingl stability of Alfvén dynamics: two planes have been drawn that are perpendicular
to the wave vector k. The magnetic field and the displacement both lie in those planes. Due to the

difference in displacement the planes are shifted with regard to each other, but since the magnetic field is
homogeneous nothing changes.

The Alfvén dispersion equation (12.18) also shows the velocity of Alfvén waves is zero
when the wave vector is perpendicular to the magnetic field. In other words, (incompress-
ible) perturbations which are homogeneous along the field lines won’t propagate and the
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plasma stays static (85 /0t = 0). This is to be expected after seeing what actually happens.
The situation is shown in Fig. 12.2. The planes that are drawn in that picture are per-
pendicular to the wave vector k. In other words, the size of the displacement is the same
everywhere in those planes (cf. the discussion of plane waves after Eq. (12.16)) and varies
perpendicular to them. The magnetic field lines and the displacement vector _l?oth lie in
those planes since we have chosen the wave vector perpendicular to both (E L & for trans-
verse waves, k L B for marginal stability). Because the displacement lies in the planes
and is of the same size all over the planes it can also be said that the planes as a whole
are displaced with respect to each other. But since the magnetic field is homogeneous
and also lies in those planes the perturbed situation is just the same as the unperturbed
situation and is thus in equilibrium. (Note that in Eq. (12.14) all perturbations are zero
ifk L Bandk LE)

Another important feature is that Alfvén waves can be used to diagnose magnetic
fields: they sample the magnetic field lines. In addition Alfvén wave dynamics are often
dominant in plasmas and determine the behavior for a large part.

12.3.3 Other MHD waves

Alfvén waves are not the only solutions of the dispersion equation (12.17). There are
two other solutions: the fast and the slow magneto-acoustic waves. Their dispersion
equations are more complicated than Eq. (12.18). To visualise them look at the Friedrichs
diagrams which are shown in Fig. 12.3. They schematically show the phase and group
speed dependencies on the angle 8 between the direction of propagation and the magnetic
field (the group speed is defined as vgroup ' w/ 0|E| and is the speed with which a
superposition of plane waves propagates through the plasma). In the left diagram the
phase velocities are shown. To simplify the explanation a direction is indicated by a
vector labeled k which makes an angle labeled 8 with the direction of the magnetic field.
The distance between the origin and a point where this vector crosses one of the lines
indicates the size of the speed of propagation in that direction for that kind of waves. So
for the direction indicated, the fast waves roughly go one and a half times as fast as the
Alfvén waves and somewhat less than three times as fast as the slow waves.

Vo242 b2+ c?
Fast \
Fast
k
Alfven
Slow
Slow ® \b |c B /{ b lc B

Figure 12.3: Phase and group diagrams of the three MHD waves. The x-axis is the direction of the magnetic
field. The vector labeled k is a direction of propagation which makes an angle # with the magnetic field.
The values on the axes are b = Bo//popo, the Alfvén speed and ¢ = ~po/po, the sound speed in the
absence of a magnetic field. Here, b has been chosen smaller than ¢ but this need not always be the case.

The phase diagram is only valid for homogeneous plasmas, however, and is therefore
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not very useful to apply to the solar wind. The group diagram, on the other hand, indicates
the speed of ‘wave packets’ and as a special case thereof point-like disturbances (like a
rock that is thrown in the water). So if the plasma is no longer homogeneous the group
diagram can still be applied for very localised disturbances since they do not feel the rest
of the plasma (whereas the plane waves of the phase diagram are always infinitely broad).

What the group diagram tells us is that an ‘Alfvén wave packet’ (an undefined entity
as of yet) will only propagate along the field lines since their group diagram only consists
of two dots on the field line axis. As will be shown later, in inhomogeneous plasmas waves
can only have certain frequencies w and in particular the Alfvén waves are restricted to a
certain frequency range so that they can be uniquely identified and can indeed be used to
sample the magnetic field as stated at the end of the previous section.

Note: the direction of propagation for plane waves is always equal to the direction of the
wave vector k which is why k could be used to indicate that direction in the phase diagram.
The direction of propagation of a wave packet is, however, not equal to the direction of its
collective k. In the group diagram the group speed is shown with respect to the direction of
propagation. If you would plot the group speed against the direction of k you would get
very different results.

12.4 Spectral theory

So far, a very unphysical case has been considered: infinite, homogeneous, constant plas-
mas do not exist in real life. A more general result has to be obtained.

Actually, already one general result has been obtained: the Friedrichs group diagram
which is also valid locally in an inhomogeneous plasma. However, what happens with the
plasma as a whole also needs to be known: is a given configuration stable for example.
The theory that attempts to give an answer to that question is spectral theory.

In the previous section an expression for the frequency w was obtained for the dif-
ferent MHD waves. There, the frequency could go through a whole continuum of values
because the wave vector could be chosen freely in a homogeneous configuration. In an
inhomogeneous configuration, maybe even confined, plane waves are no longer solutions of
the problem. The solutions can still be characterised by a frequency w, however, but this
frequency can no longer have all possible values. It might on the other hand be imaginary,
corresponding to an exponentially growing or decaying solution: an unstable situation.
Spectral theory tries to find all possible values of this frequency for given situations.

12.4.1 Stability and instability

One of the aims of spectral theory is to find out which plasma configurations are stable and
which are not. Such stability analysis is important since it tells us a lot about the dynamics
of a configuration: unstable situations will usually lead to short time-scale dynamics if they
are perturbed so that unstable configurations might be used to explain observations of, for
example, active regions on the Sun. Stable configurations lead to stationary states with
long time-scales and are important in the solar wind which is basically stationary.
Intuitively, the stability is determined in the way sketched in Fig. 12.4: if a system is
in a state 0 then this state is stable if a perturbation from that state to a state 1 leads to
the system having a higher energy. In that case the urge of the system to lower energy
will pull it back to state 0. If, however, the energy of the system is lower in state 1, the
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Figure 12.4: Intuitive approach of stability using energy principle or forces.

perturbation will grow because the urge for lower energy will pull the system away from
state 0 and thus state 0 is unstable.

Another way of looking at it is using forces and displacements as sketched at the
bottom of Fig. 12.4. If a perturbation causes a displacement § and this induces a force F
that is directed in the opposite direction of £, this force will push the system back to
the original state and that state is stable (at least, for perturbations in this particular
direction of £). If the induced force points in the same direction as £ the original state is
unstable because the system will evolve away from it.

As was indicated in the previous paragraph the direction of the displacement might
be important for determining the stability. If a configuration is found to be stable for
perturbations in one particular direction this does not mean that the system is stable
under all conditions. If, on the other hand, one direction is found for which it is unstable
it is certainly not stable.

To illustrate this take the example of a system that is dominated by Alfvén wave
dynamics. As seen in the previous section such a system will begin to oscillate if it is
perturbed by a plane wave that has a component of the wave vector along the magnetic
field. So if the Alfvén waves are really dominating, the system is stable for such perturba-
tions. But if there is a wave with its wave vector perpendicular to the magnetic field the
oscillating frequency is zero, i.e., nothing happens if it is up to the Alfvén waves. This is
called marginal stability: the perturbations do not grow but they do not go away either.
This means that if there are any other factors in the dynamics they will determine if the
state is stable for such perturbations. This makes the stability analysis a very complex
problem.

12.4.2 Force operator formalism

In Sect. 12.3.1 a second order differential equation was obtained for the displacements
in a homogeneous plasma due to perturbations via a simple method of linearising the
MHD equations (see Eq. (12.15)). There the equilibrium situation was trivial because the
background plasma was homogeneous. The same can be done for inhomogeneous plasmas:
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start with an equilibrium situation and then study perturbations on this equilibrium by
linearising the equations in these perturbations.

The equilibrium situation becomes non-trivial now, however, since the MHD equations
are not satisfied for all inhomogeneous plasmas.

Take for example a static inhomogeneous ideal plasma. This means that again all
derivatives in time are zero and that the equilibrium velocity is zero (vp = 0). Using this
in the ideal MHD equations (Eqgs. (12.2)-(12.6) with n = 0) all are trivially satisfied except
the momentum equation (12.3) and V - By = 0. This means there has to be force balance
in equilibrium:

Vpo = ~=(V x Bo) x Bo+ pod, (12.19)

which restricts the equilibrium situation.

Introduce perturbations on this equilibrium again (as in Eq. (12.7) in the previous
section), linearise the equations in these perturbations and again introduce the displace-
ment g(ﬁ t) and use it to get algebraic equations for p;, p; and B,. The momentum
equation is left, which again becomes a second order differential equation of the form:

-
pogzs = FId], (12.20)
F is called the force operator and symbolises the right-hand-side of the momentum equa-
tion. It is an operator working on the displacement E containing only spatial derivatives.

This is completely analogous to the derivation of the wave equation (12.15) for homo-
geneous plasmas. Only, the operator F is more complicated than the right-hand-side of
Eq. (12.15). This does mean that plane waves are no longer solutions of Eq. (12.20). But
because the only time derivative is still the second order derivative on the left-hand-side,
solutions can be used that have a time behavior of the simple form

-

£(7,t) oc e™ ™1,
This transforms Eq. (12.20) into:
—pow®€ = FIA. (12.21)

As has been said earlier, solutions of this form will oscillate if w is a real number
and grow exponentially if w is an imaginary number. This means that if, for a given
configuration, Eq. (12.21) only has solutions for real w that configuration is stable. If,
however, there is even just one solution that has an imaginary w the configuration is
unstable.

You can also see this if you look at what happens to Eq. (12.21) for real and imagi-
nary w. Because of the construction of the solutions the force is always directed parallel to
the displacement, so, using the force approach of stability, if w is real then w? is positive
and the force F points in the opposite direction from f This means that that particular
solution is stable. If w is purely imaginary the force points in the same direction as the
displacement and the plasma is unstable. Q.E.D.

Eq. (12.21) is an eigenvalue equation for the operator F/pp with eigenvalues w?. It can be
solved with methods similar to those used in quantum mechanics to solve _the Schrodinger
equation. A Hilbert space can be constructed from the displacements £ (provided that
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the kinetic energy of the plasma stays finite) and all mathematical tools provided by the
Hilbert space formalism can be used.

This method of solving the linearised MHD equations for inhomogeneous plasmas is
called the force operator formalism.

In particular it can be proven that the force operator F is self-adjoint, which means
that its eigenvalues are real numbers. This means that the eigenvalues of F/py are real
as well since pg is just a real (positive) number. And the eigenvalues of F/po are exactly
those values of w? for which the linearised MHD equations have a solution.

2
Im ® Im (A}
growing
D
unstable stable b
—o—O—1 0000 — — o0 08—
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Figure 12.5: Example of a set of w’s for which the eigenvalue equation (12.21) has a solution. The
eigenvalue equation yields values for w? (left picture), the corresponding values for w are indicated on the
right. Eigenvalues corresponding to stable solutions are indicated by filled dots, those corresponding to
unstable solutions are indicated by open circles.

In Fig. 12.5 an example is given of a set of eigenvalues. They are plotted in the
complex plane. Since all values of w? are real all the dots in the left picture lie on the
real axis. When w? is positive the two corresponding roots w lie on the real axis as
well and exp(—iwt) is an oscillating function of time representing a stable solution. But
if w? is negative the corresponding roots are purely imaginary and exp(—iwt) becomes an
exponential function of ¢ representing an unstable solution.

12.4.3 The spectrum of ideal MHD

The set of eigenvalues for which the MHD equations have solutions is called the spectrum.
If this spectrum can be found for a given configuration, it can be established whether
that configuration is stable. But the problem can also be turned around: try to use the
spectrum as an observational tool. The oscillations in plasmas may be observed to make an
experimental spectrum of the occuring frequencies. If these spectra can be matched with
theoretically derived spectra a lot can be learned about the structure of these plasmas.

This has worked very well in helioseismology. There the spectral problem is solved
for the hydrodynamic equations with gravity but without the magnetic field (which does
not play a big role inside the Sun). The experimental spectrum is obtained by looking
at oscillations in Doppler observations of light integrated over the disk of the Sun. In
geophysical seismology even bigger successes have been achieved.

The eigenvalue problem (12.21) of MHD can, however, not be as easily solved. The
problem in this case is much more complex due to the anisotropy introduced by the
magnetic field. As has been stated earlier spherical symmetry is not possible which really
reduces the possibilities of solving the problem.

Consider the spectrum of what seems to be still a simple case. But it will turn out that
even this spectrum is non-trivial. Take a plasma that is homogeneous in two directions
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(call them y and z) and inhomogeneous in a third (the z direction) and take the magnetic
field in the yz-plane and gravity along z. Then the solution can be represented as a plane
wave in the homogeneous directions:

£(z,y, 2,t) « f(z)eikvythaz—wt) (12.22)

in which %k, and k, are the wave numbers in the y and z direction respectively. Note
that this is the same as the plane wave solution in the homogeneous case, except that the
behavior as a function of z is unspecified as of yet.

All the equilibrium quantities will now be functions of £ and to correspond to an
equilibrium situation they have to satisfy the force balance equation (12.19). If the equa-
tions are linearised and expression (12.22) is substituted for E in the result, a differential
equation for f(z) is obtained which has the following form (see Goedbloed 1971):

d /N(z;w)d f)
— (A=) : = 12.23
& (Faas ) - swiE =o, (12.23)
where N(z;w), D(z;w) and g(z;w) are functions of z and w (w is a parameter). A
differential equation is obtained since only derivatives to y, z and £ could be eliminated
using solutions of the form (12.22) and the derivatives to z remain. The factor N/D is
proportional to a function of w:

N(ziw) (W —wi(z)w® - wi(z))
D(z;w)  (w? — wi(@))w? — wip(z))’

where we denote the numerator of this expression with NV and the denominator with D;
all the w_ (z) with subscripts are functions of z. For example wa(z) is the local Alfvén

frequency at position z:
Boz(z)kz + Boy(x)ky

() = v po(x) o ’

which is a function of x since all equilibrium quantities depend on z.
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Figure 12.6: The spectrum of a slab of plasma that is inhomogeneous in one direction. The problem has
solutions for given ky and k. only for those values of w that have been indicated by crosses and the boxed
regions. The directions of increasing degree of spatial oscillation are indicated by arrows. When this degree
increases with increasing w the behavior is called Sturmian. The opposite case is called anti-Sturmian.

Now choose values for k, and k, and try to solve Eq. (12.23) for those values. The
spectrum is shown in Fig. 12.6. It shows that this can not be done for all values of w. There
are only solutions for certain discrete values of w and for the ranges of values indicated
with boxes. The black boxed continua occur because the differential equation (12.23) has
solutions for those w for which N(z) is zero for some value of z. If By(z) and pp(z) span
some continuous region of values there will also be a continuous region of values for w for
which N(x) is zero for some value of z. The solutions for these w can be very localised
(delta functions). If the plasma is incited from the outside with a frequency that lies in
one of those ranges you get resonant behavior: the amplitude of the disturbances can get
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infinite in a very localised region around the position z where N = 0; the solution permits
this. This means that you get high gradients and currents and in practice this means
that the resistive terms in the MHD equations start to count and dissipation will occur
heating the plasma,; this is called resonant absorption because energy gets absorbed from
the exciting process to heat the plasma.

The unfilled boxes indicate the regions where D = 0 for some value of z. They have
caused quite some controversy (e.g., see Goedbloed 1998). Because, although they span
a continuous region, they are not mathematical continua. The difference is, to put it
simply, that mathematical continua correspond to solutions that can be delta functions.
The unfilled boxes correspond to global solutions only, however. In homogeneous plasmas
they are the solutions that have k; = 0. In inhomogeneous plasmas they are the solutions
that don’t oscillate spatially.

How much the solutions oscillate spatially is given by how many times the solution
changes sign along the z direction. In homogeneous plasmas this is given by the wave
number in that direction. But here there are no longer any wave numbers in the z direction.
Here, it is measured by how many times the solution f(z) of the Eq. (12.23) goes through
zero. This is usually different for different values of w. In the spectrum in Fig. 12.6 the
directions in which the degree of oscillation increases have been indicated with arrows.

For most waves w increases if this degree increases. Take for example the dispersion
equation for Alfvén waves in a homogeneous plasma (12.18). If w increases k has to
increase as well. This is logical. If the perturbations oscillate faster spatially the gradients
will be bigger and this will cause the forces to be bigger so that the plasma will move faster
in reaction to the perturbations and hence the frequency of oscillation will be bigger. Such
behavior is called Sturmian behavior. It is valid for almost all waves: sound waves, light
waves, etc. In the MHD spectrum, however, the opposite behavior is also seen (anti-
Sturmian). This shows how different MHD is from normal gas dynamics.

Note: in the limit B — 0 the Alfvén and slow continua collapse into the origin so that only
the fast spectrum survives. The fast waves actually transform into normal sound waves
so that normal gas dynamics is recovered which has no continua.

12.5 Flow

So far, static plasmas have been considered and they have already demanded a lot of work
to gain even a little insight. The plasmas that have to be modeled (the heliosphere) are
not static at all. One of the most important aspects of the heliosphere is that it has a
stationary flow. As stated at the start of this chapter, energy is transported away in the
form of magnetic fields and that can not be done in a static plasma. There, energy can
only be transported by waves but that is not what is seen.

12.5.1 Spectral theory with flow

So, the theory needs to be expanded to stationary plasmas with flow. To be able to do a
stability analysis an equilibrium situation has to be constructed again. For a stationary
state all quantities have to be constant at a point (8/0t = 0) but apart from that the
equilibrium quantities are not restricted. This means quite a lot of terms are left in the
ideal MHD equations:
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\vE (p()’(_)'o) = 0, (12.24)
1 =g ~ —

poto - Vo + Vpo = ;—(V x Bp) x By + pog, (12.25)
0

v - Vpo + vpoV - 7 =0, (12.26)

V x (#x B) =0, (12.27)

V-By=0. (12.28)

So now even the equilibrium is described by a full set of non-linear equations. Again, the
equations can be linearised but because 7 # 0 the resulting equations do not collapse to
the simple form pyd2£/8t2 = F[£] because an extra time derivative is left in the momentum
equation (12.25): the second term on the left-hand-side becomes @ - V(9€/8t), whereas it
disappeared in the case without flow. The equation for f becomes:

-
po% + 2ppty - V (%) = F[é], (12.29)

here the operator F is different from the one in the static case:
F = F**5 +V - [po(d - V)€ — poto(do - VE)] (12.30)
Solutions of the form exp(—iwt) can still be used to get an eigenvalue equation:
pow?€ + ipowiy - VE + F[€] = 0, (12.31)

but as you can see the problem has now become a guadratic eigenvalue problem which
has to be solved for w instead of a linear eigenvalue equation for w?. This also means that
the values of w? are no longer restricted to real values and w will in general have both a
real and an imaginary component. Thus the solutions still oscillate in time but they could
have an exponentially growing or decaying amplitude:

£(7 ) x eSIt cos(R[w]t),
these are called over-stable or under-stable solutions for &[w] > 0 or I{w] < 0 respectively.

Take the configuration with inhomogeneities in one direction of the previous section again
and add flow in the yz plane to it. What essentially happens is that the frequencies in the
spectrum get a Doppler shift. This is derived to get a good feel of what happens.

Figure 12.7: The geometry of a gravitating slab with inhomogeneities in one direction: the z-direction.
The magnetic field and the velocity lie in the yz plane. Gravitation works in the z-direction. The plasma
extends to infinity in the y and the 2 direction but is bounded between z, and z2 in the z-direction.

The situation is sketched in Fig. 12.7. There are only inhomogeneities in the z-
direction so all gradients of equilibrium quantities point along z. Since the plasma is
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infinite and homogeneous in the y and z direction plane wave solutions can be used in

those directions: . .
£(x,y, 2, 1) o f(z)eiythez—et), (12.32)

Now look at the eigenvalue problem (12.31). Using solutions of the above form the second
term can be transformed: 170-V€ = i(voyky+v02kz)€ because vg; = 0. Define voyky+vozk: =
@ - k, although k; does not exist (this does not matter since voz = 0). Now look at
expression (12.30) for F. The first term in the divergence term contains 7o - V@ and this
is zero because 7 lies in the yz-plane and V7, along the z-direction so that they are
perpendicular. The remaining equation is:

pow?€ — 2pow (5o - F)E + FH4[E] — V- [ potio (5 vé)] =o.
The last term contains ¥ - V& = (7 - £)€. Expand the divergence using the product rule:

V- [Poffo(ffo : E)ﬂ =
(o - k) (@ - Vpo)E + po(@o - K)To - VE+ po(To - E)(V - )€ + po(do - V(T - K))E.

The first term is zero because Vg is in the z-direction so that its inner product with 7y is
zero. The second term can be rewritten as 3pp (%o 5)25 The third is zero because V-7p = 0
since # is only a function of z, but has no component in the z-direction. The fourth term
is zero because p - k is only a function of z so that its gradient points in the z-direction
and the inner product with 7, is zero. The equation is now reduced to:

pow2€ — 2pow(To - K)E + po(do - K)2E + F24° [€] =0,

which can be rewritten: .
—poa)2(.’l!)§ — Fstatxc [E], (12_33)

in which &(z) = w — vo(z) - k is a function of z. This equation looks almost the same
as the eigenvalue equation (12.21) of static MHD. If the plasma is homogeneous (with
flow) & will be a constant and the solutions will be the same so that the w for which the
problem with flow has solutions will be the w of the static case with a ‘Doppler shift’ 7 - k.
However, if the plasma is not homogeneous Eq. (12.33) is not an eigenvalue equation any
more because @ depends on z. So, in general, the solutions of Eq. (12.33) will not have the
same form as in the static case. Only the continuous parts which corresponded to delta
function solutions can be treated this way: they only exist at one value of z so that their
value of w will be the static one with the local Doppler shift at that position z. So there
are again continua in the spectrum but this time for the following values of w:

w e {0F = Q(z) twa(z) | 11 < z < 32}, (12.34)
w € {QF = Qlz) Lws(z) | 71 < < 22}, )
in which Qo(z) = (To(z) - k). So, the delta function perturbations of the continuum
solutions simply move along with the flow. The rest of the spectrum, however, will change
in a more complicated matter.

Only the stable part of the spectrum (w is real) will be treated. First the static
spectrum: if the square root of Fig. 12.6 is taken the top part of Fig. 12.8 is obtained.
The spectrum in the case with flow is drawn schematically in the bottom part. The new
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continua are indicated with {Q} and {Qf}. The equivalents of {ws} and {wp} have
been indicated with {Qs} and {Q} respectively. The spectrum always satisfies:

—0 <O <N <N <A <V <O, < <O <0 (12.35)

—_— {op) {0} ©p) — (05— {00} {0} ) ©g) — ®
— —~ — y E— - y E—
0
- - - -y Q) + + + +
—_— ) O Q) Y @y @@} Q) —

0

Figure 12.8: The spectrum of real w’s for which the MHD equations have solutions for given k, and k. in
the case of a plasma with inhomogeneities in one direction only. The top spectrum is for the static case
of the previous section (it is the square root of Fig. 12.6). The bottom spectrum is for the stationary case
with flow in the zy plane.

12.5.2 Spatial characteristics

The last subject that has to be treated regarding flows is what is known as wave-like
equilibrium. This is something which influences the equilibrium solutions when the flow
becomes ‘supersonic’ (this word is not really adequate since there are no sound waves,
only MHD waves).

The perturbations that have been studied in the previous sections propagate through
the plasma. Think of the plane waves in Sect. 12.3.2. There the perturbations moved
through the plasma as waves. In the other (inhomogeneous) cases most of the solutions
no longer look like plane waves any more but a perturbation in the plasma still propagates
through the plasma. Usually they propagate as surfaces that move with time. For example
a perturbation of a normal gas spreads as a sphere that gets bigger and bigger. These
‘paths’ along which the perturbation propagates are called characteristics.

The characteristics in MHD can become very complicated. In a static homoge-
neous plasma the characteristics are given by the Friedrichs group diagram (right side
of Fig. 12.3). This diagram shows a cross-section of the characteristics of a perturbation
that has occured some moments ago in the origin. The same thing for a normal gas would
be a circle. As you can see this is already a complex thing.

If the plasma flows it gets more complicated of course. Now if a perturbation occurs
in the origin the generated waves get dragged along with the flow so that the result is
almost the same but with the Friedrichs diagram shifted in the direction of the flow.

It gets more complicated if the perturbation persists. Then characteristics will be
formed continually. Let us look at the situation in a normal gas first: the situation is
depicted in the left side of Fig. 12.9. Two of the characteristics are drawn that were
formed at times t and 2¢. In reality a whole continuum of waves has been sent out.
Through interference they will annihilate each other except on the two lines that are drawn
enveloping them. This means that a whole cone will form in the gas where information
about the perturbation is present, independent of time. Such a cone is called a spatial
characteristic.

In a plasma something similar happens. There, too, spatial characteristics are formed.
This is shown in the right side of Fig. 12.9. Depending on the speed of the flow and the
direction with respect to the magnetic field even several spatial characteristics can occur.
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Flow.

Figure 12.9: ‘Supersonic’ flow in normal gases (left) and in plasmas (right). The temporal characteristics
in a gas are circles (spheres), in plasmas they are given by the Friedrichs group diagram. In the normal
gas two spatial characteristics develop, in the plasma four: two ‘fast’ and two ‘slow’ ones.

The point of all this is that such a ‘persisting perturbation’ is no longer a perturbation
because it can be constant in time. In a flowing plasma such characteristics can occur
because of the shape of the configuration or because there is something in the way (a
planet, for example). Then the characteristics are a part of the equilibrium situation
instead of only being caused by perturbations on this equilibrium. So in supersonically
flowing plasmas (and the solar wind is such a plasma) waves and equilibrium are no longer
separate issues.



Chapter 13

Wind theory

Lecturer J.P. Goedbloed, notes by S. Van Loo

13.1 Introduction

n the preceding chapter we have studied heliospheric (or astrophysical) problems from a

magnetohydrodynamics point of view. It treated MHD modeling by conservation laws
and also generic magnetic configurations. Then we have deducted the flux conservation law
and the Alfvén waves, both essential in MHD. Analogous to quantummechanics we could
create a spectral theory for static equilibria and in practice this means MHD spectroscopy,
like helioseismology, is possible. At the end we have seen a spectral theory for equilib-
ria with background flow, along with the determination and the properties of stationary
equilibrium states with flow. Important is that the equilibrium becomes wave-like.

In this section we are going to take a look at the heliosphere. The solar wind confines
the planetary magnetic fields into magnetospheres and by impinging on the magnetic fields
of the planets it creates a bow shock on the day side and drags the magnetotail on the
night side of the magnetosphere. But the solar wind also produces a cavity surrounding
the Sun in the local interstellar medium. The sun has its own magnetosphere called the
heliosphere; it is the region within the galactic medium where the plasma digs in, and
fills a cavity. A hot corona cannot be in static equilibrium with the interstellar medium
and must expand. Once the solar wind is introduced there is a surface surrounding the sun
at which the pressure of the solar wind balances the pressure of the interstellar gas which
is the heliospheric boundary. It is in fact the solar wind termination by a shock transition
from super-to sub-sonic flow, that creates the heliospheric boundary. The position of the
boundary is not known with great accuracy but is probably of order of 100 AU. The
heliosphere contains most of the solar system but not the most distant comets. The global
solar magnetic field and the local interstellar medium organizes the heliosphere.

13.2 Shocks

The question we have to ask ourselves is how we have to connect flow from one state to
another through the shocks? Which instruments are needed to take on this problem? We
will replace time and space derivatives in the MHD equations by

of

5 ——ufl,  Vf-alf]
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where (f] = fL — f2.

Figure 13.1:

This will lead to the jump conditions:
~ulp] + n - [pv] =0,
1
—u[pv]+n-[pvv+ (p+ §B2) I-BB] =0,

1
—ul5pv" + pe+ %B"’] +n- [(%pv2 + pe + %B"’) -v—v-BB| =0,
—u[B]+n-[vB-Bv]=0, n-[B]=0,

whereas the entropy should increase across the shock:

[p™"p] < 0.

This is an extra condition we have to add. The jump conditions connect the variables
across the shock front. Jumps can only be permitted when the partial differential equations
(PDE) are hyperbolic. The peculiarity of the MHD ( and gas dynamics) equations is that
they change from elliptic to hyperbolic in the middle of the domain when a critical speed is
crossed. In gas dynamics this is the sound speed so that the flow is called transsonic. We
use the same word in MHD, although different critical speed occur. Consequently there is
a variety of elliptic and hyperbolic flow regimes in MHD. We will illustrate this by means
of examples taken from Goedbloed and Lifschitz (1997) and Keppens et al. (1999).

13.3 Stationary MHD flows

13.3.1 The equations

In this paragraph we are going to work with self-similar translation-symmetric MHD flow.
But before we do that we are taking a closer look at the equations of ideal MHD:

%—{-V-(pv):O, (13.1)
ov 1 2 Y ~—1 _ 1 y—1 _ _]:_ s

at+V(2'v +7_1p S) 7_1p VS vxw+pB><J—O, (13.2)
%% +v-VS§ =0, (13.3)
—a—E—Vx(va)=O, vV-B=0. (13.4)

ot
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where we have defined the entropy as S = pp~7, the vorticity as w = V x v and the current
density as j =V x B.

We can now treat the stationary, translation-symmetric MHD flows. This means we
have to take the partial time derivatives and the partial derivative in the z-direction equal
to zero. (8; = 0 and 8, = 0) We can also define a flux function ¥ and a stream function
as a function of ¥, x(¢):

B, = e, x V1,
vp =€, X Vx.

where B, is the poloidal magnetic field and v, the poloidal flow. This makes that five
arbitrary flux functions x/, H, S, I, collapse into three flux functions, namely II; 2 3(%).
Before we now rewrite the ideal MHD equations, we define the poloidal Alfvén Mach
number as M? = pv2/B2 = x"/p.

So with this background we can rewrite the ideal MHD equations and we obtain the
core problem:

— a nonlinear PDE for the flux ¢(z,y):

IT} I/ IT,
2 1 _ b 3 _
V- MYV + 3 - s T = O (13.5)
— the Bernoulli equation for the determination of M?(z,y):
1 o II I, I3 _
5V~ 3 T aee Y o O (136)

The two equations (13.5) and (13.6) exhibit a striking parallelism when we consider them as
functions of two variables, ¥ and M?, with derivatives of 1 in the first equation, and of M?
in the second. We can also derive that the transition from ellipticity to hyperbolicity of the
PDE (13.5) for v is governed by the coefficients in front of the second order derivatives,
where the implicit dependence of M2 on |V#|? in the Bernoulli equation is taken into
account. Another remark that we can make, is that, although it is an algebraic equation,
the Bernoulli equation is more difficult to solve than the PDE.

As a restriction on the choice of the arbitrary profiles, we will consider the general
profiles II; 2 3 to have the same shape. If we now consider scale-invariant or self-similar
flows, further reduction is possible. Assume now one master profile with two constants, A
(entropy) and B (longitudinal field), so that the three remaining flux functions become:

II; = n(v), I, = An(v), II3 = Bn(v).
with the power profile # = ¥2~2/2. A simplification that than creates self-similar solutions
is:
M™% =X(9),
¥ =Y (9).

where we can associate M2 with the inverse speed and 6 is the coordinate along the
magnetic/flow surface perpendicular to the direction of the symmetry (z).
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The two equations (13.5) and (13.6) can be written as
dX H

do  (1— l/X)JZ’

av__ 1 _, gV
@ 1-1/X 1-1/X

where H = H(X;Y) and J = J(X,Y) are functions which we use to simplify the equations,
and Fy = F(Y’ = 0), with F the Bernoulli equation.
What are now the qualitative features of the X — Y phase space?

— We see that we have in these equations some singularities: if J = 0, then 6 stops to
progress with X. And at X = 1 we have a singularity where the Alfvén speed is reached
(This is a forbidden area.).

— The trajectories that must be followed in order to have ’transsonic’ flow, can be calcu-
lated from dY/dX = J/H.

— For solutions to exist, Fy has-to be smaller or equal to zero, so that we have a boundary,
the so called Bernoulli boundary, defined by Fy = 0. We can calculate the trajectories
everywhere in the phase space, but it only makes sense inside the Bernoulli Boundary.

— Finally we have also an indication for the hyperbolicity of the ordinary differential
equation (ODE) by the inequality A(X) > 0, where A is a determinant coming from
the PDE (13.5).

13.3.2 Some examples
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Figure 13.2:

In this figure (13.2) we see a phase diagram of the flow regimes and the limiting lines.
Also around X = 1 we see the Alfvén gap. On the picture some numbers are printed,
indicating the regimes, wherefore we can determine whether they are hyperbolic or elliptic
by A: 1*: hyperbolic super fast; 1~: hyperbolic fast; 2: elliptical fast; 3: elliptical slow;
4~: hyperbolic slow; 4*: hyperbolic sub slow; 5: elliptical sub slow.

We notice that when a critical speed is crossed the equations flip from elliptical to
hyperbolic, and vice versa.

If we now put the trajectories on the phase diagram (see figure 13.3), it appears that
they cross the gap and the singular line J = 0 without problems (!?). According to the
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formula for the trajectories we can calculate these trajectories everywhere in the phase
space, but the method of finding the solution expires at these singularities, and that is
something that we haven’t incorporated.
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Figure 13.4:

Figure (13.4) shows the transition from hyperbolic flow to elliptical flow, in particu-
lar from the 47-hyperbolic sub slow region to the 5-elliptical sub slow region. The sub
slow flow starts in the hyperbolic region, with two sets of characteristics bisected by the
streamlines, and converts to the elliptical regime at the dashed line. At 6 = 7 the flow
will encounter the Bernoulli boundary, where it smoothly joins to the other branch of the
Bernoulli function on the bottom half plane. This is what we call a periodic solution.

It is now interesting to take a look at transitions across the limiting line. Because, as
already is said that jumps can only be permitted when the PDE’s are hyperbolic, we must
take the transition between two hyperbolic regions, e.g. 4~ and 4* from the slow to the
sub slow.

A first look at the figure (13.5) tells us that the slow flow pattern is 'reflected’ by the
limiting line. If we would enlarge the area where the approach of the limiting line is, like
in figure (13.6), we see the same reflection of flow lines and characteristics even better.
In reality the trajectory really corresponds to two different flow patterns and its smooth
crossing of the singular line is misleading, since the two flow patterns have nothing to
do with each other. We have just obtained a second solution occupying the same space.
The continuous connection of characteristics is just a convenient way of presenting the
two flows in one picture.Thus, we have found that the crossing of the limiting line by
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Figure 13.5:
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Figure 13.6:

continuous flows is impossible.

13.3.3 Stationary shocks

WIND THEORY

Because continuous solutions don’t exist, we are trying to find discontinuous solutions, so
we come back to the shock conditions. We will take Y and B continuous, so [Y] = 0 and

[B] =0, and X and A discontinuous. We get the shock conditions:

[(1-1/X)Y"] =0,

[1/X]A2Y?A 4+ [ X2 4+ (1-1/y - X)AX ] =0.

and the entropy condition [4] < 0.
At the shock position we have 5 variables, namely:

XI#X2a YEY1=},27 A1¢A2-

If we eliminate Ao, we have distilled a jump condition: f1(Y, X1, X2, 4;) = 0, and if we
substitute A2, we have distilled an entropy condition: f2(Y, X1, X2,4;) > 0. We now
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plot f1 and f; in the X; — X» plane for a given (Y, A;). We will solve these equations
graphically.

This first picture (13.7) shows the distilled jump condition. But with this picture
alone, we are nowhere, because there are other conditions for the shock waves, like the
entropy condition. In figure (13.8) the allowed regions are indicated by a +.

Another condition is the Bernoulli equation, and we must also cut out the unphysical
pieces. This gives us figure (13.9). To get the solution of the shock waves, we have to put
the three previous figures together. We see that there remain three shock waves, namely
the fast, Alfvén and slow shock.

Figure (13.11) is a blow up of (13.10) and on this figure is already indicated between
which regions the shocks appear. Because this not very handy to read, we have put the
information of figure (13.11) on a schematic figure: (13.12). It is obvious to see that there
are four flow regions and three types of shocks.
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13.3.4 Conclusions

— There are four flow regions, which are separated by the limit lines and the Alfvén gap
and cannot be connected by continuous flows.

— The limiting line signals the expiration of continuous solutions and guarantees the
existence of discontinuous flows jumping across.

— Fast shocks jump across the fast limiting line Lf, intermediate shocks jump across the
Alfvén gap A and slow shocks jump across the slow limiting line Ls.

— The three obstacles just create the right conditions to produce three kinds of strongly
discontinuous flow which may be considered as the non linear counterpart of the weak
discontinuities of linear MHD.
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Figure 13.12:

13.4 Simulations of stellar winds and accretion flows

In this paragraph we are going to construct stationary flow patterns, which will be guided
by the analytical solutions, in spherical and toroidal geometry by means of the Versatile
Advection Code (Toth, Keppens). The specifications of this code are versatile with respect
to:

— the applications: Shallow water, HD, MHD



156 CHAPTER 13. WIND THEORY

— geometry, it is dimension independent: 1D, 2D, 2.5D, 3D
— computer platforms: PC’s to IBM SP

— spatial discretisations: 6 shocks-capturing schemes

— temporal discretisations: explicit, semi-implicit, implicit

Also there is shock-capturing in the second order and finite volume on structured grids.
On the basis of 1D wind models, that are used as a test bed for numerical modeling, 2D
transsonic outflows are realized. Also. accretion flows in the equatorial plane are modu-
lated. The realizations of the VAC project are illustrated in the next paragraphs, beginning
from 1D to 2D and accretion.

13.4.1 The Parker model of the solar wind

The model of Parker from 1958, was a model for a hot expanding corona. This model
was hydrodynamic, isothermal, spherically symmetric and stationary. We take the r-
component of the momentum:
@L _ _0p GM

Prrar = " or r2 ’
where we take a base temperature Ty and density po. We can manipulate this equation
by using the isothermal assumption or p = a’p, with a the speed of sound, and mass
conservation: pr2v, = Cst. This equation becomes:

Ovr _ vr (2(12 - GM/'I‘)

or r vZ —a?

We see that this last equation has a singular point at vZ = a®. This is nothing else than
the sonic point. Integration and re-ordering leads then to:

2
Y o o?n (ﬁ) _GM _ -
2 Po T

Figure 13.13:

Figure (13.13) shows the topology of the isothermal solution of Parker. Each curve
is a locus of constant energy, and represents an acceptable solution from the standpoint
of global energy conservation. You have only two solutions that are physically impor-
tant,visually the solutions that start at the surface of the sun, here indicated by r/rs =1,
and that go away from the suns surface passing through the sonic point.
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The Parker model is the starting point for more complicated models. If we stay with
the 1D hydrodynamic solutions, we could change for example the isothermal condition

into a polytropic.

10.00 T T 3

Figure 13.14:

We see on figure (13.14) that for different v we obtain different critical points. There
is even an equation that gives the connection between the critical point and « :

2!7+1! 2!'1—1!
Ts ('Uesc) 5-3 (cs* ) 5-3v
Ty 254 Urx

If we change from non-rotating to a rotating system at the equator, we get figures like
(13.15).
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Figure 13.15:

Now we find that it is possible to have two critical points. We can understand this by
looking at the equation that connects the critical point with v and the rotation speed 7:

2 2 21 2!
2 (T_) _ s [(v_) (L) ] ol
T 2cs,7s Csx Ts
which has two solutions, depending on the coeflicients of the polynomial. The next thing
is to introduce a magnetic field and for this model we have the Weber-Davis solution.

As we see on figure (13.16), there are two critical points and one Alfvén point. Another
conclusion is that v || B in a corotating frame.

13.4.2 2D wind solutions
In the next figures we are going to show a 2D polytropic axisymmetric HD wind flow.
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Figure 13.17:

In the first figure (13.17) we have a solution for a slow rotation rate and we see that the
flow practically streams radially. Figure (13.18) shows a solution for a high rotation rate,
and as we can see, the flow is dragged by the rotating object. There are other possibilities,
for example: axisymmetric magnetized wind containing a ’wind’ and ’dead’ zone.

Figure 13.18:
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Figure 13.19: 2.5D wind with variable field strength and dead zone extent

In the figures (13.19) we see that there is no flow out of material at the dead zone,
but after a certain distance, we can detect a flow. ( In the figure the flow is indicated with
arrows.)

13.4.3 Accretion flow

First we treat the 1D HD problem and as a model we use accretion onto a black hole. This
problem is solved fully implicitly, using a first order accurate total variation diminishing
(TVD1) discretisation, because of two reasons. First, the convergence behavior is superior
to an explicit scheme, and second we can speedup by a factor of 40.

Figure 13.20: accretion onto a black hole

Figure (13.20) shows the result.

With the use of the 1D solution we can create a 2D solution in the equatorial plane.
This research by Molteni, Téth and Kuznetsov is at this moment in ApJ press. In figure
(13.20) a calculation is shown of stability against non-axisymmetric perturbations in 2D
accretion. We see that the system is not stable.
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Figure 13.21:

13.4.4 Conclusions

The realizations of this project are immense, but the work isn’t finished: the combination
of several insights have to open the road to 3D models and also a realistic energy equation

has to be incorporated in the future.



Chapter 14

The Sun and our climate

Minnaert Lecture by S.K. Solanki, notes by D.B. Roy

(...) the overwhelming balance of evidence and scientific opinion is that it is no
longer a theory, but now a fact that global warming is for real.
(Clinton 1997)

Satellite data has shown no global warming whatsoever in the past twenty years.
Most climatologists believe that global warming is a hoax.
(Reagan 1997)

14.1 Introduction

he question of the Sun’s effect on the Earth’s climate is not only of scientific interest,

but also carries significant social relevance. Although it is generally agreed these
days that one of the greatest influences on our climate comes from mankind, it is still very
much unclear to what extent our actions have been responsible for the rising temperatures
witnessed over the last century.

At the moment, this issue is most prevalent in the discussion surrounding global warm-
ing, where the observed temperature increase may be caused by the greenhouse effect, or
equally well fully or in part by solar influence. A better understanding of the Sun-Earth
connection could therefore help determine how much damage, if any, has been done. Fur-
thermore, it would provide information on the degree of natural variability due to solar
causes present in the Earth’s climate, something which must find its way into models
predicting global change for the next century.

In this chapter, an overview will be presented of the timescales on which a solar
influence is present. For each timescale, an overview of the corresponding solar effects will
be presented, followed by a discussion of some experimental data.

14.2 Long timescales: solar evolution

On a time scale of 108 to 10° years, solar evolution as driven by chemical changes in
the Sun’s core starts having a noticeable influence on the Sun’s brightness, which is the
primary parameter when considering influences on the Earth. We will first examine the
evolution of the Sun’s brightness, followed by a comparison of this evolution with what
we know about the evolution of the Earth’s temperature.

161



162 CHAPTER 14. THE SUN AND OUR CLIMATE

14.2.1 The evolution of the solar brightness

Like any other star, the Sun began its life as a collapsing gas cloud. The release of grav-
itational energy due to the collapse caused a temperature increase which ignited nuclear
proton-proton fusion 4.5 - 10° years ago. Within a relatively short period the gas disk
around the new-born star coalesced into several planets and approximately 4 billion years
ago, the stage was set for the evolution of life as we know it.

As this life evolved on Earth, the Sun was also gradually changing. The burning of
solar hydrogen via the proton-proton chain is essentially a process transforming four H
nuclei into one He? nucleus. This means that during the Sun’s life, its average mass per
particle has increased.

From models of stellar composition and evolution, it follows that the brightness L of
a light star like the Sun varies proportionally to its average mass per particle p as

Locp™ (14.1)

(see for example Lamers (1997), or Bowers and Deeming (1984)). From this proportion-
ality, it follows that as the Sun aged, it must have become brighter.

If we make the estimate that the Sun has currently fused 40% of its hydrogen store,
i.e. u has risen from 0.5 to 0.62, we find that the Sun has increased in brightness by
approximately 30% in the 4.5 billion years since its birth.

14.2.2 The early evolution of the Earth’s temperature: the “faint Sun”
paradox

If we want to determine the evolution of the Earth’s temperature over the last several
billion years, it is obviously impossible to rely on direct measurements. We are thus
forced to examine indirect pointers, such as fossil records. Limited as our information on
this period is, even a cursory evaluation produces a serious contradiction.

Changes in the Sun’s brightness will eventually cause a change in the Earth’s aver-
age equilibrium temperature. Current climatological models estimate that a variation in
solar brightness of 0.1% could produce a change in the global equilibrium temperature of
0.2 degrees (Lang (1995)). Combining this estimate with the knowledge that when the
Sun was born, its brightness was 30% lower, leads to the conclusion that 4 billion years
ago, the Earth was a barren wasteland, covered with ice.

However, sedimentary rocks, which must have been deposited in liquid water, have
been found dating back 3.8-10° years ago. Furthermore, there is fossil evidence of life going
back as far as 3.5-10° years. All this evidence points towards a warm, liquid environment.
How can this be reconciled with the previously calculated below-zero temperature? This
problem is called the “faint Sun” paradox.

The key to this enigma lies in considering the changes in the Earth’s atmosphere. After
Earth’s creation, it’s atmosphere was formed by the gaseous releases of volcanic eruptions
and enriched by cosmic debris. It is currently thought that this atmosphere contained
much more CO, and water vapor than it does now, causing a large greenhouse effect and
keeping the temperature above freezing (see Fig. 14.1).

As the Sun evolved and got brighter, two processes occured that countered the heating
effect from the Sun. The net effect of both processes was to reduce the amount of CO; in
the atmosphere, thus reducing the greenhouse effect.

Firstly, the increase in temperature caused more water to evaporate and increased the
average rainfall. This led to more carbon dioxide dissolving in rain as carbonic acid, which
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Figure 14.1: The relationship between the partial pressure of carbon dioxide and rise in surface temperature
for the inner planets. The current CO2 pressure of 300 ppm and the pressure 3.5 billion years ago of the
Earth are both shown. Also, the effect of a doubling of the Earth’s CO2 pressure is plotted. From Bryant
(1997).

reacted with calcium present in rocks. Sea organisms used the calcium-rich water to form
skeletal calcium carbonate (CaCOg), which after their death was trapped as sediment on
the ocean floor.

A second counter-effect came from the evolution of strains of bacteria and early plants
which absorbed CO; directly from the air, releasing oxygen. As these lifeforms multiplied,
they slowly began transforming the carbon dioxide in the atmosphere into oxygen.

Unfortunately, the continuing increase of solar brightness will eventually cause the
oceans to evaporate, leading to a large increase in the level of water vapor in the atmo-
sphere. This will cause a greenhouse effect severe enough to make the Earth uninhabitable.

Hence, although the greenhouse effect made possible the development of life, it will
also make that life untenable within approximately one billion years, if Man does not
speed up the process.

14.3 Intermediate timescales: orbital effects

Geometrically, our solar system is all but ideal: instead of perfect spheres describing un-
varying circular orbits, we have wobbling unspherical planets moving in ever-changing
ellipsoidal orbits. The combined effect of these geometrical imperfections causes climato-
logical variations on a time scale of 10°>—10° years.

We will first examine the deviations from ideal geometry that exist in the Earth-Sun
system, neglecting the effect of the moon. Following that, we will attempt to reconcile
these deviations with observed phenomena in the Earth’s temperature record.

14.3.1 Eccentricity, obliquity and precession

The Earth-Sun system has three fundamental orbital attributes: the eccentricity of the
ellipsoidal orbit around the Sun, the tilt of the Earth’s spin axis, termed the angle of
obliquity, and the times of closest approach to the Sun, called the equinoxes (see Fig. 14.2).
Each of these three attributes varies over periods of thousands of years, as shown in
Figs 14.3 and 14.4.
The eccentricity of the Earth’s orbit varies between 0.0 and 0.07, and is currently
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Figure 14.2: An overview of orbital attributes of the Earth about the Sun. From Bryant (1997).

equal to 0.017. The cycle of eccentricity varies between 90,000 and 100,000 years. The
angle of obliquity presently has a value of 23.5° and varies between 21.4° and 24.4° with
a period of approximately 40,000 years.

Finally, each time the Earth revolves about the Sun, it does not come back to its
original location, but tends to move forward slightly in its orbit. This causes a precession
of the equinoxes. The current rate of precession is 50.2554 arc-seconds per year, on longer
timescales the length of the precession cycle lies between 19,000 and 23,000 years.
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Figure 14.3: A model for the eccentricity of the Earth’s orbit as a function of time from 800,000 years
before present to 50,000 years in the future. From Hartmann (1994).
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Figure 14.4: Models for the obliquity of the Earth and precession of the Earth-Sun equinoxes as a function
of time from 800,000 years before present to 50,000 years in the future. From Hartmann (1994).

14.3.2 The Earth’s temperature record: glacial cycles

As was the case on timescales of billions of years, the evolution of the Earth’s average
temperature over the last million years can only be determined by using indirect data.
However, on timescales of the order 10® years these indirect measurements are accurate
enough to construct a relatively precise temperature record, see Fig. 14.5.
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Figure 14.5: Temperature record of the Earth over the past billion years. The glacial cycles during the
last million years are clearly visible. The timescale is logarithmic, with breaks at one million years and

the present. From Bryant (1997).

When this temperature record is examined, it is found that there have been cyclic



166 CHAPTER 14. THE SUN AND OUR CLIMATE

variations of 4—10 degrees in the Earth’s temperature during the last million years, which
have led to the repeated onset of ice-ages. This is called cyclic glaciation. At present, at
least twenty distinct ice-ages have been identified.

The climate tends to drift slowly into ice-ages, becoming continuously colder, until
the trend is rapidly terminated by sudden warming. The last ice-age, termed the Last
Glacial, peaked 22,000 years ago, after which temperatures rose abruptly to their present
values in as little as three to five years.

Currently, it is thought that a significant contribution to cyclic glaciation comes from
a combination of eccentricity, obliquity and precession. This so-called Milankovitch hy-
pothesis states that the three orbital effects lead to variations in the degree of radiation
reaching various latitudes on the Earth’s surface.

The variability in received radiation, combined with the unequal distribution of land
masses across the hemispheres causes the cycles of glaciation. The distribution of land
masses contributes to the Milankovitch effect, because land has much less heat capacity
than sea. If land and sea were equally distributed on the Earth’s surface, orbital variations
would have little effect on global climate. Currently, most of the land masses are on the
Northern hemisphere, so that changes in orbital parameters do have significant effects.

Although variation in eccentricity does not change the total annual amount of received
radiation by the Earth, in combination with the obliquity, it does alter the ratio of radiation
received by the two hemispheres (see Fig. 14.6).

When the eccentricity equals zero, the Earth’s orbit is circular, and both hemispheres
receive the same amount of radiation over the year, regardless of the obliquity. However,
when the orbit becomes eccentric, the Earth’s rotation axis is tilted differently when the
Earth is closest to the Sun than when it is furthest from the Sun, and thus one hemisphere
receives more radiation than the other.

Due to the current eccentricity, the southern hemisphere receives 6.7% more radiation
than the northern hemisphere, and this difference can increase to 28%. The largest effect
is obtained when the rotation axis is tilted towards the Sun at the same time that the
orbital distance is either largest or smallest.

The precession of the equinoxes changes the interrelationship between obliquity and
eccentricity in the sense that in the course of time the moment at which the Earth’s
rotation axis is tilted towards the Sun gradually changes from the time when the Earth is
closest to the Sun to the time when it is furthest away.

The cycles of these three orbital effects, as well as several of their harmonics and
mixed harmonics of interaction, can be found in the temperature records of the ice-ages.
However, although eccentricity, obliquity and precession control the timing of the ice-
ages, their impact is not large enough to explain the magnitude of the glacial variations,
especially the rapid temperature fluctuations during and at the end of ice ages. It is
therefore thought that factors amplifying the Milankovitch effect can be found in the
Earth-ocean-atmosphere system and in geological influences such as volcanism and geo-
magnetism.

14.4 Short timescales: the not-so-quiet Sun

On time scales of thousands of years to months or days, the solar evolution is unnoticable
and we may assume that the geometry of the Sun-Earth system does not vary. The
main solar influence on the Earth on these time-scales is generated by the rich variety of
magnetic structures at the solar surface and in the solar atmosphere, which are driven by
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Figure 14.6: The effect of obliquity upon the input of solar radiation at the Earth’s surface. From Bryant
(1997).

the solar dynamo.
Since these structures have already been covered in these lecture notes, we will restrict

treatment of them to a simple enumeration of the different phenomena, with Figs 14.7—
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14.13 giving a graphical overview. However, the evidence (or lack of it) for the effect of
these phenomena on the Earth’s climate will be extensively discussed.

14.4.1 Magnetic structures on the Sun

Sunspots (Fig. 14.7) are regions on the Sun’s surface where magnetism increases 100—
1,000 times above average. The intense magnetic field inhibits convection, and as a result,
a sunspot appears darker than the adjacent surface, so a sunspot causes the solar flux
integrated over the entire disc, a quantity called the irradiance, to decrease.

Figure 14.7: A picture of a sunspot taken in August 1985 from Spacelab 2 on the Space Shuttle Challenger.
The photo resolves features as small as 400 kms. The sunspot structure of a central, dark, umbra surrounded
by a brighter, filamentary, penumbra is clearly visible. From Wentzel (1989).

Bright areas known as faculae or plage surround sunspots. They are formed by
a concentration of small magnetic features, called magnetic elements. Although each
magnetic element causes the Sun to brighten by many orders of magnitude less than a
sunspot causes it to dim, they are present in sufficient numbers to cause the total irradiance
of the Sun to increase when sunspots are numerous (see Fig. 14.8).

Solar flares (Fig. 14.9) are explosions leading to ejections of protons and electrons
from the Sun’s atmosphere at speeds in excess of 1500 kms~! and often develop in active
regions, which also harbor sunspots. A typical flare takes about an hour to fade away.
Flares enhance the solar wind, and are accompanied by a pulse of electro-magnetic radi-
ation in the X-ray and radio spectrum. Very large solar flares are called proton events,
because they lead to the ejection of highly energetic protons, also called solar cosmic
rays.

Prominences (Fig. 14.10) are magnetic structures of relatively cool plasma, which
are held up in the, much hotter, million degree corona by magnetic fields. They usually
have a slab-like structure, surrounded by loop-like magnetic field lines. After a period
which can range from hours to months, prominences destabilize. The method with which
this occurs can vary from a slow dimming and dissapearing in situ, to a violent disruptive
eruption called a disparition brusque (Fig. 14.11).
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Figure 14.8: The irradiance of the Sun plotted against the sunspot number. From Bishop (1996).

Figure 14.9: A solar flare observed in the light of hydrogen on August 7, 1972. From Wentzel (1989).

Under certain circumstances, these explosions can trigger a violent ejection of matter
from the corona, called a coronal mass ejection (Fig. 14.12). Both disparition brusques
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and coronal mass ejections enhance the solar wind and cause a strong X-ray pulse to be
emitted.

i

k2

Figure 14.10: A filamentary prominence, suspended above the solar surface. From Tandberg-Hanssen
(1995).

Figure 14.11: A disparition brusque event where one end of the prominence remains attached to the
chromosphere. From Tandberg-Hanssen (1995).

Within the solar corona, the gas pressure is sufficiently larger than in the interstellar
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Figure 14.12: Development of a coronal mass ejection. The associated prominence is visible in the compos-
ite picture at 2247 UT. Following the ejection, the death of the prominence leads to the typical thread-like
structure of a disparition brusque (1309 UT). From Tandberg-Hanssen (1995).

medium to drive gas away from the Sun at supersonic speeds, despite the pull of gravity.
This outward flow of coronal gas is called the solar wind. Under normal circumstances,
most of the solar wind doesn’t reach the Earth’s surface, but is redirected to flow past the
Earth along the so-called magnetopause, shown in Fig. 14.13.

The Sun’s magnetic field is highly complex and dynamic in the solar interior and
atmosphere. Further from the Sun, it is strongly affected by the solar wind, and forms a
large-scale spiral pattern.

In the absence of forcing by the solar wind and magnetic field, the Earth’s magnetic
field would be close to that of a dipole. However, due to the strong solar magnetic influence,
the Earth’s field is compressed on one side and highly expanded on the other, with a tail
extending in the anti-solar direction for hundreds of Earth radii (see Fig. 14.13).

14.4.2 The solar cycle

When the number of sunspots is plotted as a function of time, it is found that sunspots
occur in cycles, lasting an average 11.2 years (see Fig. 14.14). Within a cycle, it takes
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Figure 14.13: A schematic representation of the Earth’s magnetosphere. The magnetosphere is bordered
on the outside by the magnetopause, the boundary between the solar and terrestrial magnetic field and
on the inside by the ionosphere, the upper ionized layer of the Earth’s atmosphere. From Akasofu and
Kamide (1987).

approximately four years to rise to a maximum number of sunspots, and roughly seven
years to fall to a minimum. Between alternate cycles, the magnetic polarity of sunspots
is reversed and thus the Sun has a fundamental twenty-two year magnetic cycle, termed
the Hale cycle, consisting of two 11.2 year sunspot cycles with reversed polarity.

This Hale cycle is not only found in sunspots, but turns out to apply to all solar mag-
netic activity. The magnetic field varies in strength and shape from being directed along
the poles in a dipole shape at minimum, called a poloidal configuration, to a more circular
configuration along the equatorial plane at maximum, called a toroidal configuration.

Furthermore, other features and processes of magnetic origin, such as solar flares and
prominences, also depend heavily on the solar cycle in the sense that they are far more
common at activity maximum than at minimum. This cycle is therefore said to control
solar activity as a whole.

The explanation of the Hale cycle is thought to lie in the so-called dynamo theory. In
this theory convection and solar rotation convert kinetic energy into thermal and magnetic
energy to yield cyclic variations in the magnetic field, which, in turn, give rise to the
chromospheric magnetic structures. Dynamo theories are currently poorly understood,
and there is still much work to be done before they can fully explain and predict the solar
cycle. Chapters 6) and 7 give more information on the current state of dynamo theories.

14.4.3 Influences on the Earth

On timescales of up to centuries, there is usually quite reliable data available and the
problem becomes separating the solar influence from other climatic effects or random
variations. Furthermore, suggestions that certain climatic systems may have a chaotic
character due to the non-linear equations that drive them have not helped matters.

We consider here the influence of the solar magnetic activity on the magnetosphere,



14.4. SHORT TIMESCALES: THE NOT-SO-QUIET SUN 173

- N
CPQ

_ A A
o N H» O
1 1 1 1

Number of Groups

1650 1700 1750 1800 1850- 1900 -1950
Year

0 -t
1600
Figure 14.14: Sunspot numbers between the years 1600 and 1993. From Hoyt et al. (1993).

ionosphere, and on the temperature in the troposphere, the prime parameter describing
the Earth’s climate.

14.4.3.1 Magnetospheric and ionospheric influences

Events that enhance the solar wind, such as coronal mass ejections and, to a lesser extent,
flares, can dramatically increase the influx of solar matter and photons in the upper
ionosphere of the Earth. This leads to effects on both the Earth’s magnetosphere and it’s
ionosphere.

As the solar wind, which acts as a conductor, flows into the magnetic field of the
Earth, a dynamo effect takes place, leading to energy production. Most of this energy is
dissipated in the lower ionosphere, leading to effects like the Aurorae Borealis, or Northern
lights, see Fig. 14.15.

A magnetic effect is caused by the leakage of solar wind particles through the magne-
topause, via the regions known as the polar cusps. These particles become trapped in the
Earth’s magnetic field, resulting in a depression of the magnetic field on the surface of the
Earth, causing a so-called geomagnetic storm.

Although some of the details are not completely understood, both the above effects
have been confirmed experimentally.

14.4.3.2 Influences on climate

To determine the influence of solar activity on the Earth’s temperature, data on both the
solar activity and the Earth’s temperature are required. There are a number of proxies
available to measure both parameters up to several thousand years ago, although with
steadily decreasing accuracy at increasingly earlier times.
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Figure 14.15: A photograph of the aurora borealis. Taken from Akasofu and Kamide (1987).

Solar magnetic activity can be followed, although somewhat qualitatively and with a
time resolution lower than 10—20 years, by measuring C! activity up to 7000 years back
(see Stuiver (1993)). Indirect temperature measurements can be made by means of data
on the sizes of glaciers.

The only directly measured data comes from the last three centuries, during which
both the solar activity (mainly the number of sunspots) and the temperature have been
actively measured. Initially, these measurements were of low accuracy, but the quality of
the data has steadily improved. Direct measurements of solar irradiance have only been
made since 1978.

When the available data are compared, it is found that there is a very strong correlation
between average land mass temperature and solar activity as measured by the inverse
length of the solar cycle, see Fig. 14.16. The length of this cycle varies roughly inversely
with sunspot activity: a shorter cycle is generally associated with more solar activity.

However, the solar cycle length is an arbitrary choice from a wide range of available
variables. When other indicators for solar activity, such as the sunspot number, are used,
the correlation is of far lower quality, to the point were temperature variations precede
sunspot variations!

To clarify this situation, a physical mechanism is required. There are currently two
suggested mechanisms which may influence the temperature.

The first is caused by the solar variation in brightness. Due to faculae, the Sun
is brighter during active periods. On the long-wavelength end of the spectrum, it is
proposed that this increase may influence the Earth’s radiation budget, leading to a rise
in the equilibrium temperature.

The increase on the short-wavelength end, where the rise in irradiance is largest, leads
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Figure 14.16: The temperature record of the Northern hemisphere, with the results from various models
for temperature fluctuations superimposed. From Bryant (1997)

to a decrease in the ozone concentration in the stratosphere due to the reaction
Oz3+hvyr — 0, +0 (14.2)

for photons with wavelengths below 4000 A. The reaction rate increases as the influx of
solar ultraviolet photons does.

Less ozone means that ultraviolet solar radiation can reach the Earth’s surface unhin-
dered. Hence the amount of ultraviolet radiation reaching the Earth’s surface changes far
more than its solar output does.

A second proposed mechanism deals with cosmic rays. The amount of cosmic rays
that reaches the Earth is strongly dependent on the Sun’s magnetic field, which in turn
is correlated with solar activity. When the Sun is more active, and its magnetic field is
stronger, less cosmic rays reach the Earth.

It is currently thought that a rise in cosmic rays causes an increase in cloud formation.
This leads to a cooler Earth, since the main effect of clouds is to reflect sunlight, thus
keeping it from reaching the Earth’s surface, where it would otherwise be absorbed.

Because the oceans of the Earth have a huge heat capacity and large seasonal temper-
ature variations need to be averaged out, we require data on solar irradiance and magnetic
field strength or cosmic flux over a period of several hundred years to accurately verify if
these models do indeed describe how the Sun influences the Earth’s climate.

There are currently two main ways forward in the solution of this problem. On the one
hand, data on solar irradiance may be obtained from solar models, which are becoming
increasingly accurate.

Alternatively, there may be proxies for these parameters that have not yet been ex-
amined. It is currently thought that Beryllium-10 (Be!) may be a proxy for the cosmic
ray flux (see Beer et al. (1993)), but this is still somewhat uncertain.
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14.5 Conclusion

The influence of solar variations on the Earth’s climate has been examined on three dif-
ferent timescales. On each timescale we have found evidence for solar influence, and we
have discussed possible physical models to explain this influence.

For each timescale, to further elucidate the solar influence there are two main avenues
of research. Firstly, more accurate data is required on several solar parameters, which can
be obtained by using more accurate models and new or improved proxies. Secondly, the
proposed physical models must be further refined, using the newly obtained data.

To perfect our understanding of solar-terrestrial forcing and increase our ability to
separate anthropogenic influences from natural ones, it is imperative that both avenues
are fully explored.
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