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Abstract The term “ultraviolet (UV) burst” is introduced to describe small, intense, tran-
sient brightenings in ultraviolet images of solar active regions. We inventorize their proper-
ties and provide a definition based on image sequences in transition-region lines. Coronal
signatures are rare, and most bursts are associated with small-scale, canceling opposite-
polarity fields in the photosphere that occur in emerging flux regions, moving magnetic
features in sunspot moats, and sunspot light bridges. We also compare UV bursts with simi-
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lar transition-region phenomena found previously in solar ultraviolet spectrometry and with
similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the lat-
ter, UV bursts are probably small-scale magnetic reconnection events occurring in the low
atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines
with optically thin formation gives unique diagnostic opportunities for studying the physics
of magnetic reconnection in the low solar atmosphere. This paper is a review report from an
International Space Science Institute team that met in 2016–2017.

Keywords Sun: atmosphere · Sun: activity · Sun: UV radiation · Sun: transition region

1 Introduction

The Sun’s chromosphere and corona were identified well before the space age. The two or-
ders of magnitude difference between their temperatures suggested there is a thin, abrupt
transition in which the temperature rises very rapidly with height (e.g., Mariska 1992). De-
spite its thinness this “transition region” (TR) was found to emit strongly in most resonance
lines in the ultraviolet (UV) between 500 and 1600 Å. The lines in this region are generally
called “TR lines” and specific phenomena observed in them “TR phenomena”. The lines are
usually assigned characteristic formation temperatures in the 20–800 kK range that are de-
rived by assuming optically-thin ionization equilibrium. In this paper we will identify ions
with their temperatures of maximum ionization (Tmax), but readers should be aware that for
highly dynamic phenomena the emission may be formed in plasma out of equilibrium and
the effective temperature of formation may differ from Tmax. This has been demonstrated
in models of coronal loops by Noci et al. (1989) and in models of the IRIS Si IV and O IV

emission lines by Doyle et al. (2013) and Olluri et al. (2013). Note that the high densities
inferred for UV bursts (e.g., Peter et al. 2014) may limit these effects as discussed by Young
et al. (2018).

Imaging in specific UV lines is rarely achieved due to technology restrictions, so that
so far most TR phenomena were classified through their spectral UV features only, with
particular emphasis on large Doppler shifts, excessive broadening (larger than the thermal
Doppler width defined by the Tmax value), and complex profiles.
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The Interface Region Imaging Spectrometer (IRIS, De Pontieu et al. 2014) is the newest
UV spectrometer to observe solar TR lines. The telescope feeds a slit spectrometer, provid-
ing spectra at unprecedented spatial and spectral resolution (Sect. 3). In addition, a Slit-Jaw
Imager (SJI) yields simultaneous images in four bandpasses. The one at 1400 Å is of par-
ticular interest as it is often dominated by two Si IV lines, making IRIS the first mission to
routinely obtain high-resolution images in TR lines (Appendix A). When combined with si-
multaneous spectroscopy of these lines, the environment of TR phenomena, including their
history, can be identified, facilitating interpretation of their UV signatures in terms of other
solar fine structures found with other diagnostics.

In most energetic events, the two Si IV line profiles have factor-two peak and profile ra-
tios indicating optically thin line formation (Peter et al. 2014; Kim et al. 2015; Vissers et al.
2015). This is a valuable asset as their intensities therefore represent a more direct mea-
sure of energy release than the complex, optically-thick, source function mapping of lines
such as the C II and Mg II h & k resonance lines sampled by IRIS. Their dominance of the
IRIS 1400 Å slit-jaw passband over the continuum contribution wherever there is substantial
heating delivers direct, high-cadence, wide-field imaging of such events (example in panel
b of Fig. 1).

An early discovery from IRIS (Peter et al. 2014) was a type of very intense, com-
pact brightening in active regions with highly complex Si IV profiles called a bomb (“IRIS
bombs”, IB) in view of striking similarities with Ellerman bombs (EB; Ellerman 1917). This
discovery inspired the first author to convene an International Space Science Institute (ISSI)
International Team to study these bombs and other intense UV brightenings detected in IRIS
spectra and images. The team met twice, in 2016 January and 2017 March, with the subject
“Solar UV bursts—a new insight to magnetic reconnection”. The term UV burst was chosen
to denote the full scale of IRIS brightening events. Their discussions included the following
major issues: How are UV bursts related to EBs and the magnetic field? Can underlying pat-
terns be recognised in different types? Can complex burst line profiles be reproduced with
numerical simulation codes?

The present article summarizes these discussions and the conclusions reached at these
meetings, and also provides observational criteria to classify UV bursts in other IRIS data.

Section 2 presents our definition of a UV burst. Section 3 summarizes transient TR phe-
nomena observed with previous UV instrumentation. Section 4 presents a summary of ob-
servational UV burst results obtained so far from IRIS, while Sect. 5 describes efforts in
modeling these. A final summary is given in Sect. 6.

2 UV Burst Definition

Most solar phenomena are identified from their morphology in images or image sequences.
For example, relatively stable structures such as prominences, sunspots and coronal loops
are easily identified on individual images, while transient features such as flares and jets are
identified from fast-cadence image sequences. Do UV bursts possess distinct signatures that
can be readily employed for their identification?

Figure 1 shows near-simultaneous snapshots from 10-minute active-region image se-
quences obtained with IRIS and the Solar Dynamics Observatory (SDO). A movie version
covering the whole sequence in the same format accompanies this manuscript. The IRIS
1400 Å slit-jaw image (SJI) in panel (b) shows a number of compact bright grains (black in
the images) that are much brighter than their surroundings. Viewing the full sequence in the
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Fig. 1 Images illustrating UV bursts from a 10-minute 18-second cadence IRIS sequence showing part of
active region AR 11 875 on October 22, 2013 at solar (X,Y ) = (−162.25) during 21:45–21:55 UT. Panel (a):
line-of-sight (LOS) HMI magnetogram scaled between ±300 G. Panel (b): IRIS SJI 1400 Å. Panels (c)–(f):
AIA 171 Å, 1700 Å, 1600 Å and 304 Å images. Plotted quantity for panels (b)–(f) is intensity in DN s−1.
The blue contours superimposed on panels (a) and (c)–(f) outline the brightest bursts in panel (b), at a level
of 1000 DN s−1
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movie shows that their brightness flickers, that some are present for the entire duration, and
that others are short-lived. We call such features UV bursts.

Figure 1 also shows the co-temporal line-of-sight (LOS) magnetic field from the Helio-
seismic and Magnetic Imager (HMI; Scherrer et al. 2012) on board SDO, and UV images
from SDO’s Atmospheric Imaging Assembly (AIA; Lemen et al. 2012). The AIA 171 Å
filter is dominated by Fe IX λ171.1, formed at 0.8 MK. The 304 Å filter is dominated by the
He II Lyα-like resonance line and is formed around 80 kK. The AIA 1600 Å and 1700 Å
channels sample the upper photosphere and lower chromosphere, with small magnetic con-
centrations appearing bright from their evacuation. If atmospheric heating is sufficiently
large then the C IV λλ1548, 1550 Å resonance lines can dominate over the continuum in the
1600 Å channel, and this is often the case for UV bursts hence the stronger contrast com-
pared to the 1700 Å channel. Note that the 1600 Å channel has a significantly broader filter
width than the SJI 1400 Å channel and the continuum is more intense, thus the SJI channel
is much more effective for TR imaging.

Our name “burst” denotes the brief duration of the brightening events. As such it is a
standard astronomy term, as in “gamma-ray bursts” and “fast radio bursts”. This name has
also been used before to describe solar TR phenomena (Sect. 3.4).

We append “UV” to burst instead of “transition region” to keep closer to observation and
because “region” in the latter is somewhat a misnomer. In the actual solar atmosphere every
radial column must naturally contain a steep temperature rise, but its height varies tremen-
dously both spatially and temporally and does not define a layer or shell as in traditional
one-dimensional equilibrium models such as the classical ones of Vernazza et al. (1981).
A sharper and physically sounder description is to define the chromosphere-corona transition
at any location and instant as the height where hydrogen reaches 50% ionization—generally
a non-equilibrium quantity making up a highly warped, dynamic, and history-dependent
surface. There are probably no phenomena restricted solely to this instantaneous transition
surface; more likely heating events with increasing ionization come from below (such as the
bursts here) whereas cooling events with increasing recombination come from above (such
as coronal rain). The “TR” phenomena reported in the older literature must represent spec-
tral UV signatures of wider-origin events. Our goal is to re-classify them into the latter by
exploiting IRIS’ UV imaging capability.

Thus, we prefer the term “UV bursts”. The UV wavelength range 465 to 1550 Å (bounded
by Ne VII λ465 and C IV λ1550) is indeed dominated by chromosphere-corona transition
lines, although there are also some chromospheric and coronal lines in this range.

Figure 1 and its movie version give a quick impression of UV bursts; now we define them
more formally. They are identified in image sequences sampling ultraviolet passbands that
are dominated by a chromosphere-corona transition emission line, and have the following
properties:

1. Compactness. Core brightenings �2′′ in size, typically ≤1′′. A burst may appear with
extended structure (jet, fibril, loop) connected to it, but these are typically less bright.
The burst itself may also appear spatially extended into one direction (“flame”), but re-
mains �2′′. Two or more bursts may appear close together but remain associated with
the same magnetic feature in the photosphere;

2. Duration. Bursts can have lifetimes ranging from tens of seconds to over an hour. For
long-lived ones the intensity is not constant, but may flicker by about a factor two on
timescales around a minute. At high angular resolution such bursts can also appear as a
sequence of intermittent, repetitive flarings, possibly with a migrating footpoint;

3. Intensity. The burst is significantly brighter than the surroundings in the pertinent UV
passband. For Fig. 1(b) the blue contours correspond to a factor 24 above the image
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median value. Peak SJI 1400 Å intensities of individual spatial pixels of the brighter
events can reach factors of 100–1000 higher than the median.

4. Motion. UV bursts show only small proper motions, typically ≤10 km s−1. That is, they
generally track dynamics of photospheric magnetic features and their interactions, rather
than traveling-front or wave motions along extended structures such as loops;

5. UV bursts are not directly related to flares. This condition distinguishes UV bursts from
the compact, intense kernels that appear along flare ribbons and otherwise look similar.

We do not recommend setting a specific intensity threshold for UV bursts, as there is
no physical reason to exclude a wide spectrum of events with different energies and tem-
peratures defining the signal in the pertinent wavelength bands. Instead, a dataset-specific
threshold suits better to let the observer obtain a manageable number of events for study, for
example by specifying a factor above the median intensity value (such as 24 for panel b of
Fig. 1), or a factor kσ above the median value with σ the standard deviation of the intensity
over an image (k ≈ 7 for the 1400 Å data in Fig. 1). Also note that integrated intensity over
the burst area may define a more appropriate threshold than the intensity of the brightest
spatial pixel in the burst.

The above criteria also include most IBs identified in the literature, but with the impor-
tant difference that the latter are defined through their spectroscopic signatures discussed
in Sect. 4. At least one type of event, the narrow line bursts of Hou et al. (2016), do not
satisfy the IB criteria while satisfying the UV burst criteria. Therefore we envision IBs to be
a subclass of UV bursts, although probably the dominant one.

Section 4 describes key results from the IRIS papers in more detail; we summarize these
here and we refer the reader to Sect. 4 for further details and references to the literature:

• Si IV line profiles of UV bursts mostly have a complex shape that can include multiple
peaks, large excess broadening beyond the thermal width (at temperature Tmax), and very
extended wings. They often indicate the presence of bi-modal jets; in slanted limbward
viewing these may also be mapped into profile differences along different LOSs to the
burst. However, some events show simple, Gaussian-shaped profiles not much wider than
the thermal width;

• UV bursts generally overlie or are directly adjacent to small magnetic features in the
photosphere that interact (usually cancelation following convergent proper motion) with
similar or larger opposite-polarity features;

• Most UV bursts do not show significant co-spatial brightening in the AIA 171 Å channel
(dominated by Fe IX, formed at 0.8 MK), nor in the other coronal AIA channels, and only
rarely in the He II 304 Å passband;

• EBs are more common than UV bursts, with around 10–20% of EBs having a burst sig-
nature while 30–60% of bursts show an EB signature.

These should be considered properties of UV bursts, but are not part of their definition
above.

The general consensus from the literature and our ISSI team is that UV bursts are small-
scale magnetic reconnection events, and that their complex Si IV line profiles possibly dis-
play dynamics associated with a current sheet; for example fast-moving, dense plasmoids,1

1The term plasmoid applies to magnetic islands that appear in models of current sheets subject to the tearing
instability and also to observed features in the Earth’s magnetotail, where the magnetic field can be measured
in situ. For remote-sensing solar observations, the term is often applied to small-scale brightenings, but it is
not possible to determine if these are the same as the current sheet/magnetotail plasmoids without magnetic
field measurements.
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Table 1 Properties of TR instruments

Instrument Years Wavelength Resolution

Range/Å Spatial/arcsec Spectral/Å

Skylab S082B 1973–1974 970–1940 2 0.06

HRTS 1975–1992 1170–1700 1 0.1

SMM/UVSP 1980–1989 1070–3600 4 0.05

SOHO/SUMER 1996–2017 500–1600 2–3 0.04

SOHO/CDS 1996–2013 308–381, 515-630 6–10 0.3–0.5

Hinode/EIS 2006–present 170–212, 246–292 3–4 0.06

IRIS 2013–present 1332–1358, 1389–1407 0.3 0.026

or turbulence induced in surrounding plasma by reconnection outflow jets. The reconnection
occurs somewhere in the upper photosphere-to-upper chromosphere regime, rather deep in
the atmosphere. The particular location and also the line of sight to the reconnection site
may be responsible for differences in burst signatures such as variations in Si IV profiles.

Our UV burst definition requires transition region imaging capability, which was either
not available with instruments prior to IRIS or infrequently used (Appendix A). If a slit
spectrometer is raster-stepping to build an image scan, only infrequent snapshots of the burst
will be obtained, and just one if it is short-lived. If there is only one snapshot the evolution
and proper motion cannot be analyzed. However, it may be possible to estimate at least
the latter from supporting data, for example, magnetograms (HMI or better) or magnetic-
concentration monitoring in AIA 1600 and 1700 Å images. Also, if the burst intensity hap-
pens to be low at the time(s) of snapshot sampling it may fail high-intensity threshold cri-
teria. Therefore raster mode data tend to underestimate the number of UV bursts, but some
may get identified properly.

In sit-and-stare mode following mean solar rotation (10 ′′/hr at disk center) the time evo-
lution can be accurately monitored as long as the burst remains within the slit, but if the burst
has low intensity during this sampling period it may not be flagged at all. Also, the spatial
extent of a burst cannot be established with fixed-slit data, which may lead to erroneous
feature classification.

3 Previous Event Types

TR event types are generally quite different to coronal events such as coronal hole plumes,
active region loops and coronal bright points. These have typical spatial extents of 10’s of
arcseconds and lifetimes from hours to days, compared to sizes of a few arcseconds or less,
and lifetimes of minutes for TR events. In addition the availability of coronal EUV and
X-ray imaging means coronal features are typically identified from spatial morphology. The
various TR event types have almost exclusively been identified through UV spectrometry,
and so definitions to some extent depend on the capabilities of the instruments, in particular
their spatial resolution, spectral resolution and coverage. Table 1 summarizes the character-
istics of the instruments treated in this section. Note that due to multiple configurations or
changes in time, the listed parameters are not complete; the listed values are typical for TR
measurements by these instruments. The table shows that IRIS has better spatial and spectral
resolutions compared to other instruments by factors of three and two, respectively.
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Table 2 Key UV lines sampling the chromosphere-corona transition

Ion log(Tmax/K) Wavelength (Å) Instruments

Si IV 4.90 1393.78, 1402.77 HRTS, UVSP, SUMER, IRIS

C IV 5.05 1548.19, 1550.77 HRTS, UVSP, SUMER

O IV 5.15 1401.16 HRTS, UVSP, SUMER, IRIS

N V 5.30 1238.82, 1242.80 HRTS, SUMER

O V 5.40 629.73 CDS, SUMER(×2)

192.90 EIS

The first report of strongly broadened TR lines was Brueckner et al. (1976) who pre-
sented spectra of TR instabilities observed as very broad features in the C IV λλ1548, 1550
doublet observed with the Skylab S082B instrument. This spectrometer had effectively no
spatial resolution along the slit, so that further analysis awaited flights of the High Resolu-
tion Telescope Spectrograph (HRTS) rocket experiment. HRTS was the first solar instrument
to observe the TR at high spectral and spatial resolution. It was flown ten times on rockets
between 1975 and 1997 and once as part of the Spacelab 2 payload in 1985.2

Long-term monitoring at high spatial resolution of the TR began with the UltraViolet
Spectrometer and Polarimeter (UVSP) on board the Solar Maximum Mission during 1984
to 1989. The Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and Coronal
Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO)
were the next major spectrometers with TR coverage, observing for almost 20 years since
1996. The EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft was launched
in 2006 and, although mostly focused on the corona, it observes a number of upper TR
emission lines. Finally, IRIS was launched in 2013. It observes UV lines with significantly
higher spatial and spectral resolution than previous instruments, and adds highly-valuable
slitjaw imaging.

We now discuss different types of TR features that were identified with these instruments
in the light of our UV bursts. The emission lines that were most commonly used are given
in Table 2, with Tmax values derived from the CHIANTI database (Dere et al. 1997; Del
Zanna et al. 2015; Young et al. 2016). We suggest that especially the so-called SMM bursts
(Sect. 3.4) and possibly also active region blinkers (Sect. 3.5) directly correspond to UV
bursts, based on the emission measure comparison in Appendix B.

3.1 Jets

In recent solar physics the term jet is usually applied to transient, elongated and extending
structures that are seen in emission in image sequences. The term surge pre-dates the use of
jet in the solar physics literature (e.g., Zirin 1966) and is generally used to describe similar
structures that are mostly seen in absorption in chromospheric lines (particularly Hα).

The lack of TR imaging capability prior to IRIS means that the analogs of coronal or
chromospheric jets could not be directly identified. Instead TR spectra have been reported
of jets identified from other imaging data. For example, Schmieder et al. (1983) studied
SMM/UVSP spectra of a surge identified from Hα images, and they measured blueshifts
and line broadening in the C IV lines. Similarly, Madjarska (2011) captured SOHO/SUMER

2A brief history of HRTS is available at http://wwwsolar.nrl.navy.mil/hrts_hist5.html.

http://wwwsolar.nrl.navy.mil/hrts_hist5.html
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spectra of a coronal jet identified from EUV and X-ray imaging data, and found blueshifts
of up to 300 km s−1 in several TR lines.

The term jet was applied specifically to a TR spectral feature by Brueckner and Bartoe
(1983) who identified intense emission in Si IV and C IV lines that always appeared blue-
shifted and extended out to 400 km s−1. Subsequent work showed that these features are
quite rare, however (Dere 1994).

Since the launch of IRIS, jets can now be identified directly from TR imaging data, and
examples include the quiet Sun network jets of Tian et al. (2014b) and the active region jets
of Cheung et al. (2015).

A jet may correspond to a UV burst if there is an intense brightening at the jet base that
passes the criteria of Sect. 2. The column of the jet, where large velocities are expected,
generally would not pass the criteria because the emission is typically weak and extends
over several or more arcseconds.

3.2 Penumbral Microjets and Sunspot Dots

Penumbral microjets were first described by Katsukawa et al. (2007) based on Hinode Solar
Optical Telescope filtergram images centered on the Ca II H line. They are small jets occur-
ring within a sunspot’s penumbra with lengths typically 1 to 4 Mm and lifetimes ≤1 minute.
Many can be identified at any one time within a penumbra. They often have a different ori-
entation than the adjacent penumbral filaments. Cospatial observations with IRIS and the
Swedish Solar Telescope (SST) in Ca II (Vissers et al. 2015) demonstrated that these fea-
tures also appear in Si IV as a compact brightening at the top of the jet with an intensity
enhancement of around five compared to the surroundings.

Tian et al. (2014a) found brightness features in IRIS SJI 1330 Å and 1400 Å images that
also occur mainly in sunspot penumbrae, which they termed bright dots. They have a pro-
gressively weaker signal in lower atmosphere layers, with most events having no signature
in Hα (Deng et al. 2016). Tian et al. (2014a) suggested that bright dots have a connec-
tion to the Ca II penumbral microjets which was largely confirmed by Vissers et al. (2015),
but Samanta et al. (2017) identified a distinct class of bright dots without Ca II signature.
Penumbral bright dots were also found in 193 Å images from the Hi-C rocket flight (Alpert
et al. 2016), which were not considered to be coronal features but contributed by cooler TR
emission lines in the 193 Å passband. Tiwari et al. (2016) found signatures of larger penum-
bral jets in the AIA coronal filters, and suggested a different formation mechanism for these
compared to the standard microjets. Bright dots in a sunspot umbra were identified by Chitta
et al. (2016); they lie at the footpoints of coronal loops.

We note that sunspot bright dots are excluded from our UV burst definition due to their
relatively weak intensity enhancement in SJI 1400 Å images and their large proper motions
of 10–40 km s−1 (Tian et al. 2014a). However, since penumbral microjets and some bright
dots are found at locations of convective intrusion into strong field, the physics of these
events may have similarities to the bursts found in umbral light bridges (Sect. 4.3).

3.3 Explosive Events

This name was introduced by Dere et al. (1989) for events found with the third HRTS rocket
flight in 1979; earlier they were named “turbulent events” by Brueckner and Bartoe (1983).
They were identified as large broadening of C IV λ1548, on one side of the line only or on
both sides but with asymmetrical wings. Wherever both wings were enhanced there was of-
ten a spatial separation along the slit of up to 2′′. The maximum Doppler shift was not found
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to vary with the position of the events on the solar disk, suggesting that the corresponding
mass motions are isotropic. This led the authors to regard the events as explosions, hence
the name “explosive event”.

Most of the HRTS-era explosive events were measured in quiet areas, with perhaps the
most significant active region event reported by Brueckner et al. (1988) with the HRTS on
Spacelab 2 in 1985. This was reported to be only five times more intense than nearby active
region plage. Although difference in spatial resolution must be accounted for when compar-
ing intensities of compact features from different instruments, this relatively low enhance-
ment suggests that the various HRTS flights did not observe anything directly equivalent to
the IBs of Peter et al. (2014) since those are characterized by much larger intensity enhance-
ments of the Si IV lines.

There were a number explosive event studies from SUMER data (see Huang et al. 2014,
for a summary of results), but almost all were focused on quiet Sun or coronal holes as active
regions on the disk were rarely observed due to concerns over instrument degradation. One
exception is the event presented by Brekke et al. (2000) that showed high velocity features
in ions ranging from N IV to Ne VIII (logTmax(K) = 5.2–5.8) although, based on the im-
ages presented in the paper, it did not show the strong intensity enhancement characteristic
of IBs.

The only IRIS paper that has presented a quiet Sun explosive event is that of Huang et al.
(2014). The event occurred at the boundary of an equatorial extension of a polar coronal
hole, and it exhibited strongly broadened Si IV lines. The high spatial resolution of the SJI
1330 Å images allowed small jets to be seen, which are the first direct evidence of the jets
inferred from the high Doppler broadening in spectral data. Gupta and Tripathi (2015) and
Huang et al. (2017) studied active region events that they referred to as explosive events, but
we consider these to be UV bursts and they are discussed in the following sections.

3.4 Bursts

The use of the word “burst” with regard to TR phenomena dates back to the Skylab period,
with Emslie and Noyes (1978) and Widing (1982) referring to impulsive solar bursts. These
showed sudden increases in UV emission-line intensities, with two events associated with
flares and two not. Of direct relevance to the IRIS observations is the study by Hayes and
Shine (1987) who reported observations from the SMM/UVSP instrument with the Si IV

λ1402.77 and O IV λ1401.16 lines that are also observed by IRIS. They defined bursts as
events for which the Si IV λ1402.77 intensity increased by a factor two in one minute. The
line width and velocity were not part of this definition. The emission measure analysis pre-
sented in Appendix B suggests that they observed equivalents of IBs.

We also note that Innes et al. (1997) used the term burst to refer to a contiguous train of
explosive events, lasting for up to 30 minutes. Studies of some IRIS bursts suggest similar
behavior (e.g., Vissers et al. 2015; Gupta and Tripathi 2015).

3.5 Blinkers

The term blinker was introduced by Harrison (1997) to describe small-scale brightenings
seen in quiet-Sun areas with the Coronal Diagnostic Spectrometer (CDS) on board SOHO.
More detailed studies followed by Bewsher et al. (2002) and Parnell et al. (2002), who
applied an automatic detection method. They were identified from peaks in light curves for
individual emission lines by requiring that the peak be a factor P times the noise level of
nearby light-curve minima. In addition, this criterion must be satisfied for N neighboring
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spatial pixels. Ranges of P and N values were investigated, with P = 5 and N = 3 chosen
for statistical analysis. The O V λ629.7 line was the strongest TR line observed by CDS and
was the main reference line used in these studies.

Unlike SUMER, the CDS instrument routinely observed active regions on the solar disk
so, although it lacked the spectral resolution required to study broadened profiles of explo-
sive events or IBs, it was well capable of detecting large UV-line enhancements. An early
study by Young and Mason (1997) found two intense UV brightenings in the core of a small,
recently-emerged active region that were factors of ≈ 50 brighter than the average quiet Sun.
The study of active region blinkers of Parnell et al. (2002) yielded a wide spectrum of blinker
events, with the most intense being around a factor 100 times stronger than average active-
region emission. The emission measure analysis of Appendix B shows that O V blinkers are
about an order of magnitude weaker than UV bursts in Si IV, but we consider them to be
consistent with the UV burst definition. Young (2004) studied a handful of the most intense
active region blinker events and found densities as high as 1011–1012 cm−3, although only
one event exhibited significantly enhanced non-thermal broadening.

The Hinode/EIS instrument mostly observes coronal emission lines, but a number of
lines with Tmax values from 0.1 to 0.7 MK are also observed, as highlighted by Young et al.
(2007), although they are significantly weaker than the strong TR lines observed by CDS,
SUMER and IRIS. An intense UV brightening was identified in Young et al. (2007) and
considered analogous to CDS active-region blinkers. Despite this, we are aware of only one
other comparable brightening reported in the literature, that of Guglielmino et al. (2010).
A systematic search for these brightenings in existing EIS data-sets and additional joint
EIS–IRIS observing campaigns are required to determine if there is any correspondence
between the EIS events and IBs.

3.6 Ellerman Bombs

Ellerman (1917) referred to these as “solar hydrogen bombs”, but Ellerman bomb (EB) is the
preferred name today. EBs are photospheric features with sizes ≤2′′ and lifetimes of several
minutes that have traditionally been identified only in complex emerging active regions, but
similar phenomena occur in sunspot moats and were also recently found in quiet-Sun areas
(Rouppe van der Voort et al. 2016; Nelson et al. 2017). They are defined by their signature
in the Hα line, consisting of strong enhancements in the red and blue wings. Crucially,
these wing intensity enhancements are significantly larger than for the much more common
quiescent magnetic flux concentrations that cause wing brightening by the hot-wall effect,
a phenomenon different from EBs but sometimes causing confusion (Rutten et al. 2013).
Several studies (Vissers et al. 2013; Nelson et al. 2013; Vissers et al. 2015; Nelson et al.
2015; Reid et al. 2015, 2016) suggest that enhancement of about 50% above the mean at
±1 Å from Hα center is a good criterion to separate EBs from flux concentrations. When
observed towards the limb at high angular resolution (at least of 0.2′′) EBs are found to have
distinctive flame-like appearance in images obtained in the wing of Hα (Hashimoto et al.
2010; Watanabe et al. 2011). Recent 3D MHD simulations have been able to reproduce this
tell-tale characteristic remarkably well (Danilovic 2017; Hansteen et al. 2017).

EBs occur where bi-polar small-scale magnetic fields move together and cancel, typically
at locations of emerging flux in active regions as stipulated by Ellerman (1917), but also at
moving magnetic features (MMF) in moats around sunspots. They are interpreted as mag-
netic reconnection events occurring below 1000 km height (Georgoulis et al. 2002; Pariat
et al. 2004; Watanabe et al. 2011; Vissers et al. 2013). Emerging-flux EBs were discussed in
the review article of Schmieder et al. (2015).
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EBs are sometimes found at the base of Hα surges—large jet-like structures seen in
absorption in filtergrams taken in a Hα wing—but less often than claimed by Roy (1973).
He also reported surges from EB-like brightenings in light bridges. These different magnetic
environments are further discussed in Sect. 4.3.

4 UV Burst Results from IRIS

Most IRIS studies in this context focused on IRIS bombs (IBs) that were introduced by Peter
et al. (2014) who named these for similarities with Ellerman bombs. Other terms have also
been used, such as hot explosions (Kim et al. 2015), explosive events (Gupta and Tripathi
2015; Huang et al. 2017), compact brightenings (Grubecka et al. 2016) and flaring active-
region filaments (Vissers et al. 2015). In the present discussion we assume that they are all
UV bursts under the definition in Sect. 2 above.

To illustrate the properties of IBs and UV bursts in this section, we show four examples
from the literature in Fig. 2. Bursts (a) and (b) correspond to bomb events 4 and 1, respec-
tively, of Peter et al. (2014); burst (c) is the event studied by Gupta and Tripathi (2015);
burst (d) is an event from the data-set studied by Toriumi et al. (2015b). For each burst we
show the spectral image for Si IV λ1402.77 (leftmost panels), with the nearest-in-time IRIS
slit-jaw (SJI) 1400 Å image (middle panels) and the corresponding LOS magnetograms
from HMI (rightmost panels). The images were spatially aligned using the AIA 1600 Å
channel images, which also reveal the bursts (yellow contours in right panels). We em-
phasize the high intensity of the Si IV lines by displaying values of the lines’ maximum
specific intensities in the left panels. For comparison, an average quiet Sun Si IV λ1402.77
profile has a peak specific intensity of about 800 erg cm−2 s−1 sr−1 Å−1 and a full-width
at half-maximum of 0.2 Å. Average active region line profiles typically have peaks in the
5000–20 000 erg cm−2 s−1 sr−1 Å−1 range.

The IBs were identified by Peter et al. (2014) from a 140 × 170 arcsec2 IRIS raster scan
taken on 2013 September 24 during 11:44–12:04 UT. The authors did not explicitly state
criteria that defined IBs, but they formulated the four properties given below. We consider
criteria (2) to be too strict, as noted in the following text.

1. the Si IV lines are very wide with wings reaching out to ≈ 200 km s−1 separation from
line center;

2. the Si IV intensities are enhanced by a factor ∼1000 compared to the surrounding active
region;

3. narrow atomic and single-ionized absorption lines are superimposed as absorption blends
on the IRIS lines, including the Si IV lines;

4. the ratio of Si IV λ1402.77 to O IV λ1401.16 becomes much larger than usual for areas
where both appear, suggesting very high densities �1013 cm−3.

Whereas very wide lines are typical of explosive events (Sect. 3.3), properties (2)–(4)
were not previously reported for such events. Yan et al. (2015) demonstrated that recognizing
property (3) requires the high spectral resolution of IRIS.

The line width criterion (1) is required to ensure the line is broad enough to display the
narrow absorption blends. Note that it does not refer to the full-width at half-maximum of
the line, as is often used for describing Gaussian-shaped lines. The strongest absorption line
(Ni II λ1393.33) lies at −91 km s−1 from the center of Si IV λ1393.76—see the red profiles
in the left panels of Fig. 2(a)–(c).
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Fig. 2 Four examples of intense bursts. The leftmost panels show IRIS spectrograms for the spectral band
±200 km s−1 around Si IV λ1402.77; the center panels show SJI 1400 Å images; the rightmost panels show
HMI LOS magnetograms. The blue and red curves superimposed in the first column show the 1D spectra
for Si IV λ1402.77 and λ1393.76, respectively, at the Y -pixel specified by the short blue line at right, with
λ1393.76 scaled down by a factor two. The yellow contours in the third column are taken from corresponding
AIA 1600 Å images. The blue vertical lines in the center panels show the position of the IRIS slit. The blue
numbers in the left panels give the maximum specific intensity in units 103 erg cm−2 s−1 sr−1 Å−1 for the
1D spectra; the color bar gives the same units. The numbers in the center panels give the maximum image
intensity in DN. The observation dates are shown at top-right of the rightmost panels

The IB intensity criterion above applies only to the most extreme events, and many of the
IBs in the literature do not reach this intensity. Also, since IBs are defined from their spec-
troscopic signature, the intensity at the instant the IRIS slit crosses the event is unlikely to
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Fig. 3 Rapid variability in a UV burst. Panel (a) shows an IRIS SJI 1400 Å image of a burst (image center)
with a logarithmic intensity scale. Panel (b) shows the intensity variability of this burst from an area of 7 × 8
pixels centered on the feature and expressed relative to the median of the larger area displayed in panel (a).
The blue box indicates the region shown in greater detail in the inset plot. The horizontal dashed line shows
the intensity level used for the IRIS intensity contours in Fig. 1

be the highest value. This is particularly relevant when trying to associate IBs with features
identified from imaging data (e.g., Zhao et al. 2017). Gupta and Tripathi (2015) demon-
strated that IB criteria (1), (3) and (4) are valid for most of the lifetime of the event they
studied, which was captured with a sit-and-stare observation. If only a single snapshot had
been obtained with a raster scan, then the event may have failed criterion (2). Assessing the
feature intensity by measurement on IRIS SJI 1400 Å images is to be preferred. It has not
yet been demonstrated whether events exist that satisfy IB criteria (1), (3) and (4) but have
only a weak intensity enhancement, say a factor 5 to 10.

To put the IB intensities in context, we first use an IRIS quiet Sun dataset from 2013
October 3 04:20–04:37 UT to measure an average quiet Sun Si IV λ1402.77 intensity of
160 erg cm−2 s−1 sr−1. The average intensity3 of the active region studied by Peter et al.
(2014) was 2800 erg cm−2 s−1 sr−1, and the intensity of the brightest spatial pixel of IB
number 1 of Peter et al. (2014) was 5.2 × 105 erg cm−2 s−1 sr−1. We caution that the sen-
sitivity of IRIS has degraded significantly since launch, with version 4 of the radiometric
calibration (as implemented through the IDL procedure iris_get_response) showing
a decrease in sensitivity of a factor 4 at 1402.8 Å between 2013 August and 2017 August.
It is therefore recommended to always quote intensities in calibrated units rather than data
number (DN) units in order that bursts at different times can be compared.

One feature of UV bursts is the flickering of their intensities over time. Light curves
constructed from the IRIS/SJI 1400 Å images are shown by Peter et al. (2014), Vissers et al.
(2015) and Kim et al. (2015) and reveal that the intensity evolution of a UV burst consists
of many individual peaks that are often close to the SJI temporal resolution. The cadence
per SJI channel is usually lower than for the spectrometer exposures due to cycling between
different SJI channels. The fastest possible cadence of SJI imaging is 1.7 seconds, and we
have identified one data-set beginning at 09:08 UT on 2016 October 16 that has this cadence
for the SJI 1400 Å channel and contains bursts. Figure 3(a) shows an image of one burst from
this dataset, captured at the peak brightness. Panel (b) shows the light curve of the burst and
the inset plot shows a close up of the variability near the peak intensity. Individual spikes at
the sequence cadence can be identified, which suggests that the full variability of the burst is

3Peter et al. (2014) did not give intensities in calibrated units; the values quoted in this sentence were obtained
by the lead author of the present study.
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Fig. 4 Panel (a) shows the evolution of the line profile of Si IV λ1402.8 for a UV burst observed on 2014
October 24. The spatial coordinates of the burst are indicated and a reverse, linear intensity scaling is applied.
Short horizontal blue lines identify the time range that was averaged to yield the line profile (thick black line)
in panel (b). Two Gaussians were fit to the profile and are shown as red and blue lines; the thin black line
shows the total fitted profile

not being captured at this cadence. However, we also note that the frame-to-frame intensity
variation for this event is relatively small at around 10% or less.

Gupta and Tripathi (2015) presented sit-and-stare observations that captured a UV burst
with a five second cadence. Figure 7 of this work shows that the Si IV emission line light
curve exhibits strong variability on this timescale. These authors applied wavelet analysis
to identify periods of 30 and 60–90 seconds in the C II and Si IV spectral lines. We note
that flickering has previously been reported for EBs, for example by Pariat et al. (2007) and
Watanabe et al. (2011).

4.1 Emission Line Profiles

The Si IV profiles of IBs presented in the literature show significant shape variations; Fig. 2
gives some flavor of this. The striking double-peaked profile found by Peter et al. (2014)
and shown in Fig. 2b is not common, but has been seen in other events, for example, Fig. 3
of Rouppe van der Voort et al. (2017) and Fig. 7 of Tian et al. (2016). More commonly
the line has a dominant blue or red component (panels a and c of Fig. 2) or only a small
Doppler shift of the centroid (Fig. 2d). Some profiles show Si IV wings extending to over
2.5 Å (530 km s−1) from line center (Fig. 16 of Vissers et al. 2015), and a common feature
is a triangular profile shape, i.e., the profiles’ sides are linear when plotted as wavelength vs.
log(intensity) as opposed to the parabolic shape of Gaussian profiles. Examples are shown
in Figs. 4 to 8 of Tian et al. (2016).

One possibility for the complex shapes of IB line profiles is that the IRIS exposures rep-
resent a time average of a set of simpler, but rapidly-varying line profiles. For example, one
could imagine that individual plasmoids are being rapidly produced by the plasma, each
with a characteristic large speed but in different directions. The sum of the line profiles
would then yield a broad, complex spectral feature. The observations in the literature typi-
cally use exposure times of 2 to 8 seconds so the characteristic timescale for the evolution
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Fig. 5 An example of a narrow-line UV burst from an IRIS raster obtained between 00:41 and 00:51 UT on
2013 October 23. The format is the same as for Fig. 2

of individual line profiles would have to be a fraction of a second. Evidence against this
comes from the widths of the emission lines in sit-and-stare sequences, which can remain
approximately the same over timescales of minutes. An example is the evolution of the Si IV

lines in the UV burst presented in Fig. 2 of Gupta and Tripathi (2015). Although the line
widths vary significantly with time, they remain approximately constant for periods of about
a minute (about 20 exposures). Another example is shown in Fig. 4 where the evolution of
Si IV λ1402.8 for a burst observed on 2014 October 24 at 23:02 UT is shown, and we see that
the line width remains about 200 km s−1 for 15 minutes. This is difficult to explain unless
the basic velocity structure of the plasma remains fairly stable over timescales of minutes.

The Si IV profiles often vary significantly across IBs along the slit, for example in Fig. 2
of Yan et al. (2015), Fig. 6 of Grubecka et al. (2016), and Fig. 5 of Chitta et al. (2017).
In the latter case a MMF was studied and redshifts were found on the forward side of the
MMF, blueshifts on the rearward side, which was interpreted as reconnection jets tilted with
respect to the line of sight.

A defining feature of IBs is the presence of atomic or single-ionized blends superim-
posed on the broad Si IV emission lines. The deepest of the absorption lines is usually Ni II

λ1393.33, superimposed on Si IV λ1393.76. Sometimes the latter is not returned in the IRIS
telemetry stream, however, and absorption is less easy to identify in Si IV λ1402.77 (com-
pare profiles in the leftmost column of Fig. 2). When present, the narrow absorption dips
have relatively small Doppler shifts (generally less than 10 km s−1) and betray the presence
of relatively cool gas (hydrogen and helium predominantly neutral) along the line of sight
of the burst that produces the wide profiles.

Occasionally absorption features near the rest velocities of the Si IV lines can be identi-
fied, and examples have been shown by Yan et al. (2015) and Vissers et al. (2015). We note
that the latter paper suggested the absorption occurs in an overlying layer rather than due to
the burst emission itself being optically thick.

In addition to the complex line profile patterns, bursts with very narrow, Gaussian-shaped
Si IV line profiles have been reported by Hou et al. (2016). They were found above sunspots
and the authors suggested a connection with sunspot plumes. The most intense event had
an intensity of 3.5 × 105 erg cm−2 s−1 sr−1 in the brightest spatial pixel, comparable to the
IBs of Peter et al. (2014). These events thus appear to satisfy the UV burst criteria, but the
narrow line profiles disqualifies them from being IBs. The ISSI team found other examples
of intense, narrow-line bursts, and Fig. 5 shows an example from 2013 October 23, although
this one is not above a sunspot. A key requirement is to distinguish narrow-line bursts from
mini-flare ribbons (Sect. 4.5) and dynamic loops (Sect. 4.6), that may also show narrow line
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profiles. A wider survey of narrow-line bursts and a study of their underlying magnetic field
structure will be worthwhile.

The complex UV burst profiles suggests that some details of the reconnection physics
are being revealed in the UV lines; a first modeling effort was performed by Innes et al.
(2015) who considered how plasmoids in a current sheet may lead to line profile shapes as
observed, in particular triangular profiles. New high spatial resolution chromospheric images
from the CHROMIS instrument (Rouppe van der Voort et al. 2017) show tiny brightenings
of sizes close to 0.1′′ that are associated with a burst and may correspond to plasmoids. The
authors also simulated Si IV emission using a 2.5D radiative MHD simulation and found
that plasmoids could be responsible for the complex Si IV profiles if the line-of-sight passes
through multiple plasmoids along the current sheet.

4.2 Energy Estimates for UV Bursts

In this section we give a rough estimate of the energy of a typical burst, using the example
from 2014 October 24 shown in Fig. 4. We assume that the burst plasma is isothermal at
the temperature of formation of Si IV (80 kK). As noted in the previous section the Si IV

profile remains approximately the same during the event lifetime (Fig. 4) and we average
the λ1402.8 line over the 16 minute period indicated in Fig. 4a to yield the profile shown
in panel b. For simplicity we fit this with two Gaussians drawn as red and blue lines on
Fig. 4b. The fit does not reproduce the fine structure at the top of the profile, but the width
and total intensity are accurately reproduced. The Gaussians have LOS velocities of −58
and +42 km s−1, equal intensities and widths of 4.9 × 105 erg cm−2 s−1 sr−1 and 0.46 Å,
respectively. The latter corresponds to a non-thermal velocity of 59 km s−1 after subtracting
the thermal and instrumental widths. The burst image drifted through the IRIS slit during
the observation, and the full lifetime derived from SJI images was 36 minutes. The burst
is about 1 arcsec (725 km) in size. The O IV λ1401.2 emission line is very weak and we
estimate a Si IV λ1402.8/O IV λ1401.2 ratio of 317, corresponding to an electron number
density of 6.3 × 1012 cm−3 using the results of Young et al. (2018).

Given the large Doppler velocities of the two line components and the small size of the
burst, the event essentially blows itself apart in about 7 seconds (the travel time from the
center of the burst to the edge). The burst can thus be considered to regenerate itself 309
times during the 36 minute lifetime. We refer to these as sub-bursts.

For each sub-burst, the energy inputs are as follows. The particles need to be heated from
10 to 80 kK; they are given an instantaneous kinetic energy corresponding to a bulk speed
of ≈ 50 km s−1; they are given random non-thermal velocities of 59 km s−1; and heating is
applied during the sub-burst lifetime to balance the radiative losses and maintain the burst’s
temperature.

The number of particles in the burst at any one time is, on average, given by n =
2.3EMV /Ne, where the volume emission measure is defined in Appendix B. The average
Si IV intensity is 9.8 × 105 erg cm−2 s−1 sr−1, thus giving EMV = 2.9 × 1046 cm−3 and
n = 1.1 × 1034. If we assume these particles are heated from 10 to 80 kK, then the energy
required for a sub-burst is 1.5nk�T = 1.6 × 1023 erg.

The combined bulk flow and random motions are given by 0.5nm(v2 + ξ 2), where m is
the average mass of a particle taken here as 0.6 the mass of a proton. This gives a kinetic
energy of 3.3 × 1023 erg for each sub-burst.

The energy loss rate due to radiation is given by EMV Q(T ), where Q(T ) is the radiative
loss function. At 80 kK it takes the value of 4×10−22 erg cm3 s−1 calculated using CHIANTI
with photospheric abundances. For the 7 seconds lifetime of the sub-burst, the radiative
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losses are 8.1 × 1025 erg, over two orders of magnitude larger than the thermal and kinetic
energy terms,

Multiplying these energy estimates by the number of sub-bursts gives the total energy
requirement of 2.5 × 1028 erg for the burst’s lifetime of 36 minutes. This compares with the
value 5 × 1028 erg derived with a different method for the IB studied by Peter et al. (2014).
We also note that a typical energy for a X-class flare is 1032 erg (e.g., Emslie et al. 2005).

4.3 Magnetic Environments and Signatures

The UV bursts reported in the literature are generally characterized by rapid evolution of
small-scale magnetic elements on the photospheric surface, often evidenced in the 45 sec-
ond cadence LOS magnetograms from HMI but sometimes requiring better resolution and
sensitivity. Three types of magnetic environment are recognized to harbor UV bursts:

1. Emerging flux regions (EFRs) in complex active regions. Small flux elements in these
display fast streaming motions; cancellation occurs regularly.

2. Moving magnetic features (MMF) in sunspot moats. These can have opposite polarity
to the spot in sea-serpent patterns (Harvey and Harvey 1973) with cancellation against
same-polarity features.

3. Light bridges (LB). Elongated features with highly-sheared magnetic field that cross
sunspot umbrae, or occur close to them (Solanki 2003).

EFR examples include the events in Peter et al. (2014), Vissers et al. (2015), Toriumi
et al. (2017), Zhao et al. (2017) and Rouppe van der Voort et al. (2017). Gupta and Tripathi
(2015) and Chitta et al. (2017) studied MMF events. Bursts associated with an LB were
discussed by Toriumi et al. (2015b) and Tian et al. (2018a).

HMI magnetograms are shown in the rightmost column of Fig. 2. Events (a)–(c) are
located within 1′′ of small negative polarity features with vertical flux densities of around
200–400 G. Event (d) from Toriumi et al. (2015b) is located to the north side of a light
bridge running east-west and does not show an obvious compact magnetic feature, but the
authors noted a continuous supply of field with LOS flux densities of 200–400 G within the
light bridge that kept driving brightenings. Hinode Spectropolarimeter data showed that this
field was highly inclined with horizontal flux densities of around 1000 G. This highlights
the importance to obtain the full vector magnetic field when studying UV burst evolution.

Light bridges are believed to be convective intrusions into strong background magnetic
field and have mostly horizontal field (Leka 1997). Reconnection between this field and the
surrounding vertical field generates EB-like phenomena and surges of cool plasma (Roy
1973). Recent, high-resolution Hα data from the SST show that the surges resolve into a
“fan” of many jets side-by-side (Robustini et al. 2016). IRIS data have demonstrated that
UV bursts are rooted in LBs at the bases of the surges (Toriumi et al. 2015a; Hou et al.
2017; Tian et al. 2018a). Since reconnection events are constantly driven by the convection
in the LB, repeated bursts and surges can be sustained for hours but individual events are
short-lived (Asai et al. 2001).

The line-of-sight (LOS) magnetograms from HMI are valuable for studying the magnetic
field evolution of UV bursts, but the precise magnetic field topology requires vector magne-
tograms and/or extrapolation of the field into the corona. Vector magnetograms are available
from HMI at 720 second cadence, but the noise level for the transverse field is about 100 G
compared to about 10 G for the LOS magnetograms, not sufficient for the small field con-
centrations that typically underly or cause UV bursts.
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Fig. 6 A cartoon from
Georgoulis et al. (2002)
indicating how an Ellerman
bomb can be triggered by
converging horizontal flows in
the photosphere. Reproduced by
permission of the AAS

Fig. 7 A cartoon for the
formation of an IRIS bomb. This
scenario follows that of Fig. 6,
but has additional features to
account for the IRIS signatures,
as indicated on the figure. From
Peter et al. (2014). Reprinted
with permission from AAAS

A particular scenario believed important for EBs and UV bursts is U-loop reconnection,
in which reconnection takes place in the arms of a U-shaped magnetic field line (Figs. 6 and
7). Such a field configuration can occur where flux emerges through the photosphere and
mass-loading at the center of the loop prevents it from rising into the atmosphere. When
viewed in a LOS magnetogram, the field shows two distant footpoints and between them an
apparent, close bipole where the field is U-shaped rather than having the � shape of normal
field configurations. Such configurations are sometimes referred to as “bald patches”—see
the magnetic field lines at the photosphere in Fig. 6. The difference with � sea-serpent
configurations can only be recognised from vector magnetograms of sufficient quality to
establish that the field connects the two polarities underneath rather than above. This was
done by Georgoulis et al. (2002) for an emerging flux region observed in the Flare Genesis
balloon flight, leading them to suggest the U-shaped loop reconnection scenario for EBs
(Fig. 6) that was later adopted also by Peter et al. (2014) for IBs (Fig. 7) Due to this nature
of the field configuration the reconnection necessarily occurs in the low atmosphere.

A different scenario was presented by Chitta et al. (2017), who were able to identify a fan-
spine magnetic topology for a MMF UV burst by applying a magnetofrictional relaxation
technique to HMI LOS magnetograms. This technique begins with a potential field extrapo-
lation from an initial magnetogram, which is then evolved to a series of non-linear force-free
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field states by inputting the subsequent magnetograms as new boundary conditions. The null
point of the fan-spine system was found to be at 500 km, and the reconnection driving the
UV burst was suggested to be due to shearing at the null point, driven by the motion of the
MMF.

Zhao et al. (2017) and Tian et al. (2018b) combined vector magnetogram data from HMI
with a MHD relaxation technique (Zhu et al. 2013, 2016) to investigate the magnetic en-
vironment of UV bursts. Zhao et al. (2017) distinguished UV bursts associated with bald
patches and those with flux cancellation. Tian et al. (2018b) also found that some UV bursts
were associated with bald patches for a different emerging flux region, but most of the bursts
were not. A better correspondence was found with locations with a high squashing factor
that are often associated with currents and magnetic reconnection with regard to the gener-
ation of flares.

The evidence from the magnetic field extrapolations is that reconnection takes place at
heights of 0.5–1.0 Mm (Chitta et al. 2017; Tian et al. 2018b). Further evidence for these
low heights comes from the weakness or absence of coronal emission (Sect. 4.8) and the
appearance of the narrow cool-gas blends on the IB profiles. Note that these blends do not
require the presence of cool gas on top of (and part of) the bomb as suggested by Peter et al.
(2014), but may originate in cool gas along a slanted LOS to the bomb base as in Fig. 2
of Rutten (2016). Such gas then also absorbs any coronal EUV radiation from the burst at
wavelengths below the hydrogen photoionization edge at 912 Å.

High-quality vector magnetic field measurements are highly desirable for UV bursts,
both high spatial resolution and high sensitivity. Although current ground-based instruments
are capable of much better measurements than HMI, the polarization data are much more
susceptible to bad seeing so that homogeneous good-quality sequences covering the entire
duration of UV bursts have not yet been obtained. This is one area where the 4 meter Daniel
K. Inouye Solar Telescope (DKIST) should offer large improvement.

Unipolar magnetic field regions show a different type of intensity enhancement, with
examples presented by Toriumi et al. (2017) for a small EFR. In addition to the bursts in the
center of the EFR, which were interpreted as bald patch events, a set of brightenings above
the unipolar patches at the edge of the EFR were identified. These were interpreted as shock-
heating events driven by plasma flowing down the legs of the rising arch filament system.
The unipolar region events showed weaker Si IV intensities than the bald patch bursts, with
an enhancement of only around five compared to quiet regions; these may not generally
qualify as UV bursts.

4.4 Connection to Ellerman Bombs

Peter et al. (2014) recognized the connection between IBs and EBs by naming the events
“bombs”. Their U-loop reconnection scenario was partly based on the similar one for EBs
by Georgoulis et al. (2002). However, without access to simultaneous Hα observations, the
authors could not make the IB–EB connection. (The later work of Grubecka et al. 2016,
on the same data-set could, however, make a connection to EBs for IBs 3 and 4 based on
signatures in the Mg II lines—see below.)

Direct IB–EB connections were demonstrated by Vissers et al. (2015), Kim et al. (2015)
and Tian et al. (2016), who each had access to simultaneous ground-based Hα data and
found examples of EBs that had a clear IB signature, i.e., intense, strongly-broadened Si IV

emission lines with superimposed narrow cool-gas blends. Tian et al. (2016) identified 10
IBs based on the presence of broadened Si IV lines with such superimposed absorption fea-
tures. Three IBs were clearly matched with EBs, four had no EB signature, the remaining
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three were ambiguous. They also noted that while the IRIS slit crossed about 30 EBs only 6
had an IB signature.

Libbrecht et al. (2017) used Hβ to identify 21 EBs, and found four of the events showed
wing enhancements in the He I D3 and λ10830 lines—the first reported EB signatures in
these lines—suggesting temperatures in excess of 20 kK. Two of the four EBs were ob-
served through the IRIS slit and enhanced Si IV emission was found for each, with one
showing IB-like line profiles. This suggests that EBs displaying hot emission may also have
signatures in the He I lines, which could be significant for future ground-based observations
(e.g., DKIST).

As simultaneous, high-resolution, spectroscopic Hα data are rarely available for IRIS
observations some authors have sought to find EB identifiers in the IRIS data themselves.
Grubecka et al. (2016) found that 1D radiative transfer models that fit the Hα wings of EBs
may also fit the wings of the Mg II lines, and therefore used Mg II h line wing emission
to find EBs in their IRIS data-set. They found that samples at −3.5 and +1.0 Å (−374 and
+107 km s−1) are suited for identifying EBs, and subsequently identified 74 events that were
a factor two brighter than their surroundings. Around 10% of these events had a signature in
the SJI 1400 Å channel.

Tian et al. (2016) used narrow-band filtergrams in the wings of Hα to identify EBs and
found that averaging images obtained at ±1.33 Å (±143 km s−1) from the line core of
Mg II k is a good proxy for Hα EBs. Another method for detecting EBs with Mg II was
suggested by Hong et al. (2017b) who integrated a region ±0.25 Å around the two members
of the Mg II triplet lines at 2798.75 and 2798.82 Å, and found a good correlation with Hα

wing enhancements found with the Fast Imaging Solar Spectrograph on the Goode Solar
Telescope.

The ubiquitous availability of AIA full-disk images offers another avenue for finding EB
signatures, with the AIA 1700 and 1600 Å passbands the most promising. Rutten et al.
(2013), Vissers et al. (2013) and Vissers et al. (2015) compared Hα observations from
SST/CRISP with AIA and found good correlations between Hα EBs and AIA mid-UV
brightenings. The last paper set as EB criterion ≥8σ above the mean 1700 Å intensity over
the whole active region. Further study (G. Vissers 2018, private communication) suggests
that 1700 Å is the best of the AIA passbands for identifying EBs, allowing recovery of nearly
20% of the Hα EBs when using a ≥5σ above mean intensity threshold, combined with a
lower lifetime threshold of 1 minute and size limits of 1–16 pixels. Optimizing instead for
the number of AIA candidates that are indeed Hα EBs (reaching over 60%, though only
recovering about 5% of the total Hα EB population) requires a higher brightness threshold
(≥9σ ) and stricter size constraints (1–9 pixels), but keeping the same lifetime threshold.
While complete one-to-one correspondence is thus not possible, the 1700 Å brightenings
are of interest in their own right as already noted by Rutten et al. (2013).

Finally we emphasize that the results of Grubecka et al. (2016) and Tian et al. (2016)
suggest that 10–20% of EBs have an IB signature. Tian et al. (2016) have also suggested
that 30–60% of UV bursts are co-spatial with EBs. Since Sect. 5 below shows that it is hard
to achieve both EB signatures and UV burst signatures from a single reconnection event
when modeling EBs and IBs, then obtaining improved statistics on simultaneous EBs and
bursts is desirable.

4.5 Mini Flare Ribbons

Our definition of UV bursts in Sect. 2 excludes bright kernels in flare ribbons, but active
regions can also display what we call “mini flare ribbons” that are small in size (say, 10′′
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Fig. 8 An example of a mini flare ribbon from 2014 March 4. Panel (a) shows an IRIS SJI 1400 Å image
with a logarithmic intensity scale. The blue vertical line shows the position of the IRIS slit, and the cross the
location corresponding to the spectrum shown in panel (b), where Si IV λ1402.77 is shown. Panel (c) shows
an AIA 94 Å image (linear intensity scale) from two minutes later, with contours showing the SJI 1400 Å
intensity from panel (a) at a level of 1000 DN s−1. Note the displayed region is larger than for panel (a).
Panel (d) shows the GOES 1–8 Å flux with the time of the AIA image indicated with the vertical dashed line.
An arrow indicates a feature that may correspond to the mini flare (see main text)

or less) and have either no or very weak signal in the 1–8 Å channel of the Geostationary
Operational Environmental Satellite (GOES) X-ray monitor. The Si IV intensities of such
events are comparable to UV bursts, but a key distinguishing feature is that the lines are
mostly red-shifted, consistent with the profiles seen in most normal flare ribbons. The rib-
bons probably correspond to coronal nano- or micro-flares that would be visible at X-ray or
EUV wavelengths.

The only example in the IRIS literature is the event described by Bai et al. (2016) which
took place in the penumbra of a small sunspot. Multiple transient brightenings took place
along a ribbon of length 10′′, with the brightest comparable with the Peter et al. (2014)
IBs. The Si IV profiles were mostly Gaussian shaped and red-shifted by 15–20 km s−1. The
ribbon also exhibited coronal emission in the AIA channels, which is not typical of UV
bursts (Sect. 4.8).

Similar events have been found by the ISSI team and an example is shown in Fig. 8. The
IRIS slit crossed a very intense, compact brightening that is visible in panel (a) and could
be interpreted as a UV burst. Note the “chain” of weaker brightenings extending from the
main brightening that is reminiscent of a flare ribbon. The Si IV λ1402.77 line profile is
predominantly red-shifted and significantly narrower than the profiles of Fig. 2. The line’s
amplitude, however, is comparable to those of Figs. 2 and 5. About two minutes after the
IRIS image was taken, the AIA 94 Å bandpass (panel c) shows a loop running northwards
from the location of the intense IRIS brightening to another strong brightening (not shown
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Fig. 9 Example Si IV profile from a dynamic TR loop. The left panel shows an IRIS SJI 1400 Å image of
AR 11916 from 2013 December 6. A linear, inverted intensity scale is used. A blue cross denotes the spatial
location from which the spectrum in the right panel was taken

in panel a). This loop is clearly filled with plasma at ∼ 10 MK due to chromospheric evap-
oration, as expected from the standard flare model. Panel (d) shows the GOES X-ray flux at
this time, where a small peak is seen shortly after the time of the AIA image. It is not clear
if this peak arises from the event as the GOES flux is an average over the entire solar disk,
but if it is then the energy of an A-class flare is implied. This event has been studied in more
detail in a recent paper of Gupta et al. (2018).

To distinguish a UV burst from a mini flare ribbon, the key features to check are (i) an ex-
tended ribbon structure, (ii) a predominantly red-shifted line profile, and (iii) loop emission
in the “hot” AIA channels at 94 and 131 Å that would imply chromospheric evaporation has
taken place.

Bai et al. (2016) referred to their event as a nanoflare ribbon after estimating the thermal
energy from AIA imaging. We prefer the term “mini flare ribbon” in order to cover a wider
range of energies, and suggest that there is a need for a survey of such events to investigate
how they compare with larger flares.

4.6 Dynamic Loops (Arch Filament Systems)

Another class of events in SJI 1400 Å images that show strong UV-line emission but not
considered by us to be UV bursts are dynamic TR loops. These are mostly seen in emerging
flux regions, and seem to be analogous to the fibrils of arch filament systems that are seen
in absorption in Hα (Bruzek 1967). Examples have been presented by Yan et al. (2015),
Huang et al. (2015) and Huang et al. (2017). The loops span the emerging flux region and
are typically 5–40′′ long. Propagating intensity fronts in SJI 1400 Å image sequences sug-
gest flows along these loops are common. The line profiles often show a relatively narrow
central component with weaker, but very extended wings. We show an example from the
data-set studied by Yan et al. (2015) in Fig. 9. These authors showed in their Fig. 3 a more
intense loop spectrum with a complex line profile. We consider Fig. 9 to be a more rep-
resentative dynamic loop spectrum, and Fig. 5 from Huang et al. (2017) shows a similar
example from a different data-set. Post-flare loop arcades can also exhibit similar profiles,
such as those shown in Fig. 4 of Brannon (2016). The Si IV intensities of dynamic loops are
generally lower than those of the most intense UV bursts. For example the peak amplitude
of Si IV λ1402.77 for the event shown in Fig. 9 is 9000 erg cm−2 s−1 sr−1 Å−1, which can
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be compared with the numbers shown in blue in Figs. 2 and 5. Zhao et al. (2017) applied
magnetic field extrapolation to an emerging flux region (see also Sect. 4.3), attributed the
low-lying field lines in their extrapolation to an arcade of dynamic loops seen in SJI 1400 Å,
and associated the latter with reconnection between the emerging flux and the overlying
magnetic field at quasi-separatrix layers (QSLs). Previously, Georgoulis et al. (2002) had
identified the connection between QSLs and EBs for an emerging flux region, and they also
identified bright fibrils in the TRACE 1600 Å channel that they interpreted as due to bright
C IV emission. These were likely the equivalent of the Si IV dynamic loops.

4.7 Flaring Fibrils

A study of EBs identified from the Flare Genesis Experiment revealed co-spatial brighten-
ings and dynamic loops in the TRACE 1600 Å channel (Georgoulis et al. 2002; Schmieder
et al. 2004). The loops were referred to as “flaring arch filaments”, and Vissers et al. (2015)
used this notation to describe compact brightenings in AIA 1600 Å images, similar to EBs
but with obvious elongated morphology and proper motion along filamentary strands that
they interpreted as due to C IV line emission lines in this passband. Rutten (2016) subse-
quently proposed that “flaring active-region fibrils” (FAFs) is a better name as it avoids
confusion with the dynamic loops of arch filament systems referred to in the previous sec-
tion.

Vissers et al. (2015) compared AIA FAFs with IRIS data and found intense, IB-like Si IV

profiles at the locations of the 1600 Å brightenings, with jets or loops in the SJI 1400 Å
images and shell-like fronts expanding away from them in the hotter AIA passbands. To
highlight the difference between the dynamic loops described in the previous section with
FAFs, we show a SJI 1400 Å image from the 2014 June 15 dataset studied by Vissers et al.
(2015) in Fig. 10a. There are many dynamic loops in this image, and they can be seen to have
a generally smooth variation in their intensities from footpoint to footpoint. The FAFs are the
brightest loops in the image which appear to be connected to compact brightenings. Note
that the brightenings can be identified as discrete features—the inset image of Fig. 10(a)
shows one of the FAF brightenings on a linear intensity scale, revealing a distinct brighten-
ing. In particular, the brightenings are not simply small segments that brighten during the
loop’s evolution. Si IV λ1402.77 spectra from three locations are shown in panels (c)–(e).
(c) and (e) correspond to FAF brightenings, and show the broad, very intense profiles of
IBs (compare with Fig. 2), although (e) does not show the cool absorption blends. Panel (d)
shows a profile from a fibril that connects to the FAF brightening, and it is more comparable
to the dynamic loop profile shown in Fig. 9, although the intensity is an order of magnitude
larger. The FAF brightenings we consider to be UV bursts, and a plausible interpretation is
a low-lying reconnection event that is able to connect to the overlying arch filament system
and deposit heated plasma in certain loops.

Another event in the literature that we consider to be a FAF is the one shown in Fig. 13
of Huang et al. (2015), which was described as the footpoint of two interacting loop systems
that exhibited explosive event line profiles.

To summarize the terminology, the FAF is the combination of the loop (fibril) and the
burst that evolve together.

4.8 Coronal Signatures

Peter et al. (2014) noted that the four IBs they observed did not have a signature in the coro-
nal AIA passbands. This seems to be a common feature of UV bursts, but not an absolute
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Fig. 10 Example of a flaring arch fibril. Panel (a) shows an IRIS SJI 1400 Å image of AR 12089 from
2014 June 15. A logarithmic, inverted intensity scale is used, and the inset shows a section of the image
containing a FAF with a linear intensity scale. Panel (b) shows a co-temporal LOS magnetogram from HMI,
scaled between −500 and +500 G. Yellow contours are derived from the SJI image, with levels of 300 and
2000 DN s−1. Panels (c), (d) and (e) show three Si IV λ1402.77 spectra corresponding to the left, middle and
right locations indicated by the blue crosses in panel (a)

rule. For example, the event of Gupta and Tripathi (2015) showed weak AIA signals, al-
lowing the authors to derive a differential emission measure curve, and Vissers et al. (2015)
described thin long arcs seen in the hotter AIA diagnostics spreading away from FAF sites.

The weakness or absence of co-spatial coronal emission either implies that the bursts
are not heated beyond about 105 K, or that the EUV emission is blocked by overlying
cool plasma with sufficient neutral hydrogen and helium that all lines below 912 Å are
strongly attenuated. IRIS does observe a coronal line above 912 Å—Fe XII λ1349.40, with
Tmax = 1.6 MK—but this line is very weak and has not yet been reported from a UV burst
observation.

5 UV Burst Modeling

Our interpretation of UV bursts as magnetic reconnection events in the low atmosphere
means there are three components to modeling that must be considered: (1) the atmospheric
evolution that leads to reconnection at low heights in the atmosphere; (2) the physics as-
sociated with the reconnection current sheets; and (3) the effect of dynamics and heating
on spectral line profiles. Our definition of a UV burst requires the simulations to produce a
compact, very intense, flickering brightening in a TR line (with Tmax ∼ 100 kK). Since most
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UV bursts also show the complex line profiles of IBs and many also the cool-line absorption
blends, then these are additional tests for the models to pass.

UV bursts are relatively new discoveries so simulations directly focused on them are few,
but a number of works have considered how simulations relevant to EBs may produce UV
bursts. In particular, over the past 20 years increasingly sophisticated codes for modeling
flux emergence have been performed and demonstrated to produce the U-loop reconnection
that has been suggested for EBs and IBs (Figs. 6, 7). The physics of magnetic reconnection
current sheets has also been studied extensively, and may be particularly relevant to the
often complex line profiles of UV bursts. Another focus of modeling has been on whether
1D radiative transfer models that are able to reproduce the profiles of strong chromospheric
lines from EBs are consistent with UV bursts.

1D modeling of EBs has a history going back to Kitai (1983), with the most basic aim
to reproduce the wings-only brightening of Hα. The method involves the perturbation of a
plane-parallel atmosphere, usually by the insertion of a hot component near the temperature
minimum region (heights of ≈ 450 km). NLTE radiative transfer is included and profiles of
strong lines such as Hα, Ca II H & K and Mg II h & k are modeled. Recent work in this
vein includes Berlicki et al. (2010), Berlicki and Heinzel (2014), Grubecka et al. (2016) and
Fang et al. (2017), and the more sophisticated 2D NLTE modeling by Bello González et al.
(2013). Cloud modeling introduces an additional plasma component to simulate the effect
of absorption by overlying chromospheric fibrils on the line core, and a recent example is
the work of Hong et al. (2017b). Comparisons of the models with observations typically
constrain the hot component to be about 100–3000 K above the background temperature
(e.g., Li et al. 2015; Grubecka et al. 2016). Note that, since the models are focused on effects
at the temperature minimum region, the atmospheres are usually truncated at 20 000 K or
lower, well below the Tmax of Si IV.

The discovery of IBs led Fang et al. (2017), Reid et al. (2017) and Hong et al. (2017a)
to investigate whether the EB models could be modified to produce Si IV emission. Fang
et al. (2017) considered temperatures of the hot component up to 15 kK, but then the chro-
mospheric signatures were not consistent with the EB observations. Both Reid et al. (2017)
and Hong et al. (2017a) used the RADYN code (Carlsson and Stein 1997), which couples
radiative transfer with hydrodynamics, to allow the plasma to respond to the heating. Again
the authors found that it was not possible to reconcile Si IV emission with the chromo-
spheric line profiles of EBs. We highlight that, as discussed in Sect. 4.4, only 10–20% of
EBs have been found to have a hot UV burst signature, thus the failure of the 1D models
to account for the hot emission does not invalidate the models for the much more common,
cooler events. In addition, it is possible that non-equilibrium effects such as κ electron dis-
tributions can cause Si IV to be formed at much lower temperatures (Dudík et al. 2014).
A similar effect may also arise if EBs are formed at sufficiently high density that Si IV has
near-Saha-Boltzmann opacity, giving a formation temperature of 10–20 kK (Rutten 2016).
However, within this cooler regime no attempt has been yet made to reproduce the non-
visibility of EBs in the Na I D and Mg I b lines, already mentioned by Ellerman (1917) and
confirmed by Rutten et al. (2015), which may be difficult to reconcile with 1D temperature
humps covering the formation heights of these lines.

There are a number of simulations that focus solely on the physics of magnetic recon-
nection current sheets in the solar atmosphere. They do not investigate the wider plasma
evolution that leads to the sheet formation, but they do resolve the current sheet at higher
resolution than large-scale MHD codes. Ni et al. (2015, 2016) investigated plasma heating
in current sheets located at atmospheric heights of 100 to 1000 km, and with horizontal and
vertical orientations. Plasmoids are formed in the current sheet, and heating occurs where
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Fig. 11 Images from the current sheet simulation of Ni et al. (2016). The upper panel shows the configura-
tion prior to plasmoid formation, with velocity in the X-direction (vx , parallel to the current sheet) plotted;
contours show the magnetic field. The middle panel shows vx at a later time after plasmoids have formed, and
the lower panel shows temperature at this time, revealing 100 kK temperatures in the plasmoids. Reproduced
by permission of the AAS

slow-mode shocks from the reconnection site interact with the plasmoids (Fig. 11). They
found that the plasma β (ratio of plasma pressure to magnetic pressure) is crucial in deter-
mining if UV burst temperatures are produced: β � 0.1 enables heating to 80 kK (the tem-
perature of formation of Si IV). The further work of Ni et al. (2018) found that the inclusion
of non-equilibrium ionization in current sheet simulations results in a faster reconnection
rate but smaller temperature increases, potentially affecting the formation of Si IV.

Innes et al. (2015) also studied current sheet dynamics in relation to burst-like events
recorded from IRIS. They highlighted that the break-up of a current sheet into plasmoids
separated by magnetic field x-points at which particles are accelerated can give rise to com-
plex velocity distributions. Modeling the Si IV emission lines integrated along the current
sheet was found to give realistic, IB-like profiles. They also highlighted that a relatively
small change to the line-of-sight had a significant effect on the profiles.

Another 2.5D simulation that produced current sheet plasmoids, but this time as part of
the wider evolution of solar atmospheric structures was presented by Nóbrega-Siverio et al.
(2017) and Rouppe van der Voort et al. (2017). The interaction of an emerged bipole with
pre-existing magnetic field was simulated, leading to a surge and a current sheet. The latter
occurred where the “dome” of the emerged flux pushed against opposite polarity field, and
the simulation resolution was sufficient to resolve plasmoids. Figure 12 shows images taken
from these papers. The authors chose the line-of-sight indicated by the diagonal lines in the
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Fig. 12 Still frames from a 2.5D simulation of emerging flux. The left panel (from Nóbrega-Siverio et al.
2017) shows a temperature map with green contours representing magnetic field, the blue contour shows
the layer at which Si IV is formed (80 kK), and the red contour shows plasma at 1.2 MK. Key features of the
model are labeled. The orange box highlights the location of the current sheet, which is shown in progressively
greater detail in the bottom-right and top-right panels, which both show the magnetic field strength. Magnetic
field contours on the top-right panel emphasize the location of the plasmoids along the current sheet. These
panels are from Rouppe van der Voort et al. (2017) at a slightly earlier time than the left panel. Reproduced
by permission of the AAS

two right panels, and they found that complex, IB-like Si IV profiles were produced from
the multiple plasmoids along the current sheet. Note that the reconnection in this scenario is
not the U-loop reconnection discussed in Sect. 4.3, but that more commonly associated with
jets (e.g., Fig. 8 of Shimojo and Shibata 2000). This is also the scenario inferred by Chitta
et al. (2017) for a MMF burst.

There are many time-dependent simulations of emerging flux in the literature (see review
of Schmieder et al. 2015), and a particular issue relevant to UV bursts and EBs is the occur-
rence of U-loop reconnection (Sect. 4.3 and Figs. 6, 7). This has been demonstrated to arise
naturally on account of the Parker buoyancy instability acting on the flux and giving rise to
so-called serpentine field lines. A 2D resistive MHD simulation of an emerging flux sheet
was presented by Isobe et al. (2007), and it showed plasma heating and flows at the sites of
U-loop reconnection that were identified with EBs. A similar result was found by Archon-
tis and Hood (2009) but for a fully-3D resistive MHD simulation of flux sheet emergence.
Further advances were made by Tortosa-Andreu and Moreno-Insertis (2009) and Cheung
et al. (2010), who performed 3D simulations for the emergence of twisted cylindrical and
semi-torus flux tubes, respectively, demonstrating U-loop reconnection in both cases. The
latter work effectively demonstrated that EBs can occur during the formation of a bipolar
active region.

These latter two simulations both used the MURaM code (Vögler et al. 2005) and in-
cluded simplified radiative transfer effects. More recently the code has been applied to the
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case of an emerging flux sheet by Danilovic (2017), but with a more sophisticated treatment
of radiative transfer, including detailed Hα synthesis. The model produces realistic EB sig-
natures, but the atmosphere does not extend beyond the chromosphere and so UV bursts are
not produced.

The Bifrost code of Gudiksen et al. (2011) does extend to the chromosphere and corona,
allowing the evolution of flux emergence to be studied in these layers. This was done in
full 3D by Hansteen et al. (2017) who explicitly address EBs, UV bursts including IBs,
and microflares. It includes spectral synthesis of Hα, Mg II h & k, and the Si IV 1393.7 Å
line including the Ni II blend for selected simulation snapshots. There are many striking
agreements between the simulated and observed appearances of both EBs and UV bursts.
In the simulation the EBs are photospheric in origin and remain generally under 10 000 K;
the IB-like UV bursts are chromospheric and reach higher temperatures although their total
energy-release content is far less. The microflares go higher up and reach coronal tempera-
tures. In this simulation they are all the result of reconnection between the legs of dragged-
down U-loops and expanding �-loops that are part of serpentine flux emergence. Unlike the
2D codes discussed earlier, the simulation resolution is not sufficient to resolve plasmoids
in the current sheets, but broad Si IV line profiles are produced from bi-directional flows at
the reconnection sites. A remaining discrepancy is that the simulated EBs show Si IV emis-
sion only barely or none at all, whereas this has been observed for 10–20% of EBs. This
version of the Bifrost code did not yet account for ion-neutral separation (ambipolar diffu-
sion) whereas tests have shown in the meantime that this can substantially increase the rate
of reconnection (Martínez-Sykora et al. 2017), which may impact the predicted emissions
of EBs.

6 Summary

The IRIS instrument has revealed a set of intense, transient, compact brightenings that occur
in active regions and are visible in the resonance lines of Si IV. In this work we advocate
that these events be referred to as UV bursts. The definition of UV bursts is given in Sect. 2
and it includes the set of events that have been called IRIS bombs in the literature. The latter
were introduced by Peter et al. (2014), and are defined through their spectroscopic signature
in the Si IV lines.

Studies of UV bursts are ongoing, but they are widely believed to be small-scale recon-
nection events occurring at heights from the photosphere to the upper chromosphere. As the
events reach TR temperatures then they have special advantages for investigating reconnec-
tion in the solar atmosphere. The TR is thin (typically 10’s of kilometers) and so the large
energy output from reconnection gives a very strong signal in TR lines that overwhelms the
background emission and allows fine details in the line profiles to be studied. In contrast
a reconnection event in the corona takes place within a volume that is 10’s of megameters
thick, and thus gives a relatively subdued signal unless it is a significant size flare. The TR
has a number of very strong lines in the far ultraviolet where instrument sensitivity, spectral
and spatial resolution are generally higher than for the EUV and X-ray regions, where most
coronal lines are found. In the chromosphere, the lines are mostly formed optically thick, and
thus reconnection events in this region are mostly studied only in the lines’ wings. However,
the Fabry-Pérot spectroscopic imaging instruments commonly used have relatively narrow
wavelength coverage and thus do not cover the full spectral extents of the lines. The TR
lines in the UV therefore offer excellent opportunities for studying the physical processes of
magnetic reconnection and heating in the solar atmosphere.
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The early work on UV bursts has suggested certain common features: they mostly have
weak or non-existent signal in the coronal imaging channels of AIA; they generally overlie
small-scale, dynamic magnetic features seen in LOS magnetograms from HMI, and emerg-
ing flux regions, moving magnetic features and light bridges are the most common locations;
and about 10 to 20% of UV bursts are cospatial with EBs, which are generally interpreted
as photospheric reconnection events.

A number of modeling efforts have already been applied to UV bursts with some success
(Sect. 5), but one common feature is that it has not been possible to achieve both an EB
signature and a UV burst signature from the same event.

Despite the progress already made in describing and understanding UV bursts, we identi-
fied some areas for further work with the IRIS data in the preceding text that we summarize
here.

• Coordinated studies with Hinode/EIS and IRIS to determine the maximum temperatures
reached by the events.

• IRIS imaging and spectroscopy at the maximum possible cadence of 2 seconds to inves-
tigate the timescale of intensity fluctuations.

• A wider survey of narrow-line bursts and their connections with the magnetic field.
• A statistical study of bursts in the AIA 1600 and 1700 Å bandpasses during the lifetime

of an active region.
• Continued statistical studies of the EB–UV burst connection using Hα data, and the iden-

tification of definitive EB signatures in the IRIS chromospheric lines.
• A survey of mini flare ribbons and their properties.

The next solar UV spectroscopic capability for solar physics is the SPICE instrument
(Fludra et al. 2013) that will be flown on Solar Orbiter. This will observe two wavelength
bands at 704–790 and 973–1049 Å, which give excellent coverage from the chromosphere
through the transition region to the corona, and thus will allow the UV burst heating to be
tracked through the layers of the atmosphere. The spatial and spectral resolutions will be
somewhat lower than those of IRIS, but will be sufficient to see UV bursts.

The Atacama Large Millimeter/submillimeter Array (ALMA; Wedemeyer et al. 2016)
promises superb new capability for UV-burst studies when the (far from trivial) technologi-
cal problems of achieving long-baseline, many-telescope observations including full calibra-
tion become solved. Since hydrogen ionizes in UV bursts, their free-free hydrogen opacity
becomes very large, even exceeding Lyman-α at high temperature, and since free-free ex-
tinction is an LTE process ALMA will directly measure temperatures of UV bursts wherever
these are optically thick, at outstanding angular resolution.

DKIST is expected to become operational in late-2019/early-2020 and will resolve struc-
tures down to 25 km size and enable high quality vector magnetograms through higher
polarimetric sensitivities compared to other ground-based telescopes. DKIST will have no
transition region capability, but the He I D3 and λ10830 lines may be proxies (Sect. 4.4),
and EBs will be prime targets that offer the opportunity to study the reconnection process
in unprecedented detail. A very recent study of a UV burst at 75 km resolution (Smitha
et al. 2018) with the Ca II H line from the SUNRISE observatory suggests bursts may have a
complex, flare-like structure when observed at ultra-high resolution.

Longer term, a new UV/EUV spectroscopic mission with improved spatial resolution
compared to IRIS and a more complete temperature coverage would be ideal for UV bursts.
The rapid variability of UV bursts makes sub-second temporal cadence desirable, which is
currently limited by the readout times of UV-sensitive CCDs. The recent report4 of the Next

4http://hinode.nao.ac.jp/SOLAR-C/SOLAR-C/Documents/NGSPM_report_170731.pdf.

http://hinode.nao.ac.jp/SOLAR-C/SOLAR-C/Documents/NGSPM_report_170731.pdf
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Generation Solar Physics Mission Science Objectives Team (NGSPM-SOT) recommended a
coronal/transition region spectrograph with 0.3′′ spatial resolution, and Teriaca et al. (2012)
presented an instrument concept called LEMUR (Large European Module for solar Ultravi-
olet Research) that is compatible with the NGSPM-SOT recommendations. Such an instru-
ment would provide new advances for UV burst studies, particularly when combined with
DKIST.

Acknowledgements The authors thank ISSI Bern for support for the team “Solar UV bursts—a new insight
to magnetic reconnection”. P.R. Young acknowledges funding from NASA grant NNX15AF48G, and thanks
the Max Planck Institute in Göttingen for kind hospitality during visits in 2015 and 2016. H. Tian is supported
by NSFC grant 41574166, the Max Planck Partner Group program, and the Recruitment Program of Global
Experts of China. The work was supported by JSPS KAKENHI Grant Numbers JP16K17671 (PI: S. Tori-
umi), JP15H05814 (PI: K. Ichimoto), and JP25220703 (PI: S. Tsuneta). G. Vissers acknowledges support
under the CHROMOBS grant from the Knut and Alice Wallenberg Foundation. L. Rouppe van der Voort’s
research is supported by the Research Council of Norway, project number 250810, and through its Centres
of Excellence scheme, project number 262622. Z. Huang thanks the support from the NSFC (41404135) and
the Young Scholar Program of Shandong University, Weihai (2017WHWLJH07). C.J. Nelson is thankful to
the Science and Technology Facilities Council for support received. L.P. Chitta received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 707837. A. Berlicki and P. Heinzel acknowledge support by the grant No. 16-18495S of the
Czech Funding Agency and by ASI ASCR project RVO: 67985815. We thank L. Kleint for useful discus-
sions. IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations
executed at NASA Ames Research center and major contributions to downlink communications funded by
the Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Transition Region Imaging

Imaging the solar atmosphere through narrow bandpass filters enables particular tempera-
ture layers to be isolated and studied at high temporal resolution. At visible wavelengths,
Fabry-Pérot filters have long been used and they enable high cadence spectral imaging in
chromospheric lines such as Hα and Ca II H & K. For shorter wavelengths (≈100–500 Å)
multilayer coatings on optical surfaces enable good reflectivity over a relatively narrow
wavelength range (typically 10% of the central wavelength). If the filters are centered on
strong, isolated emission lines then the images can be a good means of isolating a particu-
lar temperature regime in the atmosphere. This has been exploited by several space-based
instruments with the most advanced being SDO/AIA, which obtains full-disk solar images
in seven EUV filters between 94 and 335 Å with around 1 arcsec spatial resolution and a
12 second cadence. The 100–500 Å region contains mostly coronal emission lines, with the
only strong, isolated cooler lines being He II λ304 and Ne VII λ465. The former is observed
with AIA and is formed around 80 kK, however the formation of this line is optically thick,
is complex and so the emission not easy to interpret. The Ne VII line is from the upper tran-
sition region (0.5 MK), but has not been successfully observed with a multilayer instrument
yet.

The lack of filter imaging for the TR means that imaging has been restricted to spectrom-
eters that have the option of a wide slit (usually referred to as a slot) that allows monochro-
matic imaging in a small spatial region but at the risk of overlapping images from neighbor-
ing emission lines. SOHO/CDS had the option of a 90′′ × 240′′ slot that yielded transition
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region images in O V λ629.7 although only at 6–10′′ spatial resolution (e.g., Brković et al.
2000). More recently Hinode/EIS has the options of 40′′ and 266′′ slots, although there are
no strong transition region lines. Useful data have been obtained from the upper TR lines
Mg VI λ269.0 and Si VII λ275.4, however (Ugarte-Urra et al. 2009). Since using a narrow or
a wide slit is an either/or option and spectrometer science is typically focused on emission
line parameters, then TR imaging has been rare. This has had the consequence that transition
region phenomena have generally been classified based on their spectroscopic signature. For
example, explosive events (Sect. 3.3) are principally distinguished by their line profiles.

The first filtergraph imager for the transition region is the IRIS slitjaw imager (SJI),
which has a filter centered at 1390 Å that picks up the Si IV lines at 1393.8 and 1402.8 Å, as
well as the FUV continuum. For intense UV bursts the Si IV emission dominates the signal
in the 1400 Å images and so the bursts can be confidently assigned to the transition region.

Appendix B: Emission Measure Comparison

The large Si IV intensities of UV bursts are their most striking feature, and they imply a
large emission measure (EM). Here we compare a typical UV burst EM with values derived
from the earlier features that seem most similar to them, namely the SMM/UVSP bursts
(Sect. 3.4) and active region blinkers (Sect. 3.5).

The expression relating an observed intensity, I , to a volume emission measure, EMV ,
for an isothermal plasma of temperature T is

I = G(T ,Ne)
EMV

A
(1)

where G(T ,Ne) is the contribution function for the observed emission line that is computed
using the CHIANTI gofnt IDL software routine. For the lines considered here, G has a
weak dependence on density and we compute the function at a density of 1012 cm−3 and the
temperature at which the function peaks. G contains the element abundance of the emitting
ion and we use the “Caffau” solar photospheric abundance set from CHIANTI (see Caffau
et al. 2011; Landi et al. 2013). A is the area of the event, and the interpretation varies
depending on the spatial resolution of the instrument, as described below.

For IRIS we consider event 1 of Peter et al. (2014)—see also panel (b) of Fig. 2. For
computing the EMV value we sum the intensity over a 3 × 7 block of spatial pixels centered
on the peak intensity value, and we sum across the spectral line profile to obtain the intensity
listed in Table 3. The intensity profile across the burst in the Y -direction takes a Gaussian
shape with a full-width at half-maximum of 0.62′′. We thus assume that the event has a
spatial size of 0.62′′ × 0.62′′, which we use as A in Eq. 1.

Hayes and Shine (1987) give Si IV λ1402.7 intensities for nine bursts in their Table 1,
and we use the median value for Table 3. The UVSP pixels for this observation had a size
4′′ × 4′′ and we assume the bursts were fully contained within these pixels, so A = 4′′ × 4′′.

For SOHO/CDS we choose the event reported by Young (2004) from the data-set
s7616r00 from 1997 April 15, beginning at 21:12 UT. This was a sit-and-stare observa-
tion, and the intensity was measured from the exposure with the peak brightness in the O V

λ629.7 line. The burst produced a Gaussian distribution of intensity along the CDS slit, with
a FWHM consistent with the PSF of the instrument (Young 2004). Therefore A was set to
the CDS pixel size, which in this case was 4.00′′ × 1.68′′.

The Hinode/EIS event of Young et al. (2007) was chosen for deriving an emission mea-
sure and, to enable direct comparison with CDS, the intensity of O V λ192.9 was measured.
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Table 3 Emission measure parameters for a selection of intense transition region brightenings

Ion Wavelength
(Å)

Intensity
(erg cm−2

s−1 sr−1)

G (erg cm3

s−1 sr−1)
A

(cm2)
EMV

(cm−3)
Instrument Reference

Si IV λ1402.8 1.86(+6) 1.77(−25) 2.02(+15) 2.12(+46) IRIS Peter et al.
(2014)

1.80(+5) 1.77(−25) 8.41(+16) 8.55(+46) SMM/UVSP Hayes and
Shine (1987)

O V λ629.7 5.27(+5) 9.56(−24) 3.53(+16) 1.95(+45) SOHO/CDS Young
(2004)

O V λ192.9 8.53(+3) 3.88(−25) 1.05(+6) 2.31(+44) Hinode/EIS Young et al.
(2007)

The value of G was calculated by including the two transitions at 192.904 and 192.911 Å.
As the intensity distribution along the EIS slit had a width consistent with the instrument
point spread function, then we considered the event to be unresolved, so the intensity was
summed in the Y direction and A was set to 2′′ × 1′′, the pixel size for this observation.

Comparing the EM values in Table 3 we see that the Si IV values are at least an order
of magnitude higher than the CDS O V value. We caution that Si IV belongs to the sodium
isoelectronic sequence, and there is a well-known problem that ions from the sodium and
lithium-like isoelectronic sequences generally yield EM values higher than other species
at similar temperatures (Dupree 1972). However, this is unlikely to account for an order
of magnitude difference and it suggests a significantly smaller EM in the upper transition
region. The EIS event is a further order of magnitude weaker than the CDS event and this,
coupled with the apparent lack of intense active region blinkers seen by EIS, suggests that
the high-excitation λ192.9 line is not as sensitive to the events as the CDS λ629.7 line.

Based on the EM, it appears that the SMM/UVSP bursts are consistent with the UV
bursts. The most intense of the CDS active region blinkers are weaker than the IRIS and
UVSP events, but likely still qualify as UV bursts.
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