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Format: in this webpost I added tinted pages after each talk display that emulate my oral explanation
(or rather, what I wanted to say but didn’t because of the time limit). I also replaced movie-opening
clickers by weblinks to download them, and turned citations into weblinks that should open the corre-
sponding ADS page in your browser.

Navigation: clicking on the display title or insert thumbnail returns you to where you came from. Each
talk display also has a hidden clicker top-left returning you to the first display, and one at top-right to
a thumbnail index. These are explicit in the tinted insert pages, as here.

Title: this talk is mostly about understanding the formation of Ha, with a plea for Ha observing for
IRIS at the end.

My affiliation: I spent fifty years in solar physics at Utrecht but since early 2012 all Utrecht astronomy
is gone. Dutch solar physics vanished with it. Fortunately, I am still welcome at Oslo.

Graphical introduction to NLTE chromospheric line formation: a similarly expanded posting of a
brief tutorial that I gave at the SDO-4/IRIS/Hinode Workshop in Monterey earlier this year. It covers
the same Ha results but adds an extended didactic introduction to scattering in the solar atmosphere.



https://robrutten.nl/Utrecht_solar.html
https://robrutten.nl/Utrecht_astronomy.html
https://robrutten.nl/Closure_Utrecht.html
https://robrutten.nl/rrweb/rjr-pubs/2012-monterey.pdf

S tart UNDERSTANDING AND G THE Ha CHROMOSPHERE in deX

The above image quartet adorned the decadal-survey White Paper by Ayres et al. (2009). The first im-
age illustrates the naming of the chromosphere by Lockyer (1868) (I typed the report into ADS). Using
a new spectroscope he found a pink ring around the Sun, also outside prominences, dominated by a
few Fraunhofer lines later identified as Ho, H, He I D3, and Ball. By definition the chromosphere
is whatever emits these lines, making Ho the quintessential chromosphere diagnostic. CalIl 8542 A
comes closest.

The second image, from the DOT, shows the Ha chromosphere on the disk. It is a dense mass of
fibrils wherever there is a bit of activity. It is not clear whether these fibrils are cylindrical fluxtubes,
ridge-shape T =1 corrugations, sheets, or sheet warps resembling curtain folds. They seem to outline
horizontal field topography. Vertical fields are less easily seen in Ho but are of larger interest to
coronal mass and energy loading (see Rutten 2012 for an overview).

The lower-left DOT image shows the photosphere in the G band. Its bright points mark strong-field
footpoints, without sign. Signed magnetograms from MDI and HMI are habitually used for field
topography mapping. Since it becomes force-free only above the chromosphere, Ho fibril patterns
cannot be predicted this way. They should be monitored SDO-like and constrain NLFFF extrapolation.

The lower-right DOT image is corresponding wide-band Call H. It shows chromospheric emission
where it is bright, elsewhere cool shock-ridden gas underneath the fibril chromosphere.


http://adsabs.harvard.edu/abs/2009astro2010S...9A
http://adsabs.harvard.edu/abs/1868RSPS...17..131L
https://robrutten.nl/dot
http://adsabs.harvard.edu/abs/2011arXiv1110.6606R

DOT & SDO IMAGE COMPARISON
Rutten & Uitenbroek (2012)
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e DOT Call H & SDO 1700 A: NW strong vertical fields; IN shocks (“clapotisphere”)
e DOT Ha: NW bright; IN fibril chromosphere
e SDO Hell 304 A: NW magneto-action bright; IN = fibril chromosphere


http://adsabs.harvard.edu/abs/2012A&A...540A..86R
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« SDOHe 1 304A: NW

A more detailed scene comparison for an area with plage (upper part of the field of view) and quiet
network and internetwork (lower part). Upper row: images from the DOT. Lower row: images from
SDO. The percentage numbers specify the relative rms brightness contrast per image. Solar images
are usually byte-scaled for maximum display contrast; the actual contrasts are often much lower.

First column: photosphere. The principal ingredients are the granulation and strong-field magnetic
concentrations, with p-mode modulation evident in time-sequence sampling. Zooming in on the G-
band bright points shows their close correspondence with (unsigned) HMI field concentrations.

Second column: bright chromosphere in plage and network but shock-ridden “clapotisphere” else-
where. The latter gas, underneath the Ho fibrils, isn’t chromosphere because it does not radiate
Ho. The Call H and 1700 A scenes are closely similar, apart from obvious difference in sharpness.
The rms contrasts differ much because such wide-band Ca Il H is dominated by near-LTE inner-wing
brightness, 1700 A by bound-free scattering.

Third column: chromosphere. Both Ha and HeII 304 A show bright grains at fibril footpoints near
magnetic concentrations and darker fibrils covering the internetwork, with some but not 1:1 similarity
between the two diagnostics. HeII 304 A is supposed to sample the transition region. The rough
similarity suggests that the latter shares the fibrilar morphology of the chromosphere. However, the
bright blob seems specific for He IT 304 A.


https://robrutten.nl/dot
http://sdo.gsfc.nasa.gov

RECENT RESULTS ON Ha FORMATION

Leenaarts, Carlsson & Rouppe van der Voort (2012): 3D(t)-R—MHD-NE simulation snapshot
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Ha is a pure scattering line with S ~ J and small opacity in the upper photosphere
3D scattering across the opacity gap enhances fibril visibility
core darkness measures density, core width temperature (cf. Cauzzi et al. 2009)



http://adsabs.harvard.edu/abs/2012ApJ...749..136L
http://adsabs.harvard.edu/abs/2012A&A...540A..86R
http://adsabs.harvard.edu/abs/2009A&A...503..577C
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These two papers are complementary. Leenaarts et al. (2012) analyze Ho formation in a snapshot
from a 3D time-dependent MHD simulation (including non-equilibrium hydrogen ionization) with the
Bifrost code. Rutten & Uitenbroek (2012) analyze Ha formation in the most recent 1D static plane-
parallel hydrostatic-equilibrum standard model, FCHHT-B of Fontenla et al. (2009).

The key result is that Ho is a resonant scattering line. Its line source function S is given by the angular
mean of the radiation field J everywhere above the deep photosphere. There is a high-J plateau across
the cool upper photosphere fed by scattering from below and from above. It is due to low line opacity,
as shown by the last graph for line-center and inner-wing wavelengths. The optical depth buildup
(dotted) is negligible across this opacity gap. Above it, S has an outward drop akin to the /= drop
in a scattering isothermal atmosphere, with Eddington-Barbier emergent-intensity sampling. Large
thermal broadening makes the core width a temperature diagnostic (Cauzzi et al. 2009).

The first image thumbnail is a clicker opening the next page, showing a cutout of the Bifrost image
when the Ha formation is computed along columns in 1D fashion. The next page has this done in
3D. Blink the two to see how strikingly the fibrils come into view in the 3D case. The underlying
larger-contrast granulation pattern is washed out by 3D scattering across the opacity gap.

The second image thumbnail opens a page with figure 13 of Leenaarts et al. (2012). Blow it up to
convince yourself that the fibrils roughly outline the azimuthal field direction (red arrows).



http://adsabs.harvard.edu/abs/2012ApJ...749..136L
http://adsabs.harvard.edu/abs/2012A&A...540A..86R
http://adsabs.harvard.edu/abs/2009ApJ...707..482F
http://adsabs.harvard.edu/abs/2009A&A...503..577C
http://adsabs.harvard.edu/abs/2012ApJ...749..136L







start Figure 13 Leenaarts, Carlsson & Rouppe van der Voort (2012) index
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OSLO SIMULATION VERSUS 1D STANDARD MODELS
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e simulation = state of the art: 3D(t), B, non-HE, SE populations but NE for H
Leenaarts, Carlsson & Rouppe van der Voort (2012)

e ALC7 = UV fit: 1D static, no B, HE + microturbulence, SE populations
Avrett & Loeser (2008)

e FCHHT-B = UV fit: 1D static, no B, HE + imposed acceleration, SE populations
Fontenla, Curdt, Haberreiter, Harder & Tian (2009)



http://adsabs.harvard.edu/abs/2012ApJ...749..136L
http://adsabs.harvard.edu/abs/2008ApJS..175..229A
http://adsabs.harvard.edu/abs/2009ApJ...707..482F
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» FCHHTB = UV fit: 1D slatic, no 47, HE + imposed acoeleration, SE populations
Fontenia, Curdt, Haberreiter, Harder & Tian (2009)

Comparison between the Oslo Bifrost simulation and the latest 1D standard models. The greyscale
measures the occurrence probability per pixel across the simulation snapshot at the given height. Left:
temperature against height. Right: mean intensity J at Ho line center against height.

The biturcation in simulation temperature in the deepest layers represents granules and intergranular
lanes. The narrow neck in the upper-photosphere temperature, above reversed granulation and below
the growth of acoustic waves into shocks, is close to 1D radiative-equilibrium models. However, the
spread in J(Hc) is already large.

The FCHHT-B chromosphere, supported by ad-hoc postulated acceleration, has isothermal-slab char-
acter. The deep temperature minimum below it boosts .J across the corresponding Ha opacity gap by
strong backscattering from the slab. Higher up, the outward S = J scattering decay of Ho is similar
for the three curves.

The T and J(Hco) behaviors may seem arguably similar between the simulation and standard mod-
els. However, the conceptual differences between plane-parallel static hydrostatic-equilibrium mod-
eling and the 3D(t) MHD simulation are enormous (cf. Newtonian gravitation versus general relativ-
ity). The T'(h) stratifications in the simulation vary tremendously, with shocks propagating upwards
and sideways along fields and the increase to coronal temperature dancing rapidly up and down over a
large height range. The standard models cannot be taken as spatio-temporal mean of these variations.



1959ApJ.

In S/S:

CANONICAL CHROMOSPHERIC LINE FORMATION

e CRD line source function including detour paths:

71/0 + 8:/OBVO (T) + 771,/03110 (Td)
L+e, +m,
= (1 — &y T 771/0) 7Vo + 5VOBV0 (T) + UVOBVO (Td)

!
S

e ¢ = upper-lower collisional destruction fraction of total extinction
n = detour-path extinction fraction of total extinction
¢’,n' = idem as ratio to scattering extinction
J = profile-averaged angle-averaged intensity
Ty = formal detour excitation temperature: (g, Dw)/(g: Di) = exp(hvo/kTy)

e line source function split (Thomas 1957):
“collision type” (H & K) or “photoelectric type” (Ha, Balmer continuum feeding)



http://adsabs.harvard.edu/abs/1957ApJ...125..260T
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Canonical wisdom. The graphs show the Planck function B and line source function S' against op-
tical depth (outward to the left). Both graphs are reprinted in both the first (1970) and second (1978)
editions of Mihalas’s “Stellar Atmospheres”. Jefferies & Thomas (1959) produced them to illustrate
the classification of Thomas (1957), splitting lines between “collision type” at left and “photoelectric
type” at right. They named Call H & K an example of the first, Ho an example of the latter.

The difference was assigned to the ¢ /n ratio. For Ha the high source function across the upper photo-
sphere in the righthand graph was attributed to preponderance of detour-path nB(Ty) contribution, for
Ha typically Balmer photoionization up from n = 2 plus cascade recombination (into high n followed
by downward An = 1 steps) down into n= 3 and spontaneous Ha emission.

The various curves in the lefthand graph match the source functions of NalD1, Ca Il 8542 A, Call K,
and Mg II k well (see my Graphical introduction to NLTE chromospheric line formation).

So is all well with the canonical wisdom? Not for Ho! In the simulation snapshot and in the standard
models it is a scattering-dominated line just as the others, with negligible detour contribution except in
the transition region. Its unusual superthermal upper-photosphere source function comes instead from
chromospheric backscattering across its unusual opacity gap.


http://adsabs.harvard.edu/abs/1970stat.book.....M
http://adsabs.harvard.edu/abs/1978stat.book.....M
http://adsabs.harvard.edu/abs/1959ApJ...129..401J
http://adsabs.harvard.edu/abs/1957ApJ...125..260T
https://robrutten.nl/rrweb/rjr-pubs/2012-monterey.pdf
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Ha SOURCE FUNCTION IN THE FCHHT-B MODEL

Rutten & Uitenbroek (2012)
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The detour part 7,,[B,, (T4) — J.,]/S., exceeds the collision part e,,[B,, (T') —J,,]/S.,.

However, their sum [S!

— Ju)/S., (solid) reaches only a few percent so S!, ~ J,,.

e The Ha core is dominated by resonance scattering with a formation gap below the chromo-
sphere filled by backscattered radiation. The FCHHT-B chromosphere acts as scattering
attenuator building up its own irradiation. Most emerging photons are created in the deep
photosphere where ¢,, ~ 1 and J,, ~ B,,(T).

e The FCHHT-B Ha core formation is well described by the Eddington-Barbier approximation
for an irradiated finite isothermal scattering atmosphere.


http://adsabs.harvard.edu/abs/2012A&A...540A..86R
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Ha formation in the FCHHT-B model. This model is unlikely to describe any actual column in the
solar atmosphere nor a spatio-temporal average, but it serves here for didactic breakdown.

Left: Ho B, S, J with S ~ S (thin solid) and J ~ J (dashed). Note that everywhere below the
transition to the corona S ~ J, in particular in the 7= 0.3 - 3 core formation range.

Right: fractional collisional (dashed) and detour (dot-dashed) contributions to S', as specified under
the first bullet. The detour contribution becomes dominant in the transition to the corona, but that is
transparent. Elsewhere S ~ J. Thus, Ha is a scattering line. Most Ha photons are created in the deep
photosphere. Backscattering across the temperature-minimum opacity gap builds up J there.

Doubling the FCHHT-B chromospheric temperature produces appreciably higher S =~ .J, peaking at
6000 K just above the gap, but also larger Ho opacity so that T = 1 is reached already at 1300 km. This
further-out sampling of the outward J decline compensates for the increase, so that 1(0,1) ~ S(t=1)
remains nearly the same. Doubling the chromospheric density produces only 200 K higher J across the
gap, less elsewhere, but also moves 7 =1 to about 1700 km and so lowers the emergent core intensity
appreciably. Upshot: the core intensity is a density rather than a temperature diagnostic.

The height extent of the gap equals the width of a full-grown granule. Thus, actual 3D scattering
smoothens the granular scene in the radiation impinging from below on the chromosphere.



Ha CLOUD MODELING

Rutten & Uitenbroek (2012)
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Ha-Ha formation: the Kurucz and FCHHT-B models both reproduce observed Ha
cloud modeling: I, = 1,(0) e ™ + [7> Sy(ty) e~ (™2 dt,

new recipe: for the impinging profile 7,(0) take the emergent profile in a RE model
at the depth 7, which equals the cloud thickness 75


http://adsabs.harvard.edu/abs/2012A&A...540A..86R
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First row: comparison of Ha formation in the radiative-equilibrium model without chromosphere of
Kurucz (1992) and in the FCHHT-B model. Both have similar outward scattering declines for Ho
S ~ J, but located in the photosphere for the Kurucz model, in the chromosphere for the FCHHT-B
model. The predicted emergent Ho profiles are similar and reproduce the solar atlas profile fairly well.

This comparison illustrates the large effect of Ho backscattering by the FCHHT-B chromosphere.
Without it J(Ha) would drop as steeply as in the Kurucz model.

The second row compares Jy, profiles at various heights. They are similar in the two photospheres but
of course differ higher up. The dotted curves are the radial-intensity Ha profiles at h =850 km in the
FCHHT-B model and at h =252 km in the Kurucz model. The line-center optical depths are 1o =3.5
at both locations, equalling the optical thickness of the FCHHT-B chromosphere.

The Ha formation with an underlying opacity gap suggests cloud modeling, preferably with depth-
dependent scattering S within the cloud. The suggested recipe addresses the long-standing problem
of what to assume for the impinging Hoa background profile 1,(0). The near equality of the dotted
profiles in the second row implies that one should take the outward-intensity profile in the radiative-
equilibrium model at optical depth equal to the cloud’s thickness (a cloud parameter) to represent the
backscattering-boosted intensity profile that impinges on the chromospheric cloud.


http://adsabs.harvard.edu/abs/1992RMxAA..23..187K
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http://adsabs.harvard.edu/abs/2012A&A...540A..86R
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More Ha properties illustrated with the FCHHT-B model. In 1D Ha NLTE-scatters across its marked
temperature minimum, and so does Ly«. This is shown in the first graph plotting B, .S, J for the two
lines in the form of equivalent temperatures (electron, excitation, radiation) to make them comparable
without difference from Planck function temperature sensitivity. The FCHHT-B chromosphere has
Ha line-center optical thickness 3.5 and mean free photon path 100 km (underneath it is as wide as
the opacity gap). In Lya the chromosphere thickness is 10° with mean free path only 1 cm at its
bottom, yet smaller below. Nevertheless, Ly« scattering smoothens the deep source function dip that
LTE would predict in the temperature minimum.

The Ly« scattering causes a high peak in the population departure coefficient b = n/n*" for level
n =2 (lefthand graph) since by ~ by (Siya/Brya) = Jiya/Brya With by = 1. This overpopulation
of the lower level of Ha causes a partial fill-in of the opacity gap for this line. (In the opacity plot
on this earlier display the overpopulation produces the difference between the dash-dotted line-center
opacity curve for LTE and the solid curve for NLTE.)

In 3D we may regard this smoothing of the deep temperature minimum and steep chromospheric
temperature rise of the FCHHT-B model as indicative of what happens generally for small-scale tem-
perature inhomogeneity, also for lateral variations. See the cartoon. The Ha source function gets
smoothed by resonance scattering in the line itself, the Ho opacity by scattering in Lyc.



SST + SOUP NEAR-LIMB Ha LINE-CENTER MOVIE 2005-10-04

Van Noort & Rouppe van der Voort (2006)

v’ darker fibril = denser fibril
v' bright under fibril = backscattering
v’ slender fibrils seem to outline magnetic field

? fibrils smoother than component threads?
? filament reconnection site bright from n B(7}) detours?
? pore region bright from 1 B(Ty) detours?


http://adsabs.harvard.edu/abs/2006ApJ...648L..67V
https://robrutten.nl/rrweb/rjr-talkstuff/halpha_set2_04Oct2005_strt.mpg

start e index

Clicking on the image in the previous display gets you a fabulous SST movie. The view is off-center
(1~ 0.2, limb towards the top) so that many structures are seen from aside. There is a decaying active
region hidden under the Ha junk, with a large pore shooting off a dark filamentary surge. DOT image
sequences of the same region in multiple diagnostics are available here. There are many dynamic
fibrils (see De Pontieu et al. 2007 who used another SST data set from the same day) visible as dark,
upright, extending and retracting fingers. The small bright fast-moving features in the active-region
filament are described by Lin et al. (2012).

Watching the long, more or less horizontal fibrils in the lower-right quadrant confirms some of my
Ha formation points. Darker fibrils indeed seem denser, with the darkest parts reaching the highest.
Underneath some of the long fibrils one sees brightness that may well correspond to a backscattering-
filled cool opacity void, not to hotter gas. The fibril pattern strongly suggests magnetic field topogra-
phy mapping (as the dynamic fibrils indeed do, delineating wave-guided shocks).

Speculations concerning Ho formation: the long fibrils may appear smoother than the actual thermo-
dynamic topography due to S and T smoothing by scattering. The sudden brightness enhancement
under the filament, suggesting reconnection, may represent large detour contribution to S. The same
for the bright area near the center above the large pore. Such detour photon production may come
from hydrogen recombination in low-lying, unusually dense transition region gas.


http://dotdb.strw.leidenuniv.nl/DOT/Data/2005_10_04/
http://adsabs.harvard.edu/abs/2007ApJ...655..624D
http://adsabs.harvard.edu/abs/2012ApJ...747..129L

DOT DISK-CENTER ACTIVE REGION MOVIE 2005-07-09

FT S E \

line-center movie enlarged

? small Doppler = hot?
? moss bright from n B(T,) detours?
? reconnection fronts bright from 1 B(T;) detours?


https://robrutten.nl/dot/albums/movies/2005-07-09-AR10786-gb+hac+had+171.avi
https://robrutten.nl/dot/albums/movies/2005-07-09-AR10786-hac.avi
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The image in the previous display opens a four-panel movie combining DOT G band, Ha line-center
and Ha Dopplergrams with TRACE 171 A, aligned by Alfred de Wijn. (The bright 171 A markers
identity particle hits.) The clicker underneath opens the Ha line-center panel full-screen. The moat
flow in this region was studied from simultaneous SST data by Vargas Dominguez et al. (2007).

There is much to see. Long fibrils at bottom center. Dynamic fibrils at top center, with dark tops
extending and contracting to mask bright mossy plage. The very bright mossy area left of center,
bright in both Ha and 171 A, has a sharp boundary to the right. The line-center enlargement movie
shows sharp spreading arcs of enhanced brightness within it that smack of reconnection.

The Dopplergram signal is small in the bright mossy areas. Spreading penumbral waves are seen
around every sunspot. Both the long fibrils and the short dynamic fibrils display rapidly changing
black-and-white Doppler patterns.

Speculations concerning Ho formation: the bright regions suggest fields that are more vertical, hence
more interesting, than in the dynamic and long fibrils. The small Dopplergram amplitude there may be
due to large thermal broadening. The How and 171 A similarity suggest Ho brightness from 1 B(Ty) de-
tour contributions in dense low-lying transition-region gas, in agreement with the striking small-scale
down-the-throat-bright patchiness of active regions in these Lyc images from the VAULT-2 flight.



https://robrutten.nl/dot
http://trace.lmsal.com
http://adsabs.harvard.edu/abs/2007ApJ...660L.165V
https://robrutten.nl/rrweb/rjr-movies/VAULT-2.avi
http://wwwsolar.nrl.navy.mil/rockets/vault/index.html

CONCLUSION

e Ha formation
- Ha is a scattering line with an opacity gap

— core darkness ~ density; core width ~ temperature
- enhanced brightness from nB(7y) detours?

e Ha utilization
— Ha fibrils chart azimuthal field component

— use as lower boundary in NLFFF extrapolation?
— predict free energy loading in active regions?

e Ha observation
— DOT Ha mosaics: 3’ x 3’ @ 0.3” every 3 min [rq>8 cm]

— no Dutch solar physics = no support anymore
— unmothball to co-point with IRIS during 2013 and 20147
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Ha formation: in long dark fibrils and in dynamic fibrils Ho has Eddington-Barbier core sampling of
the outward source function decline characteristic for a scattering atmosphere or slab. The emergent
intensity is lower at larger density and further-out sampling. Temperature affects the core width more
than the core depth. The classic “photoelectric” detour-path domination of Thomas (1957) may cause
enhanced brightness where a dense low-lying transition region provides hydrogen recombination.

Ha utilization: dark Ho fibrils outline the azimuthal field component that should be valuable in-
put to NLFFF extrapolation of active-region field topography which may lead to reliable energy-
loading predictions. Vertical field features, as the RBE on-disk counterparts to spicules-II of
Rouppe van der Voort et al. (2009), are of more interest re direct upward mass, energy and helicity
transfer but are harder to observe.

Ha observation: the DOT (photo) remains unique in its capability to provide large-field Ha image
mosaics at 0.3" resolution (example) when the La Palma seeing is good. Unfortunately, its funding is
gone; worse, with Utrecht astronomy Dutch solar physics is gone. We would like to unmothball the
DOT next year to have it co-point with IRIS to provide Ha mosaics covering the IRIS slit wherever
it is. It seems highly worthwile to image the chromosphere around the IRIS slit. You are welcome to
help achieve this goal.



http://adsabs.harvard.edu/abs/1957ApJ...125..260T
http://adsabs.harvard.edu/abs/2009ApJ...705..272R
https://robrutten.nl/dot
https://robrutten.nl/dot/albums/photographs/2010-DOTkop.jpg
https://robrutten.nl/dot/albums/images/20050708-mosaic-ha-color.png
https://robrutten.nl/Utrecht_astronomy.html
https://robrutten.nl/Utrecht_solar.html
https://robrutten.nl/Closure_Utrecht.html
http://iris.lmsal.com/

DUTCH OPEN TELESCOPE

http://www.staff.science.uu.nl/~ruttel01l/dot

designed, built, operated by Robert H. Hammerschlag
non-vacuum inspirer for solar telescope technoloy

e properties
— wind-swept ocean site [south of jet streams]
- wind-flushed but stable open tower and telescope
- on-site cluster for speckle reconstruction

e synchronous movie maker since 1999
- continua, G band, tunable Ca Il H, profile-sampling Ha
- 0.27-0.3" resolution when r, > 8 cm
W, 2 - (pm: 80 mA Lyot filter for Ba Il 4554 Doppler & Stokes)
) W5
il

5 a
e e
- = e N

e Utrecht University saga
- 2003: UU evaluation “DOT pearl in crown of sciences”

- 2007: UU ends DOT funding

— 2008 — 2010: DOT operation on EC and NSF funding
— 2011: UU ends Utrecht astronomy; DOT mothballed
- 2013: Ha mosaic sequences co-pointed with IRIS?



https://robrutten.nl/dot

UTRECHT SOLAR PHYSICS
AW

“Sol lustitiae Illlustra Nos” :-r U -u Universiteit Utrecht

‘/JAA!\\ Sterrekundig Instituut
e past

- spectral line formation (1920 —2011)
Julius, Minnaert, Houtgast, de Jager, Zwaan, Rutten

— MHD and plasma physics (1960 — 2000)
de Jager, Kuperus, Rosenberg, Kuijpers

- solar and stellar magnetism (1970 — 1995)
Zwaan, Spruit, van Ballegooijen, Schrijver, Rutten*

e 2011 = the final year

- spectropolarimetry (SOLIS, Hinode, DST/IBIS, S5T)
Keller, Snik, Fischer, Gorobets

— photospheric & chromospheric dynamics
Leenaarts, [Vbgler], [Rutten]

— Dutch Open Telescope, EST design
[Hammerschlag],[Bettonvil]

e ex-Utrecht solar physicists abroad

Henk Spruit, Aad van Ballegooijen, Piet Martens, Karel Schrijver, Paul Hick,
Han Uitenbroek, Jo Bruls, Martin Volwerk, Kostas Tziotziou, Luc Rouppe van
der Voort, Michiel van Noort, Alfred de Wijn, Jorrit Leenaarts, Nikola Vitas,
Catherine Fischer, Gregal Vissers, Tijmen van Wettum



UNDERSTANDING AND OBSERVING THE Ho CHROMOSPHERE

utten
Lingezicht Astrophysics Deil & Insitut for Teorelisk Astrofysikk Oslo

Lockyer (1868): chromosphere = offimb emission H1 Balmer + Hel D; + Ball
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RECENT RESULTS ON Ha FORMATION

Leenaarts, Carlsson &

Noort (2012)

Haisal with s ~ photosph
« 3D scattering across the opacity gap enhances fioi visiilly

« core darkness measures density, core width temperature (cl. Cauzzi et a. 2009)
« slender fioris map azimuthal field direction
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OSLO SIMULATION VERSUS 1D STANDARD MODELS
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« ALCT = UV it 1D statc, no I}, HE + microturbulence, SE populations.
Avrett & Loeser (2008)

« FCHHT8 = UV fit: 1D static, no 7, HE + imposed acceleraion, SE populations
Fontenla, Curdt, Haberreiter, Hardor & Tian (2009)
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Ruiten & Uitenbrock (2012
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CONCLUSION start DUTCH OPEN TELESCOPE

designed, buil, operated by Robert H. Hammerschiag
< Ho formation non-vacuum inspirer for solar tefescope technoloy
- Ha s ascattering line with an opacity gap

- core darkness ~ densiy; core widih ~ temperalure.
- enhanced brightness from 113 (1) detours? Hosformation: in

« properties
~ wind-swept ocean site [south of jet streams]
= wind-flushed but stable open tower and telescope:
- on-site cluster for speckle reconsiruction

i e o e atring armiphers x st T serpet

than the core depth. The classic —'W.mmm- * etour-path domination of Thomas (1957) may cause

» Ho utilzation oo
- o s rat it i comporar gt i o o it g e T e . e Gt samping
- usa as lower boundary in NLFFF extrapolation? put o N eld topography which may lead to elsble 02005 st
~ prodict a0 snergy loading in active rogions? S o T it Rr. s PR ta i ot . b - Spoaatsi il

Rouppe van der Voor t al. (2009, re of more et e direet upwand mass cnergy and helicity ~ (pm: 80mA Lyotfiter for Bal 4554 Dogpler & Stokes)
runsie bt are harder o observ.
« Unecht Universiy saga

« Ha obsenaiion i shuriass o DOT o) e s 1 cabity b vkt gl Fo gs ~ 2003: UU evaluation "DOT pearln crown of sciences”
DOt i " ro>8 mossics ar 0. rsolution (examyc) when the L Palma scing i good, Unforuna
DOT Ha mosalce: 3" @ 0:3" avery 3 min o > 8 cm] gone; worse, with Uteecht asironomy Dutch solar physics s gone. We would lik ~ 2007: UU ends DOT tunding
- o Dutch solarphysics = 10 support anymore DOT eyt e oo i 15 i o . o covenn 0 113l s ~ 2008 - 2010: DOT operaton on EG and NSF funding
~ unmothbalita co-point with IRIS during 2013 and 20147 . I seems highly wore

— 2011: UU ends Utrecht astronomy; DOT mothballed
- 2013: Ha mosaic sequences co-pointed with IRIS?
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UTRECHT SOLAR PHYSICS

“Sol lustitiae llustra Nos™ Universicelt Utrecht
Sterrekundig Institut hunbs/ thumb-\par| . Jpa

« past
~ spectraline formaton (1920 - 2011)
s Minnaort, Houtgast oo Jager, Zwaan, Rutton
~ MHD and plasma physics (1960 - 2000) g
do Jager, Kuperus, Rosarbers, Kuipers
- solar and stellar magnetism (1970 - 1995)
Zwaan, Spruit, van Ballegooijen, Schrijver, Rutten*
« 2011 = he final yoar
- spectropolarimalry (SOLIS, Hinode, DST/BIS, SST)
Kollr, S, Fischer, Gorobets
- prtspherics cvomospher.gnamics
oenaarts, [Vagle), Rutten]
- Dutch Open Telescope, EST design
[Hammerschiag) Betionvi]
+ ox-Urrecht solar physicst abroad
Henk Spnit, Aad van Ballegoojen, Piet Martens, Karel Schiver, Paul Hick
Han Utenbrook, Jo Bruls Marin Vohwerk, Kosias Tzotziou, Luc Fo

uppe van
dor Voort, Michi! van Noort, Allred de Wi, Jorit Leenaarts, Nikola Vitas,
Catherine Fischr, Gregal Vissers, Tijmen van Wettum
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